• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * EDMA3 support for DaVinci
3  *
4  * Copyright (C) 2006-2009 Texas Instruments.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/platform_device.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 
28 #include <mach/edma.h>
29 
30 /* Offsets matching "struct edmacc_param" */
31 #define PARM_OPT		0x00
32 #define PARM_SRC		0x04
33 #define PARM_A_B_CNT		0x08
34 #define PARM_DST		0x0c
35 #define PARM_SRC_DST_BIDX	0x10
36 #define PARM_LINK_BCNTRLD	0x14
37 #define PARM_SRC_DST_CIDX	0x18
38 #define PARM_CCNT		0x1c
39 
40 #define PARM_SIZE		0x20
41 
42 /* Offsets for EDMA CC global channel registers and their shadows */
43 #define SH_ER		0x00	/* 64 bits */
44 #define SH_ECR		0x08	/* 64 bits */
45 #define SH_ESR		0x10	/* 64 bits */
46 #define SH_CER		0x18	/* 64 bits */
47 #define SH_EER		0x20	/* 64 bits */
48 #define SH_EECR		0x28	/* 64 bits */
49 #define SH_EESR		0x30	/* 64 bits */
50 #define SH_SER		0x38	/* 64 bits */
51 #define SH_SECR		0x40	/* 64 bits */
52 #define SH_IER		0x50	/* 64 bits */
53 #define SH_IECR		0x58	/* 64 bits */
54 #define SH_IESR		0x60	/* 64 bits */
55 #define SH_IPR		0x68	/* 64 bits */
56 #define SH_ICR		0x70	/* 64 bits */
57 #define SH_IEVAL	0x78
58 #define SH_QER		0x80
59 #define SH_QEER		0x84
60 #define SH_QEECR	0x88
61 #define SH_QEESR	0x8c
62 #define SH_QSER		0x90
63 #define SH_QSECR	0x94
64 #define SH_SIZE		0x200
65 
66 /* Offsets for EDMA CC global registers */
67 #define EDMA_REV	0x0000
68 #define EDMA_CCCFG	0x0004
69 #define EDMA_QCHMAP	0x0200	/* 8 registers */
70 #define EDMA_DMAQNUM	0x0240	/* 8 registers (4 on OMAP-L1xx) */
71 #define EDMA_QDMAQNUM	0x0260
72 #define EDMA_QUETCMAP	0x0280
73 #define EDMA_QUEPRI	0x0284
74 #define EDMA_EMR	0x0300	/* 64 bits */
75 #define EDMA_EMCR	0x0308	/* 64 bits */
76 #define EDMA_QEMR	0x0310
77 #define EDMA_QEMCR	0x0314
78 #define EDMA_CCERR	0x0318
79 #define EDMA_CCERRCLR	0x031c
80 #define EDMA_EEVAL	0x0320
81 #define EDMA_DRAE	0x0340	/* 4 x 64 bits*/
82 #define EDMA_QRAE	0x0380	/* 4 registers */
83 #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
84 #define EDMA_QSTAT	0x0600	/* 2 registers */
85 #define EDMA_QWMTHRA	0x0620
86 #define EDMA_QWMTHRB	0x0624
87 #define EDMA_CCSTAT	0x0640
88 
89 #define EDMA_M		0x1000	/* global channel registers */
90 #define EDMA_ECR	0x1008
91 #define EDMA_ECRH	0x100C
92 #define EDMA_SHADOW0	0x2000	/* 4 regions shadowing global channels */
93 #define EDMA_PARM	0x4000	/* 128 param entries */
94 
95 #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
96 
97 #define EDMA_DCHMAP	0x0100  /* 64 registers */
98 #define CHMAP_EXIST	BIT(24)
99 
100 #define EDMA_MAX_DMACH           64
101 #define EDMA_MAX_PARAMENTRY     512
102 
103 /*****************************************************************************/
104 
105 static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
106 
edma_read(unsigned ctlr,int offset)107 static inline unsigned int edma_read(unsigned ctlr, int offset)
108 {
109 	return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
110 }
111 
edma_write(unsigned ctlr,int offset,int val)112 static inline void edma_write(unsigned ctlr, int offset, int val)
113 {
114 	__raw_writel(val, edmacc_regs_base[ctlr] + offset);
115 }
edma_modify(unsigned ctlr,int offset,unsigned and,unsigned or)116 static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
117 		unsigned or)
118 {
119 	unsigned val = edma_read(ctlr, offset);
120 	val &= and;
121 	val |= or;
122 	edma_write(ctlr, offset, val);
123 }
edma_and(unsigned ctlr,int offset,unsigned and)124 static inline void edma_and(unsigned ctlr, int offset, unsigned and)
125 {
126 	unsigned val = edma_read(ctlr, offset);
127 	val &= and;
128 	edma_write(ctlr, offset, val);
129 }
edma_or(unsigned ctlr,int offset,unsigned or)130 static inline void edma_or(unsigned ctlr, int offset, unsigned or)
131 {
132 	unsigned val = edma_read(ctlr, offset);
133 	val |= or;
134 	edma_write(ctlr, offset, val);
135 }
edma_read_array(unsigned ctlr,int offset,int i)136 static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
137 {
138 	return edma_read(ctlr, offset + (i << 2));
139 }
edma_write_array(unsigned ctlr,int offset,int i,unsigned val)140 static inline void edma_write_array(unsigned ctlr, int offset, int i,
141 		unsigned val)
142 {
143 	edma_write(ctlr, offset + (i << 2), val);
144 }
edma_modify_array(unsigned ctlr,int offset,int i,unsigned and,unsigned or)145 static inline void edma_modify_array(unsigned ctlr, int offset, int i,
146 		unsigned and, unsigned or)
147 {
148 	edma_modify(ctlr, offset + (i << 2), and, or);
149 }
edma_or_array(unsigned ctlr,int offset,int i,unsigned or)150 static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
151 {
152 	edma_or(ctlr, offset + (i << 2), or);
153 }
edma_or_array2(unsigned ctlr,int offset,int i,int j,unsigned or)154 static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
155 		unsigned or)
156 {
157 	edma_or(ctlr, offset + ((i*2 + j) << 2), or);
158 }
edma_write_array2(unsigned ctlr,int offset,int i,int j,unsigned val)159 static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
160 		unsigned val)
161 {
162 	edma_write(ctlr, offset + ((i*2 + j) << 2), val);
163 }
edma_shadow0_read(unsigned ctlr,int offset)164 static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
165 {
166 	return edma_read(ctlr, EDMA_SHADOW0 + offset);
167 }
edma_shadow0_read_array(unsigned ctlr,int offset,int i)168 static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
169 		int i)
170 {
171 	return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
172 }
edma_shadow0_write(unsigned ctlr,int offset,unsigned val)173 static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
174 {
175 	edma_write(ctlr, EDMA_SHADOW0 + offset, val);
176 }
edma_shadow0_write_array(unsigned ctlr,int offset,int i,unsigned val)177 static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
178 		unsigned val)
179 {
180 	edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
181 }
edma_parm_read(unsigned ctlr,int offset,int param_no)182 static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
183 		int param_no)
184 {
185 	return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
186 }
edma_parm_write(unsigned ctlr,int offset,int param_no,unsigned val)187 static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
188 		unsigned val)
189 {
190 	edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
191 }
edma_parm_modify(unsigned ctlr,int offset,int param_no,unsigned and,unsigned or)192 static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
193 		unsigned and, unsigned or)
194 {
195 	edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
196 }
edma_parm_and(unsigned ctlr,int offset,int param_no,unsigned and)197 static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
198 		unsigned and)
199 {
200 	edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
201 }
edma_parm_or(unsigned ctlr,int offset,int param_no,unsigned or)202 static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
203 		unsigned or)
204 {
205 	edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
206 }
207 
set_bits(int offset,int len,unsigned long * p)208 static inline void set_bits(int offset, int len, unsigned long *p)
209 {
210 	for (; len > 0; len--)
211 		set_bit(offset + (len - 1), p);
212 }
213 
clear_bits(int offset,int len,unsigned long * p)214 static inline void clear_bits(int offset, int len, unsigned long *p)
215 {
216 	for (; len > 0; len--)
217 		clear_bit(offset + (len - 1), p);
218 }
219 
220 /*****************************************************************************/
221 
222 /* actual number of DMA channels and slots on this silicon */
223 struct edma {
224 	/* how many dma resources of each type */
225 	unsigned	num_channels;
226 	unsigned	num_region;
227 	unsigned	num_slots;
228 	unsigned	num_tc;
229 	unsigned	num_cc;
230 	enum dma_event_q 	default_queue;
231 
232 	/* list of channels with no even trigger; terminated by "-1" */
233 	const s8	*noevent;
234 
235 	/* The edma_inuse bit for each PaRAM slot is clear unless the
236 	 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
237 	 */
238 	DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
239 
240 	/* The edma_unused bit for each channel is clear unless
241 	 * it is not being used on this platform. It uses a bit
242 	 * of SOC-specific initialization code.
