1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49
50 extern struct inet_hashinfo tcp_hashinfo;
51
52 extern struct percpu_counter tcp_orphan_count;
53 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
54
55 #define MAX_TCP_HEADER (128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Offer an initial receive window of 10 mss. */
65 #define TCP_DEFAULT_INIT_RCVWND 10
66
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS 88U
69
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS 512
72
73 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
74 #define TCP_FASTRETRANS_THRESH 3
75
76 /* Maximal reordering. */
77 #define TCP_MAX_REORDERING 127
78
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS 16U
81
82 /* urg_data states */
83 #define TCP_URG_VALID 0x0100
84 #define TCP_URG_NOTYET 0x0200
85 #define TCP_URG_READ 0x0400
86
87 #define TCP_RETR1 3 /*
88 * This is how many retries it does before it
89 * tries to figure out if the gateway is
90 * down. Minimal RFC value is 3; it corresponds
91 * to ~3sec-8min depending on RTO.
92 */
93
94 #define TCP_RETR2 15 /*
95 * This should take at least
96 * 90 minutes to time out.
97 * RFC1122 says that the limit is 100 sec.
98 * 15 is ~13-30min depending on RTO.
99 */
100
101 #define TCP_SYN_RETRIES 5 /* number of times to retry active opening a
102 * connection: ~180sec is RFC minimum */
103
104 #define TCP_SYNACK_RETRIES 5 /* number of times to retry passive opening a
105 * connection: ~180sec is RFC minimum */
106
107 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
108 * state, about 60 seconds */
109 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
110 /* BSD style FIN_WAIT2 deadlock breaker.
111 * It used to be 3min, new value is 60sec,
112 * to combine FIN-WAIT-2 timeout with
113 * TIME-WAIT timer.
114 */
115
116 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
117 #if HZ >= 100
118 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
119 #define TCP_ATO_MIN ((unsigned)(HZ/25))
120 #else
121 #define TCP_DELACK_MIN 4U
122 #define TCP_ATO_MIN 4U
123 #endif
124 #define TCP_RTO_MAX ((unsigned)(120*HZ))
125 #define TCP_RTO_MIN ((unsigned)(HZ/5))
126 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC2988bis initial RTO value */
127 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
128 * used as a fallback RTO for the
129 * initial data transmission if no
130 * valid RTT sample has been acquired,
131 * most likely due to retrans in 3WHS.
132 */
133
134 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
135 * for local resources.
136 */
137
138 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
139 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
140 #define TCP_KEEPALIVE_INTVL (75*HZ)
141
142 #define MAX_TCP_KEEPIDLE 32767
143 #define MAX_TCP_KEEPINTVL 32767
144 #define MAX_TCP_KEEPCNT 127
145 #define MAX_TCP_SYNCNT 127
146
147 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
148
149 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
150 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
151 * after this time. It should be equal
152 * (or greater than) TCP_TIMEWAIT_LEN
153 * to provide reliability equal to one
154 * provided by timewait state.
155 */
156 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
157 * timestamps. It must be less than
158 * minimal timewait lifetime.
159 */
160 /*
161 * TCP option
162 */
163
164 #define TCPOPT_NOP 1 /* Padding */
165 #define TCPOPT_EOL 0 /* End of options */
166 #define TCPOPT_MSS 2 /* Segment size negotiating */
167 #define TCPOPT_WINDOW 3 /* Window scaling */
168 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
169 #define TCPOPT_SACK 5 /* SACK Block */
170 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
171 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
172 #define TCPOPT_COOKIE 253 /* Cookie extension (experimental) */
173
174 /*
175 * TCP option lengths
176 */
177
178 #define TCPOLEN_MSS 4
179 #define TCPOLEN_WINDOW 3
180 #define TCPOLEN_SACK_PERM 2
181 #define TCPOLEN_TIMESTAMP 10
182 #define TCPOLEN_MD5SIG 18
183 #define TCPOLEN_COOKIE_BASE 2 /* Cookie-less header extension */
184 #define TCPOLEN_COOKIE_PAIR 3 /* Cookie pair header extension */
185 #define TCPOLEN_COOKIE_MIN (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
186 #define TCPOLEN_COOKIE_MAX (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
187
188 /* But this is what stacks really send out. */
189 #define TCPOLEN_TSTAMP_ALIGNED 12
190 #define TCPOLEN_WSCALE_ALIGNED 4
191 #define TCPOLEN_SACKPERM_ALIGNED 4
192 #define TCPOLEN_SACK_BASE 2
193 #define TCPOLEN_SACK_BASE_ALIGNED 4
194 #define TCPOLEN_SACK_PERBLOCK 8
195 #define TCPOLEN_MD5SIG_ALIGNED 20
196 #define TCPOLEN_MSS_ALIGNED 4
197
198 /* Flags in tp->nonagle */
199 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
200 #define TCP_NAGLE_CORK 2 /* Socket is corked */
201 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
202
203 /* TCP thin-stream limits */
204 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
205
206 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
207 #define TCP_INIT_CWND 10
208
209 extern struct inet_timewait_death_row tcp_death_row;
210
211 /* sysctl variables for tcp */
212 extern int sysctl_tcp_timestamps;
213 extern int sysctl_tcp_window_scaling;
214 extern int sysctl_tcp_sack;
215 extern int sysctl_tcp_fin_timeout;
216 extern int sysctl_tcp_keepalive_time;
217 extern int sysctl_tcp_keepalive_probes;
218 extern int sysctl_tcp_keepalive_intvl;
219 extern int sysctl_tcp_syn_retries;
220 extern int sysctl_tcp_synack_retries;
221 extern int sysctl_tcp_retries1;
222 extern int sysctl_tcp_retries2;
223 extern int sysctl_tcp_orphan_retries;
224 extern int sysctl_tcp_syncookies;
225 extern int sysctl_tcp_retrans_collapse;
226 extern int sysctl_tcp_stdurg;
227 extern int sysctl_tcp_rfc1337;
228 extern int sysctl_tcp_abort_on_overflow;
229 extern int sysctl_tcp_max_orphans;
230 extern int sysctl_tcp_fack;
231 extern int sysctl_tcp_reordering;
232 extern int sysctl_tcp_ecn;
233 extern int sysctl_tcp_dsack;
234 extern int sysctl_tcp_wmem[3];
235 extern int sysctl_tcp_rmem[3];
236 extern int sysctl_tcp_app_win;
237 extern int sysctl_tcp_adv_win_scale;
238 extern int sysctl_tcp_tw_reuse;
239 extern int sysctl_tcp_frto;
240 extern int sysctl_tcp_frto_response;
241 extern int sysctl_tcp_low_latency;
242 extern int sysctl_tcp_dma_copybreak;
243 extern int sysctl_tcp_nometrics_save;
244 extern int sysctl_tcp_moderate_rcvbuf;
245 extern int sysctl_tcp_tso_win_divisor;
246 extern int sysctl_tcp_abc;
247 extern int sysctl_tcp_mtu_probing;
248 extern int sysctl_tcp_base_mss;
249 extern int sysctl_tcp_workaround_signed_windows;
250 extern int sysctl_tcp_slow_start_after_idle;
251 extern int sysctl_tcp_max_ssthresh;
252 extern int sysctl_tcp_cookie_size;
253 extern int sysctl_tcp_thin_linear_timeouts;
254 extern int sysctl_tcp_thin_dupack;
255 extern int sysctl_tcp_challenge_ack_limit;
256 extern int sysctl_tcp_default_init_rwnd;
257
258 extern atomic_long_t tcp_memory_allocated;
259 extern struct percpu_counter tcp_sockets_allocated;
260 extern int tcp_memory_pressure;
261
262 /*
263 * The next routines deal with comparing 32 bit unsigned ints
264 * and worry about wraparound (automatic with unsigned arithmetic).
