• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32 
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/bug.h>
37 #include <linux/delay.h>
38 #include <linux/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41 
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46 #include <linux/dynamic_queue_limits.h>
47 
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54 #include <net/netprio_cgroup.h>
55 
56 #include <linux/netdev_features.h>
57 
58 struct netpoll_info;
59 struct device;
60 struct phy_device;
61 /* 802.11 specific */
62 struct wireless_dev;
63 					/* source back-compat hooks */
64 #define SET_ETHTOOL_OPS(netdev,ops) \
65 	( (netdev)->ethtool_ops = (ops) )
66 
67 /* hardware address assignment types */
68 #define NET_ADDR_PERM		0	/* address is permanent (default) */
69 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
70 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
71 
72 /* Backlog congestion levels */
73 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
74 #define NET_RX_DROP		1	/* packet dropped */
75 
76 /*
77  * Transmit return codes: transmit return codes originate from three different
78  * namespaces:
79  *
80  * - qdisc return codes
81  * - driver transmit return codes
82  * - errno values
83  *
84  * Drivers are allowed to return any one of those in their hard_start_xmit()
85  * function. Real network devices commonly used with qdiscs should only return
86  * the driver transmit return codes though - when qdiscs are used, the actual
87  * transmission happens asynchronously, so the value is not propagated to
88  * higher layers. Virtual network devices transmit synchronously, in this case
89  * the driver transmit return codes are consumed by dev_queue_xmit(), all
90  * others are propagated to higher layers.
91  */
92 
93 /* qdisc ->enqueue() return codes. */
94 #define NET_XMIT_SUCCESS	0x00
95 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
96 #define NET_XMIT_CN		0x02	/* congestion notification	*/
97 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
98 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
99 
100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101  * indicates that the device will soon be dropping packets, or already drops
102  * some packets of the same priority; prompting us to send less aggressively. */
103 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
104 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105 
106 /* Driver transmit return codes */
107 #define NETDEV_TX_MASK		0xf0
108 
109 enum netdev_tx {
110 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
111 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
112 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
113 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
114 };
115 typedef enum netdev_tx netdev_tx_t;
116 
117 /*
118  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
119  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
120  */
dev_xmit_complete(int rc)121 static inline bool dev_xmit_complete(int rc)
122 {
123 	/*
124 	 * Positive cases with an skb consumed by a driver:
125 	 * - successful transmission (rc == NETDEV_TX_OK)
126 	 * - error while transmitting (rc < 0)
127 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
128 	 */
129 	if (likely(rc < NET_XMIT_MASK))
130 		return true;
131 
132 	return false;
133 }
134 
135 #endif
136 
137 #define MAX_ADDR_LEN	32		/* Largest hardware address length */
138 
139 /* Initial net device group. All devices belong to group 0 by default. */
140 #define INIT_NETDEV_GROUP	0
141 
142 #ifdef  __KERNEL__
143 /*
144  *	Compute the worst case header length according to the protocols
145  *	used.
146  */
147 
148 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
149 # if defined(CONFIG_MAC80211_MESH)
150 #  define LL_MAX_HEADER 128
151 # else
152 #  define LL_MAX_HEADER 96
153 # endif
154 #elif IS_ENABLED(CONFIG_TR)
155 # define LL_MAX_HEADER 48
156 #else
157 # define LL_MAX_HEADER 32
158 #endif
159 
160 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
161     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
162 #define MAX_HEADER LL_MAX_HEADER
163 #else
164 #define MAX_HEADER (LL_MAX_HEADER + 48)
165 #endif
166 
167 /*
168  *	Old network device statistics. Fields are native words
169  *	(unsigned long) so they can be read and written atomically.
170  */
171 
172 struct net_device_stats {
173 	unsigned long	rx_packets;
174 	unsigned long	tx_packets;
175 	unsigned long	rx_bytes;
176 	unsigned long	tx_bytes;
177 	unsigned long	rx_errors;
178 	unsigned long	tx_errors;
179 	unsigned long	rx_dropped;
180 	unsigned long	tx_dropped;
181 	unsigned long	multicast;
182 	unsigned long	collisions;
183 	unsigned long	rx_length_errors;
184 	unsigned long	rx_over_errors;
185 	unsigned long	rx_crc_errors;
186 	unsigned long	rx_frame_errors;
187 	unsigned long	rx_fifo_errors;
188 	unsigned long	rx_missed_errors;
189 	unsigned long	tx_aborted_errors;
190 	unsigned long	tx_carrier_errors;
191 	unsigned long	tx_fifo_errors;
192 	unsigned long	tx_heartbeat_errors;
193 	unsigned long	tx_window_errors;
194 	unsigned long	rx_compressed;
195 	unsigned long	tx_compressed;
196 };
197 
198 #endif  /*  __KERNEL__  */
199 
200 
201 /* Media selection options. */
202 enum {
203         IF_PORT_UNKNOWN = 0,
204         IF_PORT_10BASE2,
205         IF_PORT_10BASET,
206         IF_PORT_AUI,
207         IF_PORT_100BASET,
208         IF_PORT_100BASETX,
209         IF_PORT_100BASEFX
210 };
211 
212 #ifdef __KERNEL__
213 
214 #include <linux/cache.h>
215 #include <linux/skbuff.h>
216 
217 #ifdef CONFIG_RPS
218 #include <linux/static_key.h>
219 extern struct static_key rps_needed;
220 #endif
221 
222 struct neighbour;
223 struct neigh_parms;
224 struct sk_buff;
225 
226 struct netdev_hw_addr {
227 	struct list_head	list;
228 	unsigned char		addr[MAX_ADDR_LEN];
229 	unsigned char		type;
230 #define NETDEV_HW_ADDR_T_LAN		1
231 #define NETDEV_HW_ADDR_T_SAN		2
232 #define NETDEV_HW_ADDR_T_SLAVE		3
233 #define NETDEV_HW_ADDR_T_UNICAST	4
234 #define NETDEV_HW_ADDR_T_MULTICAST	5
235 	bool			global_use;
236 	int			refcount;
237 	int			synced;
238 	struct rcu_head		rcu_head;
239 };
240 
241 struct netdev_hw_addr_list {
242 	struct list_head	list;
243 	int			count;
244 };
245 
246 #define netdev_hw_addr_list_count(l) ((l)->count)
247 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
248 #define netdev_hw_addr_list_for_each(ha, l) \
249 	list_for_each_entry(ha, &(l)->list, list)
250 
251 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
252 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
253 #define netdev_for_each_uc_addr(ha, dev) \
254 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
255 
256 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
257 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
258 #define netdev_for_each_mc_addr(ha, dev) \
259 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
260 
261 struct hh_cache {
262 	u16		hh_len;
263 	u16		__pad;
264 	seqlock_t	hh_lock;
265 
266 	/* cached hardware header; allow for machine alignment needs.        */
267 #define HH_DATA_MOD	16
268 #define HH_DATA_OFF(__len) \
269 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
270 #define HH_DATA_ALIGN(__len) \
271 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
272 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
273 };
274 
275 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
276  * Alternative is:
277  *   dev->hard_header_len ? (dev->hard_header_len +
278  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
279  *
280  * We could use other alignment values, but we must maintain the
281  * relationship HH alignment <= LL alignment.
282  */
283 #define LL_RESERVED_SPACE(dev) \
284 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
285 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
286 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
287 
288 struct header_ops {
289 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
290 			   unsigned short type, const void *daddr,
291 			   const void *saddr, unsigned len);
292 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
293 	int	(*rebuild)(struct sk_buff *skb);
294 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
295 	void	(*cache_update)(struct hh_cache *hh,
296 				const struct net_device *dev,
297 				const unsigned char *haddr);
298 };
299 
300 /* These flag bits are private to the generic network queueing
301  * layer, they may not be explicitly referenced by any other
302  * code.
303  */
304 
305 enum netdev_state_t {
306 	__LINK_STATE_START,
307 	__LINK_STATE_PRESENT,
308 	__LINK_STATE_NOCARRIER,
309 	__LINK_STATE_LINKWATCH_PENDING,
310 	__LINK_STATE_DORMANT,
311 };
312 
313 
314 /*
315  * This structure holds at boot time configured netdevice settings. They
316  * are then used in the device probing.
317  */
318 struct netdev_boot_setup {
319 	char name[IFNAMSIZ];
320 	struct ifmap map;
321 };
322 #define NETDEV_BOOT_SETUP_MAX 8
323 
324 extern int __init netdev_boot_setup(char *str);
325 
326 /*
327  * Structure for NAPI scheduling similar to tasklet but with weighting
328  */
329 struct napi_struct {
330 	/* The poll_list must only be managed by the entity which
331 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
332 	 * whoever atomically sets that bit can add this napi_struct
333 	 * to the per-cpu poll_list, and whoever clears that bit
334 	 * can remove from the list right before clearing the bit.
335 	 */
336 	struct list_head	poll_list;
337 
338 	unsigned long		state;
339 	int			weight;
340 	int			(*poll)(struct napi_struct *, int);
341 #ifdef CONFIG_NETPOLL
342 	spinlock_t		poll_lock;
343 	int			poll_owner;
344 #endif
345 
346 	unsigned int		gro_count;
347 
348 	struct net_device	*dev;
349 	struct list_head	dev_list;
350 	struct sk_buff		*gro_list;
351 	struct sk_buff		*skb;
352 };
353 
354 enum {
355 	NAPI_STATE_SCHED,	/* Poll is scheduled */
356 	NAPI_STATE_DISABLE,	/* Disable pending */
357 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
358 };
359 
360 enum gro_result {
361 	GRO_MERGED,
362 	GRO_MERGED_FREE,
363 	GRO_HELD,
364 	GRO_NORMAL,
365 	GRO_DROP,
366 };
367 typedef enum gro_result gro_result_t;
368 
369 /*
370  * enum rx_handler_result - Possible return values for rx_handlers.
371  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
372  * further.
373  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
374  * case skb->dev was changed by rx_handler.
375  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
376  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
377  *
378  * rx_handlers are functions called from inside __netif_receive_skb(), to do
379  * special processing of the skb, prior to delivery to protocol handlers.
380  *
381  * Currently, a net_device can only have a single rx_handler registered. Trying
382  * to register a second rx_handler will return -EBUSY.
383  *
384  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
385  * To unregister a rx_handler on a net_device, use
386  * netdev_rx_handler_unregister().
387  *
388  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
389  * do with the skb.
390  *
391  * If the rx_handler consumed to skb in some way, it should return
392  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
393  * the skb to be delivered in some other ways.
394  *
395  * If the rx_handler changed skb->dev, to divert the skb to another
396  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
397  * new device will be called if it exists.
398  *
399  * If the rx_handler consider the skb should be ignored, it should return
400  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
401  * are registred on exact device (ptype->dev == skb->dev).
402  *
403  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
404  * delivered, it should return RX_HANDLER_PASS.
405  *
406  * A device without a registered rx_handler will behave as if rx_handler
407  * returned RX_HANDLER_PASS.