243 	 */
244 	DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
245 
246 	unsigned	irq_res_start;
247 	unsigned	irq_res_end;
248 
249 	struct dma_interrupt_data {
250 		void (*callback)(unsigned channel, unsigned short ch_status,
251 				void *data);
252 		void *data;
253 	} intr_data[EDMA_MAX_DMACH];
254 };
255 
256 static struct edma *edma_cc[EDMA_MAX_CC];
257 static int arch_num_cc;
258 
259 /* dummy param set used to (re)initialize parameter RAM slots */
260 static const struct edmacc_param dummy_paramset = {
261 	.link_bcntrld = 0xffff,
262 	.ccnt = 1,
263 };
264 
265 /*****************************************************************************/
266 
map_dmach_queue(unsigned ctlr,unsigned ch_no,enum dma_event_q queue_no)267 static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
268 		enum dma_event_q queue_no)
269 {
270 	int bit = (ch_no & 0x7) * 4;
271 
272 	/* default to low priority queue */
273 	if (queue_no == EVENTQ_DEFAULT)
274 		queue_no = edma_cc[ctlr]->default_queue;
275 
276 	queue_no &= 7;
277 	edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
278 			~(0x7 << bit), queue_no << bit);
279 }
280 
map_queue_tc(unsigned ctlr,int queue_no,int tc_no)281 static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
282 {
283 	int bit = queue_no * 4;
284 	edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
285 }
286 
assign_priority_to_queue(unsigned ctlr,int queue_no,int priority)287 static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
288 		int priority)
289 {
290 	int bit = queue_no * 4;
291 	edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
292 			((priority & 0x7) << bit));
293 }
294 
295 /**
296  * map_dmach_param - Maps channel number to param entry number
297  *
298  * This maps the dma channel number to param entry numberter. In
299  * other words using the DMA channel mapping registers a param entry
300  * can be mapped to any channel
301  *
302  * Callers are responsible for ensuring the channel mapping logic is
303  * included in that particular EDMA variant (Eg : dm646x)
304  *
305  */
map_dmach_param(unsigned ctlr)306 static void __init map_dmach_param(unsigned ctlr)
307 {
308 	int i;
309 	for (i = 0; i < EDMA_MAX_DMACH; i++)
310 		edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
311 }
312 
313 static inline void
setup_dma_interrupt(unsigned lch,void (* callback)(unsigned channel,u16 ch_status,void * data),void * data)314 setup_dma_interrupt(unsigned lch,
315 	void (*callback)(unsigned channel, u16 ch_status, void *data),
316 	void *data)
317 {
318 	unsigned ctlr;
319 
320 	ctlr = EDMA_CTLR(lch);
321 	lch = EDMA_CHAN_SLOT(lch);
322 
323 	if (!callback)
324 		edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
325 				BIT(lch & 0x1f));
326 
327 	edma_cc[ctlr]->intr_data[lch].callback = callback;
328 	edma_cc[ctlr]->intr_data[lch].data = data;
329 
330 	if (callback) {
331 		edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
332 				BIT(lch & 0x1f));
333 		edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
334 				BIT(lch & 0x1f));
335 	}
336 }
337 
irq2ctlr(int irq)338 static int irq2ctlr(int irq)
339 {
340 	if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
341 		return 0;
342 	else if (irq >= edma_cc[1]->irq_res_start &&
343 		irq <= edma_cc[1]->irq_res_end)
344 		return 1;
345 
346 	return -1;
347 }
348 
349 /******************************************************************************
350  *
351  * DMA interrupt handler
352  *
353  *****************************************************************************/
dma_irq_handler(int irq,void * data)354 static irqreturn_t dma_irq_handler(int irq, void *data)
355 {
356 	int i;
357 	int ctlr;
358 	unsigned int cnt = 0;
359 
360 	ctlr = irq2ctlr(irq);
361 	if (ctlr < 0)
362 		return IRQ_NONE;
363 
364 	dev_dbg(data, "dma_irq_handler\n");
365 
366 	if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0) &&
367 	    (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
368 		return IRQ_NONE;
369 
370 	while (1) {
371 		int j;
372 		if (edma_shadow0_read_array(ctlr, SH_IPR, 0) &
373 				edma_shadow0_read_array(ctlr, SH_IER, 0))
374 			j = 0;
375 		else if (edma_shadow0_read_array(ctlr, SH_IPR, 1) &
376 				edma_shadow0_read_array(ctlr, SH_IER, 1))
377 			j = 1;
378 		else
379 			break;
380 		dev_dbg(data, "IPR%d %08x\n", j,
381 				edma_shadow0_read_array(ctlr, SH_IPR, j));
382 		for (i = 0; i < 32; i++) {
383 			int k = (j << 5) + i;
384 			if ((edma_shadow0_read_array(ctlr, SH_IPR, j) & BIT(i))
385 					&& (edma_shadow0_read_array(ctlr,
386 							SH_IER, j) & BIT(i))) {
387 				/* Clear the corresponding IPR bits */
388 				edma_shadow0_write_array(ctlr, SH_ICR, j,
389 							BIT(i));
390 				if (edma_cc[ctlr]->intr_data[k].callback)
391 					edma_cc[ctlr]->intr_data[k].callback(
392 						k, DMA_COMPLETE,
393 						edma_cc[ctlr]->intr_data[k].
