• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
8 #include <linux/delay.h>
9 #include <linux/clocksource.h>
10 #include <linux/percpu.h>
11 #include <linux/timex.h>
12 
13 #include <asm/hpet.h>
14 #include <asm/timer.h>
15 #include <asm/vgtod.h>
16 #include <asm/time.h>
17 #include <asm/delay.h>
18 #include <asm/hypervisor.h>
19 #include <asm/nmi.h>
20 #include <asm/x86_init.h>
21 
22 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
23 EXPORT_SYMBOL(cpu_khz);
24 
25 unsigned int __read_mostly tsc_khz;
26 EXPORT_SYMBOL(tsc_khz);
27 
28 /*
29  * TSC can be unstable due to cpufreq or due to unsynced TSCs
30  */
31 static int __read_mostly tsc_unstable;
32 
33 /* native_sched_clock() is called before tsc_init(), so
34    we must start with the TSC soft disabled to prevent
35    erroneous rdtsc usage on !cpu_has_tsc processors */
36 static int __read_mostly tsc_disabled = -1;
37 
38 int tsc_clocksource_reliable;
39 /*
40  * Scheduler clock - returns current time in nanosec units.
41  */
native_sched_clock(void)42 u64 native_sched_clock(void)
43 {
44 	u64 this_offset;
45 
46 	/*
47 	 * Fall back to jiffies if there's no TSC available:
48 	 * ( But note that we still use it if the TSC is marked
49 	 *   unstable. We do this because unlike Time Of Day,
50 	 *   the scheduler clock tolerates small errors and it's
51 	 *   very important for it to be as fast as the platform
52 	 *   can achieve it. )
53 	 */
54 	if (unlikely(tsc_disabled)) {
55 		/* No locking but a rare wrong value is not a big deal: */
56 		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
57 	}
58 
59 	/* read the Time Stamp Counter: */
60 	rdtscll(this_offset);
61 
62 	/* return the value in ns */
63 	return __cycles_2_ns(this_offset);
64 }
65 
66 /* We need to define a real function for sched_clock, to override the
67    weak default version */
68 #ifdef CONFIG_PARAVIRT
sched_clock(void)69 unsigned long long sched_clock(void)
70 {
71 	return paravirt_sched_clock();
72 }
73 #else
74 unsigned long long
75 sched_clock(void) __attribute__((alias("native_sched_clock")));
76 #endif
77 
check_tsc_unstable(void)78 int check_tsc_unstable(void)
79 {
80 	return tsc_unstable;
81 }
82 EXPORT_SYMBOL_GPL(check_tsc_unstable);
83 
84 #ifdef CONFIG_X86_TSC
notsc_setup(char * str)85 int __init notsc_setup(char *str)
86 {
87 	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
88 			"cannot disable TSC completely.\n");
89 	tsc_disabled = 1;
90 	return 1;
91 }
92 #else
93 /*
94  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
95  * in cpu/common.c
96  */
notsc_setup(char * str)97 int __init notsc_setup(char *str)
98 {
99 	setup_clear_cpu_cap(X86_FEATURE_TSC);
100 	return 1;
101 }
102 #endif
103 
104 __setup("notsc", notsc_setup);
105 
106 static int no_sched_irq_time;
107 
tsc_setup(char * str)108 static int __init tsc_setup(char *str)
109 {
110 	if (!strcmp(str, "reliable"))
111 		tsc_clocksource_reliable = 1;
112 	if (!strncmp(str, "noirqtime", 9))
113 		no_sched_irq_time = 1;
114 	return 1;
115 }
116 
117 __setup("tsc=", tsc_setup);
118 
119 #define MAX_RETRIES     5
120 #define SMI_TRESHOLD    50000
121 
122 /*
123  * Read TSC and the reference counters. Take care of SMI disturbance
124  */
tsc_read_refs(u64 * p,int hpet)125 static u64 tsc_read_refs(u64 *p, int hpet)
126 {
127 	u64 t1, t2;
128 	int i;
129 
130 	for (i = 0; i < MAX_RETRIES; i++) {
131 		t1 = get_cycles();
132 		if (hpet)
133 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
134 		else
135 			*p = acpi_pm_read_early();
