• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_RCULIST_H
2 #define _LINUX_RCULIST_H
3 
4 #ifdef __KERNEL__
5 
6 /*
7  * RCU-protected list version
8  */
9 #include <linux/list.h>
10 #include <linux/rcupdate.h>
11 
12 /*
13  * Why is there no list_empty_rcu()?  Because list_empty() serves this
14  * purpose.  The list_empty() function fetches the RCU-protected pointer
15  * and compares it to the address of the list head, but neither dereferences
16  * this pointer itself nor provides this pointer to the caller.  Therefore,
17  * it is not necessary to use rcu_dereference(), so that list_empty() can
18  * be used anywhere you would want to use a list_empty_rcu().
19  */
20 
21 /*
22  * return the ->next pointer of a list_head in an rcu safe
23  * way, we must not access it directly
24  */
25 #define list_next_rcu(list)	(*((struct list_head __rcu **)(&(list)->next)))
26 
27 /*
28  * Insert a new entry between two known consecutive entries.
29  *
30  * This is only for internal list manipulation where we know
31  * the prev/next entries already!
32  */
__list_add_rcu(struct list_head * new,struct list_head * prev,struct list_head * next)33 static inline void __list_add_rcu(struct list_head *new,
34 		struct list_head *prev, struct list_head *next)
35 {
36 	new->next = next;
37 	new->prev = prev;
38 	rcu_assign_pointer(list_next_rcu(prev), new);
39 	next->prev = new;
40 }
41 
42 /**
43  * list_add_rcu - add a new entry to rcu-protected list
44  * @new: new entry to be added
45  * @head: list head to add it after
46  *
47  * Insert a new entry after the specified head.
48  * This is good for implementing stacks.
49  *
50  * The caller must take whatever precautions are necessary
51  * (such as holding appropriate locks) to avoid racing
52  * with another list-mutation primitive, such as list_add_rcu()
53  * or list_del_rcu(), running on this same list.
54  * However, it is perfectly legal to run concurrently with
55  * the _rcu list-traversal primitives, such as
56  * list_for_each_entry_rcu().
57  */
list_add_rcu(struct list_head * new,struct list_head * head)58 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
59 {
60 	__list_add_rcu(new, head, head->next);
61 }
62 
63 /**
64  * list_add_tail_rcu - add a new entry to rcu-protected list
65  * @new: new entry to be added
66  * @head: list head to add it before
67  *
68  * Insert a new entry before the specified head.
69  * This is useful for implementing queues.
70  *
71  * The caller must take whatever precautions are necessary
72  * (such as holding appropriate locks) to avoid racing
73  * with another list-mutation primitive, such as list_add_tail_rcu()
74  * or list_del_rcu(), running on this same list.
75  * However, it is perfectly legal to run concurrently with
76  * the _rcu list-traversal primitives, such as
77  * list_for_each_entry_rcu().
78  */
list_add_tail_rcu(struct list_head * new,struct list_head * head)79 static inline void list_add_tail_rcu(struct list_head *new,
80 					struct list_head *head)
81 {
82 	__list_add_rcu(new, head->prev, head);
83 }
84 
85 /**
86  * list_del_rcu - deletes entry from list without re-initialization
87  * @entry: the element to delete from the list.
88  *
89  * Note: list_empty() on entry does not return true after this,
90  * the entry is in an undefined state. It is useful for RCU based
91  * lockfree traversal.
92  *
93  * In particular, it means that we can not poison the forward
94  * pointers that may still be used for walking the list.
95  *
96  * The caller must take whatever precautions are necessary
97  * (such as holding appropriate locks) to avoid racing
98  * with another list-mutation primitive, such as list_del_rcu()
99  * or list_add_rcu(), running on this same list.
100  * However, it is perfectly legal to run concurrently with
101  * the _rcu list-traversal primitives, such as
102  * list_for_each_entry_rcu().
103  *
104  * Note that the caller is not permitted to immediately free
105  * the newly deleted entry.  Instead, either synchronize_rcu()
106  * or call_rcu() must be used to defer freeing until an RCU
107  * grace period has elapsed.