265 */
266
before(__u32 seq1,__u32 seq2)267 static inline int before(__u32 seq1, __u32 seq2)
268 {
269 return (__s32)(seq1-seq2) < 0;
270 }
271 #define after(seq2, seq1) before(seq1, seq2)
272
273 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)274 static inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
275 {
276 return seq3 - seq2 >= seq1 - seq2;
277 }
278
tcp_out_of_memory(struct sock * sk)279 static inline bool tcp_out_of_memory(struct sock *sk)
280 {
281 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
282 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
283 return true;
284 return false;
285 }
286
tcp_too_many_orphans(struct sock * sk,int shift)287 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
288 {
289 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
290 int orphans = percpu_counter_read_positive(ocp);
291
292 if (orphans << shift > sysctl_tcp_max_orphans) {
293 orphans = percpu_counter_sum_positive(ocp);
294 if (orphans << shift > sysctl_tcp_max_orphans)
295 return true;
296 }
297 return false;
298 }
299
300 extern bool tcp_check_oom(struct sock *sk, int shift);
301
302 /* syncookies: remember time of last synqueue overflow */
tcp_synq_overflow(struct sock * sk)303 static inline void tcp_synq_overflow(struct sock *sk)
304 {
305 tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
306 }
307
308 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)309 static inline int tcp_synq_no_recent_overflow(const struct sock *sk)
310 {
311 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
312 return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
313 }
314
315 extern struct proto tcp_prot;
316
317 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
318 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
319 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
320 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
321 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
322
323 extern void tcp_init_mem(struct net *net);
324
325 extern void tcp_v4_err(struct sk_buff *skb, u32);
326
327 extern void tcp_shutdown (struct sock *sk, int how);
328
329 extern int tcp_v4_rcv(struct sk_buff *skb);
330
331 extern struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it);
332 extern void *tcp_v4_tw_get_peer(struct sock *sk);
333 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
334 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
335 size_t size);
336 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
337 size_t size, int flags);
338 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
339 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
340 const struct tcphdr *th, unsigned int len);
341 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
342 const struct tcphdr *th, unsigned int len);
343 extern void tcp_rcv_space_adjust(struct sock *sk);
344 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
345 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346 extern void tcp_twsk_destructor(struct sock *sk);
347 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
348 struct pipe_inode_info *pipe, size_t len,
349 unsigned int flags);
350
tcp_dec_quickack_mode(struct sock * sk,const unsigned int pkts)351 static inline void tcp_dec_quickack_mode(struct sock *sk,
352 const unsigned int pkts)
353 {
354 struct inet_connection_sock *icsk = inet_csk(sk);
355
356 if (icsk->icsk_ack.quick) {
357 if (pkts >= icsk->icsk_ack.quick) {
358 icsk->icsk_ack.quick = 0;
359 /* Leaving quickack mode we deflate ATO. */
360 icsk->icsk_ack.ato = TCP_ATO_MIN;
361 } else
362 icsk->icsk_ack.quick -= pkts;
363 }
364 }
365
366 #define TCP_ECN_OK 1
367 #define TCP_ECN_QUEUE_CWR 2
368 #define TCP_ECN_DEMAND_CWR 4
369 #define TCP_ECN_SEEN 8
370
371 static __inline__ void
TCP_ECN_create_request(struct request_sock * req,struct tcphdr * th)372 TCP_ECN_create_request(struct request_sock *req, struct tcphdr *th)
373 {
374 if (sysctl_tcp_ecn && th->ece && th->cwr)
375 inet_rsk(req)->ecn_ok = 1;
376 }
377
378 enum tcp_tw_status {
379 TCP_TW_SUCCESS = 0,
380 TCP_TW_RST = 1,
381 TCP_TW_ACK = 2,
382 TCP_TW_SYN = 3
383 };
384
385
386 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
387 struct sk_buff *skb,
388 const struct tcphdr *th);
389 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
390 struct request_sock *req,
391 struct request_sock **prev);
392 extern int tcp_child_process(struct sock *parent, struct sock *child,
393 struct sk_buff *skb);
394 extern int tcp_use_frto(struct sock *sk);
395 extern void tcp_enter_frto(struct sock *sk);
396 extern void tcp_enter_loss(struct sock *sk, int how);
397 extern void tcp_clear_retrans(struct tcp_sock *tp);
398 extern void tcp_update_metrics(struct sock *sk);
399 extern void tcp_close(struct sock *sk, long timeout);
400 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
401 struct poll_table_struct *wait);
402 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
403 char __user *optval, int __user *optlen);
404 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
405 char __user *optval, unsigned int optlen);
406 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
407 char __user *optval, int __user *optlen);
408 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
409 char __user *optval, unsigned int optlen);
410 extern void tcp_set_keepalive(struct sock *sk, int val);
411 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
412 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
413 size_t len, int nonblock, int flags, int *addr_len);
414 extern void tcp_parse_options(const struct sk_buff *skb,
415 struct tcp_options_received *opt_rx, const u8 **hvpp,
416 int estab);
417 extern const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
418
419 /*
420 * TCP v4 functions exported for the inet6 API
421 */
422
423 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
424 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
425 extern struct sock * tcp_create_openreq_child(struct sock *sk,
426 struct request_sock *req,
427 struct sk_buff *skb);
428 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
429 struct request_sock *req,
430 struct dst_entry *dst);
431 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
432 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
433 int addr_len);
434 extern int tcp_connect(struct sock *sk);
435 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
436 struct request_sock *req,
437 struct request_values *rvp);
438 extern int tcp_disconnect(struct sock *sk, int flags);
439
440
441 /* From syncookies.c */
442 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
443 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
