• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _INTEL_RINGBUFFER_H_
3 #define _INTEL_RINGBUFFER_H_
4 
5 #include <linux/hashtable.h>
6 #include "i915_gem_batch_pool.h"
7 #include "i915_gem_request.h"
8 #include "i915_gem_timeline.h"
9 #include "i915_selftest.h"
10 
11 #define I915_CMD_HASH_ORDER 9
12 
13 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
14  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
15  * to give some inclination as to some of the magic values used in the various
16  * workarounds!
17  */
18 #define CACHELINE_BYTES 64
19 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
20 
21 struct intel_hw_status_page {
22 	struct i915_vma *vma;
23 	u32 *page_addr;
24 	u32 ggtt_offset;
25 };
26 
27 #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
28 #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
29 
30 #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
31 #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
32 
33 #define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
34 #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
35 
36 #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
37 #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
38 
39 #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
40 #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
41 
42 #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
43 #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
44 
45 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
46  * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
47  */
48 #define gen8_semaphore_seqno_size sizeof(uint64_t)
49 #define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
50 	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
51 #define GEN8_SIGNAL_OFFSET(__ring, to)			     \
52 	(dev_priv->semaphore->node.start + \
53 	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
54 #define GEN8_WAIT_OFFSET(__ring, from)			     \
55 	(dev_priv->semaphore->node.start + \
56 	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
57 
58 enum intel_engine_hangcheck_action {
59 	ENGINE_IDLE = 0,
60 	ENGINE_WAIT,
61 	ENGINE_ACTIVE_SEQNO,
62 	ENGINE_ACTIVE_HEAD,
63 	ENGINE_ACTIVE_SUBUNITS,
64 	ENGINE_WAIT_KICK,
65 	ENGINE_DEAD,
66 };
67 
68 static inline const char *
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)69 hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
70 {
71 	switch (a) {
72 	case ENGINE_IDLE:
73 		return "idle";
74 	case ENGINE_WAIT:
75 		return "wait";
76 	case ENGINE_ACTIVE_SEQNO:
77 		return "active seqno";
78 	case ENGINE_ACTIVE_HEAD:
79 		return "active head";
80 	case ENGINE_ACTIVE_SUBUNITS:
81 		return "active subunits";
82 	case ENGINE_WAIT_KICK:
83 		return "wait kick";
84 	case ENGINE_DEAD:
85 		return "dead";
86 	}
87 
88 	return "unknown";
89 }
90 
91 #define I915_MAX_SLICES	3
92 #define I915_MAX_SUBSLICES 3
93 
94 #define instdone_slice_mask(dev_priv__) \
95 	(INTEL_GEN(dev_priv__) == 7 ? \
96 	 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
97 
98 #define instdone_subslice_mask(dev_priv__) \
99 	(INTEL_GEN(dev_priv__) == 7 ? \
100 	 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
101 
102 #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
103 	for ((slice__) = 0, (subslice__) = 0; \
104 	     (slice__) < I915_MAX_SLICES; \
105 	     (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
106 	       (slice__) += ((subslice__) == 0)) \
107 		for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
108 			    (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
109 
110 struct intel_instdone {
111 	u32 instdone;
112 	/* The following exist only in the RCS engine */
113 	u32 slice_common;
114 	u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
115 	u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
116 };
117 
118 struct intel_engine_hangcheck {
119 	u64 acthd;
120 	u32 seqno;
121 	enum intel_engine_hangcheck_action action;
122 	unsigned long action_timestamp;
123 	int deadlock;
124 	struct intel_instdone instdone;
125 	struct drm_i915_gem_request *active_request;
126 	bool stalled;
127 };
128 
129 struct intel_ring {
130 	struct i915_vma *vma;
131 	void *vaddr;
132 
133 	struct list_head request_list;
134 
135 	u32 head;
136 	u32 tail;
137 	u32 emit;
138 
139 	u32 space;
140 	u32 size;
141 	u32 effective_size;
142 };
143 
144 struct i915_gem_context;
145 struct drm_i915_reg_table;
146 
147 /*
148  * we use a single page to load ctx workarounds so all of these
149  * values are referred in terms of dwords
150  *
151  * struct i915_wa_ctx_bb:
152  *  offset: specifies batch starting position, also helpful in case
153  *    if we want to have multiple batches at different offsets based on
154  *    some criteria. It is not a requirement at the moment but provides
155  *    an option for future use.
