1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * linux/cgroup-defs.h - basic definitions for cgroup
4 *
5 * This file provides basic type and interface. Include this file directly
6 * only if necessary to avoid cyclic dependencies.
7 */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/workqueue.h>
21 #include <linux/bpf-cgroup.h>
22 #include <linux/psi_types.h>
23
24 #ifdef CONFIG_CGROUPS
25
26 struct cgroup;
27 struct cgroup_root;
28 struct cgroup_subsys;
29 struct cgroup_taskset;
30 struct kernfs_node;
31 struct kernfs_ops;
32 struct kernfs_open_file;
33 struct seq_file;
34 struct poll_table_struct;
35
36 #define MAX_CGROUP_TYPE_NAMELEN 32
37 #define MAX_CGROUP_ROOT_NAMELEN 64
38 #define MAX_CFTYPE_NAME 64
39
40 /* define the enumeration of all cgroup subsystems */
41 #define SUBSYS(_x) _x ## _cgrp_id,
42 enum cgroup_subsys_id {
43 #include <linux/cgroup_subsys.h>
44 CGROUP_SUBSYS_COUNT,
45 };
46 #undef SUBSYS
47
48 /* bits in struct cgroup_subsys_state flags field */
49 enum {
50 CSS_NO_REF = (1 << 0), /* no reference counting for this css */
51 CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */
52 CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */
53 CSS_VISIBLE = (1 << 3), /* css is visible to userland */
54 CSS_DYING = (1 << 4), /* css is dying */
55 };
56
57 /* bits in struct cgroup flags field */
58 enum {
59 /* Control Group requires release notifications to userspace */
60 CGRP_NOTIFY_ON_RELEASE,
61 /*
62 * Clone the parent's configuration when creating a new child
63 * cpuset cgroup. For historical reasons, this option can be
64 * specified at mount time and thus is implemented here.
65 */
66 CGRP_CPUSET_CLONE_CHILDREN,
67 };
68
69 /* cgroup_root->flags */
70 enum {
71 CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */
72 CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */
73
74 /*
75 * Consider namespaces as delegation boundaries. If this flag is
76 * set, controller specific interface files in a namespace root
77 * aren't writeable from inside the namespace.
78 */
79 CGRP_ROOT_NS_DELEGATE = (1 << 3),
80
81 /*
82 * Enable cpuset controller in v1 cgroup to use v2 behavior.
83 */
84 CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
85 };
86
87 /* cftype->flags */
88 enum {
89 CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */
90 CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */
91 CFTYPE_NS_DELEGATABLE = (1 << 2), /* writeable beyond delegation boundaries */
92
93 CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */
94 CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */
95
96 /* internal flags, do not use outside cgroup core proper */
97 __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */
98 __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */
99 };
100
101 /*
102 * cgroup_file is the handle for a file instance created in a cgroup which
103 * is used, for example, to generate file changed notifications. This can
104 * be obtained by setting cftype->file_offset.
105 */
106 struct cgroup_file {
107 /* do not access any fields from outside cgroup core */
108 struct kernfs_node *kn;
109 };
110
111 /*
112 * Per-subsystem/per-cgroup state maintained by the system. This is the
113 * fundamental structural building block that controllers deal with.
114 *
115 * Fields marked with "PI:" are public and immutable and may be accessed
116 * directly without synchronization.
117 */
118 struct cgroup_subsys_state {
119 /* PI: the cgroup that this css is attached to */
120 struct cgroup *cgroup;
121
122 /* PI: the cgroup subsystem that this css is attached to */
123 struct cgroup_subsys *ss;
124
125 /* reference count - access via css_[try]get() and css_put() */
126 struct percpu_ref refcnt;
127
128 /* siblings list anchored at the parent's ->children */
129 struct list_head sibling;
130 struct list_head children;
131
132 /*
133 * PI: Subsys-unique ID. 0 is unused and root is always 1. The
134 * matching css can be looked up using css_from_id().
135 */
136 int id;
137
138 unsigned int flags;
139
140 /*
141 * Monotonically increasing unique serial number which defines a
142 * uniform order among all csses. It's guaranteed that all
143 * ->children lists are in the ascending order of ->serial_nr and
144 * used to allow interrupting and resuming iterations.