444 struct ip_options *opt);
445 #ifdef CONFIG_SYN_COOKIES
446 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
447 __u16 *mss);
448 #else
cookie_v4_init_sequence(struct sock * sk,struct sk_buff * skb,__u16 * mss)449 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
450 struct sk_buff *skb,
451 __u16 *mss)
452 {
453 return 0;
454 }
455 #endif
456
457 extern __u32 cookie_init_timestamp(struct request_sock *req);
458 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
459
460 /* From net/ipv6/syncookies.c */
461 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
462 #ifdef CONFIG_SYN_COOKIES
463 extern __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
464 __u16 *mss);
465 #else
cookie_v6_init_sequence(struct sock * sk,struct sk_buff * skb,__u16 * mss)466 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
467 struct sk_buff *skb,
468 __u16 *mss)
469 {
470 return 0;
471 }
472 #endif
473 /* tcp_output.c */
474
475 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
476 int nonagle);
477 extern int tcp_may_send_now(struct sock *sk);
478 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
479 extern void tcp_retransmit_timer(struct sock *sk);
480 extern void tcp_xmit_retransmit_queue(struct sock *);
481 extern void tcp_simple_retransmit(struct sock *);
482 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
483 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
484
485 extern void tcp_send_probe0(struct sock *);
486 extern void tcp_send_partial(struct sock *);
487 extern int tcp_write_wakeup(struct sock *);
488 extern void tcp_send_fin(struct sock *sk);
489 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
490 extern int tcp_send_synack(struct sock *);
491 extern int tcp_syn_flood_action(struct sock *sk,
492 const struct sk_buff *skb,
493 const char *proto);
494 extern void tcp_push_one(struct sock *, unsigned int mss_now);
495 extern void tcp_send_ack(struct sock *sk);
496 extern void tcp_send_delayed_ack(struct sock *sk);
497
498 /* tcp_input.c */
499 extern void tcp_cwnd_application_limited(struct sock *sk);
500
501 /* tcp_timer.c */
502 extern void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)503 static inline void tcp_clear_xmit_timers(struct sock *sk)
504 {
505 inet_csk_clear_xmit_timers(sk);
506 }
507
508 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
509 extern unsigned int tcp_current_mss(struct sock *sk);
510
511 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)512 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
513 {
514 int cutoff;
515
516 /* When peer uses tiny windows, there is no use in packetizing
517 * to sub-MSS pieces for the sake of SWS or making sure there
518 * are enough packets in the pipe for fast recovery.
519 *
520 * On the other hand, for extremely large MSS devices, handling
521 * smaller than MSS windows in this way does make sense.
522 */
523 if (tp->max_window >= 512)
524 cutoff = (tp->max_window >> 1);
525 else
526 cutoff = tp->max_window;
527
528 if (cutoff && pktsize > cutoff)
529 return max_t(int, cutoff, 68U - tp->tcp_header_len);
530 else
531 return pktsize;
532 }
533
534 /* tcp.c */
535 extern void tcp_get_info(const struct sock *, struct tcp_info *);
536
537 /* Read 'sendfile()'-style from a TCP socket */
538 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
539 unsigned int, size_t);
540 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
541 sk_read_actor_t recv_actor);
542
543 extern void tcp_initialize_rcv_mss(struct sock *sk);
544
545 extern int tcp_mtu_to_mss(const struct sock *sk, int pmtu);
546 extern int tcp_mss_to_mtu(const struct sock *sk, int mss);
547 extern void tcp_mtup_init(struct sock *sk);
548 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
549
tcp_bound_rto(const struct sock * sk)550 static inline void tcp_bound_rto(const struct sock *sk)
551 {
552 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
553 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
554 }
555
__tcp_set_rto(const struct tcp_sock * tp)556 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
557 {
558 return (tp->srtt >> 3) + tp->rttvar;
559 }
560
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)561 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
562 {
563 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
564 ntohl(TCP_FLAG_ACK) |
565 snd_wnd);
566 }
567
tcp_fast_path_on(struct tcp_sock * tp)568 static inline void tcp_fast_path_on(struct tcp_sock *tp)
569 {
570 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
571 }
572
tcp_fast_path_check(struct sock * sk)573 static inline void tcp_fast_path_check(struct sock *sk)
574 {
575 struct tcp_sock *tp = tcp_sk(sk);
576
577 if (skb_queue_empty(&tp->out_of_order_queue) &&
578 tp->rcv_wnd &&
579 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
580 !tp->urg_data)
581 tcp_fast_path_on(tp);
582 }
583
584 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)585 static inline u32 tcp_rto_min(struct sock *sk)
586 {
587 const struct dst_entry *dst = __sk_dst_get(sk);
588 u32 rto_min = TCP_RTO_MIN;
589
590 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
591 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
592 return rto_min;
593 }
594
595 /* Compute the actual receive window we are currently advertising.
596 * Rcv_nxt can be after the window if our peer push more data
597 * than the offered window.
598 */
tcp_receive_window(const struct tcp_sock * tp)599 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
600 {
601 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
602
603 if (win < 0)
604 win = 0;
605 return (u32) win;
606 }
607
608 /* Choose a new window, without checks for shrinking, and without
609 * scaling applied to the result. The caller does these things
610 * if necessary. This is a "raw" window selection.
611 */
612 extern u32 __tcp_select_window(struct sock *sk);
613
614 /* TCP timestamps are only 32-bits, this causes a slight
615 * complication on 64-bit systems since we store a snapshot
616 * of jiffies in the buffer control blocks below. We decided
617 * to use only the low 32-bits of jiffies and hide the ugly
618 * casts with the following macro.
619 */
620 #define tcp_time_stamp ((__u32)(jiffies))
621
622 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
623
624 #define TCPHDR_FIN 0x01
625 #define TCPHDR_SYN 0x02
626 #define TCPHDR_RST 0x04
627 #define TCPHDR_PSH 0x08
628 #define TCPHDR_ACK 0x10
629 #define TCPHDR_URG 0x20
630 #define TCPHDR_ECE 0x40
631 #define TCPHDR_CWR 0x80
632
633 /* This is what the send packet queuing engine uses to pass
634 * TCP per-packet control information to the transmission code.