156  *  size: size of the batch in DWORDS
157  */
158 struct i915_ctx_workarounds {
159 	struct i915_wa_ctx_bb {
160 		u32 offset;
161 		u32 size;
162 	} indirect_ctx, per_ctx;
163 	struct i915_vma *vma;
164 };
165 
166 struct drm_i915_gem_request;
167 struct intel_render_state;
168 
169 /*
170  * Engine IDs definitions.
171  * Keep instances of the same type engine together.
172  */
173 enum intel_engine_id {
174 	RCS = 0,
175 	BCS,
176 	VCS,
177 	VCS2,
178 #define _VCS(n) (VCS + (n))
179 	VECS
180 };
181 
182 struct i915_priolist {
183 	struct rb_node node;
184 	struct list_head requests;
185 	int priority;
186 };
187 
188 #define INTEL_ENGINE_CS_MAX_NAME 8
189 
190 struct intel_engine_cs {
191 	struct drm_i915_private *i915;
192 	char name[INTEL_ENGINE_CS_MAX_NAME];
193 	enum intel_engine_id id;
194 	unsigned int uabi_id;
195 	unsigned int hw_id;
196 	unsigned int guc_id;
197 
198 	u8 class;
199 	u8 instance;
200 	u32 context_size;
201 	u32 mmio_base;
202 	unsigned int irq_shift;
203 
204 	struct intel_ring *buffer;
205 	struct intel_timeline *timeline;
206 
207 	struct intel_render_state *render_state;
208 
209 	atomic_t irq_count;
210 	unsigned long irq_posted;
211 #define ENGINE_IRQ_BREADCRUMB 0
212 #define ENGINE_IRQ_EXECLIST 1
213 
214 	/* Rather than have every client wait upon all user interrupts,
215 	 * with the herd waking after every interrupt and each doing the
216 	 * heavyweight seqno dance, we delegate the task (of being the
217 	 * bottom-half of the user interrupt) to the first client. After
218 	 * every interrupt, we wake up one client, who does the heavyweight
219 	 * coherent seqno read and either goes back to sleep (if incomplete),
220 	 * or wakes up all the completed clients in parallel, before then
221 	 * transferring the bottom-half status to the next client in the queue.
222 	 *
223 	 * Compared to walking the entire list of waiters in a single dedicated
224 	 * bottom-half, we reduce the latency of the first waiter by avoiding
225 	 * a context switch, but incur additional coherent seqno reads when
226 	 * following the chain of request breadcrumbs. Since it is most likely
227 	 * that we have a single client waiting on each seqno, then reducing
228 	 * the overhead of waking that client is much preferred.
229 	 */
230 	struct intel_breadcrumbs {
231 		spinlock_t irq_lock; /* protects irq_*; irqsafe */
232 		struct intel_wait *irq_wait; /* oldest waiter by retirement */
233 
234 		spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
235 		struct rb_root waiters; /* sorted by retirement, priority */
236 		struct rb_root signals; /* sorted by retirement */
237 		struct task_struct *signaler; /* used for fence signalling */
238 		struct drm_i915_gem_request __rcu *first_signal;
239 		struct timer_list fake_irq; /* used after a missed interrupt */
240 		struct timer_list hangcheck; /* detect missed interrupts */
241 
242 		unsigned int hangcheck_interrupts;
243 
244 		bool irq_armed : 1;
245 		bool irq_enabled : 1;
246 		I915_SELFTEST_DECLARE(bool mock : 1);
247 	} breadcrumbs;
248 
249 	/*
250 	 * A pool of objects to use as shadow copies of client batch buffers
251 	 * when the command parser is enabled. Prevents the client from
252 	 * modifying the batch contents after software parsing.
