• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Squashfs - a compressed read only filesystem for Linux
3  *
4  * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
5  * Phillip Lougher <phillip@squashfs.org.uk>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version 2,
10  * or (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
20  *
21  * cache.c
22  */
23 
24 /*
25  * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing
26  * recently accessed data Squashfs uses two small metadata and fragment caches.
27  *
28  * This file implements a generic cache implementation used for both caches,
29  * plus functions layered ontop of the generic cache implementation to
30  * access the metadata and fragment caches.
31  *
32  * To avoid out of memory and fragmentation issues with vmalloc the cache
33  * uses sequences of kmalloced PAGE_CACHE_SIZE buffers.
34  *
35  * It should be noted that the cache is not used for file datablocks, these
36  * are decompressed and cached in the page-cache in the normal way.  The
37  * cache is only used to temporarily cache fragment and metadata blocks
38  * which have been read as as a result of a metadata (i.e. inode or
39  * directory) or fragment access.  Because metadata and fragments are packed
40  * together into blocks (to gain greater compression) the read of a particular
41  * piece of metadata or fragment will retrieve other metadata/fragments which
42  * have been packed with it, these because of locality-of-reference may be read
43  * in the near future. Temporarily caching them ensures they are available for
44  * near future access without requiring an additional read and decompress.
45  */
46 
47 #include <linux/fs.h>
48 #include <linux/vfs.h>
49 #include <linux/slab.h>
50 #include <linux/vmalloc.h>
51 #include <linux/sched.h>
52 #include <linux/spinlock.h>
53 #include <linux/wait.h>
54 #include <linux/pagemap.h>
55 
56 #include "squashfs_fs.h"
57 #include "squashfs_fs_sb.h"
58 #include "squashfs.h"
59 
60 /*
61  * Look-up block in cache, and increment usage count.  If not in cache, read
62  * and decompress it from disk.
63  */
squashfs_cache_get(struct super_block * sb,struct squashfs_cache * cache,u64 block,int length)64 struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
65 	struct squashfs_cache *cache, u64 block, int length)
66 {
67 	int i, n;
68 	struct squashfs_cache_entry *entry;
69 
70 	spin_lock(&cache->lock);
71 
72 	while (1) {
73 		for (i = cache->curr_blk, n = 0; n < cache->entries; n++) {
74 			if (cache->entry[i].block == block) {
75 				cache->curr_blk = i;
76 				break;
77 			}
78 			i = (i + 1) % cache->entries;
79 		}
80 
81 		if (n == cache->entries) {
82 			/*
83 			 * Block not in cache, if all cache entries are used
84 			 * go to sleep waiting for one to become available.
85 			 */
86 			if (cache->unused == 0) {
87 				cache->num_waiters++;
88 				spin_unlock(&cache->lock);
89 				wait_event(cache->wait_queue, cache->unused);
90 				spin_lock(&cache->lock);
91 				cache->num_waiters--;
92 				continue;
93 			}
94 
95 			/*
96 			 * At least one unused cache entry.  A simple
97 			 * round-robin strategy is used to choose the entry to
98 			 * be evicted from the cache.
99 			 */
100 			i = cache->next_blk;
101 			for (n = 0; n < cache->entries; n++) {
102 				if (cache->entry[i].refcount == 0)
103 					break;
104 				i = (i + 1) % cache->entries;
105 			}
106 
107 			cache->next_blk = (i + 1) % cache->entries;
108 			entry = &cache->entry[i];
109 
110 			/*
111 			 * Initialise chosen cache entry, and fill it in from
112 			 * disk.
113 			 */
114 			cache->unused--;
115 			entry->block = block;
116 			entry->refcount = 1;
117 			entry->pending = 1;
118 			entry->num_waiters = 0;
119 			entry->error = 0;
120 			spin_unlock(&cache->lock);
121 
122 			entry->length = squashfs_read_data(sb, entry->data,
123 				block, length, &entry->next_index,
124 				cache->block_size, cache->pages);
125 
126 			spin_lock(&cache->lock);
127 
128 			if (entry->length < 0)
129 				entry->error = entry->length;
130 
131 			entry->pending = 0;
132 
133 			/*
134 			 * While filling this entry one or more other processes
135 			 * have looked it up in the cache, and have slept
136 			 * waiting for it to become available.
137 			 */
138 			if (entry->num_waiters) {
139 				spin_unlock(&cache->lock);
140 				wake_up_all(&entry->wait_queue);
141 			} else
142 				spin_unlock(&cache->lock);
143 
144 			goto out;
145 		}
146 
147 		/*
148 		 * Block already in cache.  Increment refcount so it doesn't
149 		 * get reused until we're finished with it, if it was
150 		 * previously unused there's one less cache entry available
151 		 * for reuse.