136 		t2 = get_cycles();
137 		if ((t2 - t1) < SMI_TRESHOLD)
138 			return t2;
139 	}
140 	return ULLONG_MAX;
141 }
142 
143 /*
144  * Calculate the TSC frequency from HPET reference
145  */
calc_hpet_ref(u64 deltatsc,u64 hpet1,u64 hpet2)146 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
147 {
148 	u64 tmp;
149 
150 	if (hpet2 < hpet1)
151 		hpet2 += 0x100000000ULL;
152 	hpet2 -= hpet1;
153 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
154 	do_div(tmp, 1000000);
155 	do_div(deltatsc, tmp);
156 
157 	return (unsigned long) deltatsc;
158 }
159 
160 /*
161  * Calculate the TSC frequency from PMTimer reference
162  */
calc_pmtimer_ref(u64 deltatsc,u64 pm1,u64 pm2)163 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
164 {
165 	u64 tmp;
166 
167 	if (!pm1 && !pm2)
168 		return ULONG_MAX;
169 
170 	if (pm2 < pm1)
171 		pm2 += (u64)ACPI_PM_OVRRUN;
172 	pm2 -= pm1;
173 	tmp = pm2 * 1000000000LL;
174 	do_div(tmp, PMTMR_TICKS_PER_SEC);
175 	do_div(deltatsc, tmp);
176 
177 	return (unsigned long) deltatsc;
178 }
179 
180 #define CAL_MS		10
181 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
182 #define CAL_PIT_LOOPS	1000
183 
184 #define CAL2_MS		50
185 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
186 #define CAL2_PIT_LOOPS	5000
187 
188 
189 /*
190  * Try to calibrate the TSC against the Programmable
191  * Interrupt Timer and return the frequency of the TSC
192  * in kHz.
193  *
194  * Return ULONG_MAX on failure to calibrate.
195  */
pit_calibrate_tsc(u32 latch,unsigned long ms,int loopmin)196 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
197 {
198 	u64 tsc, t1, t2, delta;
199 	unsigned long tscmin, tscmax;
200 	int pitcnt;
201 
202 	/* Set the Gate high, disable speaker */
203 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
204 
205 	/*
206 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
207 	 * count mode), binary count. Set the latch register to 50ms
208 	 * (LSB then MSB) to begin countdown.
209 	 */
210 	outb(0xb0, 0x43);
211 	outb(latch & 0xff, 0x42);
212 	outb(latch >> 8, 0x42);
213 
214 	tsc = t1 = t2 = get_cycles();
215 
216 	pitcnt = 0;
217 	tscmax = 0;
218 	tscmin = ULONG_MAX;
219 	while ((inb(0x61) & 0x20) == 0) {
220 		t2 = get_cycles();
221 		delta = t2 - tsc;
222 		tsc = t2;
223 		if ((unsigned long) delta < tscmin)
224 			tscmin = (unsigned int) delta;
225 		if ((unsigned long) delta > tscmax)
226 			tscmax = (unsigned int) delta;
227 		pitcnt++;
228 	}
229 
230 	/*
231 	 * Sanity checks:
232 	 *
233 	 * If we were not able to read the PIT more than loopmin
234 	 * times, then we have been hit by a massive SMI
235 	 *
236 	 * If the maximum is 10 times larger than the minimum,
237 	 * then we got hit by an SMI as well.
238 	 */
239 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
240 		return ULONG_MAX;
241 
242 	/* Calculate the PIT value */
243 	delta = t2 - t1;
244 	do_div(delta, ms);
245 	return delta;
246 }
247 
248 /*
249  * This reads the current MSB of the PIT counter, and
250  * checks if we are running on sufficiently fast and
251  * non-virtualized hardware.
252  *
253  * Our expectations are:
254  *
255  *  - the PIT is running at roughly 1.19MHz
256  *
257  *  - each IO is going to take about 1us on real hardware,
258  *    but we allow it to be much faster (by a factor of 10) or
259  *    _slightly_ slower (ie we allow up to a 2us read+counter
260  *    update - anything else implies a unacceptably slow CPU
261  *    or PIT for the fast calibration to work.
