1 /*
2 * ADXL345/346 Three-Axis Digital Accelerometers
3 *
4 * Enter bugs at http://blackfin.uclinux.org/
5 *
6 * Copyright (C) 2009 Michael Hennerich, Analog Devices Inc.
7 * Licensed under the GPL-2 or later.
8 */
9
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/delay.h>
13 #include <linux/input.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/input/adxl34x.h>
19 #include <linux/module.h>
20
21 #include "adxl34x.h"
22
23 /* ADXL345/6 Register Map */
24 #define DEVID 0x00 /* R Device ID */
25 #define THRESH_TAP 0x1D /* R/W Tap threshold */
26 #define OFSX 0x1E /* R/W X-axis offset */
27 #define OFSY 0x1F /* R/W Y-axis offset */
28 #define OFSZ 0x20 /* R/W Z-axis offset */
29 #define DUR 0x21 /* R/W Tap duration */
30 #define LATENT 0x22 /* R/W Tap latency */
31 #define WINDOW 0x23 /* R/W Tap window */
32 #define THRESH_ACT 0x24 /* R/W Activity threshold */
33 #define THRESH_INACT 0x25 /* R/W Inactivity threshold */
34 #define TIME_INACT 0x26 /* R/W Inactivity time */
35 #define ACT_INACT_CTL 0x27 /* R/W Axis enable control for activity and */
36 /* inactivity detection */
37 #define THRESH_FF 0x28 /* R/W Free-fall threshold */
38 #define TIME_FF 0x29 /* R/W Free-fall time */
39 #define TAP_AXES 0x2A /* R/W Axis control for tap/double tap */
40 #define ACT_TAP_STATUS 0x2B /* R Source of tap/double tap */
41 #define BW_RATE 0x2C /* R/W Data rate and power mode control */
42 #define POWER_CTL 0x2D /* R/W Power saving features control */
43 #define INT_ENABLE 0x2E /* R/W Interrupt enable control */
44 #define INT_MAP 0x2F /* R/W Interrupt mapping control */
45 #define INT_SOURCE 0x30 /* R Source of interrupts */
46 #define DATA_FORMAT 0x31 /* R/W Data format control */
47 #define DATAX0 0x32 /* R X-Axis Data 0 */
48 #define DATAX1 0x33 /* R X-Axis Data 1 */
49 #define DATAY0 0x34 /* R Y-Axis Data 0 */
50 #define DATAY1 0x35 /* R Y-Axis Data 1 */
51 #define DATAZ0 0x36 /* R Z-Axis Data 0 */
52 #define DATAZ1 0x37 /* R Z-Axis Data 1 */
53 #define FIFO_CTL 0x38 /* R/W FIFO control */
54 #define FIFO_STATUS 0x39 /* R FIFO status */
55 #define TAP_SIGN 0x3A /* R Sign and source for tap/double tap */
56 /* Orientation ADXL346 only */
57 #define ORIENT_CONF 0x3B /* R/W Orientation configuration */
58 #define ORIENT 0x3C /* R Orientation status */
59
60 /* DEVIDs */
61 #define ID_ADXL345 0xE5
62 #define ID_ADXL346 0xE6
63
64 /* INT_ENABLE/INT_MAP/INT_SOURCE Bits */
65 #define DATA_READY (1 << 7)
66 #define SINGLE_TAP (1 << 6)
67 #define DOUBLE_TAP (1 << 5)
68 #define ACTIVITY (1 << 4)
69 #define INACTIVITY (1 << 3)
70 #define FREE_FALL (1 << 2)
71 #define WATERMARK (1 << 1)
72 #define OVERRUN (1 << 0)
73
74 /* ACT_INACT_CONTROL Bits */
75 #define ACT_ACDC (1 << 7)
76 #define ACT_X_EN (1 << 6)
77 #define ACT_Y_EN (1 << 5)
78 #define ACT_Z_EN (1 << 4)
79 #define INACT_ACDC (1 << 3)
80 #define INACT_X_EN (1 << 2)
81 #define INACT_Y_EN (1 << 1)
82 #define INACT_Z_EN (1 << 0)
83
84 /* TAP_AXES Bits */
85 #define SUPPRESS (1 << 3)
86 #define TAP_X_EN (1 << 2)
87 #define TAP_Y_EN (1 << 1)
88 #define TAP_Z_EN (1 << 0)
89
90 /* ACT_TAP_STATUS Bits */
91 #define ACT_X_SRC (1 << 6)
92 #define ACT_Y_SRC (1 << 5)
