• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 #include <linux/overflow.h>
27 
28 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
29 #include <linux/fscrypt.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (unlikely(condition)) {				\
37 			WARN_ON(1);					\
38 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
39 		}							\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_MAX,
60 };
61 
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
64 
65 struct f2fs_fault_info {
66 	atomic_t inject_ops;
67 	unsigned int inject_rate;
68 	unsigned int inject_type;
69 };
70 
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74 
75 /*
76  * For mount options
77  */
78 #define F2FS_MOUNT_BG_GC		0x00000001
79 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
80 #define F2FS_MOUNT_DISCARD		0x00000004
81 #define F2FS_MOUNT_NOHEAP		0x00000008
82 #define F2FS_MOUNT_XATTR_USER		0x00000010
83 #define F2FS_MOUNT_POSIX_ACL		0x00000020
84 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
85 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
86 #define F2FS_MOUNT_INLINE_DATA		0x00000100
87 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
88 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
89 #define F2FS_MOUNT_NOBARRIER		0x00000800
90 #define F2FS_MOUNT_FASTBOOT		0x00001000
91 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
92 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
93 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
94 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
95 #define F2FS_MOUNT_ADAPTIVE		0x00020000
96 #define F2FS_MOUNT_LFS			0x00040000
97 #define F2FS_MOUNT_USRQUOTA		0x00080000
98 #define F2FS_MOUNT_GRPQUOTA		0x00100000
99 #define F2FS_MOUNT_PRJQUOTA		0x00200000
100 #define F2FS_MOUNT_QUOTA		0x00400000
101 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
102 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
103 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
104 
105 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
106 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
107 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
108 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
109 
110 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
111 		typecheck(unsigned long long, b) &&			\
112 		((long long)((a) - (b)) > 0))
113 
114 typedef u32 block_t;	/*
115 			 * should not change u32, since it is the on-disk block
116 			 * address format, __le32.
117 			 */
118 typedef u32 nid_t;
119 
120 struct f2fs_mount_info {
121 	unsigned int opt;
122 	int write_io_size_bits;		/* Write IO size bits */
123 	block_t root_reserved_blocks;	/* root reserved blocks */
124 	kuid_t s_resuid;		/* reserved blocks for uid */
125 	kgid_t s_resgid;		/* reserved blocks for gid */
126 	int active_logs;		/* # of active logs */
127 	int inline_xattr_size;		/* inline xattr size */
128 #ifdef CONFIG_F2FS_FAULT_INJECTION
129 	struct f2fs_fault_info fault_info;	/* For fault injection */
130 #endif
131 #ifdef CONFIG_QUOTA
132 	/* Names of quota files with journalled quota */
133 	char *s_qf_names[MAXQUOTAS];
134 	int s_jquota_fmt;			/* Format of quota to use */
135 #endif
136 	/* For which write hints are passed down to block layer */
137 	int whint_mode;
138 	int alloc_mode;			/* segment allocation policy */
139 	int fsync_mode;			/* fsync policy */
140 	bool test_dummy_encryption;	/* test dummy encryption */
141 };
142 
143 #define F2FS_FEATURE_ENCRYPT		0x0001
144 #define F2FS_FEATURE_BLKZONED		0x0002
145 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
146 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
147 #define F2FS_FEATURE_PRJQUOTA		0x0010
148 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
149 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
150 #define F2FS_FEATURE_QUOTA_INO		0x0080
151 #define F2FS_FEATURE_INODE_CRTIME	0x0100
152 #define F2FS_FEATURE_LOST_FOUND		0x0200
153 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
154 #define F2FS_FEATURE_SB_CHKSUM		0x0800
155 
156 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
157 	((raw_super->feature & cpu_to_le32(mask)) != 0)
158 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
159 #define F2FS_SET_FEATURE(sbi, mask)					\
160 	(sbi->raw_super->feature |= cpu_to_le32(mask))