145 */
146 u64 serial_nr;
147
148 /*
149 * Incremented by online self and children. Used to guarantee that
150 * parents are not offlined before their children.
151 */
152 atomic_t online_cnt;
153
154 /* percpu_ref killing and RCU release */
155 struct rcu_head rcu_head;
156 struct work_struct destroy_work;
157
158 /*
159 * PI: the parent css. Placed here for cache proximity to following
160 * fields of the containing structure.
161 */
162 struct cgroup_subsys_state *parent;
163 };
164
165 /*
166 * A css_set is a structure holding pointers to a set of
167 * cgroup_subsys_state objects. This saves space in the task struct
168 * object and speeds up fork()/exit(), since a single inc/dec and a
169 * list_add()/del() can bump the reference count on the entire cgroup
170 * set for a task.
171 */
172 struct css_set {
173 /*
174 * Set of subsystem states, one for each subsystem. This array is
175 * immutable after creation apart from the init_css_set during
176 * subsystem registration (at boot time).
177 */
178 struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
179
180 /* reference count */
181 refcount_t refcount;
182
183 /*
184 * For a domain cgroup, the following points to self. If threaded,
185 * to the matching cset of the nearest domain ancestor. The
186 * dom_cset provides access to the domain cgroup and its csses to
187 * which domain level resource consumptions should be charged.
188 */
189 struct css_set *dom_cset;
190
191 /* the default cgroup associated with this css_set */
192 struct cgroup *dfl_cgrp;
193
194 /* internal task count, protected by css_set_lock */
195 int nr_tasks;
196
197 /*
198 * Lists running through all tasks using this cgroup group.
199 * mg_tasks lists tasks which belong to this cset but are in the
200 * process of being migrated out or in. Protected by
201 * css_set_rwsem, but, during migration, once tasks are moved to
202 * mg_tasks, it can be read safely while holding cgroup_mutex.
203 */
204 struct list_head tasks;
205 struct list_head mg_tasks;
206 struct list_head dying_tasks;
207
208 /* all css_task_iters currently walking this cset */
209 struct list_head task_iters;
210
211 /*
212 * On the default hierarhcy, ->subsys[ssid] may point to a css
213 * attached to an ancestor instead of the cgroup this css_set is
214 * associated with. The following node is anchored at
215 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
216 * iterate through all css's attached to a given cgroup.
217 */
218 struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
219
220 /* all threaded csets whose ->dom_cset points to this cset */
221 struct list_head threaded_csets;
222 struct list_head threaded_csets_node;
223
224 /*
225 * List running through all cgroup groups in the same hash
226 * slot. Protected by css_set_lock
227 */
228 struct hlist_node hlist;
229
230 /*
231 * List of cgrp_cset_links pointing at cgroups referenced from this
232 * css_set. Protected by css_set_lock.
233 */
234 struct list_head cgrp_links;
235
236 /*
237 * List of csets participating in the on-going migration either as
238 * source or destination. Protected by cgroup_mutex.
239 */
240 struct list_head mg_preload_node;
241 struct list_head mg_node;
242
243 /*
244 * If this cset is acting as the source of migration the following
245 * two fields are set. mg_src_cgrp and mg_dst_cgrp are
246 * respectively the source and destination cgroups of the on-going
247 * migration. mg_dst_cset is the destination cset the target tasks
248 * on this cset should be migrated to. Protected by cgroup_mutex.
249 */
250 struct cgroup *mg_src_cgrp;
251 struct cgroup *mg_dst_cgrp;
252 struct css_set *mg_dst_cset;
253
254 /* dead and being drained, ignore for migration */
255 bool dead;
256
257 /* For RCU-protected deletion */
258 struct rcu_head rcu_head;
259 };
260
261 struct cgroup {
262 /* self css with NULL ->ss, points back to this cgroup */
263 struct cgroup_subsys_state self;
264
265 unsigned long flags; /* "unsigned long" so bitops work */
266
267 /*
268 * idr allocated in-hierarchy ID.
269 *
270 * ID 0 is not used, the ID of the root cgroup is always 1, and a
271 * new cgroup will be assigned with a smallest available ID.
