• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * core.h - DesignWare HS OTG Controller common declarations
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #ifndef __DWC2_CORE_H__
38 #define __DWC2_CORE_H__
39 
40 #include <linux/phy/phy.h>
41 #include <linux/regulator/consumer.h>
42 #include <linux/usb/gadget.h>
43 #include <linux/usb/otg.h>
44 #include <linux/usb/phy.h>
45 #include "hw.h"
46 
47 /*
48  * Suggested defines for tracers:
49  * - no_printk:    Disable tracing
50  * - pr_info:      Print this info to the console
51  * - trace_printk: Print this info to trace buffer (good for verbose logging)
52  */
53 
54 #define DWC2_TRACE_SCHEDULER		no_printk
55 #define DWC2_TRACE_SCHEDULER_VB		no_printk
56 
57 /* Detailed scheduler tracing, but won't overwhelm console */
58 #define dwc2_sch_dbg(hsotg, fmt, ...)					\
59 	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
60 			     dev_name(hsotg->dev), ##__VA_ARGS__)
61 
62 /* Verbose scheduler tracing */
63 #define dwc2_sch_vdbg(hsotg, fmt, ...)					\
64 	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
65 				dev_name(hsotg->dev), ##__VA_ARGS__)
66 
67 #ifdef CONFIG_MIPS
68 /*
69  * There are some MIPS machines that can run in either big-endian
70  * or little-endian mode and that use the dwc2 register without
71  * a byteswap in both ways.
72  * Unlike other architectures, MIPS apparently does not require a
73  * barrier before the __raw_writel() to synchronize with DMA but does
74  * require the barrier after the __raw_writel() to serialize a set of
75  * writes. This set of operations was added specifically for MIPS and
76  * should only be used there.
77  */
dwc2_readl(const void __iomem * addr)78 static inline u32 dwc2_readl(const void __iomem *addr)
79 {
80 	u32 value = __raw_readl(addr);
81 
82 	/* In order to preserve endianness __raw_* operation is used. Therefore
83 	 * a barrier is needed to ensure IO access is not re-ordered across
84 	 * reads or writes
85 	 */
86 	mb();
87 	return value;
88 }
89 
dwc2_writel(u32 value,void __iomem * addr)90 static inline void dwc2_writel(u32 value, void __iomem *addr)
91 {
92 	__raw_writel(value, addr);
93 
94 	/*
95 	 * In order to preserve endianness __raw_* operation is used. Therefore
96 	 * a barrier is needed to ensure IO access is not re-ordered across
97 	 * reads or writes
98 	 */
99 	mb();
100 #ifdef DWC2_LOG_WRITES
101 	pr_info("INFO:: wrote %08x to %p\n", value, addr);
102 #endif
103 }
104 #else
105 /* Normal architectures just use readl/write */
dwc2_readl(const void __iomem * addr)106 static inline u32 dwc2_readl(const void __iomem *addr)
107 {
108 	return readl(addr);
109 }
110 
dwc2_writel(u32 value,void __iomem * addr)111 static inline void dwc2_writel(u32 value, void __iomem *addr)
112 {
113 	writel(value, addr);
114 
115 #ifdef DWC2_LOG_WRITES
116 	pr_info("info:: wrote %08x to %p\n", value, addr);
117 #endif
118 }
119 #endif
120 
121 /* Maximum number of Endpoints/HostChannels */
122 #define MAX_EPS_CHANNELS	16
123 
124 /* dwc2-hsotg declarations */
125 static const char * const dwc2_hsotg_supply_names[] = {
126 	"vusb_d",               /* digital USB supply, 1.2V */
127 	"vusb_a",               /* analog USB supply, 1.1V */
128 };
129 
130 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
131 
132 /*
133  * EP0_MPS_LIMIT
134  *
135  * Unfortunately there seems to be a limit of the amount of data that can
136  * be transferred by IN transactions on EP0. This is either 127 bytes or 3
137  * packets (which practically means 1 packet and 63 bytes of data) when the
138  * MPS is set to 64.
139  *
140  * This means if we are wanting to move >127 bytes of data, we need to
141  * split the transactions up, but just doing one packet at a time does
142  * not work (this may be an implicit DATA0 PID on first packet of the
143  * transaction) and doing 2 packets is outside the controller's limits.
144  *
145  * If we try to lower the MPS size for EP0, then no transfers work properly
146  * for EP0, and the system will fail basic enumeration. As no cause for this
147  * has currently been found, we cannot support any large IN transfers for
148  * EP0.
149  */
150 #define EP0_MPS_LIMIT   64
151 
152 struct dwc2_hsotg;
153 struct dwc2_hsotg_req;
154 
155 /**
156  * struct dwc2_hsotg_ep - driver endpoint definition.
157  * @ep: The gadget layer representation of the endpoint.
158  * @name: The driver generated name for the endpoint.
159  * @queue: Queue of requests for this endpoint.
160  * @parent: Reference back to the parent device structure.
161  * @req: The current request that the endpoint is processing. This is
162  *       used to indicate an request has been loaded onto the endpoint
163  *       and has yet to be completed (maybe due to data move, or simply
164  *       awaiting an ack from the core all the data has been completed).
165  * @debugfs: File entry for debugfs file for this endpoint.
166  * @lock: State lock to protect contents of endpoint.
167  * @dir_in: Set to true if this endpoint is of the IN direction, which
168  *          means that it is sending data to the Host.
169  * @index: The index for the endpoint registers.
170  * @mc: Multi Count - number of transactions per microframe
171  * @interval - Interval for periodic endpoints, in frames or microframes.
172  * @name: The name array passed to the USB core.
173  * @halted: Set if the endpoint has been halted.
174  * @periodic: Set if this is a periodic ep, such as Interrupt
175  * @isochronous: Set if this is a isochronous ep
176  * @send_zlp: Set if we need to send a zero-length packet.
177  * @desc_list_dma: The DMA address of descriptor chain currently in use.