394 						data);
395 			}
396 		}
397 		cnt++;
398 		if (cnt > 10)
399 			break;
400 	}
401 	edma_shadow0_write(ctlr, SH_IEVAL, 1);
402 	return IRQ_HANDLED;
403 }
404 
405 /******************************************************************************
406  *
407  * DMA error interrupt handler
408  *
409  *****************************************************************************/
dma_ccerr_handler(int irq,void * data)410 static irqreturn_t dma_ccerr_handler(int irq, void *data)
411 {
412 	int i;
413 	int ctlr;
414 	unsigned int cnt = 0;
415 
416 	ctlr = irq2ctlr(irq);
417 	if (ctlr < 0)
418 		return IRQ_NONE;
419 
420 	dev_dbg(data, "dma_ccerr_handler\n");
421 
422 	if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
423 	    (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
424 	    (edma_read(ctlr, EDMA_QEMR) == 0) &&
425 	    (edma_read(ctlr, EDMA_CCERR) == 0))
426 		return IRQ_NONE;
427 
428 	while (1) {
429 		int j = -1;
430 		if (edma_read_array(ctlr, EDMA_EMR, 0))
431 			j = 0;
432 		else if (edma_read_array(ctlr, EDMA_EMR, 1))
433 			j = 1;
434 		if (j >= 0) {
435 			dev_dbg(data, "EMR%d %08x\n", j,
436 					edma_read_array(ctlr, EDMA_EMR, j));
437 			for (i = 0; i < 32; i++) {
438 				int k = (j << 5) + i;
439 				if (edma_read_array(ctlr, EDMA_EMR, j) &
440 							BIT(i)) {
441 					/* Clear the corresponding EMR bits */
442 					edma_write_array(ctlr, EDMA_EMCR, j,
443 							BIT(i));
444 					/* Clear any SER */
445 					edma_shadow0_write_array(ctlr, SH_SECR,
446 								j, BIT(i));
447 					if (edma_cc[ctlr]->intr_data[k].
448 								callback) {
449 						edma_cc[ctlr]->intr_data[k].
450 						callback(k,
451 						DMA_CC_ERROR,
452 						edma_cc[ctlr]->intr_data
453 						[k].data);
454 					}
455 				}
456 			}
457 		} else if (edma_read(ctlr, EDMA_QEMR)) {
458 			dev_dbg(data, "QEMR %02x\n",
459 				edma_read(ctlr, EDMA_QEMR));
460 			for (i = 0; i < 8; i++) {
461 				if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
462 					/* Clear the corresponding IPR bits */
463 					edma_write(ctlr, EDMA_QEMCR, BIT(i));
464 					edma_shadow0_write(ctlr, SH_QSECR,
465 								BIT(i));
466 
467 					/* NOTE:  not reported!! */
468 				}
469 			}
470 		} else if (edma_read(ctlr, EDMA_CCERR)) {
471 			dev_dbg(data, "CCERR %08x\n",
472 				edma_read(ctlr, EDMA_CCERR));
473 			/* FIXME:  CCERR.BIT(16) ignored!  much better
474 			 * to just write CCERRCLR with CCERR value...
475 			 */
476 			for (i = 0; i < 8; i++) {
477 				if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
478 					/* Clear the corresponding IPR bits */
479 					edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
480 
481 					/* NOTE:  not reported!! */
482 				}
483 			}
484 		}
485 		if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
486 		    (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
487 		    (edma_read(ctlr, EDMA_QEMR) == 0) &&
488 		    (edma_read(ctlr, EDMA_CCERR) == 0))
489 			break;
490 		cnt++;
491 		if (cnt > 10)
492 			break;
493 	}
494 	edma_write(ctlr, EDMA_EEVAL, 1);
495 	return IRQ_HANDLED;
496 }
497 
498 /******************************************************************************
499  *
500  * Transfer controller error interrupt handlers
501  *
502  *****************************************************************************/
503 
504 #define tc_errs_handled	false	/* disabled as long as they're NOPs */
505 
dma_tc0err_handler(int irq,void * data)506 static irqreturn_t dma_tc0err_handler(int irq, void *data)
507 {
508 	dev_dbg(data, "dma_tc0err_handler\n");
509 	return IRQ_HANDLED;
510 }
511 
dma_tc1err_handler(int irq,void * data)512 static irqreturn_t dma_tc1err_handler(int irq, void *data)
513 {
514 	dev_dbg(data, "dma_tc1err_handler\n");
515 	return IRQ_HANDLED;
516 }
517 
reserve_contiguous_slots(int ctlr,unsigned int id,unsigned int num_slots,unsigned int start_slot)518 static int reserve_contiguous_slots(int ctlr, unsigned int id,
519 				     unsigned int num_slots,
520 				     unsigned int start_slot)
521 {
522 	int i, j;
523 	unsigned int count = num_slots;
524 	int stop_slot = start_slot;
525 	DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
526 
527 	for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
528 		j = EDMA_CHAN_SLOT(i);
529 		if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
530 			/* Record our current beginning slot */
531 			if (count == num_slots)
532 				stop_slot = i;
533 
534 			count--;
535 			set_bit(j, tmp_inuse);
536 
537 			if (count == 0)
538 				break;
539 		} else {
540 			clear_bit(j, tmp_inuse);
541 
542 			if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
543 				stop_slot = i;
544 				break;
545 			} else {
546 				count = num_slots;
547 			}
548 		}
549 	}
550 
551 	/*
552 	 * We have to clear any bits that we set
553 	 * if we run out parameter RAM slots, i.e we do find a set
554 	 * of contiguous parameter RAM slots but do not find the exact number
555 	 * requested as we may reach the total number of parameter RAM slots
556 	 */
557 	if (i == edma_cc[ctlr]->num_slots)
558 		stop_slot = i;
559 
560 	for (j = start_slot; j < stop_slot; j++)
561 		if (test_bit(j, tmp_inuse))
562 			clear_bit(j, edma_cc[ctlr]->edma_inuse);
563 
564 	if (count)
565 		return -EBUSY;
566 
567 	for (j = i - num_slots + 1; j <= i; ++j)
568 		memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
569 			&dummy_paramset, PARM_SIZE);
570 
571 	return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
572 }
573 
prepare_unused_channel_list(struct device * dev,void * data)574 static int prepare_unused_channel_list(struct device *dev, void *data)
575 {
576 	struct platform_device *pdev = to_platform_device(dev);
577 	int i, ctlr;
578 
579 	for (i = 0; i < pdev->num_resources; i++) {
580 		if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
581 				(int)pdev->resource[i].start >= 0) {
582 			ctlr = EDMA_CTLR(pdev->resource[i].start);
583 			clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
584 					edma_cc[ctlr]->edma_unused);
585 		}
586 	}
587 
588 	return 0;
589 }
590 
591 /*-----------------------------------------------------------------------*/
592 
593 static bool unused_chan_list_done;
594 
595 /* Resource alloc/free:  dma channels, parameter RAM slots */
596 
597 /**
598  * edma_alloc_channel - allocate DMA channel and paired parameter RAM
599  * @channel: specific channel to allocate; negative for "any unmapped channel"
600  * @callback: optional; to be issued on DMA completion or errors
601  * @data: passed to callback
602  * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
603  *	Controller (TC) executes requests using this channel.  Use
604  *	EVENTQ_DEFAULT unless you really need a high priority queue.
605  *
606  * This allocates a DMA channel and its associated parameter RAM slot.
607  * The parameter RAM is initialized to hold a dummy transfer.