93 #define ACT_Z_SRC (1 << 4)
94 #define ASLEEP (1 << 3)
95 #define TAP_X_SRC (1 << 2)
96 #define TAP_Y_SRC (1 << 1)
97 #define TAP_Z_SRC (1 << 0)
98
99 /* BW_RATE Bits */
100 #define LOW_POWER (1 << 4)
101 #define RATE(x) ((x) & 0xF)
102
103 /* POWER_CTL Bits */
104 #define PCTL_LINK (1 << 5)
105 #define PCTL_AUTO_SLEEP (1 << 4)
106 #define PCTL_MEASURE (1 << 3)
107 #define PCTL_SLEEP (1 << 2)
108 #define PCTL_WAKEUP(x) ((x) & 0x3)
109
110 /* DATA_FORMAT Bits */
111 #define SELF_TEST (1 << 7)
112 #define SPI (1 << 6)
113 #define INT_INVERT (1 << 5)
114 #define FULL_RES (1 << 3)
115 #define JUSTIFY (1 << 2)
116 #define RANGE(x) ((x) & 0x3)
117 #define RANGE_PM_2g 0
118 #define RANGE_PM_4g 1
119 #define RANGE_PM_8g 2
120 #define RANGE_PM_16g 3
121
122 /*
123 * Maximum value our axis may get in full res mode for the input device
124 * (signed 13 bits)
125 */
126 #define ADXL_FULLRES_MAX_VAL 4096
127
128 /*
129 * Maximum value our axis may get in fixed res mode for the input device
130 * (signed 10 bits)
131 */
132 #define ADXL_FIXEDRES_MAX_VAL 512
133
134 /* FIFO_CTL Bits */
135 #define FIFO_MODE(x) (((x) & 0x3) << 6)
136 #define FIFO_BYPASS 0
137 #define FIFO_FIFO 1
138 #define FIFO_STREAM 2
139 #define FIFO_TRIGGER 3
140 #define TRIGGER (1 << 5)
141 #define SAMPLES(x) ((x) & 0x1F)
142
143 /* FIFO_STATUS Bits */
144 #define FIFO_TRIG (1 << 7)
145 #define ENTRIES(x) ((x) & 0x3F)
146
147 /* TAP_SIGN Bits ADXL346 only */
148 #define XSIGN (1 << 6)
149 #define YSIGN (1 << 5)
150 #define ZSIGN (1 << 4)
151 #define XTAP (1 << 3)
152 #define YTAP (1 << 2)
153 #define ZTAP (1 << 1)
154
155 /* ORIENT_CONF ADXL346 only */
156 #define ORIENT_DEADZONE(x) (((x) & 0x7) << 4)
157 #define ORIENT_DIVISOR(x) ((x) & 0x7)
158
159 /* ORIENT ADXL346 only */
160 #define ADXL346_2D_VALID (1 << 6)
161 #define ADXL346_2D_ORIENT(x) (((x) & 0x3) >> 4)
162 #define ADXL346_3D_VALID (1 << 3)
163 #define ADXL346_3D_ORIENT(x) ((x) & 0x7)
164 #define ADXL346_2D_PORTRAIT_POS 0 /* +X */
165 #define ADXL346_2D_PORTRAIT_NEG 1 /* -X */
166 #define ADXL346_2D_LANDSCAPE_POS 2 /* +Y */
167 #define ADXL346_2D_LANDSCAPE_NEG 3 /* -Y */
168
169 #define ADXL346_3D_FRONT 3 /* +X */
170 #define ADXL346_3D_BACK 4 /* -X */
171 #define ADXL346_3D_RIGHT 2 /* +Y */
172 #define ADXL346_3D_LEFT 5 /* -Y */
173 #define ADXL346_3D_TOP 1 /* +Z */
174 #define ADXL346_3D_BOTTOM 6 /* -Z */
175
176 #undef ADXL_DEBUG
177
178 #define ADXL_X_AXIS 0
179 #define ADXL_Y_AXIS 1
180 #define ADXL_Z_AXIS 2
181
182 #define AC_READ(ac, reg) ((ac)->bops->read((ac)->dev, reg))
183 #define AC_WRITE(ac, reg, val) ((ac)->bops->write((ac)->dev, reg, val))
184
185 struct axis_triple {
186 int x;
187 int y;
188 int z;
189 };
190
191 struct adxl34x {
192 struct device *dev;
193 struct input_dev *input;
194 struct mutex mutex; /* reentrant protection for struct */
195 struct adxl34x_platform_data pdata;
196 struct axis_triple swcal;
197 struct axis_triple hwcal;
198 struct axis_triple saved;
199 char phys[32];
200 unsigned orient2d_saved;
201 unsigned orient3d_saved;
202 bool disabled; /* P: mutex */
203 bool opened; /* P: mutex */
204 bool suspended; /* P: mutex */
