1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 #include <linux/overflow.h>
27
28 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
29 #include <linux/fscrypt.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (unlikely(condition)) { \
37 WARN_ON(1); \
38 set_sbi_flag(sbi, SBI_NEED_FSCK); \
39 } \
40 } while (0)
41 #endif
42
43 enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_MAX,
60 };
61
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
64
65 struct f2fs_fault_info {
66 atomic_t inject_ops;
67 unsigned int inject_rate;
68 unsigned int inject_type;
69 };
70
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74
75 /*
76 * For mount options
77 */
78 #define F2FS_MOUNT_BG_GC 0x00000001
79 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
80 #define F2FS_MOUNT_DISCARD 0x00000004
81 #define F2FS_MOUNT_NOHEAP 0x00000008
82 #define F2FS_MOUNT_XATTR_USER 0x00000010
83 #define F2FS_MOUNT_POSIX_ACL 0x00000020
84 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
85 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
86 #define F2FS_MOUNT_INLINE_DATA 0x00000100
87 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
88 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
89 #define F2FS_MOUNT_NOBARRIER 0x00000800
90 #define F2FS_MOUNT_FASTBOOT 0x00001000
91 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
92 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
93 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
94 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
95 #define F2FS_MOUNT_ADAPTIVE 0x00020000
96 #define F2FS_MOUNT_LFS 0x00040000
97 #define F2FS_MOUNT_USRQUOTA 0x00080000
98 #define F2FS_MOUNT_GRPQUOTA 0x00100000
99 #define F2FS_MOUNT_PRJQUOTA 0x00200000
100 #define F2FS_MOUNT_QUOTA 0x00400000
101 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
102 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
103 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
104
105 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
106 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
107 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
108 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
109
110 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
111 typecheck(unsigned long long, b) && \
112 ((long long)((a) - (b)) > 0))
113
114 typedef u32 block_t; /*
115 * should not change u32, since it is the on-disk block
116 * address format, __le32.
117 */
118 typedef u32 nid_t;
119
120 struct f2fs_mount_info {
121 unsigned int opt;
122 int write_io_size_bits; /* Write IO size bits */
123 block_t root_reserved_blocks; /* root reserved blocks */
124 kuid_t s_resuid; /* reserved blocks for uid */
125 kgid_t s_resgid; /* reserved blocks for gid */
126 int active_logs; /* # of active logs */
127 int inline_xattr_size; /* inline xattr size */
128 #ifdef CONFIG_F2FS_FAULT_INJECTION
129 struct f2fs_fault_info fault_info; /* For fault injection */
130 #endif
131 #ifdef CONFIG_QUOTA
132 /* Names of quota files with journalled quota */
133 char *s_qf_names[MAXQUOTAS];
134 int s_jquota_fmt; /* Format of quota to use */
135 #endif
136 /* For which write hints are passed down to block layer */
137 int whint_mode;
138 int alloc_mode; /* segment allocation policy */
139 int fsync_mode; /* fsync policy */
140 bool test_dummy_encryption; /* test dummy encryption */
141 };
142
143 #define F2FS_FEATURE_ENCRYPT 0x0001
144 #define F2FS_FEATURE_BLKZONED 0x0002
145 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
146 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
147 #define F2FS_FEATURE_PRJQUOTA 0x0010
148 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
149 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
150 #define F2FS_FEATURE_QUOTA_INO 0x0080
151 #define F2FS_FEATURE_INODE_CRTIME 0x0100
152 #define F2FS_FEATURE_LOST_FOUND 0x0200
153 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */
154 #define F2FS_FEATURE_SB_CHKSUM 0x0800
155
156 #define __F2FS_HAS_FEATURE(raw_super, mask) \
157 ((raw_super->feature & cpu_to_le32(mask)) != 0)
158 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
159 #define F2FS_SET_FEATURE(sbi, mask) \
160 (sbi->raw_super->feature |= cpu_to_le32(mask))
161 #define F2FS_CLEAR_FEATURE(sbi, mask) \
162 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
163
164 /*
165 * Default values for user and/or group using reserved blocks
166 */
167 #define F2FS_DEF_RESUID 0
168 #define F2FS_DEF_RESGID 0
169
170 /*
171 * For checkpoint manager
172 */
173 enum {
174 NAT_BITMAP,
175 SIT_BITMAP
176 };
177
178 #define CP_UMOUNT 0x00000001
179 #define CP_FASTBOOT 0x00000002
180 #define CP_SYNC 0x00000004
181 #define CP_RECOVERY 0x00000008
182 #define CP_DISCARD 0x00000010
183 #define CP_TRIMMED 0x00000020
184 #define CP_PAUSE 0x00000040
185
186 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
187 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
188 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
189 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
190 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
191 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
192 #define DEF_CP_INTERVAL 60 /* 60 secs */
193 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
194 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
195 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
196 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
197
198 struct cp_control {
199 int reason;
200 __u64 trim_start;
201 __u64 trim_end;
202 __u64 trim_minlen;
203 };
204
205 /*
206 * indicate meta/data type
207 */
208 enum {
209 META_CP,
210 META_NAT,
211 META_SIT,
212 META_SSA,
213 META_MAX,
214 META_POR,
215 DATA_GENERIC,
216 META_GENERIC,
217 };
218
219 /* for the list of ino */
220 enum {
221 ORPHAN_INO, /* for orphan ino list */
222 APPEND_INO, /* for append ino list */
223 UPDATE_INO, /* for update ino list */
224 TRANS_DIR_INO, /* for trasactions dir ino list */
225 FLUSH_INO, /* for multiple device flushing */
226 MAX_INO_ENTRY, /* max. list */
227 };
228
229 struct ino_entry {
230 struct list_head list; /* list head */
231 nid_t ino; /* inode number */
232 unsigned int dirty_device; /* dirty device bitmap */
233 };
234
235 /* for the list of inodes to be GCed */
236 struct inode_entry {
237 struct list_head list; /* list head */
238 struct inode *inode; /* vfs inode pointer */
239 };
240
241 struct fsync_node_entry {
242 struct list_head list; /* list head */
243 struct page *page; /* warm node page pointer */
244 unsigned int seq_id; /* sequence id */
245 };
246
247 /* for the bitmap indicate blocks to be discarded */
248 struct discard_entry {
249 struct list_head list; /* list head */
250 block_t start_blkaddr; /* start blockaddr of current segment */
251 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
252 };
253
254 /* default discard granularity of inner discard thread, unit: block count */
255 #define DEFAULT_DISCARD_GRANULARITY 16
256
257 /* max discard pend list number */
258 #define MAX_PLIST_NUM 512
259 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
260 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
261
262 enum {
263 D_PREP, /* initial */
264 D_PARTIAL, /* partially submitted */
265 D_SUBMIT, /* all submitted */
266 D_DONE, /* finished */
267 };
268
269 struct discard_info {
270 block_t lstart; /* logical start address */
271 block_t len; /* length */
272 block_t start; /* actual start address in dev */
273 };
274
275 struct discard_cmd {
276 struct rb_node rb_node; /* rb node located in rb-tree */
277 union {
278 struct {
279 block_t lstart; /* logical start address */
280 block_t len; /* length */
281 block_t start; /* actual start address in dev */
282 };
283 struct discard_info di; /* discard info */
284
285 };
286 struct list_head list; /* command list */
287 struct completion wait; /* compleation */
288 struct block_device *bdev; /* bdev */
289 unsigned short ref; /* reference count */
290 unsigned char state; /* state */
291 unsigned char queued; /* queued discard */
292 int error; /* bio error */
293 spinlock_t lock; /* for state/bio_ref updating */
294 unsigned short bio_ref; /* bio reference count */
295 };
296
297 enum {
298 DPOLICY_BG,
299 DPOLICY_FORCE,
300 DPOLICY_FSTRIM,
301 DPOLICY_UMOUNT,
302 MAX_DPOLICY,
303 };
304
305 struct discard_policy {
306 int type; /* type of discard */
307 unsigned int min_interval; /* used for candidates exist */
308 unsigned int mid_interval; /* used for device busy */
309 unsigned int max_interval; /* used for candidates not exist */
310 unsigned int max_requests; /* # of discards issued per round */
311 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
312 bool io_aware; /* issue discard in idle time */
313 bool sync; /* submit discard with REQ_SYNC flag */
314 bool ordered; /* issue discard by lba order */
315 unsigned int granularity; /* discard granularity */
316 int timeout; /* discard timeout for put_super */
317 };
318
319 struct discard_cmd_control {
320 struct task_struct *f2fs_issue_discard; /* discard thread */
321 struct list_head entry_list; /* 4KB discard entry list */
322 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
323 struct list_head wait_list; /* store on-flushing entries */
324 struct list_head fstrim_list; /* in-flight discard from fstrim */
325 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
326 unsigned int discard_wake; /* to wake up discard thread */
327 struct mutex cmd_lock;
328 unsigned int nr_discards; /* # of discards in the list */
329 unsigned int max_discards; /* max. discards to be issued */
330 unsigned int discard_granularity; /* discard granularity */
331 unsigned int undiscard_blks; /* # of undiscard blocks */
332 unsigned int next_pos; /* next discard position */
333 atomic_t issued_discard; /* # of issued discard */
334 atomic_t queued_discard; /* # of queued discard */
335 atomic_t discard_cmd_cnt; /* # of cached cmd count */
336 struct rb_root_cached root; /* root of discard rb-tree */
337 bool rbtree_check; /* config for consistence check */
338 };
339
340 /* for the list of fsync inodes, used only during recovery */
341 struct fsync_inode_entry {
342 struct list_head list; /* list head */
343 struct inode *inode; /* vfs inode pointer */
344 block_t blkaddr; /* block address locating the last fsync */
345 block_t last_dentry; /* block address locating the last dentry */
346 };
347
348 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
349 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
350
351 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
352 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
353 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
354 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
355
356 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
357 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
358
update_nats_in_cursum(struct f2fs_journal * journal,int i)359 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
360 {
361 int before = nats_in_cursum(journal);
362
363 journal->n_nats = cpu_to_le16(before + i);
364 return before;
365 }
366
update_sits_in_cursum(struct f2fs_journal * journal,int i)367 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
368 {
369 int before = sits_in_cursum(journal);
370
371 journal->n_sits = cpu_to_le16(before + i);
372 return before;
373 }
374
__has_cursum_space(struct f2fs_journal * journal,int size,int type)375 static inline bool __has_cursum_space(struct f2fs_journal *journal,
376 int size, int type)
377 {
378 if (type == NAT_JOURNAL)
379 return size <= MAX_NAT_JENTRIES(journal);
380 return size <= MAX_SIT_JENTRIES(journal);
381 }
382
383 /*
384 * ioctl commands
385 */
386 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
387 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
388 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
389
390 #define F2FS_IOCTL_MAGIC 0xf5
391 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
392 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
393 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
394 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
395 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
396 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
397 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
398 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
399 struct f2fs_defragment)
400 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
401 struct f2fs_move_range)
402 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
403 struct f2fs_flush_device)
404 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
405 struct f2fs_gc_range)
406 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
407 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
408 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
409 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
410
411 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
412 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
413 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
414
415 /*
416 * should be same as XFS_IOC_GOINGDOWN.
417 * Flags for going down operation used by FS_IOC_GOINGDOWN
418 */
419 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
420 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
421 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
422 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
423 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
424 #define F2FS_GOING_DOWN_NEED_FSCK 0x4 /* going down to trigger fsck */
425
426 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
427 /*
428 * ioctl commands in 32 bit emulation
429 */
430 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
431 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
432 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
433 #endif
434
435 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
436 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
437
438 struct f2fs_gc_range {
439 u32 sync;
440 u64 start;
441 u64 len;
442 };
443
444 struct f2fs_defragment {
445 u64 start;
446 u64 len;
447 };
448
449 struct f2fs_move_range {
450 u32 dst_fd; /* destination fd */
451 u64 pos_in; /* start position in src_fd */
452 u64 pos_out; /* start position in dst_fd */
453 u64 len; /* size to move */
454 };
455
456 struct f2fs_flush_device {
457 u32 dev_num; /* device number to flush */
458 u32 segments; /* # of segments to flush */
459 };
460
461 /* for inline stuff */
462 #define DEF_INLINE_RESERVED_SIZE 1
463 static inline int get_extra_isize(struct inode *inode);
464 static inline int get_inline_xattr_addrs(struct inode *inode);
465 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
466 (CUR_ADDRS_PER_INODE(inode) - \
467 get_inline_xattr_addrs(inode) - \
468 DEF_INLINE_RESERVED_SIZE))
469
470 /* for inline dir */
471 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
472 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
473 BITS_PER_BYTE + 1))
474 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
475 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
476 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
477 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
478 NR_INLINE_DENTRY(inode) + \
479 INLINE_DENTRY_BITMAP_SIZE(inode)))
480
481 /*
482 * For INODE and NODE manager
483 */
484 /* for directory operations */
485 struct f2fs_dentry_ptr {
486 struct inode *inode;
487 void *bitmap;
488 struct f2fs_dir_entry *dentry;
489 __u8 (*filename)[F2FS_SLOT_LEN];
490 int max;
491 int nr_bitmap;
492 };
493
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)494 static inline void make_dentry_ptr_block(struct inode *inode,
495 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
496 {
497 d->inode = inode;
498 d->max = NR_DENTRY_IN_BLOCK;
499 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
500 d->bitmap = t->dentry_bitmap;
501 d->dentry = t->dentry;
502 d->filename = t->filename;
503 }
504
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)505 static inline void make_dentry_ptr_inline(struct inode *inode,
506 struct f2fs_dentry_ptr *d, void *t)
507 {
508 int entry_cnt = NR_INLINE_DENTRY(inode);
509 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
510 int reserved_size = INLINE_RESERVED_SIZE(inode);
511
512 d->inode = inode;
513 d->max = entry_cnt;
514 d->nr_bitmap = bitmap_size;
515 d->bitmap = t;
516 d->dentry = t + bitmap_size + reserved_size;
517 d->filename = t + bitmap_size + reserved_size +
518 SIZE_OF_DIR_ENTRY * entry_cnt;
519 }
520
521 /*
522 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
523 * as its node offset to distinguish from index node blocks.