408  */
409 
410 enum rx_handler_result {
411 	RX_HANDLER_CONSUMED,
412 	RX_HANDLER_ANOTHER,
413 	RX_HANDLER_EXACT,
414 	RX_HANDLER_PASS,
415 };
416 typedef enum rx_handler_result rx_handler_result_t;
417 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
418 
419 extern void __napi_schedule(struct napi_struct *n);
420 
napi_disable_pending(struct napi_struct * n)421 static inline bool napi_disable_pending(struct napi_struct *n)
422 {
423 	return test_bit(NAPI_STATE_DISABLE, &n->state);
424 }
425 
426 /**
427  *	napi_schedule_prep - check if napi can be scheduled
428  *	@n: napi context
429  *
430  * Test if NAPI routine is already running, and if not mark
431  * it as running.  This is used as a condition variable
432  * insure only one NAPI poll instance runs.  We also make
433  * sure there is no pending NAPI disable.
434  */
napi_schedule_prep(struct napi_struct * n)435 static inline bool napi_schedule_prep(struct napi_struct *n)
436 {
437 	return !napi_disable_pending(n) &&
438 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
439 }
440 
441 /**
442  *	napi_schedule - schedule NAPI poll
443  *	@n: napi context
444  *
445  * Schedule NAPI poll routine to be called if it is not already
446  * running.
447  */
napi_schedule(struct napi_struct * n)448 static inline void napi_schedule(struct napi_struct *n)
449 {
450 	if (napi_schedule_prep(n))
451 		__napi_schedule(n);
452 }
453 
454 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)455 static inline bool napi_reschedule(struct napi_struct *napi)
456 {
457 	if (napi_schedule_prep(napi)) {
458 		__napi_schedule(napi);
459 		return true;
460 	}
461 	return false;
462 }
463 
464 /**
465  *	napi_complete - NAPI processing complete
466  *	@n: napi context
467  *
468  * Mark NAPI processing as complete.
469  */
470 extern void __napi_complete(struct napi_struct *n);
471 extern void napi_complete(struct napi_struct *n);
472 
473 /**
474  *	napi_disable - prevent NAPI from scheduling
475  *	@n: napi context
476  *
477  * Stop NAPI from being scheduled on this context.
478  * Waits till any outstanding processing completes.
479  */
napi_disable(struct napi_struct * n)480 static inline void napi_disable(struct napi_struct *n)
481 {
482 	set_bit(NAPI_STATE_DISABLE, &n->state);
483 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
484 		msleep(1);
485 	clear_bit(NAPI_STATE_DISABLE, &n->state);
486 }
487 
488 /**
489  *	napi_enable - enable NAPI scheduling
490  *	@n: napi context
491  *
492  * Resume NAPI from being scheduled on this context.
493  * Must be paired with napi_disable.
494  */
napi_enable(struct napi_struct * n)495 static inline void napi_enable(struct napi_struct *n)
496 {
497 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
498 	smp_mb__before_clear_bit();
499 	clear_bit(NAPI_STATE_SCHED, &n->state);
500 }
501 
502 #ifdef CONFIG_SMP
503 /**
504  *	napi_synchronize - wait until NAPI is not running
505  *	@n: napi context
506  *
507  * Wait until NAPI is done being scheduled on this context.
508  * Waits till any outstanding processing completes but
509  * does not disable future activations.
510  */
napi_synchronize(const struct napi_struct * n)511 static inline void napi_synchronize(const struct napi_struct *n)
512 {
513 	while (test_bit(NAPI_STATE_SCHED, &n->state))
514 		msleep(1);
515 }
516 #else
517 # define napi_synchronize(n)	barrier()
518 #endif
519 
520 enum netdev_queue_state_t {
521 	__QUEUE_STATE_DRV_XOFF,
522 	__QUEUE_STATE_STACK_XOFF,
523 	__QUEUE_STATE_FROZEN,
524 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)		| \
525 			      (1 << __QUEUE_STATE_STACK_XOFF))
526 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF		| \
527 					(1 << __QUEUE_STATE_FROZEN))
528 };
529 /*
530  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
531  * netif_tx_* functions below are used to manipulate this flag.  The
532  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
533  * queue independently.  The netif_xmit_*stopped functions below are called
534  * to check if the queue has been stopped by the driver or stack (either
535  * of the XOFF bits are set in the state).  Drivers should not need to call
536  * netif_xmit*stopped functions, they should only be using netif_tx_*.
537  */
538 
539 struct netdev_queue {
540 /*
541  * read mostly part
542  */
543 	struct net_device	*dev;
544 	struct Qdisc		*qdisc;
545 	struct Qdisc		*qdisc_sleeping;
546 #ifdef CONFIG_SYSFS
547 	struct kobject		kobj;
548 #endif
549 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
550 	int			numa_node;
551 #endif
552 /*
553  * write mostly part
554  */
555 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
556 	int			xmit_lock_owner;
557 	/*
558 	 * please use this field instead of dev->trans_start
559 	 */
560 	unsigned long		trans_start;
561 
562 	/*
563 	 * Number of TX timeouts for this queue
564 	 * (/sys/class/net/DEV/Q/trans_timeout)
565 	 */
566 	unsigned long		trans_timeout;
567 
568 	unsigned long		state;
569 
570 #ifdef CONFIG_BQL
571 	struct dql		dql;
572 #endif
573 } ____cacheline_aligned_in_smp;
574 
netdev_queue_numa_node_read(const struct netdev_queue * q)575 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
576 {
577 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
578 	return q->numa_node;
579 #else
580 	return NUMA_NO_NODE;
581 #endif
582 }
583 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)584 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
585 {
586 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
587 	q->numa_node = node;
588 #endif
589 }
590 
591 #ifdef CONFIG_RPS
592 /*
593  * This structure holds an RPS map which can be of variable length.  The
594  * map is an array of CPUs.
595  */
596 struct rps_map {
597 	unsigned int len;
598 	struct rcu_head rcu;
599 	u16 cpus[0];
600 };
601 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
602 
603 /*
604  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
605  * tail pointer for that CPU's input queue at the time of last enqueue, and
606  * a hardware filter index.
607  */
608 struct rps_dev_flow {
609 	u16 cpu;
610 	u16 filter;
611 	unsigned int last_qtail;
612 };
613 #define RPS_NO_FILTER 0xffff
614 
615 /*
616  * The rps_dev_flow_table structure contains a table of flow mappings.
617  */
618 struct rps_dev_flow_table {
619 	unsigned int mask;
620 	struct rcu_head rcu;
621 	struct work_struct free_work;
622 	struct rps_dev_flow flows[0];
623 };
624 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
625     ((_num) * sizeof(struct rps_dev_flow)))
626 
627 /*
628  * The rps_sock_flow_table contains mappings of flows to the last CPU
629  * on which they were processed by the application (set in recvmsg).
630  */
631 struct rps_sock_flow_table {
632 	unsigned int mask;
633 	u16 ents[0];
634 };
635 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
636     ((_num) * sizeof(u16)))
637 
638 #define RPS_NO_CPU 0xffff
639 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)640 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
641 					u32 hash)
642 {
643 	if (table && hash) {
644 		unsigned int cpu, index = hash & table->mask;
645 
646 		/* We only give a hint, preemption can change cpu under us */
647 		cpu = raw_smp_processor_id();
648 
649 		if (table->ents[index] != cpu)
650 			table->ents[index] = cpu;
651 	}
652 }
653 
rps_reset_sock_flow(struct rps_sock_flow_table * table,u32 hash)654 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
655 				       u32 hash)
656 {
657 	if (table && hash)
658 		table->ents[hash & table->mask] = RPS_NO_CPU;
659 }
660 
661 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
662 
663 #ifdef CONFIG_RFS_ACCEL
664 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
665 				u32 flow_id, u16 filter_id);
666 #endif
667 
668 /* This structure contains an instance of an RX queue. */
669 struct netdev_rx_queue {
670 	struct rps_map __rcu		*rps_map;
671 	struct rps_dev_flow_table __rcu	*rps_flow_table;
672 	struct kobject			kobj;
673 	struct net_device		*dev;
674 } ____cacheline_aligned_in_smp;
675 #endif /* CONFIG_RPS */
676 
677 #ifdef CONFIG_XPS
678 /*
679  * This structure holds an XPS map which can be of variable length.  The
680  * map is an array of queues.
681  */
682 struct xps_map {
683 	unsigned int len;
684 	unsigned int alloc_len;
685 	struct rcu_head rcu;
686 	u16 queues[0];
687 };
688 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
689 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
690     / sizeof(u16))
691 
692 /*
693  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
694  */
695 struct xps_dev_maps {
696 	struct rcu_head rcu;
697 	struct xps_map __rcu *cpu_map[0];
698 };
699 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
700     (nr_cpu_ids * sizeof(struct xps_map *)))
701 #endif /* CONFIG_XPS */
702 
703 #define TC_MAX_QUEUE	16
704 #define TC_BITMASK	15
705 /* HW offloaded queuing disciplines txq count and offset maps */
706 struct netdev_tc_txq {
707 	u16 count;
708 	u16 offset;
709 };
710 
711 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
712 /*
713  * This structure is to hold information about the device
714  * configured to run FCoE protocol stack.
715  */
716 struct netdev_fcoe_hbainfo {
717 	char	manufacturer[64];
718 	char	serial_number[64];
719 	char	hardware_version[64];
720 	char	driver_version[64];
721 	char	optionrom_version[64];
722 	char	firmware_version[64];
723 	char	model[256];
724 	char	model_description[256];
725 };
726 #endif
727 
728 /*
729  * This structure defines the management hooks for network devices.
730  * The following hooks can be defined; unless noted otherwise, they are
731  * optional and can be filled with a null pointer.
732  *
733  * int (*ndo_init)(struct net_device *dev);
734  *     This function is called once when network device is registered.
735  *     The network device can use this to any late stage initializaton
736  *     or semantic validattion. It can fail with an error code which will
737  *     be propogated back to register_netdev
738  *
739  * void (*ndo_uninit)(struct net_device *dev);
740  *     This function is called when device is unregistered or when registration
741  *     fails. It is not called if init fails.
742  *
743  * int (*ndo_open)(struct net_device *dev);
744  *     This function is called when network device transistions to the up
745  *     state.
746  *
747  * int (*ndo_stop)(struct net_device *dev);
748  *     This function is called when network device transistions to the down
749  *     state.
750  *
751  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
752  *                               struct net_device *dev);
753  *	Called when a packet needs to be transmitted.
754  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
755  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
756  *	Required can not be NULL.
757  *
758  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
759  *	Called to decide which queue to when device supports multiple
760  *	transmit queues.
761  *
762  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
763  *	This function is called to allow device receiver to make
764  *	changes to configuration when multicast or promiscious is enabled.
765  *
766  * void (*ndo_set_rx_mode)(struct net_device *dev);
767  *	This function is called device changes address list filtering.
768  *	If driver handles unicast address filtering, it should set
769  *	IFF_UNICAST_FLT to its priv_flags.
770  *
771  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
772  *	This function  is called when the Media Access Control address
773  *	needs to be changed. If this interface is not defined, the
774  *	mac address can not be changed.
775  *
776  * int (*ndo_validate_addr)(struct net_device *dev);
777  *	Test if Media Access Control address is valid for the device.
778  *
779  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
780  *	Called when a user request an ioctl which can't be handled by
781  *	the generic interface code. If not defined ioctl's return
782  *	not supported error code.
783  *
784  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
785  *	Used to set network devices bus interface parameters. This interface
786  *	is retained for legacy reason, new devices should use the bus
787  *	interface (PCI) for low level management.