152 		 */
153 		entry = &cache->entry[i];
154 		if (entry->refcount == 0)
155 			cache->unused--;
156 		entry->refcount++;
157 
158 		/*
159 		 * If the entry is currently being filled in by another process
160 		 * go to sleep waiting for it to become available.
161 		 */
162 		if (entry->pending) {
163 			entry->num_waiters++;
164 			spin_unlock(&cache->lock);
165 			wait_event(entry->wait_queue, !entry->pending);
166 		} else
167 			spin_unlock(&cache->lock);
168 
169 		goto out;
170 	}
171 
172 out:
173 	TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
174 		cache->name, i, entry->block, entry->refcount, entry->error);
175 
176 	if (entry->error)
177 		ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
178 							block);
179 	return entry;
180 }
181 
182 
183 /*
184  * Release cache entry, once usage count is zero it can be reused.
185  */
squashfs_cache_put(struct squashfs_cache_entry * entry)186 void squashfs_cache_put(struct squashfs_cache_entry *entry)
187 {
188 	struct squashfs_cache *cache = entry->cache;
189 
190 	spin_lock(&cache->lock);
191 	entry->refcount--;
192 	if (entry->refcount == 0) {
193 		cache->unused++;
194 		/*
195 		 * If there's any processes waiting for a block to become
196 		 * available, wake one up.
197 		 */
198 		if (cache->num_waiters) {
199 			spin_unlock(&cache->lock);
200 			wake_up(&cache->wait_queue);
201 			return;
202 		}
203 	}
204 	spin_unlock(&cache->lock);
205 }
206 
207 /*
208  * Delete cache reclaiming all kmalloced buffers.
209  */
squashfs_cache_delete(struct squashfs_cache * cache)210 void squashfs_cache_delete(struct squashfs_cache *cache)
211 {
212 	int i, j;
213 
214 	if (cache == NULL)
215 		return;
216 
217 	for (i = 0; i < cache->entries; i++) {
218 		if (cache->entry[i].data) {
219 			for (j = 0; j < cache->pages; j++)
220 				kfree(cache->entry[i].data[j]);
221 			kfree(cache->entry[i].data);
222 		}
223 	}
224 
225 	kfree(cache->entry);
226 	kfree(cache);
227 }
228 
229 
230 /*
231  * Initialise cache allocating the specified number of entries, each of
232  * size block_size.  To avoid vmalloc fragmentation issues each entry
233  * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers.
234  */
squashfs_cache_init(char * name,int entries,int block_size)235 struct squashfs_cache *squashfs_cache_init(char *name, int entries,
236 	int block_size)
237 {
238 	int i, j;
239 	struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
240 
241 	if (cache == NULL) {
242 		ERROR("Failed to allocate %s cache\n", name);
243 		return NULL;
244 	}
245 
246 	cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
247 	if (cache->entry == NULL) {
248 		ERROR("Failed to allocate %s cache\n", name);
249 		goto cleanup;
250 	}
251 
252 	cache->curr_blk = 0;
253 	cache->next_blk = 0;
254 	cache->unused = entries;
255 	cache->entries = entries;
256 	cache->block_size = block_size;
257 	cache->pages = block_size >> PAGE_CACHE_SHIFT;
258 	cache->pages = cache->pages ? cache->pages : 1;
259 	cache->name = name;
260 	cache->num_waiters = 0;
261 	spin_lock_init(&cache->lock);
262 	init_waitqueue_head(&cache->wait_queue);
263 
264 	for (i = 0; i < entries; i++) {
265 		struct squashfs_cache_entry *entry = &cache->entry[i];
266 
267 		init_waitqueue_head(&cache->entry[i].wait_queue);
268 		entry->cache = cache;
269 		entry->block = SQUASHFS_INVALID_BLK;
270 		entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
271 		if (entry->data == NULL) {
272 			ERROR("Failed to allocate %s cache entry\n", name);
273 			goto cleanup;
274 		}
275 
276 		for (j = 0; j < cache->pages; j++) {
277 			entry->data[j] = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
278 			if (entry->data[j] == NULL) {
279 				ERROR("Failed to allocate %s buffer\n", name);
280 				goto cleanup;
281 			}
282 		}
283 	}
284 
285 	return cache;
286 
287 cleanup:
288 	squashfs_cache_delete(cache);
289 	return NULL;
290 }
291 
292 
293 /*
294  * Copy up to length bytes from cache entry to buffer starting at offset bytes
295  * into the cache entry.  If there's not length bytes then copy the number of
296  * bytes available.  In all cases return the number of bytes copied.
