1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37
38 #include "internal.h"
39 #include "mount.h"
40
41 /* [Feb-1997 T. Schoebel-Theuer]
42 * Fundamental changes in the pathname lookup mechanisms (namei)
43 * were necessary because of omirr. The reason is that omirr needs
44 * to know the _real_ pathname, not the user-supplied one, in case
45 * of symlinks (and also when transname replacements occur).
46 *
47 * The new code replaces the old recursive symlink resolution with
48 * an iterative one (in case of non-nested symlink chains). It does
49 * this with calls to <fs>_follow_link().
50 * As a side effect, dir_namei(), _namei() and follow_link() are now
51 * replaced with a single function lookup_dentry() that can handle all
52 * the special cases of the former code.
53 *
54 * With the new dcache, the pathname is stored at each inode, at least as
55 * long as the refcount of the inode is positive. As a side effect, the
56 * size of the dcache depends on the inode cache and thus is dynamic.
57 *
58 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
59 * resolution to correspond with current state of the code.
60 *
61 * Note that the symlink resolution is not *completely* iterative.
62 * There is still a significant amount of tail- and mid- recursion in
63 * the algorithm. Also, note that <fs>_readlink() is not used in
64 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
65 * may return different results than <fs>_follow_link(). Many virtual
66 * filesystems (including /proc) exhibit this behavior.
67 */
68
69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
70 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
71 * and the name already exists in form of a symlink, try to create the new
72 * name indicated by the symlink. The old code always complained that the
73 * name already exists, due to not following the symlink even if its target
74 * is nonexistent. The new semantics affects also mknod() and link() when
75 * the name is a symlink pointing to a non-existent name.
76 *
77 * I don't know which semantics is the right one, since I have no access
78 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
79 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
80 * "old" one. Personally, I think the new semantics is much more logical.
81 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
82 * file does succeed in both HP-UX and SunOs, but not in Solaris
83 * and in the old Linux semantics.
84 */
85
86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
87 * semantics. See the comments in "open_namei" and "do_link" below.
88 *
89 * [10-Sep-98 Alan Modra] Another symlink change.
90 */
91
92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
93 * inside the path - always follow.
94 * in the last component in creation/removal/renaming - never follow.
95 * if LOOKUP_FOLLOW passed - follow.
96 * if the pathname has trailing slashes - follow.
97 * otherwise - don't follow.
98 * (applied in that order).
99 *
100 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
101 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
102 * During the 2.4 we need to fix the userland stuff depending on it -
103 * hopefully we will be able to get rid of that wart in 2.5. So far only
104 * XEmacs seems to be relying on it...
105 */
106 /*
107 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
108 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
109 * any extra contention...
110 */
111
112 /* In order to reduce some races, while at the same time doing additional
113 * checking and hopefully speeding things up, we copy filenames to the
114 * kernel data space before using them..
115 *
116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117 * PATH_MAX includes the nul terminator --RR.
118 */
do_getname(const char __user * filename,char * page)119 static int do_getname(const char __user *filename, char *page)
120 {
121 int retval;
122 unsigned long len = PATH_MAX;
123
124 if (!segment_eq(get_fs(), KERNEL_DS)) {
125 if ((unsigned long) filename >= TASK_SIZE)
126 return -EFAULT;
127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 len = TASK_SIZE - (unsigned long) filename;
129 }
130
131 retval = strncpy_from_user(page, filename, len);
132 if (retval > 0) {
133 if (retval < len)
134 return 0;
135 return -ENAMETOOLONG;
136 } else if (!retval)
137 retval = -ENOENT;
138 return retval;
139 }
140
getname_flags(const char __user * filename,int flags,int * empty)141 static char *getname_flags(const char __user *filename, int flags, int *empty)
142 {
143 char *result = __getname();
144 int retval;
145
146 if (!result)
147 return ERR_PTR(-ENOMEM);
148
149 retval = do_getname(filename, result);
150 if (retval < 0) {
151 if (retval == -ENOENT && empty)
152 *empty = 1;
153 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
154 __putname(result);
155 return ERR_PTR(retval);
156 }
157 }
158 audit_getname(result);
159 return result;
160 }
161
getname(const char __user * filename)162 char *getname(const char __user * filename)
163 {
164 return getname_flags(filename, 0, NULL);
165 }
166
167 #ifdef CONFIG_AUDITSYSCALL
putname(const char * name)168 void putname(const char *name)
169 {
170 if (unlikely(!audit_dummy_context()))
171 audit_putname(name);
172 else
173 __putname(name);
174 }
175 EXPORT_SYMBOL(putname);
176 #endif
177
check_acl(struct inode * inode,int mask)178 static int check_acl(struct inode *inode, int mask)
179 {
180 #ifdef CONFIG_FS_POSIX_ACL
181 struct posix_acl *acl;
182
183 if (mask & MAY_NOT_BLOCK) {
184 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
185 if (!acl)
186 return -EAGAIN;
187 /* no ->get_acl() calls in RCU mode... */
188 if (acl == ACL_NOT_CACHED)
189 return -ECHILD;
190 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
191 }
192
193 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
194
195 /*
196 * A filesystem can force a ACL callback by just never filling the
197 * ACL cache. But normally you'd fill the cache either at inode
198 * instantiation time, or on the first ->get_acl call.
199 *
200 * If the filesystem doesn't have a get_acl() function at all, we'll
201 * just create the negative cache entry.
202 */
203 if (acl == ACL_NOT_CACHED) {
204 if (inode->i_op->get_acl) {
205 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
206 if (IS_ERR(acl))
207 return PTR_ERR(acl);
208 } else {
209 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
210 return -EAGAIN;
211 }
212 }
213
214 if (acl) {
215 int error = posix_acl_permission(inode, acl, mask);
216 posix_acl_release(acl);
217 return error;
218 }
219 #endif
220
221 return -EAGAIN;
222 }
223
224 /*
225 * This does the basic permission checking
226 */
acl_permission_check(struct inode * inode,int mask)227 static int acl_permission_check(struct inode *inode, int mask)
228 {
229 unsigned int mode = inode->i_mode;
230
231 if (current_user_ns() != inode_userns(inode))
232 goto other_perms;
233
234 if (likely(current_fsuid() == inode->i_uid))
235 mode >>= 6;
236 else {
237 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
238 int error = check_acl(inode, mask);
239 if (error != -EAGAIN)
240 return error;
241 }
242
243 if (in_group_p(inode->i_gid))
244 mode >>= 3;
245 }
246
247 other_perms:
248 /*
249 * If the DACs are ok we don't need any capability check.
250 */
251 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
252 return 0;
253 return -EACCES;
254 }
255
256 /**
257 * generic_permission - check for access rights on a Posix-like filesystem
258 * @inode: inode to check access rights for
259 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
260 *
261 * Used to check for read/write/execute permissions on a file.
262 * We use "fsuid" for this, letting us set arbitrary permissions
263 * for filesystem access without changing the "normal" uids which
264 * are used for other things.
265 *
266 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
267 * request cannot be satisfied (eg. requires blocking or too much complexity).
268 * It would then be called again in ref-walk mode.
269 */
generic_permission(struct inode * inode,int mask)270 int generic_permission(struct inode *inode, int mask)
271 {
272 int ret;
273
274 /*
275 * Do the basic permission checks.
276 */
277 ret = acl_permission_check(inode, mask);
278 if (ret != -EACCES)
279 return ret;
280
281 if (S_ISDIR(inode->i_mode)) {
282 /* DACs are overridable for directories */
283 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
284 return 0;
285 if (!(mask & MAY_WRITE))
286 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
287 return 0;
288 return -EACCES;
289 }
290 /*
291 * Read/write DACs are always overridable.
292 * Executable DACs are overridable when there is
293 * at least one exec bit set.
294 */
295 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
296 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
297 return 0;
298
299 /*
300 * Searching includes executable on directories, else just read.
301 */
302 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
303 if (mask == MAY_READ)
304 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
305 return 0;
306
307 return -EACCES;
308 }
309
310 /*
311 * We _really_ want to just do "generic_permission()" without
312 * even looking at the inode->i_op values. So we keep a cache
313 * flag in inode->i_opflags, that says "this has not special
314 * permission function, use the fast case".
315 */
do_inode_permission(struct inode * inode,int mask)316 static inline int do_inode_permission(struct inode *inode, int mask)
317 {
318 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
319 if (likely(inode->i_op->permission))
320 return inode->i_op->permission(inode, mask);
321
322 /* This gets set once for the inode lifetime */
323 spin_lock(&inode->i_lock);
324 inode->i_opflags |= IOP_FASTPERM;
325 spin_unlock(&inode->i_lock);
326 }
327 return generic_permission(inode, mask);
328 }
329
330 /**
331 * inode_permission - check for access rights to a given inode
332 * @inode: inode to check permission on
333 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
334 *
335 * Used to check for read/write/execute permissions on an inode.
336 * We use "fsuid" for this, letting us set arbitrary permissions
337 * for filesystem access without changing the "normal" uids which
338 * are used for other things.
339 *
340 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
341 */
inode_permission(struct inode * inode,int mask)342 int inode_permission(struct inode *inode, int mask)
343 {
344 int retval;
345
346 if (unlikely(mask & MAY_WRITE)) {
347 umode_t mode = inode->i_mode;
348
349 /*
350 * Nobody gets write access to a read-only fs.
351 */
352 if (IS_RDONLY(inode) &&
353 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
354 return -EROFS;
355
356 /*
357 * Nobody gets write access to an immutable file.
358 */
359 if (IS_IMMUTABLE(inode))
360 return -EACCES;
361 }
362
363 retval = do_inode_permission(inode, mask);
364 if (retval)
365 return retval;
366
367 retval = devcgroup_inode_permission(inode, mask);
368 if (retval)
369 return retval;
370
371 return security_inode_permission(inode, mask);
372 }
373
374 /**
375 * path_get - get a reference to a path
376 * @path: path to get the reference to
377 *
378 * Given a path increment the reference count to the dentry and the vfsmount.
379 */
path_get(struct path * path)380 void path_get(struct path *path)
381 {
382 mntget(path->mnt);
383 dget(path->dentry);
384 }
385 EXPORT_SYMBOL(path_get);
386
387 /**
388 * path_put - put a reference to a path
389 * @path: path to put the reference to
390 *
391 * Given a path decrement the reference count to the dentry and the vfsmount.
392 */
path_put(struct path * path)393 void path_put(struct path *path)
394 {
395 dput(path->dentry);
396 mntput(path->mnt);
397 }
398 EXPORT_SYMBOL(path_put);
399
400 /*
401 * Path walking has 2 modes, rcu-walk and ref-walk (see
402 * Documentation/filesystems/path-lookup.txt). In situations when we can't
403 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
404 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
405 * mode. Refcounts are grabbed at the last known good point before rcu-walk
406 * got stuck, so ref-walk may continue from there. If this is not successful
407 * (eg. a seqcount has changed), then failure is returned and it's up to caller
408 * to restart the path walk from the beginning in ref-walk mode.
409 */
410
411 /**
412 * unlazy_walk - try to switch to ref-walk mode.
413 * @nd: nameidata pathwalk data
414 * @dentry: child of nd->path.dentry or NULL
415 * Returns: 0 on success, -ECHILD on failure
416 *
417 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
418 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
419 * @nd or NULL. Must be called from rcu-walk context.
420 */
unlazy_walk(struct nameidata * nd,struct dentry * dentry)421 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
422 {
423 struct fs_struct *fs = current->fs;
424 struct dentry *parent = nd->path.dentry;
425 int want_root = 0;
426
427 BUG_ON(!(nd->flags & LOOKUP_RCU));
428 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
429 want_root = 1;
430 spin_lock(&fs->lock);
431 if (nd->root.mnt != fs->root.mnt ||
432 nd->root.dentry != fs->root.dentry)
433 goto err_root;
434 }
435 spin_lock(&parent->d_lock);
436 if (!dentry) {
437 if (!__d_rcu_to_refcount(parent, nd->seq))
438 goto err_parent;
439 BUG_ON(nd->inode != parent->d_inode);
440 } else {
441 if (dentry->d_parent != parent)
442 goto err_parent;
443 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
444 if (!__d_rcu_to_refcount(dentry, nd->seq))
445 goto err_child;
446 /*
447 * If the sequence check on the child dentry passed, then
448 * the child has not been removed from its parent. This
449 * means the parent dentry must be valid and able to take
450 * a reference at this point.
451 */
452 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
453 BUG_ON(!parent->d_count);
454 parent->d_count++;
455 spin_unlock(&dentry->d_lock);
456 }
457 spin_unlock(&parent->d_lock);
458 if (want_root) {
459 path_get(&nd->root);
460 spin_unlock(&fs->lock);
461 }
462 mntget(nd->path.mnt);
463
464 rcu_read_unlock();
465 br_read_unlock(&vfsmount_lock);
466 nd->flags &= ~LOOKUP_RCU;
467 return 0;
468
469 err_child:
470 spin_unlock(&dentry->d_lock);
471 err_parent:
472 spin_unlock(&parent->d_lock);
473 err_root:
474 if (want_root)
475 spin_unlock(&fs->lock);
476 return -ECHILD;
477 }
478
479 /**
480 * release_open_intent - free up open intent resources
481 * @nd: pointer to nameidata
482 */
release_open_intent(struct nameidata * nd)483 void release_open_intent(struct nameidata *nd)
484 {
485 struct file *file = nd->intent.open.file;
486
487 if (file && !IS_ERR(file)) {
488 if (file->f_path.dentry == NULL)
489 put_filp(file);
490 else
491 fput(file);
492 }
493 }
494
d_revalidate(struct dentry * dentry,struct nameidata * nd)495 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
496 {
497 return dentry->d_op->d_revalidate(dentry, nd);
498 }
499
500 /**
501 * complete_walk - successful completion of path walk
502 * @nd: pointer nameidata
503 *
504 * If we had been in RCU mode, drop out of it and legitimize nd->path.