788  *
789  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
790  *	Called when a user wants to change the Maximum Transfer Unit
791  *	of a device. If not defined, any request to change MTU will
792  *	will return an error.
793  *
794  * void (*ndo_tx_timeout)(struct net_device *dev);
795  *	Callback uses when the transmitter has not made any progress
796  *	for dev->watchdog ticks.
797  *
798  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
799  *                      struct rtnl_link_stats64 *storage);
800  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
801  *	Called when a user wants to get the network device usage
802  *	statistics. Drivers must do one of the following:
803  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
804  *	   rtnl_link_stats64 structure passed by the caller.
805  *	2. Define @ndo_get_stats to update a net_device_stats structure
806  *	   (which should normally be dev->stats) and return a pointer to
807  *	   it. The structure may be changed asynchronously only if each
808  *	   field is written atomically.
809  *	3. Update dev->stats asynchronously and atomically, and define
810  *	   neither operation.
811  *
812  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
813  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
814  *	this function is called when a VLAN id is registered.
815  *
816  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
817  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
818  *	this function is called when a VLAN id is unregistered.
819  *
820  * void (*ndo_poll_controller)(struct net_device *dev);
821  *
822  *	SR-IOV management functions.
823  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
824  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
825  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
826  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
827  * int (*ndo_get_vf_config)(struct net_device *dev,
828  *			    int vf, struct ifla_vf_info *ivf);
829  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
830  *			  struct nlattr *port[]);
831  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
832  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
833  * 	Called to setup 'tc' number of traffic classes in the net device. This
834  * 	is always called from the stack with the rtnl lock held and netif tx
835  * 	queues stopped. This allows the netdevice to perform queue management
836  * 	safely.
837  *
838  *	Fiber Channel over Ethernet (FCoE) offload functions.
839  * int (*ndo_fcoe_enable)(struct net_device *dev);
840  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
841  *	so the underlying device can perform whatever needed configuration or
842  *	initialization to support acceleration of FCoE traffic.
843  *
844  * int (*ndo_fcoe_disable)(struct net_device *dev);
845  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
846  *	so the underlying device can perform whatever needed clean-ups to
847  *	stop supporting acceleration of FCoE traffic.
848  *
849  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
850  *			     struct scatterlist *sgl, unsigned int sgc);
851  *	Called when the FCoE Initiator wants to initialize an I/O that
852  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
853  *	perform necessary setup and returns 1 to indicate the device is set up
854  *	successfully to perform DDP on this I/O, otherwise this returns 0.
855  *
856  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
857  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
858  *	indicated by the FC exchange id 'xid', so the underlying device can
859  *	clean up and reuse resources for later DDP requests.
860  *
861  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
862  *			      struct scatterlist *sgl, unsigned int sgc);
863  *	Called when the FCoE Target wants to initialize an I/O that
864  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
865  *	perform necessary setup and returns 1 to indicate the device is set up
866  *	successfully to perform DDP on this I/O, otherwise this returns 0.
867  *
868  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
869  *			       struct netdev_fcoe_hbainfo *hbainfo);
870  *	Called when the FCoE Protocol stack wants information on the underlying
871  *	device. This information is utilized by the FCoE protocol stack to
872  *	register attributes with Fiber Channel management service as per the
873  *	FC-GS Fabric Device Management Information(FDMI) specification.
874  *
875  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
876  *	Called when the underlying device wants to override default World Wide
877  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
878  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
879  *	protocol stack to use.
880  *
881  *	RFS acceleration.
882  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
883  *			    u16 rxq_index, u32 flow_id);
884  *	Set hardware filter for RFS.  rxq_index is the target queue index;
885  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
886  *	Return the filter ID on success, or a negative error code.
887  *
888  *	Slave management functions (for bridge, bonding, etc). User should
889  *	call netdev_set_master() to set dev->master properly.
890  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
891  *	Called to make another netdev an underling.
892  *
893  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
894  *	Called to release previously enslaved netdev.
895  *
896  *      Feature/offload setting functions.
897  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
898  *		netdev_features_t features);
899  *	Adjusts the requested feature flags according to device-specific
900  *	constraints, and returns the resulting flags. Must not modify
901  *	the device state.
902  *
903  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
904  *	Called to update device configuration to new features. Passed
905  *	feature set might be less than what was returned by ndo_fix_features()).
906  *	Must return >0 or -errno if it changed dev->features itself.
907  *
908  */
909 struct net_device_ops {
910 	int			(*ndo_init)(struct net_device *dev);
911 	void			(*ndo_uninit)(struct net_device *dev);
912 	int			(*ndo_open)(struct net_device *dev);
913 	int			(*ndo_stop)(struct net_device *dev);
914 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
915 						   struct net_device *dev);
916 	u16			(*ndo_select_queue)(struct net_device *dev,
917 						    struct sk_buff *skb);
918 	void			(*ndo_change_rx_flags)(struct net_device *dev,
919 						       int flags);
920 	void			(*ndo_set_rx_mode)(struct net_device *dev);
921 	int			(*ndo_set_mac_address)(struct net_device *dev,
922 						       void *addr);
923 	int			(*ndo_validate_addr)(struct net_device *dev);
924 	int			(*ndo_do_ioctl)(struct net_device *dev,
925 					        struct ifreq *ifr, int cmd);
926 	int			(*ndo_set_config)(struct net_device *dev,
927 					          struct ifmap *map);
928 	int			(*ndo_change_mtu)(struct net_device *dev,
929 						  int new_mtu);
930 	int			(*ndo_neigh_setup)(struct net_device *dev,
931 						   struct neigh_parms *);
932 	void			(*ndo_tx_timeout) (struct net_device *dev);
933 
934 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
935 						     struct rtnl_link_stats64 *storage);
936 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
937 
938 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
939 						       unsigned short vid);
940 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
941 						        unsigned short vid);
942 #ifdef CONFIG_NET_POLL_CONTROLLER
943 	void                    (*ndo_poll_controller)(struct net_device *dev);
944 	int			(*ndo_netpoll_setup)(struct net_device *dev,
945 						     struct netpoll_info *info);
946 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
947 #endif
948 	int			(*ndo_set_vf_mac)(struct net_device *dev,
949 						  int queue, u8 *mac);
950 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
951 						   int queue, u16 vlan, u8 qos);
952 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
953 						      int vf, int rate);
954 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
955 						       int vf, bool setting);
956 	int			(*ndo_get_vf_config)(struct net_device *dev,
957 						     int vf,
958 						     struct ifla_vf_info *ivf);
959 	int			(*ndo_set_vf_port)(struct net_device *dev,
960 						   int vf,
961 						   struct nlattr *port[]);
962 	int			(*ndo_get_vf_port)(struct net_device *dev,
963 						   int vf, struct sk_buff *skb);
964 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
965 #if IS_ENABLED(CONFIG_FCOE)
966 	int			(*ndo_fcoe_enable)(struct net_device *dev);
967 	int			(*ndo_fcoe_disable)(struct net_device *dev);
968 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
969 						      u16 xid,
970 						      struct scatterlist *sgl,
971 						      unsigned int sgc);
972 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
973 						     u16 xid);
974 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
975 						       u16 xid,
976 						       struct scatterlist *sgl,
977 						       unsigned int sgc);
978 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
979 							struct netdev_fcoe_hbainfo *hbainfo);
980 #endif
981 
982 #if IS_ENABLED(CONFIG_LIBFCOE)
983 #define NETDEV_FCOE_WWNN 0
984 #define NETDEV_FCOE_WWPN 1
985 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
986 						    u64 *wwn, int type);
987 #endif
988 
989 #ifdef CONFIG_RFS_ACCEL
990 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
991 						     const struct sk_buff *skb,
992 						     u16 rxq_index,
993 						     u32 flow_id);
994 #endif
995 	int			(*ndo_add_slave)(struct net_device *dev,
996 						 struct net_device *slave_dev);
997 	int			(*ndo_del_slave)(struct net_device *dev,
998 						 struct net_device *slave_dev);
999 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1000 						    netdev_features_t features);
1001 	int			(*ndo_set_features)(struct net_device *dev,
1002 						    netdev_features_t features);
1003 	int			(*ndo_neigh_construct)(struct neighbour *n);
1004 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1005 };
1006 
1007 /*
1008  *	The DEVICE structure.
1009  *	Actually, this whole structure is a big mistake.  It mixes I/O
1010  *	data with strictly "high-level" data, and it has to know about
1011  *	almost every data structure used in the INET module.
1012  *
1013  *	FIXME: cleanup struct net_device such that network protocol info
1014  *	moves out.
1015  */
1016 
1017 struct net_device {
1018 
1019 	/*
1020 	 * This is the first field of the "visible" part of this structure
1021 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1022 	 * of the interface.
1023 	 */
1024 	char			name[IFNAMSIZ];
1025 
1026 	struct pm_qos_request	pm_qos_req;
1027 
1028 	/* device name hash chain */
1029 	struct hlist_node	name_hlist;
1030 	/* snmp alias */
1031 	char 			*ifalias;
1032 
1033 	/*
1034 	 *	I/O specific fields
1035 	 *	FIXME: Merge these and struct ifmap into one
1036 	 */
1037 	unsigned long		mem_end;	/* shared mem end	*/
1038 	unsigned long		mem_start;	/* shared mem start	*/
1039 	unsigned long		base_addr;	/* device I/O address	*/
1040 	unsigned int		irq;		/* device IRQ number	*/
1041 
1042 	/*
1043 	 *	Some hardware also needs these fields, but they are not
1044 	 *	part of the usual set specified in Space.c.
1045 	 */
1046 
1047 	unsigned long		state;
1048 
1049 	struct list_head	dev_list;
1050 	struct list_head	napi_list;
1051 	struct list_head	unreg_list;
1052 
1053 	/* currently active device features */
1054 	netdev_features_t	features;
1055 	/* user-changeable features */
1056 	netdev_features_t	hw_features;
1057 	/* user-requested features */
1058 	netdev_features_t	wanted_features;
1059 	/* mask of features inheritable by VLAN devices */
1060 	netdev_features_t	vlan_features;
1061 
1062 	/* Interface index. Unique device identifier	*/
1063 	int			ifindex;
1064 	int			iflink;
1065 
1066 	struct net_device_stats	stats;
1067 	atomic_long_t		rx_dropped; /* dropped packets by core network
1068 					     * Do not use this in drivers.
1069 					     */
1070 
1071 #ifdef CONFIG_WIRELESS_EXT
1072 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1073 	 * See <net/iw_handler.h> for details. Jean II */
1074 	const struct iw_handler_def *	wireless_handlers;
1075 	/* Instance data managed by the core of Wireless Extensions. */
1076 	struct iw_public_data *	wireless_data;
1077 #endif
1078 	/* Management operations */
1079 	const struct net_device_ops *netdev_ops;
1080 	const struct ethtool_ops *ethtool_ops;
1081 
1082 	/* Hardware header description */
1083 	const struct header_ops *header_ops;
1084 
1085 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1086 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace.