524 * But some bits are used to mark the node block.
525 */
526 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
527 >> OFFSET_BIT_SHIFT)
528 enum {
529 ALLOC_NODE, /* allocate a new node page if needed */
530 LOOKUP_NODE, /* look up a node without readahead */
531 LOOKUP_NODE_RA, /*
532 * look up a node with readahead called
533 * by get_data_block.
534 */
535 };
536
537 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
538
539 /* maximum retry quota flush count */
540 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
541
542 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
543
544 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
545
546 /* for in-memory extent cache entry */
547 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
548
549 /* number of extent info in extent cache we try to shrink */
550 #define EXTENT_CACHE_SHRINK_NUMBER 128
551
552 struct rb_entry {
553 struct rb_node rb_node; /* rb node located in rb-tree */
554 unsigned int ofs; /* start offset of the entry */
555 unsigned int len; /* length of the entry */
556 };
557
558 struct extent_info {
559 unsigned int fofs; /* start offset in a file */
560 unsigned int len; /* length of the extent */
561 u32 blk; /* start block address of the extent */
562 };
563
564 struct extent_node {
565 struct rb_node rb_node; /* rb node located in rb-tree */
566 struct extent_info ei; /* extent info */
567 struct list_head list; /* node in global extent list of sbi */
568 struct extent_tree *et; /* extent tree pointer */
569 };
570
571 struct extent_tree {
572 nid_t ino; /* inode number */
573 struct rb_root_cached root; /* root of extent info rb-tree */
574 struct extent_node *cached_en; /* recently accessed extent node */
575 struct extent_info largest; /* largested extent info */
576 struct list_head list; /* to be used by sbi->zombie_list */
577 rwlock_t lock; /* protect extent info rb-tree */
578 atomic_t node_cnt; /* # of extent node in rb-tree*/
579 bool largest_updated; /* largest extent updated */
580 };
581
582 /*
583 * This structure is taken from ext4_map_blocks.
584 *
585 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
586 */
587 #define F2FS_MAP_NEW (1 << BH_New)
588 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
589 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
590 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
591 F2FS_MAP_UNWRITTEN)
592
593 struct f2fs_map_blocks {
594 block_t m_pblk;
595 block_t m_lblk;
596 unsigned int m_len;
597 unsigned int m_flags;
598 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
599 pgoff_t *m_next_extent; /* point to next possible extent */
600 int m_seg_type;
601 bool m_may_create; /* indicate it is from write path */
602 };
603
604 /* for flag in get_data_block */
605 enum {
606 F2FS_GET_BLOCK_DEFAULT,
607 F2FS_GET_BLOCK_FIEMAP,
608 F2FS_GET_BLOCK_BMAP,
609 F2FS_GET_BLOCK_DIO,
610 F2FS_GET_BLOCK_PRE_DIO,
611 F2FS_GET_BLOCK_PRE_AIO,
612 F2FS_GET_BLOCK_PRECACHE,
613 };
614
615 /*
616 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
617 */
618 #define FADVISE_COLD_BIT 0x01
619 #define FADVISE_LOST_PINO_BIT 0x02
620 #define FADVISE_ENCRYPT_BIT 0x04
621 #define FADVISE_ENC_NAME_BIT 0x08
622 #define FADVISE_KEEP_SIZE_BIT 0x10
623 #define FADVISE_HOT_BIT 0x20
624 #define FADVISE_VERITY_BIT 0x40 /* reserved */
625
626 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
627
628 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
629 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
630 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
631 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
632 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
633 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
634 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
635 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
636 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
637 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
638 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
639 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
640 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
641 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
642 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
643 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
644
645 #define DEF_DIR_LEVEL 0
646
647 enum {
648 GC_FAILURE_PIN,
649 GC_FAILURE_ATOMIC,
650 MAX_GC_FAILURE
651 };
652
653 struct f2fs_inode_info {
654 struct inode vfs_inode; /* serve a vfs inode */
655 unsigned long i_flags; /* keep an inode flags for ioctl */
656 unsigned char i_advise; /* use to give file attribute hints */
657 unsigned char i_dir_level; /* use for dentry level for large dir */
658 unsigned int i_current_depth; /* only for directory depth */
659 /* for gc failure statistic */
660 unsigned int i_gc_failures[MAX_GC_FAILURE];
661 unsigned int i_pino; /* parent inode number */
662 umode_t i_acl_mode; /* keep file acl mode temporarily */
663
664 /* Use below internally in f2fs*/
665 unsigned long flags; /* use to pass per-file flags */
666 struct rw_semaphore i_sem; /* protect fi info */
667 atomic_t dirty_pages; /* # of dirty pages */
668 f2fs_hash_t chash; /* hash value of given file name */
669 unsigned int clevel; /* maximum level of given file name */
670 struct task_struct *task; /* lookup and create consistency */
671 struct task_struct *cp_task; /* separate cp/wb IO stats*/
672 nid_t i_xattr_nid; /* node id that contains xattrs */
673 loff_t last_disk_size; /* lastly written file size */
674
675 #ifdef CONFIG_QUOTA
676 struct dquot *i_dquot[MAXQUOTAS];
677
678 /* quota space reservation, managed internally by quota code */
679 qsize_t i_reserved_quota;
680 #endif
681 struct list_head dirty_list; /* dirty list for dirs and files */
682 struct list_head gdirty_list; /* linked in global dirty list */
683 struct list_head inmem_ilist; /* list for inmem inodes */
684 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
685 struct task_struct *inmem_task; /* store inmemory task */
686 struct mutex inmem_lock; /* lock for inmemory pages */
687 struct extent_tree *extent_tree; /* cached extent_tree entry */
688
689 /* avoid racing between foreground op and gc */
690 struct rw_semaphore i_gc_rwsem[2];
691 struct rw_semaphore i_mmap_sem;
692 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
693
694 int i_extra_isize; /* size of extra space located in i_addr */
695 kprojid_t i_projid; /* id for project quota */
696 int i_inline_xattr_size; /* inline xattr size */
697 struct timespec i_crtime; /* inode creation time */
698 struct timespec i_disk_time[4]; /* inode disk times */
699 };
700
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)701 static inline void get_extent_info(struct extent_info *ext,
702 struct f2fs_extent *i_ext)
703 {
704 ext->fofs = le32_to_cpu(i_ext->fofs);
705 ext->blk = le32_to_cpu(i_ext->blk);
706 ext->len = le32_to_cpu(i_ext->len);
707 }
708
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)709 static inline void set_raw_extent(struct extent_info *ext,
710 struct f2fs_extent *i_ext)
711 {
712 i_ext->fofs = cpu_to_le32(ext->fofs);
713 i_ext->blk = cpu_to_le32(ext->blk);
714 i_ext->len = cpu_to_le32(ext->len);
715 }
716
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)717 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
718 u32 blk, unsigned int len)
719 {
720 ei->fofs = fofs;
721 ei->blk = blk;
722 ei->len = len;
723 }
724
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)725 static inline bool __is_discard_mergeable(struct discard_info *back,
726 struct discard_info *front, unsigned int max_len)
727 {
728 return (back->lstart + back->len == front->lstart) &&
729 (back->len + front->len <= max_len);
730 }
731
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)732 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
733 struct discard_info *back, unsigned int max_len)
734 {
735 return __is_discard_mergeable(back, cur, max_len);
736 }
737
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)738 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
739 struct discard_info *front, unsigned int max_len)
740 {
741 return __is_discard_mergeable(cur, front, max_len);
742 }
743
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)744 static inline bool __is_extent_mergeable(struct extent_info *back,
745 struct extent_info *front)
746 {
747 return (back->fofs + back->len == front->fofs &&
748 back->blk + back->len == front->blk);
749 }
750
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)751 static inline bool __is_back_mergeable(struct extent_info *cur,
752 struct extent_info *back)
753 {
754 return __is_extent_mergeable(back, cur);
755 }
756
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)757 static inline bool __is_front_mergeable(struct extent_info *cur,
758 struct extent_info *front)
759 {
760 return __is_extent_mergeable(cur, front);
761 }
762
763 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)764 static inline void __try_update_largest_extent(struct extent_tree *et,
765 struct extent_node *en)
766 {
767 if (en->ei.len > et->largest.len) {
768 et->largest = en->ei;
769 et->largest_updated = true;
770 }
771 }
772
773 /*
774 * For free nid management
775 */
776 enum nid_state {
777 FREE_NID, /* newly added to free nid list */
778 PREALLOC_NID, /* it is preallocated */
779 MAX_NID_STATE,
780 };
781
782 struct f2fs_nm_info {
783 block_t nat_blkaddr; /* base disk address of NAT */
784 nid_t max_nid; /* maximum possible node ids */
785 nid_t available_nids; /* # of available node ids */
786 nid_t next_scan_nid; /* the next nid to be scanned */
787 unsigned int ram_thresh; /* control the memory footprint */
788 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
789 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
790
791 /* NAT cache management */
792 struct radix_tree_root nat_root;/* root of the nat entry cache */
793 struct radix_tree_root nat_set_root;/* root of the nat set cache */
794 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
795 struct list_head nat_entries; /* cached nat entry list (clean) */
796 spinlock_t nat_list_lock; /* protect clean nat entry list */
797 unsigned int nat_cnt; /* the # of cached nat entries */
798 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
799 unsigned int nat_blocks; /* # of nat blocks */
800
801 /* free node ids management */
802 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
803 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
804 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
805 spinlock_t nid_list_lock; /* protect nid lists ops */
806 struct mutex build_lock; /* lock for build free nids */
807 unsigned char **free_nid_bitmap;
808 unsigned char *nat_block_bitmap;
809 unsigned short *free_nid_count; /* free nid count of NAT block */
810
811 /* for checkpoint */
812 char *nat_bitmap; /* NAT bitmap pointer */
813
814 unsigned int nat_bits_blocks; /* # of nat bits blocks */
815 unsigned char *nat_bits; /* NAT bits blocks */
816 unsigned char *full_nat_bits; /* full NAT pages */
817 unsigned char *empty_nat_bits; /* empty NAT pages */
818 #ifdef CONFIG_F2FS_CHECK_FS
819 char *nat_bitmap_mir; /* NAT bitmap mirror */
820 #endif
821 int bitmap_size; /* bitmap size */
822 };
823
824 /*
825 * this structure is used as one of function parameters.
826 * all the information are dedicated to a given direct node block determined
827 * by the data offset in a file.
828 */
829 struct dnode_of_data {
830 struct inode *inode; /* vfs inode pointer */
831 struct page *inode_page; /* its inode page, NULL is possible */
832 struct page *node_page; /* cached direct node page */
833 nid_t nid; /* node id of the direct node block */
834 unsigned int ofs_in_node; /* data offset in the node page */
835 bool inode_page_locked; /* inode page is locked or not */
836 bool node_changed; /* is node block changed */
837 char cur_level; /* level of hole node page */
838 char max_level; /* level of current page located */
839 block_t data_blkaddr; /* block address of the node block */
840 };
841
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)842 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
843 struct page *ipage, struct page *npage, nid_t nid)
844 {
845 memset(dn, 0, sizeof(*dn));
846 dn->inode = inode;
847 dn->inode_page = ipage;
848 dn->node_page = npage;
849 dn->nid = nid;
850 }
851
852 /*
853 * For SIT manager
854 *
855 * By default, there are 6 active log areas across the whole main area.
856 * When considering hot and cold data separation to reduce cleaning overhead,
857 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
858 * respectively.
859 * In the current design, you should not change the numbers intentionally.
860 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
861 * logs individually according to the underlying devices. (default: 6)
862 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
863 * data and 8 for node logs.
864 */
865 #define NR_CURSEG_DATA_TYPE (3)
866 #define NR_CURSEG_NODE_TYPE (3)
867 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
868
869 enum {
870 CURSEG_HOT_DATA = 0, /* directory entry blocks */
871 CURSEG_WARM_DATA, /* data blocks */
872 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
873 CURSEG_HOT_NODE, /* direct node blocks of directory files */
874 CURSEG_WARM_NODE, /* direct node blocks of normal files */
875 CURSEG_COLD_NODE, /* indirect node blocks */
876 NO_CHECK_TYPE,
877 };
878
879 struct flush_cmd {
880 struct completion wait;
881 struct llist_node llnode;
882 nid_t ino;
883 int ret;
884 };
885
886 struct flush_cmd_control {
887 struct task_struct *f2fs_issue_flush; /* flush thread */
888 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
889 atomic_t issued_flush; /* # of issued flushes */
890 atomic_t queued_flush; /* # of queued flushes */
891 struct llist_head issue_list; /* list for command issue */
892 struct llist_node *dispatch_list; /* list for command dispatch */
893 };
894
895 struct f2fs_sm_info {
896 struct sit_info *sit_info; /* whole segment information */
897 struct free_segmap_info *free_info; /* free segment information */
898 struct dirty_seglist_info *dirty_info; /* dirty segment information */
899 struct curseg_info *curseg_array; /* active segment information */
900
901 struct rw_semaphore curseg_lock; /* for preventing curseg change */
902
903 block_t seg0_blkaddr; /* block address of 0'th segment */
904 block_t main_blkaddr; /* start block address of main area */
905 block_t ssa_blkaddr; /* start block address of SSA area */
906
907 unsigned int segment_count; /* total # of segments */
908 unsigned int main_segments; /* # of segments in main area */
909 unsigned int reserved_segments; /* # of reserved segments */
910 unsigned int ovp_segments; /* # of overprovision segments */
911
912 /* a threshold to reclaim prefree segments */
913 unsigned int rec_prefree_segments;
914
915 /* for batched trimming */
916 unsigned int trim_sections; /* # of sections to trim */
917
918 struct list_head sit_entry_set; /* sit entry set list */
919
920 unsigned int ipu_policy; /* in-place-update policy */
921 unsigned int min_ipu_util; /* in-place-update threshold */
922 unsigned int min_fsync_blocks; /* threshold for fsync */
923 unsigned int min_seq_blocks; /* threshold for sequential blocks */
924 unsigned int min_hot_blocks; /* threshold for hot block allocation */
925 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
926
927 /* for flush command control */
928 struct flush_cmd_control *fcc_info;
929
930 /* for discard command control */
931 struct discard_cmd_control *dcc_info;
932 };
933
934 /*
935 * For superblock
936 */
937 /*
938 * COUNT_TYPE for monitoring
939 *
940 * f2fs monitors the number of several block types such as on-writeback,
941 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
942 */
943 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
944 enum count_type {
945 F2FS_DIRTY_DENTS,
946 F2FS_DIRTY_DATA,
947 F2FS_DIRTY_QDATA,
948 F2FS_DIRTY_NODES,
949 F2FS_DIRTY_META,
950 F2FS_INMEM_PAGES,
951 F2FS_DIRTY_IMETA,
952 F2FS_WB_CP_DATA,
953 F2FS_WB_DATA,
954 F2FS_RD_DATA,
955 F2FS_RD_NODE,
956 F2FS_RD_META,
957 F2FS_DIO_WRITE,
958 F2FS_DIO_READ,
959 NR_COUNT_TYPE,
960 };
961
962 /*
963 * The below are the page types of bios used in submit_bio().