505 * Revalidate the final result, unless we'd already done that during
506 * the path walk or the filesystem doesn't ask for it. Return 0 on
507 * success, -error on failure. In case of failure caller does not
508 * need to drop nd->path.
509 */
complete_walk(struct nameidata * nd)510 static int complete_walk(struct nameidata *nd)
511 {
512 struct dentry *dentry = nd->path.dentry;
513 int status;
514
515 if (nd->flags & LOOKUP_RCU) {
516 nd->flags &= ~LOOKUP_RCU;
517 if (!(nd->flags & LOOKUP_ROOT))
518 nd->root.mnt = NULL;
519 spin_lock(&dentry->d_lock);
520 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
521 spin_unlock(&dentry->d_lock);
522 rcu_read_unlock();
523 br_read_unlock(&vfsmount_lock);
524 return -ECHILD;
525 }
526 BUG_ON(nd->inode != dentry->d_inode);
527 spin_unlock(&dentry->d_lock);
528 mntget(nd->path.mnt);
529 rcu_read_unlock();
530 br_read_unlock(&vfsmount_lock);
531 }
532
533 if (likely(!(nd->flags & LOOKUP_JUMPED)))
534 return 0;
535
536 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
537 return 0;
538
539 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
540 return 0;
541
542 /* Note: we do not d_invalidate() */
543 status = d_revalidate(dentry, nd);
544 if (status > 0)
545 return 0;
546
547 if (!status)
548 status = -ESTALE;
549
550 path_put(&nd->path);
551 return status;
552 }
553
set_root(struct nameidata * nd)554 static __always_inline void set_root(struct nameidata *nd)
555 {
556 if (!nd->root.mnt)
557 get_fs_root(current->fs, &nd->root);
558 }
559
560 static int link_path_walk(const char *, struct nameidata *);
561
set_root_rcu(struct nameidata * nd)562 static __always_inline void set_root_rcu(struct nameidata *nd)
563 {
564 if (!nd->root.mnt) {
565 struct fs_struct *fs = current->fs;
566 unsigned seq;
567
568 do {
569 seq = read_seqcount_begin(&fs->seq);
570 nd->root = fs->root;
571 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
572 } while (read_seqcount_retry(&fs->seq, seq));
573 }
574 }
575
__vfs_follow_link(struct nameidata * nd,const char * link)576 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
577 {
578 int ret;
579
580 if (IS_ERR(link))
581 goto fail;
582
583 if (*link == '/') {
584 set_root(nd);
585 path_put(&nd->path);
586 nd->path = nd->root;
587 path_get(&nd->root);
588 nd->flags |= LOOKUP_JUMPED;
589 }
590 nd->inode = nd->path.dentry->d_inode;
591
592 ret = link_path_walk(link, nd);
593 return ret;
594 fail:
595 path_put(&nd->path);
596 return PTR_ERR(link);
597 }
598
path_put_conditional(struct path * path,struct nameidata * nd)599 static void path_put_conditional(struct path *path, struct nameidata *nd)
600 {
601 dput(path->dentry);
602 if (path->mnt != nd->path.mnt)
603 mntput(path->mnt);
604 }
605
path_to_nameidata(const struct path * path,struct nameidata * nd)606 static inline void path_to_nameidata(const struct path *path,
607 struct nameidata *nd)
608 {
609 if (!(nd->flags & LOOKUP_RCU)) {
610 dput(nd->path.dentry);
611 if (nd->path.mnt != path->mnt)
612 mntput(nd->path.mnt);
613 }
614 nd->path.mnt = path->mnt;
615 nd->path.dentry = path->dentry;
616 }
617
put_link(struct nameidata * nd,struct path * link,void * cookie)618 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
619 {
620 struct inode *inode = link->dentry->d_inode;
621 if (!IS_ERR(cookie) && inode->i_op->put_link)
622 inode->i_op->put_link(link->dentry, nd, cookie);
623 path_put(link);
624 }
625
626 static __always_inline int
follow_link(struct path * link,struct nameidata * nd,void ** p)627 follow_link(struct path *link, struct nameidata *nd, void **p)
628 {
629 int error;
630 struct dentry *dentry = link->dentry;
631
632 BUG_ON(nd->flags & LOOKUP_RCU);
633
634 if (link->mnt == nd->path.mnt)
635 mntget(link->mnt);
636
637 if (unlikely(current->total_link_count >= 40)) {
638 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
639 path_put(&nd->path);
640 return -ELOOP;
641 }
642 cond_resched();
643 current->total_link_count++;
644
645 touch_atime(link);
646 nd_set_link(nd, NULL);
647
648 error = security_inode_follow_link(link->dentry, nd);
649 if (error) {
650 *p = ERR_PTR(error); /* no ->put_link(), please */
651 path_put(&nd->path);
652 return error;
653 }
654
655 nd->last_type = LAST_BIND;
656 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
657 error = PTR_ERR(*p);
658 if (!IS_ERR(*p)) {
659 char *s = nd_get_link(nd);
660 error = 0;
661 if (s)
662 error = __vfs_follow_link(nd, s);
663 else if (nd->last_type == LAST_BIND) {
664 nd->flags |= LOOKUP_JUMPED;
665 nd->inode = nd->path.dentry->d_inode;
666 if (nd->inode->i_op->follow_link) {
667 /* stepped on a _really_ weird one */
668 path_put(&nd->path);
669 error = -ELOOP;
670 }
671 }
672 }
673 return error;
674 }
675
follow_up_rcu(struct path * path)676 static int follow_up_rcu(struct path *path)
677 {
678 struct mount *mnt = real_mount(path->mnt);
679 struct mount *parent;
680 struct dentry *mountpoint;
681
682 parent = mnt->mnt_parent;
683 if (&parent->mnt == path->mnt)
684 return 0;
685 mountpoint = mnt->mnt_mountpoint;
686 path->dentry = mountpoint;
687 path->mnt = &parent->mnt;
688 return 1;
689 }
690
691 /*
692 * follow_up - Find the mountpoint of path's vfsmount
693 *
694 * Given a path, find the mountpoint of its source file system.
695 * Replace @path with the path of the mountpoint in the parent mount.
696 * Up is towards /.
697 *
698 * Return 1 if we went up a level and 0 if we were already at the
699 * root.
700 */
follow_up(struct path * path)701 int follow_up(struct path *path)
702 {
703 struct mount *mnt = real_mount(path->mnt);
704 struct mount *parent;
705 struct dentry *mountpoint;
706
707 br_read_lock(&vfsmount_lock);
708 parent = mnt->mnt_parent;
709 if (&parent->mnt == path->mnt) {
710 br_read_unlock(&vfsmount_lock);
711 return 0;
712 }
713 mntget(&parent->mnt);
714 mountpoint = dget(mnt->mnt_mountpoint);
715 br_read_unlock(&vfsmount_lock);
716 dput(path->dentry);
717 path->dentry = mountpoint;
718 mntput(path->mnt);
719 path->mnt = &parent->mnt;
720 return 1;
721 }
722
723 /*
724 * Perform an automount
725 * - return -EISDIR to tell follow_managed() to stop and return the path we
726 * were called with.
727 */
follow_automount(struct path * path,unsigned flags,bool * need_mntput)728 static int follow_automount(struct path *path, unsigned flags,
729 bool *need_mntput)
730 {
731 struct vfsmount *mnt;
732 int err;
733
734 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
735 return -EREMOTE;
736
737 /* We don't want to mount if someone's just doing a stat -
738 * unless they're stat'ing a directory and appended a '/' to
739 * the name.
740 *
741 * We do, however, want to mount if someone wants to open or
742 * create a file of any type under the mountpoint, wants to
743 * traverse through the mountpoint or wants to open the
744 * mounted directory. Also, autofs may mark negative dentries
745 * as being automount points. These will need the attentions
746 * of the daemon to instantiate them before they can be used.
747 */
748 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
749 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
750 path->dentry->d_inode)
751 return -EISDIR;
752
753 current->total_link_count++;
754 if (current->total_link_count >= 40)
755 return -ELOOP;
756
757 mnt = path->dentry->d_op->d_automount(path);
758 if (IS_ERR(mnt)) {
759 /*
760 * The filesystem is allowed to return -EISDIR here to indicate
761 * it doesn't want to automount. For instance, autofs would do
762 * this so that its userspace daemon can mount on this dentry.
763 *
764 * However, we can only permit this if it's a terminal point in
765 * the path being looked up; if it wasn't then the remainder of
766 * the path is inaccessible and we should say so.
767 */
768 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
769 return -EREMOTE;
770 return PTR_ERR(mnt);
771 }
772
773 if (!mnt) /* mount collision */
774 return 0;
775
776 if (!*need_mntput) {
777 /* lock_mount() may release path->mnt on error */
778 mntget(path->mnt);
779 *need_mntput = true;
780 }
781 err = finish_automount(mnt, path);
782
783 switch (err) {
784 case -EBUSY:
785 /* Someone else made a mount here whilst we were busy */
786 return 0;
787 case 0:
788 path_put(path);
789 path->mnt = mnt;
790 path->dentry = dget(mnt->mnt_root);
791 return 0;
792 default:
793 return err;
794 }
795
796 }
797
798 /*
799 * Handle a dentry that is managed in some way.
800 * - Flagged for transit management (autofs)
801 * - Flagged as mountpoint
802 * - Flagged as automount point
803 *
804 * This may only be called in refwalk mode.
805 *
806 * Serialization is taken care of in namespace.c
807 */
follow_managed(struct path * path,unsigned flags)808 static int follow_managed(struct path *path, unsigned flags)
809 {
810 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
811 unsigned managed;
812 bool need_mntput = false;
813 int ret = 0;
814
815 /* Given that we're not holding a lock here, we retain the value in a
816 * local variable for each dentry as we look at it so that we don't see
817 * the components of that value change under us */
818 while (managed = ACCESS_ONCE(path->dentry->d_flags),
819 managed &= DCACHE_MANAGED_DENTRY,
820 unlikely(managed != 0)) {
821 /* Allow the filesystem to manage the transit without i_mutex
822 * being held. */
823 if (managed & DCACHE_MANAGE_TRANSIT) {
824 BUG_ON(!path->dentry->d_op);
825 BUG_ON(!path->dentry->d_op->d_manage);
826 ret = path->dentry->d_op->d_manage(path->dentry, false);
827 if (ret < 0)
828 break;
829 }
830
831 /* Transit to a mounted filesystem. */
832 if (managed & DCACHE_MOUNTED) {
833 struct vfsmount *mounted = lookup_mnt(path);
834 if (mounted) {
835 dput(path->dentry);
836 if (need_mntput)
837 mntput(path->mnt);
838 path->mnt = mounted;
839 path->dentry = dget(mounted->mnt_root);
840 need_mntput = true;
841 continue;
842 }
843
844 /* Something is mounted on this dentry in another
845 * namespace and/or whatever was mounted there in this
846 * namespace got unmounted before we managed to get the
847 * vfsmount_lock */
848 }
849
850 /* Handle an automount point */
851 if (managed & DCACHE_NEED_AUTOMOUNT) {
852 ret = follow_automount(path, flags, &need_mntput);
853 if (ret < 0)
854 break;
855 continue;
856 }
857
858 /* We didn't change the current path point */
859 break;
860 }
861
862 if (need_mntput && path->mnt == mnt)
863 mntput(path->mnt);
864 if (ret == -EISDIR)
865 ret = 0;
866 return ret < 0 ? ret : need_mntput;
867 }
868
follow_down_one(struct path * path)869 int follow_down_one(struct path *path)
870 {
871 struct vfsmount *mounted;
872
873 mounted = lookup_mnt(path);
874 if (mounted) {
875 dput(path->dentry);
876 mntput(path->mnt);
877 path->mnt = mounted;
878 path->dentry = dget(mounted->mnt_root);
879 return 1;
880 }
881 return 0;
882 }
883
managed_dentry_might_block(struct dentry * dentry)884 static inline bool managed_dentry_might_block(struct dentry *dentry)
885 {
886 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
887 dentry->d_op->d_manage(dentry, true) < 0);
888 }
889
890 /*
891 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
892 * we meet a managed dentry that would need blocking.
893 */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode)894 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
895 struct inode **inode)
896 {
897 for (;;) {
898 struct mount *mounted;
899 /*
900 * Don't forget we might have a non-mountpoint managed dentry
901 * that wants to block transit.
902 */
903 if (unlikely(managed_dentry_might_block(path->dentry)))
904 return false;
905
906 if (!d_mountpoint(path->dentry))
907 break;
908
909 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
910 if (!mounted)
911 break;
912 path->mnt = &mounted->mnt;
913 path->dentry = mounted->mnt.mnt_root;
914 nd->flags |= LOOKUP_JUMPED;
915 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
916 /*
917 * Update the inode too. We don't need to re-check the
918 * dentry sequence number here after this d_inode read,
919 * because a mount-point is always pinned.
