• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/pipe.c
3  *
4  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
24 
25 #include <asm/uaccess.h>
26 #include <asm/ioctls.h>
27 
28 /*
29  * The max size that a non-root user is allowed to grow the pipe. Can
30  * be set by root in /proc/sys/fs/pipe-max-size
31  */
32 unsigned int pipe_max_size = 1048576;
33 
34 /*
35  * Minimum pipe size, as required by POSIX
36  */
37 unsigned int pipe_min_size = PAGE_SIZE;
38 
39 /*
40  * We use a start+len construction, which provides full use of the
41  * allocated memory.
42  * -- Florian Coosmann (FGC)
43  *
44  * Reads with count = 0 should always return 0.
45  * -- Julian Bradfield 1999-06-07.
46  *
47  * FIFOs and Pipes now generate SIGIO for both readers and writers.
48  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
49  *
50  * pipe_read & write cleanup
51  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
52  */
53 
pipe_lock_nested(struct pipe_inode_info * pipe,int subclass)54 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
55 {
56 	if (pipe->inode)
57 		mutex_lock_nested(&pipe->inode->i_mutex, subclass);
58 }
59 
pipe_lock(struct pipe_inode_info * pipe)60 void pipe_lock(struct pipe_inode_info *pipe)
61 {
62 	/*
63 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
64 	 */
65 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
66 }
67 EXPORT_SYMBOL(pipe_lock);
68 
pipe_unlock(struct pipe_inode_info * pipe)69 void pipe_unlock(struct pipe_inode_info *pipe)
70 {
71 	if (pipe->inode)
72 		mutex_unlock(&pipe->inode->i_mutex);
73 }
74 EXPORT_SYMBOL(pipe_unlock);
75 
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)76 void pipe_double_lock(struct pipe_inode_info *pipe1,
77 		      struct pipe_inode_info *pipe2)
78 {
79 	BUG_ON(pipe1 == pipe2);
80 
81 	if (pipe1 < pipe2) {
82 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
83 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
84 	} else {
85 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
86 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
87 	}
88 }
89 
90 /* Drop the inode semaphore and wait for a pipe event, atomically */
pipe_wait(struct pipe_inode_info * pipe)91 void pipe_wait(struct pipe_inode_info *pipe)
92 {
93 	DEFINE_WAIT(wait);
94 
95 	/*
96 	 * Pipes are system-local resources, so sleeping on them
97 	 * is considered a noninteractive wait:
98 	 */
99 	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
100 	pipe_unlock(pipe);
101 	schedule();
102 	finish_wait(&pipe->wait, &wait);
103 	pipe_lock(pipe);
104 }
105 
106 static int
pipe_iov_copy_from_user(void * addr,int * offset,struct iovec * iov,size_t * remaining,int atomic)107 pipe_iov_copy_from_user(void *addr, int *offset, struct iovec *iov,
108 			size_t *remaining, int atomic)
109 {
110 	unsigned long copy;
111 
112 	while (*remaining > 0) {
113 		while (!iov->iov_len)
114 			iov++;
115 		copy = min_t(unsigned long, *remaining, iov->iov_len);
116 
117 		if (atomic) {
118 			if (__copy_from_user_inatomic(addr + *offset,
119 						      iov->iov_base, copy))
120 				return -EFAULT;
121 		} else {
122 			if (copy_from_user(addr + *offset,
123 					   iov->iov_base, copy))
124 				return -EFAULT;
125 		}
126 		*offset += copy;
127 		*remaining -= copy;
128 		iov->iov_base += copy;
129 		iov->iov_len -= copy;
130 	}
131 	return 0;
132 }
133 
134 static int
pipe_iov_copy_to_user(struct iovec * iov,void * addr,int * offset,size_t * remaining,int atomic)135 pipe_iov_copy_to_user(struct iovec *iov, void *addr, int *offset,
136 		      size_t *remaining, int atomic)
137 {
138 	unsigned long copy;
139 
140 	while (*remaining > 0) {
141 		while (!iov->iov_len)
142 			iov++;
143 		copy = min_t(unsigned long, *remaining, iov->iov_len);
144 
145 		if (atomic) {
146 			if (__copy_to_user_inatomic(iov->iov_base,
147 						    addr + *offset, copy))
148 				return -EFAULT;
149 		} else {
150 			if (copy_to_user(iov->iov_base,
151 					 addr + *offset, copy))
152 				return -EFAULT;
153 		}
154 		*offset += copy;
155 		*remaining -= copy;
156 		iov->iov_base += copy;
157 		iov->iov_len -= copy;
158 	}
159 	return 0;
160 }
161 
162 /*
163  * Attempt to pre-fault in the user memory, so we can use atomic copies.
164  * Returns the number of bytes not faulted in.
165  */
iov_fault_in_pages_write(struct iovec * iov,unsigned long len)166 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
167 {
168 	while (!iov->iov_len)
169 		iov++;
170 
171 	while (len > 0) {
172 		unsigned long this_len;
173 
174 		this_len = min_t(unsigned long, len, iov->iov_len);
175 		if (fault_in_pages_writeable(iov->iov_base, this_len))
176 			break;
177 
178 		len -= this_len;
179 		iov++;
180 	}
181 
182 	return len;
183 }
184 
185 /*
186  * Pre-fault in the user memory, so we can use atomic copies.