964 * The available types are:
965 * DATA User data pages. It operates as async mode.
966 * NODE Node pages. It operates as async mode.
967 * META FS metadata pages such as SIT, NAT, CP.
968 * NR_PAGE_TYPE The number of page types.
969 * META_FLUSH Make sure the previous pages are written
970 * with waiting the bio's completion
971 * ... Only can be used with META.
972 */
973 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
974 enum page_type {
975 DATA,
976 NODE,
977 META,
978 NR_PAGE_TYPE,
979 META_FLUSH,
980 INMEM, /* the below types are used by tracepoints only. */
981 INMEM_DROP,
982 INMEM_INVALIDATE,
983 INMEM_REVOKE,
984 IPU,
985 OPU,
986 };
987
988 enum temp_type {
989 HOT = 0, /* must be zero for meta bio */
990 WARM,
991 COLD,
992 NR_TEMP_TYPE,
993 };
994
995 enum need_lock_type {
996 LOCK_REQ = 0,
997 LOCK_DONE,
998 LOCK_RETRY,
999 };
1000
1001 enum cp_reason_type {
1002 CP_NO_NEEDED,
1003 CP_NON_REGULAR,
1004 CP_HARDLINK,
1005 CP_SB_NEED_CP,
1006 CP_WRONG_PINO,
1007 CP_NO_SPC_ROLL,
1008 CP_NODE_NEED_CP,
1009 CP_FASTBOOT_MODE,
1010 CP_SPEC_LOG_NUM,
1011 CP_RECOVER_DIR,
1012 };
1013
1014 enum iostat_type {
1015 APP_DIRECT_IO, /* app direct IOs */
1016 APP_BUFFERED_IO, /* app buffered IOs */
1017 APP_WRITE_IO, /* app write IOs */
1018 APP_MAPPED_IO, /* app mapped IOs */
1019 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1020 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1021 FS_META_IO, /* meta IOs from kworker/reclaimer */
1022 FS_GC_DATA_IO, /* data IOs from forground gc */
1023 FS_GC_NODE_IO, /* node IOs from forground gc */
1024 FS_CP_DATA_IO, /* data IOs from checkpoint */
1025 FS_CP_NODE_IO, /* node IOs from checkpoint */
1026 FS_CP_META_IO, /* meta IOs from checkpoint */
1027 FS_DISCARD, /* discard */
1028 NR_IO_TYPE,
1029 };
1030
1031 struct f2fs_io_info {
1032 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1033 nid_t ino; /* inode number */
1034 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1035 enum temp_type temp; /* contains HOT/WARM/COLD */
1036 int op; /* contains REQ_OP_ */
1037 int op_flags; /* req_flag_bits */
1038 block_t new_blkaddr; /* new block address to be written */
1039 block_t old_blkaddr; /* old block address before Cow */
1040 struct page *page; /* page to be written */
1041 struct page *encrypted_page; /* encrypted page */
1042 struct list_head list; /* serialize IOs */
1043 bool submitted; /* indicate IO submission */
1044 int need_lock; /* indicate we need to lock cp_rwsem */
1045 bool in_list; /* indicate fio is in io_list */
1046 bool is_meta; /* indicate borrow meta inode mapping or not */
1047 bool retry; /* need to reallocate block address */
1048 enum iostat_type io_type; /* io type */
1049 struct writeback_control *io_wbc; /* writeback control */
1050 unsigned char version; /* version of the node */
1051 };
1052
1053 #define is_read_io(rw) ((rw) == READ)
1054 struct f2fs_bio_info {
1055 struct f2fs_sb_info *sbi; /* f2fs superblock */
1056 struct bio *bio; /* bios to merge */
1057 sector_t last_block_in_bio; /* last block number */
1058 struct f2fs_io_info fio; /* store buffered io info. */
1059 struct rw_semaphore io_rwsem; /* blocking op for bio */
1060 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1061 struct list_head io_list; /* track fios */
1062 };
1063
1064 #define FDEV(i) (sbi->devs[i])
1065 #define RDEV(i) (raw_super->devs[i])
1066 struct f2fs_dev_info {
1067 struct block_device *bdev;
1068 char path[MAX_PATH_LEN];
1069 unsigned int total_segments;
1070 block_t start_blk;
1071 block_t end_blk;
1072 #ifdef CONFIG_BLK_DEV_ZONED
1073 unsigned int nr_blkz; /* Total number of zones */
1074 u8 *blkz_type; /* Array of zones type */
1075 #endif
1076 };
1077
1078 enum inode_type {
1079 DIR_INODE, /* for dirty dir inode */
1080 FILE_INODE, /* for dirty regular/symlink inode */
1081 DIRTY_META, /* for all dirtied inode metadata */
1082 ATOMIC_FILE, /* for all atomic files */
1083 NR_INODE_TYPE,
1084 };
1085
1086 /* for inner inode cache management */
1087 struct inode_management {
1088 struct radix_tree_root ino_root; /* ino entry array */
1089 spinlock_t ino_lock; /* for ino entry lock */
1090 struct list_head ino_list; /* inode list head */
1091 unsigned long ino_num; /* number of entries */
1092 };
1093
1094 /* For s_flag in struct f2fs_sb_info */
1095 enum {
1096 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1097 SBI_IS_CLOSE, /* specify unmounting */
1098 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1099 SBI_POR_DOING, /* recovery is doing or not */
1100 SBI_NEED_SB_WRITE, /* need to recover superblock */
1101 SBI_NEED_CP, /* need to checkpoint */
1102 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1103 SBI_IS_RECOVERED, /* recovered orphan/data */
1104 SBI_CP_DISABLED, /* CP was disabled last mount */
1105 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1106 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1107 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1108 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1109 };
1110
1111 enum {
1112 CP_TIME,
1113 REQ_TIME,
1114 DISCARD_TIME,
1115 GC_TIME,
1116 DISABLE_TIME,
1117 UMOUNT_DISCARD_TIMEOUT,
1118 MAX_TIME,
1119 };
1120
1121 enum {
1122 GC_NORMAL,
1123 GC_IDLE_CB,
1124 GC_IDLE_GREEDY,
1125 GC_URGENT,
1126 };
1127
1128 enum {
1129 WHINT_MODE_OFF, /* not pass down write hints */
1130 WHINT_MODE_USER, /* try to pass down hints given by users */
1131 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1132 };
1133
1134 enum {
1135 ALLOC_MODE_DEFAULT, /* stay default */
1136 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1137 };
1138
1139 enum fsync_mode {
1140 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1141 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1142 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1143 };
1144
1145 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1146 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1147 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1148 #else
1149 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1150 #endif
1151
1152 struct f2fs_sb_info {
1153 struct super_block *sb; /* pointer to VFS super block */
1154 struct proc_dir_entry *s_proc; /* proc entry */
1155 struct f2fs_super_block *raw_super; /* raw super block pointer */
1156 struct rw_semaphore sb_lock; /* lock for raw super block */
1157 int valid_super_block; /* valid super block no */
1158 unsigned long s_flag; /* flags for sbi */
1159 struct mutex writepages; /* mutex for writepages() */
1160
1161 #ifdef CONFIG_BLK_DEV_ZONED
1162 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1163 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1164 #endif
1165
1166 /* for node-related operations */
1167 struct f2fs_nm_info *nm_info; /* node manager */
1168 struct inode *node_inode; /* cache node blocks */
1169
1170 /* for segment-related operations */
1171 struct f2fs_sm_info *sm_info; /* segment manager */
1172
1173 /* for bio operations */
1174 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1175 /* keep migration IO order for LFS mode */
1176 struct rw_semaphore io_order_lock;
1177 mempool_t *write_io_dummy; /* Dummy pages */
1178
1179 /* for checkpoint */
1180 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1181 int cur_cp_pack; /* remain current cp pack */
1182 spinlock_t cp_lock; /* for flag in ckpt */
1183 struct inode *meta_inode; /* cache meta blocks */
1184 struct mutex cp_mutex; /* checkpoint procedure lock */
1185 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1186 struct rw_semaphore node_write; /* locking node writes */
1187 struct rw_semaphore node_change; /* locking node change */
1188 wait_queue_head_t cp_wait;
1189 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1190 long interval_time[MAX_TIME]; /* to store thresholds */
1191
1192 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1193
1194 spinlock_t fsync_node_lock; /* for node entry lock */
1195 struct list_head fsync_node_list; /* node list head */
1196 unsigned int fsync_seg_id; /* sequence id */
1197 unsigned int fsync_node_num; /* number of node entries */
1198
1199 /* for orphan inode, use 0'th array */
1200 unsigned int max_orphans; /* max orphan inodes */
1201
1202 /* for inode management */
1203 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1204 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1205
1206 /* for extent tree cache */
1207 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1208 struct mutex extent_tree_lock; /* locking extent radix tree */
1209 struct list_head extent_list; /* lru list for shrinker */
1210 spinlock_t extent_lock; /* locking extent lru list */
1211 atomic_t total_ext_tree; /* extent tree count */
1212 struct list_head zombie_list; /* extent zombie tree list */
1213 atomic_t total_zombie_tree; /* extent zombie tree count */
1214 atomic_t total_ext_node; /* extent info count */
1215
1216 /* basic filesystem units */
1217 unsigned int log_sectors_per_block; /* log2 sectors per block */
1218 unsigned int log_blocksize; /* log2 block size */
1219 unsigned int blocksize; /* block size */
1220 unsigned int root_ino_num; /* root inode number*/
1221 unsigned int node_ino_num; /* node inode number*/
1222 unsigned int meta_ino_num; /* meta inode number*/
1223 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1224 unsigned int blocks_per_seg; /* blocks per segment */
1225 unsigned int segs_per_sec; /* segments per section */
1226 unsigned int secs_per_zone; /* sections per zone */
1227 unsigned int total_sections; /* total section count */
1228 unsigned int total_node_count; /* total node block count */
1229 unsigned int total_valid_node_count; /* valid node block count */
1230 loff_t max_file_blocks; /* max block index of file */
1231 int dir_level; /* directory level */
1232 int readdir_ra; /* readahead inode in readdir */
1233
1234 block_t user_block_count; /* # of user blocks */
1235 block_t total_valid_block_count; /* # of valid blocks */
1236 block_t discard_blks; /* discard command candidats */
1237 block_t last_valid_block_count; /* for recovery */
1238 block_t reserved_blocks; /* configurable reserved blocks */
1239 block_t current_reserved_blocks; /* current reserved blocks */
1240
1241 /* Additional tracking for no checkpoint mode */
1242 block_t unusable_block_count; /* # of blocks saved by last cp */
1243
1244 unsigned int nquota_files; /* # of quota sysfile */
1245
1246 /* # of pages, see count_type */
1247 atomic_t nr_pages[NR_COUNT_TYPE];
1248 /* # of allocated blocks */
1249 struct percpu_counter alloc_valid_block_count;
1250
1251 /* writeback control */
1252 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1253
1254 /* valid inode count */
1255 struct percpu_counter total_valid_inode_count;
1256
1257 struct f2fs_mount_info mount_opt; /* mount options */
1258
1259 /* for cleaning operations */
1260 struct mutex gc_mutex; /* mutex for GC */
1261 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1262 unsigned int cur_victim_sec; /* current victim section num */
1263 unsigned int gc_mode; /* current GC state */
1264 unsigned int next_victim_seg[2]; /* next segment in victim section */
1265 /* for skip statistic */
1266 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1267 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1268
1269 /* threshold for gc trials on pinned files */
1270 u64 gc_pin_file_threshold;
1271
1272 /* maximum # of trials to find a victim segment for SSR and GC */
1273 unsigned int max_victim_search;
1274 /* migration granularity of garbage collection, unit: segment */
1275 unsigned int migration_granularity;
1276
1277 /*
1278 * for stat information.
1279 * one is for the LFS mode, and the other is for the SSR mode.