920 */
921 *inode = path->dentry->d_inode;
922 }
923 return true;
924 }
925
follow_mount_rcu(struct nameidata * nd)926 static void follow_mount_rcu(struct nameidata *nd)
927 {
928 while (d_mountpoint(nd->path.dentry)) {
929 struct mount *mounted;
930 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
931 if (!mounted)
932 break;
933 nd->path.mnt = &mounted->mnt;
934 nd->path.dentry = mounted->mnt.mnt_root;
935 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
936 }
937 }
938
follow_dotdot_rcu(struct nameidata * nd)939 static int follow_dotdot_rcu(struct nameidata *nd)
940 {
941 set_root_rcu(nd);
942
943 while (1) {
944 if (nd->path.dentry == nd->root.dentry &&
945 nd->path.mnt == nd->root.mnt) {
946 break;
947 }
948 if (nd->path.dentry != nd->path.mnt->mnt_root) {
949 struct dentry *old = nd->path.dentry;
950 struct dentry *parent = old->d_parent;
951 unsigned seq;
952
953 seq = read_seqcount_begin(&parent->d_seq);
954 if (read_seqcount_retry(&old->d_seq, nd->seq))
955 goto failed;
956 nd->path.dentry = parent;
957 nd->seq = seq;
958 break;
959 }
960 if (!follow_up_rcu(&nd->path))
961 break;
962 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
963 }
964 follow_mount_rcu(nd);
965 nd->inode = nd->path.dentry->d_inode;
966 return 0;
967
968 failed:
969 nd->flags &= ~LOOKUP_RCU;
970 if (!(nd->flags & LOOKUP_ROOT))
971 nd->root.mnt = NULL;
972 rcu_read_unlock();
973 br_read_unlock(&vfsmount_lock);
974 return -ECHILD;
975 }
976
977 /*
978 * Follow down to the covering mount currently visible to userspace. At each
979 * point, the filesystem owning that dentry may be queried as to whether the
980 * caller is permitted to proceed or not.
981 */
follow_down(struct path * path)982 int follow_down(struct path *path)
983 {
984 unsigned managed;
985 int ret;
986
987 while (managed = ACCESS_ONCE(path->dentry->d_flags),
988 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
989 /* Allow the filesystem to manage the transit without i_mutex
990 * being held.
991 *
992 * We indicate to the filesystem if someone is trying to mount
993 * something here. This gives autofs the chance to deny anyone
994 * other than its daemon the right to mount on its
995 * superstructure.
996 *
997 * The filesystem may sleep at this point.
998 */
999 if (managed & DCACHE_MANAGE_TRANSIT) {
1000 BUG_ON(!path->dentry->d_op);
1001 BUG_ON(!path->dentry->d_op->d_manage);
1002 ret = path->dentry->d_op->d_manage(
1003 path->dentry, false);
1004 if (ret < 0)
1005 return ret == -EISDIR ? 0 : ret;
1006 }
1007
1008 /* Transit to a mounted filesystem. */
1009 if (managed & DCACHE_MOUNTED) {
1010 struct vfsmount *mounted = lookup_mnt(path);
1011 if (!mounted)
1012 break;
1013 dput(path->dentry);
1014 mntput(path->mnt);
1015 path->mnt = mounted;
1016 path->dentry = dget(mounted->mnt_root);
1017 continue;
1018 }
1019
1020 /* Don't handle automount points here */
1021 break;
1022 }
1023 return 0;
1024 }
1025
1026 /*
1027 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1028 */
follow_mount(struct path * path)1029 static void follow_mount(struct path *path)
1030 {
1031 while (d_mountpoint(path->dentry)) {
1032 struct vfsmount *mounted = lookup_mnt(path);
1033 if (!mounted)
1034 break;
1035 dput(path->dentry);
1036 mntput(path->mnt);
1037 path->mnt = mounted;
1038 path->dentry = dget(mounted->mnt_root);
1039 }
1040 }
1041
follow_dotdot(struct nameidata * nd)1042 static void follow_dotdot(struct nameidata *nd)
1043 {
1044 set_root(nd);
1045
1046 while(1) {
1047 struct dentry *old = nd->path.dentry;
1048
1049 if (nd->path.dentry == nd->root.dentry &&
1050 nd->path.mnt == nd->root.mnt) {
1051 break;
1052 }
1053 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1054 /* rare case of legitimate dget_parent()... */
1055 nd->path.dentry = dget_parent(nd->path.dentry);
1056 dput(old);
1057 break;
1058 }
1059 if (!follow_up(&nd->path))
1060 break;
1061 }
1062 follow_mount(&nd->path);
1063 nd->inode = nd->path.dentry->d_inode;
1064 }
1065
1066 /*
1067 * This looks up the name in dcache, possibly revalidates the old dentry and
1068 * allocates a new one if not found or not valid. In the need_lookup argument
1069 * returns whether i_op->lookup is necessary.
1070 *
1071 * dir->d_inode->i_mutex must be held
1072 */
lookup_dcache(struct qstr * name,struct dentry * dir,struct nameidata * nd,bool * need_lookup)1073 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1074 struct nameidata *nd, bool *need_lookup)
1075 {
1076 struct dentry *dentry;
1077 int error;
1078
1079 *need_lookup = false;
1080 dentry = d_lookup(dir, name);
1081 if (dentry) {
1082 if (d_need_lookup(dentry)) {
1083 *need_lookup = true;
1084 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1085 error = d_revalidate(dentry, nd);
1086 if (unlikely(error <= 0)) {
1087 if (error < 0) {
1088 dput(dentry);
1089 return ERR_PTR(error);
1090 } else if (!d_invalidate(dentry)) {
1091 dput(dentry);
1092 dentry = NULL;
1093 }
1094 }
1095 }
1096 }
1097
1098 if (!dentry) {
1099 dentry = d_alloc(dir, name);
1100 if (unlikely(!dentry))
1101 return ERR_PTR(-ENOMEM);
1102
1103 *need_lookup = true;
1104 }
1105 return dentry;
1106 }
1107
1108 /*
1109 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1110 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1111 *
1112 * dir->d_inode->i_mutex must be held
1113 */
lookup_real(struct inode * dir,struct dentry * dentry,struct nameidata * nd)1114 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1115 struct nameidata *nd)
1116 {
1117 struct dentry *old;
1118
1119 /* Don't create child dentry for a dead directory. */
1120 if (unlikely(IS_DEADDIR(dir))) {
1121 dput(dentry);
1122 return ERR_PTR(-ENOENT);
1123 }
1124
1125 old = dir->i_op->lookup(dir, dentry, nd);
1126 if (unlikely(old)) {
1127 dput(dentry);
1128 dentry = old;
1129 }
1130 return dentry;
1131 }
1132
__lookup_hash(struct qstr * name,struct dentry * base,struct nameidata * nd)1133 static struct dentry *__lookup_hash(struct qstr *name,
1134 struct dentry *base, struct nameidata *nd)
1135 {
1136 bool need_lookup;
1137 struct dentry *dentry;
1138
1139 dentry = lookup_dcache(name, base, nd, &need_lookup);
1140 if (!need_lookup)
1141 return dentry;
1142
1143 return lookup_real(base->d_inode, dentry, nd);
1144 }
1145
1146 /*
1147 * It's more convoluted than I'd like it to be, but... it's still fairly
1148 * small and for now I'd prefer to have fast path as straight as possible.
1149 * It _is_ time-critical.
1150 */
do_lookup(struct nameidata * nd,struct qstr * name,struct path * path,struct inode ** inode)1151 static int do_lookup(struct nameidata *nd, struct qstr *name,
1152 struct path *path, struct inode **inode)
1153 {
1154 struct vfsmount *mnt = nd->path.mnt;
1155 struct dentry *dentry, *parent = nd->path.dentry;
1156 int need_reval = 1;
1157 int status = 1;
1158 int err;
1159
1160 /*
1161 * Rename seqlock is not required here because in the off chance
1162 * of a false negative due to a concurrent rename, we're going to
1163 * do the non-racy lookup, below.
1164 */
1165 if (nd->flags & LOOKUP_RCU) {
1166 unsigned seq;
1167 *inode = nd->inode;
1168 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1169 if (!dentry)
1170 goto unlazy;
1171
1172 /* Memory barrier in read_seqcount_begin of child is enough */
1173 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1174 return -ECHILD;
1175 nd->seq = seq;
1176
1177 if (unlikely(d_need_lookup(dentry)))
1178 goto unlazy;
1179 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1180 status = d_revalidate(dentry, nd);
1181 if (unlikely(status <= 0)) {
1182 if (status != -ECHILD)
1183 need_reval = 0;
1184 goto unlazy;
1185 }
1186 }
1187 path->mnt = mnt;
1188 path->dentry = dentry;
1189 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1190 goto unlazy;
1191 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1192 goto unlazy;
1193 return 0;
1194 unlazy:
1195 if (unlazy_walk(nd, dentry))
1196 return -ECHILD;
1197 } else {
1198 dentry = __d_lookup(parent, name);
1199 }
1200
1201 if (unlikely(!dentry))
1202 goto need_lookup;
1203
1204 if (unlikely(d_need_lookup(dentry))) {
1205 dput(dentry);
1206 goto need_lookup;
1207 }
1208
1209 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1210 status = d_revalidate(dentry, nd);
1211 if (unlikely(status <= 0)) {
1212 if (status < 0) {
1213 dput(dentry);
1214 return status;
1215 }
1216 if (!d_invalidate(dentry)) {
1217 dput(dentry);
1218 goto need_lookup;
1219 }
1220 }
1221 done:
1222 path->mnt = mnt;
1223 path->dentry = dentry;
1224 err = follow_managed(path, nd->flags);
1225 if (unlikely(err < 0)) {
1226 path_put_conditional(path, nd);
1227 return err;
1228 }
1229 if (err)
1230 nd->flags |= LOOKUP_JUMPED;
1231 *inode = path->dentry->d_inode;
1232 return 0;
1233
1234 need_lookup:
1235 BUG_ON(nd->inode != parent->d_inode);
1236
1237 mutex_lock(&parent->d_inode->i_mutex);
1238 dentry = __lookup_hash(name, parent, nd);
1239 mutex_unlock(&parent->d_inode->i_mutex);
1240 if (IS_ERR(dentry))
1241 return PTR_ERR(dentry);
1242 goto done;
1243 }
1244
may_lookup(struct nameidata * nd)1245 static inline int may_lookup(struct nameidata *nd)
1246 {
1247 if (nd->flags & LOOKUP_RCU) {
1248 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1249 if (err != -ECHILD)
1250 return err;
1251 if (unlazy_walk(nd, NULL))
1252 return -ECHILD;
1253 }
1254 return inode_permission(nd->inode, MAY_EXEC);
1255 }
1256
handle_dots(struct nameidata * nd,int type)1257 static inline int handle_dots(struct nameidata *nd, int type)
1258 {
1259 if (type == LAST_DOTDOT) {
1260 if (nd->flags & LOOKUP_RCU) {
1261 if (follow_dotdot_rcu(nd))
1262 return -ECHILD;
1263 } else
1264 follow_dotdot(nd);
1265 }
1266 return 0;
1267 }
1268
terminate_walk(struct nameidata * nd)1269 static void terminate_walk(struct nameidata *nd)
1270 {
1271 if (!(nd->flags & LOOKUP_RCU)) {
1272 path_put(&nd->path);
1273 } else {
1274 nd->flags &= ~LOOKUP_RCU;
1275 if (!(nd->flags & LOOKUP_ROOT))
1276 nd->root.mnt = NULL;
1277 rcu_read_unlock();
1278 br_read_unlock(&vfsmount_lock);
1279 }
1280 }
1281
1282 /*
1283 * Do we need to follow links? We _really_ want to be able
1284 * to do this check without having to look at inode->i_op,
1285 * so we keep a cache of "no, this doesn't need follow_link"
1286 * for the common case.
1287 */
should_follow_link(struct inode * inode,int follow)1288 static inline int should_follow_link(struct inode *inode, int follow)
1289 {
1290 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1291 if (likely(inode->i_op->follow_link))
1292 return follow;
1293
1294 /* This gets set once for the inode lifetime */
1295 spin_lock(&inode->i_lock);
1296 inode->i_opflags |= IOP_NOFOLLOW;
1297 spin_unlock(&inode->i_lock);
1298 }
1299 return 0;
1300 }
1301
walk_component(struct nameidata * nd,struct path * path,struct qstr * name,int type,int follow)1302 static inline int walk_component(struct nameidata *nd, struct path *path,
1303 struct qstr *name, int type, int follow)
1304 {
1305 struct inode *inode;
1306 int err;
1307 /*
1308 * "." and ".." are special - ".." especially so because it has
1309 * to be able to know about the current root directory and
1310 * parent relationships.