205 bool fifo_delay;
206 int irq;
207 unsigned model;
208 unsigned int_mask;
209
210 const struct adxl34x_bus_ops *bops;
211 };
212
213 static const struct adxl34x_platform_data adxl34x_default_init = {
214 .tap_threshold = 35,
215 .tap_duration = 3,
216 .tap_latency = 20,
217 .tap_window = 20,
218 .tap_axis_control = ADXL_TAP_X_EN | ADXL_TAP_Y_EN | ADXL_TAP_Z_EN,
219 .act_axis_control = 0xFF,
220 .activity_threshold = 6,
221 .inactivity_threshold = 4,
222 .inactivity_time = 3,
223 .free_fall_threshold = 8,
224 .free_fall_time = 0x20,
225 .data_rate = 8,
226 .data_range = ADXL_FULL_RES,
227
228 .ev_type = EV_ABS,
229 .ev_code_x = ABS_X, /* EV_REL */
230 .ev_code_y = ABS_Y, /* EV_REL */
231 .ev_code_z = ABS_Z, /* EV_REL */
232
233 .ev_code_tap = {BTN_TOUCH, BTN_TOUCH, BTN_TOUCH}, /* EV_KEY {x,y,z} */
234 .power_mode = ADXL_AUTO_SLEEP | ADXL_LINK,
235 .fifo_mode = FIFO_STREAM,
236 .watermark = 0,
237 };
238
adxl34x_get_triple(struct adxl34x * ac,struct axis_triple * axis)239 static void adxl34x_get_triple(struct adxl34x *ac, struct axis_triple *axis)
240 {
241 short buf[3];
242
243 ac->bops->read_block(ac->dev, DATAX0, DATAZ1 - DATAX0 + 1, buf);
244
245 mutex_lock(&ac->mutex);
246 ac->saved.x = (s16) le16_to_cpu(buf[0]);
247 axis->x = ac->saved.x;
248
249 ac->saved.y = (s16) le16_to_cpu(buf[1]);
250 axis->y = ac->saved.y;
251
252 ac->saved.z = (s16) le16_to_cpu(buf[2]);
253 axis->z = ac->saved.z;
254 mutex_unlock(&ac->mutex);
255 }
256
adxl34x_service_ev_fifo(struct adxl34x * ac)257 static void adxl34x_service_ev_fifo(struct adxl34x *ac)
258 {
259 struct adxl34x_platform_data *pdata = &ac->pdata;
260 struct axis_triple axis;
261
262 adxl34x_get_triple(ac, &axis);
263
264 input_event(ac->input, pdata->ev_type, pdata->ev_code_x,
265 axis.x - ac->swcal.x);
266 input_event(ac->input, pdata->ev_type, pdata->ev_code_y,
267 axis.y - ac->swcal.y);
268 input_event(ac->input, pdata->ev_type, pdata->ev_code_z,
269 axis.z - ac->swcal.z);
270 }
271
adxl34x_report_key_single(struct input_dev * input,int key)272 static void adxl34x_report_key_single(struct input_dev *input, int key)
273 {
274 input_report_key(input, key, true);
275 input_sync(input);
276 input_report_key(input, key, false);
277 }
278
adxl34x_send_key_events(struct adxl34x * ac,struct adxl34x_platform_data * pdata,int status,int press)279 static void adxl34x_send_key_events(struct adxl34x *ac,
280 struct adxl34x_platform_data *pdata, int status, int press)
281 {
282 int i;
283
284 for (i = ADXL_X_AXIS; i <= ADXL_Z_AXIS; i++) {
285 if (status & (1 << (ADXL_Z_AXIS - i)))
286 input_report_key(ac->input,
287 pdata->ev_code_tap[i], press);
288 }
289 }
290
adxl34x_do_tap(struct adxl34x * ac,struct adxl34x_platform_data * pdata,int status)291 static void adxl34x_do_tap(struct adxl34x *ac,
292 struct adxl34x_platform_data *pdata, int status)
293 {
294 adxl34x_send_key_events(ac, pdata, status, true);
295 input_sync(ac->input);
296 adxl34x_send_key_events(ac, pdata, status, false);
297 }
298
adxl34x_irq(int irq,void * handle)299 static irqreturn_t adxl34x_irq(int irq, void *handle)
300 {
301 struct adxl34x *ac = handle;