1087 					     * See if.h for definitions. */
1088 	unsigned short		gflags;
1089 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1090 
1091 	unsigned char		operstate; /* RFC2863 operstate */
1092 	unsigned char		link_mode; /* mapping policy to operstate */
1093 
1094 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1095 	unsigned char		dma;		/* DMA channel		*/
1096 
1097 	unsigned int		mtu;	/* interface MTU value		*/
1098 	unsigned short		type;	/* interface hardware type	*/
1099 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1100 
1101 	/* extra head- and tailroom the hardware may need, but not in all cases
1102 	 * can this be guaranteed, especially tailroom. Some cases also use
1103 	 * LL_MAX_HEADER instead to allocate the skb.
1104 	 */
1105 	unsigned short		needed_headroom;
1106 	unsigned short		needed_tailroom;
1107 
1108 	/* Interface address info. */
1109 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1110 	unsigned char		addr_assign_type; /* hw address assignment type */
1111 	unsigned char		addr_len;	/* hardware address length	*/
1112 	unsigned char		neigh_priv_len;
1113 	unsigned short          dev_id;		/* for shared network cards */
1114 
1115 	spinlock_t		addr_list_lock;
1116 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1117 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1118 	bool			uc_promisc;
1119 	unsigned int		promiscuity;
1120 	unsigned int		allmulti;
1121 
1122 
1123 	/* Protocol specific pointers */
1124 
1125 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1126 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1127 #endif
1128 #if IS_ENABLED(CONFIG_NET_DSA)
1129 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1130 #endif
1131 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1132 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1133 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1134 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1135 	void			*ec_ptr;	/* Econet specific data	*/
1136 	void			*ax25_ptr;	/* AX.25 specific data */
1137 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1138 						   assign before registering */
1139 
1140 /*
1141  * Cache lines mostly used on receive path (including eth_type_trans())
1142  */
1143 	unsigned long		last_rx;	/* Time of last Rx
1144 						 * This should not be set in
1145 						 * drivers, unless really needed,
1146 						 * because network stack (bonding)
1147 						 * use it if/when necessary, to
1148 						 * avoid dirtying this cache line.
1149 						 */
1150 
1151 	struct net_device	*master; /* Pointer to master device of a group,
1152 					  * which this device is member of.
1153 					  */
1154 
1155 	/* Interface address info used in eth_type_trans() */
1156 	unsigned char		*dev_addr;	/* hw address, (before bcast
1157 						   because most packets are
1158 						   unicast) */
1159 
1160 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1161 						      hw addresses */
1162 
1163 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1164 
1165 #ifdef CONFIG_SYSFS
1166 	struct kset		*queues_kset;
1167 #endif
1168 
1169 #ifdef CONFIG_RPS
1170 	struct netdev_rx_queue	*_rx;
1171 
1172 	/* Number of RX queues allocated at register_netdev() time */
1173 	unsigned int		num_rx_queues;
1174 
1175 	/* Number of RX queues currently active in device */
1176 	unsigned int		real_num_rx_queues;
1177 
1178 #ifdef CONFIG_RFS_ACCEL
1179 	/* CPU reverse-mapping for RX completion interrupts, indexed
1180 	 * by RX queue number.  Assigned by driver.  This must only be
1181 	 * set if the ndo_rx_flow_steer operation is defined. */
1182 	struct cpu_rmap		*rx_cpu_rmap;
1183 #endif
1184 #endif
1185 
1186 	rx_handler_func_t __rcu	*rx_handler;
1187 	void __rcu		*rx_handler_data;
1188 
1189 	struct netdev_queue __rcu *ingress_queue;
1190 
1191 /*
1192  * Cache lines mostly used on transmit path
1193  */
1194 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1195 
1196 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1197 	unsigned int		num_tx_queues;
1198 
1199 	/* Number of TX queues currently active in device  */
1200 	unsigned int		real_num_tx_queues;
1201 
1202 	/* root qdisc from userspace point of view */
1203 	struct Qdisc		*qdisc;
1204 
1205 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1206 	spinlock_t		tx_global_lock;
1207 
1208 #ifdef CONFIG_XPS
1209 	struct xps_dev_maps __rcu *xps_maps;
1210 #endif
1211 
1212 	/* These may be needed for future network-power-down code. */
1213 
1214 	/*
1215 	 * trans_start here is expensive for high speed devices on SMP,
1216 	 * please use netdev_queue->trans_start instead.
1217 	 */
1218 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1219 
1220 	int			watchdog_timeo; /* used by dev_watchdog() */
1221 	struct timer_list	watchdog_timer;
1222 
1223 	/* Number of references to this device */
1224 	int __percpu		*pcpu_refcnt;
1225 
1226 	/* delayed register/unregister */
1227 	struct list_head	todo_list;
1228 	/* device index hash chain */
1229 	struct hlist_node	index_hlist;
1230 
1231 	struct list_head	link_watch_list;
1232 
1233 	/* register/unregister state machine */
1234 	enum { NETREG_UNINITIALIZED=0,
1235 	       NETREG_REGISTERED,	/* completed register_netdevice */
1236 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1237 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1238 	       NETREG_RELEASED,		/* called free_netdev */
1239 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1240 	} reg_state:8;
1241 
1242 	bool dismantle; /* device is going do be freed */
1243 
1244 	enum {
1245 		RTNL_LINK_INITIALIZED,
1246 		RTNL_LINK_INITIALIZING,
1247 	} rtnl_link_state:16;
1248 
1249 	/* Called from unregister, can be used to call free_netdev */
1250 	void (*destructor)(struct net_device *dev);
1251 
1252 #ifdef CONFIG_NETPOLL
1253 	struct netpoll_info	*npinfo;
1254 #endif
1255 
1256 #ifdef CONFIG_NET_NS
1257 	/* Network namespace this network device is inside */
1258 	struct net		*nd_net;
1259 #endif
1260 
1261 	/* mid-layer private */
1262 	union {
1263 		void				*ml_priv;
1264 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1265 		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1266 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1267 	};
1268 	/* GARP */
1269 	struct garp_port __rcu	*garp_port;
1270 
1271 	/* class/net/name entry */
1272 	struct device		dev;
1273 	/* space for optional device, statistics, and wireless sysfs groups */
1274 	const struct attribute_group *sysfs_groups[4];
1275 
1276 	/* rtnetlink link ops */
1277 	const struct rtnl_link_ops *rtnl_link_ops;
1278 
1279 	/* for setting kernel sock attribute on TCP connection setup */
1280 #define GSO_MAX_SIZE		65536
1281 	unsigned int		gso_max_size;
1282 #define GSO_MAX_SEGS		65535
1283 	u16			gso_max_segs;
1284 
1285 #ifdef CONFIG_DCB
1286 	/* Data Center Bridging netlink ops */
1287 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1288 #endif
1289 	u8 num_tc;
1290 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1291 	u8 prio_tc_map[TC_BITMASK + 1];
1292 
1293 #if IS_ENABLED(CONFIG_FCOE)
1294 	/* max exchange id for FCoE LRO by ddp */
1295 	unsigned int		fcoe_ddp_xid;
1296 #endif
1297 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1298 	struct netprio_map __rcu *priomap;
1299 #endif
1300 	/* phy device may attach itself for hardware timestamping */
1301 	struct phy_device *phydev;
1302 
1303 	/* group the device belongs to */
1304 	int group;
1305 };
1306 #define to_net_dev(d) container_of(d, struct net_device, dev)
1307 
1308 #define	NETDEV_ALIGN		32
1309 
1310 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)1311 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1312 {
1313 	return dev->prio_tc_map[prio & TC_BITMASK];
1314 }
1315 
1316 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)1317 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1318 {
1319 	if (tc >= dev->num_tc)
1320 		return -EINVAL;
1321 
1322 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1323 	return 0;
1324 }
1325 
1326 static inline
netdev_reset_tc(struct net_device * dev)1327 void netdev_reset_tc(struct net_device *dev)
1328 {
1329 	dev->num_tc = 0;
1330 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1331 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1332 }
1333 
1334 static inline
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)1335 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1336 {
1337 	if (tc >= dev->num_tc)
1338 		return -EINVAL;
1339 
1340 	dev->tc_to_txq[tc].count = count;
1341 	dev->tc_to_txq[tc].offset = offset;
1342 	return 0;
1343 }
1344 
1345 static inline
netdev_set_num_tc(struct net_device * dev,u8 num_tc)1346 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1347 {
1348 	if (num_tc > TC_MAX_QUEUE)
1349 		return -EINVAL;
1350 
1351 	dev->num_tc = num_tc;
1352 	return 0;
1353 }
1354 
1355 static inline
netdev_get_num_tc(struct net_device * dev)1356 int netdev_get_num_tc(struct net_device *dev)
1357 {
1358 	return dev->num_tc;
1359 }
1360 
1361 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)1362 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1363 					 unsigned int index)
1364 {
1365 	return &dev->_tx[index];
1366 }
1367 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)1368 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1369 					    void (*f)(struct net_device *,
1370 						      struct netdev_queue *,
1371 						      void *),
1372 					    void *arg)
1373 {
1374 	unsigned int i;
1375 
1376 	for (i = 0; i < dev->num_tx_queues; i++)
1377 		f(dev, &dev->_tx[i], arg);
1378 }
1379 
1380 /*
1381  * Net namespace inlines
1382  */
1383 static inline
dev_net(const struct net_device * dev)1384 struct net *dev_net(const struct net_device *dev)
1385 {
1386 	return read_pnet(&dev->nd_net);
1387 }
1388 
1389 static inline
dev_net_set(struct net_device * dev,struct net * net)1390 void dev_net_set(struct net_device *dev, struct net *net)
1391 {
1392 #ifdef CONFIG_NET_NS
1393 	release_net(dev->nd_net);
1394 	dev->nd_net = hold_net(net);
1395 #endif
1396 }
1397 
netdev_uses_dsa_tags(struct net_device * dev)1398 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1399 {
1400 #ifdef CONFIG_NET_DSA_TAG_DSA
1401 	if (dev->dsa_ptr != NULL)
1402 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1403 #endif
1404 
1405 	return 0;
1406 }
1407 
netdev_uses_trailer_tags(struct net_device * dev)1408 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1409 {
1410 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1411 	if (dev->dsa_ptr != NULL)
1412 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1413 #endif
1414 
1415 	return 0;
1416 }
1417 
1418 /**
1419  *	netdev_priv - access network device private data
1420  *	@dev: network device
1421  *
1422  * Get network device private data
1423  */
netdev_priv(const struct net_device * dev)1424 static inline void *netdev_priv(const struct net_device *dev)
1425 {
1426 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1427 }
1428 
1429 /* Set the sysfs physical device reference for the network logical device
1430  * if set prior to registration will cause a symlink during initialization.
1431  */
1432 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1433 
1434 /* Set the sysfs device type for the network logical device to allow
1435  * fin grained indentification of different network device types. For
1436  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1437  */
1438 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1439 
1440 /**
1441  *	netif_napi_add - initialize a napi context
1442  *	@dev:  network device
1443  *	@napi: napi context
1444  *	@poll: polling function
1445  *	@weight: default weight
1446  *
1447  * netif_napi_add() must be used to initialize a napi context prior to calling
1448  * *any* of the other napi related functions.
