1 /*
2 * arch/arm/include/asm/pgtable-3level.h
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * Author: Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #ifndef _ASM_PGTABLE_3LEVEL_H
21 #define _ASM_PGTABLE_3LEVEL_H
22
23 /*
24 * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
25 * 8 bytes each, occupying a 4K page. The first level table covers a range of
26 * 512GB, each entry representing 1GB. Since we are limited to 4GB input
27 * address range, only 4 entries in the PGD are used.
28 *
29 * There are enough spare bits in a page table entry for the kernel specific
30 * state.
31 */
32 #define PTRS_PER_PTE 512
33 #define PTRS_PER_PMD 512
34 #define PTRS_PER_PGD 4
35
36 #define PTE_HWTABLE_PTRS (0)
37 #define PTE_HWTABLE_OFF (0)
38 #define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u64))
39
40 /*
41 * PGDIR_SHIFT determines the size a top-level page table entry can map.
42 */
43 #define PGDIR_SHIFT 30
44
45 /*
46 * PMD_SHIFT determines the size a middle-level page table entry can map.
47 */
48 #define PMD_SHIFT 21
49
50 #define PMD_SIZE (1UL << PMD_SHIFT)
51 #define PMD_MASK (~((1 << PMD_SHIFT) - 1))
52 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
53 #define PGDIR_MASK (~((1 << PGDIR_SHIFT) - 1))
54
55 /*
56 * section address mask and size definitions.
57 */
58 #define SECTION_SHIFT 21
59 #define SECTION_SIZE (1UL << SECTION_SHIFT)
60 #define SECTION_MASK (~((1 << SECTION_SHIFT) - 1))
61
62 #define USER_PTRS_PER_PGD (PAGE_OFFSET / PGDIR_SIZE)
63
64 /*
65 * Hugetlb definitions.
66 */
67 #define HPAGE_SHIFT PMD_SHIFT
68 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
69 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
70 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
71
72 /*
73 * "Linux" PTE definitions for LPAE.
74 *
75 * These bits overlap with the hardware bits but the naming is preserved for
76 * consistency with the classic page table format.
77 */
78 #define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */
79 #define L_PTE_PRESENT (_AT(pteval_t, 3) << 0) /* Present */
80 #define L_PTE_USER (_AT(pteval_t, 1) << 6) /* AP[1] */
81 #define L_PTE_SHARED (_AT(pteval_t, 3) << 8) /* SH[1:0], inner shareable */
82 #define L_PTE_YOUNG (_AT(pteval_t, 1) << 10) /* AF */
83 #define L_PTE_XN (_AT(pteval_t, 1) << 54) /* XN */
84 #define L_PTE_DIRTY (_AT(pteval_t, 1) << 55)
85 #define L_PTE_SPECIAL (_AT(pteval_t, 1) << 56)
86 #define L_PTE_NONE (_AT(pteval_t, 1) << 57) /* PROT_NONE */
87 #define L_PTE_RDONLY (_AT(pteval_t, 1) << 58) /* READ ONLY */
88
89 #define L_PMD_SECT_VALID (_AT(pmdval_t, 1) << 0)
90 #define L_PMD_SECT_DIRTY (_AT(pmdval_t, 1) << 55)
91 #define L_PMD_SECT_NONE (_AT(pmdval_t, 1) << 57)
92 #define L_PMD_SECT_RDONLY (_AT(pteval_t, 1) << 58)
93
94 /*
95 * To be used in assembly code with the upper page attributes.
