1 /*
2 * arch/arm/include/asm/io.h
3 *
4 * Copyright (C) 1996-2000 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Modifications:
11 * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both
12 * constant addresses and variable addresses.
13 * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture
14 * specific IO header files.
15 * 27-Mar-1999 PJB Second parameter of memcpy_toio is const..
16 * 04-Apr-1999 PJB Added check_signature.
17 * 12-Dec-1999 RMK More cleanups
18 * 18-Jun-2000 RMK Removed virt_to_* and friends definitions
19 * 05-Oct-2004 BJD Moved memory string functions to use void __iomem
20 */
21 #ifndef __ASM_ARM_IO_H
22 #define __ASM_ARM_IO_H
23
24 #ifdef __KERNEL__
25
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <asm/byteorder.h>
29 #include <asm/memory.h>
30 #include <asm-generic/pci_iomap.h>
31 #include <xen/xen.h>
32
33 /*
34 * ISA I/O bus memory addresses are 1:1 with the physical address.
35 */
36 #define isa_virt_to_bus virt_to_phys
37 #define isa_page_to_bus page_to_phys
38 #define isa_bus_to_virt phys_to_virt
39
40 /*
41 * Atomic MMIO-wide IO modify
42 */
43 extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set);
44 extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set);
45
46 /*
47 * Generic IO read/write. These perform native-endian accesses. Note
48 * that some architectures will want to re-define __raw_{read,write}w.
49 */
50 void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen);
51 void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen);
52 void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen);
53
54 void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen);
55 void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen);
56 void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen);
57
58 #if __LINUX_ARM_ARCH__ < 6
59 /*
60 * Half-word accesses are problematic with RiscPC due to limitations of
61 * the bus. Rather than special-case the machine, just let the compiler
62 * generate the access for CPUs prior to ARMv6.
63 */
64 #define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
65 #define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
66 #else
67 /*
68 * When running under a hypervisor, we want to avoid I/O accesses with
69 * writeback addressing modes as these incur a significant performance
70 * overhead (the address generation must be emulated in software).
71 */
72 #define __raw_writew __raw_writew
__raw_writew(u16 val,volatile void __iomem * addr)73 static inline void __raw_writew(u16 val, volatile void __iomem *addr)
74 {
75 asm volatile("strh %1, %0"
76 : : "Q" (*(volatile u16 __force *)addr), "r" (val));
77 }
78
79 #define __raw_readw __raw_readw
__raw_readw(const volatile void __iomem * addr)80 static inline u16 __raw_readw(const volatile void __iomem *addr)
81 {
82 u16 val;
83 asm volatile("ldrh %0, %1"
84 : "=r" (val)
85 : "Q" (*(volatile u16 __force *)addr));
86 return val;
87 }
88 #endif
89
90 #define __raw_writeb __raw_writeb
__raw_writeb(u8 val,volatile void __iomem * addr)91 static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
92 {
93 asm volatile("strb %1, %0"
94 : : "Qo" (*(volatile u8 __force *)addr), "r" (val));
95 }
96
97 #define __raw_writel __raw_writel
__raw_writel(u32 val,volatile void __iomem * addr)98 static inline void __raw_writel(u32 val, volatile void __iomem *addr)
99 {
100 asm volatile("str %1, %0"
101 : : "Qo" (*(volatile u32 __force *)addr), "r" (val));
102 }
103
104 #define __raw_readb __raw_readb
__raw_readb(const volatile void __iomem * addr)105 static inline u8 __raw_readb(const volatile void __iomem *addr)
106 {
107 u8 val;
108 asm volatile("ldrb %0, %1"
109 : "=r" (val)
110 : "Qo" (*(volatile u8 __force *)addr));
111 return val;
112 }
113
114 #define __raw_readl __raw_readl
__raw_readl(const volatile void __iomem * addr)115 static inline u32 __raw_readl(const volatile void __iomem *addr)
116 {
117 u32 val;
118 asm volatile("ldr %0, %1"
119 : "=r" (val)
120 : "Qo" (*(volatile u32 __force *)addr));
121 return val;
122 }
123
124 /*
125 * Architecture ioremap implementation.