1280 */
1281 #ifdef CONFIG_F2FS_STAT_FS
1282 struct f2fs_stat_info *stat_info; /* FS status information */
1283 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1284 unsigned int segment_count[2]; /* # of allocated segments */
1285 unsigned int block_count[2]; /* # of allocated blocks */
1286 atomic_t inplace_count; /* # of inplace update */
1287 atomic64_t total_hit_ext; /* # of lookup extent cache */
1288 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1289 atomic64_t read_hit_largest; /* # of hit largest extent node */
1290 atomic64_t read_hit_cached; /* # of hit cached extent node */
1291 atomic_t inline_xattr; /* # of inline_xattr inodes */
1292 atomic_t inline_inode; /* # of inline_data inodes */
1293 atomic_t inline_dir; /* # of inline_dentry inodes */
1294 atomic_t aw_cnt; /* # of atomic writes */
1295 atomic_t vw_cnt; /* # of volatile writes */
1296 atomic_t max_aw_cnt; /* max # of atomic writes */
1297 atomic_t max_vw_cnt; /* max # of volatile writes */
1298 int bg_gc; /* background gc calls */
1299 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1300 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1301 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1302 #endif
1303 spinlock_t stat_lock; /* lock for stat operations */
1304
1305 /* For app/fs IO statistics */
1306 spinlock_t iostat_lock;
1307 unsigned long long write_iostat[NR_IO_TYPE];
1308 bool iostat_enable;
1309
1310 /* For sysfs suppport */
1311 struct kobject s_kobj;
1312 struct completion s_kobj_unregister;
1313
1314 /* For shrinker support */
1315 struct list_head s_list;
1316 int s_ndevs; /* number of devices */
1317 struct f2fs_dev_info *devs; /* for device list */
1318 unsigned int dirty_device; /* for checkpoint data flush */
1319 spinlock_t dev_lock; /* protect dirty_device */
1320 struct mutex umount_mutex;
1321 unsigned int shrinker_run_no;
1322
1323 /* For write statistics */
1324 u64 sectors_written_start;
1325 u64 kbytes_written;
1326
1327 /* Reference to checksum algorithm driver via cryptoapi */
1328 struct crypto_shash *s_chksum_driver;
1329
1330 /* Precomputed FS UUID checksum for seeding other checksums */
1331 __u32 s_chksum_seed;
1332 };
1333
1334 struct f2fs_private_dio {
1335 struct inode *inode;
1336 void *orig_private;
1337 bio_end_io_t *orig_end_io;
1338 bool write;
1339 };
1340
1341 #ifdef CONFIG_F2FS_FAULT_INJECTION
1342 #define f2fs_show_injection_info(type) \
1343 printk_ratelimited("%sF2FS-fs : inject %s in %s of %pF\n", \
1344 KERN_INFO, f2fs_fault_name[type], \
1345 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1346 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1347 {
1348 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1349
1350 if (!ffi->inject_rate)
1351 return false;
1352
1353 if (!IS_FAULT_SET(ffi, type))
1354 return false;
1355
1356 atomic_inc(&ffi->inject_ops);
1357 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1358 atomic_set(&ffi->inject_ops, 0);
1359 return true;
1360 }
1361 return false;
1362 }
1363 #else
1364 #define f2fs_show_injection_info(type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1365 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1366 {
1367 return false;
1368 }
1369 #endif
1370
1371 /*
1372 * Test if the mounted volume is a multi-device volume.
1373 * - For a single regular disk volume, sbi->s_ndevs is 0.
1374 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1375 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1376 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1377 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1378 {
1379 return sbi->s_ndevs > 1;
1380 }
1381
1382 /* For write statistics. Suppose sector size is 512 bytes,
1383 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1384 */
1385 #define BD_PART_WRITTEN(s) \
1386 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1387 (s)->sectors_written_start) >> 1)
1388
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1389 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1390 {
1391 unsigned long now = jiffies;
1392
1393 sbi->last_time[type] = now;
1394
1395 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1396 if (type == REQ_TIME) {
1397 sbi->last_time[DISCARD_TIME] = now;
1398 sbi->last_time[GC_TIME] = now;
1399 }
1400 }
1401
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1402 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1403 {
1404 unsigned long interval = sbi->interval_time[type] * HZ;
1405
1406 return time_after(jiffies, sbi->last_time[type] + interval);
1407 }
1408
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1409 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1410 int type)
1411 {
1412 unsigned long interval = sbi->interval_time[type] * HZ;
1413 unsigned int wait_ms = 0;
1414 long delta;
1415
1416 delta = (sbi->last_time[type] + interval) - jiffies;
1417 if (delta > 0)
1418 wait_ms = jiffies_to_msecs(delta);
1419
1420 return wait_ms;
1421 }
1422
1423 /*
1424 * Inline functions
1425 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1426 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1427 const void *address, unsigned int length)
1428 {
1429 struct {
1430 struct shash_desc shash;
1431 char ctx[4];
1432 } desc;
1433 int err;
1434
1435 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1436
1437 desc.shash.tfm = sbi->s_chksum_driver;
1438 desc.shash.flags = 0;
1439 *(u32 *)desc.ctx = crc;
1440
1441 err = crypto_shash_update(&desc.shash, address, length);
1442 BUG_ON(err);
1443
1444 return *(u32 *)desc.ctx;
1445 }
1446
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1447 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1448 unsigned int length)
1449 {
1450 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1451 }
1452
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1453 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1454 void *buf, size_t buf_size)
1455 {
1456 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1457 }
1458
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1459 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1460 const void *address, unsigned int length)
1461 {
1462 return __f2fs_crc32(sbi, crc, address, length);
1463 }
1464
F2FS_I(struct inode * inode)1465 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1466 {
1467 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1468 }
1469
F2FS_SB(struct super_block * sb)1470 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1471 {
1472 return sb->s_fs_info;
1473 }
1474
F2FS_I_SB(struct inode * inode)1475 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1476 {
1477 return F2FS_SB(inode->i_sb);
1478 }
1479
F2FS_M_SB(struct address_space * mapping)1480 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1481 {
1482 return F2FS_I_SB(mapping->host);
1483 }
1484
F2FS_P_SB(struct page * page)1485 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1486 {
1487 return F2FS_M_SB(page->mapping);
1488 }
1489
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1490 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1491 {
1492 return (struct f2fs_super_block *)(sbi->raw_super);
1493 }
1494
F2FS_CKPT(struct f2fs_sb_info * sbi)1495 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1496 {
1497 return (struct f2fs_checkpoint *)(sbi->ckpt);
1498 }
1499
F2FS_NODE(struct page * page)1500 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1501 {
1502 return (struct f2fs_node *)page_address(page);
1503 }
1504
F2FS_INODE(struct page * page)1505 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1506 {
1507 return &((struct f2fs_node *)page_address(page))->i;
1508 }
1509
NM_I(struct f2fs_sb_info * sbi)1510 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1511 {
1512 return (struct f2fs_nm_info *)(sbi->nm_info);
1513 }
1514
SM_I(struct f2fs_sb_info * sbi)1515 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1516 {
1517 return (struct f2fs_sm_info *)(sbi->sm_info);
1518 }
1519
SIT_I(struct f2fs_sb_info * sbi)1520 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1521 {
1522 return (struct sit_info *)(SM_I(sbi)->sit_info);
1523 }
1524
FREE_I(struct f2fs_sb_info * sbi)1525 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1526 {
1527 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1528 }
1529
DIRTY_I(struct f2fs_sb_info * sbi)1530 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1531 {
1532 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1533 }
1534
META_MAPPING(struct f2fs_sb_info * sbi)1535 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1536 {
1537 return sbi->meta_inode->i_mapping;
1538 }
1539
NODE_MAPPING(struct f2fs_sb_info * sbi)1540 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1541 {
1542 return sbi->node_inode->i_mapping;
1543 }
1544
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1545 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1546 {
1547 return test_bit(type, &sbi->s_flag);
1548 }
1549
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1550 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1551 {
1552 set_bit(type, &sbi->s_flag);
1553 }
1554
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1555 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1556 {
1557 clear_bit(type, &sbi->s_flag);
1558 }
1559
cur_cp_version(struct f2fs_checkpoint * cp)1560 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1561 {
1562 return le64_to_cpu(cp->checkpoint_ver);
1563 }
1564
f2fs_qf_ino(struct super_block * sb,int type)1565 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1566 {
1567 if (type < F2FS_MAX_QUOTAS)
1568 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1569 return 0;
1570 }
1571
cur_cp_crc(struct f2fs_checkpoint * cp)1572 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1573 {
1574 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1575 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1576 }
1577
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1578 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1579 {
1580 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1581
1582 return ckpt_flags & f;
1583 }
1584
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1585 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1586 {
1587 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1588 }
1589
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1590 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1591 {
1592 unsigned int ckpt_flags;
1593
1594 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1595 ckpt_flags |= f;
1596 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1597 }
1598
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1599 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1600 {
1601 unsigned long flags;
1602
1603 spin_lock_irqsave(&sbi->cp_lock, flags);
1604 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1605 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1606 }
1607
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1608 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1609 {
1610 unsigned int ckpt_flags;
1611
1612 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1613 ckpt_flags &= (~f);
1614 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1615 }
1616
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1617 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1618 {
1619 unsigned long flags;
1620
1621 spin_lock_irqsave(&sbi->cp_lock, flags);
1622 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1623 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1624 }
1625
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1626 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1627 {
1628 unsigned long flags;
1629
1630 /*
1631 * In order to re-enable nat_bits we need to call fsck.f2fs by
1632 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1633 * so let's rely on regular fsck or unclean shutdown.
1634 */
1635
1636 if (lock)
1637 spin_lock_irqsave(&sbi->cp_lock, flags);
1638 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1639 kvfree(NM_I(sbi)->nat_bits);
1640 NM_I(sbi)->nat_bits = NULL;
1641 if (lock)
1642 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1643 }
1644
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1645 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1646 struct cp_control *cpc)
1647 {
1648 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1649
1650 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1651 }
1652
f2fs_lock_op(struct f2fs_sb_info * sbi)1653 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1654 {
1655 down_read(&sbi->cp_rwsem);
1656 }
1657
f2fs_trylock_op(struct f2fs_sb_info * sbi)1658 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1659 {
1660 return down_read_trylock(&sbi->cp_rwsem);
1661 }
1662
f2fs_unlock_op(struct f2fs_sb_info * sbi)1663 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1664 {
1665 up_read(&sbi->cp_rwsem);
1666 }
1667
f2fs_lock_all(struct f2fs_sb_info * sbi)1668 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1669 {
1670 down_write(&sbi->cp_rwsem);
1671 }
1672
f2fs_unlock_all(struct f2fs_sb_info * sbi)1673 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1674 {
1675 up_write(&sbi->cp_rwsem);
1676 }
1677
__get_cp_reason(struct f2fs_sb_info * sbi)1678 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1679 {
1680 int reason = CP_SYNC;
1681
1682 if (test_opt(sbi, FASTBOOT))
1683 reason = CP_FASTBOOT;
1684 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1685 reason = CP_UMOUNT;
1686 return reason;
1687 }
1688
__remain_node_summaries(int reason)1689 static inline bool __remain_node_summaries(int reason)
1690 {
1691 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1692 }
1693
__exist_node_summaries(struct f2fs_sb_info * sbi)1694 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1695 {
1696 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1697 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1698 }
1699
1700 /*
1701 * Check whether the inode has blocks or not
1702 */
F2FS_HAS_BLOCKS(struct inode * inode)1703 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1704 {
1705 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1706
1707 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1708 }
1709
f2fs_has_xattr_block(unsigned int ofs)1710 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1711 {
1712 return ofs == XATTR_NODE_OFFSET;
1713 }
1714
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)1715 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1716 struct inode *inode, bool cap)
1717 {
1718 if (!inode)
1719 return true;
1720 if (!test_opt(sbi, RESERVE_ROOT))
1721 return false;
1722 if (IS_NOQUOTA(inode))
1723 return true;
1724 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1725 return true;
1726 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1727 in_group_p(F2FS_OPTION(sbi).s_resgid))
1728 return true;
1729 if (cap && capable(CAP_SYS_RESOURCE))
1730 return true;
1731 return false;
1732 }
1733
1734 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)1735 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1736 struct inode *inode, blkcnt_t *count)
1737 {
1738 blkcnt_t diff = 0, release = 0;
1739 block_t avail_user_block_count;
1740 int ret;
1741
1742 ret = dquot_reserve_block(inode, *count);
1743 if (ret)
1744 return ret;
1745
1746 if (time_to_inject(sbi, FAULT_BLOCK)) {
1747 f2fs_show_injection_info(FAULT_BLOCK);
1748 release = *count;
1749 goto enospc;
1750 }
1751
1752 /*
1753 * let's increase this in prior to actual block count change in order
1754 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1755 */
1756 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1757
1758 spin_lock(&sbi->stat_lock);
1759 sbi->total_valid_block_count += (block_t)(*count);
1760 avail_user_block_count = sbi->user_block_count -
1761 sbi->current_reserved_blocks;
1762
1763 if (!__allow_reserved_blocks(sbi, inode, true))
1764 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1765 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1766 avail_user_block_count -= sbi->unusable_block_count;
1767 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1768 diff = sbi->total_valid_block_count - avail_user_block_count;
1769 if (diff > *count)
1770 diff = *count;
1771 *count -= diff;
1772 release = diff;
1773 sbi->total_valid_block_count -= diff;
1774 if (!*count) {
1775 spin_unlock(&sbi->stat_lock);
1776 goto enospc;
1777 }
1778 }
1779 spin_unlock(&sbi->stat_lock);
1780
1781 if (unlikely(release)) {
1782 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1783 dquot_release_reservation_block(inode, release);
1784 }
1785 f2fs_i_blocks_write(inode, *count, true, true);
1786 return 0;
1787
1788 enospc:
1789 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1790 dquot_release_reservation_block(inode, release);
1791 return -ENOSPC;
1792 }
1793
1794 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)1795 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1796 struct inode *inode,
1797 block_t count)
1798 {
1799 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1800
1801 spin_lock(&sbi->stat_lock);
1802 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1803 sbi->total_valid_block_count -= (block_t)count;
1804 if (sbi->reserved_blocks &&
1805 sbi->current_reserved_blocks < sbi->reserved_blocks)
1806 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1807 sbi->current_reserved_blocks + count);
1808 spin_unlock(&sbi->stat_lock);
1809 if (unlikely(inode->i_blocks < sectors)) {
1810 f2fs_msg(sbi->sb, KERN_WARNING,
1811 "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1812 inode->i_ino,
1813 (unsigned long long)inode->i_blocks,
1814 (unsigned long long)sectors);
1815 set_sbi_flag(sbi, SBI_NEED_FSCK);
1816 return;
1817 }
1818 f2fs_i_blocks_write(inode, count, false, true);
1819 }
1820
inc_page_count(struct f2fs_sb_info * sbi,int count_type)1821 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1822 {
1823 atomic_inc(&sbi->nr_pages[count_type]);
1824
1825 if (count_type == F2FS_DIRTY_DENTS ||
1826 count_type == F2FS_DIRTY_NODES ||
1827 count_type == F2FS_DIRTY_META ||
1828 count_type == F2FS_DIRTY_QDATA ||
1829 count_type == F2FS_DIRTY_IMETA)
1830 set_sbi_flag(sbi, SBI_IS_DIRTY);
1831 }
1832
inode_inc_dirty_pages(struct inode * inode)1833 static inline void inode_inc_dirty_pages(struct inode *inode)
1834 {
1835 atomic_inc(&F2FS_I(inode)->dirty_pages);
1836 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1837 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1838 if (IS_NOQUOTA(inode))
1839 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1840 }
1841
dec_page_count(struct f2fs_sb_info * sbi,int count_type)1842 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1843 {
1844 atomic_dec(&sbi->nr_pages[count_type]);
1845 }
1846
inode_dec_dirty_pages(struct inode * inode)1847 static inline void inode_dec_dirty_pages(struct inode *inode)
1848 {
1849 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1850 !S_ISLNK(inode->i_mode))
1851 return;
1852
1853 atomic_dec(&F2FS_I(inode)->dirty_pages);
1854 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1855 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1856 if (IS_NOQUOTA(inode))
1857 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1858 }
1859
get_pages(struct f2fs_sb_info * sbi,int count_type)1860 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1861 {
1862 return atomic_read(&sbi->nr_pages[count_type]);
1863 }
1864
get_dirty_pages(struct inode * inode)1865 static inline int get_dirty_pages(struct inode *inode)
1866 {
1867 return atomic_read(&F2FS_I(inode)->dirty_pages);
1868 }
1869
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)1870 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1871 {
1872 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1873 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1874 sbi->log_blocks_per_seg;
1875
1876 return segs / sbi->segs_per_sec;
1877 }
1878
valid_user_blocks(struct f2fs_sb_info * sbi)1879 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1880 {
1881 return sbi->total_valid_block_count;
1882 }
1883
discard_blocks(struct f2fs_sb_info * sbi)1884 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1885 {
1886 return sbi->discard_blks;
1887 }
1888
__bitmap_size(struct f2fs_sb_info * sbi,int flag)1889 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1890 {
1891 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1892
1893 /* return NAT or SIT bitmap */
1894 if (flag == NAT_BITMAP)
1895 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1896 else if (flag == SIT_BITMAP)
1897 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1898
1899 return 0;
1900 }
1901
__cp_payload(struct f2fs_sb_info * sbi)1902 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1903 {
1904 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1905 }
1906
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)1907 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1908 {
1909 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1910 int offset;
1911
1912 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1913 offset = (flag == SIT_BITMAP) ?