302 struct adxl34x_platform_data *pdata = &ac->pdata;
303 int int_stat, tap_stat, samples, orient, orient_code;
304
305 /*
306 * ACT_TAP_STATUS should be read before clearing the interrupt
307 * Avoid reading ACT_TAP_STATUS in case TAP detection is disabled
308 */
309
310 if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
311 tap_stat = AC_READ(ac, ACT_TAP_STATUS);
312 else
313 tap_stat = 0;
314
315 int_stat = AC_READ(ac, INT_SOURCE);
316
317 if (int_stat & FREE_FALL)
318 adxl34x_report_key_single(ac->input, pdata->ev_code_ff);
319
320 if (int_stat & OVERRUN)
321 dev_dbg(ac->dev, "OVERRUN\n");
322
323 if (int_stat & (SINGLE_TAP | DOUBLE_TAP)) {
324 adxl34x_do_tap(ac, pdata, tap_stat);
325
326 if (int_stat & DOUBLE_TAP)
327 adxl34x_do_tap(ac, pdata, tap_stat);
328 }
329
330 if (pdata->ev_code_act_inactivity) {
331 if (int_stat & ACTIVITY)
332 input_report_key(ac->input,
333 pdata->ev_code_act_inactivity, 1);
334 if (int_stat & INACTIVITY)
335 input_report_key(ac->input,
336 pdata->ev_code_act_inactivity, 0);
337 }
338
339 /*
340 * ORIENTATION SENSING ADXL346 only
341 */
342 if (pdata->orientation_enable) {
343 orient = AC_READ(ac, ORIENT);
344 if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_2D) &&
345 (orient & ADXL346_2D_VALID)) {
346
347 orient_code = ADXL346_2D_ORIENT(orient);
348 /* Report orientation only when it changes */
349 if (ac->orient2d_saved != orient_code) {
350 ac->orient2d_saved = orient_code;
351 adxl34x_report_key_single(ac->input,
352 pdata->ev_codes_orient_2d[orient_code]);
353 }
354 }
355
356 if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_3D) &&
357 (orient & ADXL346_3D_VALID)) {
358
359 orient_code = ADXL346_3D_ORIENT(orient) - 1;
360 /* Report orientation only when it changes */
361 if (ac->orient3d_saved != orient_code) {
362 ac->orient3d_saved = orient_code;
363 adxl34x_report_key_single(ac->input,
364 pdata->ev_codes_orient_3d[orient_code]);
365 }
366 }
367 }
368
369 if (int_stat & (DATA_READY | WATERMARK)) {
370
371 if (pdata->fifo_mode)
372 samples = ENTRIES(AC_READ(ac, FIFO_STATUS)) + 1;
373 else
374 samples = 1;
375
376 for (; samples > 0; samples--) {
377 adxl34x_service_ev_fifo(ac);
378 /*
379 * To ensure that the FIFO has
380 * completely popped, there must be at least 5 us between
381 * the end of reading the data registers, signified by the
382 * transition to register 0x38 from 0x37 or the CS pin
383 * going high, and the start of new reads of the FIFO or
384 * reading the FIFO_STATUS register. For SPI operation at
385 * 1.5 MHz or lower, the register addressing portion of the
386 * transmission is sufficient delay to ensure the FIFO has
387 * completely popped. It is necessary for SPI operation
388 * greater than 1.5 MHz to de-assert the CS pin to ensure a
389 * total of 5 us, which is at most 3.4 us at 5 MHz
390 * operation.
391 */
392 if (ac->fifo_delay && (samples > 1))
393 udelay(3);
394 }
395 }
396
397 input_sync(ac->input);
398
399 return IRQ_HANDLED;
400 }
401
__adxl34x_disable(struct adxl34x * ac)402 static void __adxl34x_disable(struct adxl34x *ac)
403 {
404 /*
405 * A '0' places the ADXL34x into standby mode
406 * with minimum power consumption.