253 	 */
254 	struct i915_gem_batch_pool batch_pool;
255 
256 	struct intel_hw_status_page status_page;
257 	struct i915_ctx_workarounds wa_ctx;
258 	struct i915_vma *scratch;
259 
260 	u32             irq_keep_mask; /* always keep these interrupts */
261 	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
262 	void		(*irq_enable)(struct intel_engine_cs *engine);
263 	void		(*irq_disable)(struct intel_engine_cs *engine);
264 
265 	int		(*init_hw)(struct intel_engine_cs *engine);
266 	void		(*reset_hw)(struct intel_engine_cs *engine,
267 				    struct drm_i915_gem_request *req);
268 
269 	void		(*set_default_submission)(struct intel_engine_cs *engine);
270 
271 	struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
272 					  struct i915_gem_context *ctx);
273 	void		(*context_unpin)(struct intel_engine_cs *engine,
274 					 struct i915_gem_context *ctx);
275 	int		(*request_alloc)(struct drm_i915_gem_request *req);
276 	int		(*init_context)(struct drm_i915_gem_request *req);
277 
278 	int		(*emit_flush)(struct drm_i915_gem_request *request,
279 				      u32 mode);
280 #define EMIT_INVALIDATE	BIT(0)
281 #define EMIT_FLUSH	BIT(1)
282 #define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
283 	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
284 					 u64 offset, u32 length,
285 					 unsigned int dispatch_flags);
286 #define I915_DISPATCH_SECURE BIT(0)
287 #define I915_DISPATCH_PINNED BIT(1)
288 #define I915_DISPATCH_RS     BIT(2)
289 	void		(*emit_breadcrumb)(struct drm_i915_gem_request *req,
290 					   u32 *cs);
291 	int		emit_breadcrumb_sz;
292 
293 	/* Pass the request to the hardware queue (e.g. directly into
294 	 * the legacy ringbuffer or to the end of an execlist).
295 	 *
296 	 * This is called from an atomic context with irqs disabled; must
297 	 * be irq safe.
298 	 */
299 	void		(*submit_request)(struct drm_i915_gem_request *req);
300 
301 	/* Call when the priority on a request has changed and it and its
302 	 * dependencies may need rescheduling. Note the request itself may
303 	 * not be ready to run!
304 	 *
305 	 * Called under the struct_mutex.
306 	 */
307 	void		(*schedule)(struct drm_i915_gem_request *request,
308 				    int priority);
309 
310 	/* Some chipsets are not quite as coherent as advertised and need
311 	 * an expensive kick to force a true read of the up-to-date seqno.
312 	 * However, the up-to-date seqno is not always required and the last
313 	 * seen value is good enough. Note that the seqno will always be
314 	 * monotonic, even if not coherent.
315 	 */
316 	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
317 	void		(*cleanup)(struct intel_engine_cs *engine);
318 
319 	/* GEN8 signal/wait table - never trust comments!