126 */
127 #define MT_DEVICE 0
128 #define MT_DEVICE_NONSHARED 1
129 #define MT_DEVICE_CACHED 2
130 #define MT_DEVICE_WC 3
131 /*
132 * types 4 onwards can be found in asm/mach/map.h and are undefined
133 * for ioremap
134 */
135
136 /*
137 * __arm_ioremap takes CPU physical address.
138 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
139 * The _caller variety takes a __builtin_return_address(0) value for
140 * /proc/vmalloc to use - and should only be used in non-inline functions.
141 */
142 extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int,
143 void *);
144 extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
145 extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached);
146 extern void __iounmap(volatile void __iomem *addr);
147
148 extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
149 unsigned int, void *);
150 extern void (*arch_iounmap)(volatile void __iomem *);
151
152 /*
153 * Bad read/write accesses...
154 */
155 extern void __readwrite_bug(const char *fn);
156
157 /*
158 * A typesafe __io() helper
159 */
__typesafe_io(unsigned long addr)160 static inline void __iomem *__typesafe_io(unsigned long addr)
161 {
162 return (void __iomem *)addr;
163 }
164
165 #define IOMEM(x) ((void __force __iomem *)(x))
166
167 /* IO barriers */
168 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
169 #include <asm/barrier.h>
170 #define __iormb() rmb()
171 #define __iowmb() wmb()
172 #else
173 #define __iormb() do { } while (0)
174 #define __iowmb() do { } while (0)
175 #endif
176
177 /* PCI fixed i/o mapping */
178 #define PCI_IO_VIRT_BASE 0xfee00000
179 #define PCI_IOBASE ((void __iomem *)PCI_IO_VIRT_BASE)
180
181 #if defined(CONFIG_PCI)
182 void pci_ioremap_set_mem_type(int mem_type);
183 #else
pci_ioremap_set_mem_type(int mem_type)184 static inline void pci_ioremap_set_mem_type(int mem_type) {}
185 #endif
186
187 extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr);
188
189 /*
190 * PCI configuration space mapping function.
191 *
192 * The PCI specification does not allow configuration write
193 * transactions to be posted. Add an arch specific
194 * pci_remap_cfgspace() definition that is implemented
195 * through strongly ordered memory mappings.
196 */
197 #define pci_remap_cfgspace pci_remap_cfgspace
198 void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size);
199 /*
200 * Now, pick up the machine-defined IO definitions
201 */
202 #ifdef CONFIG_NEED_MACH_IO_H
203 #include <mach/io.h>
204 #elif defined(CONFIG_PCI)
205 #define IO_SPACE_LIMIT ((resource_size_t)0xfffff)
206 #define __io(a) __typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT))
207 #else
208 #define __io(a) __typesafe_io((a) & IO_SPACE_LIMIT)
209 #endif
210
211 /*
212 * This is the limit of PC card/PCI/ISA IO space, which is by default
213 * 64K if we have PC card, PCI or ISA support. Otherwise, default to
214 * zero to prevent ISA/PCI drivers claiming IO space (and potentially
215 * oopsing.)
216 *
217 * Only set this larger if you really need inb() et.al. to operate over
218 * a larger address space. Note that SOC_COMMON ioremaps each sockets
219 * IO space area, and so inb() et.al. must be defined to operate as per
220 * readb() et.al. on such platforms.
221 */
222 #ifndef IO_SPACE_LIMIT
223 #if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE)
224 #define IO_SPACE_LIMIT ((resource_size_t)0xffffffff)
225 #elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD)
226 #define IO_SPACE_LIMIT ((resource_size_t)0xffff)
227 #else
228 #define IO_SPACE_LIMIT ((resource_size_t)0)
229 #endif
230 #endif
231
232 /*
233 * IO port access primitives
234 * -------------------------
235 *
236 * The ARM doesn't have special IO access instructions; all IO is memory
237 * mapped. Note that these are defined to perform little endian accesses
238 * only. Their primary purpose is to access PCI and ISA peripherals.
239 *
240 * Note that for a big endian machine, this implies that the following
241 * big endian mode connectivity is in place, as described by numerous
242 * ARM documents:
243 *
244 * PCI: D0-D7 D8-D15 D16-D23 D24-D31
245 * ARM: D24-D31 D16-D23 D8-D15 D0-D7
246 *
247 * The machine specific io.h include defines __io to translate an "IO"
248 * address to a memory address.