262  *
263  *  - with 256 PIT ticks to read the value, we have 214us to
264  *    see the same MSB (and overhead like doing a single TSC
265  *    read per MSB value etc).
266  *
267  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
268  *    them each to take about a microsecond on real hardware.
269  *    So we expect a count value of around 100. But we'll be
270  *    generous, and accept anything over 50.
271  *
272  *  - if the PIT is stuck, and we see *many* more reads, we
273  *    return early (and the next caller of pit_expect_msb()
274  *    then consider it a failure when they don't see the
275  *    next expected value).
276  *
277  * These expectations mean that we know that we have seen the
278  * transition from one expected value to another with a fairly
279  * high accuracy, and we didn't miss any events. We can thus
280  * use the TSC value at the transitions to calculate a pretty
281  * good value for the TSC frequencty.
282  */
pit_verify_msb(unsigned char val)283 static inline int pit_verify_msb(unsigned char val)
284 {
285 	/* Ignore LSB */
286 	inb(0x42);
287 	return inb(0x42) == val;
288 }
289 
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)290 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
291 {
292 	int count;
293 	u64 tsc = 0, prev_tsc = 0;
294 
295 	for (count = 0; count < 50000; count++) {
296 		if (!pit_verify_msb(val))
297 			break;
298 		prev_tsc = tsc;
299 		tsc = get_cycles();
300 	}
301 	*deltap = get_cycles() - prev_tsc;
302 	*tscp = tsc;
303 
304 	/*
305 	 * We require _some_ success, but the quality control
306 	 * will be based on the error terms on the TSC values.
307 	 */
308 	return count > 5;
309 }
310 
311 /*
312  * How many MSB values do we want to see? We aim for
313  * a maximum error rate of 500ppm (in practice the
314  * real error is much smaller), but refuse to spend
315  * more than 50ms on it.
316  */
317 #define MAX_QUICK_PIT_MS 50
318 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
319 
quick_pit_calibrate(void)320 static unsigned long quick_pit_calibrate(void)
321 {
322 	int i;
323 	u64 tsc, delta;
324 	unsigned long d1, d2;
325 
326 	/* Set the Gate high, disable speaker */
327 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
328 
329 	/*
330 	 * Counter 2, mode 0 (one-shot), binary count
331 	 *
332 	 * NOTE! Mode 2 decrements by two (and then the
333 	 * output is flipped each time, giving the same
334 	 * final output frequency as a decrement-by-one),
335 	 * so mode 0 is much better when looking at the
336 	 * individual counts.
337 	 */
338 	outb(0xb0, 0x43);
339 
340 	/* Start at 0xffff */
341 	outb(0xff, 0x42);
342 	outb(0xff, 0x42);
343 
344 	/*
345 	 * The PIT starts counting at the next edge, so we
346 	 * need to delay for a microsecond. The easiest way
347 	 * to do that is to just read back the 16-bit counter
348 	 * once from the PIT.
349 	 */
350 	pit_verify_msb(0);
351 
352 	if (pit_expect_msb(0xff, &tsc, &d1)) {
353 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
354 			if (!pit_expect_msb(0xff-i, &delta, &d2))
355 				break;
356 
357 			/*
358 			 * Iterate until the error is less than 500 ppm
359 			 */
360 			delta -= tsc;
361 			if (d1+d2 >= delta >> 11)
362 				continue;
363 
364 			/*
365 			 * Check the PIT one more time to verify that
366 			 * all TSC reads were stable wrt the PIT.
367 			 *
368 			 * This also guarantees serialization of the
369 			 * last cycle read ('d2') in pit_expect_msb.
370 			 */
371 			if (!pit_verify_msb(0xfe - i))
372 				break;
373 			goto success;
374 		}
375 	}
376 	printk("Fast TSC calibration failed\n");
377 	return 0;
378 
379 success:
380 	/*
381 	 * Ok, if we get here, then we've seen the
382 	 * MSB of the PIT decrement 'i' times, and the
383 	 * error has shrunk to less than 500 ppm.
384 	 *
385 	 * As a result, we can depend on there not being
386 	 * any odd delays anywhere, and the TSC reads are
387 	 * reliable (within the error).