635 * We also store the host-order sequence numbers in here too.
636 * This is 44 bytes if IPV6 is enabled.
637 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
638 */
639 struct tcp_skb_cb {
640 union {
641 struct inet_skb_parm h4;
642 #if IS_ENABLED(CONFIG_IPV6)
643 struct inet6_skb_parm h6;
644 #endif
645 } header; /* For incoming frames */
646 __u32 seq; /* Starting sequence number */
647 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
648 __u32 when; /* used to compute rtt's */
649 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
650 __u8 sacked; /* State flags for SACK/FACK. */
651 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
652 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
653 #define TCPCB_LOST 0x04 /* SKB is lost */
654 #define TCPCB_TAGBITS 0x07 /* All tag bits */
655 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
656 /* 1 byte hole */
657 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
658 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
659
660 __u32 ack_seq; /* Sequence number ACK'd */
661 };
662
663 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
664
665 /* Due to TSO, an SKB can be composed of multiple actual
666 * packets. To keep these tracked properly, we use this.
667 */
tcp_skb_pcount(const struct sk_buff * skb)668 static inline int tcp_skb_pcount(const struct sk_buff *skb)
669 {
670 return skb_shinfo(skb)->gso_segs;
671 }
672
673 /* This is valid iff tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)674 static inline int tcp_skb_mss(const struct sk_buff *skb)
675 {
676 return skb_shinfo(skb)->gso_size;
677 }
678
679 /* Events passed to congestion control interface */
680 enum tcp_ca_event {
681 CA_EVENT_TX_START, /* first transmit when no packets in flight */
682 CA_EVENT_CWND_RESTART, /* congestion window restart */
683 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
684 CA_EVENT_FRTO, /* fast recovery timeout */
685 CA_EVENT_LOSS, /* loss timeout */
686 CA_EVENT_FAST_ACK, /* in sequence ack */
687 CA_EVENT_SLOW_ACK, /* other ack */
688 };
689
690 /*
691 * Interface for adding new TCP congestion control handlers
692 */
693 #define TCP_CA_NAME_MAX 16
694 #define TCP_CA_MAX 128
695 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
696
697 #define TCP_CONG_NON_RESTRICTED 0x1
698 #define TCP_CONG_RTT_STAMP 0x2
699
700 struct tcp_congestion_ops {
701 struct list_head list;
702 unsigned long flags;
703
704 /* initialize private data (optional) */
705 void (*init)(struct sock *sk);
706 /* cleanup private data (optional) */
707 void (*release)(struct sock *sk);
708
709 /* return slow start threshold (required) */
710 u32 (*ssthresh)(struct sock *sk);
711 /* lower bound for congestion window (optional) */
712 u32 (*min_cwnd)(const struct sock *sk);
713 /* do new cwnd calculation (required) */
714 void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
715 /* call before changing ca_state (optional) */
716 void (*set_state)(struct sock *sk, u8 new_state);
717 /* call when cwnd event occurs (optional) */
718 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
719 /* new value of cwnd after loss (optional) */
720 u32 (*undo_cwnd)(struct sock *sk);
721 /* hook for packet ack accounting (optional) */
722 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
723 /* get info for inet_diag (optional) */
724 void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
725
726 char name[TCP_CA_NAME_MAX];
727 struct module *owner;
728 };
729
730 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
731 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
732
733 extern void tcp_init_congestion_control(struct sock *sk);
734 extern void tcp_cleanup_congestion_control(struct sock *sk);
735 extern int tcp_set_default_congestion_control(const char *name);
736 extern void tcp_get_default_congestion_control(char *name);
737 extern void tcp_get_available_congestion_control(char *buf, size_t len);
738 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
739 extern int tcp_set_allowed_congestion_control(char *allowed);
740 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
741 extern void tcp_slow_start(struct tcp_sock *tp);
742 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
743
744 extern struct tcp_congestion_ops tcp_init_congestion_ops;
745 extern u32 tcp_reno_ssthresh(struct sock *sk);
746 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
747 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
748 extern struct tcp_congestion_ops tcp_reno;
749
tcp_set_ca_state(struct sock * sk,const u8 ca_state)750 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
751 {
752 struct inet_connection_sock *icsk = inet_csk(sk);
753
754 if (icsk->icsk_ca_ops->set_state)
755 icsk->icsk_ca_ops->set_state(sk, ca_state);
756 icsk->icsk_ca_state = ca_state;
757 }
758
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)759 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
760 {
761 const struct inet_connection_sock *icsk = inet_csk(sk);
762
763 if (icsk->icsk_ca_ops->cwnd_event)
764 icsk->icsk_ca_ops->cwnd_event(sk, event);
765 }
766
767 /* These functions determine how the current flow behaves in respect of SACK
768 * handling. SACK is negotiated with the peer, and therefore it can vary
769 * between different flows.
770 *
771 * tcp_is_sack - SACK enabled
772 * tcp_is_reno - No SACK
773 * tcp_is_fack - FACK enabled, implies SACK enabled
774 */
tcp_is_sack(const struct tcp_sock * tp)775 static inline int tcp_is_sack(const struct tcp_sock *tp)
776 {
777 return tp->rx_opt.sack_ok;
778 }
779
tcp_is_reno(const struct tcp_sock * tp)780 static inline int tcp_is_reno(const struct tcp_sock *tp)
781 {
782 return !tcp_is_sack(tp);
783 }
784
tcp_is_fack(const struct tcp_sock * tp)785 static inline int tcp_is_fack(const struct tcp_sock *tp)
786 {
787 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
788 }
789
tcp_enable_fack(struct tcp_sock * tp)790 static inline void tcp_enable_fack(struct tcp_sock *tp)
791 {
792 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
793 }
794
tcp_left_out(const struct tcp_sock * tp)795 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
796 {
797 return tp->sacked_out + tp->lost_out;
798 }
799
800 /* This determines how many packets are "in the network" to the best
801 * of our knowledge. In many cases it is conservative, but where
802 * detailed information is available from the receiver (via SACK
803 * blocks etc.) we can make more aggressive calculations.
804 *
805 * Use this for decisions involving congestion control, use just
806 * tp->packets_out to determine if the send queue is empty or not.