187  */
iov_fault_in_pages_read(struct iovec * iov,unsigned long len)188 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
189 {
190 	while (!iov->iov_len)
191 		iov++;
192 
193 	while (len > 0) {
194 		unsigned long this_len;
195 
196 		this_len = min_t(unsigned long, len, iov->iov_len);
197 		fault_in_pages_readable(iov->iov_base, this_len);
198 		len -= this_len;
199 		iov++;
200 	}
201 }
202 
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)203 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
204 				  struct pipe_buffer *buf)
205 {
206 	struct page *page = buf->page;
207 
208 	/*
209 	 * If nobody else uses this page, and we don't already have a
210 	 * temporary page, let's keep track of it as a one-deep
211 	 * allocation cache. (Otherwise just release our reference to it)
212 	 */
213 	if (page_count(page) == 1 && !pipe->tmp_page)
214 		pipe->tmp_page = page;
215 	else
216 		page_cache_release(page);
217 }
218 
219 /**
220  * generic_pipe_buf_map - virtually map a pipe buffer
221  * @pipe:	the pipe that the buffer belongs to
222  * @buf:	the buffer that should be mapped
223  * @atomic:	whether to use an atomic map
224  *
225  * Description:
226  *	This function returns a kernel virtual address mapping for the
227  *	pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
228  *	and the caller has to be careful not to fault before calling
229  *	the unmap function.
230  *
231  *	Note that this function occupies KM_USER0 if @atomic != 0.
232  */
generic_pipe_buf_map(struct pipe_inode_info * pipe,struct pipe_buffer * buf,int atomic)233 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
234 			   struct pipe_buffer *buf, int atomic)
235 {
236 	if (atomic) {
237 		buf->flags |= PIPE_BUF_FLAG_ATOMIC;
238 		return kmap_atomic(buf->page);
239 	}
240 
241 	return kmap(buf->page);
242 }
243 EXPORT_SYMBOL(generic_pipe_buf_map);
244 
245 /**
246  * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
247  * @pipe:	the pipe that the buffer belongs to
248  * @buf:	the buffer that should be unmapped
249  * @map_data:	the data that the mapping function returned
250  *
251  * Description:
252  *	This function undoes the mapping that ->map() provided.
253  */
generic_pipe_buf_unmap(struct pipe_inode_info * pipe,struct pipe_buffer * buf,void * map_data)254 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
255 			    struct pipe_buffer *buf, void *map_data)
256 {
257 	if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
258 		buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
259 		kunmap_atomic(map_data);
260 	} else
261 		kunmap(buf->page);
262 }
263 EXPORT_SYMBOL(generic_pipe_buf_unmap);
264 
265 /**
266  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
267  * @pipe:	the pipe that the buffer belongs to
268  * @buf:	the buffer to attempt to steal
269  *
270  * Description:
271  *	This function attempts to steal the &struct page attached to
272  *	@buf. If successful, this function returns 0 and returns with
273  *	the page locked. The caller may then reuse the page for whatever
274  *	he wishes; the typical use is insertion into a different file
275  *	page cache.
276  */
generic_pipe_buf_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)277 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
278 			   struct pipe_buffer *buf)
279 {
280 	struct page *page = buf->page;
281 
282 	/*
283 	 * A reference of one is golden, that means that the owner of this
284 	 * page is the only one holding a reference to it. lock the page
285 	 * and return OK.
286 	 */
287 	if (page_count(page) == 1) {
288 		lock_page(page);
289 		return 0;
290 	}
291 
292 	return 1;
293 }
294 EXPORT_SYMBOL(generic_pipe_buf_steal);
295 
296 /**
297  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
298  * @pipe:	the pipe that the buffer belongs to
299  * @buf:	the buffer to get a reference to
300  *
301  * Description:
302  *	This function grabs an extra reference to @buf. It's used in
303  *	in the tee() system call, when we duplicate the buffers in one
304  *	pipe into another.
305  */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)306 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
307 {
308 	page_cache_get(buf->page);
309 }
310 EXPORT_SYMBOL(generic_pipe_buf_get);
311 
312 /**
313  * generic_pipe_buf_confirm - verify contents of the pipe buffer
314  * @info:	the pipe that the buffer belongs to
315  * @buf:	the buffer to confirm
316  *
317  * Description:
318  *	This function does nothing, because the generic pipe code uses
319  *	pages that are always good when inserted into the pipe.
320  */
generic_pipe_buf_confirm(struct pipe_inode_info * info,struct pipe_buffer * buf)321 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
322 			     struct pipe_buffer *buf)
323 {
324 	return 0;
325 }
326 EXPORT_SYMBOL(generic_pipe_buf_confirm);
327 
328 /**
329  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
330  * @pipe:	the pipe that the buffer belongs to
331  * @buf:	the buffer to put a reference to
332  *
333  * Description:
334  *	This function releases a reference to @buf.