388 	 *
389 	 * kHz = ticks / time-in-seconds / 1000;
390 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
391 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
392 	 */
393 	delta *= PIT_TICK_RATE;
394 	do_div(delta, i*256*1000);
395 	printk("Fast TSC calibration using PIT\n");
396 	return delta;
397 }
398 
399 /**
400  * native_calibrate_tsc - calibrate the tsc on boot
401  */
native_calibrate_tsc(void)402 unsigned long native_calibrate_tsc(void)
403 {
404 	u64 tsc1, tsc2, delta, ref1, ref2;
405 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
406 	unsigned long flags, latch, ms, fast_calibrate;
407 	int hpet = is_hpet_enabled(), i, loopmin;
408 
409 	local_irq_save(flags);
410 	fast_calibrate = quick_pit_calibrate();
411 	local_irq_restore(flags);
412 	if (fast_calibrate)
413 		return fast_calibrate;
414 
415 	/*
416 	 * Run 5 calibration loops to get the lowest frequency value
417 	 * (the best estimate). We use two different calibration modes
418 	 * here:
419 	 *
420 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
421 	 * load a timeout of 50ms. We read the time right after we
422 	 * started the timer and wait until the PIT count down reaches
423 	 * zero. In each wait loop iteration we read the TSC and check
424 	 * the delta to the previous read. We keep track of the min
425 	 * and max values of that delta. The delta is mostly defined
426 	 * by the IO time of the PIT access, so we can detect when a
427 	 * SMI/SMM disturbance happened between the two reads. If the
428 	 * maximum time is significantly larger than the minimum time,
429 	 * then we discard the result and have another try.
430 	 *
431 	 * 2) Reference counter. If available we use the HPET or the
432 	 * PMTIMER as a reference to check the sanity of that value.
433 	 * We use separate TSC readouts and check inside of the
434 	 * reference read for a SMI/SMM disturbance. We dicard
435 	 * disturbed values here as well. We do that around the PIT
436 	 * calibration delay loop as we have to wait for a certain
437 	 * amount of time anyway.
438 	 */
439 
440 	/* Preset PIT loop values */
441 	latch = CAL_LATCH;
442 	ms = CAL_MS;
443 	loopmin = CAL_PIT_LOOPS;
444 
445 	for (i = 0; i < 3; i++) {
446 		unsigned long tsc_pit_khz;
447 
448 		/*
449 		 * Read the start value and the reference count of
450 		 * hpet/pmtimer when available. Then do the PIT
451 		 * calibration, which will take at least 50ms, and
452 		 * read the end value.
453 		 */
454 		local_irq_save(flags);
455 		tsc1 = tsc_read_refs(&ref1, hpet);
456 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
457 		tsc2 = tsc_read_refs(&ref2, hpet);
458 		local_irq_restore(flags);
459 
460 		/* Pick the lowest PIT TSC calibration so far */
461 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
462 
463 		/* hpet or pmtimer available ? */
464 		if (ref1 == ref2)
465 			continue;
466 
467 		/* Check, whether the sampling was disturbed by an SMI */
468 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
469 			continue;
470 
471 		tsc2 = (tsc2 - tsc1) * 1000000LL;
472 		if (hpet)
473 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
474 		else
475 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
476 
477 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
478 
479 		/* Check the reference deviation */
480 		delta = ((u64) tsc_pit_min) * 100;
481 		do_div(delta, tsc_ref_min);
482 
483 		/*
484 		 * If both calibration results are inside a 10% window
485 		 * then we can be sure, that the calibration
486 		 * succeeded. We break out of the loop right away. We
487 		 * use the reference value, as it is more precise.
488 		 */
489 		if (delta >= 90 && delta <= 110) {
490 			printk(KERN_INFO
491 			       "TSC: PIT calibration matches %s. %d loops\n",
492 			       hpet ? "HPET" : "PMTIMER", i + 1);
493 			return tsc_ref_min;
494 		}
495 
496 		/*
497 		 * Check whether PIT failed more than once. This
498 		 * happens in virtualized environments. We need to
499 		 * give the virtual PC a slightly longer timeframe for
500 		 * the HPET/PMTIMER to make the result precise.