1311 */
1312 if (unlikely(type != LAST_NORM))
1313 return handle_dots(nd, type);
1314 err = do_lookup(nd, name, path, &inode);
1315 if (unlikely(err)) {
1316 terminate_walk(nd);
1317 return err;
1318 }
1319 if (!inode) {
1320 path_to_nameidata(path, nd);
1321 terminate_walk(nd);
1322 return -ENOENT;
1323 }
1324 if (should_follow_link(inode, follow)) {
1325 if (nd->flags & LOOKUP_RCU) {
1326 if (unlikely(unlazy_walk(nd, path->dentry))) {
1327 terminate_walk(nd);
1328 return -ECHILD;
1329 }
1330 }
1331 BUG_ON(inode != path->dentry->d_inode);
1332 return 1;
1333 }
1334 path_to_nameidata(path, nd);
1335 nd->inode = inode;
1336 return 0;
1337 }
1338
1339 /*
1340 * This limits recursive symlink follows to 8, while
1341 * limiting consecutive symlinks to 40.
1342 *
1343 * Without that kind of total limit, nasty chains of consecutive
1344 * symlinks can cause almost arbitrarily long lookups.
1345 */
nested_symlink(struct path * path,struct nameidata * nd)1346 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1347 {
1348 int res;
1349
1350 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1351 path_put_conditional(path, nd);
1352 path_put(&nd->path);
1353 return -ELOOP;
1354 }
1355 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1356
1357 nd->depth++;
1358 current->link_count++;
1359
1360 do {
1361 struct path link = *path;
1362 void *cookie;
1363
1364 res = follow_link(&link, nd, &cookie);
1365 if (!res)
1366 res = walk_component(nd, path, &nd->last,
1367 nd->last_type, LOOKUP_FOLLOW);
1368 put_link(nd, &link, cookie);
1369 } while (res > 0);
1370
1371 current->link_count--;
1372 nd->depth--;
1373 return res;
1374 }
1375
1376 /*
1377 * We really don't want to look at inode->i_op->lookup
1378 * when we don't have to. So we keep a cache bit in
1379 * the inode ->i_opflags field that says "yes, we can
1380 * do lookup on this inode".
1381 */
can_lookup(struct inode * inode)1382 static inline int can_lookup(struct inode *inode)
1383 {
1384 if (likely(inode->i_opflags & IOP_LOOKUP))
1385 return 1;
1386 if (likely(!inode->i_op->lookup))
1387 return 0;
1388
1389 /* We do this once for the lifetime of the inode */
1390 spin_lock(&inode->i_lock);
1391 inode->i_opflags |= IOP_LOOKUP;
1392 spin_unlock(&inode->i_lock);
1393 return 1;
1394 }
1395
1396 /*
1397 * We can do the critical dentry name comparison and hashing
1398 * operations one word at a time, but we are limited to:
1399 *
1400 * - Architectures with fast unaligned word accesses. We could
1401 * do a "get_unaligned()" if this helps and is sufficiently
1402 * fast.
1403 *
1404 * - Little-endian machines (so that we can generate the mask
1405 * of low bytes efficiently). Again, we *could* do a byte
1406 * swapping load on big-endian architectures if that is not
1407 * expensive enough to make the optimization worthless.
1408 *
1409 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1410 * do not trap on the (extremely unlikely) case of a page
1411 * crossing operation.
1412 *
1413 * - Furthermore, we need an efficient 64-bit compile for the
1414 * 64-bit case in order to generate the "number of bytes in
1415 * the final mask". Again, that could be replaced with a
1416 * efficient population count instruction or similar.
1417 */
1418 #ifdef CONFIG_DCACHE_WORD_ACCESS
1419
1420 #include <asm/word-at-a-time.h>
1421
1422 #ifdef CONFIG_64BIT
1423
fold_hash(unsigned long hash)1424 static inline unsigned int fold_hash(unsigned long hash)
1425 {
1426 hash += hash >> (8*sizeof(int));
1427 return hash;
1428 }
1429
1430 #else /* 32-bit case */
1431
1432 #define fold_hash(x) (x)
1433
1434 #endif
1435
full_name_hash(const unsigned char * name,unsigned int len)1436 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1437 {
1438 unsigned long a, mask;
1439 unsigned long hash = 0;
1440
1441 for (;;) {
1442 a = load_unaligned_zeropad(name);
1443 if (len < sizeof(unsigned long))
1444 break;
1445 hash += a;
1446 hash *= 9;
1447 name += sizeof(unsigned long);
1448 len -= sizeof(unsigned long);
1449 if (!len)
1450 goto done;
1451 }
1452 mask = ~(~0ul << len*8);
1453 hash += mask & a;
1454 done:
1455 return fold_hash(hash);
1456 }
1457 EXPORT_SYMBOL(full_name_hash);
1458
1459 /*
1460 * Calculate the length and hash of the path component, and
1461 * return the length of the component;
1462 */
hash_name(const char * name,unsigned int * hashp)1463 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1464 {
1465 unsigned long a, mask, hash, len;
1466
1467 hash = a = 0;
1468 len = -sizeof(unsigned long);
1469 do {
1470 hash = (hash + a) * 9;
1471 len += sizeof(unsigned long);
1472 a = load_unaligned_zeropad(name+len);
1473 /* Do we have any NUL or '/' bytes in this word? */
1474 mask = has_zero(a) | has_zero(a ^ REPEAT_BYTE('/'));
1475 } while (!mask);
1476
1477 /* The mask *below* the first high bit set */
1478 mask = (mask - 1) & ~mask;
1479 mask >>= 7;
1480 hash += a & mask;
1481 *hashp = fold_hash(hash);
1482
1483 return len + count_masked_bytes(mask);
1484 }
1485
1486 #else
1487
full_name_hash(const unsigned char * name,unsigned int len)1488 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1489 {
1490 unsigned long hash = init_name_hash();
1491 while (len--)
1492 hash = partial_name_hash(*name++, hash);
1493 return end_name_hash(hash);
1494 }
1495 EXPORT_SYMBOL(full_name_hash);
1496
1497 /*
1498 * We know there's a real path component here of at least
1499 * one character.
1500 */
hash_name(const char * name,unsigned int * hashp)1501 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1502 {
1503 unsigned long hash = init_name_hash();
1504 unsigned long len = 0, c;
1505
1506 c = (unsigned char)*name;
1507 do {
1508 len++;
1509 hash = partial_name_hash(c, hash);
1510 c = (unsigned char)name[len];
1511 } while (c && c != '/');
1512 *hashp = end_name_hash(hash);
1513 return len;
1514 }
1515
1516 #endif
1517
1518 /*
1519 * Name resolution.
1520 * This is the basic name resolution function, turning a pathname into
1521 * the final dentry. We expect 'base' to be positive and a directory.
1522 *
1523 * Returns 0 and nd will have valid dentry and mnt on success.
1524 * Returns error and drops reference to input namei data on failure.
1525 */
link_path_walk(const char * name,struct nameidata * nd)1526 static int link_path_walk(const char *name, struct nameidata *nd)
1527 {
1528 struct path next;
1529 int err;
1530
1531 while (*name=='/')
1532 name++;
1533 if (!*name)
1534 return 0;
1535
1536 /* At this point we know we have a real path component. */
1537 for(;;) {
1538 struct qstr this;
1539 long len;
1540 int type;
1541
1542 err = may_lookup(nd);
1543 if (err)
1544 break;
1545
1546 len = hash_name(name, &this.hash);
1547 this.name = name;
1548 this.len = len;
1549
1550 type = LAST_NORM;
1551 if (name[0] == '.') switch (len) {
1552 case 2:
1553 if (name[1] == '.') {
1554 type = LAST_DOTDOT;
1555 nd->flags |= LOOKUP_JUMPED;
1556 }
1557 break;
1558 case 1:
1559 type = LAST_DOT;
1560 }
1561 if (likely(type == LAST_NORM)) {
1562 struct dentry *parent = nd->path.dentry;
1563 nd->flags &= ~LOOKUP_JUMPED;
1564 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1565 err = parent->d_op->d_hash(parent, nd->inode,
1566 &this);
1567 if (err < 0)
1568 break;
1569 }
1570 }
1571
1572 if (!name[len])
1573 goto last_component;
1574 /*
1575 * If it wasn't NUL, we know it was '/'. Skip that
1576 * slash, and continue until no more slashes.
1577 */
1578 do {
1579 len++;
1580 } while (unlikely(name[len] == '/'));
1581 if (!name[len])
1582 goto last_component;
1583 name += len;
1584
1585 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1586 if (err < 0)
1587 return err;
1588
1589 if (err) {
1590 err = nested_symlink(&next, nd);
1591 if (err)
1592 return err;
1593 }
1594 if (can_lookup(nd->inode))
1595 continue;
1596 err = -ENOTDIR;
1597 break;
1598 /* here ends the main loop */
1599
1600 last_component:
1601 nd->last = this;
1602 nd->last_type = type;
1603 return 0;
1604 }
1605 terminate_walk(nd);
1606 return err;
1607 }
1608
path_init(int dfd,const char * name,unsigned int flags,struct nameidata * nd,struct file ** fp)1609 static int path_init(int dfd, const char *name, unsigned int flags,
1610 struct nameidata *nd, struct file **fp)
1611 {
1612 int retval = 0;
1613 int fput_needed;
1614 struct file *file;
1615
1616 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1617 nd->flags = flags | LOOKUP_JUMPED;
1618 nd->depth = 0;
1619 if (flags & LOOKUP_ROOT) {
1620 struct inode *inode = nd->root.dentry->d_inode;
1621 if (*name) {
1622 if (!inode->i_op->lookup)
1623 return -ENOTDIR;
1624 retval = inode_permission(inode, MAY_EXEC);
1625 if (retval)
1626 return retval;
1627 }
1628 nd->path = nd->root;
1629 nd->inode = inode;
1630 if (flags & LOOKUP_RCU) {
1631 br_read_lock(&vfsmount_lock);
1632 rcu_read_lock();
1633 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1634 } else {
1635 path_get(&nd->path);
1636 }
1637 return 0;
1638 }
1639
1640 nd->root.mnt = NULL;
1641
1642 if (*name=='/') {
1643 if (flags & LOOKUP_RCU) {
1644 br_read_lock(&vfsmount_lock);
1645 rcu_read_lock();
1646 set_root_rcu(nd);
1647 } else {
1648 set_root(nd);
1649 path_get(&nd->root);
1650 }
1651 nd->path = nd->root;
1652 } else if (dfd == AT_FDCWD) {
1653 if (flags & LOOKUP_RCU) {
1654 struct fs_struct *fs = current->fs;
1655 unsigned seq;
1656
1657 br_read_lock(&vfsmount_lock);
1658 rcu_read_lock();
1659
1660 do {
1661 seq = read_seqcount_begin(&fs->seq);
1662 nd->path = fs->pwd;
1663 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1664 } while (read_seqcount_retry(&fs->seq, seq));
1665 } else {
1666 get_fs_pwd(current->fs, &nd->path);
1667 }
1668 } else {
1669 struct dentry *dentry;
1670
1671 file = fget_raw_light(dfd, &fput_needed);
1672 retval = -EBADF;
1673 if (!file)
1674 goto out_fail;
1675
1676 dentry = file->f_path.dentry;
1677
1678 if (*name) {
1679 retval = -ENOTDIR;
1680 if (!S_ISDIR(dentry->d_inode->i_mode))
1681 goto fput_fail;
1682
1683 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1684 if (retval)
1685 goto fput_fail;
1686 }
1687
1688 nd->path = file->f_path;
1689 if (flags & LOOKUP_RCU) {
1690 if (fput_needed)
1691 *fp = file;
1692 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1693 br_read_lock(&vfsmount_lock);
1694 rcu_read_lock();
1695 } else {
1696 path_get(&file->f_path);
1697 fput_light(file, fput_needed);
1698 }
1699 }
1700
1701 nd->inode = nd->path.dentry->d_inode;
1702 return 0;
1703
1704 fput_fail:
1705 fput_light(file, fput_needed);
1706 out_fail:
1707 return retval;
1708 }
1709
lookup_last(struct nameidata * nd,struct path * path)1710 static inline int lookup_last(struct nameidata *nd, struct path *path)
1711 {
1712 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1713 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1714
1715 nd->flags &= ~LOOKUP_PARENT;
1716 return walk_component(nd, path, &nd->last, nd->last_type,
1717 nd->flags & LOOKUP_FOLLOW);
1718 }
1719
1720 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(int dfd,const char * name,unsigned int flags,struct nameidata * nd)1721 static int path_lookupat(int dfd, const char *name,
1722 unsigned int flags, struct nameidata *nd)
1723 {
1724 struct file *base = NULL;
1725 struct path path;
1726 int err;
1727
1728 /*
1729 * Path walking is largely split up into 2 different synchronisation
1730 * schemes, rcu-walk and ref-walk (explained in
1731 * Documentation/filesystems/path-lookup.txt). These share much of the
1732 * path walk code, but some things particularly setup, cleanup, and
1733 * following mounts are sufficiently divergent that functions are
1734 * duplicated. Typically there is a function foo(), and its RCU
1735 * analogue, foo_rcu().
1736 *
1737 * -ECHILD is the error number of choice (just to avoid clashes) that
1738 * is returned if some aspect of an rcu-walk fails. Such an error must
1739 * be handled by restarting a traditional ref-walk (which will always
1740 * be able to complete).