178  * @desc_list: Pointer to descriptor DMA chain head currently in use.
179  * @desc_count: Count of entries within the DMA descriptor chain of EP.
180  * @isoc_chain_num: Number of ISOC chain currently in use - either 0 or 1.
181  * @next_desc: index of next free descriptor in the ISOC chain under SW control.
182  * @total_data: The total number of data bytes done.
183  * @fifo_size: The size of the FIFO (for periodic IN endpoints)
184  * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
185  * @last_load: The offset of data for the last start of request.
186  * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
187  * @target_frame: Targeted frame num to setup next ISOC transfer
188  * @frame_overrun: Indicates SOF number overrun in DSTS
189  *
190  * This is the driver's state for each registered enpoint, allowing it
191  * to keep track of transactions that need doing. Each endpoint has a
192  * lock to protect the state, to try and avoid using an overall lock
193  * for the host controller as much as possible.
194  *
195  * For periodic IN endpoints, we have fifo_size and fifo_load to try
196  * and keep track of the amount of data in the periodic FIFO for each
197  * of these as we don't have a status register that tells us how much
198  * is in each of them. (note, this may actually be useless information
199  * as in shared-fifo mode periodic in acts like a single-frame packet
200  * buffer than a fifo)
201  */
202 struct dwc2_hsotg_ep {
203 	struct usb_ep           ep;
204 	struct list_head        queue;
205 	struct dwc2_hsotg       *parent;
206 	struct dwc2_hsotg_req    *req;
207 	struct dentry           *debugfs;
208 
209 	unsigned long           total_data;
210 	unsigned int            size_loaded;
211 	unsigned int            last_load;
212 	unsigned int            fifo_load;
213 	unsigned short          fifo_size;
214 	unsigned short		fifo_index;
215 
216 	unsigned char           dir_in;
217 	unsigned char           index;
218 	unsigned char           mc;
219 	u16                     interval;
220 
221 	unsigned int            halted:1;
222 	unsigned int            periodic:1;
223 	unsigned int            isochronous:1;
224 	unsigned int            send_zlp:1;
225 	unsigned int            target_frame;
226 #define TARGET_FRAME_INITIAL   0xFFFFFFFF
227 	bool			frame_overrun;
228 
229 	dma_addr_t		desc_list_dma;
230 	struct dwc2_dma_desc	*desc_list;
231 	u8			desc_count;
232 
233 	unsigned char		isoc_chain_num;
234 	unsigned int		next_desc;
235 
236 	char                    name[10];
237 };
238 
239 /**
240  * struct dwc2_hsotg_req - data transfer request
241  * @req: The USB gadget request
242  * @queue: The list of requests for the endpoint this is queued for.
243  * @saved_req_buf: variable to save req.buf when bounce buffers are used.
244  */
245 struct dwc2_hsotg_req {
246 	struct usb_request      req;
247 	struct list_head        queue;
248 	void *saved_req_buf;
249 };
250 
251 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
252 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
253 #define call_gadget(_hs, _entry) \
254 do { \
255 	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
256 		(_hs)->driver && (_hs)->driver->_entry) { \
257 		spin_unlock(&_hs->lock); \
258 		(_hs)->driver->_entry(&(_hs)->gadget); \
259 		spin_lock(&_hs->lock); \
260 	} \
261 } while (0)
262 #else
263 #define call_gadget(_hs, _entry)	do {} while (0)
264 #endif
265 
266 struct dwc2_hsotg;
267 struct dwc2_host_chan;
268 
269 /* Device States */
270 enum dwc2_lx_state {
271 	DWC2_L0,	/* On state */
272 	DWC2_L1,	/* LPM sleep state */
273 	DWC2_L2,	/* USB suspend state */
274 	DWC2_L3,	/* Off state */
275 };
276 
277 /* Gadget ep0 states */
278 enum dwc2_ep0_state {
279 	DWC2_EP0_SETUP,
280 	DWC2_EP0_DATA_IN,
281 	DWC2_EP0_DATA_OUT,
282 	DWC2_EP0_STATUS_IN,
283 	DWC2_EP0_STATUS_OUT,
284 };
285 
286 /**
287  * struct dwc2_core_params - Parameters for configuring the core
288  *
289  * @otg_cap:            Specifies the OTG capabilities.
290  *                       0 - HNP and SRP capable
291  *                       1 - SRP Only capable
292  *                       2 - No HNP/SRP capable (always available)
293  *                      Defaults to best available option (0, 1, then 2)
294  * @host_dma:           Specifies whether to use slave or DMA mode for accessing
295  *                      the data FIFOs. The driver will automatically detect the
296  *                      value for this parameter if none is specified.
297  *                       0 - Slave (always available)
298  *                       1 - DMA (default, if available)
299  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
300  *                      address DMA mode or descriptor DMA mode for accessing
301  *                      the data FIFOs. The driver will automatically detect the
302  *                      value for this if none is specified.
303  *                       0 - Address DMA
304  *                       1 - Descriptor DMA (default, if available)
305  * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
306  *                      address DMA mode or descriptor DMA mode for accessing
307  *                      the data FIFOs in Full Speed mode only. The driver
308  *                      will automatically detect the value for this if none is
309  *                      specified.
310  *                       0 - Address DMA
311  *                       1 - Descriptor DMA in FS (default, if available)
312  * @speed:              Specifies the maximum speed of operation in host and
313  *                      device mode. The actual speed depends on the speed of
314  *                      the attached device and the value of phy_type.
315  *                       0 - High Speed
316  *                           (default when phy_type is UTMI+ or ULPI)
317  *                       1 - Full Speed
318  *                           (default when phy_type is Full Speed)
319  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
320  *                       1 - Allow dynamic FIFO sizing (default, if available)
321  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
322  *                      are enabled for non-periodic IN endpoints in device
323  *                      mode.
324  * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
325  *                      dynamic FIFO sizing is enabled
326  *                       16 to 32768
327  *                      Actual maximum value is autodetected and also
328  *                      the default.