272 *
273 * Allocating/Removing ID must be protected by cgroup_mutex.
274 */
275 int id;
276
277 /*
278 * The depth this cgroup is at. The root is at depth zero and each
279 * step down the hierarchy increments the level. This along with
280 * ancestor_ids[] can determine whether a given cgroup is a
281 * descendant of another without traversing the hierarchy.
282 */
283 int level;
284
285 /* Maximum allowed descent tree depth */
286 int max_depth;
287
288 /*
289 * Keep track of total numbers of visible and dying descent cgroups.
290 * Dying cgroups are cgroups which were deleted by a user,
291 * but are still existing because someone else is holding a reference.
292 * max_descendants is a maximum allowed number of descent cgroups.
293 *
294 * nr_descendants and nr_dying_descendants are protected
295 * by cgroup_mutex and css_set_lock. It's fine to read them holding
296 * any of cgroup_mutex and css_set_lock; for writing both locks
297 * should be held.
298 */
299 int nr_descendants;
300 int nr_dying_descendants;
301 int max_descendants;
302
303 /*
304 * Each non-empty css_set associated with this cgroup contributes
305 * one to nr_populated_csets. The counter is zero iff this cgroup
306 * doesn't have any tasks.
307 *
308 * All children which have non-zero nr_populated_csets and/or
309 * nr_populated_children of their own contribute one to either
310 * nr_populated_domain_children or nr_populated_threaded_children
311 * depending on their type. Each counter is zero iff all cgroups
312 * of the type in the subtree proper don't have any tasks.
313 */
314 int nr_populated_csets;
315 int nr_populated_domain_children;
316 int nr_populated_threaded_children;
317
318 int nr_threaded_children; /* # of live threaded child cgroups */
319
320 struct kernfs_node *kn; /* cgroup kernfs entry */
321 struct cgroup_file procs_file; /* handle for "cgroup.procs" */
322 struct cgroup_file events_file; /* handle for "cgroup.events" */
323
324 /*
325 * The bitmask of subsystems enabled on the child cgroups.
326 * ->subtree_control is the one configured through
327 * "cgroup.subtree_control" while ->child_ss_mask is the effective
328 * one which may have more subsystems enabled. Controller knobs
329 * are made available iff it's enabled in ->subtree_control.
330 */
331 u16 subtree_control;
332 u16 subtree_ss_mask;
333 u16 old_subtree_control;
334 u16 old_subtree_ss_mask;
335
336 /* Private pointers for each registered subsystem */
337 struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
338
339 struct cgroup_root *root;
340
341 /*
342 * List of cgrp_cset_links pointing at css_sets with tasks in this
343 * cgroup. Protected by css_set_lock.
344 */
345 struct list_head cset_links;
346
347 /*
348 * On the default hierarchy, a css_set for a cgroup with some
349 * susbsys disabled will point to css's which are associated with
350 * the closest ancestor which has the subsys enabled. The
351 * following lists all css_sets which point to this cgroup's css
352 * for the given subsystem.
353 */
354 struct list_head e_csets[CGROUP_SUBSYS_COUNT];
355
356 /*
357 * If !threaded, self. If threaded, it points to the nearest
358 * domain ancestor. Inside a threaded subtree, cgroups are exempt
359 * from process granularity and no-internal-task constraint.
360 * Domain level resource consumptions which aren't tied to a
361 * specific task are charged to the dom_cgrp.
362 */
363 struct cgroup *dom_cgrp;
364 struct cgroup *old_dom_cgrp; /* used while enabling threaded */
365
366 /*
367 * list of pidlists, up to two for each namespace (one for procs, one
368 * for tasks); created on demand.
369 */
370 struct list_head pidlists;
371 struct mutex pidlist_mutex;
372
373 /* used to wait for offlining of csses */
374 wait_queue_head_t offline_waitq;
375
376 /* used to schedule release agent */
377 struct work_struct release_agent_work;
378
379 /* used to track pressure stalls */
380 struct psi_group psi;
381
382 /* used to store eBPF programs */
383 struct cgroup_bpf bpf;
384
385 /* ids of the ancestors at each level including self */
386 int ancestor_ids[];
387 };
388
389 /*
390 * A cgroup_root represents the root of a cgroup hierarchy, and may be
391 * associated with a kernfs_root to form an active hierarchy. This is
392 * internal to cgroup core. Don't access directly from controllers.