335  */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)336 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
337 			      struct pipe_buffer *buf)
338 {
339 	page_cache_release(buf->page);
340 }
341 EXPORT_SYMBOL(generic_pipe_buf_release);
342 
343 static const struct pipe_buf_operations anon_pipe_buf_ops = {
344 	.can_merge = 1,
345 	.map = generic_pipe_buf_map,
346 	.unmap = generic_pipe_buf_unmap,
347 	.confirm = generic_pipe_buf_confirm,
348 	.release = anon_pipe_buf_release,
349 	.steal = generic_pipe_buf_steal,
350 	.get = generic_pipe_buf_get,
351 };
352 
353 static const struct pipe_buf_operations packet_pipe_buf_ops = {
354 	.can_merge = 0,
355 	.map = generic_pipe_buf_map,
356 	.unmap = generic_pipe_buf_unmap,
357 	.confirm = generic_pipe_buf_confirm,
358 	.release = anon_pipe_buf_release,
359 	.steal = generic_pipe_buf_steal,
360 	.get = generic_pipe_buf_get,
361 };
362 
363 static ssize_t
pipe_read(struct kiocb * iocb,const struct iovec * _iov,unsigned long nr_segs,loff_t pos)364 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
365 	   unsigned long nr_segs, loff_t pos)
366 {
367 	struct file *filp = iocb->ki_filp;
368 	struct inode *inode = filp->f_path.dentry->d_inode;
369 	struct pipe_inode_info *pipe;
370 	int do_wakeup;
371 	ssize_t ret;
372 	struct iovec *iov = (struct iovec *)_iov;
373 	size_t total_len;
374 
375 	total_len = iov_length(iov, nr_segs);
376 	/* Null read succeeds. */
377 	if (unlikely(total_len == 0))
378 		return 0;
379 
380 	do_wakeup = 0;
381 	ret = 0;
382 	mutex_lock(&inode->i_mutex);
383 	pipe = inode->i_pipe;
384 	for (;;) {
385 		int bufs = pipe->nrbufs;
386 		if (bufs) {
387 			int curbuf = pipe->curbuf;
388 			struct pipe_buffer *buf = pipe->bufs + curbuf;
389 			const struct pipe_buf_operations *ops = buf->ops;
390 			void *addr;
391 			size_t chars = buf->len, remaining;
392 			int error, atomic;
393 			int offset;
394 
395 			if (chars > total_len)
396 				chars = total_len;
397 
398 			error = ops->confirm(pipe, buf);
399 			if (error) {
400 				if (!ret)
401 					ret = error;
402 				break;
403 			}
404 
405 			atomic = !iov_fault_in_pages_write(iov, chars);
406 			remaining = chars;
407 			offset = buf->offset;
408 redo:
409 			addr = ops->map(pipe, buf, atomic);
410 			error = pipe_iov_copy_to_user(iov, addr, &offset,
411 						      &remaining, atomic);
412 			ops->unmap(pipe, buf, addr);
413 			if (unlikely(error)) {
414 				/*
415 				 * Just retry with the slow path if we failed.
416 				 */
417 				if (atomic) {
418 					atomic = 0;
419 					goto redo;
420 				}
421 				if (!ret)
422 					ret = error;
423 				break;
424 			}
425 			ret += chars;
426 			buf->offset += chars;
427 			buf->len -= chars;
428 
429 			/* Was it a packet buffer? Clean up and exit */
430 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
431 				total_len = chars;
432 				buf->len = 0;
433 			}
434 
435 			if (!buf->len) {
436 				buf->ops = NULL;
437 				ops->release(pipe, buf);
438 				curbuf = (curbuf + 1) & (pipe->buffers - 1);
439 				pipe->curbuf = curbuf;
440 				pipe->nrbufs = --bufs;
441 				do_wakeup = 1;
442 			}
443 			total_len -= chars;
444 			if (!total_len)
445 				break;	/* common path: read succeeded */
446 		}
447 		if (bufs)	/* More to do? */
448 			continue;
449 		if (!pipe->writers)
450 			break;
451 		if (!pipe->waiting_writers) {
452 			/* syscall merging: Usually we must not sleep
453 			 * if O_NONBLOCK is set, or if we got some data.
454 			 * But if a writer sleeps in kernel space, then
455 			 * we can wait for that data without violating POSIX.