1914 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1915 return &ckpt->sit_nat_version_bitmap + offset;
1916 }
1917
1918 if (__cp_payload(sbi) > 0) {
1919 if (flag == NAT_BITMAP)
1920 return &ckpt->sit_nat_version_bitmap;
1921 else
1922 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1923 } else {
1924 offset = (flag == NAT_BITMAP) ?
1925 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1926 return &ckpt->sit_nat_version_bitmap + offset;
1927 }
1928 }
1929
__start_cp_addr(struct f2fs_sb_info * sbi)1930 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1931 {
1932 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1933
1934 if (sbi->cur_cp_pack == 2)
1935 start_addr += sbi->blocks_per_seg;
1936 return start_addr;
1937 }
1938
__start_cp_next_addr(struct f2fs_sb_info * sbi)1939 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1940 {
1941 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1942
1943 if (sbi->cur_cp_pack == 1)
1944 start_addr += sbi->blocks_per_seg;
1945 return start_addr;
1946 }
1947
__set_cp_next_pack(struct f2fs_sb_info * sbi)1948 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1949 {
1950 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1951 }
1952
__start_sum_addr(struct f2fs_sb_info * sbi)1953 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1954 {
1955 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1956 }
1957
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1958 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1959 struct inode *inode, bool is_inode)
1960 {
1961 block_t valid_block_count;
1962 unsigned int valid_node_count;
1963 int err;
1964
1965 if (is_inode) {
1966 if (inode) {
1967 err = dquot_alloc_inode(inode);
1968 if (err)
1969 return err;
1970 }
1971 } else {
1972 err = dquot_reserve_block(inode, 1);
1973 if (err)
1974 return err;
1975 }
1976
1977 if (time_to_inject(sbi, FAULT_BLOCK)) {
1978 f2fs_show_injection_info(FAULT_BLOCK);
1979 goto enospc;
1980 }
1981
1982 spin_lock(&sbi->stat_lock);
1983
1984 valid_block_count = sbi->total_valid_block_count +
1985 sbi->current_reserved_blocks + 1;
1986
1987 if (!__allow_reserved_blocks(sbi, inode, false))
1988 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1989 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1990 valid_block_count += sbi->unusable_block_count;
1991
1992 if (unlikely(valid_block_count > sbi->user_block_count)) {
1993 spin_unlock(&sbi->stat_lock);
1994 goto enospc;
1995 }
1996
1997 valid_node_count = sbi->total_valid_node_count + 1;
1998 if (unlikely(valid_node_count > sbi->total_node_count)) {
1999 spin_unlock(&sbi->stat_lock);
2000 goto enospc;
2001 }
2002
2003 sbi->total_valid_node_count++;
2004 sbi->total_valid_block_count++;
2005 spin_unlock(&sbi->stat_lock);
2006
2007 if (inode) {
2008 if (is_inode)
2009 f2fs_mark_inode_dirty_sync(inode, true);
2010 else
2011 f2fs_i_blocks_write(inode, 1, true, true);
2012 }
2013
2014 percpu_counter_inc(&sbi->alloc_valid_block_count);
2015 return 0;
2016
2017 enospc:
2018 if (is_inode) {
2019 if (inode)
2020 dquot_free_inode(inode);
2021 } else {
2022 dquot_release_reservation_block(inode, 1);
2023 }
2024 return -ENOSPC;
2025 }
2026
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2027 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2028 struct inode *inode, bool is_inode)
2029 {
2030 spin_lock(&sbi->stat_lock);
2031
2032 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2033 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2034 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
2035
2036 sbi->total_valid_node_count--;
2037 sbi->total_valid_block_count--;
2038 if (sbi->reserved_blocks &&
2039 sbi->current_reserved_blocks < sbi->reserved_blocks)
2040 sbi->current_reserved_blocks++;
2041
2042 spin_unlock(&sbi->stat_lock);
2043
2044 if (is_inode)
2045 dquot_free_inode(inode);
2046 else
2047 f2fs_i_blocks_write(inode, 1, false, true);
2048 }
2049
valid_node_count(struct f2fs_sb_info * sbi)2050 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2051 {
2052 return sbi->total_valid_node_count;
2053 }
2054
inc_valid_inode_count(struct f2fs_sb_info * sbi)2055 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2056 {
2057 percpu_counter_inc(&sbi->total_valid_inode_count);
2058 }
2059
dec_valid_inode_count(struct f2fs_sb_info * sbi)2060 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2061 {
2062 percpu_counter_dec(&sbi->total_valid_inode_count);
2063 }
2064
valid_inode_count(struct f2fs_sb_info * sbi)2065 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2066 {
2067 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2068 }
2069
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2070 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2071 pgoff_t index, bool for_write)
2072 {
2073 struct page *page;
2074
2075 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2076 if (!for_write)
2077 page = find_get_page_flags(mapping, index,
2078 FGP_LOCK | FGP_ACCESSED);
2079 else
2080 page = find_lock_page(mapping, index);
2081 if (page)
2082 return page;
2083
2084 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2085 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2086 return NULL;
2087 }
2088 }
2089
2090 if (!for_write)
2091 return grab_cache_page(mapping, index);
2092 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2093 }
2094
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2095 static inline struct page *f2fs_pagecache_get_page(
2096 struct address_space *mapping, pgoff_t index,
2097 int fgp_flags, gfp_t gfp_mask)
2098 {
2099 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2100 f2fs_show_injection_info(FAULT_PAGE_GET);
2101 return NULL;
2102 }
2103
2104 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2105 }
2106
f2fs_copy_page(struct page * src,struct page * dst)2107 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2108 {
2109 char *src_kaddr = kmap(src);
2110 char *dst_kaddr = kmap(dst);
2111
2112 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2113 kunmap(dst);
2114 kunmap(src);
2115 }
2116
f2fs_put_page(struct page * page,int unlock)2117 static inline void f2fs_put_page(struct page *page, int unlock)
2118 {
2119 if (!page)
2120 return;
2121
2122 if (unlock) {
2123 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2124 unlock_page(page);
2125 }
2126 put_page(page);
2127 }
2128
f2fs_put_dnode(struct dnode_of_data * dn)2129 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2130 {
2131 if (dn->node_page)
2132 f2fs_put_page(dn->node_page, 1);
2133 if (dn->inode_page && dn->node_page != dn->inode_page)
2134 f2fs_put_page(dn->inode_page, 0);
2135 dn->node_page = NULL;
2136 dn->inode_page = NULL;
2137 }
2138
f2fs_kmem_cache_create(const char * name,size_t size)2139 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2140 size_t size)
2141 {
2142 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2143 }
2144
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2145 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2146 gfp_t flags)
2147 {
2148 void *entry;
2149
2150 entry = kmem_cache_alloc(cachep, flags);
2151 if (!entry)
2152 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2153 return entry;
2154 }
2155
f2fs_bio_alloc(struct f2fs_sb_info * sbi,int npages,bool no_fail)2156 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2157 int npages, bool no_fail)
2158 {
2159 struct bio *bio;
2160
2161 if (no_fail) {
2162 /* No failure on bio allocation */
2163 bio = bio_alloc(GFP_NOIO, npages);
2164 if (!bio)
2165 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2166 return bio;
2167 }
2168 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2169 f2fs_show_injection_info(FAULT_ALLOC_BIO);
2170 return NULL;
2171 }
2172
2173 return bio_alloc(GFP_KERNEL, npages);
2174 }
2175
is_idle(struct f2fs_sb_info * sbi,int type)2176 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2177 {
2178 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2179 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2180 get_pages(sbi, F2FS_WB_CP_DATA) ||
2181 get_pages(sbi, F2FS_DIO_READ) ||
2182 get_pages(sbi, F2FS_DIO_WRITE))
2183 return false;
2184
2185 if (SM_I(sbi) && SM_I(sbi)->dcc_info &&
2186 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2187 return false;
2188
2189 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2190 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2191 return false;
2192
2193 return f2fs_time_over(sbi, type);
2194 }
2195
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2196 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2197 unsigned long index, void *item)
2198 {
2199 while (radix_tree_insert(root, index, item))
2200 cond_resched();
2201 }
2202
2203 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2204
IS_INODE(struct page * page)2205 static inline bool IS_INODE(struct page *page)
2206 {
2207 struct f2fs_node *p = F2FS_NODE(page);
2208
2209 return RAW_IS_INODE(p);
2210 }
2211
offset_in_addr(struct f2fs_inode * i)2212 static inline int offset_in_addr(struct f2fs_inode *i)
2213 {
2214 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2215 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2216 }
2217
blkaddr_in_node(struct f2fs_node * node)2218 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2219 {
2220 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2221 }
2222
2223 static inline int f2fs_has_extra_attr(struct inode *inode);
datablock_addr(struct inode * inode,struct page * node_page,unsigned int offset)2224 static inline block_t datablock_addr(struct inode *inode,
2225 struct page *node_page, unsigned int offset)
2226 {
2227 struct f2fs_node *raw_node;
2228 __le32 *addr_array;
2229 int base = 0;
2230 bool is_inode = IS_INODE(node_page);
2231
2232 raw_node = F2FS_NODE(node_page);
2233
2234 /* from GC path only */
2235 if (is_inode) {
2236 if (!inode)
2237 base = offset_in_addr(&raw_node->i);
2238 else if (f2fs_has_extra_attr(inode))
2239 base = get_extra_isize(inode);
2240 }
2241
2242 addr_array = blkaddr_in_node(raw_node);
2243 return le32_to_cpu(addr_array[base + offset]);
2244 }
2245
f2fs_test_bit(unsigned int nr,char * addr)2246 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2247 {
2248 int mask;
2249
2250 addr += (nr >> 3);
2251 mask = 1 << (7 - (nr & 0x07));
2252 return mask & *addr;
2253 }
2254
f2fs_set_bit(unsigned int nr,char * addr)2255 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2256 {
2257 int mask;
2258
2259 addr += (nr >> 3);
2260 mask = 1 << (7 - (nr & 0x07));
2261 *addr |= mask;
2262 }
2263
f2fs_clear_bit(unsigned int nr,char * addr)2264 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2265 {
2266 int mask;
2267
2268 addr += (nr >> 3);
2269 mask = 1 << (7 - (nr & 0x07));
2270 *addr &= ~mask;
2271 }
2272
f2fs_test_and_set_bit(unsigned int nr,char * addr)2273 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2274 {
2275 int mask;
2276 int ret;
2277
2278 addr += (nr >> 3);
2279 mask = 1 << (7 - (nr & 0x07));
2280 ret = mask & *addr;
2281 *addr |= mask;
2282 return ret;
2283 }
2284
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2285 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2286 {
2287 int mask;
2288 int ret;
2289
2290 addr += (nr >> 3);
2291 mask = 1 << (7 - (nr & 0x07));
2292 ret = mask & *addr;
2293 *addr &= ~mask;
2294 return ret;
2295 }
2296
f2fs_change_bit(unsigned int nr,char * addr)2297 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2298 {
2299 int mask;
2300
2301 addr += (nr >> 3);
2302 mask = 1 << (7 - (nr & 0x07));
2303 *addr ^= mask;
2304 }
2305
2306 /*
2307 * Inode flags
2308 */
2309 #define F2FS_SECRM_FL 0x00000001 /* Secure deletion */
2310 #define F2FS_UNRM_FL 0x00000002 /* Undelete */
2311 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2312 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2313 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2314 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2315 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2316 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2317 /* Reserved for compression usage... */
2318 #define F2FS_DIRTY_FL 0x00000100
2319 #define F2FS_COMPRBLK_FL 0x00000200 /* One or more compressed clusters */
2320 #define F2FS_NOCOMPR_FL 0x00000400 /* Don't compress */
2321 #define F2FS_ENCRYPT_FL 0x00000800 /* encrypted file */
2322 /* End compression flags --- maybe not all used */
2323 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2324 #define F2FS_IMAGIC_FL 0x00002000 /* AFS directory */
2325 #define F2FS_JOURNAL_DATA_FL 0x00004000 /* file data should be journaled */
2326 #define F2FS_NOTAIL_FL 0x00008000 /* file tail should not be merged */
2327 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2328 #define F2FS_TOPDIR_FL 0x00020000 /* Top of directory hierarchies*/
2329 #define F2FS_HUGE_FILE_FL 0x00040000 /* Set to each huge file */
2330 #define F2FS_EXTENTS_FL 0x00080000 /* Inode uses extents */
2331 #define F2FS_EA_INODE_FL 0x00200000 /* Inode used for large EA */
2332 #define F2FS_EOFBLOCKS_FL 0x00400000 /* Blocks allocated beyond EOF */
2333 #define F2FS_NOCOW_FL 0x00800000 /* Do not cow file */
2334 #define F2FS_INLINE_DATA_FL 0x10000000 /* Inode has inline data. */
2335 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2336 #define F2FS_RESERVED_FL 0x80000000 /* reserved for ext4 lib */
2337
2338 #define F2FS_FL_USER_VISIBLE 0x30CBDFFF /* User visible flags */