1449  */
1450 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1451 		    int (*poll)(struct napi_struct *, int), int weight);
1452 
1453 /**
1454  *  netif_napi_del - remove a napi context
1455  *  @napi: napi context
1456  *
1457  *  netif_napi_del() removes a napi context from the network device napi list
1458  */
1459 void netif_napi_del(struct napi_struct *napi);
1460 
1461 struct napi_gro_cb {
1462 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1463 	void *frag0;
1464 
1465 	/* Length of frag0. */
1466 	unsigned int frag0_len;
1467 
1468 	/* This indicates where we are processing relative to skb->data. */
1469 	int data_offset;
1470 
1471 	/* This is non-zero if the packet may be of the same flow. */
1472 	int same_flow;
1473 
1474 	/* This is non-zero if the packet cannot be merged with the new skb. */
1475 	int flush;
1476 
1477 	/* Number of segments aggregated. */
1478 	int count;
1479 
1480 	/* Free the skb? */
1481 	int free;
1482 };
1483 
1484 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1485 
1486 struct packet_type {
1487 	__be16			type;	/* This is really htons(ether_type). */
1488 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1489 	int			(*func) (struct sk_buff *,
1490 					 struct net_device *,
1491 					 struct packet_type *,
1492 					 struct net_device *);
1493 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1494 						netdev_features_t features);
1495 	int			(*gso_send_check)(struct sk_buff *skb);
1496 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1497 					       struct sk_buff *skb);
1498 	int			(*gro_complete)(struct sk_buff *skb);
1499 	bool			(*id_match)(struct packet_type *ptype,
1500 					    struct sock *sk);
1501 	void			*af_packet_priv;
1502 	struct list_head	list;
1503 };
1504 
1505 #include <linux/notifier.h>
1506 
1507 /* netdevice notifier chain. Please remember to update the rtnetlink
1508  * notification exclusion list in rtnetlink_event() when adding new
1509  * types.
1510  */
1511 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1512 #define NETDEV_DOWN	0x0002
1513 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1514 				   detected a hardware crash and restarted
1515 				   - we can use this eg to kick tcp sessions
1516 				   once done */
1517 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1518 #define NETDEV_REGISTER 0x0005
1519 #define NETDEV_UNREGISTER	0x0006
1520 #define NETDEV_CHANGEMTU	0x0007
1521 #define NETDEV_CHANGEADDR	0x0008
1522 #define NETDEV_GOING_DOWN	0x0009
1523 #define NETDEV_CHANGENAME	0x000A
1524 #define NETDEV_FEAT_CHANGE	0x000B
1525 #define NETDEV_BONDING_FAILOVER 0x000C
1526 #define NETDEV_PRE_UP		0x000D
1527 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1528 #define NETDEV_POST_TYPE_CHANGE	0x000F
1529 #define NETDEV_POST_INIT	0x0010
1530 #define NETDEV_UNREGISTER_BATCH 0x0011
1531 #define NETDEV_RELEASE		0x0012
1532 #define NETDEV_NOTIFY_PEERS	0x0013
1533 #define NETDEV_JOIN		0x0014
1534 
1535 extern int register_netdevice_notifier(struct notifier_block *nb);
1536 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1537 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1538 
1539 
1540 extern rwlock_t				dev_base_lock;		/* Device list lock */
1541 
1542 
1543 #define for_each_netdev(net, d)		\
1544 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1545 #define for_each_netdev_reverse(net, d)	\
1546 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1547 #define for_each_netdev_rcu(net, d)		\
1548 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1549 #define for_each_netdev_safe(net, d, n)	\
1550 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1551 #define for_each_netdev_continue(net, d)		\
1552 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1553 #define for_each_netdev_continue_rcu(net, d)		\
1554 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1555 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1556 
next_net_device(struct net_device * dev)1557 static inline struct net_device *next_net_device(struct net_device *dev)
1558 {
1559 	struct list_head *lh;
1560 	struct net *net;
1561 
1562 	net = dev_net(dev);
1563 	lh = dev->dev_list.next;
1564 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1565 }
1566 
next_net_device_rcu(struct net_device * dev)1567 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1568 {
1569 	struct list_head *lh;
1570 	struct net *net;
1571 
1572 	net = dev_net(dev);
1573 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1574 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1575 }
1576 
first_net_device(struct net * net)1577 static inline struct net_device *first_net_device(struct net *net)
1578 {
1579 	return list_empty(&net->dev_base_head) ? NULL :
1580 		net_device_entry(net->dev_base_head.next);
1581 }
1582 
first_net_device_rcu(struct net * net)1583 static inline struct net_device *first_net_device_rcu(struct net *net)
1584 {
1585 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1586 
1587 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1588 }
1589 
1590 extern int 			netdev_boot_setup_check(struct net_device *dev);
1591 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1592 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1593 					      const char *hwaddr);
1594 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1595 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1596 extern void		dev_add_pack(struct packet_type *pt);
1597 extern void		dev_remove_pack(struct packet_type *pt);
1598 extern void		__dev_remove_pack(struct packet_type *pt);
1599 
1600 extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1601 						      unsigned short mask);
1602 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1603 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1604 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1605 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1606 extern int		dev_open(struct net_device *dev);
1607 extern int		dev_close(struct net_device *dev);
1608 extern void		dev_disable_lro(struct net_device *dev);
1609 extern int		dev_queue_xmit(struct sk_buff *skb);
1610 extern int		register_netdevice(struct net_device *dev);
1611 extern void		unregister_netdevice_queue(struct net_device *dev,
1612 						   struct list_head *head);
1613 extern void		unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)1614 static inline void unregister_netdevice(struct net_device *dev)
1615 {
1616 	unregister_netdevice_queue(dev, NULL);
1617 }
1618 
1619 extern int 		netdev_refcnt_read(const struct net_device *dev);
1620 extern void		free_netdev(struct net_device *dev);
1621 extern void		synchronize_net(void);
1622 extern int		init_dummy_netdev(struct net_device *dev);
1623 extern void		netdev_resync_ops(struct net_device *dev);
1624 
1625 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1626 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1627 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1628 extern int		dev_restart(struct net_device *dev);
1629 #ifdef CONFIG_NETPOLL_TRAP
1630 extern int		netpoll_trap(void);
1631 #endif
1632 extern int	       skb_gro_receive(struct sk_buff **head,
1633 				       struct sk_buff *skb);
1634 extern void	       skb_gro_reset_offset(struct sk_buff *skb);
1635 
skb_gro_offset(const struct sk_buff * skb)1636 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1637 {
1638 	return NAPI_GRO_CB(skb)->data_offset;
1639 }
1640 
skb_gro_len(const struct sk_buff * skb)1641 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1642 {
1643 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1644 }
1645 
skb_gro_pull(struct sk_buff * skb,unsigned int len)1646 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1647 {
1648 	NAPI_GRO_CB(skb)->data_offset += len;
1649 }
1650 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)1651 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1652 					unsigned int offset)
1653 {
1654 	return NAPI_GRO_CB(skb)->frag0 + offset;
1655 }
1656 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)1657 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1658 {
1659 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1660 }
1661 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)1662 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1663 					unsigned int offset)
1664 {
1665 	if (!pskb_may_pull(skb, hlen))
1666 		return NULL;
1667 
1668 	NAPI_GRO_CB(skb)->frag0 = NULL;
1669 	NAPI_GRO_CB(skb)->frag0_len = 0;
1670 	return skb->data + offset;
1671 }
1672 
skb_gro_mac_header(struct sk_buff * skb)1673 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1674 {
1675 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1676 }
1677 
skb_gro_network_header(struct sk_buff * skb)1678 static inline void *skb_gro_network_header(struct sk_buff *skb)
1679 {
1680 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1681 	       skb_network_offset(skb);
1682 }
1683 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned len)1684 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1685 				  unsigned short type,
1686 				  const void *daddr, const void *saddr,
1687 				  unsigned len)
1688 {
1689 	if (!dev->header_ops || !dev->header_ops->create)
1690 		return 0;
1691 
1692 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1693 }
1694 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)1695 static inline int dev_parse_header(const struct sk_buff *skb,
1696 				   unsigned char *haddr)
1697 {
1698 	const struct net_device *dev = skb->dev;
1699 
1700 	if (!dev->header_ops || !dev->header_ops->parse)
1701 		return 0;
1702 	return dev->header_ops->parse(skb, haddr);
1703 }
1704 
1705 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1706 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
unregister_gifconf(unsigned int family)1707 static inline int unregister_gifconf(unsigned int family)
1708 {
1709 	return register_gifconf(family, NULL);
1710 }
1711 
1712 /*
1713  * Incoming packets are placed on per-cpu queues
1714  */
1715 struct softnet_data {
1716 	struct Qdisc		*output_queue;
1717 	struct Qdisc		**output_queue_tailp;
1718 	struct list_head	poll_list;
1719 	struct sk_buff		*completion_queue;
1720 	struct sk_buff_head	process_queue;
1721 
1722 	/* stats */
1723 	unsigned int		processed;
1724 	unsigned int		time_squeeze;
1725 	unsigned int		cpu_collision;
1726 	unsigned int		received_rps;
1727 
1728 #ifdef CONFIG_RPS
1729 	struct softnet_data	*rps_ipi_list;
1730 
1731 	/* Elements below can be accessed between CPUs for RPS */
1732 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1733 	struct softnet_data	*rps_ipi_next;
1734 	unsigned int		cpu;
1735 	unsigned int		input_queue_head;
1736 	unsigned int		input_queue_tail;
1737 #endif
1738 	unsigned		dropped;
1739 	struct sk_buff_head	input_pkt_queue;
1740 	struct napi_struct	backlog;
1741 };
1742 
input_queue_head_incr(struct softnet_data * sd)1743 static inline void input_queue_head_incr(struct softnet_data *sd)
1744 {
1745 #ifdef CONFIG_RPS
1746 	sd->input_queue_head++;
1747 #endif
1748 }
1749 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)1750 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1751 					      unsigned int *qtail)
1752 {
1753 #ifdef CONFIG_RPS
1754 	*qtail = ++sd->input_queue_tail;
1755 #endif
1756 }
1757 
1758 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1759 
1760 extern void __netif_schedule(struct Qdisc *q);
1761 
netif_schedule_queue(struct netdev_queue * txq)1762 static inline void netif_schedule_queue(struct netdev_queue *txq)
1763 {
1764 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1765 		__netif_schedule(txq->qdisc);
1766 }
1767 
netif_tx_schedule_all(struct net_device * dev)1768 static inline void netif_tx_schedule_all(struct net_device *dev)
1769 {
1770 	unsigned int i;
1771 
1772 	for (i = 0; i < dev->num_tx_queues; i++)
1773 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1774 }
1775 
netif_tx_start_queue(struct netdev_queue * dev_queue)1776 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1777 {
1778 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1779 }
1780 
1781 /**
1782  *	netif_start_queue - allow transmit
1783  *	@dev: network device
1784  *
1785  *	Allow upper layers to call the device hard_start_xmit routine.