108  */
list_del_rcu(struct list_head * entry)109 static inline void list_del_rcu(struct list_head *entry)
110 {
111 	__list_del(entry->prev, entry->next);
112 	entry->prev = LIST_POISON2;
113 }
114 
115 /**
116  * hlist_del_init_rcu - deletes entry from hash list with re-initialization
117  * @n: the element to delete from the hash list.
118  *
119  * Note: list_unhashed() on the node return true after this. It is
120  * useful for RCU based read lockfree traversal if the writer side
121  * must know if the list entry is still hashed or already unhashed.
122  *
123  * In particular, it means that we can not poison the forward pointers
124  * that may still be used for walking the hash list and we can only
125  * zero the pprev pointer so list_unhashed() will return true after
126  * this.
127  *
128  * The caller must take whatever precautions are necessary (such as
129  * holding appropriate locks) to avoid racing with another
130  * list-mutation primitive, such as hlist_add_head_rcu() or
131  * hlist_del_rcu(), running on this same list.  However, it is
132  * perfectly legal to run concurrently with the _rcu list-traversal
133  * primitives, such as hlist_for_each_entry_rcu().
134  */
hlist_del_init_rcu(struct hlist_node * n)135 static inline void hlist_del_init_rcu(struct hlist_node *n)
136 {
137 	if (!hlist_unhashed(n)) {
138 		__hlist_del(n);
139 		n->pprev = NULL;
140 	}
141 }
142 
143 /**
144  * list_replace_rcu - replace old entry by new one
145  * @old : the element to be replaced
146  * @new : the new element to insert
147  *
148  * The @old entry will be replaced with the @new entry atomically.
149  * Note: @old should not be empty.
150  */
list_replace_rcu(struct list_head * old,struct list_head * new)151 static inline void list_replace_rcu(struct list_head *old,
152 				struct list_head *new)
153 {
154 	new->next = old->next;
155 	new->prev = old->prev;
156 	rcu_assign_pointer(list_next_rcu(new->prev), new);
157 	new->next->prev = new;
158 	old->prev = LIST_POISON2;
159 }
160 
161 /**
162  * list_splice_init_rcu - splice an RCU-protected list into an existing list.
163  * @list:	the RCU-protected list to splice
164  * @head:	the place in the list to splice the first list into
165  * @sync:	function to sync: synchronize_rcu(), synchronize_sched(), ...
166  *
167  * @head can be RCU-read traversed concurrently with this function.
168  *
169  * Note that this function blocks.
170  *
171  * Important note: the caller must take whatever action is necessary to
172  *	prevent any other updates to @head.  In principle, it is possible
173  *	to modify the list as soon as sync() begins execution.
174  *	If this sort of thing becomes necessary, an alternative version
175  *	based on call_rcu() could be created.  But only if -really-
176  *	needed -- there is no shortage of RCU API members.
177  */
list_splice_init_rcu(struct list_head * list,struct list_head * head,void (* sync)(void))178 static inline void list_splice_init_rcu(struct list_head *list,
179 					struct list_head *head,
180 					void (*sync)(void))
181 {
182 	struct list_head *first = list->next;
183 	struct list_head *last = list->prev;
184 	struct list_head *at = head->next;
185 
186 	if (list_empty(list))
187 		return;
188 
189 	/* "first" and "last" tracking list, so initialize it. */
190 
191 	INIT_LIST_HEAD(list);
192 
193 	/*
194 	 * At this point, the list body still points to the source list.
195 	 * Wait for any readers to finish using the list before splicing
196 	 * the list body into the new list.  Any new readers will see
197 	 * an empty list.
198 	 */
199 
200 	sync();
201 
202 	/*
203 	 * Readers are finished with the source list, so perform splice.
204 	 * The order is important if the new list is global and accessible
205 	 * to concurrent RCU readers.  Note that RCU readers are not
206 	 * permitted to traverse the prev pointers without excluding
207 	 * this function.