407 */
408 AC_WRITE(ac, POWER_CTL, 0);
409 }
410
__adxl34x_enable(struct adxl34x * ac)411 static void __adxl34x_enable(struct adxl34x *ac)
412 {
413 AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE);
414 }
415
adxl34x_suspend(struct adxl34x * ac)416 void adxl34x_suspend(struct adxl34x *ac)
417 {
418 mutex_lock(&ac->mutex);
419
420 if (!ac->suspended && !ac->disabled && ac->opened)
421 __adxl34x_disable(ac);
422
423 ac->suspended = true;
424
425 mutex_unlock(&ac->mutex);
426 }
427 EXPORT_SYMBOL_GPL(adxl34x_suspend);
428
adxl34x_resume(struct adxl34x * ac)429 void adxl34x_resume(struct adxl34x *ac)
430 {
431 mutex_lock(&ac->mutex);
432
433 if (ac->suspended && !ac->disabled && ac->opened)
434 __adxl34x_enable(ac);
435
436 ac->suspended = false;
437
438 mutex_unlock(&ac->mutex);
439 }
440 EXPORT_SYMBOL_GPL(adxl34x_resume);
441
adxl34x_disable_show(struct device * dev,struct device_attribute * attr,char * buf)442 static ssize_t adxl34x_disable_show(struct device *dev,
443 struct device_attribute *attr, char *buf)
444 {
445 struct adxl34x *ac = dev_get_drvdata(dev);
446
447 return sprintf(buf, "%u\n", ac->disabled);
448 }
449
adxl34x_disable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)450 static ssize_t adxl34x_disable_store(struct device *dev,
451 struct device_attribute *attr,
452 const char *buf, size_t count)
453 {
454 struct adxl34x *ac = dev_get_drvdata(dev);
455 unsigned int val;
456 int error;
457
458 error = kstrtouint(buf, 10, &val);
459 if (error)
460 return error;
461
462 mutex_lock(&ac->mutex);
463
464 if (!ac->suspended && ac->opened) {
465 if (val) {
466 if (!ac->disabled)
467 __adxl34x_disable(ac);
468 } else {
469 if (ac->disabled)
470 __adxl34x_enable(ac);
471 }
472 }
473
474 ac->disabled = !!val;
475
476 mutex_unlock(&ac->mutex);
477
478 return count;
479 }
480
481 static DEVICE_ATTR(disable, 0664, adxl34x_disable_show, adxl34x_disable_store);
482
adxl34x_calibrate_show(struct device * dev,struct device_attribute * attr,char * buf)483 static ssize_t adxl34x_calibrate_show(struct device *dev,
484 struct device_attribute *attr, char *buf)
485 {
486 struct adxl34x *ac = dev_get_drvdata(dev);
487 ssize_t count;
488
489 mutex_lock(&ac->mutex);
490 count = sprintf(buf, "%d,%d,%d\n",
491 ac->hwcal.x * 4 + ac->swcal.x,
492 ac->hwcal.y * 4 + ac->swcal.y,
493 ac->hwcal.z * 4 + ac->swcal.z);
494 mutex_unlock(&ac->mutex);
495
496 return count;
497 }
498
adxl34x_calibrate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)499 static ssize_t adxl34x_calibrate_store(struct device *dev,
500 struct device_attribute *attr,
501 const char *buf, size_t count)
502 {
503 struct adxl34x *ac = dev_get_drvdata(dev);
504
505 /*
506 * Hardware offset calibration has a resolution of 15.6 mg/LSB.
507 * We use HW calibration and handle the remaining bits in SW. (4mg/LSB)
508 */
509
510 mutex_lock(&ac->mutex);
511 ac->hwcal.x -= (ac->saved.x / 4);
512 ac->swcal.x = ac->saved.x % 4;
513
514 ac->hwcal.y -= (ac->saved.y / 4);
515 ac->swcal.y = ac->saved.y % 4;
516
517 ac->hwcal.z -= (ac->saved.z / 4);
518 ac->swcal.z = ac->saved.z % 4;
519
520 AC_WRITE(ac, OFSX, (s8) ac->hwcal.x);
521 AC_WRITE(ac, OFSY, (s8) ac->hwcal.y);
522 AC_WRITE(ac, OFSZ, (s8) ac->hwcal.z);
523 mutex_unlock(&ac->mutex);
524
525 return count;
526 }
527
528 static DEVICE_ATTR(calibrate, 0664,
529 adxl34x_calibrate_show, adxl34x_calibrate_store);
530
adxl34x_rate_show(struct device * dev,struct device_attribute * attr,char * buf)531 static ssize_t adxl34x_rate_show(struct device *dev,
532 struct device_attribute *attr, char *buf)
533 {
534 struct adxl34x *ac = dev_get_drvdata(dev);
535
536 return sprintf(buf, "%u\n", RATE(ac->pdata.data_rate));