807 *
808 * Read this equation as:
809 *
810 * "Packets sent once on transmission queue" MINUS
811 * "Packets left network, but not honestly ACKed yet" PLUS
812 * "Packets fast retransmitted"
813 */
tcp_packets_in_flight(const struct tcp_sock * tp)814 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
815 {
816 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
817 }
818
819 #define TCP_INFINITE_SSTHRESH 0x7fffffff
820
tcp_in_initial_slowstart(const struct tcp_sock * tp)821 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
822 {
823 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
824 }
825
826 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
827 * The exception is rate halving phase, when cwnd is decreasing towards
828 * ssthresh.
829 */
tcp_current_ssthresh(const struct sock * sk)830 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
831 {
832 const struct tcp_sock *tp = tcp_sk(sk);
833
834 if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
835 return tp->snd_ssthresh;
836 else
837 return max(tp->snd_ssthresh,
838 ((tp->snd_cwnd >> 1) +
839 (tp->snd_cwnd >> 2)));
840 }
841
842 /* Use define here intentionally to get WARN_ON location shown at the caller */
843 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
844
845 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
846 extern __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
847
848 /* The maximum number of MSS of available cwnd for which TSO defers
849 * sending if not using sysctl_tcp_tso_win_divisor.
850 */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)851 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
852 {
853 return 3;
854 }
855
856 /* Slow start with delack produces 3 packets of burst, so that
857 * it is safe "de facto". This will be the default - same as
858 * the default reordering threshold - but if reordering increases,
859 * we must be able to allow cwnd to burst at least this much in order
860 * to not pull it back when holes are filled.
861 */
tcp_max_burst(const struct tcp_sock * tp)862 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
863 {
864 return tp->reordering;
865 }
866
867 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)868 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
869 {
870 return tp->snd_una + tp->snd_wnd;
871 }
872 extern int tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
873
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss,const struct sk_buff * skb)874 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
875 const struct sk_buff *skb)
876 {
877 if (skb->len < mss)
878 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
879 }
880
tcp_check_probe_timer(struct sock * sk)881 static inline void tcp_check_probe_timer(struct sock *sk)
882 {
883 const struct tcp_sock *tp = tcp_sk(sk);
884 const struct inet_connection_sock *icsk = inet_csk(sk);
885
886 if (!tp->packets_out && !icsk->icsk_pending)
887 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
888 icsk->icsk_rto, TCP_RTO_MAX);
889 }
890
tcp_init_wl(struct tcp_sock * tp,u32 seq)891 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
892 {
893 tp->snd_wl1 = seq;
894 }
895
tcp_update_wl(struct tcp_sock * tp,u32 seq)896 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
897 {
898 tp->snd_wl1 = seq;
899 }
900
901 /*
902 * Calculate(/check) TCP checksum
903 */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)904 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
905 __be32 daddr, __wsum base)
906 {
907 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
908 }
909
__tcp_checksum_complete(struct sk_buff * skb)910 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
911 {
912 return __skb_checksum_complete(skb);
913 }
914
tcp_checksum_complete(struct sk_buff * skb)915 static inline int tcp_checksum_complete(struct sk_buff *skb)
916 {
917 return !skb_csum_unnecessary(skb) &&
918 __tcp_checksum_complete(skb);
919 }
920
921 /* Prequeue for VJ style copy to user, combined with checksumming. */
922
tcp_prequeue_init(struct tcp_sock * tp)923 static inline void tcp_prequeue_init(struct tcp_sock *tp)
924 {
925 tp->ucopy.task = NULL;
926 tp->ucopy.len = 0;
927 tp->ucopy.memory = 0;
928 skb_queue_head_init(&tp->ucopy.prequeue);
929 #ifdef CONFIG_NET_DMA
930 tp->ucopy.dma_chan = NULL;
931 tp->ucopy.wakeup = 0;
932 tp->ucopy.pinned_list = NULL;
933 tp->ucopy.dma_cookie = 0;
934 #endif
935 }
936
937 /* Packet is added to VJ-style prequeue for processing in process
938 * context, if a reader task is waiting. Apparently, this exciting
939 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
940 * failed somewhere. Latency? Burstiness? Well, at least now we will
941 * see, why it failed. 8)8) --ANK
942 *
943 * NOTE: is this not too big to inline?
944 */
tcp_prequeue(struct sock * sk,struct sk_buff * skb)945 static inline int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
946 {
947 struct tcp_sock *tp = tcp_sk(sk);
948
949 if (sysctl_tcp_low_latency || !tp->ucopy.task)
950 return 0;
951
952 skb_dst_force(skb);
953 __skb_queue_tail(&tp->ucopy.prequeue, skb);
954 tp->ucopy.memory += skb->truesize;
955 if (tp->ucopy.memory > sk->sk_rcvbuf) {
956 struct sk_buff *skb1;
957
958 BUG_ON(sock_owned_by_user(sk));
959
960 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
961 sk_backlog_rcv(sk, skb1);
962 NET_INC_STATS_BH(sock_net(sk),
963 LINUX_MIB_TCPPREQUEUEDROPPED);
964 }
965
966 tp->ucopy.memory = 0;
967 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
968 wake_up_interruptible_sync_poll(sk_sleep(sk),
969 POLLIN | POLLRDNORM | POLLRDBAND);
970 if (!inet_csk_ack_scheduled(sk))
971 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
972 (3 * tcp_rto_min(sk)) / 4,
973 TCP_RTO_MAX);
974 }
975 return 1;
976 }
977
978
979 #undef STATE_TRACE
980
981 #ifdef STATE_TRACE
982 static const char *statename[]={
983 "Unused","Established","Syn Sent","Syn Recv",
984 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
985 "Close Wait","Last ACK","Listen","Closing"
986 };
987 #endif
988 extern void tcp_set_state(struct sock *sk, int state);
989
990 extern void tcp_done(struct sock *sk);
991
992 int tcp_abort(struct sock *sk, int err);
993
tcp_sack_reset(struct tcp_options_received * rx_opt)994 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
995 {
996 rx_opt->dsack = 0;
997 rx_opt->num_sacks = 0;
998 }
999
1000 /* Determine a window scaling and initial window to offer. */
1001 extern void tcp_select_initial_window(int __space, __u32 mss,
1002 __u32 *rcv_wnd, __u32 *window_clamp,
1003 int wscale_ok, __u8 *rcv_wscale,
1004 __u32 init_rcv_wnd);
1005
tcp_win_from_space(int space)1006 static inline int tcp_win_from_space(int space)
1007 {
1008 return sysctl_tcp_adv_win_scale<=0 ?