393 */
394 struct cgroup_root {
395 struct kernfs_root *kf_root;
396
397 /* The bitmask of subsystems attached to this hierarchy */
398 unsigned int subsys_mask;
399
400 /* Unique id for this hierarchy. */
401 int hierarchy_id;
402
403 /* The root cgroup. Root is destroyed on its release. */
404 struct cgroup cgrp;
405
406 /* for cgrp->ancestor_ids[0] */
407 int cgrp_ancestor_id_storage;
408
409 /* Number of cgroups in the hierarchy, used only for /proc/cgroups */
410 atomic_t nr_cgrps;
411
412 /* A list running through the active hierarchies */
413 struct list_head root_list;
414
415 /* Hierarchy-specific flags */
416 unsigned int flags;
417
418 /* IDs for cgroups in this hierarchy */
419 struct idr cgroup_idr;
420
421 /* The path to use for release notifications. */
422 char release_agent_path[PATH_MAX];
423
424 /* The name for this hierarchy - may be empty */
425 char name[MAX_CGROUP_ROOT_NAMELEN];
426 };
427
428 /*
429 * struct cftype: handler definitions for cgroup control files
430 *
431 * When reading/writing to a file:
432 * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
433 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata
434 */
435 struct cftype {
436 /*
437 * By convention, the name should begin with the name of the
438 * subsystem, followed by a period. Zero length string indicates
439 * end of cftype array.
440 */
441 char name[MAX_CFTYPE_NAME];
442 unsigned long private;
443
444 /*
445 * The maximum length of string, excluding trailing nul, that can
446 * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
447 */
448 size_t max_write_len;
449
450 /* CFTYPE_* flags */
451 unsigned int flags;
452
453 /*
454 * If non-zero, should contain the offset from the start of css to
455 * a struct cgroup_file field. cgroup will record the handle of
456 * the created file into it. The recorded handle can be used as
457 * long as the containing css remains accessible.
458 */
459 unsigned int file_offset;
460
461 /*
462 * Fields used for internal bookkeeping. Initialized automatically
463 * during registration.
464 */
465 struct cgroup_subsys *ss; /* NULL for cgroup core files */
466 struct list_head node; /* anchored at ss->cfts */
467 struct kernfs_ops *kf_ops;
468
469 int (*open)(struct kernfs_open_file *of);
470 void (*release)(struct kernfs_open_file *of);
471
472 /*
473 * read_u64() is a shortcut for the common case of returning a
474 * single integer. Use it in place of read()
475 */
476 u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
477 /*
478 * read_s64() is a signed version of read_u64()
479 */
480 s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
481
482 /* generic seq_file read interface */
483 int (*seq_show)(struct seq_file *sf, void *v);
484
485 /* optional ops, implement all or none */
486 void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
487 void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
488 void (*seq_stop)(struct seq_file *sf, void *v);
489
490 /*
491 * write_u64() is a shortcut for the common case of accepting
492 * a single integer (as parsed by simple_strtoull) from
493 * userspace. Use in place of write(); return 0 or error.
494 */
495 int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
496 u64 val);
497 /*
498 * write_s64() is a signed version of write_u64()
499 */
500 int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
501 s64 val);
502
503 /*
504 * write() is the generic write callback which maps directly to
505 * kernfs write operation and overrides all other operations.
506 * Maximum write size is determined by ->max_write_len. Use
507 * of_css/cft() to access the associated css and cft.
508 */
509 ssize_t (*write)(struct kernfs_open_file *of,
510 char *buf, size_t nbytes, loff_t off);
511
512 unsigned int (*poll)(struct kernfs_open_file *of,
513 struct poll_table_struct *pt);
514
515 #ifdef CONFIG_DEBUG_LOCK_ALLOC
516 struct lock_class_key lockdep_key;
517 #endif
518 };
519
520 /*
521 * Control Group subsystem type.