249 *
250 * Note that we prevent GCC re-ordering or caching values in expressions
251 * by introducing sequence points into the in*() definitions. Note that
252 * __raw_* do not guarantee this behaviour.
253 *
254 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
255 */
256 #ifdef __io
257 #define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); })
258 #define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \
259 cpu_to_le16(v),__io(p)); })
260 #define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \
261 cpu_to_le32(v),__io(p)); })
262
263 #define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
264 #define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \
265 __raw_readw(__io(p))); __iormb(); __v; })
266 #define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \
267 __raw_readl(__io(p))); __iormb(); __v; })
268
269 #define outsb(p,d,l) __raw_writesb(__io(p),d,l)
270 #define outsw(p,d,l) __raw_writesw(__io(p),d,l)
271 #define outsl(p,d,l) __raw_writesl(__io(p),d,l)
272
273 #define insb(p,d,l) __raw_readsb(__io(p),d,l)
274 #define insw(p,d,l) __raw_readsw(__io(p),d,l)
275 #define insl(p,d,l) __raw_readsl(__io(p),d,l)
276 #endif
277
278 /*
279 * String version of IO memory access ops:
280 */
281 extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
282 extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
283 extern void _memset_io(volatile void __iomem *, int, size_t);
284
285 #define mmiowb()
286
287 /*
288 * Memory access primitives
289 * ------------------------
290 *
291 * These perform PCI memory accesses via an ioremap region. They don't
292 * take an address as such, but a cookie.
293 *
294 * Again, these are defined to perform little endian accesses. See the
295 * IO port primitives for more information.
296 */
297 #ifndef readl
298 #define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; })
299 #define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
300 __raw_readw(c)); __r; })
301 #define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
302 __raw_readl(c)); __r; })
303
304 #define writeb_relaxed(v,c) __raw_writeb(v,c)
305 #define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c)
306 #define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c)
307
308 #define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
309 #define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
310 #define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
311
312 #define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); })
313 #define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); })
314 #define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); })
315
316 #define readsb(p,d,l) __raw_readsb(p,d,l)
317 #define readsw(p,d,l) __raw_readsw(p,d,l)
318 #define readsl(p,d,l) __raw_readsl(p,d,l)
319
320 #define writesb(p,d,l) __raw_writesb(p,d,l)
321 #define writesw(p,d,l) __raw_writesw(p,d,l)
322 #define writesl(p,d,l) __raw_writesl(p,d,l)
323
324 #ifndef __ARMBE__
memset_io(volatile void __iomem * dst,unsigned c,size_t count)325 static inline void memset_io(volatile void __iomem *dst, unsigned c,
326 size_t count)
327 {
328 extern void mmioset(void *, unsigned int, size_t);
329 mmioset((void __force *)dst, c, count);
330 }
331 #define memset_io(dst,c,count) memset_io(dst,c,count)
332
memcpy_fromio(void * to,const volatile void __iomem * from,size_t count)333 static inline void memcpy_fromio(void *to, const volatile void __iomem *from,
334 size_t count)
335 {
336 extern void mmiocpy(void *, const void *, size_t);
337 mmiocpy(to, (const void __force *)from, count);
338 }
339 #define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count)
340
memcpy_toio(volatile void __iomem * to,const void * from,size_t count)341 static inline void memcpy_toio(volatile void __iomem *to, const void *from,
342 size_t count)
343 {
344 extern void mmiocpy(void *, const void *, size_t);
345 mmiocpy((void __force *)to, from, count);
346 }
347 #define memcpy_toio(to,from,count) memcpy_toio(to,from,count)
348
349 #else
350 #define memset_io(c,v,l) _memset_io(c,(v),(l))
351 #define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l))
352 #define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l))
353 #endif
354
355 #endif /* readl */
356
357 /*
358 * ioremap() and friends.
359 *
360 * ioremap() takes a resource address, and size. Due to the ARM memory
361 * types, it is important to use the correct ioremap() function as each
362 * mapping has specific properties.