608  *
609  * Normal use is to pass a specific channel number as @channel, to make
610  * use of hardware events mapped to that channel.  When the channel will
611  * be used only for software triggering or event chaining, channels not
612  * mapped to hardware events (or mapped to unused events) are preferable.
613  *
614  * DMA transfers start from a channel using edma_start(), or by
615  * chaining.  When the transfer described in that channel's parameter RAM
616  * slot completes, that slot's data may be reloaded through a link.
617  *
618  * DMA errors are only reported to the @callback associated with the
619  * channel driving that transfer, but transfer completion callbacks can
620  * be sent to another channel under control of the TCC field in
621  * the option word of the transfer's parameter RAM set.  Drivers must not
622  * use DMA transfer completion callbacks for channels they did not allocate.
623  * (The same applies to TCC codes used in transfer chaining.)
624  *
625  * Returns the number of the channel, else negative errno.
626  */
edma_alloc_channel(int channel,void (* callback)(unsigned channel,u16 ch_status,void * data),void * data,enum dma_event_q eventq_no)627 int edma_alloc_channel(int channel,
628 		void (*callback)(unsigned channel, u16 ch_status, void *data),
629 		void *data,
630 		enum dma_event_q eventq_no)
631 {
632 	unsigned i, done = 0, ctlr = 0;
633 	int ret = 0;
634 
635 	if (!unused_chan_list_done) {
636 		/*
637 		 * Scan all the platform devices to find out the EDMA channels
638 		 * used and clear them in the unused list, making the rest
639 		 * available for ARM usage.
640 		 */
641 		ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
642 				prepare_unused_channel_list);
643 		if (ret < 0)
644 			return ret;
645 
646 		unused_chan_list_done = true;
647 	}
648 
649 	if (channel >= 0) {
650 		ctlr = EDMA_CTLR(channel);
651 		channel = EDMA_CHAN_SLOT(channel);
652 	}
653 
654 	if (channel < 0) {
655 		for (i = 0; i < arch_num_cc; i++) {
656 			channel = 0;
657 			for (;;) {
658 				channel = find_next_bit(edma_cc[i]->edma_unused,
659 						edma_cc[i]->num_channels,
660 						channel);
661 				if (channel == edma_cc[i]->num_channels)
662 					break;
663 				if (!test_and_set_bit(channel,
664 						edma_cc[i]->edma_inuse)) {
665 					done = 1;
666 					ctlr = i;
667 					break;
668 				}
669 				channel++;
670 			}
671 			if (done)
672 				break;
673 		}
674 		if (!done)
675 			return -ENOMEM;
676 	} else if (channel >= edma_cc[ctlr]->num_channels) {
677 		return -EINVAL;
678 	} else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
679 		return -EBUSY;
680 	}
681 
682 	/* ensure access through shadow region 0 */
683 	edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
684 
685 	/* ensure no events are pending */
686 	edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
687 	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
688 			&dummy_paramset, PARM_SIZE);
689 
690 	if (callback)
691 		setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
692 					callback, data);
693 
694 	map_dmach_queue(ctlr, channel, eventq_no);
695 
696 	return EDMA_CTLR_CHAN(ctlr, channel);
697 }
698 EXPORT_SYMBOL(edma_alloc_channel);
699 
700 
701 /**
702  * edma_free_channel - deallocate DMA channel
703  * @channel: dma channel returned from edma_alloc_channel()
704  *
705  * This deallocates the DMA channel and associated parameter RAM slot
706  * allocated by edma_alloc_channel().
707  *
708  * Callers are responsible for ensuring the channel is inactive, and
709  * will not be reactivated by linking, chaining, or software calls to
710  * edma_start().
711  */
edma_free_channel(unsigned channel)712 void edma_free_channel(unsigned channel)
713 {
714 	unsigned ctlr;
715 
716 	ctlr = EDMA_CTLR(channel);
717 	channel = EDMA_CHAN_SLOT(channel);
718 
719 	if (channel >= edma_cc[ctlr]->num_channels)
720 		return;
721 
722 	setup_dma_interrupt(channel, NULL, NULL);
723 	/* REVISIT should probably take out of shadow region 0 */
724 
725 	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
726 			&dummy_paramset, PARM_SIZE);
727 	clear_bit(channel, edma_cc[ctlr]->edma_inuse);
728 }
729 EXPORT_SYMBOL(edma_free_channel);
730 
731 /**
732  * edma_alloc_slot - allocate DMA parameter RAM
733  * @slot: specific slot to allocate; negative for "any unused slot"
734  *
735  * This allocates a parameter RAM slot, initializing it to hold a
736  * dummy transfer.  Slots allocated using this routine have not been
737  * mapped to a hardware DMA channel, and will normally be used by
738  * linking to them from a slot associated with a DMA channel.
739  *
740  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
741  * slots may be allocated on behalf of DSP firmware.
742  *
743  * Returns the number of the slot, else negative errno.
744  */
edma_alloc_slot(unsigned ctlr,int slot)745 int edma_alloc_slot(unsigned ctlr, int slot)
746 {
747 	if (slot >= 0)
748 		slot = EDMA_CHAN_SLOT(slot);
749 
750 	if (slot < 0) {
751 		slot = edma_cc[ctlr]->num_channels;
752 		for (;;) {
753 			slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
754 					edma_cc[ctlr]->num_slots, slot);
755 			if (slot == edma_cc[ctlr]->num_slots)
756 				return -ENOMEM;
757 			if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
758 				break;
759 		}
760 	} else if (slot < edma_cc[ctlr]->num_channels ||
761 			slot >= edma_cc[ctlr]->num_slots) {
762 		return -EINVAL;
763 	} else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
764 		return -EBUSY;
765 	}
766 
767 	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
768 			&dummy_paramset, PARM_SIZE);
769 
770 	return EDMA_CTLR_CHAN(ctlr, slot);
771 }
772 EXPORT_SYMBOL(edma_alloc_slot);
773 
774 /**
775  * edma_free_slot - deallocate DMA parameter RAM
776  * @slot: parameter RAM slot returned from edma_alloc_slot()
777  *
778  * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
779  * Callers are responsible for ensuring the slot is inactive, and will
780  * not be activated.
781  */
edma_free_slot(unsigned slot)782 void edma_free_slot(unsigned slot)
783 {
784 	unsigned ctlr;
785 
786 	ctlr = EDMA_CTLR(slot);
787 	slot = EDMA_CHAN_SLOT(slot);
788 
789 	if (slot < edma_cc[ctlr]->num_channels ||
790 		slot >= edma_cc[ctlr]->num_slots)
791 		return;
792 
793 	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
794 			&dummy_paramset, PARM_SIZE);
795 	clear_bit(slot, edma_cc[ctlr]->edma_inuse);
796 }
797 EXPORT_SYMBOL(edma_free_slot);
798 
799 
800 /**
801  * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
802  * The API will return the starting point of a set of
803  * contiguous parameter RAM slots that have been requested
804  *
805  * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
806  * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
807  * @count: number of contiguous Paramter RAM slots
808  * @slot  - the start value of Parameter RAM slot that should be passed if id
809  * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
810  *
811  * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
812  * contiguous Parameter RAM slots from parameter RAM 64 in the case of
813  * DaVinci SOCs and 32 in the case of DA8xx SOCs.