96 */
97 #define L_PTE_XN_HIGH (1 << (54 - 32))
98 #define L_PTE_DIRTY_HIGH (1 << (55 - 32))
99
100 /*
101 * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
102 */
103 #define L_PTE_MT_UNCACHED (_AT(pteval_t, 0) << 2) /* strongly ordered */
104 #define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
105 #define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 2) << 2) /* normal inner write-through */
106 #define L_PTE_MT_WRITEBACK (_AT(pteval_t, 3) << 2) /* normal inner write-back */
107 #define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 7) << 2) /* normal inner write-alloc */
108 #define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 4) << 2) /* device */
109 #define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 4) << 2) /* device */
110 #define L_PTE_MT_DEV_WC (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
111 #define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 3) << 2) /* normal inner write-back */
112 #define L_PTE_MT_MASK (_AT(pteval_t, 7) << 2)
113
114 /*
115 * Software PGD flags.
116 */
117 #define L_PGD_SWAPPER (_AT(pgdval_t, 1) << 55) /* swapper_pg_dir entry */
118
119 /*
120 * 2nd stage PTE definitions for LPAE.
121 */
122 #define L_PTE_S2_MT_UNCACHED (_AT(pteval_t, 0x0) << 2) /* strongly ordered */
123 #define L_PTE_S2_MT_WRITETHROUGH (_AT(pteval_t, 0xa) << 2) /* normal inner write-through */
124 #define L_PTE_S2_MT_WRITEBACK (_AT(pteval_t, 0xf) << 2) /* normal inner write-back */
125 #define L_PTE_S2_MT_DEV_SHARED (_AT(pteval_t, 0x1) << 2) /* device */
126 #define L_PTE_S2_MT_MASK (_AT(pteval_t, 0xf) << 2)
127
128 #define L_PTE_S2_RDONLY (_AT(pteval_t, 1) << 6) /* HAP[1] */
129 #define L_PTE_S2_RDWR (_AT(pteval_t, 3) << 6) /* HAP[2:1] */
130
131 #define L_PMD_S2_RDONLY (_AT(pmdval_t, 1) << 6) /* HAP[1] */
132 #define L_PMD_S2_RDWR (_AT(pmdval_t, 3) << 6) /* HAP[2:1] */
133
134 /*
135 * Hyp-mode PL2 PTE definitions for LPAE.
136 */
137 #define L_PTE_HYP L_PTE_USER
138
139 #ifndef __ASSEMBLY__
140
141 #define pud_none(pud) (!pud_val(pud))
142 #define pud_bad(pud) (!(pud_val(pud) & 2))
143 #define pud_present(pud) (pud_val(pud))
144 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
145 PMD_TYPE_TABLE)
146 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
147 PMD_TYPE_SECT)
148 #define pmd_large(pmd) pmd_sect(pmd)
149
150 #define pud_clear(pudp) \
151 do { \
152 *pudp = __pud(0); \
153 clean_pmd_entry(pudp); \
154 } while (0)
155
156 #define set_pud(pudp, pud) \
157 do { \
158 *pudp = pud; \
159 flush_pmd_entry(pudp); \
160 } while (0)
161
pud_page_vaddr(pud_t pud)162 static inline pmd_t *pud_page_vaddr(pud_t pud)
163 {
164 return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
165 }
166
167 /* Find an entry in the second-level page table.. */
168 #define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
pmd_offset(pud_t * pud,unsigned long addr)169 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
170 {
171 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(addr);
172 }
173
174 #define pmd_bad(pmd) (!(pmd_val(pmd) & 2))
175
176 #define copy_pmd(pmdpd,pmdps) \
177 do { \
178 *pmdpd = *pmdps; \
179 flush_pmd_entry(pmdpd); \
180 } while (0)
181
182 #define pmd_clear(pmdp) \
183 do { \
184 *pmdp = __pmd(0); \
185 clean_pmd_entry(pmdp); \
186 } while (0)
187
188 /*
189 * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
190 * that are written to a page table but not for ptes created with mk_pte.
191 *
192 * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
193 * hugetlb_cow, where it is compared with an entry in a page table.
194 * This comparison test fails erroneously leading ultimately to a memory leak.
195 *
196 * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
197 * present before running the comparison.