456 			 */
457 			if (ret)
458 				break;
459 			if (filp->f_flags & O_NONBLOCK) {
460 				ret = -EAGAIN;
461 				break;
462 			}
463 		}
464 		if (signal_pending(current)) {
465 			if (!ret)
466 				ret = -ERESTARTSYS;
467 			break;
468 		}
469 		if (do_wakeup) {
470 			wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
471  			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
472 		}
473 		pipe_wait(pipe);
474 	}
475 	mutex_unlock(&inode->i_mutex);
476 
477 	/* Signal writers asynchronously that there is more room. */
478 	if (do_wakeup) {
479 		wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
480 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
481 	}
482 	if (ret > 0)
483 		file_accessed(filp);
484 	return ret;
485 }
486 
is_packetized(struct file * file)487 static inline int is_packetized(struct file *file)
488 {
489 	return (file->f_flags & O_DIRECT) != 0;
490 }
491 
492 static ssize_t
pipe_write(struct kiocb * iocb,const struct iovec * _iov,unsigned long nr_segs,loff_t ppos)493 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
494 	    unsigned long nr_segs, loff_t ppos)
495 {
496 	struct file *filp = iocb->ki_filp;
497 	struct inode *inode = filp->f_path.dentry->d_inode;
498 	struct pipe_inode_info *pipe;
499 	ssize_t ret;
500 	int do_wakeup;
501 	struct iovec *iov = (struct iovec *)_iov;
502 	size_t total_len;
503 	ssize_t chars;
504 
505 	total_len = iov_length(iov, nr_segs);
506 	/* Null write succeeds. */
507 	if (unlikely(total_len == 0))
508 		return 0;
509 
510 	do_wakeup = 0;
511 	ret = 0;
512 	mutex_lock(&inode->i_mutex);
513 	pipe = inode->i_pipe;
514 
515 	if (!pipe->readers) {
516 		send_sig(SIGPIPE, current, 0);
517 		ret = -EPIPE;
518 		goto out;
519 	}
520 
521 	/* We try to merge small writes */
522 	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
523 	if (pipe->nrbufs && chars != 0) {
524 		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
525 							(pipe->buffers - 1);
526 		struct pipe_buffer *buf = pipe->bufs + lastbuf;
527 		const struct pipe_buf_operations *ops = buf->ops;
528 		int offset = buf->offset + buf->len;
529 
530 		if (ops->can_merge && offset + chars <= PAGE_SIZE) {
531 			int error, atomic = 1;
532 			void *addr;
533 			size_t remaining = chars;
534 
535 			error = ops->confirm(pipe, buf);
536 			if (error)
537 				goto out;
538 
539 			iov_fault_in_pages_read(iov, chars);
540 redo1:
541 			addr = ops->map(pipe, buf, atomic);
542 			error = pipe_iov_copy_from_user(addr, &offset, iov,
543 							&remaining, atomic);
544 			ops->unmap(pipe, buf, addr);
545 			ret = error;
546 			do_wakeup = 1;
547 			if (error) {
548 				if (atomic) {
549 					atomic = 0;
550 					goto redo1;
551 				}
552 				goto out;
553 			}
554 			buf->len += chars;
555 			total_len -= chars;
556 			ret = chars;
557 			if (!total_len)
558 				goto out;
559 		}
560 	}
561 
562 	for (;;) {
563 		int bufs;
564 
565 		if (!pipe->readers) {
566 			send_sig(SIGPIPE, current, 0);
567 			if (!ret)
568 				ret = -EPIPE;
569 			break;
570 		}
571 		bufs = pipe->nrbufs;
572 		if (bufs < pipe->buffers) {
573 			int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
574 			struct pipe_buffer *buf = pipe->bufs + newbuf;
575 			struct page *page = pipe->tmp_page;
576 			char *src;
577 			int error, atomic = 1;
578 			int offset = 0;
579 			size_t remaining;
580 
581 			if (!page) {
582 				page = alloc_page(GFP_HIGHUSER);
583 				if (unlikely(!page)) {
584 					ret = ret ? : -ENOMEM;
585 					break;
586 				}
587 				pipe->tmp_page = page;
588 			}
589 			/* Always wake up, even if the copy fails. Otherwise
590 			 * we lock up (O_NONBLOCK-)readers that sleep due to
591 			 * syscall merging.
592 			 * FIXME! Is this really true?
593 			 */
594 			do_wakeup = 1;
595 			chars = PAGE_SIZE;
596 			if (chars > total_len)
597 				chars = total_len;
598 
599 			iov_fault_in_pages_read(iov, chars);
600 			remaining = chars;
601 redo2:
602 			if (atomic)
603 				src = kmap_atomic(page);
604 			else
605 				src = kmap(page);
606 
607 			error = pipe_iov_copy_from_user(src, &offset, iov,
608 							&remaining, atomic);
609 			if (atomic)
610 				kunmap_atomic(src);
611 			else
612 				kunmap(page);
613 
614 			if (unlikely(error)) {
615 				if (atomic) {
616 					atomic = 0;
617 					goto redo2;
618 				}
619 				if (!ret)
620 					ret = error;
621 				break;
622 			}
623 			ret += chars;
624 
625 			/* Insert it into the buffer array */
626 			buf->page = page;
627 			buf->ops = &anon_pipe_buf_ops;
628 			buf->offset = 0;
629 			buf->len = chars;
630 			buf->flags = 0;
631 			if (is_packetized(filp)) {
632 				buf->ops = &packet_pipe_buf_ops;
633 				buf->flags = PIPE_BUF_FLAG_PACKET;
634 			}
635 			pipe->nrbufs = ++bufs;