329  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
330  *                      in host mode when dynamic FIFO sizing is enabled
331  *                       16 to 32768
332  *                      Actual maximum value is autodetected and also
333  *                      the default.
334  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
335  *                      host mode when dynamic FIFO sizing is enabled
336  *                       16 to 32768
337  *                      Actual maximum value is autodetected and also
338  *                      the default.
339  * @max_transfer_size:  The maximum transfer size supported, in bytes
340  *                       2047 to 65,535
341  *                      Actual maximum value is autodetected and also
342  *                      the default.
343  * @max_packet_count:   The maximum number of packets in a transfer
344  *                       15 to 511
345  *                      Actual maximum value is autodetected and also
346  *                      the default.
347  * @host_channels:      The number of host channel registers to use
348  *                       1 to 16
349  *                      Actual maximum value is autodetected and also
350  *                      the default.
351  * @phy_type:           Specifies the type of PHY interface to use. By default,
352  *                      the driver will automatically detect the phy_type.
353  *                       0 - Full Speed Phy
354  *                       1 - UTMI+ Phy
355  *                       2 - ULPI Phy
356  *                      Defaults to best available option (2, 1, then 0)
357  * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
358  *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
359  *                      ULPI phy_type, this parameter indicates the data width
360  *                      between the MAC and the ULPI Wrapper.) Also, this
361  *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
362  *                      parameter was set to "8 and 16 bits", meaning that the
363  *                      core has been configured to work at either data path
364  *                      width.
365  *                       8 or 16 (default 16 if available)
366  * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
367  *                      data rate. This parameter is only applicable if phy_type
368  *                      is ULPI.
369  *                       0 - single data rate ULPI interface with 8 bit wide
370  *                           data bus (default)
371  *                       1 - double data rate ULPI interface with 4 bit wide
372  *                           data bus
373  * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
374  *                      external supply to drive the VBus
375  *                       0 - Internal supply (default)
376  *                       1 - External supply
377  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
378  *                      speed PHY. This parameter is only applicable if phy_type
379  *                      is FS.
380  *                       0 - No (default)
381  *                       1 - Yes
382  * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
383  *                       0 - No (default)
384  *                       1 - Yes
385  * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
386  *                      when attached to a Full Speed or Low Speed device in
387  *                      host mode.
388  *                       0 - Don't support low power mode (default)
389  *                       1 - Support low power mode
390  * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
391  *                      when connected to a Low Speed device in host
392  *                      mode. This parameter is applicable only if
393  *                      host_support_fs_ls_low_power is enabled.
394  *                       0 - 48 MHz
395  *                           (default when phy_type is UTMI+ or ULPI)
396  *                       1 - 6 MHz
397  *                           (default when phy_type is Full Speed)
398  * @ts_dline:           Enable Term Select Dline pulsing
399  *                       0 - No (default)
400  *                       1 - Yes
401  * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
402  *                       0 - No (default for core < 2.92a)
403  *                       1 - Yes (default for core >= 2.92a)
404  * @ahbcfg:             This field allows the default value of the GAHBCFG
405  *                      register to be overridden
406  *                       -1         - GAHBCFG value will be set to 0x06
407  *                                    (INCR4, default)
408  *                       all others - GAHBCFG value will be overridden with
409  *                                    this value
410  *                      Not all bits can be controlled like this, the
411  *                      bits defined by GAHBCFG_CTRL_MASK are controlled
412  *                      by the driver and are ignored in this
413  *                      configuration value.
414  * @uframe_sched:       True to enable the microframe scheduler
415  * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
416  *                      Disable CONIDSTSCHNG controller interrupt in such
417  *                      case.
418  *                      0 - No (default)
419  *                      1 - Yes
420  * @hibernation:	Specifies whether the controller support hibernation.
421  *			If hibernation is enabled, the controller will enter
422  *			hibernation in both peripheral and host mode when
423  *			needed.
424  *			0 - No (default)
425  *			1 - Yes
426  * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
427  *			register.
428  *			0 - Deactivate the transceiver (default)
429  *			1 - Activate the transceiver
430  * @g_dma:              Enables gadget dma usage (default: autodetect).
431  * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
432  * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
433  *			DWORDS from 16-32768 (default: 2048 if
434  *			possible, otherwise autodetect).
435  * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
436  *			DWORDS from 16-32768 (default: 1024 if
437  *			possible, otherwise autodetect).
438  * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
439  *			mode. Each value corresponds to one EP
440  *			starting from EP1 (max 15 values). Sizes are
441  *			in DWORDS with possible values from from
442  *			16-32768 (default: 256, 256, 256, 256, 768,
443  *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
444  * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
445  *                      while full&low speed device connect. And change speed
446  *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
447  *			0 - No (default)
448  *			1 - Yes
449  *
450  * The following parameters may be specified when starting the module. These
451  * parameters define how the DWC_otg controller should be configured. A
452  * value of -1 (or any other out of range value) for any parameter means
453  * to read the value from hardware (if possible) or use the builtin
454  * default described above.