198 */
199 #define __HAVE_ARCH_PTE_SAME
200 #define pte_same(pte_a,pte_b) ((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG \
201 : pte_val(pte_a)) \
202 == (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG \
203 : pte_val(pte_b)))
204
205 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
206
207 #define pte_huge(pte) (pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
208 #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
209
210 #define pmd_isset(pmd, val) ((u32)(val) == (val) ? pmd_val(pmd) & (val) \
211 : !!(pmd_val(pmd) & (val)))
212 #define pmd_isclear(pmd, val) (!(pmd_val(pmd) & (val)))
213
214 #define pmd_present(pmd) (pmd_isset((pmd), L_PMD_SECT_VALID))
215 #define pmd_young(pmd) (pmd_isset((pmd), PMD_SECT_AF))
216 #define pte_special(pte) (pte_isset((pte), L_PTE_SPECIAL))
pte_mkspecial(pte_t pte)217 static inline pte_t pte_mkspecial(pte_t pte)
218 {
219 pte_val(pte) |= L_PTE_SPECIAL;
220 return pte;
221 }
222 #define __HAVE_ARCH_PTE_SPECIAL
223
224 #define __HAVE_ARCH_PMD_WRITE
225 #define pmd_write(pmd) (pmd_isclear((pmd), L_PMD_SECT_RDONLY))
226 #define pmd_dirty(pmd) (pmd_isset((pmd), L_PMD_SECT_DIRTY))
227 #define pud_page(pud) pmd_page(__pmd(pud_val(pud)))
228 #define pud_write(pud) pmd_write(__pmd(pud_val(pud)))
229
230 #define pmd_hugewillfault(pmd) (!pmd_young(pmd) || !pmd_write(pmd))
231 #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
232
233 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
234 #define pmd_trans_huge(pmd) (pmd_val(pmd) && !pmd_table(pmd))
235 #endif
236
237 #define PMD_BIT_FUNC(fn,op) \
238 static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
239
240 PMD_BIT_FUNC(wrprotect, |= L_PMD_SECT_RDONLY);
241 PMD_BIT_FUNC(mkold, &= ~PMD_SECT_AF);
242 PMD_BIT_FUNC(mkwrite, &= ~L_PMD_SECT_RDONLY);
243 PMD_BIT_FUNC(mkdirty, |= L_PMD_SECT_DIRTY);
244 PMD_BIT_FUNC(mkclean, &= ~L_PMD_SECT_DIRTY);
245 PMD_BIT_FUNC(mkyoung, |= PMD_SECT_AF);
246
247 #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
248
249 #define pmd_pfn(pmd) (((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
250 #define pfn_pmd(pfn,prot) (__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
251 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
252
253 /* represent a notpresent pmd by faulting entry, this is used by pmdp_invalidate */
pmd_mknotpresent(pmd_t pmd)254 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
255 {
256 return __pmd(pmd_val(pmd) & ~L_PMD_SECT_VALID);
257 }
258
pmd_modify(pmd_t pmd,pgprot_t newprot)259 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
260 {
261 const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY |
262 L_PMD_SECT_VALID | L_PMD_SECT_NONE;
263 pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
264 return pmd;
265 }
266
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)267 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
268 pmd_t *pmdp, pmd_t pmd)
269 {
270 BUG_ON(addr >= TASK_SIZE);
271
272 /* create a faulting entry if PROT_NONE protected */
273 if (pmd_val(pmd) & L_PMD_SECT_NONE)
274 pmd_val(pmd) &= ~L_PMD_SECT_VALID;
275
276 if (pmd_write(pmd) && pmd_dirty(pmd))
277 pmd_val(pmd) &= ~PMD_SECT_AP2;
278 else
279 pmd_val(pmd) |= PMD_SECT_AP2;
280
281 *pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
282 flush_pmd_entry(pmdp);
283 }
284
285 #endif /* __ASSEMBLY__ */
286
287 #endif /* _ASM_PGTABLE_3LEVEL_H */
288