208 	 */
209 
210 	last->next = at;
211 	rcu_assign_pointer(list_next_rcu(head), first);
212 	first->prev = head;
213 	at->prev = last;
214 }
215 
216 /**
217  * list_entry_rcu - get the struct for this entry
218  * @ptr:        the &struct list_head pointer.
219  * @type:       the type of the struct this is embedded in.
220  * @member:     the name of the list_struct within the struct.
221  *
222  * This primitive may safely run concurrently with the _rcu list-mutation
223  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
224  */
225 #define list_entry_rcu(ptr, type, member) \
226 	({typeof (*ptr) __rcu *__ptr = (typeof (*ptr) __rcu __force *)ptr; \
227 	 container_of((typeof(ptr))rcu_dereference_raw(__ptr), type, member); \
228 	})
229 
230 /**
231  * list_first_entry_rcu - get the first element from a list
232  * @ptr:        the list head to take the element from.
233  * @type:       the type of the struct this is embedded in.
234  * @member:     the name of the list_struct within the struct.
235  *
236  * Note, that list is expected to be not empty.
237  *
238  * This primitive may safely run concurrently with the _rcu list-mutation
239  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
240  */
241 #define list_first_entry_rcu(ptr, type, member) \
242 	list_entry_rcu((ptr)->next, type, member)
243 
244 /**
245  * list_first_or_null_rcu - get the first element from a list
246  * @ptr:        the list head to take the element from.
247  * @type:       the type of the struct this is embedded in.
248  * @member:     the name of the list_struct within the struct.
249  *
250  * Note that if the list is empty, it returns NULL.
251  *
252  * This primitive may safely run concurrently with the _rcu list-mutation
253  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
254  */
255 #define list_first_or_null_rcu(ptr, type, member) \
256 	({struct list_head *__ptr = (ptr); \
257 	  struct list_head *__next = ACCESS_ONCE(__ptr->next); \
258 	  likely(__ptr != __next) ? \
259 		list_entry_rcu(__next, type, member) : NULL; \
260 	})
261 
262 /**
263  * list_for_each_entry_rcu	-	iterate over rcu list of given type
264  * @pos:	the type * to use as a loop cursor.
265  * @head:	the head for your list.
266  * @member:	the name of the list_struct within the struct.
267  *
268  * This list-traversal primitive may safely run concurrently with
269  * the _rcu list-mutation primitives such as list_add_rcu()
270  * as long as the traversal is guarded by rcu_read_lock().
271  */
272 #define list_for_each_entry_rcu(pos, head, member) \
273 	for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
274 		&pos->member != (head); \
275 		pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
276 
277 
278 /**
279  * list_for_each_continue_rcu
280  * @pos:	the &struct list_head to use as a loop cursor.
281  * @head:	the head for your list.
282  *
283  * Iterate over an rcu-protected list, continuing after current point.
284  *
285  * This list-traversal primitive may safely run concurrently with
286  * the _rcu list-mutation primitives such as list_add_rcu()
287  * as long as the traversal is guarded by rcu_read_lock().
288  */
289 #define list_for_each_continue_rcu(pos, head) \
290 	for ((pos) = rcu_dereference_raw(list_next_rcu(pos)); \
291 		(pos) != (head); \
292 		(pos) = rcu_dereference_raw(list_next_rcu(pos)))
293 
294 /**
295  * list_for_each_entry_continue_rcu - continue iteration over list of given type
296  * @pos:	the type * to use as a loop cursor.
297  * @head:	the head for your list.
298  * @member:	the name of the list_struct within the struct.
299  *
300  * Continue to iterate over list of given type, continuing after
301  * the current position.
302  */
303 #define list_for_each_entry_continue_rcu(pos, head, member) 		\
304 	for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
305 	     &pos->member != (head);	\
306 	     pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
307 
308 /**
309  * hlist_del_rcu - deletes entry from hash list without re-initialization
310  * @n: the element to delete from the hash list.