455  */
456 struct dwc2_core_params {
457 	u8 otg_cap;
458 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
459 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
460 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
461 
462 	u8 phy_type;
463 #define DWC2_PHY_TYPE_PARAM_FS		0
464 #define DWC2_PHY_TYPE_PARAM_UTMI	1
465 #define DWC2_PHY_TYPE_PARAM_ULPI	2
466 
467 	u8 speed;
468 #define DWC2_SPEED_PARAM_HIGH	0
469 #define DWC2_SPEED_PARAM_FULL	1
470 #define DWC2_SPEED_PARAM_LOW	2
471 
472 	u8 phy_utmi_width;
473 	bool phy_ulpi_ddr;
474 	bool phy_ulpi_ext_vbus;
475 	bool enable_dynamic_fifo;
476 	bool en_multiple_tx_fifo;
477 	bool i2c_enable;
478 	bool ulpi_fs_ls;
479 	bool ts_dline;
480 	bool reload_ctl;
481 	bool uframe_sched;
482 	bool external_id_pin_ctl;
483 	bool hibernation;
484 	bool activate_stm_fs_transceiver;
485 	u16 max_packet_count;
486 	u32 max_transfer_size;
487 	u32 ahbcfg;
488 
489 	/* Host parameters */
490 	bool host_dma;
491 	bool dma_desc_enable;
492 	bool dma_desc_fs_enable;
493 	bool host_support_fs_ls_low_power;
494 	bool host_ls_low_power_phy_clk;
495 
496 	u8 host_channels;
497 	u16 host_rx_fifo_size;
498 	u16 host_nperio_tx_fifo_size;
499 	u16 host_perio_tx_fifo_size;
500 
501 	/* Gadget parameters */
502 	bool g_dma;
503 	bool g_dma_desc;
504 	u32 g_rx_fifo_size;
505 	u32 g_np_tx_fifo_size;
506 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
507 
508 	bool change_speed_quirk;
509 };
510 
511 /**
512  * struct dwc2_hw_params - Autodetected parameters.
513  *
514  * These parameters are the various parameters read from hardware
515  * registers during initialization. They typically contain the best
516  * supported or maximum value that can be configured in the
517  * corresponding dwc2_core_params value.
518  *
519  * The values that are not in dwc2_core_params are documented below.
520  *
521  * @op_mode             Mode of Operation
522  *                       0 - HNP- and SRP-Capable OTG (Host & Device)
523  *                       1 - SRP-Capable OTG (Host & Device)
524  *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
525  *                       3 - SRP-Capable Device
526  *                       4 - Non-OTG Device
527  *                       5 - SRP-Capable Host
528  *                       6 - Non-OTG Host
529  * @arch                Architecture
530  *                       0 - Slave only
531  *                       1 - External DMA
532  *                       2 - Internal DMA
533  * @power_optimized     Are power optimizations enabled?
534  * @num_dev_ep          Number of device endpoints available
535  * @num_dev_perio_in_ep Number of device periodic IN endpoints
536  *                      available
537  * @dev_token_q_depth   Device Mode IN Token Sequence Learning Queue
538  *                      Depth
539  *                       0 to 30
540  * @host_perio_tx_q_depth
541  *                      Host Mode Periodic Request Queue Depth
542  *                       2, 4 or 8
543  * @nperio_tx_q_depth
544  *                      Non-Periodic Request Queue Depth
545  *                       2, 4 or 8
546  * @hs_phy_type         High-speed PHY interface type
547  *                       0 - High-speed interface not supported
548  *                       1 - UTMI+
549  *                       2 - ULPI
550  *                       3 - UTMI+ and ULPI
551  * @fs_phy_type         Full-speed PHY interface type
552  *                       0 - Full speed interface not supported
553  *                       1 - Dedicated full speed interface
554  *                       2 - FS pins shared with UTMI+ pins
555  *                       3 - FS pins shared with ULPI pins
556  * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
557  * @utmi_phy_data_width UTMI+ PHY data width
558  *                       0 - 8 bits
559  *                       1 - 16 bits
560  *                       2 - 8 or 16 bits
561  * @snpsid:             Value from SNPSID register
562  * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
563  */
564 struct dwc2_hw_params {
565 	unsigned op_mode:3;
566 	unsigned arch:2;
567 	unsigned dma_desc_enable:1;
568 	unsigned enable_dynamic_fifo:1;
569 	unsigned en_multiple_tx_fifo:1;
570 	unsigned rx_fifo_size:16;
571 	unsigned host_nperio_tx_fifo_size:16;
572 	unsigned dev_nperio_tx_fifo_size:16;
573 	unsigned host_perio_tx_fifo_size:16;
574 	unsigned nperio_tx_q_depth:3;
575 	unsigned host_perio_tx_q_depth:3;
576 	unsigned dev_token_q_depth:5;
577 	unsigned max_transfer_size:26;
578 	unsigned max_packet_count:11;
579 	unsigned host_channels:5;
580 	unsigned hs_phy_type:2;
581 	unsigned fs_phy_type:2;
582 	unsigned i2c_enable:1;
583 	unsigned num_dev_ep:4;
584 	unsigned num_dev_perio_in_ep:4;
585 	unsigned total_fifo_size:16;
586 	unsigned power_optimized:1;
587 	unsigned utmi_phy_data_width:2;
588 	u32 snpsid;
589 	u32 dev_ep_dirs;
590 };
591 
592 /* Size of control and EP0 buffers */
593 #define DWC2_CTRL_BUFF_SIZE 8
594 
595 /**
596  * struct dwc2_gregs_backup - Holds global registers state before
597  * entering partial power down
598  * @gotgctl:		Backup of GOTGCTL register
599  * @gintmsk:		Backup of GINTMSK register
600  * @gahbcfg:		Backup of GAHBCFG register
601  * @gusbcfg:		Backup of GUSBCFG register
602  * @grxfsiz:		Backup of GRXFSIZ register
603  * @gnptxfsiz:		Backup of GNPTXFSIZ register
604  * @gi2cctl:		Backup of GI2CCTL register
605  * @hptxfsiz:		Backup of HPTXFSIZ register
606  * @gdfifocfg:		Backup of GDFIFOCFG register
607  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
608  * @gpwrdn:		Backup of GPWRDN register
609  */
610 struct dwc2_gregs_backup {
611 	u32 gotgctl;
612 	u32 gintmsk;
613 	u32 gahbcfg;
614 	u32 gusbcfg;
615 	u32 grxfsiz;
616 	u32 gnptxfsiz;
617 	u32 gi2cctl;
618 	u32 hptxfsiz;
619 	u32 pcgcctl;
620 	u32 gdfifocfg;
621 	u32 dtxfsiz[MAX_EPS_CHANNELS];
622 	u32 gpwrdn;
623 	bool valid;
624 };
625 
626 /**
627  * struct dwc2_dregs_backup - Holds device registers state before
628  * entering partial power down