814  *
815  * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
816  * set of contiguous parameter RAM slots from the "slot" that is passed as an
817  * argument to the API.
818  *
819  * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
820  * starts looking for a set of contiguous parameter RAMs from the "slot"
821  * that is passed as an argument to the API. On failure the API will try to
822  * find a set of contiguous Parameter RAM slots from the remaining Parameter
823  * RAM slots
824  */
edma_alloc_cont_slots(unsigned ctlr,unsigned int id,int slot,int count)825 int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
826 {
827 	/*
828 	 * The start slot requested should be greater than
829 	 * the number of channels and lesser than the total number
830 	 * of slots
831 	 */
832 	if ((id != EDMA_CONT_PARAMS_ANY) &&
833 		(slot < edma_cc[ctlr]->num_channels ||
834 		slot >= edma_cc[ctlr]->num_slots))
835 		return -EINVAL;
836 
837 	/*
838 	 * The number of parameter RAM slots requested cannot be less than 1
839 	 * and cannot be more than the number of slots minus the number of
840 	 * channels
841 	 */
842 	if (count < 1 || count >
843 		(edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
844 		return -EINVAL;
845 
846 	switch (id) {
847 	case EDMA_CONT_PARAMS_ANY:
848 		return reserve_contiguous_slots(ctlr, id, count,
849 						 edma_cc[ctlr]->num_channels);
850 	case EDMA_CONT_PARAMS_FIXED_EXACT:
851 	case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
852 		return reserve_contiguous_slots(ctlr, id, count, slot);
853 	default:
854 		return -EINVAL;
855 	}
856 
857 }
858 EXPORT_SYMBOL(edma_alloc_cont_slots);
859 
860 /**
861  * edma_free_cont_slots - deallocate DMA parameter RAM slots
862  * @slot: first parameter RAM of a set of parameter RAM slots to be freed
863  * @count: the number of contiguous parameter RAM slots to be freed
864  *
865  * This deallocates the parameter RAM slots allocated by
866  * edma_alloc_cont_slots.
867  * Callers/applications need to keep track of sets of contiguous
868  * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
869  * API.
870  * Callers are responsible for ensuring the slots are inactive, and will
871  * not be activated.
872  */
edma_free_cont_slots(unsigned slot,int count)873 int edma_free_cont_slots(unsigned slot, int count)
874 {
875 	unsigned ctlr, slot_to_free;
876 	int i;
877 
878 	ctlr = EDMA_CTLR(slot);
879 	slot = EDMA_CHAN_SLOT(slot);
880 
881 	if (slot < edma_cc[ctlr]->num_channels ||
882 		slot >= edma_cc[ctlr]->num_slots ||
883 		count < 1)
884 		return -EINVAL;
885 
886 	for (i = slot; i < slot + count; ++i) {
887 		ctlr = EDMA_CTLR(i);
888 		slot_to_free = EDMA_CHAN_SLOT(i);
889 
890 		memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
891 			&dummy_paramset, PARM_SIZE);
892 		clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
893 	}
894 
895 	return 0;
896 }
897 EXPORT_SYMBOL(edma_free_cont_slots);
898 
899 /*-----------------------------------------------------------------------*/
900 
901 /* Parameter RAM operations (i) -- read/write partial slots */
902 
903 /**
904  * edma_set_src - set initial DMA source address in parameter RAM slot
905  * @slot: parameter RAM slot being configured
906  * @src_port: physical address of source (memory, controller FIFO, etc)
907  * @addressMode: INCR, except in very rare cases
908  * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
909  *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
910  *
911  * Note that the source address is modified during the DMA transfer
912  * according to edma_set_src_index().
913  */
edma_set_src(unsigned slot,dma_addr_t src_port,enum address_mode mode,enum fifo_width width)914 void edma_set_src(unsigned slot, dma_addr_t src_port,
915 				enum address_mode mode, enum fifo_width width)
916 {
917 	unsigned ctlr;
918 
919 	ctlr = EDMA_CTLR(slot);
920 	slot = EDMA_CHAN_SLOT(slot);
921 
922 	if (slot < edma_cc[ctlr]->num_slots) {
923 		unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
924 
925 		if (mode) {
926 			/* set SAM and program FWID */
927 			i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
928 		} else {
929 			/* clear SAM */
930 			i &= ~SAM;
931 		}
932 		edma_parm_write(ctlr, PARM_OPT, slot, i);
933 
934 		/* set the source port address
935 		   in source register of param structure */
936 		edma_parm_write(ctlr, PARM_SRC, slot, src_port);
937 	}
938 }
939 EXPORT_SYMBOL(edma_set_src);
940 
941 /**
942  * edma_set_dest - set initial DMA destination address in parameter RAM slot
943  * @slot: parameter RAM slot being configured
944  * @dest_port: physical address of destination (memory, controller FIFO, etc)
945  * @addressMode: INCR, except in very rare cases
946  * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
947  *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
948  *
949  * Note that the destination address is modified during the DMA transfer
950  * according to edma_set_dest_index().
951  */
edma_set_dest(unsigned slot,dma_addr_t dest_port,enum address_mode mode,enum fifo_width width)952 void edma_set_dest(unsigned slot, dma_addr_t dest_port,
953 				 enum address_mode mode, enum fifo_width width)
954 {
955 	unsigned ctlr;
956 
957 	ctlr = EDMA_CTLR(slot);
958 	slot = EDMA_CHAN_SLOT(slot);
959 
960 	if (slot < edma_cc[ctlr]->num_slots) {
961 		unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
962 
963 		if (mode) {
964 			/* set DAM and program FWID */
965 			i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
966 		} else {
967 			/* clear DAM */
968 			i &= ~DAM;
969 		}
970 		edma_parm_write(ctlr, PARM_OPT, slot, i);
971 		/* set the destination port address
972 		   in dest register of param structure */
973 		edma_parm_write(ctlr, PARM_DST, slot, dest_port);
974 	}
975 }
976 EXPORT_SYMBOL(edma_set_dest);
977 
978 /**
979  * edma_get_position - returns the current transfer points
980  * @slot: parameter RAM slot being examined
981  * @src: pointer to source port position
982  * @dst: pointer to destination port position
983  *
984  * Returns current source and destination addresses for a particular
985  * parameter RAM slot.  Its channel should not be active when this is called.
986  */
edma_get_position(unsigned slot,dma_addr_t * src,dma_addr_t * dst)987 void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
988 {
989 	struct edmacc_param temp;
990 	unsigned ctlr;
991 
992 	ctlr = EDMA_CTLR(slot);
993 	slot = EDMA_CHAN_SLOT(slot);
994 
995 	edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
996 	if (src != NULL)
997 		*src = temp.src;
998 	if (dst != NULL)
999 		*dst = temp.dst;
1000 }
1001 EXPORT_SYMBOL(edma_get_position);
1002 
1003 /**
1004  * edma_set_src_index - configure DMA source address indexing
1005  * @slot: parameter RAM slot being configured
1006  * @src_bidx: byte offset between source arrays in a frame
1007  * @src_cidx: byte offset between source frames in a block
1008  *
1009  * Offsets are specified to support either contiguous or discontiguous
1010  * memory transfers, or repeated access to a hardware register, as needed.
1011  * When accessing hardware registers, both offsets are normally zero.