636 			pipe->tmp_page = NULL;
637 
638 			total_len -= chars;
639 			if (!total_len)
640 				break;
641 		}
642 		if (bufs < pipe->buffers)
643 			continue;
644 		if (filp->f_flags & O_NONBLOCK) {
645 			if (!ret)
646 				ret = -EAGAIN;
647 			break;
648 		}
649 		if (signal_pending(current)) {
650 			if (!ret)
651 				ret = -ERESTARTSYS;
652 			break;
653 		}
654 		if (do_wakeup) {
655 			wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
656 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
657 			do_wakeup = 0;
658 		}
659 		pipe->waiting_writers++;
660 		pipe_wait(pipe);
661 		pipe->waiting_writers--;
662 	}
663 out:
664 	mutex_unlock(&inode->i_mutex);
665 	if (do_wakeup) {
666 		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
667 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
668 	}
669 	if (ret > 0) {
670 		int err = file_update_time(filp);
671 		if (err)
672 			ret = err;
673 	}
674 	return ret;
675 }
676 
677 static ssize_t
bad_pipe_r(struct file * filp,char __user * buf,size_t count,loff_t * ppos)678 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
679 {
680 	return -EBADF;
681 }
682 
683 static ssize_t
bad_pipe_w(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)684 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
685 	   loff_t *ppos)
686 {
687 	return -EBADF;
688 }
689 
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)690 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
691 {
692 	struct inode *inode = filp->f_path.dentry->d_inode;
693 	struct pipe_inode_info *pipe;
694 	int count, buf, nrbufs;
695 
696 	switch (cmd) {
697 		case FIONREAD:
698 			mutex_lock(&inode->i_mutex);
699 			pipe = inode->i_pipe;
700 			count = 0;
701 			buf = pipe->curbuf;
702 			nrbufs = pipe->nrbufs;
703 			while (--nrbufs >= 0) {
704 				count += pipe->bufs[buf].len;
705 				buf = (buf+1) & (pipe->buffers - 1);
706 			}
707 			mutex_unlock(&inode->i_mutex);
708 
709 			return put_user(count, (int __user *)arg);
710 		default:
711 			return -EINVAL;
712 	}
713 }
714 
715 /* No kernel lock held - fine */
716 static unsigned int
pipe_poll(struct file * filp,poll_table * wait)717 pipe_poll(struct file *filp, poll_table *wait)
718 {
719 	unsigned int mask;
720 	struct inode *inode = filp->f_path.dentry->d_inode;
721 	struct pipe_inode_info *pipe = inode->i_pipe;
722 	int nrbufs;
723 
724 	poll_wait(filp, &pipe->wait, wait);
725 
726 	/* Reading only -- no need for acquiring the semaphore.  */
727 	nrbufs = pipe->nrbufs;
728 	mask = 0;
729 	if (filp->f_mode & FMODE_READ) {
730 		mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
731 		if (!pipe->writers && filp->f_version != pipe->w_counter)
732 			mask |= POLLHUP;
733 	}
734 
735 	if (filp->f_mode & FMODE_WRITE) {
736 		mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
737 		/*
738 		 * Most Unices do not set POLLERR for FIFOs but on Linux they
739 		 * behave exactly like pipes for poll().
740 		 */
741 		if (!pipe->readers)
742 			mask |= POLLERR;
743 	}
744 
745 	return mask;
746 }
747 
748 static int
pipe_release(struct inode * inode,int decr,int decw)749 pipe_release(struct inode *inode, int decr, int decw)
750 {
751 	struct pipe_inode_info *pipe;
752 
753 	mutex_lock(&inode->i_mutex);
754 	pipe = inode->i_pipe;
755 	pipe->readers -= decr;
756 	pipe->writers -= decw;
757 
758 	if (!pipe->readers && !pipe->writers) {
759 		free_pipe_info(inode);
760 	} else {
761 		wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
762 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
763 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
764 	}
765 	mutex_unlock(&inode->i_mutex);
766 
767 	return 0;
768 }
769 
770 static int
pipe_read_fasync(int fd,struct file * filp,int on)771 pipe_read_fasync(int fd, struct file *filp, int on)
772 {
773 	struct inode *inode = filp->f_path.dentry->d_inode;
774 	int retval;
775 
776 	mutex_lock(&inode->i_mutex);
777 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
778 	mutex_unlock(&inode->i_mutex);
779 
780 	return retval;
781 }
782 
783 
784 static int
pipe_write_fasync(int fd,struct file * filp,int on)785 pipe_write_fasync(int fd, struct file *filp, int on)
786 {
787 	struct inode *inode = filp->f_path.dentry->d_inode;
788 	int retval;
789 
790 	mutex_lock(&inode->i_mutex);
791 	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
792 	mutex_unlock(&inode->i_mutex);
793 
794 	return retval;
795 }
796 
797 
798 static int
pipe_rdwr_fasync(int fd,struct file * filp,int on)799 pipe_rdwr_fasync(int fd, struct file *filp, int on)
800 {
801 	struct inode *inode = filp->f_path.dentry->d_inode;
802 	struct pipe_inode_info *pipe = inode->i_pipe;
803 	int retval;
804 
805 	mutex_lock(&inode->i_mutex);
806 	retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