320 	 *	  signal to	signal to    signal to   signal to      signal to
321 	 *	    RCS		   VCS          BCS        VECS		 VCS2
322 	 *      --------------------------------------------------------------------
323 	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
324 	 *	|-------------------------------------------------------------------
325 	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
326 	 *	|-------------------------------------------------------------------
327 	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
328 	 *	|-------------------------------------------------------------------
329 	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
330 	 *	|-------------------------------------------------------------------
331 	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
332 	 *	|-------------------------------------------------------------------
333 	 *
334 	 * Generalization:
335 	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
336 	 *  ie. transpose of g(x, y)
337 	 *
338 	 *	 sync from	sync from    sync from    sync from	sync from
339 	 *	    RCS		   VCS          BCS        VECS		 VCS2
340 	 *      --------------------------------------------------------------------
341 	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
342 	 *	|-------------------------------------------------------------------
343 	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
344 	 *	|-------------------------------------------------------------------
345 	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
346 	 *	|-------------------------------------------------------------------
347 	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
348 	 *	|-------------------------------------------------------------------
349 	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
350 	 *	|-------------------------------------------------------------------
351 	 *
352 	 * Generalization:
353 	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
354 	 *  ie. transpose of f(x, y)
355 	 */
356 	struct {
357 		union {
358 #define GEN6_SEMAPHORE_LAST	VECS_HW
359 #define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1)
360 #define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0)
361 			struct {
362 				/* our mbox written by others */
363 				u32		wait[GEN6_NUM_SEMAPHORES];
364 				/* mboxes this ring signals to */
365 				i915_reg_t	signal[GEN6_NUM_SEMAPHORES];
366 			} mbox;
367 			u64		signal_ggtt[I915_NUM_ENGINES];
368 		};
369 
370 		/* AKA wait() */
371 		int	(*sync_to)(struct drm_i915_gem_request *req,
372 				   struct drm_i915_gem_request *signal);
373 		u32	*(*signal)(struct drm_i915_gem_request *req, u32 *cs);
374 	} semaphore;
375 
376 	/* Execlists */
377 	struct tasklet_struct irq_tasklet;
378 	struct i915_priolist default_priolist;
379 	bool no_priolist;
380 	struct execlist_port {
381 		struct drm_i915_gem_request *request_count;
382 #define EXECLIST_COUNT_BITS 2
383 #define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
384 #define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
385 #define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
386 #define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
387 #define port_set(p, packed) ((p)->request_count = (packed))
388 #define port_isset(p) ((p)->request_count)
389 #define port_index(p, e) ((p) - (e)->execlist_port)
390 		GEM_DEBUG_DECL(u32 context_id);
391 	} execlist_port[2];
392 	struct rb_root execlist_queue;
393 	struct rb_node *execlist_first;
394 	unsigned int fw_domains;
395 
396 	/* Contexts are pinned whilst they are active on the GPU. The last
397 	 * context executed remains active whilst the GPU is idle - the
398 	 * switch away and write to the context object only occurs on the
399 	 * next execution.  Contexts are only unpinned on retirement of the
400 	 * following request ensuring that we can always write to the object
401 	 * on the context switch even after idling. Across suspend, we switch
402 	 * to the kernel context and trash it as the save may not happen
403 	 * before the hardware is powered down.
404 	 */
405 	struct i915_gem_context *last_retired_context;
406 
407 	/* We track the current MI_SET_CONTEXT in order to eliminate
408 	 * redudant context switches. This presumes that requests are not
409 	 * reordered! Or when they are the tracking is updated along with
410 	 * the emission of individual requests into the legacy command
411 	 * stream (ring).
412 	 */
413 	struct i915_gem_context *legacy_active_context;
414 
415 	/* status_notifier: list of callbacks for context-switch changes */
416 	struct atomic_notifier_head context_status_notifier;
417 
418 	struct intel_engine_hangcheck hangcheck;
419 
420 #define I915_ENGINE_USING_CMD_PARSER	BIT(0)
421 #define I915_ENGINE_REQUIRES_CMD_PARSER	BIT(3)
422 	unsigned int flags;
423 
424 	/*
425 	 * Table of commands the command parser needs to know about
426 	 * for this engine.
427 	 */
428 	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
429 
430 	/*
431 	 * Table of registers allowed in commands that read/write registers.
432 	 */
433 	const struct drm_i915_reg_table *reg_tables;
434 	int reg_table_count;
435 
436 	/*
437 	 * Returns the bitmask for the length field of the specified command.
438 	 * Return 0 for an unrecognized/invalid command.
439 	 *
440 	 * If the command parser finds an entry for a command in the engine's
441 	 * cmd_tables, it gets the command's length based on the table entry.