1012  */
edma_set_src_index(unsigned slot,s16 src_bidx,s16 src_cidx)1013 void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1014 {
1015 	unsigned ctlr;
1016 
1017 	ctlr = EDMA_CTLR(slot);
1018 	slot = EDMA_CHAN_SLOT(slot);
1019 
1020 	if (slot < edma_cc[ctlr]->num_slots) {
1021 		edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1022 				0xffff0000, src_bidx);
1023 		edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1024 				0xffff0000, src_cidx);
1025 	}
1026 }
1027 EXPORT_SYMBOL(edma_set_src_index);
1028 
1029 /**
1030  * edma_set_dest_index - configure DMA destination address indexing
1031  * @slot: parameter RAM slot being configured
1032  * @dest_bidx: byte offset between destination arrays in a frame
1033  * @dest_cidx: byte offset between destination frames in a block
1034  *
1035  * Offsets are specified to support either contiguous or discontiguous
1036  * memory transfers, or repeated access to a hardware register, as needed.
1037  * When accessing hardware registers, both offsets are normally zero.
1038  */
edma_set_dest_index(unsigned slot,s16 dest_bidx,s16 dest_cidx)1039 void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1040 {
1041 	unsigned ctlr;
1042 
1043 	ctlr = EDMA_CTLR(slot);
1044 	slot = EDMA_CHAN_SLOT(slot);
1045 
1046 	if (slot < edma_cc[ctlr]->num_slots) {
1047 		edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1048 				0x0000ffff, dest_bidx << 16);
1049 		edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1050 				0x0000ffff, dest_cidx << 16);
1051 	}
1052 }
1053 EXPORT_SYMBOL(edma_set_dest_index);
1054 
1055 /**
1056  * edma_set_transfer_params - configure DMA transfer parameters
1057  * @slot: parameter RAM slot being configured
1058  * @acnt: how many bytes per array (at least one)
1059  * @bcnt: how many arrays per frame (at least one)
1060  * @ccnt: how many frames per block (at least one)
1061  * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1062  *	the value to reload into bcnt when it decrements to zero
1063  * @sync_mode: ASYNC or ABSYNC
1064  *
1065  * See the EDMA3 documentation to understand how to configure and link
1066  * transfers using the fields in PaRAM slots.  If you are not doing it
1067  * all at once with edma_write_slot(), you will use this routine
1068  * plus two calls each for source and destination, setting the initial
1069  * address and saying how to index that address.
1070  *
1071  * An example of an A-Synchronized transfer is a serial link using a
1072  * single word shift register.  In that case, @acnt would be equal to
1073  * that word size; the serial controller issues a DMA synchronization
1074  * event to transfer each word, and memory access by the DMA transfer
1075  * controller will be word-at-a-time.
1076  *
1077  * An example of an AB-Synchronized transfer is a device using a FIFO.
1078  * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1079  * The controller with the FIFO issues DMA synchronization events when
1080  * the FIFO threshold is reached, and the DMA transfer controller will
1081  * transfer one frame to (or from) the FIFO.  It will probably use
1082  * efficient burst modes to access memory.
1083  */
edma_set_transfer_params(unsigned slot,u16 acnt,u16 bcnt,u16 ccnt,u16 bcnt_rld,enum sync_dimension sync_mode)1084 void edma_set_transfer_params(unsigned slot,
1085 		u16 acnt, u16 bcnt, u16 ccnt,
1086 		u16 bcnt_rld, enum sync_dimension sync_mode)
1087 {
1088 	unsigned ctlr;
1089 
1090 	ctlr = EDMA_CTLR(slot);
1091 	slot = EDMA_CHAN_SLOT(slot);
1092 
1093 	if (slot < edma_cc[ctlr]->num_slots) {
1094 		edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
1095 				0x0000ffff, bcnt_rld << 16);
1096 		if (sync_mode == ASYNC)
1097 			edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
1098 		else
1099 			edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
1100 		/* Set the acount, bcount, ccount registers */
1101 		edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1102 		edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
1103 	}
1104 }
1105 EXPORT_SYMBOL(edma_set_transfer_params);
1106 
1107 /**
1108  * edma_link - link one parameter RAM slot to another
1109  * @from: parameter RAM slot originating the link
1110  * @to: parameter RAM slot which is the link target
1111  *
1112  * The originating slot should not be part of any active DMA transfer.
1113  */
edma_link(unsigned from,unsigned to)1114 void edma_link(unsigned from, unsigned to)
1115 {
1116 	unsigned ctlr_from, ctlr_to;
1117 
1118 	ctlr_from = EDMA_CTLR(from);
1119 	from = EDMA_CHAN_SLOT(from);
1120 	ctlr_to = EDMA_CTLR(to);
1121 	to = EDMA_CHAN_SLOT(to);
1122 
1123 	if (from >= edma_cc[ctlr_from]->num_slots)
1124 		return;
1125 	if (to >= edma_cc[ctlr_to]->num_slots)
1126 		return;
1127 	edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1128 				PARM_OFFSET(to));
1129 }
1130 EXPORT_SYMBOL(edma_link);
1131 
1132 /**
1133  * edma_unlink - cut link from one parameter RAM slot
1134  * @from: parameter RAM slot originating the link
1135  *
1136  * The originating slot should not be part of any active DMA transfer.
1137  * Its link is set to 0xffff.
1138  */
edma_unlink(unsigned from)1139 void edma_unlink(unsigned from)
1140 {
1141 	unsigned ctlr;
1142 
1143 	ctlr = EDMA_CTLR(from);
1144 	from = EDMA_CHAN_SLOT(from);
1145 
1146 	if (from >= edma_cc[ctlr]->num_slots)
1147 		return;
1148 	edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
1149 }
1150 EXPORT_SYMBOL(edma_unlink);
1151 
1152 /*-----------------------------------------------------------------------*/
1153 
1154 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1155 
1156 /**
1157  * edma_write_slot - write parameter RAM data for slot
1158  * @slot: number of parameter RAM slot being modified
1159  * @param: data to be written into parameter RAM slot
1160  *
1161  * Use this to assign all parameters of a transfer at once.  This
1162  * allows more efficient setup of transfers than issuing multiple
1163  * calls to set up those parameters in small pieces, and provides
1164  * complete control over all transfer options.
1165  */
edma_write_slot(unsigned slot,const struct edmacc_param * param)1166 void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1167 {
1168 	unsigned ctlr;
1169 
1170 	ctlr = EDMA_CTLR(slot);
1171 	slot = EDMA_CHAN_SLOT(slot);
1172 
1173 	if (slot >= edma_cc[ctlr]->num_slots)
1174 		return;
1175 	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1176 			PARM_SIZE);
1177 }
1178 EXPORT_SYMBOL(edma_write_slot);
1179 
1180 /**
1181  * edma_read_slot - read parameter RAM data from slot
1182  * @slot: number of parameter RAM slot being copied
1183  * @param: where to store copy of parameter RAM data
1184  *
1185  * Use this to read data from a parameter RAM slot, perhaps to
1186  * save them as a template for later reuse.