311  *
312  * Note: list_unhashed() on entry does not return true after this,
313  * the entry is in an undefined state. It is useful for RCU based
314  * lockfree traversal.
315  *
316  * In particular, it means that we can not poison the forward
317  * pointers that may still be used for walking the hash list.
318  *
319  * The caller must take whatever precautions are necessary
320  * (such as holding appropriate locks) to avoid racing
321  * with another list-mutation primitive, such as hlist_add_head_rcu()
322  * or hlist_del_rcu(), running on this same list.
323  * However, it is perfectly legal to run concurrently with
324  * the _rcu list-traversal primitives, such as
325  * hlist_for_each_entry().
326  */
hlist_del_rcu(struct hlist_node * n)327 static inline void hlist_del_rcu(struct hlist_node *n)
328 {
329 	__hlist_del(n);
330 	n->pprev = LIST_POISON2;
331 }
332 
333 /**
334  * hlist_replace_rcu - replace old entry by new one
335  * @old : the element to be replaced
336  * @new : the new element to insert
337  *
338  * The @old entry will be replaced with the @new entry atomically.
339  */
hlist_replace_rcu(struct hlist_node * old,struct hlist_node * new)340 static inline void hlist_replace_rcu(struct hlist_node *old,
341 					struct hlist_node *new)
342 {
343 	struct hlist_node *next = old->next;
344 
345 	new->next = next;
346 	new->pprev = old->pprev;
347 	rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
348 	if (next)
349 		new->next->pprev = &new->next;
350 	old->pprev = LIST_POISON2;
351 }
352 
353 /*
354  * return the first or the next element in an RCU protected hlist
355  */
356 #define hlist_first_rcu(head)	(*((struct hlist_node __rcu **)(&(head)->first)))
357 #define hlist_next_rcu(node)	(*((struct hlist_node __rcu **)(&(node)->next)))
358 #define hlist_pprev_rcu(node)	(*((struct hlist_node __rcu **)((node)->pprev)))
359 
360 /**
361  * hlist_add_head_rcu
362  * @n: the element to add to the hash list.
363  * @h: the list to add to.
364  *
365  * Description:
366  * Adds the specified element to the specified hlist,
367  * while permitting racing traversals.
368  *
369  * The caller must take whatever precautions are necessary
370  * (such as holding appropriate locks) to avoid racing
371  * with another list-mutation primitive, such as hlist_add_head_rcu()
372  * or hlist_del_rcu(), running on this same list.
373  * However, it is perfectly legal to run concurrently with
374  * the _rcu list-traversal primitives, such as
375  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
376  * problems on Alpha CPUs.  Regardless of the type of CPU, the
377  * list-traversal primitive must be guarded by rcu_read_lock().
378  */
hlist_add_head_rcu(struct hlist_node * n,struct hlist_head * h)379 static inline void hlist_add_head_rcu(struct hlist_node *n,
380 					struct hlist_head *h)
381 {
382 	struct hlist_node *first = h->first;
383 
384 	n->next = first;
385 	n->pprev = &h->first;
386 	rcu_assign_pointer(hlist_first_rcu(h), n);
387 	if (first)
388 		first->pprev = &n->next;
389 }
390 
391 /**
392  * hlist_add_before_rcu
393  * @n: the new element to add to the hash list.
394  * @next: the existing element to add the new element before.
395  *
396  * Description:
397  * Adds the specified element to the specified hlist
398  * before the specified node while permitting racing traversals.
399  *
400  * The caller must take whatever precautions are necessary
401  * (such as holding appropriate locks) to avoid racing
402  * with another list-mutation primitive, such as hlist_add_head_rcu()
403  * or hlist_del_rcu(), running on this same list.
404  * However, it is perfectly legal to run concurrently with
405  * the _rcu list-traversal primitives, such as
406  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
407  * problems on Alpha CPUs.