442 	 * If not, it calls this function to determine the per-engine length
443 	 * field encoding for the command (i.e. different opcode ranges use
444 	 * certain bits to encode the command length in the header).
445 	 */
446 	u32 (*get_cmd_length_mask)(u32 cmd_header);
447 };
448 
449 static inline bool
intel_engine_using_cmd_parser(const struct intel_engine_cs * engine)450 intel_engine_using_cmd_parser(const struct intel_engine_cs *engine)
451 {
452 	return engine->flags & I915_ENGINE_USING_CMD_PARSER;
453 }
454 
455 static inline bool
intel_engine_requires_cmd_parser(const struct intel_engine_cs * engine)456 intel_engine_requires_cmd_parser(const struct intel_engine_cs *engine)
457 {
458 	return engine->flags & I915_ENGINE_REQUIRES_CMD_PARSER;
459 }
460 
461 static inline unsigned int
intel_engine_flag(const struct intel_engine_cs * engine)462 intel_engine_flag(const struct intel_engine_cs *engine)
463 {
464 	return BIT(engine->id);
465 }
466 
467 static inline u32
intel_read_status_page(struct intel_engine_cs * engine,int reg)468 intel_read_status_page(struct intel_engine_cs *engine, int reg)
469 {
470 	/* Ensure that the compiler doesn't optimize away the load. */
471 	return READ_ONCE(engine->status_page.page_addr[reg]);
472 }
473 
474 static inline void
intel_write_status_page(struct intel_engine_cs * engine,int reg,u32 value)475 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
476 {
477 	/* Writing into the status page should be done sparingly. Since
478 	 * we do when we are uncertain of the device state, we take a bit
479 	 * of extra paranoia to try and ensure that the HWS takes the value
480 	 * we give and that it doesn't end up trapped inside the CPU!
481 	 */
482 	if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
483 		mb();
484 		clflush(&engine->status_page.page_addr[reg]);
485 		engine->status_page.page_addr[reg] = value;
486 		clflush(&engine->status_page.page_addr[reg]);
487 		mb();
488 	} else {
489 		WRITE_ONCE(engine->status_page.page_addr[reg], value);
490 	}
491 }
492 
493 /*
494  * Reads a dword out of the status page, which is written to from the command
495  * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
496  * MI_STORE_DATA_IMM.
497  *
498  * The following dwords have a reserved meaning:
499  * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
500  * 0x04: ring 0 head pointer
501  * 0x05: ring 1 head pointer (915-class)
502  * 0x06: ring 2 head pointer (915-class)
503  * 0x10-0x1b: Context status DWords (GM45)
504  * 0x1f: Last written status offset. (GM45)
505  * 0x20-0x2f: Reserved (Gen6+)
506  *
507  * The area from dword 0x30 to 0x3ff is available for driver usage.
508  */
509 #define I915_GEM_HWS_INDEX		0x30
510 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
511 #define I915_GEM_HWS_SCRATCH_INDEX	0x40
512 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
513 
514 struct intel_ring *
515 intel_engine_create_ring(struct intel_engine_cs *engine, int size);
516 int intel_ring_pin(struct intel_ring *ring,
517 		   struct drm_i915_private *i915,
518 		   unsigned int offset_bias);
519 void intel_ring_reset(struct intel_ring *ring, u32 tail);
520 unsigned int intel_ring_update_space(struct intel_ring *ring);
521 void intel_ring_unpin(struct intel_ring *ring);
522 void intel_ring_free(struct intel_ring *ring);
523 
524 void intel_engine_stop(struct intel_engine_cs *engine);
525 void intel_engine_cleanup(struct intel_engine_cs *engine);
526 
527 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
528 
529 int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
530 
531 u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req,
532 				   unsigned int n);
533 
534 static inline void
intel_ring_advance(struct drm_i915_gem_request * req,u32 * cs)535 intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
536 {
537 	/* Dummy function.
