• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  #ifndef _LINUX_RMAP_H
2  #define _LINUX_RMAP_H
3  /*
4   * Declarations for Reverse Mapping functions in mm/rmap.c
5   */
6  
7  #include <linux/list.h>
8  #include <linux/slab.h>
9  #include <linux/mm.h>
10  #include <linux/mutex.h>
11  #include <linux/memcontrol.h>
12  
13  /*
14   * The anon_vma heads a list of private "related" vmas, to scan if
15   * an anonymous page pointing to this anon_vma needs to be unmapped:
16   * the vmas on the list will be related by forking, or by splitting.
17   *
18   * Since vmas come and go as they are split and merged (particularly
19   * in mprotect), the mapping field of an anonymous page cannot point
20   * directly to a vma: instead it points to an anon_vma, on whose list
21   * the related vmas can be easily linked or unlinked.
22   *
23   * After unlinking the last vma on the list, we must garbage collect
24   * the anon_vma object itself: we're guaranteed no page can be
25   * pointing to this anon_vma once its vma list is empty.
26   */
27  struct anon_vma {
28  	struct anon_vma *root;	/* Root of this anon_vma tree */
29  	struct mutex mutex;	/* Serialize access to vma list */
30  	/*
31  	 * The refcount is taken on an anon_vma when there is no
32  	 * guarantee that the vma of page tables will exist for
33  	 * the duration of the operation. A caller that takes
34  	 * the reference is responsible for clearing up the
35  	 * anon_vma if they are the last user on release
36  	 */
37  	atomic_t refcount;
38  
39  	/*
40  	 * NOTE: the LSB of the head.next is set by
41  	 * mm_take_all_locks() _after_ taking the above lock. So the
42  	 * head must only be read/written after taking the above lock
43  	 * to be sure to see a valid next pointer. The LSB bit itself
44  	 * is serialized by a system wide lock only visible to
45  	 * mm_take_all_locks() (mm_all_locks_mutex).
46  	 */
47  	struct list_head head;	/* Chain of private "related" vmas */
48  };
49  
50  /*
51   * The copy-on-write semantics of fork mean that an anon_vma
52   * can become associated with multiple processes. Furthermore,
53   * each child process will have its own anon_vma, where new
54   * pages for that process are instantiated.
55   *
56   * This structure allows us to find the anon_vmas associated
57   * with a VMA, or the VMAs associated with an anon_vma.
58   * The "same_vma" list contains the anon_vma_chains linking
59   * all the anon_vmas associated with this VMA.
60   * The "same_anon_vma" list contains the anon_vma_chains
61   * which link all the VMAs associated with this anon_vma.
62   */
63  struct anon_vma_chain {
64  	struct vm_area_struct *vma;
65  	struct anon_vma *anon_vma;
66  	struct list_head same_vma;   /* locked by mmap_sem & page_table_lock */
67  	struct list_head same_anon_vma;	/* locked by anon_vma->mutex */
68  };
69  
70  #ifdef CONFIG_MMU
get_anon_vma(struct anon_vma * anon_vma)71  static inline void get_anon_vma(struct anon_vma *anon_vma)
72  {
73  	atomic_inc(&anon_vma->refcount);
74  }
75  
76  void __put_anon_vma(struct anon_vma *anon_vma);
77  
put_anon_vma(struct anon_vma * anon_vma)78  static inline void put_anon_vma(struct anon_vma *anon_vma)
79  {
80  	if (atomic_dec_and_test(&anon_vma->refcount))
81  		__put_anon_vma(anon_vma);
82  }
83  
page_anon_vma(struct page * page)84  static inline struct anon_vma *page_anon_vma(struct page *page)
85  {
86  	if (((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) !=
87  					    PAGE_MAPPING_ANON)
88  		return NULL;
89  	return page_rmapping(page);
90  }
91  
vma_lock_anon_vma(struct vm_area_struct * vma)92  static inline void vma_lock_anon_vma(struct vm_area_struct *vma)
93  {
94  	struct anon_vma *anon_vma = vma->anon_vma;
95  	if (anon_vma)
96  		mutex_lock(&anon_vma->root->mutex);
97  }
98  
vma_unlock_anon_vma(struct vm_area_struct * vma)99  static inline void vma_unlock_anon_vma(struct vm_area_struct *vma)
100  {
101  	struct anon_vma *anon_vma = vma->anon_vma;
102  	if (anon_vma)
103  		mutex_unlock(&anon_vma->root->mutex);
104  }
105  
anon_vma_lock(struct anon_vma * anon_vma)106  static inline void anon_vma_lock(struct anon_vma *anon_vma)
107  {
108  	mutex_lock(&anon_vma->root->mutex);
109  }
110  
anon_vma_unlock(struct anon_vma * anon_vma)111  static inline void anon_vma_unlock(struct anon_vma *anon_vma)
112  {
113  	mutex_unlock(&anon_vma->root->mutex);
114  }
115  
116  /*
117   * anon_vma helper functions.