1786  */
netif_start_queue(struct net_device * dev)1787 static inline void netif_start_queue(struct net_device *dev)
1788 {
1789 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1790 }
1791 
netif_tx_start_all_queues(struct net_device * dev)1792 static inline void netif_tx_start_all_queues(struct net_device *dev)
1793 {
1794 	unsigned int i;
1795 
1796 	for (i = 0; i < dev->num_tx_queues; i++) {
1797 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1798 		netif_tx_start_queue(txq);
1799 	}
1800 }
1801 
netif_tx_wake_queue(struct netdev_queue * dev_queue)1802 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1803 {
1804 #ifdef CONFIG_NETPOLL_TRAP
1805 	if (netpoll_trap()) {
1806 		netif_tx_start_queue(dev_queue);
1807 		return;
1808 	}
1809 #endif
1810 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1811 		__netif_schedule(dev_queue->qdisc);
1812 }
1813 
1814 /**
1815  *	netif_wake_queue - restart transmit
1816  *	@dev: network device
1817  *
1818  *	Allow upper layers to call the device hard_start_xmit routine.
1819  *	Used for flow control when transmit resources are available.
1820  */
netif_wake_queue(struct net_device * dev)1821 static inline void netif_wake_queue(struct net_device *dev)
1822 {
1823 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1824 }
1825 
netif_tx_wake_all_queues(struct net_device * dev)1826 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1827 {
1828 	unsigned int i;
1829 
1830 	for (i = 0; i < dev->num_tx_queues; i++) {
1831 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1832 		netif_tx_wake_queue(txq);
1833 	}
1834 }
1835 
netif_tx_stop_queue(struct netdev_queue * dev_queue)1836 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1837 {
1838 	if (WARN_ON(!dev_queue)) {
1839 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1840 		return;
1841 	}
1842 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1843 }
1844 
1845 /**
1846  *	netif_stop_queue - stop transmitted packets
1847  *	@dev: network device
1848  *
1849  *	Stop upper layers calling the device hard_start_xmit routine.
1850  *	Used for flow control when transmit resources are unavailable.
1851  */
netif_stop_queue(struct net_device * dev)1852 static inline void netif_stop_queue(struct net_device *dev)
1853 {
1854 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1855 }
1856 
netif_tx_stop_all_queues(struct net_device * dev)1857 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1858 {
1859 	unsigned int i;
1860 
1861 	for (i = 0; i < dev->num_tx_queues; i++) {
1862 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1863 		netif_tx_stop_queue(txq);
1864 	}
1865 }
1866 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)1867 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1868 {
1869 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1870 }
1871 
1872 /**
1873  *	netif_queue_stopped - test if transmit queue is flowblocked
1874  *	@dev: network device
1875  *
1876  *	Test if transmit queue on device is currently unable to send.
1877  */
netif_queue_stopped(const struct net_device * dev)1878 static inline bool netif_queue_stopped(const struct net_device *dev)
1879 {
1880 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1881 }
1882 
netif_xmit_stopped(const struct netdev_queue * dev_queue)1883 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1884 {
1885 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1886 }
1887 
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)1888 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1889 {
1890 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1891 }
1892 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)1893 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1894 					unsigned int bytes)
1895 {
1896 #ifdef CONFIG_BQL
1897 	dql_queued(&dev_queue->dql, bytes);
1898 
1899 	if (likely(dql_avail(&dev_queue->dql) >= 0))
1900 		return;
1901 
1902 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1903 
1904 	/*
1905 	 * The XOFF flag must be set before checking the dql_avail below,
1906 	 * because in netdev_tx_completed_queue we update the dql_completed
1907 	 * before checking the XOFF flag.
1908 	 */
1909 	smp_mb();
1910 
1911 	/* check again in case another CPU has just made room avail */
1912 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1913 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1914 #endif
1915 }
1916 
netdev_sent_queue(struct net_device * dev,unsigned int bytes)1917 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1918 {
1919 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1920 }
1921 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned pkts,unsigned bytes)1922 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1923 					     unsigned pkts, unsigned bytes)
1924 {
1925 #ifdef CONFIG_BQL
1926 	if (unlikely(!bytes))
1927 		return;
1928 
1929 	dql_completed(&dev_queue->dql, bytes);
1930 
1931 	/*
1932 	 * Without the memory barrier there is a small possiblity that
1933 	 * netdev_tx_sent_queue will miss the update and cause the queue to
1934 	 * be stopped forever
1935 	 */
1936 	smp_mb();
1937 
1938 	if (dql_avail(&dev_queue->dql) < 0)
1939 		return;
1940 
1941 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1942 		netif_schedule_queue(dev_queue);
1943 #endif
1944 }
1945 
netdev_completed_queue(struct net_device * dev,unsigned pkts,unsigned bytes)1946 static inline void netdev_completed_queue(struct net_device *dev,
1947 					  unsigned pkts, unsigned bytes)
1948 {
1949 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1950 }
1951 
netdev_tx_reset_queue(struct netdev_queue * q)1952 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1953 {
1954 #ifdef CONFIG_BQL
1955 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1956 	dql_reset(&q->dql);
1957 #endif
1958 }
1959 
netdev_reset_queue(struct net_device * dev_queue)1960 static inline void netdev_reset_queue(struct net_device *dev_queue)
1961 {
1962 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1963 }
1964 
1965 /**
1966  *	netif_running - test if up
1967  *	@dev: network device
1968  *
1969  *	Test if the device has been brought up.
1970  */
netif_running(const struct net_device * dev)1971 static inline bool netif_running(const struct net_device *dev)
1972 {
1973 	return test_bit(__LINK_STATE_START, &dev->state);
1974 }
1975 
1976 /*
1977  * Routines to manage the subqueues on a device.  We only need start
1978  * stop, and a check if it's stopped.  All other device management is
1979  * done at the overall netdevice level.
1980  * Also test the device if we're multiqueue.
1981  */
1982 
1983 /**
1984  *	netif_start_subqueue - allow sending packets on subqueue
1985  *	@dev: network device
1986  *	@queue_index: sub queue index
1987  *
1988  * Start individual transmit queue of a device with multiple transmit queues.
1989  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)1990 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1991 {
1992 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1993 
1994 	netif_tx_start_queue(txq);
1995 }
1996 
1997 /**
1998  *	netif_stop_subqueue - stop sending packets on subqueue
1999  *	@dev: network device
2000  *	@queue_index: sub queue index
2001  *
2002  * Stop individual transmit queue of a device with multiple transmit queues.
2003  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)2004 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2005 {
2006 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2007 #ifdef CONFIG_NETPOLL_TRAP
2008 	if (netpoll_trap())
2009 		return;
2010 #endif
2011 	netif_tx_stop_queue(txq);
2012 }
2013 
2014 /**
2015  *	netif_subqueue_stopped - test status of subqueue
2016  *	@dev: network device
2017  *	@queue_index: sub queue index
2018  *
2019  * Check individual transmit queue of a device with multiple transmit queues.
2020  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)2021 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2022 					    u16 queue_index)
2023 {
2024 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2025 
2026 	return netif_tx_queue_stopped(txq);
2027 }
2028 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)2029 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2030 					  struct sk_buff *skb)
2031 {
2032 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2033 }
2034 
2035 /**
2036  *	netif_wake_subqueue - allow sending packets on subqueue
2037  *	@dev: network device
2038  *	@queue_index: sub queue index
2039  *
2040  * Resume individual transmit queue of a device with multiple transmit queues.
2041  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)2042 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2043 {
2044 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2045 #ifdef CONFIG_NETPOLL_TRAP
2046 	if (netpoll_trap())
2047 		return;
2048 #endif
2049 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2050 		__netif_schedule(txq->qdisc);
2051 }
2052 
2053 /*
2054  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2055  * as a distribution range limit for the returned value.
2056  */
skb_tx_hash(const struct net_device * dev,const struct sk_buff * skb)2057 static inline u16 skb_tx_hash(const struct net_device *dev,
2058 			      const struct sk_buff *skb)
2059 {
2060 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2061 }
2062 
2063 /**
2064  *	netif_is_multiqueue - test if device has multiple transmit queues
2065  *	@dev: network device
2066  *
2067  * Check if device has multiple transmit queues
2068  */
netif_is_multiqueue(const struct net_device * dev)2069 static inline bool netif_is_multiqueue(const struct net_device *dev)
2070 {
2071 	return dev->num_tx_queues > 1;
2072 }
2073 
2074 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2075 					unsigned int txq);
2076 
2077 #ifdef CONFIG_RPS
2078 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2079 					unsigned int rxq);
2080 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2081 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2082 						unsigned int rxq)
2083 {
2084 	return 0;
2085 }
2086 #endif
2087 
netif_copy_real_num_queues(struct net_device * to_dev,const struct net_device * from_dev)2088 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2089 					     const struct net_device *from_dev)
2090 {
2091 	netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2092 #ifdef CONFIG_RPS
2093 	return netif_set_real_num_rx_queues(to_dev,
2094 					    from_dev->real_num_rx_queues);
2095 #else
2096 	return 0;
2097 #endif
2098 }
2099 
2100 /* Use this variant when it is known for sure that it
2101  * is executing from hardware interrupt context or with hardware interrupts
2102  * disabled.
2103  */
2104 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2105 
2106 /* Use this variant in places where it could be invoked
2107  * from either hardware interrupt or other context, with hardware interrupts
2108  * either disabled or enabled.
2109  */
2110 extern void dev_kfree_skb_any(struct sk_buff *skb);
2111 
2112 extern int		netif_rx(struct sk_buff *skb);
2113 extern int		netif_rx_ni(struct sk_buff *skb);
2114 extern int		netif_receive_skb(struct sk_buff *skb);
2115 extern gro_result_t	dev_gro_receive(struct napi_struct *napi,
2116 					struct sk_buff *skb);
2117 extern gro_result_t	napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2118 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2119 					 struct sk_buff *skb);
2120 extern void		napi_gro_flush(struct napi_struct *napi);
2121 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2122 extern gro_result_t	napi_frags_finish(struct napi_struct *napi,
2123 					  struct sk_buff *skb,
2124 					  gro_result_t ret);
2125 extern struct sk_buff *	napi_frags_skb(struct napi_struct *napi);
2126 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2127 
napi_free_frags(struct napi_struct * napi)2128 static inline void napi_free_frags(struct napi_struct *napi)
2129 {
2130 	kfree_skb(napi->skb);
2131 	napi->skb = NULL;
2132 }
2133 
2134 extern int netdev_rx_handler_register(struct net_device *dev,
2135 				      rx_handler_func_t *rx_handler,
2136 				      void *rx_handler_data);
2137 extern void netdev_rx_handler_unregister(struct net_device *dev);
2138 
2139 extern bool		dev_valid_name(const char *name);
2140 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2141 extern int		dev_ethtool(struct net *net, struct ifreq *);
2142 extern unsigned		dev_get_flags(const struct net_device *);
2143 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2144 extern int		dev_change_flags(struct net_device *, unsigned);
2145 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2146 extern int		dev_change_name(struct net_device *, const char *);
2147 extern int		dev_set_alias(struct net_device *, const char *, size_t);
2148 extern int		dev_change_net_namespace(struct net_device *,
2149 						 struct net *, const char *);
2150 extern int		dev_set_mtu(struct net_device *, int);
2151 extern void		dev_set_group(struct net_device *, int);
2152 extern int		dev_set_mac_address(struct net_device *,
2153 					    struct sockaddr *);
2154 extern int		dev_hard_start_xmit(struct sk_buff *skb,
2155 					    struct net_device *dev,
2156 					    struct netdev_queue *txq);
2157 extern int		dev_forward_skb(struct net_device *dev,
2158 					struct sk_buff *skb);
2159 
2160 extern int		netdev_budget;
2161 
2162 /* Called by rtnetlink.c:rtnl_unlock() */
2163 extern void netdev_run_todo(void);
2164 
2165 /**
2166  *	dev_put - release reference to device
2167  *	@dev: network device
2168  *
2169  * Release reference to device to allow it to be freed.