537 }
538
adxl34x_rate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)539 static ssize_t adxl34x_rate_store(struct device *dev,
540 struct device_attribute *attr,
541 const char *buf, size_t count)
542 {
543 struct adxl34x *ac = dev_get_drvdata(dev);
544 unsigned char val;
545 int error;
546
547 error = kstrtou8(buf, 10, &val);
548 if (error)
549 return error;
550
551 mutex_lock(&ac->mutex);
552
553 ac->pdata.data_rate = RATE(val);
554 AC_WRITE(ac, BW_RATE,
555 ac->pdata.data_rate |
556 (ac->pdata.low_power_mode ? LOW_POWER : 0));
557
558 mutex_unlock(&ac->mutex);
559
560 return count;
561 }
562
563 static DEVICE_ATTR(rate, 0664, adxl34x_rate_show, adxl34x_rate_store);
564
adxl34x_autosleep_show(struct device * dev,struct device_attribute * attr,char * buf)565 static ssize_t adxl34x_autosleep_show(struct device *dev,
566 struct device_attribute *attr, char *buf)
567 {
568 struct adxl34x *ac = dev_get_drvdata(dev);
569
570 return sprintf(buf, "%u\n",
571 ac->pdata.power_mode & (PCTL_AUTO_SLEEP | PCTL_LINK) ? 1 : 0);
572 }
573
adxl34x_autosleep_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)574 static ssize_t adxl34x_autosleep_store(struct device *dev,
575 struct device_attribute *attr,
576 const char *buf, size_t count)
577 {
578 struct adxl34x *ac = dev_get_drvdata(dev);
579 unsigned int val;
580 int error;
581
582 error = kstrtouint(buf, 10, &val);
583 if (error)
584 return error;
585
586 mutex_lock(&ac->mutex);
587
588 if (val)
589 ac->pdata.power_mode |= (PCTL_AUTO_SLEEP | PCTL_LINK);
590 else
591 ac->pdata.power_mode &= ~(PCTL_AUTO_SLEEP | PCTL_LINK);
592
593 if (!ac->disabled && !ac->suspended && ac->opened)
594 AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE);
595
596 mutex_unlock(&ac->mutex);
597
598 return count;
599 }
600
601 static DEVICE_ATTR(autosleep, 0664,
602 adxl34x_autosleep_show, adxl34x_autosleep_store);
603
adxl34x_position_show(struct device * dev,struct device_attribute * attr,char * buf)604 static ssize_t adxl34x_position_show(struct device *dev,
605 struct device_attribute *attr, char *buf)
606 {
607 struct adxl34x *ac = dev_get_drvdata(dev);
608 ssize_t count;
609
610 mutex_lock(&ac->mutex);
611 count = sprintf(buf, "(%d, %d, %d)\n",
612 ac->saved.x, ac->saved.y, ac->saved.z);
613 mutex_unlock(&ac->mutex);
614
615 return count;
616 }
617
618 static DEVICE_ATTR(position, S_IRUGO, adxl34x_position_show, NULL);
619
620 #ifdef ADXL_DEBUG
adxl34x_write_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)621 static ssize_t adxl34x_write_store(struct device *dev,
622 struct device_attribute *attr,
623 const char *buf, size_t count)
624 {
625 struct adxl34x *ac = dev_get_drvdata(dev);
626 unsigned int val;
627 int error;
628
629 /*
630 * This allows basic ADXL register write access for debug purposes.
631 */
632 error = kstrtouint(buf, 16, &val);
633 if (error)
634 return error;
635
636 mutex_lock(&ac->mutex);
637 AC_WRITE(ac, val >> 8, val & 0xFF);
638 mutex_unlock(&ac->mutex);
639
640 return count;
641 }
642
643 static DEVICE_ATTR(write, 0664, NULL, adxl34x_write_store);
644 #endif
645
646 static struct attribute *adxl34x_attributes[] = {
647 &dev_attr_disable.attr,
648 &dev_attr_calibrate.attr,
649 &dev_attr_rate.attr,
650 &dev_attr_autosleep.attr,
651 &dev_attr_position.attr,
652 #ifdef ADXL_DEBUG
653 &dev_attr_write.attr,
654 #endif
655 NULL
656 };
657
658 static const struct attribute_group adxl34x_attr_group = {
659 .attrs = adxl34x_attributes,
660 };
661
adxl34x_input_open(struct input_dev * input)662 static int adxl34x_input_open(struct input_dev *input)
663 {
664 struct adxl34x *ac = input_get_drvdata(input);
665
666 mutex_lock(&ac->mutex);
667