501 		 */
502 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
503 			latch = CAL2_LATCH;
504 			ms = CAL2_MS;
505 			loopmin = CAL2_PIT_LOOPS;
506 		}
507 	}
508 
509 	/*
510 	 * Now check the results.
511 	 */
512 	if (tsc_pit_min == ULONG_MAX) {
513 		/* PIT gave no useful value */
514 		printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
515 
516 		/* We don't have an alternative source, disable TSC */
517 		if (!hpet && !ref1 && !ref2) {
518 			printk("TSC: No reference (HPET/PMTIMER) available\n");
519 			return 0;
520 		}
521 
522 		/* The alternative source failed as well, disable TSC */
523 		if (tsc_ref_min == ULONG_MAX) {
524 			printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
525 			       "failed.\n");
526 			return 0;
527 		}
528 
529 		/* Use the alternative source */
530 		printk(KERN_INFO "TSC: using %s reference calibration\n",
531 		       hpet ? "HPET" : "PMTIMER");
532 
533 		return tsc_ref_min;
534 	}
535 
536 	/* We don't have an alternative source, use the PIT calibration value */
537 	if (!hpet && !ref1 && !ref2) {
538 		printk(KERN_INFO "TSC: Using PIT calibration value\n");
539 		return tsc_pit_min;
540 	}
541 
542 	/* The alternative source failed, use the PIT calibration value */
543 	if (tsc_ref_min == ULONG_MAX) {
544 		printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
545 		       "Using PIT calibration\n");
546 		return tsc_pit_min;
547 	}
548 
549 	/*
550 	 * The calibration values differ too much. In doubt, we use
551 	 * the PIT value as we know that there are PMTIMERs around
552 	 * running at double speed. At least we let the user know:
553 	 */
554 	printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
555 	       hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
556 	printk(KERN_INFO "TSC: Using PIT calibration value\n");
557 	return tsc_pit_min;
558 }
559 
recalibrate_cpu_khz(void)560 int recalibrate_cpu_khz(void)
561 {
562 #ifndef CONFIG_SMP
563 	unsigned long cpu_khz_old = cpu_khz;
564 
565 	if (cpu_has_tsc) {
566 		tsc_khz = x86_platform.calibrate_tsc();
567 		cpu_khz = tsc_khz;
568 		cpu_data(0).loops_per_jiffy =
569 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
570 					cpu_khz_old, cpu_khz);
571 		return 0;
572 	} else
573 		return -ENODEV;
574 #else
575 	return -ENODEV;
576 #endif
577 }
578 
579 EXPORT_SYMBOL(recalibrate_cpu_khz);
580 
581 
582 /* Accelerators for sched_clock()
583  * convert from cycles(64bits) => nanoseconds (64bits)
584  *  basic equation:
585  *              ns = cycles / (freq / ns_per_sec)
586  *              ns = cycles * (ns_per_sec / freq)
587  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
588  *              ns = cycles * (10^6 / cpu_khz)
589  *
590  *      Then we use scaling math (suggested by george@mvista.com) to get:
591  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
592  *              ns = cycles * cyc2ns_scale / SC
593  *
594  *      And since SC is a constant power of two, we can convert the div
595  *  into a shift.
596  *
597  *  We can use khz divisor instead of mhz to keep a better precision, since
598  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
599  *  (mathieu.desnoyers@polymtl.ca)
600  *
601  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
602  */
603 
604 DEFINE_PER_CPU(unsigned long, cyc2ns);
605 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
606 
set_cyc2ns_scale(unsigned long cpu_khz,int cpu)607 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
608 {
609 	unsigned long long tsc_now, ns_now, *offset;
610 	unsigned long flags, *scale;
611 
612 	local_irq_save(flags);
613 	sched_clock_idle_sleep_event();
614 
615 	scale = &per_cpu(cyc2ns, cpu);
616 	offset = &per_cpu(cyc2ns_offset, cpu);
617 
618 	rdtscll(tsc_now);
619 	ns_now = __cycles_2_ns(tsc_now);
620 
621 	if (cpu_khz) {
622 		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
623 		*offset = ns_now - mult_frac(tsc_now, *scale,
624 					     (1UL << CYC2NS_SCALE_FACTOR));
625 	}
626 
627 	sched_clock_idle_wakeup_event(0);
628 	local_irq_restore(flags);
629 }
630 
631 static unsigned long long cyc2ns_suspend;
632 
tsc_save_sched_clock_state(void)633 void tsc_save_sched_clock_state(void)
634 {
635 	if (!sched_clock_stable)
636 		return;
637 
638 	cyc2ns_suspend = sched_clock();
639 }
640 
641 /*
642  * Even on processors with invariant TSC, TSC gets reset in some the
643  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
644  * arbitrary value (still sync'd across cpu's) during resume from such sleep
645  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
646  * that sched_clock() continues from the point where it was left off during
647  * suspend.