1741 */
1742 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1743
1744 if (unlikely(err))
1745 return err;
1746
1747 current->total_link_count = 0;
1748 err = link_path_walk(name, nd);
1749
1750 if (!err && !(flags & LOOKUP_PARENT)) {
1751 err = lookup_last(nd, &path);
1752 while (err > 0) {
1753 void *cookie;
1754 struct path link = path;
1755 nd->flags |= LOOKUP_PARENT;
1756 err = follow_link(&link, nd, &cookie);
1757 if (!err)
1758 err = lookup_last(nd, &path);
1759 put_link(nd, &link, cookie);
1760 }
1761 }
1762
1763 if (!err)
1764 err = complete_walk(nd);
1765
1766 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1767 if (!nd->inode->i_op->lookup) {
1768 path_put(&nd->path);
1769 err = -ENOTDIR;
1770 }
1771 }
1772
1773 if (base)
1774 fput(base);
1775
1776 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1777 path_put(&nd->root);
1778 nd->root.mnt = NULL;
1779 }
1780 return err;
1781 }
1782
do_path_lookup(int dfd,const char * name,unsigned int flags,struct nameidata * nd)1783 static int do_path_lookup(int dfd, const char *name,
1784 unsigned int flags, struct nameidata *nd)
1785 {
1786 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1787 if (unlikely(retval == -ECHILD))
1788 retval = path_lookupat(dfd, name, flags, nd);
1789 if (unlikely(retval == -ESTALE))
1790 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1791
1792 if (likely(!retval)) {
1793 if (unlikely(!audit_dummy_context())) {
1794 if (nd->path.dentry && nd->inode)
1795 audit_inode(name, nd->path.dentry);
1796 }
1797 }
1798 return retval;
1799 }
1800
kern_path_parent(const char * name,struct nameidata * nd)1801 int kern_path_parent(const char *name, struct nameidata *nd)
1802 {
1803 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1804 }
1805
kern_path(const char * name,unsigned int flags,struct path * path)1806 int kern_path(const char *name, unsigned int flags, struct path *path)
1807 {
1808 struct nameidata nd;
1809 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1810 if (!res)
1811 *path = nd.path;
1812 return res;
1813 }
1814
1815 /**
1816 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1817 * @dentry: pointer to dentry of the base directory
1818 * @mnt: pointer to vfs mount of the base directory
1819 * @name: pointer to file name
1820 * @flags: lookup flags
1821 * @path: pointer to struct path to fill
1822 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)1823 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1824 const char *name, unsigned int flags,
1825 struct path *path)
1826 {
1827 struct nameidata nd;
1828 int err;
1829 nd.root.dentry = dentry;
1830 nd.root.mnt = mnt;
1831 BUG_ON(flags & LOOKUP_PARENT);
1832 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1833 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1834 if (!err)
1835 *path = nd.path;
1836 return err;
1837 }
1838
1839 /*
1840 * Restricted form of lookup. Doesn't follow links, single-component only,
1841 * needs parent already locked. Doesn't follow mounts.
1842 * SMP-safe.
1843 */
lookup_hash(struct nameidata * nd)1844 static struct dentry *lookup_hash(struct nameidata *nd)
1845 {
1846 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1847 }
1848
1849 /**
1850 * lookup_one_len - filesystem helper to lookup single pathname component
1851 * @name: pathname component to lookup
1852 * @base: base directory to lookup from
1853 * @len: maximum length @len should be interpreted to
1854 *
1855 * Note that this routine is purely a helper for filesystem usage and should
1856 * not be called by generic code. Also note that by using this function the
1857 * nameidata argument is passed to the filesystem methods and a filesystem
1858 * using this helper needs to be prepared for that.
1859 */
lookup_one_len(const char * name,struct dentry * base,int len)1860 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1861 {
1862 struct qstr this;
1863 unsigned int c;
1864 int err;
1865
1866 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1867
1868 this.name = name;
1869 this.len = len;
1870 this.hash = full_name_hash(name, len);
1871 if (!len)
1872 return ERR_PTR(-EACCES);
1873
1874 while (len--) {
1875 c = *(const unsigned char *)name++;
1876 if (c == '/' || c == '\0')
1877 return ERR_PTR(-EACCES);
1878 }
1879 /*
1880 * See if the low-level filesystem might want
1881 * to use its own hash..
1882 */
1883 if (base->d_flags & DCACHE_OP_HASH) {
1884 int err = base->d_op->d_hash(base, base->d_inode, &this);
1885 if (err < 0)
1886 return ERR_PTR(err);
1887 }
1888
1889 err = inode_permission(base->d_inode, MAY_EXEC);
1890 if (err)
1891 return ERR_PTR(err);
1892
1893 return __lookup_hash(&this, base, NULL);
1894 }
1895
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)1896 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1897 struct path *path, int *empty)
1898 {
1899 struct nameidata nd;
1900 char *tmp = getname_flags(name, flags, empty);
1901 int err = PTR_ERR(tmp);
1902 if (!IS_ERR(tmp)) {
1903
1904 BUG_ON(flags & LOOKUP_PARENT);
1905
1906 err = do_path_lookup(dfd, tmp, flags, &nd);
1907 putname(tmp);
1908 if (!err)
1909 *path = nd.path;
1910 }
1911 return err;
1912 }
1913
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)1914 int user_path_at(int dfd, const char __user *name, unsigned flags,
1915 struct path *path)
1916 {
1917 return user_path_at_empty(dfd, name, flags, path, NULL);
1918 }
1919
user_path_parent(int dfd,const char __user * path,struct nameidata * nd,char ** name)1920 static int user_path_parent(int dfd, const char __user *path,
1921 struct nameidata *nd, char **name)
1922 {
1923 char *s = getname(path);
1924 int error;
1925
1926 if (IS_ERR(s))
1927 return PTR_ERR(s);
1928
1929 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1930 if (error)
1931 putname(s);
1932 else
1933 *name = s;
1934
1935 return error;
1936 }
1937
1938 /*
1939 * It's inline, so penalty for filesystems that don't use sticky bit is
1940 * minimal.
1941 */
check_sticky(struct inode * dir,struct inode * inode)1942 static inline int check_sticky(struct inode *dir, struct inode *inode)
1943 {
1944 uid_t fsuid = current_fsuid();
1945
1946 if (!(dir->i_mode & S_ISVTX))
1947 return 0;
1948 if (current_user_ns() != inode_userns(inode))
1949 goto other_userns;
1950 if (inode->i_uid == fsuid)
1951 return 0;
1952 if (dir->i_uid == fsuid)
1953 return 0;
1954
1955 other_userns:
1956 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1957 }
1958
1959 /*
1960 * Check whether we can remove a link victim from directory dir, check
1961 * whether the type of victim is right.
1962 * 1. We can't do it if dir is read-only (done in permission())
1963 * 2. We should have write and exec permissions on dir
1964 * 3. We can't remove anything from append-only dir
1965 * 4. We can't do anything with immutable dir (done in permission())
1966 * 5. If the sticky bit on dir is set we should either
1967 * a. be owner of dir, or
1968 * b. be owner of victim, or
1969 * c. have CAP_FOWNER capability
1970 * 6. If the victim is append-only or immutable we can't do antyhing with
1971 * links pointing to it.
1972 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1973 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1974 * 9. We can't remove a root or mountpoint.
1975 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1976 * nfs_async_unlink().
1977 */
may_delete(struct inode * dir,struct dentry * victim,int isdir)1978 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1979 {
1980 int error;
1981
1982 if (!victim->d_inode)
1983 return -ENOENT;
1984
1985 BUG_ON(victim->d_parent->d_inode != dir);
1986 audit_inode_child(victim, dir);
1987
1988 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1989 if (error)
1990 return error;
1991 if (IS_APPEND(dir))
1992 return -EPERM;
1993 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1994 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1995 return -EPERM;
1996 if (isdir) {
1997 if (!S_ISDIR(victim->d_inode->i_mode))
1998 return -ENOTDIR;
1999 if (IS_ROOT(victim))
2000 return -EBUSY;
2001 } else if (S_ISDIR(victim->d_inode->i_mode))
2002 return -EISDIR;
2003 if (IS_DEADDIR(dir))
2004 return -ENOENT;
2005 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2006 return -EBUSY;
2007 return 0;
2008 }
2009
2010 /* Check whether we can create an object with dentry child in directory
2011 * dir.
2012 * 1. We can't do it if child already exists (open has special treatment for
2013 * this case, but since we are inlined it's OK)
2014 * 2. We can't do it if dir is read-only (done in permission())
2015 * 3. We should have write and exec permissions on dir
2016 * 4. We can't do it if dir is immutable (done in permission())
2017 */
may_create(struct inode * dir,struct dentry * child)2018 static inline int may_create(struct inode *dir, struct dentry *child)
2019 {
2020 if (child->d_inode)
2021 return -EEXIST;
2022 if (IS_DEADDIR(dir))
2023 return -ENOENT;
2024 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2025 }
2026
2027 /*
2028 * p1 and p2 should be directories on the same fs.
2029 */
lock_rename(struct dentry * p1,struct dentry * p2)2030 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2031 {
2032 struct dentry *p;
2033
2034 if (p1 == p2) {
2035 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2036 return NULL;
2037 }
2038
2039 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2040
2041 p = d_ancestor(p2, p1);
2042 if (p) {
2043 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2044 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2045 return p;
2046 }
2047
2048 p = d_ancestor(p1, p2);
2049 if (p) {
2050 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2051 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2052 return p;
2053 }
2054
2055 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2056 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2057 return NULL;
2058 }
2059
unlock_rename(struct dentry * p1,struct dentry * p2)2060 void unlock_rename(struct dentry *p1, struct dentry *p2)
2061 {
2062 mutex_unlock(&p1->d_inode->i_mutex);
2063 if (p1 != p2) {
2064 mutex_unlock(&p2->d_inode->i_mutex);
2065 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2066 }
2067 }
2068
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,struct nameidata * nd)2069 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2070 struct nameidata *nd)
2071 {
2072 int error = may_create(dir, dentry);
2073
2074 if (error)
2075 return error;
2076
2077 if (!dir->i_op->create)
2078 return -EACCES; /* shouldn't it be ENOSYS? */
2079 mode &= S_IALLUGO;
2080 mode |= S_IFREG;
2081 error = security_inode_create(dir, dentry, mode);
2082 if (error)
2083 return error;
2084 error = dir->i_op->create(dir, dentry, mode, nd);
2085 if (!error)
2086 fsnotify_create(dir, dentry);
2087 return error;
2088 }
2089
may_open(struct path * path,int acc_mode,int flag)2090 static int may_open(struct path *path, int acc_mode, int flag)
2091 {
2092 struct dentry *dentry = path->dentry;
2093 struct inode *inode = dentry->d_inode;
2094 int error;
2095
2096 /* O_PATH? */
2097 if (!acc_mode)
2098 return 0;
2099
2100 if (!inode)
2101 return -ENOENT;
2102
2103 switch (inode->i_mode & S_IFMT) {
2104 case S_IFLNK:
2105 return -ELOOP;
2106 case S_IFDIR:
2107 if (acc_mode & MAY_WRITE)
2108 return -EISDIR;
2109 break;
2110 case S_IFBLK:
2111 case S_IFCHR:
2112 if (path->mnt->mnt_flags & MNT_NODEV)
2113 return -EACCES;
2114 /*FALLTHRU*/
2115 case S_IFIFO:
2116 case S_IFSOCK:
2117 flag &= ~O_TRUNC;
2118 break;
2119 }
2120
2121 error = inode_permission(inode, acc_mode);
2122 if (error)
2123 return error;
2124
2125 /*
2126 * An append-only file must be opened in append mode for writing.
2127 */
2128 if (IS_APPEND(inode)) {
2129 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2130 return -EPERM;
2131 if (flag & O_TRUNC)
2132 return -EPERM;
2133 }
2134
2135 /* O_NOATIME can only be set by the owner or superuser */
2136 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2137 return -EPERM;
2138
2139 return 0;
2140 }
2141
handle_truncate(struct file * filp)2142 static int handle_truncate(struct file *filp)
2143 {
2144 struct path *path = &filp->f_path;
2145 struct inode *inode = path->dentry->d_inode;
2146 int error = get_write_access(inode);
2147 if (error)
2148 return error;
2149 /*
2150 * Refuse to truncate files with mandatory locks held on them.