629  * @dcfg:		Backup of DCFG register
630  * @dctl:		Backup of DCTL register
631  * @daintmsk:		Backup of DAINTMSK register
632  * @diepmsk:		Backup of DIEPMSK register
633  * @doepmsk:		Backup of DOEPMSK register
634  * @diepctl:		Backup of DIEPCTL register
635  * @dieptsiz:		Backup of DIEPTSIZ register
636  * @diepdma:		Backup of DIEPDMA register
637  * @doepctl:		Backup of DOEPCTL register
638  * @doeptsiz:		Backup of DOEPTSIZ register
639  * @doepdma:		Backup of DOEPDMA register
640  */
641 struct dwc2_dregs_backup {
642 	u32 dcfg;
643 	u32 dctl;
644 	u32 daintmsk;
645 	u32 diepmsk;
646 	u32 doepmsk;
647 	u32 diepctl[MAX_EPS_CHANNELS];
648 	u32 dieptsiz[MAX_EPS_CHANNELS];
649 	u32 diepdma[MAX_EPS_CHANNELS];
650 	u32 doepctl[MAX_EPS_CHANNELS];
651 	u32 doeptsiz[MAX_EPS_CHANNELS];
652 	u32 doepdma[MAX_EPS_CHANNELS];
653 	bool valid;
654 };
655 
656 /**
657  * struct dwc2_hregs_backup - Holds host registers state before
658  * entering partial power down
659  * @hcfg:		Backup of HCFG register
660  * @haintmsk:		Backup of HAINTMSK register
661  * @hcintmsk:		Backup of HCINTMSK register
662  * @hptr0:		Backup of HPTR0 register
663  * @hfir:		Backup of HFIR register
664  */
665 struct dwc2_hregs_backup {
666 	u32 hcfg;
667 	u32 haintmsk;
668 	u32 hcintmsk[MAX_EPS_CHANNELS];
669 	u32 hprt0;
670 	u32 hfir;
671 	bool valid;
672 };
673 
674 /*
675  * Constants related to high speed periodic scheduling
676  *
677  * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
678  * reservation point of view it's assumed that the schedule goes right back to
679  * the beginning after the end of the schedule.
680  *
681  * What does that mean for scheduling things with a long interval?  It means
682  * we'll reserve time for them in every possible microframe that they could
683  * ever be scheduled in.  ...but we'll still only actually schedule them as
684  * often as they were requested.
685  *
686  * We keep our schedule in a "bitmap" structure.  This simplifies having
687  * to keep track of and merge intervals: we just let the bitmap code do most
688  * of the heavy lifting.  In a way scheduling is much like memory allocation.
689  *
690  * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
691  * supposed to schedule for periodic transfers).  That's according to spec.
692  *
693  * Note that though we only schedule 80% of each microframe, the bitmap that we
694  * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
695  * space for each uFrame).
696  *
697  * Requirements:
698  * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
699  * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
700  *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
701  *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
702  */
703 #define DWC2_US_PER_UFRAME		125
704 #define DWC2_HS_PERIODIC_US_PER_UFRAME	100
705 
706 #define DWC2_HS_SCHEDULE_UFRAMES	8
707 #define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
708 					 DWC2_HS_PERIODIC_US_PER_UFRAME)
709 
710 /*
711  * Constants related to low speed scheduling
712  *
713  * For high speed we schedule every 1us.  For low speed that's a bit overkill,
714  * so we make up a unit called a "slice" that's worth 25us.  There are 40
715  * slices in a full frame and we can schedule 36 of those (90%) for periodic
716  * transfers.
717  *
718  * Our low speed schedule can be as short as 1 frame or could be longer.  When
719  * we only schedule 1 frame it means that we'll need to reserve a time every
720  * frame even for things that only transfer very rarely, so something that runs
721  * every 2048 frames will get time reserved in every frame.  Our low speed
722  * schedule can be longer and we'll be able to handle more overlap, but that
723  * will come at increased memory cost and increased time to schedule.
724  *
725  * Note: one other advantage of a short low speed schedule is that if we mess
726  * up and miss scheduling we can jump in and use any of the slots that we
727  * happened to reserve.
728  *
729  * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
730  * the schedule.  There will be one schedule per TT.
731  *
732  * Requirements:
733  * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
734  */
735 #define DWC2_US_PER_SLICE	25
736 #define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
737 
738 #define DWC2_ROUND_US_TO_SLICE(us) \
739 				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
740 				 DWC2_US_PER_SLICE)
741 
742 #define DWC2_LS_PERIODIC_US_PER_FRAME \
743 				900
744 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
745 				(DWC2_LS_PERIODIC_US_PER_FRAME / \
746 				 DWC2_US_PER_SLICE)
747 
748 #define DWC2_LS_SCHEDULE_FRAMES	1
749 #define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
750 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
751 
752 /**
753  * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
754  * and periodic schedules
755  *
756  * These are common for both host and peripheral modes:
757  *
758  * @dev:                The struct device pointer
759  * @regs:		Pointer to controller regs
760  * @hw_params:          Parameters that were autodetected from the
761  *                      hardware registers
762  * @core_params:	Parameters that define how the core should be configured
763  * @op_state:           The operational State, during transitions (a_host=>
764  *                      a_peripheral and b_device=>b_host) this may not match
765  *                      the core, but allows the software to determine
766  *                      transitions
767  * @dr_mode:            Requested mode of operation, one of following:
768  *                      - USB_DR_MODE_PERIPHERAL
769  *                      - USB_DR_MODE_HOST
770  *                      - USB_DR_MODE_OTG
771  * @hcd_enabled		Host mode sub-driver initialization indicator.
772  * @gadget_enabled	Peripheral mode sub-driver initialization indicator.
773  * @ll_hw_enabled	Status of low-level hardware resources.
774  * @phy:                The otg phy transceiver structure for phy control.