297  */
squashfs_copy_data(void * buffer,struct squashfs_cache_entry * entry,int offset,int length)298 int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
299 		int offset, int length)
300 {
301 	int remaining = length;
302 
303 	if (length == 0)
304 		return 0;
305 	else if (buffer == NULL)
306 		return min(length, entry->length - offset);
307 
308 	while (offset < entry->length) {
309 		void *buff = entry->data[offset / PAGE_CACHE_SIZE]
310 				+ (offset % PAGE_CACHE_SIZE);
311 		int bytes = min_t(int, entry->length - offset,
312 				PAGE_CACHE_SIZE - (offset % PAGE_CACHE_SIZE));
313 
314 		if (bytes >= remaining) {
315 			memcpy(buffer, buff, remaining);
316 			remaining = 0;
317 			break;
318 		}
319 
320 		memcpy(buffer, buff, bytes);
321 		buffer += bytes;
322 		remaining -= bytes;
323 		offset += bytes;
324 	}
325 
326 	return length - remaining;
327 }
328 
329 
330 /*
331  * Read length bytes from metadata position <block, offset> (block is the
332  * start of the compressed block on disk, and offset is the offset into
333  * the block once decompressed).  Data is packed into consecutive blocks,
334  * and length bytes may require reading more than one block.
335  */
squashfs_read_metadata(struct super_block * sb,void * buffer,u64 * block,int * offset,int length)336 int squashfs_read_metadata(struct super_block *sb, void *buffer,
337 		u64 *block, int *offset, int length)
338 {
339 	struct squashfs_sb_info *msblk = sb->s_fs_info;
340 	int bytes, res = length;
341 	struct squashfs_cache_entry *entry;
342 
343 	TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
344 
345 	while (length) {
346 		entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
347 		if (entry->error) {
348 			res = entry->error;
349 			goto error;
350 		} else if (*offset >= entry->length) {
351 			res = -EIO;
352 			goto error;
353 		}
354 
355 		bytes = squashfs_copy_data(buffer, entry, *offset, length);
356 		if (buffer)
357 			buffer += bytes;
358 		length -= bytes;
359 		*offset += bytes;
360 
361 		if (*offset == entry->length) {
362 			*block = entry->next_index;
363 			*offset = 0;
364 		}
365 
366 		squashfs_cache_put(entry);
367 	}
368 
369 	return res;
370 
371 error:
372 	squashfs_cache_put(entry);
373 	return res;
374 }
375 
376 
377 /*
378  * Look-up in the fragmment cache the fragment located at <start_block> in the
379  * filesystem.  If necessary read and decompress it from disk.
380  */
squashfs_get_fragment(struct super_block * sb,u64 start_block,int length)381 struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
382 				u64 start_block, int length)
383 {
384 	struct squashfs_sb_info *msblk = sb->s_fs_info;
385 
386 	return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
387 		length);
388 }
389 
390 
391 /*
392  * Read and decompress the datablock located at <start_block> in the
393  * filesystem.  The cache is used here to avoid duplicating locking and
394  * read/decompress code.
395  */
squashfs_get_datablock(struct super_block * sb,u64 start_block,int length)396 struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
397 				u64 start_block, int length)
398 {
399 	struct squashfs_sb_info *msblk = sb->s_fs_info;
400 
401 	return squashfs_cache_get(sb, msblk->read_page, start_block, length);
402 }
403 
404 
405 /*
406  * Read a filesystem table (uncompressed sequence of bytes) from disk
407  */
squashfs_read_table(struct super_block * sb,u64 block,int length)408 void *squashfs_read_table(struct super_block *sb, u64 block, int length)
409 {
410 	int pages = (length + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
411 	int i, res;
412 	void *table, *buffer, **data;
413 
414 	table = buffer = kmalloc(length, GFP_KERNEL);
415 	if (table == NULL)
416 		return ERR_PTR(-ENOMEM);
417 
418 	data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
419 	if (data == NULL) {
420 		res = -ENOMEM;
421 		goto failed;
422 	}
423 
424 	for (i = 0; i < pages; i++, buffer += PAGE_CACHE_SIZE)
425 		data[i] = buffer;
426 
427 	res = squashfs_read_data(sb, data, block, length |
428 		SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, length, pages);
429 
430 	kfree(data);
431 
432 	if (res < 0)
433 		goto failed;
434 
435 	return table;
436 
437 failed:
438 	kfree(table);
439 	return ERR_PTR(res);
440 }
441