2151 */
2152 error = locks_verify_locked(inode);
2153 if (!error)
2154 error = security_path_truncate(path);
2155 if (!error) {
2156 error = do_truncate(path->dentry, 0,
2157 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2158 filp);
2159 }
2160 put_write_access(inode);
2161 return error;
2162 }
2163
open_to_namei_flags(int flag)2164 static inline int open_to_namei_flags(int flag)
2165 {
2166 if ((flag & O_ACCMODE) == 3)
2167 flag--;
2168 return flag;
2169 }
2170
2171 /*
2172 * Handle the last step of open()
2173 */
do_last(struct nameidata * nd,struct path * path,const struct open_flags * op,const char * pathname)2174 static struct file *do_last(struct nameidata *nd, struct path *path,
2175 const struct open_flags *op, const char *pathname)
2176 {
2177 struct dentry *dir = nd->path.dentry;
2178 struct dentry *dentry;
2179 int open_flag = op->open_flag;
2180 int will_truncate = open_flag & O_TRUNC;
2181 int want_write = 0;
2182 int acc_mode = op->acc_mode;
2183 struct file *filp;
2184 int error;
2185
2186 nd->flags &= ~LOOKUP_PARENT;
2187 nd->flags |= op->intent;
2188
2189 switch (nd->last_type) {
2190 case LAST_DOTDOT:
2191 case LAST_DOT:
2192 error = handle_dots(nd, nd->last_type);
2193 if (error)
2194 return ERR_PTR(error);
2195 /* fallthrough */
2196 case LAST_ROOT:
2197 error = complete_walk(nd);
2198 if (error)
2199 return ERR_PTR(error);
2200 audit_inode(pathname, nd->path.dentry);
2201 if (open_flag & O_CREAT) {
2202 error = -EISDIR;
2203 goto exit;
2204 }
2205 goto ok;
2206 case LAST_BIND:
2207 error = complete_walk(nd);
2208 if (error)
2209 return ERR_PTR(error);
2210 audit_inode(pathname, dir);
2211 goto ok;
2212 }
2213
2214 if (!(open_flag & O_CREAT)) {
2215 int symlink_ok = 0;
2216 if (nd->last.name[nd->last.len])
2217 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2218 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2219 symlink_ok = 1;
2220 /* we _can_ be in RCU mode here */
2221 error = walk_component(nd, path, &nd->last, LAST_NORM,
2222 !symlink_ok);
2223 if (error < 0)
2224 return ERR_PTR(error);
2225 if (error) /* symlink */
2226 return NULL;
2227 /* sayonara */
2228 error = complete_walk(nd);
2229 if (error)
2230 return ERR_PTR(error);
2231
2232 error = -ENOTDIR;
2233 if (nd->flags & LOOKUP_DIRECTORY) {
2234 if (!nd->inode->i_op->lookup)
2235 goto exit;
2236 }
2237 audit_inode(pathname, nd->path.dentry);
2238 goto ok;
2239 }
2240
2241 /* create side of things */
2242 /*
2243 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2244 * cleared when we got to the last component we are about to look up
2245 */
2246 error = complete_walk(nd);
2247 if (error)
2248 return ERR_PTR(error);
2249
2250 audit_inode(pathname, dir);
2251 error = -EISDIR;
2252 /* trailing slashes? */
2253 if (nd->last.name[nd->last.len])
2254 goto exit;
2255
2256 mutex_lock(&dir->d_inode->i_mutex);
2257
2258 dentry = lookup_hash(nd);
2259 error = PTR_ERR(dentry);
2260 if (IS_ERR(dentry)) {
2261 mutex_unlock(&dir->d_inode->i_mutex);
2262 goto exit;
2263 }
2264
2265 path->dentry = dentry;
2266 path->mnt = nd->path.mnt;
2267
2268 /* Negative dentry, just create the file */
2269 if (!dentry->d_inode) {
2270 umode_t mode = op->mode;
2271 if (!IS_POSIXACL(dir->d_inode))
2272 mode &= ~current_umask();
2273 /*
2274 * This write is needed to ensure that a
2275 * rw->ro transition does not occur between
2276 * the time when the file is created and when
2277 * a permanent write count is taken through
2278 * the 'struct file' in nameidata_to_filp().
2279 */
2280 error = mnt_want_write(nd->path.mnt);
2281 if (error)
2282 goto exit_mutex_unlock;
2283 want_write = 1;
2284 /* Don't check for write permission, don't truncate */
2285 open_flag &= ~O_TRUNC;
2286 will_truncate = 0;
2287 acc_mode = MAY_OPEN;
2288 error = security_path_mknod(&nd->path, dentry, mode, 0);
2289 if (error)
2290 goto exit_mutex_unlock;
2291 error = vfs_create(dir->d_inode, dentry, mode, nd);
2292 if (error)
2293 goto exit_mutex_unlock;
2294 mutex_unlock(&dir->d_inode->i_mutex);
2295 dput(nd->path.dentry);
2296 nd->path.dentry = dentry;
2297 goto common;
2298 }
2299
2300 /*
2301 * It already exists.
2302 */
2303 mutex_unlock(&dir->d_inode->i_mutex);
2304 audit_inode(pathname, path->dentry);
2305
2306 error = -EEXIST;
2307 if (open_flag & O_EXCL)
2308 goto exit_dput;
2309
2310 error = follow_managed(path, nd->flags);
2311 if (error < 0)
2312 goto exit_dput;
2313
2314 if (error)
2315 nd->flags |= LOOKUP_JUMPED;
2316
2317 error = -ENOENT;
2318 if (!path->dentry->d_inode)
2319 goto exit_dput;
2320
2321 if (path->dentry->d_inode->i_op->follow_link)
2322 return NULL;
2323
2324 path_to_nameidata(path, nd);
2325 nd->inode = path->dentry->d_inode;
2326 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2327 error = complete_walk(nd);
2328 if (error)
2329 return ERR_PTR(error);
2330 error = -EISDIR;
2331 if (S_ISDIR(nd->inode->i_mode))
2332 goto exit;
2333 ok:
2334 if (!S_ISREG(nd->inode->i_mode))
2335 will_truncate = 0;
2336
2337 if (will_truncate) {
2338 error = mnt_want_write(nd->path.mnt);
2339 if (error)
2340 goto exit;
2341 want_write = 1;
2342 }
2343 common:
2344 error = may_open(&nd->path, acc_mode, open_flag);
2345 if (error)
2346 goto exit;
2347 filp = nameidata_to_filp(nd);
2348 if (!IS_ERR(filp)) {
2349 error = ima_file_check(filp, op->acc_mode);
2350 if (error) {
2351 fput(filp);
2352 filp = ERR_PTR(error);
2353 }
2354 }
2355 if (!IS_ERR(filp)) {
2356 if (will_truncate) {
2357 error = handle_truncate(filp);
2358 if (error) {
2359 fput(filp);
2360 filp = ERR_PTR(error);
2361 }
2362 }
2363 }
2364 out:
2365 if (want_write)
2366 mnt_drop_write(nd->path.mnt);
2367 path_put(&nd->path);
2368 return filp;
2369
2370 exit_mutex_unlock:
2371 mutex_unlock(&dir->d_inode->i_mutex);
2372 exit_dput:
2373 path_put_conditional(path, nd);
2374 exit:
2375 filp = ERR_PTR(error);
2376 goto out;
2377 }
2378
path_openat(int dfd,const char * pathname,struct nameidata * nd,const struct open_flags * op,int flags)2379 static struct file *path_openat(int dfd, const char *pathname,
2380 struct nameidata *nd, const struct open_flags *op, int flags)
2381 {
2382 struct file *base = NULL;
2383 struct file *filp;
2384 struct path path;
2385 int error;
2386
2387 filp = get_empty_filp();
2388 if (!filp)
2389 return ERR_PTR(-ENFILE);
2390
2391 filp->f_flags = op->open_flag;
2392 nd->intent.open.file = filp;
2393 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2394 nd->intent.open.create_mode = op->mode;
2395
2396 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2397 if (unlikely(error))
2398 goto out_filp;
2399
2400 current->total_link_count = 0;
2401 error = link_path_walk(pathname, nd);
2402 if (unlikely(error))
2403 goto out_filp;
2404
2405 filp = do_last(nd, &path, op, pathname);
2406 while (unlikely(!filp)) { /* trailing symlink */
2407 struct path link = path;
2408 void *cookie;
2409 if (!(nd->flags & LOOKUP_FOLLOW)) {
2410 path_put_conditional(&path, nd);
2411 path_put(&nd->path);
2412 filp = ERR_PTR(-ELOOP);
2413 break;
2414 }
2415 nd->flags |= LOOKUP_PARENT;
2416 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2417 error = follow_link(&link, nd, &cookie);
2418 if (unlikely(error))
2419 filp = ERR_PTR(error);
2420 else
2421 filp = do_last(nd, &path, op, pathname);
2422 put_link(nd, &link, cookie);
2423 }
2424 out:
2425 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2426 path_put(&nd->root);
2427 if (base)
2428 fput(base);
2429 release_open_intent(nd);
2430 return filp;
2431
2432 out_filp:
2433 filp = ERR_PTR(error);
2434 goto out;
2435 }
2436
do_filp_open(int dfd,const char * pathname,const struct open_flags * op,int flags)2437 struct file *do_filp_open(int dfd, const char *pathname,
2438 const struct open_flags *op, int flags)
2439 {
2440 struct nameidata nd;
2441 struct file *filp;
2442
2443 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2444 if (unlikely(filp == ERR_PTR(-ECHILD)))
2445 filp = path_openat(dfd, pathname, &nd, op, flags);
2446 if (unlikely(filp == ERR_PTR(-ESTALE)))
2447 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2448 return filp;
2449 }
2450
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op,int flags)2451 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2452 const char *name, const struct open_flags *op, int flags)
2453 {
2454 struct nameidata nd;
2455 struct file *file;
2456
2457 nd.root.mnt = mnt;
2458 nd.root.dentry = dentry;
2459
2460 flags |= LOOKUP_ROOT;
2461
2462 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2463 return ERR_PTR(-ELOOP);
2464
2465 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2466 if (unlikely(file == ERR_PTR(-ECHILD)))
2467 file = path_openat(-1, name, &nd, op, flags);
2468 if (unlikely(file == ERR_PTR(-ESTALE)))
2469 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2470 return file;
2471 }
2472
kern_path_create(int dfd,const char * pathname,struct path * path,int is_dir)2473 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2474 {
2475 struct dentry *dentry = ERR_PTR(-EEXIST);
2476 struct nameidata nd;
2477 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2478 if (error)
2479 return ERR_PTR(error);
2480
2481 /*
2482 * Yucky last component or no last component at all?
2483 * (foo/., foo/.., /////)
2484 */
2485 if (nd.last_type != LAST_NORM)
2486 goto out;
2487 nd.flags &= ~LOOKUP_PARENT;
2488 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2489 nd.intent.open.flags = O_EXCL;
2490
2491 /*
2492 * Do the final lookup.
2493 */
2494 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2495 dentry = lookup_hash(&nd);
2496 if (IS_ERR(dentry))
2497 goto fail;
2498
2499 if (dentry->d_inode)
2500 goto eexist;
2501 /*
2502 * Special case - lookup gave negative, but... we had foo/bar/
2503 * From the vfs_mknod() POV we just have a negative dentry -
2504 * all is fine. Let's be bastards - you had / on the end, you've
2505 * been asking for (non-existent) directory. -ENOENT for you.
2506 */
2507 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2508 dput(dentry);
2509 dentry = ERR_PTR(-ENOENT);
2510 goto fail;
2511 }
2512 *path = nd.path;
2513 return dentry;
2514 eexist:
2515 dput(dentry);
2516 dentry = ERR_PTR(-EEXIST);
2517 fail:
2518 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2519 out:
2520 path_put(&nd.path);
2521 return dentry;
2522 }
2523 EXPORT_SYMBOL(kern_path_create);
2524
user_path_create(int dfd,const char __user * pathname,struct path * path,int is_dir)2525 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2526 {
2527 char *tmp = getname(pathname);
2528 struct dentry *res;
2529 if (IS_ERR(tmp))
2530 return ERR_CAST(tmp);
2531 res = kern_path_create(dfd, tmp, path, is_dir);
2532 putname(tmp);
2533 return res;
2534 }
2535 EXPORT_SYMBOL(user_path_create);
2536
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2537 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2538 {
2539 int error = may_create(dir, dentry);
2540
2541 if (error)
2542 return error;
2543
2544 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2545 !ns_capable(inode_userns(dir), CAP_MKNOD))
2546 return -EPERM;
2547
2548 if (!dir->i_op->mknod)
2549 return -EPERM;
2550
2551 error = devcgroup_inode_mknod(mode, dev);
2552 if (error)
2553 return error;
2554
2555 error = security_inode_mknod(dir, dentry, mode, dev);
2556 if (error)
2557 return error;
2558
2559 error = dir->i_op->mknod(dir, dentry, mode, dev);
2560 if (!error)
2561 fsnotify_create(dir, dentry);
2562 return error;
2563 }
2564
may_mknod(umode_t mode)2565 static int may_mknod(umode_t mode)
2566 {
2567 switch (mode & S_IFMT) {
2568 case S_IFREG:
2569 case S_IFCHR:
2570 case S_IFBLK:
2571 case S_IFIFO:
2572 case S_IFSOCK:
2573 case 0: /* zero mode translates to S_IFREG */
2574 return 0;
2575 case S_IFDIR:
2576 return -EPERM;
2577 default:
2578 return -EINVAL;
2579 }
2580 }
2581
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned,dev)2582 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2583 unsigned, dev)
2584 {
2585 struct dentry *dentry;
2586 struct path path;
2587 int error;
2588
2589 if (S_ISDIR(mode))
2590 return -EPERM;
2591
2592 dentry = user_path_create(dfd, filename, &path, 0);
2593 if (IS_ERR(dentry))
2594 return PTR_ERR(dentry);
2595
2596 if (!IS_POSIXACL(path.dentry->d_inode))
2597 mode &= ~current_umask();
2598 error = may_mknod(mode);
2599 if (error)
2600 goto out_dput;
2601 error = mnt_want_write(path.mnt);
2602 if (error)
2603 goto out_dput;
2604 error = security_path_mknod(&path, dentry, mode, dev);
2605 if (error)
2606 goto out_drop_write;
2607 switch (mode & S_IFMT) {
2608 case 0: case S_IFREG:
2609 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2610 break;
2611 case S_IFCHR: case S_IFBLK:
2612 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2613 new_decode_dev(dev));
2614 break;
2615 case S_IFIFO: case S_IFSOCK:
2616 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2617 break;
2618 }
2619 out_drop_write:
2620 mnt_drop_write(path.mnt);
2621 out_dput:
2622 dput(dentry);
2623 mutex_unlock(&path.dentry->d_inode->i_mutex);
2624 path_put(&path);
2625
2626 return error;
2627 }
2628
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)2629 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2630 {
2631 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2632 }
2633
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2634 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2635 {
2636 int error = may_create(dir, dentry);
2637 unsigned max_links = dir->i_sb->s_max_links;
2638
2639 if (error)
2640 return error;
2641
2642 if (!dir->i_op->mkdir)
2643 return -EPERM;
2644
2645 mode &= (S_IRWXUGO|S_ISVTX);
2646 error = security_inode_mkdir(dir, dentry, mode);
2647 if (error)
2648 return error;
2649
2650 if (max_links && dir->i_nlink >= max_links)
2651 return -EMLINK;
2652
2653 error = dir->i_op->mkdir(dir, dentry, mode);
2654 if (!error)
2655 fsnotify_mkdir(dir, dentry);
2656 return error;
2657 }
2658
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)2659 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2660 {
2661 struct dentry *dentry;
2662 struct path path;
2663 int error;
2664
2665 dentry = user_path_create(dfd, pathname, &path, 1);
2666 if (IS_ERR(dentry))
2667 return PTR_ERR(dentry);
2668
2669 if (!IS_POSIXACL(path.dentry->d_inode))
2670 mode &= ~current_umask();
2671 error = mnt_want_write(path.mnt);
2672 if (error)
2673 goto out_dput;
2674 error = security_path_mkdir(&path, dentry, mode);
2675 if (error)
2676 goto out_drop_write;
2677 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2678 out_drop_write:
2679 mnt_drop_write(path.mnt);
2680 out_dput:
2681 dput(dentry);
2682 mutex_unlock(&path.dentry->d_inode->i_mutex);
2683 path_put(&path);
2684 return error;
2685 }
2686
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)2687 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2688 {
2689 return sys_mkdirat(AT_FDCWD, pathname, mode);
2690 }
2691
2692 /*
2693 * The dentry_unhash() helper will try to drop the dentry early: we
2694 * should have a usage count of 1 if we're the only user of this
2695 * dentry, and if that is true (possibly after pruning the dcache),
2696 * then we drop the dentry now.