118   */
119  void anon_vma_init(void);	/* create anon_vma_cachep */
120  int  anon_vma_prepare(struct vm_area_struct *);
121  void unlink_anon_vmas(struct vm_area_struct *);
122  int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
123  void anon_vma_moveto_tail(struct vm_area_struct *);
124  int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
125  
anon_vma_merge(struct vm_area_struct * vma,struct vm_area_struct * next)126  static inline void anon_vma_merge(struct vm_area_struct *vma,
127  				  struct vm_area_struct *next)
128  {
129  	VM_BUG_ON(vma->anon_vma != next->anon_vma);
130  	unlink_anon_vmas(next);
131  }
132  
133  struct anon_vma *page_get_anon_vma(struct page *page);
134  
135  /*
136   * rmap interfaces called when adding or removing pte of page
137   */
138  void page_move_anon_rmap(struct page *, struct vm_area_struct *, unsigned long);
139  void page_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long);
140  void do_page_add_anon_rmap(struct page *, struct vm_area_struct *,
141  			   unsigned long, int);
142  void page_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned long);
143  void page_add_file_rmap(struct page *);
144  void page_remove_rmap(struct page *);
145  
146  void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
147  			    unsigned long);
148  void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *,
149  				unsigned long);
150  
page_dup_rmap(struct page * page)151  static inline void page_dup_rmap(struct page *page)
152  {
153  	atomic_inc(&page->_mapcount);
154  }
155  
156  /*
157   * Called from mm/vmscan.c to handle paging out
158   */
159  int page_referenced(struct page *, int is_locked,
160  			struct mem_cgroup *memcg, unsigned long *vm_flags);
161  int page_referenced_one(struct page *, struct vm_area_struct *,
162  	unsigned long address, unsigned int *mapcount, unsigned long *vm_flags);
163  
164  enum ttu_flags {
165  	TTU_UNMAP = 0,			/* unmap mode */
166  	TTU_MIGRATION = 1,		/* migration mode */
167  	TTU_MUNLOCK = 2,		/* munlock mode */
168  	TTU_ACTION_MASK = 0xff,
169  
170  	TTU_IGNORE_MLOCK = (1 << 8),	/* ignore mlock */
171  	TTU_IGNORE_ACCESS = (1 << 9),	/* don't age */
172  	TTU_IGNORE_HWPOISON = (1 << 10),/* corrupted page is recoverable */
173  };
174  #define TTU_ACTION(x) ((x) & TTU_ACTION_MASK)
175  
176  bool is_vma_temporary_stack(struct vm_area_struct *vma);
177  
178  int try_to_unmap(struct page *, enum ttu_flags flags);
179  int try_to_unmap_one(struct page *, struct vm_area_struct *,
180  			unsigned long address, enum ttu_flags flags);
181  
182  /*
183   * Called from mm/filemap_xip.c to unmap empty zero page
184   */
185  pte_t *__page_check_address(struct page *, struct mm_struct *,
186  				unsigned long, spinlock_t **, int);
187  
page_check_address(struct page * page,struct mm_struct * mm,unsigned long address,spinlock_t ** ptlp,int sync)188  static inline pte_t *page_check_address(struct page *page, struct mm_struct *mm,
189  					unsigned long address,
190  					spinlock_t **ptlp, int sync)
191  {
192  	pte_t *ptep;
193  
194  	__cond_lock(*ptlp, ptep = __page_check_address(page, mm, address,
195  						       ptlp, sync));
196  	return ptep;
197  }
198  
199  /*
200   * Used by swapoff to help locate where page is expected in vma.
201   */
202  unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
203  
204  /*
205   * Cleans the PTEs of shared mappings.
206   * (and since clean PTEs should also be readonly, write protects them too)
207   *
208   * returns the number of cleaned PTEs.
209   */
210  int page_mkclean(struct page *);
211  
212  /*
213   * called in munlock()/munmap() path to check for other vmas holding
214   * the page mlocked.
215   */
216  int try_to_munlock(struct page *);
217  
218  /*
219   * Called by memory-failure.c to kill processes.
220   */
221  struct anon_vma *page_lock_anon_vma(struct page *page);
222  void page_unlock_anon_vma(struct anon_vma *anon_vma);
223  int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
224  
225  /*
226   * Called by migrate.c to remove migration ptes, but might be used more later.
227   */
228  int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
229  		struct vm_area_struct *, unsigned long, void *), void *arg);
230  
231  #else	/* !CONFIG_MMU */
232  
233  #define anon_vma_init()		do {} while (0)
234  #define anon_vma_prepare(vma)	(0)
235  #define anon_vma_link(vma)	do {} while (0)
236  
page_referenced(struct page * page,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)237  static inline int page_referenced(struct page *page, int is_locked,
238  				  struct mem_cgroup *memcg,
239  				  unsigned long *vm_flags)
240  {
241  	*vm_flags = 0;
242  	return 0;
243  }
244  
245  #define try_to_unmap(page, refs) SWAP_FAIL
246  
page_mkclean(struct page * page)247  static inline int page_mkclean(struct page *page)
248  {
249  	return 0;
250  }
251  
252  
253  #endif	/* CONFIG_MMU */
254  
255  /*
256   * Return values of try_to_unmap
257   */
258  #define SWAP_SUCCESS	0
259  #define SWAP_AGAIN	1
260  #define SWAP_FAIL	2
261  #define SWAP_MLOCK	3
262  
263  #endif	/* _LINUX_RMAP_H */
264