648  */
tsc_restore_sched_clock_state(void)649 void tsc_restore_sched_clock_state(void)
650 {
651 	unsigned long long offset;
652 	unsigned long flags;
653 	int cpu;
654 
655 	if (!sched_clock_stable)
656 		return;
657 
658 	local_irq_save(flags);
659 
660 	__this_cpu_write(cyc2ns_offset, 0);
661 	offset = cyc2ns_suspend - sched_clock();
662 
663 	for_each_possible_cpu(cpu)
664 		per_cpu(cyc2ns_offset, cpu) = offset;
665 
666 	local_irq_restore(flags);
667 }
668 
669 #ifdef CONFIG_CPU_FREQ
670 
671 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
672  * changes.
673  *
674  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
675  * not that important because current Opteron setups do not support
676  * scaling on SMP anyroads.
677  *
678  * Should fix up last_tsc too. Currently gettimeofday in the
679  * first tick after the change will be slightly wrong.
680  */
681 
682 static unsigned int  ref_freq;
683 static unsigned long loops_per_jiffy_ref;
684 static unsigned long tsc_khz_ref;
685 
time_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)686 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
687 				void *data)
688 {
689 	struct cpufreq_freqs *freq = data;
690 	unsigned long *lpj;
691 
692 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
693 		return 0;
694 
695 	lpj = &boot_cpu_data.loops_per_jiffy;
696 #ifdef CONFIG_SMP
697 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
698 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
699 #endif
700 
701 	if (!ref_freq) {
702 		ref_freq = freq->old;
703 		loops_per_jiffy_ref = *lpj;
704 		tsc_khz_ref = tsc_khz;
705 	}
706 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
707 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
708 			(val == CPUFREQ_RESUMECHANGE)) {
709 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
710 
711 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
712 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
713 			mark_tsc_unstable("cpufreq changes");
714 	}
715 
716 	set_cyc2ns_scale(tsc_khz, freq->cpu);
717 
718 	return 0;
719 }
720 
721 static struct notifier_block time_cpufreq_notifier_block = {
722 	.notifier_call  = time_cpufreq_notifier
723 };
724 
cpufreq_tsc(void)725 static int __init cpufreq_tsc(void)
726 {
727 	if (!cpu_has_tsc)
728 		return 0;
729 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
730 		return 0;
731 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
732 				CPUFREQ_TRANSITION_NOTIFIER);
733 	return 0;
734 }
735 
736 core_initcall(cpufreq_tsc);
737 
738 #endif /* CONFIG_CPU_FREQ */
739 
740 /* clocksource code */
741 
742 static struct clocksource clocksource_tsc;
743 
744 /*
745  * We compare the TSC to the cycle_last value in the clocksource
746  * structure to avoid a nasty time-warp. This can be observed in a
747  * very small window right after one CPU updated cycle_last under
748  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
749  * is smaller than the cycle_last reference value due to a TSC which
750  * is slighty behind. This delta is nowhere else observable, but in
751  * that case it results in a forward time jump in the range of hours
752  * due to the unsigned delta calculation of the time keeping core
753  * code, which is necessary to support wrapping clocksources like pm
754  * timer.
755  */
read_tsc(struct clocksource * cs)756 static cycle_t read_tsc(struct clocksource *cs)
757 {
758 	cycle_t ret = (cycle_t)get_cycles();
759 
760 	return ret >= clocksource_tsc.cycle_last ?