522 * See Documentation/cgroups/cgroups.txt for details
523 */
524 struct cgroup_subsys {
525 struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
526 int (*css_online)(struct cgroup_subsys_state *css);
527 void (*css_offline)(struct cgroup_subsys_state *css);
528 void (*css_released)(struct cgroup_subsys_state *css);
529 void (*css_free)(struct cgroup_subsys_state *css);
530 void (*css_reset)(struct cgroup_subsys_state *css);
531
532 int (*can_attach)(struct cgroup_taskset *tset);
533 void (*cancel_attach)(struct cgroup_taskset *tset);
534 void (*attach)(struct cgroup_taskset *tset);
535 void (*post_attach)(void);
536 int (*can_fork)(struct task_struct *task);
537 void (*cancel_fork)(struct task_struct *task);
538 void (*fork)(struct task_struct *task);
539 void (*exit)(struct task_struct *task);
540 void (*release)(struct task_struct *task);
541 void (*bind)(struct cgroup_subsys_state *root_css);
542
543 bool early_init:1;
544
545 /*
546 * If %true, the controller, on the default hierarchy, doesn't show
547 * up in "cgroup.controllers" or "cgroup.subtree_control", is
548 * implicitly enabled on all cgroups on the default hierarchy, and
549 * bypasses the "no internal process" constraint. This is for
550 * utility type controllers which is transparent to userland.
551 *
552 * An implicit controller can be stolen from the default hierarchy
553 * anytime and thus must be okay with offline csses from previous
554 * hierarchies coexisting with csses for the current one.
555 */
556 bool implicit_on_dfl:1;
557
558 /*
559 * If %true, the controller, supports threaded mode on the default
560 * hierarchy. In a threaded subtree, both process granularity and
561 * no-internal-process constraint are ignored and a threaded
562 * controllers should be able to handle that.
563 *
564 * Note that as an implicit controller is automatically enabled on
565 * all cgroups on the default hierarchy, it should also be
566 * threaded. implicit && !threaded is not supported.
567 */
568 bool threaded:1;
569
570 /*
571 * If %false, this subsystem is properly hierarchical -
572 * configuration, resource accounting and restriction on a parent
573 * cgroup cover those of its children. If %true, hierarchy support
574 * is broken in some ways - some subsystems ignore hierarchy
575 * completely while others are only implemented half-way.
576 *
577 * It's now disallowed to create nested cgroups if the subsystem is
578 * broken and cgroup core will emit a warning message on such
579 * cases. Eventually, all subsystems will be made properly
580 * hierarchical and this will go away.
581 */
582 bool broken_hierarchy:1;
583 bool warned_broken_hierarchy:1;
584
585 /* the following two fields are initialized automtically during boot */
586 int id;
587 const char *name;
588
589 /* optional, initialized automatically during boot if not set */
590 const char *legacy_name;
591
592 /* link to parent, protected by cgroup_lock() */
593 struct cgroup_root *root;
594
595 /* idr for css->id */
596 struct idr css_idr;
597
598 /*
599 * List of cftypes. Each entry is the first entry of an array
600 * terminated by zero length name.
601 */
602 struct list_head cfts;
603
604 /*
605 * Base cftypes which are automatically registered. The two can
606 * point to the same array.
607 */
608 struct cftype *dfl_cftypes; /* for the default hierarchy */
609 struct cftype *legacy_cftypes; /* for the legacy hierarchies */
610
611 /*
612 * A subsystem may depend on other subsystems. When such subsystem
613 * is enabled on a cgroup, the depended-upon subsystems are enabled
614 * together if available. Subsystems enabled due to dependency are
615 * not visible to userland until explicitly enabled. The following
616 * specifies the mask of subsystems that this one depends on.
617 */
618 unsigned int depends_on;
619 };
620
621 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
622
623 /**
624 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
625 * @tsk: target task
626 *
627 * Allows cgroup operations to synchronize against threadgroup changes
628 * using a percpu_rw_semaphore.
629 */
cgroup_threadgroup_change_begin(struct task_struct * tsk)630 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
631 {
632 percpu_down_read(&cgroup_threadgroup_rwsem);
633 }
634
635 /**
636 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
637 * @tsk: target task
638 *
639 * Counterpart of cgroup_threadcgroup_change_begin().