2697 *
2698 * A low-level filesystem can, if it choses, legally
2699 * do a
2700 *
2701 * if (!d_unhashed(dentry))
2702 * return -EBUSY;
2703 *
2704 * if it cannot handle the case of removing a directory
2705 * that is still in use by something else..
2706 */
dentry_unhash(struct dentry * dentry)2707 void dentry_unhash(struct dentry *dentry)
2708 {
2709 shrink_dcache_parent(dentry);
2710 spin_lock(&dentry->d_lock);
2711 if (dentry->d_count == 1)
2712 __d_drop(dentry);
2713 spin_unlock(&dentry->d_lock);
2714 }
2715
vfs_rmdir(struct inode * dir,struct dentry * dentry)2716 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2717 {
2718 int error = may_delete(dir, dentry, 1);
2719
2720 if (error)
2721 return error;
2722
2723 if (!dir->i_op->rmdir)
2724 return -EPERM;
2725
2726 dget(dentry);
2727 mutex_lock(&dentry->d_inode->i_mutex);
2728
2729 error = -EBUSY;
2730 if (d_mountpoint(dentry))
2731 goto out;
2732
2733 error = security_inode_rmdir(dir, dentry);
2734 if (error)
2735 goto out;
2736
2737 shrink_dcache_parent(dentry);
2738 error = dir->i_op->rmdir(dir, dentry);
2739 if (error)
2740 goto out;
2741
2742 dentry->d_inode->i_flags |= S_DEAD;
2743 dont_mount(dentry);
2744
2745 out:
2746 mutex_unlock(&dentry->d_inode->i_mutex);
2747 dput(dentry);
2748 if (!error)
2749 d_delete(dentry);
2750 return error;
2751 }
2752
do_rmdir(int dfd,const char __user * pathname)2753 static long do_rmdir(int dfd, const char __user *pathname)
2754 {
2755 int error = 0;
2756 char * name;
2757 struct dentry *dentry;
2758 struct nameidata nd;
2759
2760 error = user_path_parent(dfd, pathname, &nd, &name);
2761 if (error)
2762 return error;
2763
2764 switch(nd.last_type) {
2765 case LAST_DOTDOT:
2766 error = -ENOTEMPTY;
2767 goto exit1;
2768 case LAST_DOT:
2769 error = -EINVAL;
2770 goto exit1;
2771 case LAST_ROOT:
2772 error = -EBUSY;
2773 goto exit1;
2774 }
2775
2776 nd.flags &= ~LOOKUP_PARENT;
2777
2778 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2779 dentry = lookup_hash(&nd);
2780 error = PTR_ERR(dentry);
2781 if (IS_ERR(dentry))
2782 goto exit2;
2783 if (!dentry->d_inode) {
2784 error = -ENOENT;
2785 goto exit3;
2786 }
2787 error = mnt_want_write(nd.path.mnt);
2788 if (error)
2789 goto exit3;
2790 error = security_path_rmdir(&nd.path, dentry);
2791 if (error)
2792 goto exit4;
2793 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2794 exit4:
2795 mnt_drop_write(nd.path.mnt);
2796 exit3:
2797 dput(dentry);
2798 exit2:
2799 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2800 exit1:
2801 path_put(&nd.path);
2802 putname(name);
2803 return error;
2804 }
2805
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)2806 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2807 {
2808 return do_rmdir(AT_FDCWD, pathname);
2809 }
2810
vfs_unlink(struct inode * dir,struct dentry * dentry)2811 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2812 {
2813 int error = may_delete(dir, dentry, 0);
2814
2815 if (error)
2816 return error;
2817
2818 if (!dir->i_op->unlink)
2819 return -EPERM;
2820
2821 mutex_lock(&dentry->d_inode->i_mutex);
2822 if (d_mountpoint(dentry))
2823 error = -EBUSY;
2824 else {
2825 error = security_inode_unlink(dir, dentry);
2826 if (!error) {
2827 error = dir->i_op->unlink(dir, dentry);
2828 if (!error)
2829 dont_mount(dentry);
2830 }
2831 }
2832 mutex_unlock(&dentry->d_inode->i_mutex);
2833
2834 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2835 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2836 fsnotify_link_count(dentry->d_inode);
2837 d_delete(dentry);
2838 }
2839
2840 return error;
2841 }
2842
2843 /*
2844 * Make sure that the actual truncation of the file will occur outside its
2845 * directory's i_mutex. Truncate can take a long time if there is a lot of
2846 * writeout happening, and we don't want to prevent access to the directory
2847 * while waiting on the I/O.
2848 */
do_unlinkat(int dfd,const char __user * pathname)2849 static long do_unlinkat(int dfd, const char __user *pathname)
2850 {
2851 int error;
2852 char *name;
2853 struct dentry *dentry;
2854 struct nameidata nd;
2855 struct inode *inode = NULL;
2856
2857 error = user_path_parent(dfd, pathname, &nd, &name);
2858 if (error)
2859 return error;
2860
2861 error = -EISDIR;
2862 if (nd.last_type != LAST_NORM)
2863 goto exit1;
2864
2865 nd.flags &= ~LOOKUP_PARENT;
2866
2867 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2868 dentry = lookup_hash(&nd);
2869 error = PTR_ERR(dentry);
2870 if (!IS_ERR(dentry)) {
2871 /* Why not before? Because we want correct error value */
2872 if (nd.last.name[nd.last.len])
2873 goto slashes;
2874 inode = dentry->d_inode;
2875 if (!inode)
2876 goto slashes;
2877 ihold(inode);
2878 error = mnt_want_write(nd.path.mnt);
2879 if (error)
2880 goto exit2;
2881 error = security_path_unlink(&nd.path, dentry);
2882 if (error)
2883 goto exit3;
2884 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2885 exit3:
2886 mnt_drop_write(nd.path.mnt);
2887 exit2:
2888 dput(dentry);
2889 }
2890 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2891 if (inode)
2892 iput(inode); /* truncate the inode here */
2893 exit1:
2894 path_put(&nd.path);
2895 putname(name);
2896 return error;
2897
2898 slashes:
2899 error = !dentry->d_inode ? -ENOENT :
2900 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2901 goto exit2;
2902 }
2903
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)2904 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2905 {
2906 if ((flag & ~AT_REMOVEDIR) != 0)
2907 return -EINVAL;
2908
2909 if (flag & AT_REMOVEDIR)
2910 return do_rmdir(dfd, pathname);
2911
2912 return do_unlinkat(dfd, pathname);
2913 }
2914
SYSCALL_DEFINE1(unlink,const char __user *,pathname)2915 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2916 {
2917 return do_unlinkat(AT_FDCWD, pathname);
2918 }
2919
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)2920 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2921 {
2922 int error = may_create(dir, dentry);
2923
2924 if (error)
2925 return error;
2926
2927 if (!dir->i_op->symlink)
2928 return -EPERM;
2929
2930 error = security_inode_symlink(dir, dentry, oldname);
2931 if (error)
2932 return error;
2933
2934 error = dir->i_op->symlink(dir, dentry, oldname);
2935 if (!error)
2936 fsnotify_create(dir, dentry);
2937 return error;
2938 }
2939
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)2940 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2941 int, newdfd, const char __user *, newname)
2942 {
2943 int error;
2944 char *from;
2945 struct dentry *dentry;
2946 struct path path;
2947
2948 from = getname(oldname);
2949 if (IS_ERR(from))
2950 return PTR_ERR(from);
2951
2952 dentry = user_path_create(newdfd, newname, &path, 0);
2953 error = PTR_ERR(dentry);
2954 if (IS_ERR(dentry))
2955 goto out_putname;
2956
2957 error = mnt_want_write(path.mnt);
2958 if (error)
2959 goto out_dput;
2960 error = security_path_symlink(&path, dentry, from);
2961 if (error)
2962 goto out_drop_write;
2963 error = vfs_symlink(path.dentry->d_inode, dentry, from);
2964 out_drop_write:
2965 mnt_drop_write(path.mnt);
2966 out_dput:
2967 dput(dentry);
2968 mutex_unlock(&path.dentry->d_inode->i_mutex);
2969 path_put(&path);
2970 out_putname:
2971 putname(from);
2972 return error;
2973 }
2974
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)2975 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2976 {
2977 return sys_symlinkat(oldname, AT_FDCWD, newname);
2978 }
2979
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)2980 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2981 {
2982 struct inode *inode = old_dentry->d_inode;
2983 unsigned max_links = dir->i_sb->s_max_links;
2984 int error;
2985
2986 if (!inode)
2987 return -ENOENT;
2988
2989 error = may_create(dir, new_dentry);
2990 if (error)
2991 return error;
2992
2993 if (dir->i_sb != inode->i_sb)
2994 return -EXDEV;
2995
2996 /*
2997 * A link to an append-only or immutable file cannot be created.
2998 */
2999 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3000 return -EPERM;
3001 if (!dir->i_op->link)
3002 return -EPERM;
3003 if (S_ISDIR(inode->i_mode))
3004 return -EPERM;
3005
3006 error = security_inode_link(old_dentry, dir, new_dentry);
3007 if (error)
3008 return error;
3009
3010 mutex_lock(&inode->i_mutex);
3011 /* Make sure we don't allow creating hardlink to an unlinked file */
3012 if (inode->i_nlink == 0)
3013 error = -ENOENT;
3014 else if (max_links && inode->i_nlink >= max_links)
3015 error = -EMLINK;
3016 else
3017 error = dir->i_op->link(old_dentry, dir, new_dentry);
3018 mutex_unlock(&inode->i_mutex);
3019 if (!error)
3020 fsnotify_link(dir, inode, new_dentry);
3021 return error;
3022 }
3023
3024 /*
3025 * Hardlinks are often used in delicate situations. We avoid
3026 * security-related surprises by not following symlinks on the
3027 * newname. --KAB
3028 *
3029 * We don't follow them on the oldname either to be compatible
3030 * with linux 2.0, and to avoid hard-linking to directories
3031 * and other special files. --ADM
3032 */
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)3033 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3034 int, newdfd, const char __user *, newname, int, flags)
3035 {
3036 struct dentry *new_dentry;
3037 struct path old_path, new_path;
3038 int how = 0;
3039 int error;
3040
3041 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3042 return -EINVAL;
3043 /*
3044 * To use null names we require CAP_DAC_READ_SEARCH
3045 * This ensures that not everyone will be able to create
3046 * handlink using the passed filedescriptor.
3047 */
3048 if (flags & AT_EMPTY_PATH) {
3049 if (!capable(CAP_DAC_READ_SEARCH))
3050 return -ENOENT;
3051 how = LOOKUP_EMPTY;
3052 }
3053
3054 if (flags & AT_SYMLINK_FOLLOW)
3055 how |= LOOKUP_FOLLOW;
3056
3057 error = user_path_at(olddfd, oldname, how, &old_path);
3058 if (error)
3059 return error;
3060
3061 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3062 error = PTR_ERR(new_dentry);
3063 if (IS_ERR(new_dentry))
3064 goto out;
3065
3066 error = -EXDEV;
3067 if (old_path.mnt != new_path.mnt)
3068 goto out_dput;
3069 error = mnt_want_write(new_path.mnt);
3070 if (error)
3071 goto out_dput;
3072 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3073 if (error)
3074 goto out_drop_write;
3075 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3076 out_drop_write:
3077 mnt_drop_write(new_path.mnt);
3078 out_dput:
3079 dput(new_dentry);
3080 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3081 path_put(&new_path);
3082 out:
3083 path_put(&old_path);
3084
3085 return error;
3086 }
3087
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)3088 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3089 {
3090 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3091 }
3092
3093 /*
3094 * The worst of all namespace operations - renaming directory. "Perverted"
3095 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3096 * Problems:
3097 * a) we can get into loop creation. Check is done in is_subdir().