538 	 *
539 	 * This serves as a placeholder in the code so that the reader
540 	 * can compare against the preceding intel_ring_begin() and
541 	 * check that the number of dwords emitted matches the space
542 	 * reserved for the command packet (i.e. the value passed to
543 	 * intel_ring_begin()).
544 	 */
545 	GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
546 }
547 
548 static inline u32
intel_ring_wrap(const struct intel_ring * ring,u32 pos)549 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
550 {
551 	return pos & (ring->size - 1);
552 }
553 
554 static inline u32
intel_ring_offset(const struct drm_i915_gem_request * req,void * addr)555 intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
556 {
557 	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
558 	u32 offset = addr - req->ring->vaddr;
559 	GEM_BUG_ON(offset > req->ring->size);
560 	return intel_ring_wrap(req->ring, offset);
561 }
562 
563 static inline void
assert_ring_tail_valid(const struct intel_ring * ring,unsigned int tail)564 assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
565 {
566 	/* We could combine these into a single tail operation, but keeping
567 	 * them as seperate tests will help identify the cause should one
568 	 * ever fire.
569 	 */
570 	GEM_BUG_ON(!IS_ALIGNED(tail, 8));
571 	GEM_BUG_ON(tail >= ring->size);
572 
573 	/*
574 	 * "Ring Buffer Use"
575 	 *	Gen2 BSpec "1. Programming Environment" / 1.4.4.6
576 	 *	Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
577 	 *	Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
578 	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
579 	 * same cacheline, the Head Pointer must not be greater than the Tail
580 	 * Pointer."
581 	 *
582 	 * We use ring->head as the last known location of the actual RING_HEAD,
583 	 * it may have advanced but in the worst case it is equally the same
584 	 * as ring->head and so we should never program RING_TAIL to advance
585 	 * into the same cacheline as ring->head.
586 	 */
587 #define cacheline(a) round_down(a, CACHELINE_BYTES)
588 	GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
589 		   tail < ring->head);
590 #undef cacheline
591 }
592 
593 static inline unsigned int
intel_ring_set_tail(struct intel_ring * ring,unsigned int tail)594 intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
595 {
596 	/* Whilst writes to the tail are strictly order, there is no
597 	 * serialisation between readers and the writers. The tail may be
598 	 * read by i915_gem_request_retire() just as it is being updated
599 	 * by execlists, as although the breadcrumb is complete, the context
600 	 * switch hasn't been seen.
601 	 */
602 	assert_ring_tail_valid(ring, tail);
603 	ring->tail = tail;
604 	return tail;
605 }
606 
607 void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
608 
609 void intel_engine_setup_common(struct intel_engine_cs *engine);
610 int intel_engine_init_common(struct intel_engine_cs *engine);
611 int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
612 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
613 
614 int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
615 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
616 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
617 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
618 
619 u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
620 u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
621 
intel_engine_get_seqno(struct intel_engine_cs * engine)622 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
623 {
624 	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
625 }
626 
intel_engine_last_submit(struct intel_engine_cs * engine)627 static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
628 {
629 	/* We are only peeking at the tail of the submit queue (and not the
630 	 * queue itself) in order to gain a hint as to the current active
631 	 * state of the engine. Callers are not expected to be taking
632 	 * engine->timeline->lock, nor are they expected to be concerned
633 	 * wtih serialising this hint with anything, so document it as
634 	 * a hint and nothing more.