2339 #define F2FS_FL_USER_MODIFIABLE 0x204BC0FF /* User modifiable flags */
2340
2341 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2342 #define F2FS_FL_XFLAG_VISIBLE (F2FS_SYNC_FL | \
2343 F2FS_IMMUTABLE_FL | \
2344 F2FS_APPEND_FL | \
2345 F2FS_NODUMP_FL | \
2346 F2FS_NOATIME_FL | \
2347 F2FS_PROJINHERIT_FL)
2348
2349 /* Flags that should be inherited by new inodes from their parent. */
2350 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2351 F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2352 F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2353 F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2354 F2FS_PROJINHERIT_FL)
2355
2356 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2357 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2358
2359 /* Flags that are appropriate for non-directories/regular files. */
2360 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2361
f2fs_mask_flags(umode_t mode,__u32 flags)2362 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2363 {
2364 if (S_ISDIR(mode))
2365 return flags;
2366 else if (S_ISREG(mode))
2367 return flags & F2FS_REG_FLMASK;
2368 else
2369 return flags & F2FS_OTHER_FLMASK;
2370 }
2371
2372 /* used for f2fs_inode_info->flags */
2373 enum {
2374 FI_NEW_INODE, /* indicate newly allocated inode */
2375 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2376 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2377 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2378 FI_INC_LINK, /* need to increment i_nlink */
2379 FI_ACL_MODE, /* indicate acl mode */
2380 FI_NO_ALLOC, /* should not allocate any blocks */
2381 FI_FREE_NID, /* free allocated nide */
2382 FI_NO_EXTENT, /* not to use the extent cache */
2383 FI_INLINE_XATTR, /* used for inline xattr */
2384 FI_INLINE_DATA, /* used for inline data*/
2385 FI_INLINE_DENTRY, /* used for inline dentry */
2386 FI_APPEND_WRITE, /* inode has appended data */
2387 FI_UPDATE_WRITE, /* inode has in-place-update data */
2388 FI_NEED_IPU, /* used for ipu per file */
2389 FI_ATOMIC_FILE, /* indicate atomic file */
2390 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2391 FI_VOLATILE_FILE, /* indicate volatile file */
2392 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2393 FI_DROP_CACHE, /* drop dirty page cache */
2394 FI_DATA_EXIST, /* indicate data exists */
2395 FI_INLINE_DOTS, /* indicate inline dot dentries */
2396 FI_DO_DEFRAG, /* indicate defragment is running */
2397 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2398 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2399 FI_HOT_DATA, /* indicate file is hot */
2400 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2401 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2402 FI_PIN_FILE, /* indicate file should not be gced */
2403 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2404 };
2405
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2406 static inline void __mark_inode_dirty_flag(struct inode *inode,
2407 int flag, bool set)
2408 {
2409 switch (flag) {
2410 case FI_INLINE_XATTR:
2411 case FI_INLINE_DATA:
2412 case FI_INLINE_DENTRY:
2413 case FI_NEW_INODE:
2414 if (set)
2415 return;
2416 /* fall through */
2417 case FI_DATA_EXIST:
2418 case FI_INLINE_DOTS:
2419 case FI_PIN_FILE:
2420 f2fs_mark_inode_dirty_sync(inode, true);
2421 }
2422 }
2423
set_inode_flag(struct inode * inode,int flag)2424 static inline void set_inode_flag(struct inode *inode, int flag)
2425 {
2426 if (!test_bit(flag, &F2FS_I(inode)->flags))
2427 set_bit(flag, &F2FS_I(inode)->flags);
2428 __mark_inode_dirty_flag(inode, flag, true);
2429 }
2430
is_inode_flag_set(struct inode * inode,int flag)2431 static inline int is_inode_flag_set(struct inode *inode, int flag)
2432 {
2433 return test_bit(flag, &F2FS_I(inode)->flags);
2434 }
2435
clear_inode_flag(struct inode * inode,int flag)2436 static inline void clear_inode_flag(struct inode *inode, int flag)
2437 {
2438 if (test_bit(flag, &F2FS_I(inode)->flags))
2439 clear_bit(flag, &F2FS_I(inode)->flags);
2440 __mark_inode_dirty_flag(inode, flag, false);
2441 }
2442
set_acl_inode(struct inode * inode,umode_t mode)2443 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2444 {
2445 F2FS_I(inode)->i_acl_mode = mode;
2446 set_inode_flag(inode, FI_ACL_MODE);
2447 f2fs_mark_inode_dirty_sync(inode, false);
2448 }
2449
f2fs_i_links_write(struct inode * inode,bool inc)2450 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2451 {
2452 if (inc)
2453 inc_nlink(inode);
2454 else
2455 drop_nlink(inode);
2456 f2fs_mark_inode_dirty_sync(inode, true);
2457 }
2458
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2459 static inline void f2fs_i_blocks_write(struct inode *inode,
2460 block_t diff, bool add, bool claim)
2461 {
2462 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2463 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2464
2465 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2466 if (add) {
2467 if (claim)
2468 dquot_claim_block(inode, diff);
2469 else
2470 dquot_alloc_block_nofail(inode, diff);
2471 } else {
2472 dquot_free_block(inode, diff);
2473 }
2474
2475 f2fs_mark_inode_dirty_sync(inode, true);
2476 if (clean || recover)
2477 set_inode_flag(inode, FI_AUTO_RECOVER);
2478 }
2479
f2fs_i_size_write(struct inode * inode,loff_t i_size)2480 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2481 {
2482 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2483 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2484
2485 if (i_size_read(inode) == i_size)
2486 return;
2487
2488 i_size_write(inode, i_size);
2489 f2fs_mark_inode_dirty_sync(inode, true);
2490 if (clean || recover)
2491 set_inode_flag(inode, FI_AUTO_RECOVER);
2492 }
2493
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2494 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2495 {
2496 F2FS_I(inode)->i_current_depth = depth;
2497 f2fs_mark_inode_dirty_sync(inode, true);
2498 }
2499
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2500 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2501 unsigned int count)
2502 {
2503 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2504 f2fs_mark_inode_dirty_sync(inode, true);
2505 }
2506
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2507 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2508 {
2509 F2FS_I(inode)->i_xattr_nid = xnid;
2510 f2fs_mark_inode_dirty_sync(inode, true);
2511 }
2512
f2fs_i_pino_write(struct inode * inode,nid_t pino)2513 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2514 {
2515 F2FS_I(inode)->i_pino = pino;
2516 f2fs_mark_inode_dirty_sync(inode, true);
2517 }
2518
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2519 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2520 {
2521 struct f2fs_inode_info *fi = F2FS_I(inode);
2522
2523 if (ri->i_inline & F2FS_INLINE_XATTR)
2524 set_bit(FI_INLINE_XATTR, &fi->flags);
2525 if (ri->i_inline & F2FS_INLINE_DATA)
2526 set_bit(FI_INLINE_DATA, &fi->flags);
2527 if (ri->i_inline & F2FS_INLINE_DENTRY)
2528 set_bit(FI_INLINE_DENTRY, &fi->flags);
2529 if (ri->i_inline & F2FS_DATA_EXIST)
2530 set_bit(FI_DATA_EXIST, &fi->flags);
2531 if (ri->i_inline & F2FS_INLINE_DOTS)
2532 set_bit(FI_INLINE_DOTS, &fi->flags);
2533 if (ri->i_inline & F2FS_EXTRA_ATTR)
2534 set_bit(FI_EXTRA_ATTR, &fi->flags);
2535 if (ri->i_inline & F2FS_PIN_FILE)
2536 set_bit(FI_PIN_FILE, &fi->flags);
2537 }
2538
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2539 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2540 {
2541 ri->i_inline = 0;
2542
2543 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2544 ri->i_inline |= F2FS_INLINE_XATTR;
2545 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2546 ri->i_inline |= F2FS_INLINE_DATA;
2547 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2548 ri->i_inline |= F2FS_INLINE_DENTRY;
2549 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2550 ri->i_inline |= F2FS_DATA_EXIST;
2551 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2552 ri->i_inline |= F2FS_INLINE_DOTS;
2553 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2554 ri->i_inline |= F2FS_EXTRA_ATTR;
2555 if (is_inode_flag_set(inode, FI_PIN_FILE))
2556 ri->i_inline |= F2FS_PIN_FILE;
2557 }
2558
f2fs_has_extra_attr(struct inode * inode)2559 static inline int f2fs_has_extra_attr(struct inode *inode)
2560 {
2561 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2562 }
2563
f2fs_has_inline_xattr(struct inode * inode)2564 static inline int f2fs_has_inline_xattr(struct inode *inode)
2565 {
2566 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2567 }
2568
addrs_per_inode(struct inode * inode)2569 static inline unsigned int addrs_per_inode(struct inode *inode)
2570 {
2571 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2572 }
2573
inline_xattr_addr(struct inode * inode,struct page * page)2574 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2575 {
2576 struct f2fs_inode *ri = F2FS_INODE(page);
2577
2578 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2579 get_inline_xattr_addrs(inode)]);
2580 }
2581
inline_xattr_size(struct inode * inode)2582 static inline int inline_xattr_size(struct inode *inode)
2583 {
2584 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2585 }
2586
f2fs_has_inline_data(struct inode * inode)2587 static inline int f2fs_has_inline_data(struct inode *inode)
2588 {
2589 return is_inode_flag_set(inode, FI_INLINE_DATA);
2590 }
2591
f2fs_exist_data(struct inode * inode)2592 static inline int f2fs_exist_data(struct inode *inode)
2593 {
2594 return is_inode_flag_set(inode, FI_DATA_EXIST);
2595 }
2596
f2fs_has_inline_dots(struct inode * inode)2597 static inline int f2fs_has_inline_dots(struct inode *inode)
2598 {
2599 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2600 }
2601
f2fs_is_pinned_file(struct inode * inode)2602 static inline bool f2fs_is_pinned_file(struct inode *inode)
2603 {
2604 return is_inode_flag_set(inode, FI_PIN_FILE);
2605 }
2606
f2fs_is_atomic_file(struct inode * inode)2607 static inline bool f2fs_is_atomic_file(struct inode *inode)
2608 {
2609 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2610 }
2611
f2fs_is_commit_atomic_write(struct inode * inode)2612 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2613 {
2614 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2615 }
2616
f2fs_is_volatile_file(struct inode * inode)2617 static inline bool f2fs_is_volatile_file(struct inode *inode)
2618 {
2619 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2620 }
2621
f2fs_is_first_block_written(struct inode * inode)2622 static inline bool f2fs_is_first_block_written(struct inode *inode)
2623 {
2624 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2625 }
2626
f2fs_is_drop_cache(struct inode * inode)2627 static inline bool f2fs_is_drop_cache(struct inode *inode)
2628 {
2629 return is_inode_flag_set(inode, FI_DROP_CACHE);
2630 }
2631
inline_data_addr(struct inode * inode,struct page * page)2632 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2633 {
2634 struct f2fs_inode *ri = F2FS_INODE(page);
2635 int extra_size = get_extra_isize(inode);
2636
2637 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2638 }
2639
f2fs_has_inline_dentry(struct inode * inode)2640 static inline int f2fs_has_inline_dentry(struct inode *inode)
2641 {
2642 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2643 }
2644
is_file(struct inode * inode,int type)2645 static inline int is_file(struct inode *inode, int type)
2646 {
2647 return F2FS_I(inode)->i_advise & type;
2648 }
2649
set_file(struct inode * inode,int type)2650 static inline void set_file(struct inode *inode, int type)
2651 {
2652 F2FS_I(inode)->i_advise |= type;
2653 f2fs_mark_inode_dirty_sync(inode, true);
2654 }
2655
clear_file(struct inode * inode,int type)2656 static inline void clear_file(struct inode *inode, int type)
2657 {
2658 F2FS_I(inode)->i_advise &= ~type;
2659 f2fs_mark_inode_dirty_sync(inode, true);
2660 }
2661
f2fs_skip_inode_update(struct inode * inode,int dsync)2662 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2663 {
2664 bool ret;
2665
2666 if (dsync) {
2667 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2668
2669 spin_lock(&sbi->inode_lock[DIRTY_META]);
2670 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2671 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2672 return ret;
2673 }
2674 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2675 file_keep_isize(inode) ||
2676 i_size_read(inode) & ~PAGE_MASK)
2677 return false;
2678
2679 if (!timespec_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2680 return false;
2681 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2682 return false;
2683 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2684 return false;
2685 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 3,
2686 &F2FS_I(inode)->i_crtime))
2687 return false;
2688
2689 down_read(&F2FS_I(inode)->i_sem);
2690 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2691 up_read(&F2FS_I(inode)->i_sem);
2692
2693 return ret;
2694 }
2695
f2fs_readonly(struct super_block * sb)2696 static inline bool f2fs_readonly(struct super_block *sb)
2697 {
2698 return sb_rdonly(sb);
2699 }
2700
f2fs_cp_error(struct f2fs_sb_info * sbi)2701 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2702 {
2703 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2704 }
2705
is_dot_dotdot(const struct qstr * str)2706 static inline bool is_dot_dotdot(const struct qstr *str)
2707 {
2708 if (str->len == 1 && str->name[0] == '.')