668 if (!ac->suspended && !ac->disabled)
669 __adxl34x_enable(ac);
670
671 ac->opened = true;
672
673 mutex_unlock(&ac->mutex);
674
675 return 0;
676 }
677
adxl34x_input_close(struct input_dev * input)678 static void adxl34x_input_close(struct input_dev *input)
679 {
680 struct adxl34x *ac = input_get_drvdata(input);
681
682 mutex_lock(&ac->mutex);
683
684 if (!ac->suspended && !ac->disabled)
685 __adxl34x_disable(ac);
686
687 ac->opened = false;
688
689 mutex_unlock(&ac->mutex);
690 }
691
adxl34x_probe(struct device * dev,int irq,bool fifo_delay_default,const struct adxl34x_bus_ops * bops)692 struct adxl34x *adxl34x_probe(struct device *dev, int irq,
693 bool fifo_delay_default,
694 const struct adxl34x_bus_ops *bops)
695 {
696 struct adxl34x *ac;
697 struct input_dev *input_dev;
698 const struct adxl34x_platform_data *pdata;
699 int err, range, i;
700 unsigned char revid;
701
702 if (!irq) {
703 dev_err(dev, "no IRQ?\n");
704 err = -ENODEV;
705 goto err_out;
706 }
707
708 ac = kzalloc(sizeof(*ac), GFP_KERNEL);
709 input_dev = input_allocate_device();
710 if (!ac || !input_dev) {
711 err = -ENOMEM;
712 goto err_free_mem;
713 }
714
715 ac->fifo_delay = fifo_delay_default;
716
717 pdata = dev->platform_data;
718 if (!pdata) {
719 dev_dbg(dev,
720 "No platform data: Using default initialization\n");
721 pdata = &adxl34x_default_init;
722 }
723
724 ac->pdata = *pdata;
725 pdata = &ac->pdata;
726
727 ac->input = input_dev;
728 ac->dev = dev;
729 ac->irq = irq;
730 ac->bops = bops;
731
732 mutex_init(&ac->mutex);
733
734 input_dev->name = "ADXL34x accelerometer";
735 revid = ac->bops->read(dev, DEVID);
736
737 switch (revid) {
738 case ID_ADXL345:
739 ac->model = 345;
740 break;
741 case ID_ADXL346:
742 ac->model = 346;
743 break;
744 default:
745 dev_err(dev, "Failed to probe %s\n", input_dev->name);
746 err = -ENODEV;
747 goto err_free_mem;
748 }
749
750 snprintf(ac->phys, sizeof(ac->phys), "%s/input0", dev_name(dev));
751
752 input_dev->phys = ac->phys;
753 input_dev->dev.parent = dev;
754 input_dev->id.product = ac->model;
755 input_dev->id.bustype = bops->bustype;
756 input_dev->open = adxl34x_input_open;
757 input_dev->close = adxl34x_input_close;
758
759 input_set_drvdata(input_dev, ac);
760
761 __set_bit(ac->pdata.ev_type, input_dev->evbit);
762
763 if (ac->pdata.ev_type == EV_REL) {
764 __set_bit(REL_X, input_dev->relbit);
765 __set_bit(REL_Y, input_dev->relbit);
766 __set_bit(REL_Z, input_dev->relbit);
767 } else {
768 /* EV_ABS */
769 __set_bit(ABS_X, input_dev->absbit);
770 __set_bit(ABS_Y, input_dev->absbit);
771 __set_bit(ABS_Z, input_dev->absbit);
772
773 if (pdata->data_range & FULL_RES)
774 range = ADXL_FULLRES_MAX_VAL; /* Signed 13-bit */
775 else
776 range = ADXL_FIXEDRES_MAX_VAL; /* Signed 10-bit */
777
778 input_set_abs_params(input_dev, ABS_X, -range, range, 3, 3);
779 input_set_abs_params(input_dev, ABS_Y, -range, range, 3, 3);
780 input_set_abs_params(input_dev, ABS_Z, -range, range, 3, 3);
781 }
782
783 __set_bit(EV_KEY, input_dev->evbit);
784 __set_bit(pdata->ev_code_tap[ADXL_X_AXIS], input_dev->keybit);
785 __set_bit(pdata->ev_code_tap[ADXL_Y_AXIS], input_dev->keybit);
786 __set_bit(pdata->ev_code_tap[ADXL_Z_AXIS], input_dev->keybit);
787
788 if (pdata->ev_code_ff) {
789 ac->int_mask = FREE_FALL;
790 __set_bit(pdata->ev_code_ff, input_dev->keybit);
791 }
792
793 if (pdata->ev_code_act_inactivity)
794 __set_bit(pdata->ev_code_act_inactivity, input_dev->keybit);
795
796 ac->int_mask |= ACTIVITY | INACTIVITY;
797
798 if (pdata->watermark) {
799 ac->int_mask |= WATERMARK;
800 if (!FIFO_MODE(pdata->fifo_mode))
801 ac->pdata.fifo_mode |= FIFO_STREAM;
802 } else {
803 ac->int_mask |= DATA_READY;
804 }