640 */
cgroup_threadgroup_change_end(struct task_struct * tsk)641 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
642 {
643 percpu_up_read(&cgroup_threadgroup_rwsem);
644 }
645
646 #else /* CONFIG_CGROUPS */
647
648 #define CGROUP_SUBSYS_COUNT 0
649
cgroup_threadgroup_change_begin(struct task_struct * tsk)650 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
651 {
652 might_sleep();
653 }
654
cgroup_threadgroup_change_end(struct task_struct * tsk)655 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
656
657 #endif /* CONFIG_CGROUPS */
658
659 #ifdef CONFIG_SOCK_CGROUP_DATA
660
661 /*
662 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
663 * per-socket cgroup information except for memcg association.
664 *
665 * On legacy hierarchies, net_prio and net_cls controllers directly set
666 * attributes on each sock which can then be tested by the network layer.
667 * On the default hierarchy, each sock is associated with the cgroup it was
668 * created in and the networking layer can match the cgroup directly.
669 *
670 * To avoid carrying all three cgroup related fields separately in sock,
671 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
672 * On boot, sock_cgroup_data records the cgroup that the sock was created
673 * in so that cgroup2 matches can be made; however, once either net_prio or
674 * net_cls starts being used, the area is overriden to carry prioidx and/or
675 * classid. The two modes are distinguished by whether the lowest bit is
676 * set. Clear bit indicates cgroup pointer while set bit prioidx and
677 * classid.
678 *
679 * While userland may start using net_prio or net_cls at any time, once
680 * either is used, cgroup2 matching no longer works. There is no reason to
681 * mix the two and this is in line with how legacy and v2 compatibility is
682 * handled. On mode switch, cgroup references which are already being
683 * pointed to by socks may be leaked. While this can be remedied by adding
684 * synchronization around sock_cgroup_data, given that the number of leaked
685 * cgroups is bound and highly unlikely to be high, this seems to be the
686 * better trade-off.
687 */
688 struct sock_cgroup_data {
689 union {
690 #ifdef __LITTLE_ENDIAN
691 struct {
692 u8 is_data;
693 u8 padding;
694 u16 prioidx;
695 u32 classid;
696 } __packed;
697 #else
698 struct {
699 u32 classid;
700 u16 prioidx;
701 u8 padding;
702 u8 is_data;
703 } __packed;
704 #endif
705 u64 val;
706 };
707 };
708
709 /*
710 * There's a theoretical window where the following accessors race with
711 * updaters and return part of the previous pointer as the prioidx or
712 * classid. Such races are short-lived and the result isn't critical.
713 */
sock_cgroup_prioidx(const struct sock_cgroup_data * skcd)714 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
715 {
716 /* fallback to 1 which is always the ID of the root cgroup */
717 return (skcd->is_data & 1) ? skcd->prioidx : 1;
718 }
719
sock_cgroup_classid(const struct sock_cgroup_data * skcd)720 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
721 {
722 /* fallback to 0 which is the unconfigured default classid */
723 return (skcd->is_data & 1) ? skcd->classid : 0;
724 }
725
726 /*
727 * If invoked concurrently, the updaters may clobber each other. The
728 * caller is responsible for synchronization.
729 */
sock_cgroup_set_prioidx(struct sock_cgroup_data * skcd,u16 prioidx)730 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
731 u16 prioidx)
732 {
733 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
734
735 if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
736 return;
737
738 if (!(skcd_buf.is_data & 1)) {
739 skcd_buf.val = 0;
740 skcd_buf.is_data = 1;
741 }
742
743 skcd_buf.prioidx = prioidx;
744 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
745 }
746
sock_cgroup_set_classid(struct sock_cgroup_data * skcd,u32 classid)747 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
748 u32 classid)
749 {
750 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
751
752 if (sock_cgroup_classid(&skcd_buf) == classid)
753 return;
754
755 if (!(skcd_buf.is_data & 1)) {
756 skcd_buf.val = 0;
757 skcd_buf.is_data = 1;
758 }
759
760 skcd_buf.classid = classid;
761 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
762 }
763
764 #else /* CONFIG_SOCK_CGROUP_DATA */
765
766 struct sock_cgroup_data {
767 };
768
769 #endif /* CONFIG_SOCK_CGROUP_DATA */
770
771 #endif /* _LINUX_CGROUP_DEFS_H */
772