807 	if (retval >= 0) {
808 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
809 		if (retval < 0) /* this can happen only if on == T */
810 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
811 	}
812 	mutex_unlock(&inode->i_mutex);
813 	return retval;
814 }
815 
816 
817 static int
pipe_read_release(struct inode * inode,struct file * filp)818 pipe_read_release(struct inode *inode, struct file *filp)
819 {
820 	return pipe_release(inode, 1, 0);
821 }
822 
823 static int
pipe_write_release(struct inode * inode,struct file * filp)824 pipe_write_release(struct inode *inode, struct file *filp)
825 {
826 	return pipe_release(inode, 0, 1);
827 }
828 
829 static int
pipe_rdwr_release(struct inode * inode,struct file * filp)830 pipe_rdwr_release(struct inode *inode, struct file *filp)
831 {
832 	int decr, decw;
833 
834 	decr = (filp->f_mode & FMODE_READ) != 0;
835 	decw = (filp->f_mode & FMODE_WRITE) != 0;
836 	return pipe_release(inode, decr, decw);
837 }
838 
839 static int
pipe_read_open(struct inode * inode,struct file * filp)840 pipe_read_open(struct inode *inode, struct file *filp)
841 {
842 	int ret = -ENOENT;
843 
844 	mutex_lock(&inode->i_mutex);
845 
846 	if (inode->i_pipe) {
847 		ret = 0;
848 		inode->i_pipe->readers++;
849 	}
850 
851 	mutex_unlock(&inode->i_mutex);
852 
853 	return ret;
854 }
855 
856 static int
pipe_write_open(struct inode * inode,struct file * filp)857 pipe_write_open(struct inode *inode, struct file *filp)
858 {
859 	int ret = -ENOENT;
860 
861 	mutex_lock(&inode->i_mutex);
862 
863 	if (inode->i_pipe) {
864 		ret = 0;
865 		inode->i_pipe->writers++;
866 	}
867 
868 	mutex_unlock(&inode->i_mutex);
869 
870 	return ret;
871 }
872 
873 static int
pipe_rdwr_open(struct inode * inode,struct file * filp)874 pipe_rdwr_open(struct inode *inode, struct file *filp)
875 {
876 	int ret = -ENOENT;
877 
878 	if (!(filp->f_mode & (FMODE_READ|FMODE_WRITE)))
879 		return -EINVAL;
880 
881 	mutex_lock(&inode->i_mutex);
882 
883 	if (inode->i_pipe) {
884 		ret = 0;
885 		if (filp->f_mode & FMODE_READ)
886 			inode->i_pipe->readers++;
887 		if (filp->f_mode & FMODE_WRITE)
888 			inode->i_pipe->writers++;
889 	}
890 
891 	mutex_unlock(&inode->i_mutex);
892 
893 	return ret;
894 }
895 
896 /*
897  * The file_operations structs are not static because they
898  * are also used in linux/fs/fifo.c to do operations on FIFOs.
899  *
900  * Pipes reuse fifos' file_operations structs.
901  */
902 const struct file_operations read_pipefifo_fops = {
903 	.llseek		= no_llseek,
904 	.read		= do_sync_read,
905 	.aio_read	= pipe_read,
906 	.write		= bad_pipe_w,
907 	.poll		= pipe_poll,
908 	.unlocked_ioctl	= pipe_ioctl,
909 	.open		= pipe_read_open,
910 	.release	= pipe_read_release,
911 	.fasync		= pipe_read_fasync,
912 };
913 
914 const struct file_operations write_pipefifo_fops = {
915 	.llseek		= no_llseek,
916 	.read		= bad_pipe_r,
917 	.write		= do_sync_write,
918 	.aio_write	= pipe_write,
919 	.poll		= pipe_poll,
920 	.unlocked_ioctl	= pipe_ioctl,
921 	.open		= pipe_write_open,
922 	.release	= pipe_write_release,
923 	.fasync		= pipe_write_fasync,
924 };
925 
926 const struct file_operations rdwr_pipefifo_fops = {
927 	.llseek		= no_llseek,
928 	.read		= do_sync_read,
929 	.aio_read	= pipe_read,
930 	.write		= do_sync_write,
931 	.aio_write	= pipe_write,
932 	.poll		= pipe_poll,
933 	.unlocked_ioctl	= pipe_ioctl,
934 	.open		= pipe_rdwr_open,
935 	.release	= pipe_rdwr_release,
936 	.fasync		= pipe_rdwr_fasync,
937 };
938 
alloc_pipe_info(struct inode * inode)939 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
940 {
941 	struct pipe_inode_info *pipe;
942 
943 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
944 	if (pipe) {
945 		pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
946 		if (pipe->bufs) {
947 			init_waitqueue_head(&pipe->wait);
948 			pipe->r_counter = pipe->w_counter = 1;
949 			pipe->inode = inode;
950 			pipe->buffers = PIPE_DEF_BUFFERS;
951 			return pipe;
952 		}
953 		kfree(pipe);
954 	}
955 
956 	return NULL;
957 }
958 
__free_pipe_info(struct pipe_inode_info * pipe)959 void __free_pipe_info(struct pipe_inode_info *pipe)
960 {
961 	int i;
962 
963 	for (i = 0; i < pipe->buffers; i++) {
964 		struct pipe_buffer *buf = pipe->bufs + i;
965 		if (buf->ops)
966 			buf->ops->release(pipe, buf);
967 	}
968 	if (pipe->tmp_page)
969 		__free_page(pipe->tmp_page);
970 	kfree(pipe->bufs);
971 	kfree(pipe);
972 }
973 
free_pipe_info(struct inode * inode)974 void free_pipe_info(struct inode *inode)
975 {
976 	__free_pipe_info(inode->i_pipe);
977 	inode->i_pipe = NULL;
978 }
979 
980 static struct vfsmount *pipe_mnt __read_mostly;
981 
982 /*
983  * pipefs_dname() is called from d_path().