1187  */
edma_read_slot(unsigned slot,struct edmacc_param * param)1188 void edma_read_slot(unsigned slot, struct edmacc_param *param)
1189 {
1190 	unsigned ctlr;
1191 
1192 	ctlr = EDMA_CTLR(slot);
1193 	slot = EDMA_CHAN_SLOT(slot);
1194 
1195 	if (slot >= edma_cc[ctlr]->num_slots)
1196 		return;
1197 	memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1198 			PARM_SIZE);
1199 }
1200 EXPORT_SYMBOL(edma_read_slot);
1201 
1202 /*-----------------------------------------------------------------------*/
1203 
1204 /* Various EDMA channel control operations */
1205 
1206 /**
1207  * edma_pause - pause dma on a channel
1208  * @channel: on which edma_start() has been called
1209  *
1210  * This temporarily disables EDMA hardware events on the specified channel,
1211  * preventing them from triggering new transfers on its behalf
1212  */
edma_pause(unsigned channel)1213 void edma_pause(unsigned channel)
1214 {
1215 	unsigned ctlr;
1216 
1217 	ctlr = EDMA_CTLR(channel);
1218 	channel = EDMA_CHAN_SLOT(channel);
1219 
1220 	if (channel < edma_cc[ctlr]->num_channels) {
1221 		unsigned int mask = BIT(channel & 0x1f);
1222 
1223 		edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
1224 	}
1225 }
1226 EXPORT_SYMBOL(edma_pause);
1227 
1228 /**
1229  * edma_resume - resumes dma on a paused channel
1230  * @channel: on which edma_pause() has been called
1231  *
1232  * This re-enables EDMA hardware events on the specified channel.
1233  */
edma_resume(unsigned channel)1234 void edma_resume(unsigned channel)
1235 {
1236 	unsigned ctlr;
1237 
1238 	ctlr = EDMA_CTLR(channel);
1239 	channel = EDMA_CHAN_SLOT(channel);
1240 
1241 	if (channel < edma_cc[ctlr]->num_channels) {
1242 		unsigned int mask = BIT(channel & 0x1f);
1243 
1244 		edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
1245 	}
1246 }
1247 EXPORT_SYMBOL(edma_resume);
1248 
1249 /**
1250  * edma_start - start dma on a channel
1251  * @channel: channel being activated
1252  *
1253  * Channels with event associations will be triggered by their hardware
1254  * events, and channels without such associations will be triggered by
1255  * software.  (At this writing there is no interface for using software
1256  * triggers except with channels that don't support hardware triggers.)
1257  *
1258  * Returns zero on success, else negative errno.
1259  */
edma_start(unsigned channel)1260 int edma_start(unsigned channel)
1261 {
1262 	unsigned ctlr;
1263 
1264 	ctlr = EDMA_CTLR(channel);
1265 	channel = EDMA_CHAN_SLOT(channel);
1266 
1267 	if (channel < edma_cc[ctlr]->num_channels) {
1268 		int j = channel >> 5;
1269 		unsigned int mask = BIT(channel & 0x1f);
1270 
1271 		/* EDMA channels without event association */
1272 		if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
1273 			pr_debug("EDMA: ESR%d %08x\n", j,
1274 				edma_shadow0_read_array(ctlr, SH_ESR, j));
1275 			edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
1276 			return 0;
1277 		}
1278 
1279 		/* EDMA channel with event association */
1280 		pr_debug("EDMA: ER%d %08x\n", j,
1281 			edma_shadow0_read_array(ctlr, SH_ER, j));
1282 		/* Clear any pending event or error */
1283 		edma_write_array(ctlr, EDMA_ECR, j, mask);
1284 		edma_write_array(ctlr, EDMA_EMCR, j, mask);
1285 		/* Clear any SER */
1286 		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1287 		edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
1288 		pr_debug("EDMA: EER%d %08x\n", j,
1289 			edma_shadow0_read_array(ctlr, SH_EER, j));
1290 		return 0;
1291 	}
1292 
1293 	return -EINVAL;
1294 }
1295 EXPORT_SYMBOL(edma_start);
1296 
1297 /**
1298  * edma_stop - stops dma on the channel passed
1299  * @channel: channel being deactivated
1300  *
1301  * When @lch is a channel, any active transfer is paused and
1302  * all pending hardware events are cleared.  The current transfer
1303  * may not be resumed, and the channel's Parameter RAM should be
1304  * reinitialized before being reused.
1305  */
edma_stop(unsigned channel)1306 void edma_stop(unsigned channel)
1307 {
1308 	unsigned ctlr;
1309 
1310 	ctlr = EDMA_CTLR(channel);
1311 	channel = EDMA_CHAN_SLOT(channel);
1312 
1313 	if (channel < edma_cc[ctlr]->num_channels) {
1314 		int j = channel >> 5;
1315 		unsigned int mask = BIT(channel & 0x1f);
1316 
1317 		edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1318 		edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1319 		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1320 		edma_write_array(ctlr, EDMA_EMCR, j, mask);
1321 
1322 		pr_debug("EDMA: EER%d %08x\n", j,
1323 				edma_shadow0_read_array(ctlr, SH_EER, j));
1324 
1325 		/* REVISIT:  consider guarding against inappropriate event
1326 		 * chaining by overwriting with dummy_paramset.
1327 		 */
1328 	}
1329 }
1330 EXPORT_SYMBOL(edma_stop);
1331 
1332 /******************************************************************************
1333  *
1334  * It cleans ParamEntry qand bring back EDMA to initial state if media has
1335  * been removed before EDMA has finished.It is usedful for removable media.
1336  * Arguments:
1337  *      ch_no     - channel no
1338  *
1339  * Return: zero on success, or corresponding error no on failure
1340  *
1341  * FIXME this should not be needed ... edma_stop() should suffice.