635 	 */
636 	return READ_ONCE(engine->timeline->seqno);
637 }
638 
639 int init_workarounds_ring(struct intel_engine_cs *engine);
640 int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
641 
642 void intel_engine_get_instdone(struct intel_engine_cs *engine,
643 			       struct intel_instdone *instdone);
644 
645 /*
646  * Arbitrary size for largest possible 'add request' sequence. The code paths
647  * are complex and variable. Empirical measurement shows that the worst case
648  * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
649  * we need to allocate double the largest single packet within that emission
650  * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
651  */
652 #define MIN_SPACE_FOR_ADD_REQUEST 336
653 
intel_hws_seqno_address(struct intel_engine_cs * engine)654 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
655 {
656 	return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
657 }
658 
659 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
660 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
661 
intel_wait_init(struct intel_wait * wait,struct drm_i915_gem_request * rq)662 static inline void intel_wait_init(struct intel_wait *wait,
663 				   struct drm_i915_gem_request *rq)
664 {
665 	wait->tsk = current;
666 	wait->request = rq;
667 }
668 
intel_wait_init_for_seqno(struct intel_wait * wait,u32 seqno)669 static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
670 {
671 	wait->tsk = current;
672 	wait->seqno = seqno;
673 }
674 
intel_wait_has_seqno(const struct intel_wait * wait)675 static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
676 {
677 	return wait->seqno;
678 }
679 
680 static inline bool
intel_wait_update_seqno(struct intel_wait * wait,u32 seqno)681 intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
682 {
683 	wait->seqno = seqno;
684 	return intel_wait_has_seqno(wait);
685 }
686 
687 static inline bool
intel_wait_update_request(struct intel_wait * wait,const struct drm_i915_gem_request * rq)688 intel_wait_update_request(struct intel_wait *wait,
689 			  const struct drm_i915_gem_request *rq)
690 {
691 	return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
692 }
693 
694 static inline bool
intel_wait_check_seqno(const struct intel_wait * wait,u32 seqno)695 intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
696 {
697 	return wait->seqno == seqno;
698 }
699 
700 static inline bool
intel_wait_check_request(const struct intel_wait * wait,const struct drm_i915_gem_request * rq)701 intel_wait_check_request(const struct intel_wait *wait,
702 			 const struct drm_i915_gem_request *rq)
703 {
704 	return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
705 }
706 
intel_wait_complete(const struct intel_wait * wait)707 static inline bool intel_wait_complete(const struct intel_wait *wait)
708 {
709 	return RB_EMPTY_NODE(&wait->node);
710 }
711 
712 bool intel_engine_add_wait(struct intel_engine_cs *engine,
713 			   struct intel_wait *wait);
714 void intel_engine_remove_wait(struct intel_engine_cs *engine,
715 			      struct intel_wait *wait);
716 void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
717 				   bool wakeup);
718 void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
719 
intel_engine_has_waiter(const struct intel_engine_cs * engine)720 static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
721 {
722 	return READ_ONCE(engine->breadcrumbs.irq_wait);
723 }
724 
725 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
726 #define ENGINE_WAKEUP_WAITER BIT(0)
727 #define ENGINE_WAKEUP_ASLEEP BIT(1)
728 
729 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
730 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
731 
732 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
733 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
734 bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
735 
gen8_emit_pipe_control(u32 * batch,u32 flags,u32 offset)736 static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
737 {
738 	memset(batch, 0, 6 * sizeof(u32));
739 
740 	batch[0] = GFX_OP_PIPE_CONTROL(6);
741 	batch[1] = flags;
742 	batch[2] = offset;
743 
744 	return batch + 6;
745 }
746 
747 bool intel_engine_is_idle(struct intel_engine_cs *engine);
748 bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
749 
750 void intel_engines_mark_idle(struct drm_i915_private *i915);
751 void intel_engines_reset_default_submission(struct drm_i915_private *i915);
752 
753 static inline bool
__intel_engine_can_store_dword(unsigned int gen,unsigned int class)754 __intel_engine_can_store_dword(unsigned int gen, unsigned int class)
755 {
756 	if (gen <= 2)
757 		return false; /* uses physical not virtual addresses */
758 
759 	if (gen == 6 && class == VIDEO_DECODE_CLASS)
760 		return false; /* b0rked */
761 
762 	return true;
763 }
764 
765 #endif /* _INTEL_RINGBUFFER_H_ */
766