775  * @uphy:               The otg phy transceiver structure for old USB phy
776  *                      control.
777  * @plat:               The platform specific configuration data. This can be
778  *                      removed once all SoCs support usb transceiver.
779  * @supplies:           Definition of USB power supplies
780  * @phyif:              PHY interface width
781  * @lock:		Spinlock that protects all the driver data structures
782  * @priv:		Stores a pointer to the struct usb_hcd
783  * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
784  *                      transfer are in process of being queued
785  * @srp_success:        Stores status of SRP request in the case of a FS PHY
786  *                      with an I2C interface
787  * @wq_otg:             Workqueue object used for handling of some interrupts
788  * @wf_otg:             Work object for handling Connector ID Status Change
789  *                      interrupt
790  * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
791  * @lx_state:           Lx state of connected device
792  * @gregs_backup: Backup of global registers during suspend
793  * @dregs_backup: Backup of device registers during suspend
794  * @hregs_backup: Backup of host registers during suspend
795  *
796  * These are for host mode:
797  *
798  * @flags:              Flags for handling root port state changes
799  * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
800  *                      Transfers associated with these QHs are not currently
801  *                      assigned to a host channel.
802  * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
803  *                      Transfers associated with these QHs are currently
804  *                      assigned to a host channel.
805  * @non_periodic_qh_ptr: Pointer to next QH to process in the active
806  *                      non-periodic schedule
807  * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
808  *                      list of QHs for periodic transfers that are _not_
809  *                      scheduled for the next frame. Each QH in the list has an
810  *                      interval counter that determines when it needs to be
811  *                      scheduled for execution. This scheduling mechanism
812  *                      allows only a simple calculation for periodic bandwidth
813  *                      used (i.e. must assume that all periodic transfers may
814  *                      need to execute in the same frame). However, it greatly
815  *                      simplifies scheduling and should be sufficient for the
816  *                      vast majority of OTG hosts, which need to connect to a
817  *                      small number of peripherals at one time. Items move from
818  *                      this list to periodic_sched_ready when the QH interval
819  *                      counter is 0 at SOF.
820  * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
821  *                      the next frame, but have not yet been assigned to host
822  *                      channels. Items move from this list to
823  *                      periodic_sched_assigned as host channels become
824  *                      available during the current frame.
825  * @periodic_sched_assigned: List of periodic QHs to be executed in the next
826  *                      frame that are assigned to host channels. Items move
827  *                      from this list to periodic_sched_queued as the
828  *                      transactions for the QH are queued to the DWC_otg
829  *                      controller.
830  * @periodic_sched_queued: List of periodic QHs that have been queued for
831  *                      execution. Items move from this list to either
832  *                      periodic_sched_inactive or periodic_sched_ready when the
833  *                      channel associated with the transfer is released. If the
834  *                      interval for the QH is 1, the item moves to
835  *                      periodic_sched_ready because it must be rescheduled for
836  *                      the next frame. Otherwise, the item moves to
837  *                      periodic_sched_inactive.
838  * @split_order:        List keeping track of channels doing splits, in order.
839  * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
840  *                      This value is in microseconds per (micro)frame. The
841  *                      assumption is that all periodic transfers may occur in
842  *                      the same (micro)frame.
843  * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
844  *                      host is in high speed mode; low speed schedules are
845  *                      stored elsewhere since we need one per TT.
846  * @frame_number:       Frame number read from the core at SOF. The value ranges
847  *                      from 0 to HFNUM_MAX_FRNUM.
848  * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
849  *                      SOF enable/disable.
850  * @free_hc_list:       Free host channels in the controller. This is a list of
851  *                      struct dwc2_host_chan items.
852  * @periodic_channels:  Number of host channels assigned to periodic transfers.
853  *                      Currently assuming that there is a dedicated host
854  *                      channel for each periodic transaction and at least one
855  *                      host channel is available for non-periodic transactions.
856  * @non_periodic_channels: Number of host channels assigned to non-periodic
857  *                      transfers
858  * @available_host_channels Number of host channels available for the microframe
859  *                      scheduler to use
860  * @hc_ptr_array:       Array of pointers to the host channel descriptors.
861  *                      Allows accessing a host channel descriptor given the
862  *                      host channel number. This is useful in interrupt
863  *                      handlers.
864  * @status_buf:         Buffer used for data received during the status phase of
865  *                      a control transfer.
866  * @status_buf_dma:     DMA address for status_buf
867  * @start_work:         Delayed work for handling host A-cable connection
868  * @reset_work:         Delayed work for handling a port reset
869  * @otg_port:           OTG port number
870  * @frame_list:         Frame list
871  * @frame_list_dma:     Frame list DMA address
872  * @frame_list_sz:      Frame list size
873  * @desc_gen_cache:     Kmem cache for generic descriptors
874  * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
875  * @unaligned_cache:    Kmem cache for DMA mode to handle non-aligned buf
876  *
877  * These are for peripheral mode:
878  *
879  * @driver:             USB gadget driver
880  * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
881  * @num_of_eps:         Number of available EPs (excluding EP0)
882  * @debug_root:         Root directrory for debugfs.
883  * @debug_file:         Main status file for debugfs.
884  * @debug_testmode:     Testmode status file for debugfs.
885  * @debug_fifo:         FIFO status file for debugfs.
886  * @ep0_reply:          Request used for ep0 reply.
887  * @ep0_buff:           Buffer for EP0 reply data, if needed.
888  * @ctrl_buff:          Buffer for EP0 control requests.
889  * @ctrl_req:           Request for EP0 control packets.