2709 return true;
2710
2711 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2712 return true;
2713
2714 return false;
2715 }
2716
f2fs_may_extent_tree(struct inode * inode)2717 static inline bool f2fs_may_extent_tree(struct inode *inode)
2718 {
2719 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2720
2721 if (!test_opt(sbi, EXTENT_CACHE) ||
2722 is_inode_flag_set(inode, FI_NO_EXTENT))
2723 return false;
2724
2725 /*
2726 * for recovered files during mount do not create extents
2727 * if shrinker is not registered.
2728 */
2729 if (list_empty(&sbi->s_list))
2730 return false;
2731
2732 return S_ISREG(inode->i_mode);
2733 }
2734
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2735 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2736 size_t size, gfp_t flags)
2737 {
2738 void *ret;
2739
2740 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2741 f2fs_show_injection_info(FAULT_KMALLOC);
2742 return NULL;
2743 }
2744
2745 ret = kmalloc(size, flags);
2746 if (ret)
2747 return ret;
2748
2749 return kvmalloc(size, flags);
2750 }
2751
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2752 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2753 size_t size, gfp_t flags)
2754 {
2755 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2756 }
2757
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2758 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2759 size_t size, gfp_t flags)
2760 {
2761 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2762 f2fs_show_injection_info(FAULT_KVMALLOC);
2763 return NULL;
2764 }
2765
2766 return kvmalloc(size, flags);
2767 }
2768
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2769 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2770 size_t size, gfp_t flags)
2771 {
2772 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2773 }
2774
get_extra_isize(struct inode * inode)2775 static inline int get_extra_isize(struct inode *inode)
2776 {
2777 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2778 }
2779
get_inline_xattr_addrs(struct inode * inode)2780 static inline int get_inline_xattr_addrs(struct inode *inode)
2781 {
2782 return F2FS_I(inode)->i_inline_xattr_size;
2783 }
2784
2785 #define f2fs_get_inode_mode(i) \
2786 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2787 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2788
2789 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2790 (offsetof(struct f2fs_inode, i_extra_end) - \
2791 offsetof(struct f2fs_inode, i_extra_isize)) \
2792
2793 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2794 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2795 ((offsetof(typeof(*(f2fs_inode)), field) + \
2796 sizeof((f2fs_inode)->field)) \
2797 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
2798
f2fs_reset_iostat(struct f2fs_sb_info * sbi)2799 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2800 {
2801 int i;
2802
2803 spin_lock(&sbi->iostat_lock);
2804 for (i = 0; i < NR_IO_TYPE; i++)
2805 sbi->write_iostat[i] = 0;
2806 spin_unlock(&sbi->iostat_lock);
2807 }
2808
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)2809 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2810 enum iostat_type type, unsigned long long io_bytes)
2811 {
2812 if (!sbi->iostat_enable)
2813 return;
2814 spin_lock(&sbi->iostat_lock);
2815 sbi->write_iostat[type] += io_bytes;
2816
2817 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2818 sbi->write_iostat[APP_BUFFERED_IO] =
2819 sbi->write_iostat[APP_WRITE_IO] -
2820 sbi->write_iostat[APP_DIRECT_IO];
2821 spin_unlock(&sbi->iostat_lock);
2822 }
2823
2824 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
2825
2826 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META && \
2827 (!is_read_io((fio)->op) || (fio)->is_meta))
2828
2829 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2830 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)2831 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2832 block_t blkaddr, int type)
2833 {
2834 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2835 f2fs_msg(sbi->sb, KERN_ERR,
2836 "invalid blkaddr: %u, type: %d, run fsck to fix.",
2837 blkaddr, type);
2838 f2fs_bug_on(sbi, 1);
2839 }
2840 }
2841
__is_valid_data_blkaddr(block_t blkaddr)2842 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2843 {
2844 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2845 return false;
2846 return true;
2847 }
2848
is_valid_data_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)2849 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2850 block_t blkaddr)
2851 {
2852 if (!__is_valid_data_blkaddr(blkaddr))
2853 return false;
2854 verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2855 return true;
2856 }
2857
f2fs_set_page_private(struct page * page,unsigned long data)2858 static inline void f2fs_set_page_private(struct page *page,
2859 unsigned long data)
2860 {
2861 if (PagePrivate(page))
2862 return;
2863
2864 get_page(page);
2865 SetPagePrivate(page);
2866 set_page_private(page, data);
2867 }
2868
f2fs_clear_page_private(struct page * page)2869 static inline void f2fs_clear_page_private(struct page *page)
2870 {
2871 if (!PagePrivate(page))
2872 return;
2873
2874 set_page_private(page, 0);
2875 ClearPagePrivate(page);
2876 f2fs_put_page(page, 0);
2877 }
2878
2879 /*
2880 * file.c
2881 */
2882 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2883 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2884 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2885 int f2fs_truncate(struct inode *inode);
2886 int f2fs_getattr(const struct path *path, struct kstat *stat,
2887 u32 request_mask, unsigned int flags);
2888 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2889 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2890 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2891 int f2fs_precache_extents(struct inode *inode);
2892 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2893 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2894 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2895 int f2fs_pin_file_control(struct inode *inode, bool inc);
2896
2897 /*
2898 * inode.c
2899 */
2900 void f2fs_set_inode_flags(struct inode *inode);
2901 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2902 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2903 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2904 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2905 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2906 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2907 void f2fs_update_inode_page(struct inode *inode);
2908 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2909 void f2fs_evict_inode(struct inode *inode);
2910 void f2fs_handle_failed_inode(struct inode *inode);
2911
2912 /*
2913 * namei.c
2914 */
2915 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2916 bool hot, bool set);
2917 struct dentry *f2fs_get_parent(struct dentry *child);
2918
2919 /*
2920 * dir.c
2921 */
2922 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2923 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2924 f2fs_hash_t namehash, int *max_slots,
2925 struct f2fs_dentry_ptr *d);
2926 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2927 unsigned int start_pos, struct fscrypt_str *fstr);
2928 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2929 struct f2fs_dentry_ptr *d);
2930 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2931 const struct qstr *new_name,
2932 const struct qstr *orig_name, struct page *dpage);
2933 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2934 unsigned int current_depth);
2935 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2936 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2937 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2938 struct fscrypt_name *fname, struct page **res_page);
2939 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2940 const struct qstr *child, struct page **res_page);
2941 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2942 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2943 struct page **page);
2944 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2945 struct page *page, struct inode *inode);
2946 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2947 const struct qstr *name, f2fs_hash_t name_hash,
2948 unsigned int bit_pos);
2949 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2950 const struct qstr *orig_name,
2951 struct inode *inode, nid_t ino, umode_t mode);
2952 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2953 struct inode *inode, nid_t ino, umode_t mode);
2954 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2955 struct inode *inode, nid_t ino, umode_t mode);
2956 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2957 struct inode *dir, struct inode *inode);
2958 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2959 bool f2fs_empty_dir(struct inode *dir);
2960
f2fs_add_link(struct dentry * dentry,struct inode * inode)2961 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2962 {
2963 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2964 inode, inode->i_ino, inode->i_mode);
2965 }
2966
2967 /*
2968 * super.c
2969 */
2970 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2971 void f2fs_inode_synced(struct inode *inode);
2972 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2973 int f2fs_quota_sync(struct super_block *sb, int type);
2974 void f2fs_quota_off_umount(struct super_block *sb);
2975 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2976 int f2fs_sync_fs(struct super_block *sb, int sync);
2977 extern __printf(3, 4)
2978 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2979 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2980
2981 /*
2982 * hash.c
2983 */
2984 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2985 struct fscrypt_name *fname);
2986
2987 /*
2988 * node.c
2989 */
2990 struct dnode_of_data;
2991 struct node_info;
2992
2993 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2994 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2995 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2996 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2997 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2998 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2999 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3000 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3001 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3002 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3003 struct node_info *ni);
3004 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3005 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3006 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3007 int f2fs_truncate_xattr_node(struct inode *inode);
3008 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3009 unsigned int seq_id);
3010 int f2fs_remove_inode_page(struct inode *inode);
3011 struct page *f2fs_new_inode_page(struct inode *inode);
3012 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3013 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3014 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3015 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3016 int f2fs_move_node_page(struct page *node_page, int gc_type);
3017 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3018 struct writeback_control *wbc, bool atomic,
3019 unsigned int *seq_id);
3020 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3021 struct writeback_control *wbc,
3022 bool do_balance, enum iostat_type io_type);
3023 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3024 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3025 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3026 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3027 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3028 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3029 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3030 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3031 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3032 unsigned int segno, struct f2fs_summary_block *sum);
3033 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3034 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3035 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3036 int __init f2fs_create_node_manager_caches(void);
3037 void f2fs_destroy_node_manager_caches(void);
3038
3039 /*
3040 * segment.c
3041 */
3042 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3043 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3044 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3045 void f2fs_drop_inmem_pages(struct inode *inode);
3046 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3047 int f2fs_commit_inmem_pages(struct inode *inode);
3048 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3049 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3050 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3051 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3052 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3053 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3054 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3055 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3056 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3057 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3058 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3059 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3060 struct cp_control *cpc);
3061 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3062 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi);
3063 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3064 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3065 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3066 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3067 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3068 struct cp_control *cpc);
3069 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3070 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3071 block_t blk_addr);
3072 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3073 enum iostat_type io_type);
3074 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3075 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3076 struct f2fs_io_info *fio);
3077 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3078 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3079 block_t old_blkaddr, block_t new_blkaddr,
3080 bool recover_curseg, bool recover_newaddr);
3081 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3082 block_t old_addr, block_t new_addr,
3083 unsigned char version, bool recover_curseg,
3084 bool recover_newaddr);
3085 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3086 block_t old_blkaddr, block_t *new_blkaddr,
3087 struct f2fs_summary *sum, int type,
3088 struct f2fs_io_info *fio, bool add_list);
3089 void f2fs_wait_on_page_writeback(struct page *page,
3090 enum page_type type, bool ordered, bool locked);
3091 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3092 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3093 block_t len);
3094 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3095 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3096 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3097 unsigned int val, int alloc);
3098 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3099 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3100 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3101 int __init f2fs_create_segment_manager_caches(void);
3102 void f2fs_destroy_segment_manager_caches(void);
3103 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3104 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3105 enum page_type type, enum temp_type temp);
3106
3107 /*
3108 * checkpoint.c
3109 */
3110 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3111 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3112 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3113 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3114 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3115 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3116 block_t blkaddr, int type);
3117 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3118 int type, bool sync);
3119 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3120 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3121 long nr_to_write, enum iostat_type io_type);
3122 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3123 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3124 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3125 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3126 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3127 unsigned int devidx, int type);
3128 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3129 unsigned int devidx, int type);
3130 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3131 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3132 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3133 void f2fs_add_orphan_inode(struct inode *inode);
3134 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3135 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3136 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3137 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3138 void f2fs_remove_dirty_inode(struct inode *inode);
3139 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3140 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3141 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3142 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3143 int __init f2fs_create_checkpoint_caches(void);
3144 void f2fs_destroy_checkpoint_caches(void);
3145
3146 /*
3147 * data.c
3148 */
3149 int f2fs_init_post_read_processing(void);
3150 void f2fs_destroy_post_read_processing(void);
3151 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3152 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3153 struct inode *inode, struct page *page,
3154 nid_t ino, enum page_type type);
3155 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3156 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3157 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3158 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3159 block_t blk_addr, struct bio *bio);
3160 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3161 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3162 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3163 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3164 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3165 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3166 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3167 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3168 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3169 int op_flags, bool for_write);
3170 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3171 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3172 bool for_write);
3173 struct page *f2fs_get_new_data_page(struct inode *inode,
3174 struct page *ipage, pgoff_t index, bool new_i_size);
3175 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3176 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3177 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3178 int create, int flag);
3179 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3180 u64 start, u64 len);
3181 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3182 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3183 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3184 unsigned int length);