1342  *
1343  *****************************************************************************/
1344 
edma_clean_channel(unsigned channel)1345 void edma_clean_channel(unsigned channel)
1346 {
1347 	unsigned ctlr;
1348 
1349 	ctlr = EDMA_CTLR(channel);
1350 	channel = EDMA_CHAN_SLOT(channel);
1351 
1352 	if (channel < edma_cc[ctlr]->num_channels) {
1353 		int j = (channel >> 5);
1354 		unsigned int mask = BIT(channel & 0x1f);
1355 
1356 		pr_debug("EDMA: EMR%d %08x\n", j,
1357 				edma_read_array(ctlr, EDMA_EMR, j));
1358 		edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1359 		/* Clear the corresponding EMR bits */
1360 		edma_write_array(ctlr, EDMA_EMCR, j, mask);
1361 		/* Clear any SER */
1362 		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1363 		edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
1364 	}
1365 }
1366 EXPORT_SYMBOL(edma_clean_channel);
1367 
1368 /*
1369  * edma_clear_event - clear an outstanding event on the DMA channel
1370  * Arguments:
1371  *	channel - channel number
1372  */
edma_clear_event(unsigned channel)1373 void edma_clear_event(unsigned channel)
1374 {
1375 	unsigned ctlr;
1376 
1377 	ctlr = EDMA_CTLR(channel);
1378 	channel = EDMA_CHAN_SLOT(channel);
1379 
1380 	if (channel >= edma_cc[ctlr]->num_channels)
1381 		return;
1382 	if (channel < 32)
1383 		edma_write(ctlr, EDMA_ECR, BIT(channel));
1384 	else
1385 		edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
1386 }
1387 EXPORT_SYMBOL(edma_clear_event);
1388 
1389 /*-----------------------------------------------------------------------*/
1390 
edma_probe(struct platform_device * pdev)1391 static int __init edma_probe(struct platform_device *pdev)
1392 {
1393 	struct edma_soc_info	**info = pdev->dev.platform_data;
1394 	const s8		(*queue_priority_mapping)[2];
1395 	const s8		(*queue_tc_mapping)[2];
1396 	int			i, j, off, ln, found = 0;
1397 	int			status = -1;
1398 	const s16		(*rsv_chans)[2];
1399 	const s16		(*rsv_slots)[2];
1400 	int			irq[EDMA_MAX_CC] = {0, 0};
1401 	int			err_irq[EDMA_MAX_CC] = {0, 0};
1402 	struct resource		*r[EDMA_MAX_CC] = {NULL};
1403 	resource_size_t		len[EDMA_MAX_CC];
1404 	char			res_name[10];
1405 	char			irq_name[10];
1406 
1407 	if (!info)
1408 		return -ENODEV;
1409 
1410 	for (j = 0; j < EDMA_MAX_CC; j++) {
1411 		sprintf(res_name, "edma_cc%d", j);
1412 		r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1413 						res_name);
1414 		if (!r[j] || !info[j]) {
1415 			if (found)
1416 				break;
1417 			else
1418 				return -ENODEV;
1419 		} else {
1420 			found = 1;
1421 		}
1422 
1423 		len[j] = resource_size(r[j]);
1424 
1425 		r[j] = request_mem_region(r[j]->start, len[j],
1426 			dev_name(&pdev->dev));
1427 		if (!r[j]) {
1428 			status = -EBUSY;
1429 			goto fail1;
1430 		}
1431 
1432 		edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
1433 		if (!edmacc_regs_base[j]) {
1434 			status = -EBUSY;
1435 			goto fail1;
1436 		}
1437 
1438 		edma_cc[j] = kzalloc(sizeof(struct edma), GFP_KERNEL);
1439 		if (!edma_cc[j]) {
1440 			status = -ENOMEM;
1441 			goto fail1;
1442 		}
1443 
1444 		edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel,
1445 							EDMA_MAX_DMACH);
1446 		edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot,
1447 							EDMA_MAX_PARAMENTRY);
1448 		edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc,
1449 							EDMA_MAX_CC);
1450 
1451 		edma_cc[j]->default_queue = info[j]->default_queue;
1452 
1453 		dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1454 			edmacc_regs_base[j]);
1455 
1456 		for (i = 0; i < edma_cc[j]->num_slots; i++)
1457 			memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1458 					&dummy_paramset, PARM_SIZE);
1459 
1460 		/* Mark all channels as unused */
1461 		memset(edma_cc[j]->edma_unused, 0xff,
1462 			sizeof(edma_cc[j]->edma_unused));
1463 
1464 		if (info[j]->rsv) {
1465 
1466 			/* Clear the reserved channels in unused list */
1467 			rsv_chans = info[j]->rsv->rsv_chans;
1468 			if (rsv_chans) {
1469 				for (i = 0; rsv_chans[i][0] != -1; i++) {
1470 					off = rsv_chans[i][0];
1471 					ln = rsv_chans[i][1];
1472 					clear_bits(off, ln,
1473 						edma_cc[j]->edma_unused);
1474 				}
1475 			}
1476 
1477 			/* Set the reserved slots in inuse list */
1478 			rsv_slots = info[j]->rsv->rsv_slots;
1479 			if (rsv_slots) {
1480 				for (i = 0; rsv_slots[i][0] != -1; i++) {
1481 					off = rsv_slots[i][0];
1482 					ln = rsv_slots[i][1];
1483 					set_bits(off, ln,
1484 						edma_cc[j]->edma_inuse);
1485 				}
1486 			}
1487 		}
1488 
1489 		sprintf(irq_name, "edma%d", j);
1490 		irq[j] = platform_get_irq_byname(pdev, irq_name);
1491 		edma_cc[j]->irq_res_start = irq[j];
1492 		status = request_irq(irq[j], dma_irq_handler, 0, "edma",
1493 					&pdev->dev);
1494 		if (status < 0) {
1495 			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1496 				irq[j], status);
1497 			goto fail;
1498 		}
1499 
1500 		sprintf(irq_name, "edma%d_err", j);
1501 		err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1502 		edma_cc[j]->irq_res_end = err_irq[j];
1503 		status = request_irq(err_irq[j], dma_ccerr_handler, 0,
1504 					"edma_error", &pdev->dev);
1505 		if (status < 0) {
1506 			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1507 				err_irq[j], status);
1508 			goto fail;
1509 		}
1510 
1511 		for (i = 0; i < edma_cc[j]->num_channels; i++)
1512 			map_dmach_queue(j, i, info[j]->default_queue);
1513 
1514 		queue_tc_mapping = info[j]->queue_tc_mapping;
1515 		queue_priority_mapping = info[j]->queue_priority_mapping;
1516 
1517 		/* Event queue to TC mapping */
1518 		for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1519 			map_queue_tc(j, queue_tc_mapping[i][0],
1520 					queue_tc_mapping[i][1]);
1521 
1522 		/* Event queue priority mapping */
1523 		for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1524 			assign_priority_to_queue(j,
1525 						queue_priority_mapping[i][0],
1526 						queue_priority_mapping[i][1]);
1527 
1528 		/* Map the channel to param entry if channel mapping logic
1529 		 * exist
1530 		 */
1531 		if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1532 			map_dmach_param(j);
1533 
1534 		for (i = 0; i < info[j]->n_region; i++) {
1535 			edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1536 			edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1537 			edma_write_array(j, EDMA_QRAE, i, 0x0);
1538 		}
1539 		arch_num_cc++;
1540 	}
1541 
1542 	if (tc_errs_handled) {
1543 		status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
1544 					"edma_tc0", &pdev->dev);
1545 		if (status < 0) {
1546 			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1547 				IRQ_TCERRINT0, status);
1548 			return status;
1549 		}
1550 		status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
1551 					"edma_tc1", &pdev->dev);
1552 		if (status < 0) {
1553 			dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
1554 				IRQ_TCERRINT, status);
1555 			return status;
1556 		}
1557 	}
1558 
1559 	return 0;
1560 
1561 fail:
1562 	for (i = 0; i < EDMA_MAX_CC; i++) {
1563 		if (err_irq[i])
1564 			free_irq(err_irq[i], &pdev->dev);
1565 		if (irq[i])
1566 			free_irq(irq[i], &pdev->dev);
1567 	}
1568 fail1:
1569 	for (i = 0; i < EDMA_MAX_CC; i++) {
1570 		if (r[i])
1571 			release_mem_region(r[i]->start, len[i]);
1572 		if (edmacc_regs_base[i])
1573 			iounmap(edmacc_regs_base[i]);
1574 		kfree(edma_cc[i]);
1575 	}
1576 	return status;
1577 }
1578 
1579 
1580 static struct platform_driver edma_driver = {
1581 	.driver.name	= "edma",
1582 };
1583 
edma_init(void)1584 static int __init edma_init(void)
1585 {
1586 	return platform_driver_probe(&edma_driver, edma_probe);
1587 }
1588 arch_initcall(edma_init);
1589 
1590