1009 (space>>(-sysctl_tcp_adv_win_scale)) :
1010 space - (space>>sysctl_tcp_adv_win_scale);
1011 }
1012
1013 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1014 static inline int tcp_space(const struct sock *sk)
1015 {
1016 return tcp_win_from_space(sk->sk_rcvbuf -
1017 atomic_read(&sk->sk_rmem_alloc));
1018 }
1019
tcp_full_space(const struct sock * sk)1020 static inline int tcp_full_space(const struct sock *sk)
1021 {
1022 return tcp_win_from_space(sk->sk_rcvbuf);
1023 }
1024
tcp_openreq_init(struct request_sock * req,struct tcp_options_received * rx_opt,struct sk_buff * skb)1025 static inline void tcp_openreq_init(struct request_sock *req,
1026 struct tcp_options_received *rx_opt,
1027 struct sk_buff *skb)
1028 {
1029 struct inet_request_sock *ireq = inet_rsk(req);
1030
1031 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
1032 req->cookie_ts = 0;
1033 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1034 req->mss = rx_opt->mss_clamp;
1035 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1036 ireq->tstamp_ok = rx_opt->tstamp_ok;
1037 ireq->sack_ok = rx_opt->sack_ok;
1038 ireq->snd_wscale = rx_opt->snd_wscale;
1039 ireq->wscale_ok = rx_opt->wscale_ok;
1040 ireq->acked = 0;
1041 ireq->ecn_ok = 0;
1042 ireq->rmt_port = tcp_hdr(skb)->source;
1043 ireq->loc_port = tcp_hdr(skb)->dest;
1044 }
1045
1046 extern void tcp_enter_memory_pressure(struct sock *sk);
1047
keepalive_intvl_when(const struct tcp_sock * tp)1048 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1049 {
1050 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1051 }
1052
keepalive_time_when(const struct tcp_sock * tp)1053 static inline int keepalive_time_when(const struct tcp_sock *tp)
1054 {
1055 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1056 }
1057
keepalive_probes(const struct tcp_sock * tp)1058 static inline int keepalive_probes(const struct tcp_sock *tp)
1059 {
1060 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1061 }
1062
keepalive_time_elapsed(const struct tcp_sock * tp)1063 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1064 {
1065 const struct inet_connection_sock *icsk = &tp->inet_conn;
1066
1067 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1068 tcp_time_stamp - tp->rcv_tstamp);
1069 }
1070
tcp_fin_time(const struct sock * sk)1071 static inline int tcp_fin_time(const struct sock *sk)
1072 {
1073 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1074 const int rto = inet_csk(sk)->icsk_rto;
1075
1076 if (fin_timeout < (rto << 2) - (rto >> 1))
1077 fin_timeout = (rto << 2) - (rto >> 1);
1078
1079 return fin_timeout;
1080 }
1081
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1082 static inline int tcp_paws_check(const struct tcp_options_received *rx_opt,
1083 int paws_win)
1084 {
1085 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1086 return 1;
1087 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1088 return 1;
1089 /*
1090 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1091 * then following tcp messages have valid values. Ignore 0 value,
1092 * or else 'negative' tsval might forbid us to accept their packets.
1093 */
1094 if (!rx_opt->ts_recent)
1095 return 1;
1096 return 0;
1097 }
1098
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1099 static inline int tcp_paws_reject(const struct tcp_options_received *rx_opt,
1100 int rst)
1101 {
1102 if (tcp_paws_check(rx_opt, 0))
1103 return 0;
1104
1105 /* RST segments are not recommended to carry timestamp,
1106 and, if they do, it is recommended to ignore PAWS because
1107 "their cleanup function should take precedence over timestamps."
1108 Certainly, it is mistake. It is necessary to understand the reasons
1109 of this constraint to relax it: if peer reboots, clock may go
1110 out-of-sync and half-open connections will not be reset.
1111 Actually, the problem would be not existing if all
1112 the implementations followed draft about maintaining clock
1113 via reboots. Linux-2.2 DOES NOT!
1114
1115 However, we can relax time bounds for RST segments to MSL.
1116 */
1117 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1118 return 0;
1119 return 1;
1120 }
1121
tcp_mib_init(struct net * net)1122 static inline void tcp_mib_init(struct net *net)
1123 {
1124 /* See RFC 2012 */
1125 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1126 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1127 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1128 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1129 }
1130
1131 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1132 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1133 {
1134 tp->lost_skb_hint = NULL;
1135 tp->scoreboard_skb_hint = NULL;
1136 }
1137
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1138 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1139 {
1140 tcp_clear_retrans_hints_partial(tp);
1141 tp->retransmit_skb_hint = NULL;
1142 }
1143
1144 /* MD5 Signature */
1145 struct crypto_hash;
1146
1147 union tcp_md5_addr {
1148 struct in_addr a4;
1149 #if IS_ENABLED(CONFIG_IPV6)
1150 struct in6_addr a6;
1151 #endif
1152 };
1153
1154 /* - key database */
1155 struct tcp_md5sig_key {
1156 struct hlist_node node;
1157 u8 keylen;
1158 u8 family; /* AF_INET or AF_INET6 */
1159 union tcp_md5_addr addr;
1160 u8 key[TCP_MD5SIG_MAXKEYLEN];
1161 struct rcu_head rcu;
1162 };
1163
1164 /* - sock block */
1165 struct tcp_md5sig_info {
1166 struct hlist_head head;
1167 struct rcu_head rcu;
1168 };
1169
1170 /* - pseudo header */
1171 struct tcp4_pseudohdr {
1172 __be32 saddr;
1173 __be32 daddr;
1174 __u8 pad;
1175 __u8 protocol;
1176 __be16 len;
1177 };
1178
1179 struct tcp6_pseudohdr {
1180 struct in6_addr saddr;
1181 struct in6_addr daddr;
1182 __be32 len;
1183 __be32 protocol; /* including padding */
1184 };
1185
1186 union tcp_md5sum_block {
1187 struct tcp4_pseudohdr ip4;
1188 #if IS_ENABLED(CONFIG_IPV6)
1189 struct tcp6_pseudohdr ip6;
1190 #endif
1191 };
1192
1193 /* - pool: digest algorithm, hash description and scratch buffer */
1194 struct tcp_md5sig_pool {
1195 struct hash_desc md5_desc;
1196 union tcp_md5sum_block md5_blk;
1197 };
1198
1199 /* - functions */
1200 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1201 const struct sock *sk,
1202 const struct request_sock *req,
1203 const struct sk_buff *skb);
1204 extern int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1205 int family, const u8 *newkey,
1206 u8 newkeylen, gfp_t gfp);
1207 extern int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1208 int family);
1209 extern struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1210 struct sock *addr_sk);
1211
1212 #ifdef CONFIG_TCP_MD5SIG
1213 extern struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1214 const union tcp_md5_addr *addr, int family);
1215 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1216 #else