3098 * b) race potential - two innocent renames can create a loop together.
3099 * That's where 4.4 screws up. Current fix: serialization on
3100 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3101 * story.
3102 * c) we have to lock _three_ objects - parents and victim (if it exists).
3103 * And that - after we got ->i_mutex on parents (until then we don't know
3104 * whether the target exists). Solution: try to be smart with locking
3105 * order for inodes. We rely on the fact that tree topology may change
3106 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3107 * move will be locked. Thus we can rank directories by the tree
3108 * (ancestors first) and rank all non-directories after them.
3109 * That works since everybody except rename does "lock parent, lookup,
3110 * lock child" and rename is under ->s_vfs_rename_mutex.
3111 * HOWEVER, it relies on the assumption that any object with ->lookup()
3112 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3113 * we'd better make sure that there's no link(2) for them.
3114 * d) conversion from fhandle to dentry may come in the wrong moment - when
3115 * we are removing the target. Solution: we will have to grab ->i_mutex
3116 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3117 * ->i_mutex on parents, which works but leads to some truly excessive
3118 * locking].
3119 */
vfs_rename_dir(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3120 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3121 struct inode *new_dir, struct dentry *new_dentry)
3122 {
3123 int error = 0;
3124 struct inode *target = new_dentry->d_inode;
3125 unsigned max_links = new_dir->i_sb->s_max_links;
3126
3127 /*
3128 * If we are going to change the parent - check write permissions,
3129 * we'll need to flip '..'.
3130 */
3131 if (new_dir != old_dir) {
3132 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3133 if (error)
3134 return error;
3135 }
3136
3137 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3138 if (error)
3139 return error;
3140
3141 dget(new_dentry);
3142 if (target)
3143 mutex_lock(&target->i_mutex);
3144
3145 error = -EBUSY;
3146 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3147 goto out;
3148
3149 error = -EMLINK;
3150 if (max_links && !target && new_dir != old_dir &&
3151 new_dir->i_nlink >= max_links)
3152 goto out;
3153
3154 if (target)
3155 shrink_dcache_parent(new_dentry);
3156 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3157 if (error)
3158 goto out;
3159
3160 if (target) {
3161 target->i_flags |= S_DEAD;
3162 dont_mount(new_dentry);
3163 }
3164 out:
3165 if (target)
3166 mutex_unlock(&target->i_mutex);
3167 dput(new_dentry);
3168 if (!error)
3169 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3170 d_move(old_dentry,new_dentry);
3171 return error;
3172 }
3173
vfs_rename_other(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3174 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3175 struct inode *new_dir, struct dentry *new_dentry)
3176 {
3177 struct inode *target = new_dentry->d_inode;
3178 int error;
3179
3180 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3181 if (error)
3182 return error;
3183
3184 dget(new_dentry);
3185 if (target)
3186 mutex_lock(&target->i_mutex);
3187
3188 error = -EBUSY;
3189 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3190 goto out;
3191
3192 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3193 if (error)
3194 goto out;
3195
3196 if (target)
3197 dont_mount(new_dentry);
3198 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3199 d_move(old_dentry, new_dentry);
3200 out:
3201 if (target)
3202 mutex_unlock(&target->i_mutex);
3203 dput(new_dentry);
3204 return error;
3205 }
3206
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3207 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3208 struct inode *new_dir, struct dentry *new_dentry)
3209 {
3210 int error;
3211 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3212 const unsigned char *old_name;
3213
3214 if (old_dentry->d_inode == new_dentry->d_inode)
3215 return 0;
3216
3217 error = may_delete(old_dir, old_dentry, is_dir);
3218 if (error)
3219 return error;
3220
3221 if (!new_dentry->d_inode)
3222 error = may_create(new_dir, new_dentry);
3223 else
3224 error = may_delete(new_dir, new_dentry, is_dir);
3225 if (error)
3226 return error;
3227
3228 if (!old_dir->i_op->rename)
3229 return -EPERM;
3230
3231 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3232
3233 if (is_dir)
3234 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3235 else
3236 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3237 if (!error)
3238 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3239 new_dentry->d_inode, old_dentry);
3240 fsnotify_oldname_free(old_name);
3241
3242 return error;
3243 }
3244
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)3245 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3246 int, newdfd, const char __user *, newname)
3247 {
3248 struct dentry *old_dir, *new_dir;
3249 struct dentry *old_dentry, *new_dentry;
3250 struct dentry *trap;
3251 struct nameidata oldnd, newnd;
3252 char *from;
3253 char *to;
3254 int error;
3255
3256 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3257 if (error)
3258 goto exit;
3259
3260 error = user_path_parent(newdfd, newname, &newnd, &to);
3261 if (error)
3262 goto exit1;
3263
3264 error = -EXDEV;
3265 if (oldnd.path.mnt != newnd.path.mnt)
3266 goto exit2;
3267
3268 old_dir = oldnd.path.dentry;
3269 error = -EBUSY;
3270 if (oldnd.last_type != LAST_NORM)
3271 goto exit2;
3272
3273 new_dir = newnd.path.dentry;
3274 if (newnd.last_type != LAST_NORM)
3275 goto exit2;
3276
3277 oldnd.flags &= ~LOOKUP_PARENT;
3278 newnd.flags &= ~LOOKUP_PARENT;
3279 newnd.flags |= LOOKUP_RENAME_TARGET;
3280
3281 trap = lock_rename(new_dir, old_dir);
3282
3283 old_dentry = lookup_hash(&oldnd);
3284 error = PTR_ERR(old_dentry);
3285 if (IS_ERR(old_dentry))
3286 goto exit3;
3287 /* source must exist */
3288 error = -ENOENT;
3289 if (!old_dentry->d_inode)
3290 goto exit4;
3291 /* unless the source is a directory trailing slashes give -ENOTDIR */
3292 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3293 error = -ENOTDIR;
3294 if (oldnd.last.name[oldnd.last.len])
3295 goto exit4;
3296 if (newnd.last.name[newnd.last.len])
3297 goto exit4;
3298 }
3299 /* source should not be ancestor of target */
3300 error = -EINVAL;
3301 if (old_dentry == trap)
3302 goto exit4;
3303 new_dentry = lookup_hash(&newnd);
3304 error = PTR_ERR(new_dentry);
3305 if (IS_ERR(new_dentry))
3306 goto exit4;
3307 /* target should not be an ancestor of source */
3308 error = -ENOTEMPTY;
3309 if (new_dentry == trap)
3310 goto exit5;
3311
3312 error = mnt_want_write(oldnd.path.mnt);
3313 if (error)
3314 goto exit5;
3315 error = security_path_rename(&oldnd.path, old_dentry,
3316 &newnd.path, new_dentry);
3317 if (error)
3318 goto exit6;
3319 error = vfs_rename(old_dir->d_inode, old_dentry,
3320 new_dir->d_inode, new_dentry);
3321 exit6:
3322 mnt_drop_write(oldnd.path.mnt);
3323 exit5:
3324 dput(new_dentry);
3325 exit4:
3326 dput(old_dentry);
3327 exit3:
3328 unlock_rename(new_dir, old_dir);
3329 exit2:
3330 path_put(&newnd.path);
3331 putname(to);
3332 exit1:
3333 path_put(&oldnd.path);
3334 putname(from);
3335 exit:
3336 return error;
3337 }
3338
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)3339 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3340 {
3341 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3342 }
3343
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen,const char * link)3344 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3345 {
3346 int len;
3347
3348 len = PTR_ERR(link);
3349 if (IS_ERR(link))
3350 goto out;
3351
3352 len = strlen(link);
3353 if (len > (unsigned) buflen)
3354 len = buflen;
3355 if (copy_to_user(buffer, link, len))
3356 len = -EFAULT;
3357 out:
3358 return len;
3359 }
3360
3361 /*
3362 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3363 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3364 * using) it for any given inode is up to filesystem.
3365 */
generic_readlink(struct dentry * dentry,char __user * buffer,int buflen)3366 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3367 {
3368 struct nameidata nd;
3369 void *cookie;
3370 int res;
3371
3372 nd.depth = 0;
3373 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3374 if (IS_ERR(cookie))
3375 return PTR_ERR(cookie);
3376
3377 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3378 if (dentry->d_inode->i_op->put_link)
3379 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3380 return res;
3381 }
3382
vfs_follow_link(struct nameidata * nd,const char * link)3383 int vfs_follow_link(struct nameidata *nd, const char *link)
3384 {
3385 return __vfs_follow_link(nd, link);
3386 }
3387
3388 /* get the link contents into pagecache */
page_getlink(struct dentry * dentry,struct page ** ppage)3389 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3390 {
3391 char *kaddr;
3392 struct page *page;
3393 struct address_space *mapping = dentry->d_inode->i_mapping;
3394 page = read_mapping_page(mapping, 0, NULL);
3395 if (IS_ERR(page))
3396 return (char*)page;
3397 *ppage = page;
3398 kaddr = kmap(page);
3399 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3400 return kaddr;
3401 }
3402
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)3403 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3404 {
3405 struct page *page = NULL;
3406 char *s = page_getlink(dentry, &page);
3407 int res = vfs_readlink(dentry,buffer,buflen,s);
3408 if (page) {
3409 kunmap(page);
3410 page_cache_release(page);
3411 }
3412 return res;
3413 }
3414
page_follow_link_light(struct dentry * dentry,struct nameidata * nd)3415 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3416 {
3417 struct page *page = NULL;
3418 nd_set_link(nd, page_getlink(dentry, &page));
3419 return page;
3420 }
3421
page_put_link(struct dentry * dentry,struct nameidata * nd,void * cookie)3422 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3423 {
3424 struct page *page = cookie;
3425
3426 if (page) {
3427 kunmap(page);
3428 page_cache_release(page);
3429 }
3430 }
3431
3432 /*
3433 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3434 */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)3435 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3436 {
3437 struct address_space *mapping = inode->i_mapping;
3438 struct page *page;
3439 void *fsdata;
3440 int err;
3441 char *kaddr;
3442 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3443 if (nofs)
3444 flags |= AOP_FLAG_NOFS;
3445
3446 retry:
3447 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3448 flags, &page, &fsdata);
3449 if (err)
3450 goto fail;
3451
3452 kaddr = kmap_atomic(page);
3453 memcpy(kaddr, symname, len-1);
3454 kunmap_atomic(kaddr);
3455
3456 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3457 page, fsdata);
3458 if (err < 0)
3459 goto fail;
3460 if (err < len-1)
3461 goto retry;
3462
3463 mark_inode_dirty(inode);
3464 return 0;
3465 fail:
3466 return err;
3467 }
3468
page_symlink(struct inode * inode,const char * symname,int len)3469 int page_symlink(struct inode *inode, const char *symname, int len)
3470 {
3471 return __page_symlink(inode, symname, len,
3472 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3473 }
3474
3475 const struct inode_operations page_symlink_inode_operations = {
3476 .readlink = generic_readlink,
3477 .follow_link = page_follow_link_light,
3478 .put_link = page_put_link,
3479 };
3480
3481 EXPORT_SYMBOL(user_path_at);
3482 EXPORT_SYMBOL(follow_down_one);
3483 EXPORT_SYMBOL(follow_down);
3484 EXPORT_SYMBOL(follow_up);
3485 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3486 EXPORT_SYMBOL(getname);
3487 EXPORT_SYMBOL(lock_rename);
3488 EXPORT_SYMBOL(lookup_one_len);
3489 EXPORT_SYMBOL(page_follow_link_light);
3490 EXPORT_SYMBOL(page_put_link);
3491 EXPORT_SYMBOL(page_readlink);
3492 EXPORT_SYMBOL(__page_symlink);
3493 EXPORT_SYMBOL(page_symlink);
3494 EXPORT_SYMBOL(page_symlink_inode_operations);
3495 EXPORT_SYMBOL(kern_path);
3496 EXPORT_SYMBOL(vfs_path_lookup);
3497 EXPORT_SYMBOL(inode_permission);
3498 EXPORT_SYMBOL(unlock_rename);
3499 EXPORT_SYMBOL(vfs_create);
3500 EXPORT_SYMBOL(vfs_follow_link);
3501 EXPORT_SYMBOL(vfs_link);
3502 EXPORT_SYMBOL(vfs_mkdir);
3503 EXPORT_SYMBOL(vfs_mknod);
3504 EXPORT_SYMBOL(generic_permission);
3505 EXPORT_SYMBOL(vfs_readlink);
3506 EXPORT_SYMBOL(vfs_rename);
3507 EXPORT_SYMBOL(vfs_rmdir);
3508 EXPORT_SYMBOL(vfs_symlink);
3509 EXPORT_SYMBOL(vfs_unlink);
3510 EXPORT_SYMBOL(dentry_unhash);
3511 EXPORT_SYMBOL(generic_readlink);
3512