363 *
364 * Function Memory type Cacheability Cache hint
365 * ioremap() Device n/a n/a
366 * ioremap_nocache() Device n/a n/a
367 * ioremap_cache() Normal Writeback Read allocate
368 * ioremap_wc() Normal Non-cacheable n/a
369 * ioremap_wt() Normal Non-cacheable n/a
370 *
371 * All device mappings have the following properties:
372 * - no access speculation
373 * - no repetition (eg, on return from an exception)
374 * - number, order and size of accesses are maintained
375 * - unaligned accesses are "unpredictable"
376 * - writes may be delayed before they hit the endpoint device
377 *
378 * ioremap_nocache() is the same as ioremap() as there are too many device
379 * drivers using this for device registers, and documentation which tells
380 * people to use it for such for this to be any different. This is not a
381 * safe fallback for memory-like mappings, or memory regions where the
382 * compiler may generate unaligned accesses - eg, via inlining its own
383 * memcpy.
384 *
385 * All normal memory mappings have the following properties:
386 * - reads can be repeated with no side effects
387 * - repeated reads return the last value written
388 * - reads can fetch additional locations without side effects
389 * - writes can be repeated (in certain cases) with no side effects
390 * - writes can be merged before accessing the target
391 * - unaligned accesses can be supported
392 * - ordering is not guaranteed without explicit dependencies or barrier
393 * instructions
394 * - writes may be delayed before they hit the endpoint memory
395 *
396 * The cache hint is only a performance hint: CPUs may alias these hints.
397 * Eg, a CPU not implementing read allocate but implementing write allocate
398 * will provide a write allocate mapping instead.
399 */
400 void __iomem *ioremap(resource_size_t res_cookie, size_t size);
401 #define ioremap ioremap
402 #define ioremap_nocache ioremap
403
404 /*
405 * Do not use ioremap_cache for mapping memory. Use memremap instead.
406 */
407 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size);
408 #define ioremap_cache ioremap_cache
409
410 /*
411 * Do not use ioremap_cached in new code. Provided for the benefit of
412 * the pxa2xx-flash MTD driver only.
413 */
414 void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size);
415
416 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size);
417 #define ioremap_wc ioremap_wc
418 #define ioremap_wt ioremap_wc
419
420 void iounmap(volatile void __iomem *iomem_cookie);
421 #define iounmap iounmap
422
423 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size);
424 #define arch_memremap_wb arch_memremap_wb
425
426 /*
427 * io{read,write}{16,32}be() macros
428 */
429 #define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
430 #define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
431
432 #define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
433 #define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
434
435 #ifndef ioport_map
436 #define ioport_map ioport_map
437 extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
438 #endif
439 #ifndef ioport_unmap
440 #define ioport_unmap ioport_unmap
441 extern void ioport_unmap(void __iomem *addr);
442 #endif
443
444 struct pci_dev;
445
446 #define pci_iounmap pci_iounmap
447 extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
448
449 /*
450 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
451 * access
452 */
453 #define xlate_dev_mem_ptr(p) __va(p)
454
455 /*
456 * Convert a virtual cached pointer to an uncached pointer
457 */
458 #define xlate_dev_kmem_ptr(p) p
459
460 #include <asm-generic/io.h>
461
462 /*
463 * can the hardware map this into one segment or not, given no other
464 * constraints.
465 */
466 #define BIOVEC_MERGEABLE(vec1, vec2) \
467 ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
468
469 struct bio_vec;
470 extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1,
471 const struct bio_vec *vec2);
472 #define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \
473 (__BIOVEC_PHYS_MERGEABLE(vec1, vec2) && \
474 (!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2)))
475
476 #ifdef CONFIG_MMU
477 #define ARCH_HAS_VALID_PHYS_ADDR_RANGE
478 extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
479 extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
480 extern int devmem_is_allowed(unsigned long pfn);
481 #endif
482
483 /*
484 * Register ISA memory and port locations for glibc iopl/inb/outb
485 * emulation.
486 */
487 extern void register_isa_ports(unsigned int mmio, unsigned int io,
488 unsigned int io_shift);
489
490 #endif /* __KERNEL__ */
491 #endif /* __ASM_ARM_IO_H */
492