tcp_md5_do_lookup(struct sock * sk,const union tcp_md5_addr * addr,int family)1217 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1218 const union tcp_md5_addr *addr,
1219 int family)
1220 {
1221 return NULL;
1222 }
1223 #define tcp_twsk_md5_key(twsk) NULL
1224 #endif
1225
1226 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1227 extern void tcp_free_md5sig_pool(void);
1228
1229 extern struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1230 extern void tcp_put_md5sig_pool(void);
1231
1232 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1233 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1234 unsigned header_len);
1235 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1236 const struct tcp_md5sig_key *key);
1237
1238 /* write queue abstraction */
tcp_write_queue_purge(struct sock * sk)1239 static inline void tcp_write_queue_purge(struct sock *sk)
1240 {
1241 struct sk_buff *skb;
1242
1243 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1244 sk_wmem_free_skb(sk, skb);
1245 sk_mem_reclaim(sk);
1246 tcp_clear_all_retrans_hints(tcp_sk(sk));
1247 }
1248
tcp_write_queue_head(const struct sock * sk)1249 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1250 {
1251 return skb_peek(&sk->sk_write_queue);
1252 }
1253
tcp_write_queue_tail(const struct sock * sk)1254 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1255 {
1256 return skb_peek_tail(&sk->sk_write_queue);
1257 }
1258
tcp_write_queue_next(const struct sock * sk,const struct sk_buff * skb)1259 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1260 const struct sk_buff *skb)
1261 {
1262 return skb_queue_next(&sk->sk_write_queue, skb);
1263 }
1264
tcp_write_queue_prev(const struct sock * sk,const struct sk_buff * skb)1265 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1266 const struct sk_buff *skb)
1267 {
1268 return skb_queue_prev(&sk->sk_write_queue, skb);
1269 }
1270
1271 #define tcp_for_write_queue(skb, sk) \
1272 skb_queue_walk(&(sk)->sk_write_queue, skb)
1273
1274 #define tcp_for_write_queue_from(skb, sk) \
1275 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1276
1277 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1278 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1279
tcp_send_head(const struct sock * sk)1280 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1281 {
1282 return sk->sk_send_head;
1283 }
1284
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1285 static inline bool tcp_skb_is_last(const struct sock *sk,
1286 const struct sk_buff *skb)
1287 {
1288 return skb_queue_is_last(&sk->sk_write_queue, skb);
1289 }
1290
tcp_advance_send_head(struct sock * sk,const struct sk_buff * skb)1291 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1292 {
1293 if (tcp_skb_is_last(sk, skb))
1294 sk->sk_send_head = NULL;
1295 else
1296 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1297 }
1298
tcp_check_send_head(struct sock * sk,struct sk_buff * skb_unlinked)1299 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1300 {
1301 if (sk->sk_send_head == skb_unlinked)
1302 sk->sk_send_head = NULL;
1303 }
1304
tcp_init_send_head(struct sock * sk)1305 static inline void tcp_init_send_head(struct sock *sk)
1306 {
1307 sk->sk_send_head = NULL;
1308 }
1309
__tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1310 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1311 {
1312 __skb_queue_tail(&sk->sk_write_queue, skb);
1313 }
1314
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1315 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1316 {
1317 __tcp_add_write_queue_tail(sk, skb);
1318
1319 /* Queue it, remembering where we must start sending. */
1320 if (sk->sk_send_head == NULL) {
1321 sk->sk_send_head = skb;
1322
1323 if (tcp_sk(sk)->highest_sack == NULL)
1324 tcp_sk(sk)->highest_sack = skb;
1325 }
1326 }
1327
__tcp_add_write_queue_head(struct sock * sk,struct sk_buff * skb)1328 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1329 {
1330 __skb_queue_head(&sk->sk_write_queue, skb);
1331 }
1332
1333 /* Insert buff after skb on the write queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk)1334 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1335 struct sk_buff *buff,
1336 struct sock *sk)
1337 {
1338 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1339 }
1340
1341 /* Insert new before skb on the write queue of sk. */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1342 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1343 struct sk_buff *skb,
1344 struct sock *sk)
1345 {
1346 __skb_queue_before(&sk->sk_write_queue, skb, new);
1347
1348 if (sk->sk_send_head == skb)
1349 sk->sk_send_head = new;
1350 }
1351
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1352 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1353 {
1354 __skb_unlink(skb, &sk->sk_write_queue);
1355 }
1356
tcp_write_queue_empty(struct sock * sk)1357 static inline int tcp_write_queue_empty(struct sock *sk)
1358 {
1359 return skb_queue_empty(&sk->sk_write_queue);
1360 }
1361
tcp_push_pending_frames(struct sock * sk)1362 static inline void tcp_push_pending_frames(struct sock *sk)
1363 {
1364 if (tcp_send_head(sk)) {
1365 struct tcp_sock *tp = tcp_sk(sk);
1366
1367 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1368 }
1369 }
1370
1371 /* Start sequence of the skb just after the highest skb with SACKed
1372 * bit, valid only if sacked_out > 0 or when the caller has ensured
1373 * validity by itself.
1374 */
tcp_highest_sack_seq(struct tcp_sock * tp)1375 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1376 {
1377 if (!tp->sacked_out)
1378 return tp->snd_una;
1379
1380 if (tp->highest_sack == NULL)
1381 return tp->snd_nxt;
1382
1383 return TCP_SKB_CB(tp->highest_sack)->seq;
1384 }
1385
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1386 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1387 {
1388 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1389 tcp_write_queue_next(sk, skb);
1390 }
1391
tcp_highest_sack(struct sock * sk)1392 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1393 {
1394 return tcp_sk(sk)->highest_sack;
1395 }
1396
tcp_highest_sack_reset(struct sock * sk)1397 static inline void tcp_highest_sack_reset(struct sock *sk)
1398 {
1399 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1400 }
1401
1402 /* Called when old skb is about to be deleted (to be combined with new skb) */
tcp_highest_sack_combine(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1403 static inline void tcp_highest_sack_combine(struct sock *sk,
1404 struct sk_buff *old,
1405 struct sk_buff *new)
1406 {
1407 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1408 tcp_sk(sk)->highest_sack = new;
1409 }
1410
1411 /* Determines whether this is a thin stream (which may suffer from
1412 * increased latency). Used to trigger latency-reducing mechanisms.