2170  */
dev_put(struct net_device * dev)2171 static inline void dev_put(struct net_device *dev)
2172 {
2173 	this_cpu_dec(*dev->pcpu_refcnt);
2174 }
2175 
2176 /**
2177  *	dev_hold - get reference to device
2178  *	@dev: network device
2179  *
2180  * Hold reference to device to keep it from being freed.
2181  */
dev_hold(struct net_device * dev)2182 static inline void dev_hold(struct net_device *dev)
2183 {
2184 	this_cpu_inc(*dev->pcpu_refcnt);
2185 }
2186 
2187 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2188  * and _off may be called from IRQ context, but it is caller
2189  * who is responsible for serialization of these calls.
2190  *
2191  * The name carrier is inappropriate, these functions should really be
2192  * called netif_lowerlayer_*() because they represent the state of any
2193  * kind of lower layer not just hardware media.
2194  */
2195 
2196 extern void linkwatch_fire_event(struct net_device *dev);
2197 extern void linkwatch_forget_dev(struct net_device *dev);
2198 
2199 /**
2200  *	netif_carrier_ok - test if carrier present
2201  *	@dev: network device
2202  *
2203  * Check if carrier is present on device
2204  */
netif_carrier_ok(const struct net_device * dev)2205 static inline bool netif_carrier_ok(const struct net_device *dev)
2206 {
2207 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2208 }
2209 
2210 extern unsigned long dev_trans_start(struct net_device *dev);
2211 
2212 extern void __netdev_watchdog_up(struct net_device *dev);
2213 
2214 extern void netif_carrier_on(struct net_device *dev);
2215 
2216 extern void netif_carrier_off(struct net_device *dev);
2217 
2218 extern void netif_notify_peers(struct net_device *dev);
2219 
2220 /**
2221  *	netif_dormant_on - mark device as dormant.
2222  *	@dev: network device
2223  *
2224  * Mark device as dormant (as per RFC2863).
2225  *
2226  * The dormant state indicates that the relevant interface is not
2227  * actually in a condition to pass packets (i.e., it is not 'up') but is
2228  * in a "pending" state, waiting for some external event.  For "on-
2229  * demand" interfaces, this new state identifies the situation where the
2230  * interface is waiting for events to place it in the up state.
2231  *
2232  */
netif_dormant_on(struct net_device * dev)2233 static inline void netif_dormant_on(struct net_device *dev)
2234 {
2235 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2236 		linkwatch_fire_event(dev);
2237 }
2238 
2239 /**
2240  *	netif_dormant_off - set device as not dormant.
2241  *	@dev: network device
2242  *
2243  * Device is not in dormant state.
2244  */
netif_dormant_off(struct net_device * dev)2245 static inline void netif_dormant_off(struct net_device *dev)
2246 {
2247 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2248 		linkwatch_fire_event(dev);
2249 }
2250 
2251 /**
2252  *	netif_dormant - test if carrier present
2253  *	@dev: network device
2254  *
2255  * Check if carrier is present on device
2256  */
netif_dormant(const struct net_device * dev)2257 static inline bool netif_dormant(const struct net_device *dev)
2258 {
2259 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2260 }
2261 
2262 
2263 /**
2264  *	netif_oper_up - test if device is operational
2265  *	@dev: network device
2266  *
2267  * Check if carrier is operational
2268  */
netif_oper_up(const struct net_device * dev)2269 static inline bool netif_oper_up(const struct net_device *dev)
2270 {
2271 	return (dev->operstate == IF_OPER_UP ||
2272 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2273 }
2274 
2275 /**
2276  *	netif_device_present - is device available or removed
2277  *	@dev: network device
2278  *
2279  * Check if device has not been removed from system.
2280  */
netif_device_present(struct net_device * dev)2281 static inline bool netif_device_present(struct net_device *dev)
2282 {
2283 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2284 }
2285 
2286 extern void netif_device_detach(struct net_device *dev);
2287 
2288 extern void netif_device_attach(struct net_device *dev);
2289 
2290 /*
2291  * Network interface message level settings
2292  */
2293 
2294 enum {
2295 	NETIF_MSG_DRV		= 0x0001,
2296 	NETIF_MSG_PROBE		= 0x0002,
2297 	NETIF_MSG_LINK		= 0x0004,
2298 	NETIF_MSG_TIMER		= 0x0008,
2299 	NETIF_MSG_IFDOWN	= 0x0010,
2300 	NETIF_MSG_IFUP		= 0x0020,
2301 	NETIF_MSG_RX_ERR	= 0x0040,
2302 	NETIF_MSG_TX_ERR	= 0x0080,
2303 	NETIF_MSG_TX_QUEUED	= 0x0100,
2304 	NETIF_MSG_INTR		= 0x0200,
2305 	NETIF_MSG_TX_DONE	= 0x0400,
2306 	NETIF_MSG_RX_STATUS	= 0x0800,
2307 	NETIF_MSG_PKTDATA	= 0x1000,
2308 	NETIF_MSG_HW		= 0x2000,
2309 	NETIF_MSG_WOL		= 0x4000,
2310 };
2311 
2312 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2313 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2314 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2315 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2316 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2317 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2318 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2319 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2320 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2321 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2322 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2323 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2324 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2325 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2326 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2327 
netif_msg_init(int debug_value,int default_msg_enable_bits)2328 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2329 {
2330 	/* use default */
2331 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2332 		return default_msg_enable_bits;
2333 	if (debug_value == 0)	/* no output */
2334 		return 0;
2335 	/* set low N bits */
2336 	return (1 << debug_value) - 1;
2337 }
2338 
__netif_tx_lock(struct netdev_queue * txq,int cpu)2339 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2340 {
2341 	spin_lock(&txq->_xmit_lock);
2342 	txq->xmit_lock_owner = cpu;
2343 }
2344 
__netif_tx_lock_bh(struct netdev_queue * txq)2345 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2346 {
2347 	spin_lock_bh(&txq->_xmit_lock);
2348 	txq->xmit_lock_owner = smp_processor_id();
2349 }
2350 
__netif_tx_trylock(struct netdev_queue * txq)2351 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2352 {
2353 	bool ok = spin_trylock(&txq->_xmit_lock);
2354 	if (likely(ok))
2355 		txq->xmit_lock_owner = smp_processor_id();
2356 	return ok;
2357 }
2358 
__netif_tx_unlock(struct netdev_queue * txq)2359 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2360 {
2361 	txq->xmit_lock_owner = -1;
2362 	spin_unlock(&txq->_xmit_lock);
2363 }
2364 
__netif_tx_unlock_bh(struct netdev_queue * txq)2365 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2366 {
2367 	txq->xmit_lock_owner = -1;
2368 	spin_unlock_bh(&txq->_xmit_lock);
2369 }
2370 
txq_trans_update(struct netdev_queue * txq)2371 static inline void txq_trans_update(struct netdev_queue *txq)
2372 {
2373 	if (txq->xmit_lock_owner != -1)
2374 		txq->trans_start = jiffies;
2375 }
2376 
2377 /**
2378  *	netif_tx_lock - grab network device transmit lock
2379  *	@dev: network device
2380  *
2381  * Get network device transmit lock
2382  */
netif_tx_lock(struct net_device * dev)2383 static inline void netif_tx_lock(struct net_device *dev)
2384 {
2385 	unsigned int i;
2386 	int cpu;
2387 
2388 	spin_lock(&dev->tx_global_lock);
2389 	cpu = smp_processor_id();
2390 	for (i = 0; i < dev->num_tx_queues; i++) {
2391 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2392 
2393 		/* We are the only thread of execution doing a
2394 		 * freeze, but we have to grab the _xmit_lock in
2395 		 * order to synchronize with threads which are in
2396 		 * the ->hard_start_xmit() handler and already
2397 		 * checked the frozen bit.
2398 		 */
2399 		__netif_tx_lock(txq, cpu);
2400 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2401 		__netif_tx_unlock(txq);
2402 	}
2403 }
2404 
netif_tx_lock_bh(struct net_device * dev)2405 static inline void netif_tx_lock_bh(struct net_device *dev)
2406 {
2407 	local_bh_disable();
2408 	netif_tx_lock(dev);
2409 }
2410 
netif_tx_unlock(struct net_device * dev)2411 static inline void netif_tx_unlock(struct net_device *dev)
2412 {
2413 	unsigned int i;
2414 
2415 	for (i = 0; i < dev->num_tx_queues; i++) {
2416 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2417 
2418 		/* No need to grab the _xmit_lock here.  If the
2419 		 * queue is not stopped for another reason, we
2420 		 * force a schedule.
2421 		 */
2422 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2423 		netif_schedule_queue(txq);
2424 	}
2425 	spin_unlock(&dev->tx_global_lock);
2426 }
2427 
netif_tx_unlock_bh(struct net_device * dev)2428 static inline void netif_tx_unlock_bh(struct net_device *dev)
2429 {
2430 	netif_tx_unlock(dev);
2431 	local_bh_enable();
2432 }
2433 
2434 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2435 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2436 		__netif_tx_lock(txq, cpu);		\
2437 	}						\
2438 }
2439 
2440 #define HARD_TX_UNLOCK(dev, txq) {			\
2441 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2442 		__netif_tx_unlock(txq);			\
2443 	}						\
2444 }
2445 
netif_tx_disable(struct net_device * dev)2446 static inline void netif_tx_disable(struct net_device *dev)
2447 {
2448 	unsigned int i;
2449 	int cpu;
2450 
2451 	local_bh_disable();
2452 	cpu = smp_processor_id();
2453 	for (i = 0; i < dev->num_tx_queues; i++) {
2454 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2455 
2456 		__netif_tx_lock(txq, cpu);
2457 		netif_tx_stop_queue(txq);
2458 		__netif_tx_unlock(txq);
2459 	}
2460 	local_bh_enable();
2461 }
2462 
netif_addr_lock(struct net_device * dev)2463 static inline void netif_addr_lock(struct net_device *dev)
2464 {
2465 	spin_lock(&dev->addr_list_lock);
2466 }
2467 
netif_addr_lock_nested(struct net_device * dev)2468 static inline void netif_addr_lock_nested(struct net_device *dev)
2469 {
2470 	spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2471 }
2472 
netif_addr_lock_bh(struct net_device * dev)2473 static inline void netif_addr_lock_bh(struct net_device *dev)
2474 {
2475 	spin_lock_bh(&dev->addr_list_lock);
2476 }
2477 
netif_addr_unlock(struct net_device * dev)2478 static inline void netif_addr_unlock(struct net_device *dev)
2479 {
2480 	spin_unlock(&dev->addr_list_lock);
2481 }
2482 
netif_addr_unlock_bh(struct net_device * dev)2483 static inline void netif_addr_unlock_bh(struct net_device *dev)
2484 {
2485 	spin_unlock_bh(&dev->addr_list_lock);
2486 }
2487 
2488 /*
2489  * dev_addrs walker. Should be used only for read access. Call with
2490  * rcu_read_lock held.