3185 int f2fs_release_page(struct page *page, gfp_t wait);
3186 #ifdef CONFIG_MIGRATION
3187 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3188 struct page *page, enum migrate_mode mode);
3189 #endif
3190 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3191 void f2fs_clear_radix_tree_dirty_tag(struct page *page);
3192
3193 /*
3194 * gc.c
3195 */
3196 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3197 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3198 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3199 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3200 unsigned int segno);
3201 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3202
3203 /*
3204 * recovery.c
3205 */
3206 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3207 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3208
3209 /*
3210 * debug.c
3211 */
3212 #ifdef CONFIG_F2FS_STAT_FS
3213 struct f2fs_stat_info {
3214 struct list_head stat_list;
3215 struct f2fs_sb_info *sbi;
3216 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3217 int main_area_segs, main_area_sections, main_area_zones;
3218 unsigned long long hit_largest, hit_cached, hit_rbtree;
3219 unsigned long long hit_total, total_ext;
3220 int ext_tree, zombie_tree, ext_node;
3221 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3222 int ndirty_data, ndirty_qdata;
3223 int inmem_pages;
3224 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3225 int nats, dirty_nats, sits, dirty_sits;
3226 int free_nids, avail_nids, alloc_nids;
3227 int total_count, utilization;
3228 int bg_gc, nr_wb_cp_data, nr_wb_data;
3229 int nr_rd_data, nr_rd_node, nr_rd_meta;
3230 int nr_dio_read, nr_dio_write;
3231 unsigned int io_skip_bggc, other_skip_bggc;
3232 int nr_flushing, nr_flushed, flush_list_empty;
3233 int nr_discarding, nr_discarded;
3234 int nr_discard_cmd;
3235 unsigned int undiscard_blks;
3236 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3237 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3238 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3239 unsigned int bimodal, avg_vblocks;
3240 int util_free, util_valid, util_invalid;
3241 int rsvd_segs, overp_segs;
3242 int dirty_count, node_pages, meta_pages;
3243 int prefree_count, call_count, cp_count, bg_cp_count;
3244 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3245 int bg_node_segs, bg_data_segs;
3246 int tot_blks, data_blks, node_blks;
3247 int bg_data_blks, bg_node_blks;
3248 unsigned long long skipped_atomic_files[2];
3249 int curseg[NR_CURSEG_TYPE];
3250 int cursec[NR_CURSEG_TYPE];
3251 int curzone[NR_CURSEG_TYPE];
3252
3253 unsigned int meta_count[META_MAX];
3254 unsigned int segment_count[2];
3255 unsigned int block_count[2];
3256 unsigned int inplace_count;
3257 unsigned long long base_mem, cache_mem, page_mem;
3258 };
3259
F2FS_STAT(struct f2fs_sb_info * sbi)3260 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3261 {
3262 return (struct f2fs_stat_info *)sbi->stat_info;
3263 }
3264
3265 #define stat_inc_cp_count(si) ((si)->cp_count++)
3266 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3267 #define stat_inc_call_count(si) ((si)->call_count++)
3268 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
3269 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3270 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3271 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3272 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3273 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3274 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3275 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3276 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3277 #define stat_inc_inline_xattr(inode) \
3278 do { \
3279 if (f2fs_has_inline_xattr(inode)) \
3280 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3281 } while (0)
3282 #define stat_dec_inline_xattr(inode) \
3283 do { \
3284 if (f2fs_has_inline_xattr(inode)) \
3285 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3286 } while (0)
3287 #define stat_inc_inline_inode(inode) \
3288 do { \
3289 if (f2fs_has_inline_data(inode)) \
3290 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3291 } while (0)
3292 #define stat_dec_inline_inode(inode) \
3293 do { \
3294 if (f2fs_has_inline_data(inode)) \
3295 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3296 } while (0)
3297 #define stat_inc_inline_dir(inode) \
3298 do { \
3299 if (f2fs_has_inline_dentry(inode)) \
3300 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3301 } while (0)
3302 #define stat_dec_inline_dir(inode) \
3303 do { \
3304 if (f2fs_has_inline_dentry(inode)) \
3305 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3306 } while (0)
3307 #define stat_inc_meta_count(sbi, blkaddr) \
3308 do { \
3309 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3310 atomic_inc(&(sbi)->meta_count[META_CP]); \
3311 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3312 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3313 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3314 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3315 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3316 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3317 } while (0)
3318 #define stat_inc_seg_type(sbi, curseg) \
3319 ((sbi)->segment_count[(curseg)->alloc_type]++)
3320 #define stat_inc_block_count(sbi, curseg) \
3321 ((sbi)->block_count[(curseg)->alloc_type]++)
3322 #define stat_inc_inplace_blocks(sbi) \
3323 (atomic_inc(&(sbi)->inplace_count))
3324 #define stat_inc_atomic_write(inode) \
3325 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3326 #define stat_dec_atomic_write(inode) \
3327 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3328 #define stat_update_max_atomic_write(inode) \
3329 do { \
3330 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
3331 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3332 if (cur > max) \
3333 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3334 } while (0)
3335 #define stat_inc_volatile_write(inode) \
3336 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3337 #define stat_dec_volatile_write(inode) \
3338 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3339 #define stat_update_max_volatile_write(inode) \
3340 do { \
3341 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3342 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3343 if (cur > max) \
3344 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3345 } while (0)
3346 #define stat_inc_seg_count(sbi, type, gc_type) \
3347 do { \
3348 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3349 si->tot_segs++; \
3350 if ((type) == SUM_TYPE_DATA) { \
3351 si->data_segs++; \
3352 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3353 } else { \
3354 si->node_segs++; \
3355 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3356 } \
3357 } while (0)
3358
3359 #define stat_inc_tot_blk_count(si, blks) \
3360 ((si)->tot_blks += (blks))
3361
3362 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3363 do { \
3364 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3365 stat_inc_tot_blk_count(si, blks); \
3366 si->data_blks += (blks); \
3367 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3368 } while (0)
3369
3370 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3371 do { \
3372 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3373 stat_inc_tot_blk_count(si, blks); \
3374 si->node_blks += (blks); \
3375 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3376 } while (0)
3377
3378 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3379 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3380 void __init f2fs_create_root_stats(void);
3381 void f2fs_destroy_root_stats(void);
3382 #else
3383 #define stat_inc_cp_count(si) do { } while (0)
3384 #define stat_inc_bg_cp_count(si) do { } while (0)
3385 #define stat_inc_call_count(si) do { } while (0)
3386 #define stat_inc_bggc_count(si) do { } while (0)
3387 #define stat_io_skip_bggc_count(sbi) do { } while (0)
3388 #define stat_other_skip_bggc_count(sbi) do { } while (0)
3389 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3390 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3391 #define stat_inc_total_hit(sb) do { } while (0)
3392 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
3393 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3394 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3395 #define stat_inc_inline_xattr(inode) do { } while (0)
3396 #define stat_dec_inline_xattr(inode) do { } while (0)
3397 #define stat_inc_inline_inode(inode) do { } while (0)
3398 #define stat_dec_inline_inode(inode) do { } while (0)
3399 #define stat_inc_inline_dir(inode) do { } while (0)
3400 #define stat_dec_inline_dir(inode) do { } while (0)
3401 #define stat_inc_atomic_write(inode) do { } while (0)
3402 #define stat_dec_atomic_write(inode) do { } while (0)
3403 #define stat_update_max_atomic_write(inode) do { } while (0)
3404 #define stat_inc_volatile_write(inode) do { } while (0)
3405 #define stat_dec_volatile_write(inode) do { } while (0)
3406 #define stat_update_max_volatile_write(inode) do { } while (0)
3407 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3408 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3409 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3410 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3411 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3412 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3413 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3414 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3415
f2fs_build_stats(struct f2fs_sb_info * sbi)3416 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3417 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3418 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3419 static inline void f2fs_destroy_root_stats(void) { }
3420 #endif
3421
3422 extern const struct file_operations f2fs_dir_operations;
3423 extern const struct file_operations f2fs_file_operations;
3424 extern const struct inode_operations f2fs_file_inode_operations;
3425 extern const struct address_space_operations f2fs_dblock_aops;
3426 extern const struct address_space_operations f2fs_node_aops;
3427 extern const struct address_space_operations f2fs_meta_aops;
3428 extern const struct inode_operations f2fs_dir_inode_operations;
3429 extern const struct inode_operations f2fs_symlink_inode_operations;
3430 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3431 extern const struct inode_operations f2fs_special_inode_operations;
3432 extern struct kmem_cache *f2fs_inode_entry_slab;
3433
3434 /*
3435 * inline.c
3436 */
3437 bool f2fs_may_inline_data(struct inode *inode);
3438 bool f2fs_may_inline_dentry(struct inode *inode);
3439 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3440 void f2fs_truncate_inline_inode(struct inode *inode,
3441 struct page *ipage, u64 from);
3442 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3443 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3444 int f2fs_convert_inline_inode(struct inode *inode);
3445 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3446 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3447 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3448 struct fscrypt_name *fname, struct page **res_page);
3449 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3450 struct page *ipage);
3451 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3452 const struct qstr *orig_name,
3453 struct inode *inode, nid_t ino, umode_t mode);
3454 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3455 struct page *page, struct inode *dir,
3456 struct inode *inode);
3457 bool f2fs_empty_inline_dir(struct inode *dir);
3458 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3459 struct fscrypt_str *fstr);
3460 int f2fs_inline_data_fiemap(struct inode *inode,
3461 struct fiemap_extent_info *fieinfo,
3462 __u64 start, __u64 len);
3463
3464 /*
3465 * shrinker.c
3466 */
3467 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3468 struct shrink_control *sc);
3469 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3470 struct shrink_control *sc);
3471 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3472 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3473
3474 /*
3475 * extent_cache.c
3476 */
3477 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3478 struct rb_entry *cached_re, unsigned int ofs);
3479 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3480 struct rb_root_cached *root,
3481 struct rb_node **parent,
3482 unsigned int ofs, bool *leftmost);
3483 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3484 struct rb_entry *cached_re, unsigned int ofs,
3485 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3486 struct rb_node ***insert_p, struct rb_node **insert_parent,
3487 bool force, bool *leftmost);
3488 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3489 struct rb_root_cached *root);
3490 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3491 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3492 void f2fs_drop_extent_tree(struct inode *inode);
3493 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3494 void f2fs_destroy_extent_tree(struct inode *inode);
3495 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3496 struct extent_info *ei);
3497 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3498 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3499 pgoff_t fofs, block_t blkaddr, unsigned int len);
3500 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3501 int __init f2fs_create_extent_cache(void);
3502 void f2fs_destroy_extent_cache(void);
3503
3504 /*
3505 * sysfs.c
3506 */
3507 int __init f2fs_init_sysfs(void);
3508 void f2fs_exit_sysfs(void);
3509 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3510 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3511
3512 /*
3513 * crypto support
3514 */
f2fs_encrypted_inode(struct inode * inode)3515 static inline bool f2fs_encrypted_inode(struct inode *inode)
3516 {
3517 return file_is_encrypt(inode);
3518 }
3519
f2fs_encrypted_file(struct inode * inode)3520 static inline bool f2fs_encrypted_file(struct inode *inode)
3521 {
3522 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3523 }
3524
f2fs_set_encrypted_inode(struct inode * inode)3525 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3526 {
3527 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3528 file_set_encrypt(inode);
3529 f2fs_set_inode_flags(inode);
3530 #endif
3531 }
3532
3533 /*
3534 * Returns true if the reads of the inode's data need to undergo some
3535 * postprocessing step, like decryption or authenticity verification.
3536 */
f2fs_post_read_required(struct inode * inode)3537 static inline bool f2fs_post_read_required(struct inode *inode)
3538 {
3539 return f2fs_encrypted_file(inode);
3540 }
3541
3542 #define F2FS_FEATURE_FUNCS(name, flagname) \
3543 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3544 { \
3545 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3546 }
3547
3548 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3549 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3550 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3551 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3552 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3553 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3554 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3555 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3556 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3557 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3558
3559 #ifdef CONFIG_BLK_DEV_ZONED
get_blkz_type(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkaddr)3560 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3561 struct block_device *bdev, block_t blkaddr)
3562 {
3563 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3564 int i;
3565
3566 for (i = 0; i < sbi->s_ndevs; i++)
3567 if (FDEV(i).bdev == bdev)
3568 return FDEV(i).blkz_type[zno];
3569 return -EINVAL;
3570 }
3571 #endif
3572
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)3573 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3574 {
3575 return f2fs_sb_has_blkzoned(sbi);
3576 }
3577
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)3578 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3579 {
3580 return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev));
3581 }
3582
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)3583 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3584 {
3585 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3586 f2fs_hw_should_discard(sbi);
3587 }
3588
set_opt_mode(struct f2fs_sb_info * sbi,unsigned int mt)3589 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3590 {
3591 clear_opt(sbi, ADAPTIVE);
3592 clear_opt(sbi, LFS);
3593
3594 switch (mt) {
3595 case F2FS_MOUNT_ADAPTIVE:
3596 set_opt(sbi, ADAPTIVE);
3597 break;
3598 case F2FS_MOUNT_LFS:
3599 set_opt(sbi, LFS);
3600 break;
3601 }
3602 }
3603
f2fs_may_encrypt(struct inode * inode)3604 static inline bool f2fs_may_encrypt(struct inode *inode)
3605 {
3606 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3607 umode_t mode = inode->i_mode;
3608
3609 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3610 #else
3611 return false;
3612 #endif
3613 }
3614
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)3615 static inline int block_unaligned_IO(struct inode *inode,
3616 struct kiocb *iocb, struct iov_iter *iter)
3617 {
3618 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3619 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3620 loff_t offset = iocb->ki_pos;
3621 unsigned long align = offset | iov_iter_alignment(iter);
3622
3623 return align & blocksize_mask;
3624 }
3625
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)3626 static inline int allow_outplace_dio(struct inode *inode,
3627 struct kiocb *iocb, struct iov_iter *iter)
3628 {
3629 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3630 int rw = iov_iter_rw(iter);
3631
3632 return (test_opt(sbi, LFS) && (rw == WRITE) &&
3633 !block_unaligned_IO(inode, iocb, iter));
3634 }
3635
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)3636 static inline bool f2fs_force_buffered_io(struct inode *inode,
3637 struct kiocb *iocb, struct iov_iter *iter)
3638 {
3639 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3640 int rw = iov_iter_rw(iter);
3641
3642 if (f2fs_post_read_required(inode))
3643 return true;
3644 if (sbi->s_ndevs)
3645 return true;
3646 /*
3647 * for blkzoned device, fallback direct IO to buffered IO, so
3648 * all IOs can be serialized by log-structured write.
3649 */
3650 if (f2fs_sb_has_blkzoned(sbi))
3651 return true;
3652 if (test_opt(sbi, LFS) && (rw == WRITE) &&
3653 block_unaligned_IO(inode, iocb, iter))
3654 return true;
3655 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3656 return true;
3657
3658 return false;
3659 }
3660
3661 #ifdef CONFIG_F2FS_FAULT_INJECTION
3662 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3663 unsigned int type);
3664 #else
3665 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
3666 #endif
3667
is_journalled_quota(struct f2fs_sb_info * sbi)3668 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3669 {
3670 #ifdef CONFIG_QUOTA
3671 if (f2fs_sb_has_quota_ino(sbi))
3672 return true;
3673 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3674 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3675 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3676 return true;
3677 #endif
3678 return false;
3679 }
3680
3681 #endif
3682
3683 #define EFSBADCRC EBADMSG /* Bad CRC detected */
3684 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
3685
3686