890  * @ep0_state:          EP0 control transfers state
891  * @test_mode:          USB test mode requested by the host
892  * @setup_desc_dma:	EP0 setup stage desc chain DMA address
893  * @setup_desc:		EP0 setup stage desc chain pointer
894  * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
895  * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
896  * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
897  * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
898  * @eps:                The endpoints being supplied to the gadget framework
899  */
900 struct dwc2_hsotg {
901 	struct device *dev;
902 	void __iomem *regs;
903 	/** Params detected from hardware */
904 	struct dwc2_hw_params hw_params;
905 	/** Params to actually use */
906 	struct dwc2_core_params params;
907 	enum usb_otg_state op_state;
908 	enum usb_dr_mode dr_mode;
909 	unsigned int hcd_enabled:1;
910 	unsigned int gadget_enabled:1;
911 	unsigned int ll_hw_enabled:1;
912 
913 	struct phy *phy;
914 	struct usb_phy *uphy;
915 	struct dwc2_hsotg_plat *plat;
916 	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
917 	u32 phyif;
918 
919 	spinlock_t lock;
920 	void *priv;
921 	int     irq;
922 	struct clk *clk;
923 	struct reset_control *reset;
924 
925 	unsigned int queuing_high_bandwidth:1;
926 	unsigned int srp_success:1;
927 
928 	struct workqueue_struct *wq_otg;
929 	struct work_struct wf_otg;
930 	struct timer_list wkp_timer;
931 	enum dwc2_lx_state lx_state;
932 	struct dwc2_gregs_backup gr_backup;
933 	struct dwc2_dregs_backup dr_backup;
934 	struct dwc2_hregs_backup hr_backup;
935 
936 	struct dentry *debug_root;
937 	struct debugfs_regset32 *regset;
938 
939 	/* DWC OTG HW Release versions */
940 #define DWC2_CORE_REV_2_71a	0x4f54271a
941 #define DWC2_CORE_REV_2_90a	0x4f54290a
942 #define DWC2_CORE_REV_2_91a	0x4f54291a
943 #define DWC2_CORE_REV_2_92a	0x4f54292a
944 #define DWC2_CORE_REV_2_94a	0x4f54294a
945 #define DWC2_CORE_REV_3_00a	0x4f54300a
946 #define DWC2_CORE_REV_3_10a	0x4f54310a
947 #define DWC2_FS_IOT_REV_1_00a	0x5531100a
948 #define DWC2_HS_IOT_REV_1_00a	0x5532100a
949 
950 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
951 	union dwc2_hcd_internal_flags {
952 		u32 d32;
953 		struct {
954 			unsigned port_connect_status_change:1;
955 			unsigned port_connect_status:1;
956 			unsigned port_reset_change:1;
957 			unsigned port_enable_change:1;
958 			unsigned port_suspend_change:1;
959 			unsigned port_over_current_change:1;
960 			unsigned port_l1_change:1;
961 			unsigned reserved:25;
962 		} b;
963 	} flags;
964 
965 	struct list_head non_periodic_sched_inactive;
966 	struct list_head non_periodic_sched_active;
967 	struct list_head *non_periodic_qh_ptr;
968 	struct list_head periodic_sched_inactive;
969 	struct list_head periodic_sched_ready;
970 	struct list_head periodic_sched_assigned;
971 	struct list_head periodic_sched_queued;
972 	struct list_head split_order;
973 	u16 periodic_usecs;
974 	unsigned long hs_periodic_bitmap[
975 		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
976 	u16 frame_number;
977 	u16 periodic_qh_count;
978 	bool bus_suspended;
979 	bool new_connection;
980 
981 	u16 last_frame_num;
982 
983 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
984 #define FRAME_NUM_ARRAY_SIZE 1000
985 	u16 *frame_num_array;
986 	u16 *last_frame_num_array;
987 	int frame_num_idx;
988 	int dumped_frame_num_array;
989 #endif
990 
991 	struct list_head free_hc_list;
992 	int periodic_channels;
993 	int non_periodic_channels;
994 	int available_host_channels;
995 	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
996 	u8 *status_buf;
997 	dma_addr_t status_buf_dma;
998 #define DWC2_HCD_STATUS_BUF_SIZE 64
999 
1000 	struct delayed_work start_work;
1001 	struct delayed_work reset_work;
1002 	u8 otg_port;
1003 	u32 *frame_list;
1004 	dma_addr_t frame_list_dma;
1005 	u32 frame_list_sz;
1006 	struct kmem_cache *desc_gen_cache;
1007 	struct kmem_cache *desc_hsisoc_cache;
1008 	struct kmem_cache *unaligned_cache;
1009 #define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1010 
1011 #ifdef DEBUG
1012 	u32 frrem_samples;
1013 	u64 frrem_accum;
1014 
1015 	u32 hfnum_7_samples_a;
1016 	u64 hfnum_7_frrem_accum_a;
1017 	u32 hfnum_0_samples_a;
1018 	u64 hfnum_0_frrem_accum_a;
1019 	u32 hfnum_other_samples_a;
1020 	u64 hfnum_other_frrem_accum_a;
1021 
1022 	u32 hfnum_7_samples_b;
1023 	u64 hfnum_7_frrem_accum_b;
1024 	u32 hfnum_0_samples_b;
1025 	u64 hfnum_0_frrem_accum_b;
1026 	u32 hfnum_other_samples_b;
1027 	u64 hfnum_other_frrem_accum_b;
1028 #endif
1029 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1030 
1031 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1032 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1033 	/* Gadget structures */
1034 	struct usb_gadget_driver *driver;
1035 	int fifo_mem;
1036 	unsigned int dedicated_fifos:1;
1037 	unsigned char num_of_eps;
1038 	u32 fifo_map;
1039 
1040 	struct usb_request *ep0_reply;
1041 	struct usb_request *ctrl_req;
1042 	void *ep0_buff;
1043 	void *ctrl_buff;
1044 	enum dwc2_ep0_state ep0_state;
1045 	u8 test_mode;
1046 
1047 	dma_addr_t setup_desc_dma[2];
1048 	struct dwc2_dma_desc *setup_desc[2];
1049 	dma_addr_t ctrl_in_desc_dma;
1050 	struct dwc2_dma_desc *ctrl_in_desc;
1051 	dma_addr_t ctrl_out_desc_dma;
1052 	struct dwc2_dma_desc *ctrl_out_desc;
1053 
1054 	struct usb_gadget gadget;
1055 	unsigned int enabled:1;
1056 	unsigned int connected:1;
1057 	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1058 	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1059 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1060 };
1061 
1062 /* Reasons for halting a host channel */
1063 enum dwc2_halt_status {
1064 	DWC2_HC_XFER_NO_HALT_STATUS,
1065 	DWC2_HC_XFER_COMPLETE,
1066 	DWC2_HC_XFER_URB_COMPLETE,
1067 	DWC2_HC_XFER_ACK,
1068 	DWC2_HC_XFER_NAK,
1069 	DWC2_HC_XFER_NYET,
1070 	DWC2_HC_XFER_STALL,
1071 	DWC2_HC_XFER_XACT_ERR,
1072 	DWC2_HC_XFER_FRAME_OVERRUN,
1073 	DWC2_HC_XFER_BABBLE_ERR,
1074 	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1075 	DWC2_HC_XFER_AHB_ERR,
1076 	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1077 	DWC2_HC_XFER_URB_DEQUEUE,
1078 };
1079 
1080 /* Core version information */
dwc2_is_iot(struct dwc2_hsotg * hsotg)1081 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1082 {
1083 	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1084 }
1085 
dwc2_is_fs_iot(struct dwc2_hsotg * hsotg)1086 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1087 {
1088 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1089 }
1090 
dwc2_is_hs_iot(struct dwc2_hsotg * hsotg)1091 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1092 {
1093 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1094 }
1095 
1096 /*
1097  * The following functions support initialization of the core driver component
1098  * and the DWC_otg controller
1099  */
1100 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1101 int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