2491  */
2492 #define for_each_dev_addr(dev, ha) \
2493 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2494 
2495 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2496 
2497 extern void		ether_setup(struct net_device *dev);
2498 
2499 /* Support for loadable net-drivers */
2500 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2501 				       void (*setup)(struct net_device *),
2502 				       unsigned int txqs, unsigned int rxqs);
2503 #define alloc_netdev(sizeof_priv, name, setup) \
2504 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2505 
2506 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2507 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2508 
2509 extern int		register_netdev(struct net_device *dev);
2510 extern void		unregister_netdev(struct net_device *dev);
2511 
2512 /* General hardware address lists handling functions */
2513 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2514 				  struct netdev_hw_addr_list *from_list,
2515 				  int addr_len, unsigned char addr_type);
2516 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2517 				   struct netdev_hw_addr_list *from_list,
2518 				   int addr_len, unsigned char addr_type);
2519 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2520 			  struct netdev_hw_addr_list *from_list,
2521 			  int addr_len);
2522 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2523 			     struct netdev_hw_addr_list *from_list,
2524 			     int addr_len);
2525 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2526 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2527 
2528 /* Functions used for device addresses handling */
2529 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2530 			unsigned char addr_type);
2531 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2532 			unsigned char addr_type);
2533 extern int dev_addr_add_multiple(struct net_device *to_dev,
2534 				 struct net_device *from_dev,
2535 				 unsigned char addr_type);
2536 extern int dev_addr_del_multiple(struct net_device *to_dev,
2537 				 struct net_device *from_dev,
2538 				 unsigned char addr_type);
2539 extern void dev_addr_flush(struct net_device *dev);
2540 extern int dev_addr_init(struct net_device *dev);
2541 
2542 /* Functions used for unicast addresses handling */
2543 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2544 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2545 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2546 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2547 extern void dev_uc_flush(struct net_device *dev);
2548 extern void dev_uc_init(struct net_device *dev);
2549 
2550 /* Functions used for multicast addresses handling */
2551 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2552 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2553 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2554 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2555 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2556 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2557 extern void dev_mc_flush(struct net_device *dev);
2558 extern void dev_mc_init(struct net_device *dev);
2559 
2560 /* Functions used for secondary unicast and multicast support */
2561 extern void		dev_set_rx_mode(struct net_device *dev);
2562 extern void		__dev_set_rx_mode(struct net_device *dev);
2563 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2564 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2565 extern void		netdev_state_change(struct net_device *dev);
2566 extern int		netdev_bonding_change(struct net_device *dev,
2567 					      unsigned long event);
2568 extern void		netdev_features_change(struct net_device *dev);
2569 /* Load a device via the kmod */
2570 extern void		dev_load(struct net *net, const char *name);
2571 extern void		dev_mcast_init(void);
2572 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2573 					       struct rtnl_link_stats64 *storage);
2574 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2575 				    const struct net_device_stats *netdev_stats);
2576 
2577 extern int		netdev_max_backlog;
2578 extern int		netdev_tstamp_prequeue;
2579 extern int		weight_p;
2580 extern int		bpf_jit_enable;
2581 extern int		netdev_set_master(struct net_device *dev, struct net_device *master);
2582 extern int netdev_set_bond_master(struct net_device *dev,
2583 				  struct net_device *master);
2584 extern int skb_checksum_help(struct sk_buff *skb);
2585 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2586 	netdev_features_t features);
2587 #ifdef CONFIG_BUG
2588 extern void netdev_rx_csum_fault(struct net_device *dev);
2589 #else
netdev_rx_csum_fault(struct net_device * dev)2590 static inline void netdev_rx_csum_fault(struct net_device *dev)
2591 {
2592 }
2593 #endif
2594 /* rx skb timestamps */
2595 extern void		net_enable_timestamp(void);
2596 extern void		net_disable_timestamp(void);
2597 
2598 #ifdef CONFIG_PROC_FS
2599 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2600 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2601 extern void dev_seq_stop(struct seq_file *seq, void *v);
2602 #endif
2603 
2604 extern int netdev_class_create_file(struct class_attribute *class_attr);
2605 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2606 
2607 extern struct kobj_ns_type_operations net_ns_type_operations;
2608 
2609 extern const char *netdev_drivername(const struct net_device *dev);
2610 
2611 extern void linkwatch_run_queue(void);
2612 
netdev_get_wanted_features(struct net_device * dev)2613 static inline netdev_features_t netdev_get_wanted_features(
2614 	struct net_device *dev)
2615 {
2616 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2617 }
2618 netdev_features_t netdev_increment_features(netdev_features_t all,
2619 	netdev_features_t one, netdev_features_t mask);
2620 int __netdev_update_features(struct net_device *dev);
2621 void netdev_update_features(struct net_device *dev);
2622 void netdev_change_features(struct net_device *dev);
2623 
2624 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2625 					struct net_device *dev);
2626 
2627 netdev_features_t netif_skb_features(struct sk_buff *skb);
2628 
net_gso_ok(netdev_features_t features,int gso_type)2629 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2630 {
2631 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2632 
2633 	/* check flags correspondence */
2634 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2635 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2636 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2637 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2638 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2639 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2640 
2641 	return (features & feature) == feature;
2642 }
2643 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)2644 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2645 {
2646 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2647 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2648 }
2649 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)2650 static inline bool netif_needs_gso(struct sk_buff *skb,
2651 				   netdev_features_t features)
2652 {
2653 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2654 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2655 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2656 }
2657 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)2658 static inline void netif_set_gso_max_size(struct net_device *dev,
2659 					  unsigned int size)
2660 {
2661 	dev->gso_max_size = size;
2662 }
2663 
netif_is_bond_slave(struct net_device * dev)2664 static inline bool netif_is_bond_slave(struct net_device *dev)
2665 {
2666 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2667 }
2668 
netif_supports_nofcs(struct net_device * dev)2669 static inline bool netif_supports_nofcs(struct net_device *dev)
2670 {
2671 	return dev->priv_flags & IFF_SUPP_NOFCS;
2672 }
2673 
2674 extern struct pernet_operations __net_initdata loopback_net_ops;
2675 
2676 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2677 
2678 /* netdev_printk helpers, similar to dev_printk */
2679 
netdev_name(const struct net_device * dev)2680 static inline const char *netdev_name(const struct net_device *dev)
2681 {
2682 	if (dev->reg_state != NETREG_REGISTERED)
2683 		return "(unregistered net_device)";
2684 	return dev->name;
2685 }
2686 
2687 extern int __netdev_printk(const char *level, const struct net_device *dev,
2688 			struct va_format *vaf);
2689 
2690 extern __printf(3, 4)
2691 int netdev_printk(const char *level, const struct net_device *dev,
2692 		  const char *format, ...);
2693 extern __printf(2, 3)
2694 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2695 extern __printf(2, 3)
2696 int netdev_alert(const struct net_device *dev, const char *format, ...);
2697 extern __printf(2, 3)
2698 int netdev_crit(const struct net_device *dev, const char *format, ...);
2699 extern __printf(2, 3)
2700 int netdev_err(const struct net_device *dev, const char *format, ...);
2701 extern __printf(2, 3)
2702 int netdev_warn(const struct net_device *dev, const char *format, ...);
2703 extern __printf(2, 3)
2704 int netdev_notice(const struct net_device *dev, const char *format, ...);
2705 extern __printf(2, 3)
2706 int netdev_info(const struct net_device *dev, const char *format, ...);
2707 
2708 #define MODULE_ALIAS_NETDEV(device) \
2709 	MODULE_ALIAS("netdev-" device)
2710 
2711 #if defined(CONFIG_DYNAMIC_DEBUG)
2712 #define netdev_dbg(__dev, format, args...)			\
2713 do {								\
2714 	dynamic_netdev_dbg(__dev, format, ##args);		\
2715 } while (0)
2716 #elif defined(DEBUG)
2717 #define netdev_dbg(__dev, format, args...)			\
2718 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2719 #else
2720 #define netdev_dbg(__dev, format, args...)			\
2721 ({								\
2722 	if (0)							\
2723 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2724 	0;							\
2725 })
2726 #endif
2727 
2728 #if defined(VERBOSE_DEBUG)
2729 #define netdev_vdbg	netdev_dbg
2730 #else
2731 
2732 #define netdev_vdbg(dev, format, args...)			\
2733 ({								\
2734 	if (0)							\
2735 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2736 	0;							\
2737 })
2738 #endif
2739 
2740 /*
2741  * netdev_WARN() acts like dev_printk(), but with the key difference
2742  * of using a WARN/WARN_ON to get the message out, including the
2743  * file/line information and a backtrace.
2744  */
2745 #define netdev_WARN(dev, format, args...)			\
2746 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2747 
2748 /* netif printk helpers, similar to netdev_printk */
2749 
2750 #define netif_printk(priv, type, level, dev, fmt, args...)	\
2751 do {					  			\
2752 	if (netif_msg_##type(priv))				\
2753 		netdev_printk(level, (dev), fmt, ##args);	\
2754 } while (0)
2755 
2756 #define netif_level(level, priv, type, dev, fmt, args...)	\
2757 do {								\
2758 	if (netif_msg_##type(priv))				\
2759 		netdev_##level(dev, fmt, ##args);		\
2760 } while (0)
2761 
2762 #define netif_emerg(priv, type, dev, fmt, args...)		\
2763 	netif_level(emerg, priv, type, dev, fmt, ##args)
2764 #define netif_alert(priv, type, dev, fmt, args...)		\
2765 	netif_level(alert, priv, type, dev, fmt, ##args)
2766 #define netif_crit(priv, type, dev, fmt, args...)		\
2767 	netif_level(crit, priv, type, dev, fmt, ##args)
2768 #define netif_err(priv, type, dev, fmt, args...)		\
2769 	netif_level(err, priv, type, dev, fmt, ##args)
2770 #define netif_warn(priv, type, dev, fmt, args...)		\
2771 	netif_level(warn, priv, type, dev, fmt, ##args)
2772 #define netif_notice(priv, type, dev, fmt, args...)		\
2773 	netif_level(notice, priv, type, dev, fmt, ##args)
2774 #define netif_info(priv, type, dev, fmt, args...)		\
2775 	netif_level(info, priv, type, dev, fmt, ##args)
2776 
2777 #if defined(DEBUG)
2778 #define netif_dbg(priv, type, dev, format, args...)		\
2779 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2780 #elif defined(CONFIG_DYNAMIC_DEBUG)
2781 #define netif_dbg(priv, type, netdev, format, args...)		\
2782 do {								\
2783 	if (netif_msg_##type(priv))				\
2784 		dynamic_netdev_dbg(netdev, format, ##args);	\
2785 } while (0)
2786 #else
2787 #define netif_dbg(priv, type, dev, format, args...)			\
2788 ({									\
2789 	if (0)								\
2790 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2791 	0;								\
2792 })
2793 #endif
2794 
2795 #if defined(VERBOSE_DEBUG)
2796 #define netif_vdbg	netif_dbg
2797 #else
2798 #define netif_vdbg(priv, type, dev, format, args...)		\
2799 ({								\
2800 	if (0)							\
2801 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2802 	0;							\
2803 })
2804 #endif
2805 
2806 #endif /* __KERNEL__ */
2807 
2808 #endif	/* _LINUX_NETDEVICE_H */
2809