761 		ret : clocksource_tsc.cycle_last;
762 }
763 
resume_tsc(struct clocksource * cs)764 static void resume_tsc(struct clocksource *cs)
765 {
766 	clocksource_tsc.cycle_last = 0;
767 }
768 
769 static struct clocksource clocksource_tsc = {
770 	.name                   = "tsc",
771 	.rating                 = 300,
772 	.read                   = read_tsc,
773 	.resume			= resume_tsc,
774 	.mask                   = CLOCKSOURCE_MASK(64),
775 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
776 				  CLOCK_SOURCE_MUST_VERIFY,
777 #ifdef CONFIG_X86_64
778 	.archdata               = { .vclock_mode = VCLOCK_TSC },
779 #endif
780 };
781 
mark_tsc_unstable(char * reason)782 void mark_tsc_unstable(char *reason)
783 {
784 	if (!tsc_unstable) {
785 		tsc_unstable = 1;
786 		sched_clock_stable = 0;
787 		disable_sched_clock_irqtime();
788 		printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
789 		/* Change only the rating, when not registered */
790 		if (clocksource_tsc.mult)
791 			clocksource_mark_unstable(&clocksource_tsc);
792 		else {
793 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
794 			clocksource_tsc.rating = 0;
795 		}
796 	}
797 }
798 
799 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
800 
check_system_tsc_reliable(void)801 static void __init check_system_tsc_reliable(void)
802 {
803 #ifdef CONFIG_MGEODE_LX
804 	/* RTSC counts during suspend */
805 #define RTSC_SUSP 0x100
806 	unsigned long res_low, res_high;
807 
808 	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
809 	/* Geode_LX - the OLPC CPU has a very reliable TSC */
810 	if (res_low & RTSC_SUSP)
811 		tsc_clocksource_reliable = 1;
812 #endif
813 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
814 		tsc_clocksource_reliable = 1;
815 }
816 
817 /*
818  * Make an educated guess if the TSC is trustworthy and synchronized
819  * over all CPUs.
820  */
unsynchronized_tsc(void)821 __cpuinit int unsynchronized_tsc(void)
822 {
823 	if (!cpu_has_tsc || tsc_unstable)
824 		return 1;
825 
826 #ifdef CONFIG_SMP
827 	if (apic_is_clustered_box())
828 		return 1;
829 #endif
830 
831 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
832 		return 0;
833 
834 	if (tsc_clocksource_reliable)
835 		return 0;
836 	/*
837 	 * Intel systems are normally all synchronized.
838 	 * Exceptions must mark TSC as unstable:
839 	 */
840 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
841 		/* assume multi socket systems are not synchronized: */
842 		if (num_possible_cpus() > 1)
843 			return 1;
844 	}
845 
846 	return 0;
847 }
848 
849 
850 static void tsc_refine_calibration_work(struct work_struct *work);
851 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
852 /**
853  * tsc_refine_calibration_work - Further refine tsc freq calibration
854  * @work - ignored.
855  *
856  * This functions uses delayed work over a period of a
857  * second to further refine the TSC freq value. Since this is
858  * timer based, instead of loop based, we don't block the boot
859  * process while this longer calibration is done.
860  *
861  * If there are any calibration anomalies (too many SMIs, etc),
862  * or the refined calibration is off by 1% of the fast early
863  * calibration, we throw out the new calibration and use the
864  * early calibration.
865  */
tsc_refine_calibration_work(struct work_struct * work)866 static void tsc_refine_calibration_work(struct work_struct *work)
867 {
868 	static u64 tsc_start = -1, ref_start;
869 	static int hpet;
870 	u64 tsc_stop, ref_stop, delta;
871 	unsigned long freq;
872 
873 	/* Don't bother refining TSC on unstable systems */
874 	if (check_tsc_unstable())
875 		goto out;
876 
877 	/*
878 	 * Since the work is started early in boot, we may be
879 	 * delayed the first time we expire. So set the workqueue
880 	 * again once we know timers are working.
881 	 */
882 	if (tsc_start == -1) {
883 		/*
884 		 * Only set hpet once, to avoid mixing hardware
885 		 * if the hpet becomes enabled later.