1102 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
1103 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
1104 
1105 bool dwc2_force_mode_if_needed(struct dwc2_hsotg *hsotg, bool host);
1106 void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg);
1107 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1108 
1109 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1110 
1111 /*
1112  * Common core Functions.
1113  * The following functions support managing the DWC_otg controller in either
1114  * device or host mode.
1115  */
1116 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1117 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1118 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1119 
1120 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1121 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1122 
1123 /* This function should be called on every hardware interrupt. */
1124 irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1125 
1126 /* The device ID match table */
1127 extern const struct of_device_id dwc2_of_match_table[];
1128 
1129 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1130 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1131 
1132 /* Parameters */
1133 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1134 int dwc2_init_params(struct dwc2_hsotg *hsotg);
1135 
1136 /*
1137  * The following functions check the controller's OTG operation mode
1138  * capability (GHWCFG2.OTG_MODE).
1139  *
1140  * These functions can be used before the internal hsotg->hw_params
1141  * are read in and cached so they always read directly from the
1142  * GHWCFG2 register.
1143  */
1144 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1145 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1146 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1147 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1148 
1149 /*
1150  * Returns the mode of operation, host or device
1151  */
dwc2_is_host_mode(struct dwc2_hsotg * hsotg)1152 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1153 {
1154 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1155 }
1156 
dwc2_is_device_mode(struct dwc2_hsotg * hsotg)1157 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1158 {
1159 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1160 }
1161 
1162 /*
1163  * Dump core registers and SPRAM
1164  */
1165 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1166 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1167 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1168 
1169 /* Gadget defines */
1170 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1171 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1172 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1173 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1174 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1175 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1176 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1177 				       bool reset);
1178 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1179 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1180 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1181 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1182 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1183 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
1184 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1185 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1186 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1187 #else
dwc2_hsotg_remove(struct dwc2_hsotg * dwc2)1188 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1189 { return 0; }
dwc2_hsotg_suspend(struct dwc2_hsotg * dwc2)1190 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1191 { return 0; }
dwc2_hsotg_resume(struct dwc2_hsotg * dwc2)1192 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1193 { return 0; }
dwc2_gadget_init(struct dwc2_hsotg * hsotg,int irq)1194 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1195 { return 0; }
dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg * dwc2,bool reset)1196 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1197 						     bool reset) {}
dwc2_hsotg_core_connect(struct dwc2_hsotg * hsotg)1198 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
dwc2_hsotg_disconnect(struct dwc2_hsotg * dwc2)1199 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
dwc2_hsotg_set_test_mode(struct dwc2_hsotg * hsotg,int testmode)1200 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1201 					   int testmode)
1202 { return 0; }
1203 #define dwc2_is_device_connected(hsotg) (0)
dwc2_backup_device_registers(struct dwc2_hsotg * hsotg)1204 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1205 { return 0; }
dwc2_restore_device_registers(struct dwc2_hsotg * hsotg)1206 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
1207 { return 0; }
dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg * hsotg)1208 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1209 { return 0; }
dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg * hsotg)1210 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1211 { return 0; }
dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg * hsotg)1212 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1213 { return 0; }
1214 #endif
1215 
1216 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1217 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1218 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1219 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1220 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1221 void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1222 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1223 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1224 #else
dwc2_hcd_get_frame_number(struct dwc2_hsotg * hsotg)1225 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1226 { return 0; }
dwc2_hcd_get_future_frame_number(struct dwc2_hsotg * hsotg,int us)1227 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1228 						   int us)
1229 { return 0; }
dwc2_hcd_connect(struct dwc2_hsotg * hsotg)1230 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
dwc2_hcd_disconnect(struct dwc2_hsotg * hsotg,bool force)1231 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
dwc2_hcd_start(struct dwc2_hsotg * hsotg)1232 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
dwc2_hcd_remove(struct dwc2_hsotg * hsotg)1233 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
dwc2_hcd_init(struct dwc2_hsotg * hsotg)1234 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1235 { return 0; }
dwc2_backup_host_registers(struct dwc2_hsotg * hsotg)1236 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1237 { return 0; }
dwc2_restore_host_registers(struct dwc2_hsotg * hsotg)1238 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1239 { return 0; }
1240 
1241 #endif
1242 
1243 #endif /* __DWC2_CORE_H__ */
1244