1413 */
tcp_stream_is_thin(struct tcp_sock * tp)1414 static inline unsigned int tcp_stream_is_thin(struct tcp_sock *tp)
1415 {
1416 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1417 }
1418
1419 /* /proc */
1420 enum tcp_seq_states {
1421 TCP_SEQ_STATE_LISTENING,
1422 TCP_SEQ_STATE_OPENREQ,
1423 TCP_SEQ_STATE_ESTABLISHED,
1424 TCP_SEQ_STATE_TIME_WAIT,
1425 };
1426
1427 int tcp_seq_open(struct inode *inode, struct file *file);
1428
1429 struct tcp_seq_afinfo {
1430 char *name;
1431 sa_family_t family;
1432 const struct file_operations *seq_fops;
1433 struct seq_operations seq_ops;
1434 };
1435
1436 struct tcp_iter_state {
1437 struct seq_net_private p;
1438 sa_family_t family;
1439 enum tcp_seq_states state;
1440 struct sock *syn_wait_sk;
1441 int bucket, offset, sbucket, num, uid;
1442 loff_t last_pos;
1443 };
1444
1445 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1446 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1447
1448 extern struct request_sock_ops tcp_request_sock_ops;
1449 extern struct request_sock_ops tcp6_request_sock_ops;
1450
1451 extern void tcp_v4_destroy_sock(struct sock *sk);
1452
1453 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1454 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1455 netdev_features_t features);
1456 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1457 struct sk_buff *skb);
1458 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1459 struct sk_buff *skb);
1460 extern int tcp_gro_complete(struct sk_buff *skb);
1461 extern int tcp4_gro_complete(struct sk_buff *skb);
1462
1463 extern int tcp_nuke_addr(struct net *net, struct sockaddr *addr);
1464
1465 #ifdef CONFIG_PROC_FS
1466 extern int tcp4_proc_init(void);
1467 extern void tcp4_proc_exit(void);
1468 #endif
1469
1470 /* TCP af-specific functions */
1471 struct tcp_sock_af_ops {
1472 #ifdef CONFIG_TCP_MD5SIG
1473 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1474 struct sock *addr_sk);
1475 int (*calc_md5_hash) (char *location,
1476 struct tcp_md5sig_key *md5,
1477 const struct sock *sk,
1478 const struct request_sock *req,
1479 const struct sk_buff *skb);
1480 int (*md5_parse) (struct sock *sk,
1481 char __user *optval,
1482 int optlen);
1483 #endif
1484 };
1485
1486 struct tcp_request_sock_ops {
1487 #ifdef CONFIG_TCP_MD5SIG
1488 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1489 struct request_sock *req);
1490 int (*calc_md5_hash) (char *location,
1491 struct tcp_md5sig_key *md5,
1492 const struct sock *sk,
1493 const struct request_sock *req,
1494 const struct sk_buff *skb);
1495 #endif
1496 };
1497
1498 /* Using SHA1 for now, define some constants.
1499 */
1500 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1501 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1502 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1503
1504 extern int tcp_cookie_generator(u32 *bakery);
1505
1506 /**
1507 * struct tcp_cookie_values - each socket needs extra space for the
1508 * cookies, together with (optional) space for any SYN data.
1509 *
1510 * A tcp_sock contains a pointer to the current value, and this is
1511 * cloned to the tcp_timewait_sock.
1512 *
1513 * @cookie_pair: variable data from the option exchange.
1514 *
1515 * @cookie_desired: user specified tcpct_cookie_desired. Zero
1516 * indicates default (sysctl_tcp_cookie_size).
1517 * After cookie sent, remembers size of cookie.
1518 * Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1519 *
1520 * @s_data_desired: user specified tcpct_s_data_desired. When the
1521 * constant payload is specified (@s_data_constant),
1522 * holds its length instead.
1523 * Range 0 to TCP_MSS_DESIRED.
1524 *
1525 * @s_data_payload: constant data that is to be included in the
1526 * payload of SYN or SYNACK segments when the
1527 * cookie option is present.
1528 */
1529 struct tcp_cookie_values {
1530 struct kref kref;
1531 u8 cookie_pair[TCP_COOKIE_PAIR_SIZE];
1532 u8 cookie_pair_size;
1533 u8 cookie_desired;
1534 u16 s_data_desired:11,
1535 s_data_constant:1,
1536 s_data_in:1,
1537 s_data_out:1,
1538 s_data_unused:2;
1539 u8 s_data_payload[0];
1540 };
1541
tcp_cookie_values_release(struct kref * kref)1542 static inline void tcp_cookie_values_release(struct kref *kref)
1543 {
1544 kfree(container_of(kref, struct tcp_cookie_values, kref));
1545 }
1546
1547 /* The length of constant payload data. Note that s_data_desired is
1548 * overloaded, depending on s_data_constant: either the length of constant
1549 * data (returned here) or the limit on variable data.
1550 */
tcp_s_data_size(const struct tcp_sock * tp)1551 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1552 {
1553 return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1554 ? tp->cookie_values->s_data_desired
1555 : 0;
1556 }
1557
1558 /**
1559 * struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1560 *
1561 * As tcp_request_sock has already been extended in other places, the
1562 * only remaining method is to pass stack values along as function
1563 * parameters. These parameters are not needed after sending SYNACK.
1564 *
1565 * @cookie_bakery: cryptographic secret and message workspace.
1566 *
1567 * @cookie_plus: bytes in authenticator/cookie option, copied from
1568 * struct tcp_options_received (above).
1569 */
1570 struct tcp_extend_values {
1571 struct request_values rv;
1572 u32 cookie_bakery[COOKIE_WORKSPACE_WORDS];
1573 u8 cookie_plus:6,
1574 cookie_out_never:1,
1575 cookie_in_always:1;
1576 };
1577
tcp_xv(struct request_values * rvp)1578 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1579 {
1580 return (struct tcp_extend_values *)rvp;
1581 }
1582
1583 extern void tcp_v4_init(void);
1584 extern void tcp_init(void);
1585
1586 #endif /* _TCP_H */
1587