886 		 */
887 		hpet = is_hpet_enabled();
888 		schedule_delayed_work(&tsc_irqwork, HZ);
889 		tsc_start = tsc_read_refs(&ref_start, hpet);
890 		return;
891 	}
892 
893 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
894 
895 	/* hpet or pmtimer available ? */
896 	if (ref_start == ref_stop)
897 		goto out;
898 
899 	/* Check, whether the sampling was disturbed by an SMI */
900 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
901 		goto out;
902 
903 	delta = tsc_stop - tsc_start;
904 	delta *= 1000000LL;
905 	if (hpet)
906 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
907 	else
908 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
909 
910 	/* Make sure we're within 1% */
911 	if (abs(tsc_khz - freq) > tsc_khz/100)
912 		goto out;
913 
914 	tsc_khz = freq;
915 	printk(KERN_INFO "Refined TSC clocksource calibration: "
916 		"%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000,
917 					(unsigned long)tsc_khz % 1000);
918 
919 out:
920 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
921 }
922 
923 
init_tsc_clocksource(void)924 static int __init init_tsc_clocksource(void)
925 {
926 	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
927 		return 0;
928 
929 	if (tsc_clocksource_reliable)
930 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
931 	/* lower the rating if we already know its unstable: */
932 	if (check_tsc_unstable()) {
933 		clocksource_tsc.rating = 0;
934 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
935 	}
936 
937 	/*
938 	 * Trust the results of the earlier calibration on systems
939 	 * exporting a reliable TSC.
940 	 */
941 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
942 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
943 		return 0;
944 	}
945 
946 	schedule_delayed_work(&tsc_irqwork, 0);
947 	return 0;
948 }
949 /*
950  * We use device_initcall here, to ensure we run after the hpet
951  * is fully initialized, which may occur at fs_initcall time.
952  */
953 device_initcall(init_tsc_clocksource);
954 
tsc_init(void)955 void __init tsc_init(void)
956 {
957 	u64 lpj;
958 	int cpu;
959 
960 	x86_init.timers.tsc_pre_init();
961 
962 	if (!cpu_has_tsc)
963 		return;
964 
965 	tsc_khz = x86_platform.calibrate_tsc();
966 	cpu_khz = tsc_khz;
967 
968 	if (!tsc_khz) {
969 		mark_tsc_unstable("could not calculate TSC khz");
970 		return;
971 	}
972 
973 	printk("Detected %lu.%03lu MHz processor.\n",
974 			(unsigned long)cpu_khz / 1000,
975 			(unsigned long)cpu_khz % 1000);
976 
977 	/*
978 	 * Secondary CPUs do not run through tsc_init(), so set up
979 	 * all the scale factors for all CPUs, assuming the same
980 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
981 	 * up if their speed diverges)
982 	 */
983 	for_each_possible_cpu(cpu)
984 		set_cyc2ns_scale(cpu_khz, cpu);
985 
986 	if (tsc_disabled > 0)
987 		return;
988 
989 	/* now allow native_sched_clock() to use rdtsc */
990 	tsc_disabled = 0;
991 
992 	if (!no_sched_irq_time)
993 		enable_sched_clock_irqtime();
994 
995 	lpj = ((u64)tsc_khz * 1000);
996 	do_div(lpj, HZ);
997 	lpj_fine = lpj;
998 
999 	use_tsc_delay();
1000 
1001 	if (unsynchronized_tsc())
1002 		mark_tsc_unstable("TSCs unsynchronized");
1003 
1004 	check_system_tsc_reliable();
1005 }
1006 
1007 #ifdef CONFIG_SMP
1008 /*
1009  * If we have a constant TSC and are using the TSC for the delay loop,
1010  * we can skip clock calibration if another cpu in the same socket has already
1011  * been calibrated. This assumes that CONSTANT_TSC applies to all
1012  * cpus in the socket - this should be a safe assumption.
1013  */
calibrate_delay_is_known(void)1014 unsigned long __cpuinit calibrate_delay_is_known(void)
1015 {
1016 	int i, cpu = smp_processor_id();
1017 
1018 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1019 		return 0;
1020 
1021 	for_each_online_cpu(i)
1022 		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1023 			return cpu_data(i).loops_per_jiffy;
1024 	return 0;
1025 }
1026 #endif
1027