805
806 if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
807 ac->int_mask |= SINGLE_TAP | DOUBLE_TAP;
808
809 if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS)
810 ac->fifo_delay = false;
811
812 ac->bops->write(dev, POWER_CTL, 0);
813
814 err = request_threaded_irq(ac->irq, NULL, adxl34x_irq,
815 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
816 dev_name(dev), ac);
817 if (err) {
818 dev_err(dev, "irq %d busy?\n", ac->irq);
819 goto err_free_mem;
820 }
821
822 err = sysfs_create_group(&dev->kobj, &adxl34x_attr_group);
823 if (err)
824 goto err_free_irq;
825
826 err = input_register_device(input_dev);
827 if (err)
828 goto err_remove_attr;
829
830 AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold);
831 AC_WRITE(ac, OFSX, pdata->x_axis_offset);
832 ac->hwcal.x = pdata->x_axis_offset;
833 AC_WRITE(ac, OFSY, pdata->y_axis_offset);
834 ac->hwcal.y = pdata->y_axis_offset;
835 AC_WRITE(ac, OFSZ, pdata->z_axis_offset);
836 ac->hwcal.z = pdata->z_axis_offset;
837 AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold);
838 AC_WRITE(ac, DUR, pdata->tap_duration);
839 AC_WRITE(ac, LATENT, pdata->tap_latency);
840 AC_WRITE(ac, WINDOW, pdata->tap_window);
841 AC_WRITE(ac, THRESH_ACT, pdata->activity_threshold);
842 AC_WRITE(ac, THRESH_INACT, pdata->inactivity_threshold);
843 AC_WRITE(ac, TIME_INACT, pdata->inactivity_time);
844 AC_WRITE(ac, THRESH_FF, pdata->free_fall_threshold);
845 AC_WRITE(ac, TIME_FF, pdata->free_fall_time);
846 AC_WRITE(ac, TAP_AXES, pdata->tap_axis_control);
847 AC_WRITE(ac, ACT_INACT_CTL, pdata->act_axis_control);
848 AC_WRITE(ac, BW_RATE, RATE(ac->pdata.data_rate) |
849 (pdata->low_power_mode ? LOW_POWER : 0));
850 AC_WRITE(ac, DATA_FORMAT, pdata->data_range);
851 AC_WRITE(ac, FIFO_CTL, FIFO_MODE(pdata->fifo_mode) |
852 SAMPLES(pdata->watermark));
853
854 if (pdata->use_int2) {
855 /* Map all INTs to INT2 */
856 AC_WRITE(ac, INT_MAP, ac->int_mask | OVERRUN);
857 } else {
858 /* Map all INTs to INT1 */
859 AC_WRITE(ac, INT_MAP, 0);
860 }
861
862 if (ac->model == 346 && ac->pdata.orientation_enable) {
863 AC_WRITE(ac, ORIENT_CONF,
864 ORIENT_DEADZONE(ac->pdata.deadzone_angle) |
865 ORIENT_DIVISOR(ac->pdata.divisor_length));
866
867 ac->orient2d_saved = 1234;
868 ac->orient3d_saved = 1234;
869
870 if (pdata->orientation_enable & ADXL_EN_ORIENTATION_3D)
871 for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_3d); i++)
872 __set_bit(pdata->ev_codes_orient_3d[i],
873 input_dev->keybit);
874
875 if (pdata->orientation_enable & ADXL_EN_ORIENTATION_2D)
876 for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_2d); i++)
877 __set_bit(pdata->ev_codes_orient_2d[i],
878 input_dev->keybit);
879 } else {
880 ac->pdata.orientation_enable = 0;
881 }
882
883 AC_WRITE(ac, INT_ENABLE, ac->int_mask | OVERRUN);
884
885 ac->pdata.power_mode &= (PCTL_AUTO_SLEEP | PCTL_LINK);
886
887 return ac;
888
889 err_remove_attr:
890 sysfs_remove_group(&dev->kobj, &adxl34x_attr_group);
891 err_free_irq:
892 free_irq(ac->irq, ac);
893 err_free_mem:
894 input_free_device(input_dev);
895 kfree(ac);
896 err_out:
897 return ERR_PTR(err);
898 }
899 EXPORT_SYMBOL_GPL(adxl34x_probe);
900
adxl34x_remove(struct adxl34x * ac)901 int adxl34x_remove(struct adxl34x *ac)
902 {
903 sysfs_remove_group(&ac->dev->kobj, &adxl34x_attr_group);
904 free_irq(ac->irq, ac);
905 input_unregister_device(ac->input);
906 dev_dbg(ac->dev, "unregistered accelerometer\n");
907 kfree(ac);
908
909 return 0;
910 }
911 EXPORT_SYMBOL_GPL(adxl34x_remove);
912
913 MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>");
914 MODULE_DESCRIPTION("ADXL345/346 Three-Axis Digital Accelerometer Driver");
915 MODULE_LICENSE("GPL");
916