408  */
hlist_add_before_rcu(struct hlist_node * n,struct hlist_node * next)409 static inline void hlist_add_before_rcu(struct hlist_node *n,
410 					struct hlist_node *next)
411 {
412 	n->pprev = next->pprev;
413 	n->next = next;
414 	rcu_assign_pointer(hlist_pprev_rcu(n), n);
415 	next->pprev = &n->next;
416 }
417 
418 /**
419  * hlist_add_after_rcu
420  * @prev: the existing element to add the new element after.
421  * @n: the new element to add to the hash list.
422  *
423  * Description:
424  * Adds the specified element to the specified hlist
425  * after the specified node while permitting racing traversals.
426  *
427  * The caller must take whatever precautions are necessary
428  * (such as holding appropriate locks) to avoid racing
429  * with another list-mutation primitive, such as hlist_add_head_rcu()
430  * or hlist_del_rcu(), running on this same list.
431  * However, it is perfectly legal to run concurrently with
432  * the _rcu list-traversal primitives, such as
433  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
434  * problems on Alpha CPUs.
435  */
hlist_add_after_rcu(struct hlist_node * prev,struct hlist_node * n)436 static inline void hlist_add_after_rcu(struct hlist_node *prev,
437 				       struct hlist_node *n)
438 {
439 	n->next = prev->next;
440 	n->pprev = &prev->next;
441 	rcu_assign_pointer(hlist_next_rcu(prev), n);
442 	if (n->next)
443 		n->next->pprev = &n->next;
444 }
445 
446 #define __hlist_for_each_rcu(pos, head)				\
447 	for (pos = rcu_dereference(hlist_first_rcu(head));	\
448 	     pos;						\
449 	     pos = rcu_dereference(hlist_next_rcu(pos)))
450 
451 /**
452  * hlist_for_each_entry_rcu - iterate over rcu list of given type
453  * @tpos:	the type * to use as a loop cursor.
454  * @pos:	the &struct hlist_node to use as a loop cursor.
455  * @head:	the head for your list.
456  * @member:	the name of the hlist_node within the struct.
457  *
458  * This list-traversal primitive may safely run concurrently with
459  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
460  * as long as the traversal is guarded by rcu_read_lock().
461  */
462 #define hlist_for_each_entry_rcu(tpos, pos, head, member)		\
463 	for (pos = rcu_dereference_raw(hlist_first_rcu(head));		\
464 		pos &&							 \
465 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; }); \
466 		pos = rcu_dereference_raw(hlist_next_rcu(pos)))
467 
468 /**
469  * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
470  * @tpos:	the type * to use as a loop cursor.
471  * @pos:	the &struct hlist_node to use as a loop cursor.
472  * @head:	the head for your list.
473  * @member:	the name of the hlist_node within the struct.
474  *
475  * This list-traversal primitive may safely run concurrently with
476  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
477  * as long as the traversal is guarded by rcu_read_lock().
478  */
479 #define hlist_for_each_entry_rcu_bh(tpos, pos, head, member)		 \
480 	for (pos = rcu_dereference_bh((head)->first);			 \
481 		pos &&							 \
482 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; }); \
483 		pos = rcu_dereference_bh(pos->next))
484 
485 /**
486  * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
487  * @tpos:	the type * to use as a loop cursor.
488  * @pos:	the &struct hlist_node to use as a loop cursor.
489  * @member:	the name of the hlist_node within the struct.
490  */
491 #define hlist_for_each_entry_continue_rcu(tpos, pos, member)		\
492 	for (pos = rcu_dereference((pos)->next);			\
493 	     pos &&							\
494 	     ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; });  \
495 	     pos = rcu_dereference(pos->next))
496 
497 /**
498  * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
499  * @tpos:	the type * to use as a loop cursor.
500  * @pos:	the &struct hlist_node to use as a loop cursor.
501  * @member:	the name of the hlist_node within the struct.
502  */
503 #define hlist_for_each_entry_continue_rcu_bh(tpos, pos, member)		\
504 	for (pos = rcu_dereference_bh((pos)->next);			\
505 	     pos &&							\
506 	     ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; });  \
507 	     pos = rcu_dereference_bh(pos->next))
508 
509 
510 #endif	/* __KERNEL__ */
511 #endif
512