984  */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)985 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
986 {
987 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
988 				dentry->d_inode->i_ino);
989 }
990 
991 static const struct dentry_operations pipefs_dentry_operations = {
992 	.d_dname	= pipefs_dname,
993 };
994 
get_pipe_inode(void)995 static struct inode * get_pipe_inode(void)
996 {
997 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
998 	struct pipe_inode_info *pipe;
999 
1000 	if (!inode)
1001 		goto fail_inode;
1002 
1003 	inode->i_ino = get_next_ino();
1004 
1005 	pipe = alloc_pipe_info(inode);
1006 	if (!pipe)
1007 		goto fail_iput;
1008 	inode->i_pipe = pipe;
1009 
1010 	pipe->readers = pipe->writers = 1;
1011 	inode->i_fop = &rdwr_pipefifo_fops;
1012 
1013 	/*
1014 	 * Mark the inode dirty from the very beginning,
1015 	 * that way it will never be moved to the dirty
1016 	 * list because "mark_inode_dirty()" will think
1017 	 * that it already _is_ on the dirty list.
1018 	 */
1019 	inode->i_state = I_DIRTY;
1020 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1021 	inode->i_uid = current_fsuid();
1022 	inode->i_gid = current_fsgid();
1023 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1024 
1025 	return inode;
1026 
1027 fail_iput:
1028 	iput(inode);
1029 
1030 fail_inode:
1031 	return NULL;
1032 }
1033 
create_write_pipe(int flags)1034 struct file *create_write_pipe(int flags)
1035 {
1036 	int err;
1037 	struct inode *inode;
1038 	struct file *f;
1039 	struct path path;
1040 	struct qstr name = { .name = "" };
1041 
1042 	err = -ENFILE;
1043 	inode = get_pipe_inode();
1044 	if (!inode)
1045 		goto err;
1046 
1047 	err = -ENOMEM;
1048 	path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
1049 	if (!path.dentry)
1050 		goto err_inode;
1051 	path.mnt = mntget(pipe_mnt);
1052 
1053 	d_instantiate(path.dentry, inode);
1054 
1055 	err = -ENFILE;
1056 	f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
1057 	if (!f)
1058 		goto err_dentry;
1059 	f->f_mapping = inode->i_mapping;
1060 
1061 	f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
1062 	f->f_version = 0;
1063 
1064 	return f;
1065 
1066  err_dentry:
1067 	free_pipe_info(inode);
1068 	path_put(&path);
1069 	return ERR_PTR(err);
1070 
1071  err_inode:
1072 	free_pipe_info(inode);
1073 	iput(inode);
1074  err:
1075 	return ERR_PTR(err);
1076 }
1077 
free_write_pipe(struct file * f)1078 void free_write_pipe(struct file *f)
1079 {
1080 	free_pipe_info(f->f_dentry->d_inode);
1081 	path_put(&f->f_path);
1082 	put_filp(f);
1083 }
1084 
create_read_pipe(struct file * wrf,int flags)1085 struct file *create_read_pipe(struct file *wrf, int flags)
1086 {
1087 	/* Grab pipe from the writer */
1088 	struct file *f = alloc_file(&wrf->f_path, FMODE_READ,
1089 				    &read_pipefifo_fops);
1090 	if (!f)
1091 		return ERR_PTR(-ENFILE);
1092 
1093 	path_get(&wrf->f_path);
1094 	f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1095 
1096 	return f;
1097 }
1098 
do_pipe_flags(int * fd,int flags)1099 int do_pipe_flags(int *fd, int flags)
1100 {
1101 	struct file *fw, *fr;
1102 	int error;
1103 	int fdw, fdr;
1104 
1105 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
1106 		return -EINVAL;
1107 
1108 	fw = create_write_pipe(flags);
1109 	if (IS_ERR(fw))
1110 		return PTR_ERR(fw);
1111 	fr = create_read_pipe(fw, flags);
1112 	error = PTR_ERR(fr);
1113 	if (IS_ERR(fr))
1114 		goto err_write_pipe;
1115 
1116 	error = get_unused_fd_flags(flags);
1117 	if (error < 0)
1118 		goto err_read_pipe;
1119 	fdr = error;
1120 
1121 	error = get_unused_fd_flags(flags);
1122 	if (error < 0)
1123 		goto err_fdr;
1124 	fdw = error;
1125 
1126 	audit_fd_pair(fdr, fdw);
1127 	fd_install(fdr, fr);
1128 	fd_install(fdw, fw);
1129 	fd[0] = fdr;
1130 	fd[1] = fdw;
1131 
1132 	return 0;
1133 
1134  err_fdr:
1135 	put_unused_fd(fdr);
1136  err_read_pipe:
1137 	path_put(&fr->f_path);
1138 	put_filp(fr);
1139  err_write_pipe:
1140 	free_write_pipe(fw);
1141 	return error;
1142 }
1143 
1144 /*
1145  * sys_pipe() is the normal C calling standard for creating
1146  * a pipe. It's not the way Unix traditionally does this, though.
1147  */
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)1148 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1149 {
1150 	int fd[2];
1151 	int error;
1152 
1153 	error = do_pipe_flags(fd, flags);
1154 	if (!error) {
1155 		if (copy_to_user(fildes, fd, sizeof(fd))) {
1156 			sys_close(fd[0]);
1157 			sys_close(fd[1]);
1158 			error = -EFAULT;
1159 		}
1160 	}
1161 	return error;
1162 }
1163 
SYSCALL_DEFINE1(pipe,int __user *,fildes)1164 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1165 {
1166 	return sys_pipe2(fildes, 0);
1167 }
1168 
1169 /*
1170  * Allocate a new array of pipe buffers and copy the info over. Returns the
1171  * pipe size if successful, or return -ERROR on error.
1172  */
pipe_set_size(struct pipe_inode_info * pipe,unsigned long nr_pages)1173 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1174 {
1175 	struct pipe_buffer *bufs;
1176 
1177 	/*
1178 	 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1179 	 * expect a lot of shrink+grow operations, just free and allocate
1180 	 * again like we would do for growing. If the pipe currently
1181 	 * contains more buffers than arg, then return busy.
1182 	 */
1183 	if (nr_pages < pipe->nrbufs)
1184 		return -EBUSY;
1185 
1186 	bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
1187 	if (unlikely(!bufs))
1188 		return -ENOMEM;
1189 
1190 	/*
1191 	 * The pipe array wraps around, so just start the new one at zero
1192 	 * and adjust the indexes.
1193 	 */
1194 	if (pipe->nrbufs) {
1195 		unsigned int tail;
1196 		unsigned int head;
1197 
1198 		tail = pipe->curbuf + pipe->nrbufs;
1199 		if (tail < pipe->buffers)
1200 			tail = 0;
1201 		else
1202 			tail &= (pipe->buffers - 1);
1203 
1204 		head = pipe->nrbufs - tail;
1205 		if (head)
1206 			memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1207 		if (tail)
1208 			memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1209 	}
1210 
1211 	pipe->curbuf = 0;
1212 	kfree(pipe->bufs);
1213 	pipe->bufs = bufs;
1214 	pipe->buffers = nr_pages;
1215 	return nr_pages * PAGE_SIZE;
1216 }
1217 
1218 /*
1219  * Currently we rely on the pipe array holding a power-of-2 number
1220  * of pages.
1221  */
round_pipe_size(unsigned int size)1222 static inline unsigned int round_pipe_size(unsigned int size)
1223 {
1224 	unsigned long nr_pages;
1225 
1226 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1227 	return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1228 }
1229 
1230 /*
1231  * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1232  * will return an error.
1233  */
pipe_proc_fn(struct ctl_table * table,int write,void __user * buf,size_t * lenp,loff_t * ppos)1234 int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1235 		 size_t *lenp, loff_t *ppos)
1236 {
1237 	int ret;
1238 
1239 	ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1240 	if (ret < 0 || !write)
1241 		return ret;
1242 
1243 	pipe_max_size = round_pipe_size(pipe_max_size);
1244 	return ret;
1245 }
1246 
1247 /*
1248  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1249  * location, so checking ->i_pipe is not enough to verify that this is a
1250  * pipe.
1251  */
get_pipe_info(struct file * file)1252 struct pipe_inode_info *get_pipe_info(struct file *file)
1253 {
1254 	struct inode *i = file->f_path.dentry->d_inode;
1255 
1256 	return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL;
1257 }
1258 
pipe_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1259 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1260 {
1261 	struct pipe_inode_info *pipe;
1262 	long ret;
1263 
1264 	pipe = get_pipe_info(file);
1265 	if (!pipe)
1266 		return -EBADF;
1267 
1268 	mutex_lock(&pipe->inode->i_mutex);
1269 
1270 	switch (cmd) {
1271 	case F_SETPIPE_SZ: {
1272 		unsigned int size, nr_pages;
1273 
1274 		size = round_pipe_size(arg);
1275 		nr_pages = size >> PAGE_SHIFT;
1276 
1277 		ret = -EINVAL;
1278 		if (!nr_pages)
1279 			goto out;
1280 
1281 		if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1282 			ret = -EPERM;
1283 			goto out;
1284 		}
1285 		ret = pipe_set_size(pipe, nr_pages);
1286 		break;
1287 		}
1288 	case F_GETPIPE_SZ:
1289 		ret = pipe->buffers * PAGE_SIZE;
1290 		break;
1291 	default:
1292 		ret = -EINVAL;
1293 		break;
1294 	}
1295 
1296 out:
1297 	mutex_unlock(&pipe->inode->i_mutex);
1298 	return ret;
1299 }
1300 
1301 static const struct super_operations pipefs_ops = {
1302 	.destroy_inode = free_inode_nonrcu,
1303 	.statfs = simple_statfs,
1304 };
1305 
1306 /*
1307  * pipefs should _never_ be mounted by userland - too much of security hassle,
1308  * no real gain from having the whole whorehouse mounted. So we don't need
1309  * any operations on the root directory. However, we need a non-trivial
1310  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1311  */
pipefs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1312 static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1313 			 int flags, const char *dev_name, void *data)
1314 {
1315 	return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1316 			&pipefs_dentry_operations, PIPEFS_MAGIC);
1317 }
1318 
1319 static struct file_system_type pipe_fs_type = {
1320 	.name		= "pipefs",
1321 	.mount		= pipefs_mount,
1322 	.kill_sb	= kill_anon_super,
1323 };
1324 
init_pipe_fs(void)1325 static int __init init_pipe_fs(void)
1326 {
1327 	int err = register_filesystem(&pipe_fs_type);
1328 
1329 	if (!err) {
1330 		pipe_mnt = kern_mount(&pipe_fs_type);
1331 		if (IS_ERR(pipe_mnt)) {
1332 			err = PTR_ERR(pipe_mnt);
1333 			unregister_filesystem(&pipe_fs_type);
1334 		}
1335 	}
1336 	return err;
1337 }
1338 
1339 fs_initcall(init_pipe_fs);
1340