161 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
162 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
163 
164 /*
165  * Default values for user and/or group using reserved blocks
166  */
167 #define	F2FS_DEF_RESUID		0
168 #define	F2FS_DEF_RESGID		0
169 
170 /*
171  * For checkpoint manager
172  */
173 enum {
174 	NAT_BITMAP,
175 	SIT_BITMAP
176 };
177 
178 #define	CP_UMOUNT	0x00000001
179 #define	CP_FASTBOOT	0x00000002
180 #define	CP_SYNC		0x00000004
181 #define	CP_RECOVERY	0x00000008
182 #define	CP_DISCARD	0x00000010
183 #define CP_TRIMMED	0x00000020
184 #define CP_PAUSE	0x00000040
185 
186 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
187 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
188 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
189 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
190 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
191 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
192 #define DEF_CP_INTERVAL			60	/* 60 secs */
193 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
194 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
195 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
196 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
197 
198 struct cp_control {
199 	int reason;
200 	__u64 trim_start;
201 	__u64 trim_end;
202 	__u64 trim_minlen;
203 };
204 
205 /*
206  * indicate meta/data type
207  */
208 enum {
209 	META_CP,
210 	META_NAT,
211 	META_SIT,
212 	META_SSA,
213 	META_MAX,
214 	META_POR,
215 	DATA_GENERIC,
216 	META_GENERIC,
217 };
218 
219 /* for the list of ino */
220 enum {
221 	ORPHAN_INO,		/* for orphan ino list */
222 	APPEND_INO,		/* for append ino list */
223 	UPDATE_INO,		/* for update ino list */
224 	TRANS_DIR_INO,		/* for trasactions dir ino list */
225 	FLUSH_INO,		/* for multiple device flushing */
226 	MAX_INO_ENTRY,		/* max. list */
227 };
228 
229 struct ino_entry {
230 	struct list_head list;		/* list head */
231 	nid_t ino;			/* inode number */
232 	unsigned int dirty_device;	/* dirty device bitmap */
233 };
234 
235 /* for the list of inodes to be GCed */
236 struct inode_entry {
237 	struct list_head list;	/* list head */
238 	struct inode *inode;	/* vfs inode pointer */
239 };
240 
241 struct fsync_node_entry {
242 	struct list_head list;	/* list head */
243 	struct page *page;	/* warm node page pointer */
244 	unsigned int seq_id;	/* sequence id */
245 };
246 
247 /* for the bitmap indicate blocks to be discarded */
248 struct discard_entry {
249 	struct list_head list;	/* list head */
250 	block_t start_blkaddr;	/* start blockaddr of current segment */
251 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
252 };
253 
254 /* default discard granularity of inner discard thread, unit: block count */
255 #define DEFAULT_DISCARD_GRANULARITY		16
256 
257 /* max discard pend list number */
258 #define MAX_PLIST_NUM		512
259 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
260 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
261 
262 enum {
263 	D_PREP,			/* initial */
264 	D_PARTIAL,		/* partially submitted */
265 	D_SUBMIT,		/* all submitted */
266 	D_DONE,			/* finished */
267 };
268 
269 struct discard_info {
270 	block_t lstart;			/* logical start address */
271 	block_t len;			/* length */
272 	block_t start;			/* actual start address in dev */
273 };
274 
275 struct discard_cmd {
276 	struct rb_node rb_node;		/* rb node located in rb-tree */
277 	union {
278 		struct {
279 			block_t lstart;	/* logical start address */
280 			block_t len;	/* length */
281 			block_t start;	/* actual start address in dev */
282 		};
283 		struct discard_info di;	/* discard info */
284 
285 	};
286 	struct list_head list;		/* command list */
287 	struct completion wait;		/* compleation */
288 	struct block_device *bdev;	/* bdev */
289 	unsigned short ref;		/* reference count */
290 	unsigned char state;		/* state */
291 	unsigned char queued;		/* queued discard */
292 	int error;			/* bio error */
293 	spinlock_t lock;		/* for state/bio_ref updating */
294 	unsigned short bio_ref;		/* bio reference count */
295 };
296 
297 enum {
298 	DPOLICY_BG,
299 	DPOLICY_FORCE,
300 	DPOLICY_FSTRIM,
301 	DPOLICY_UMOUNT,
302 	MAX_DPOLICY,
303 };
304 
305 struct discard_policy {
306 	int type;			/* type of discard */
307 	unsigned int min_interval;	/* used for candidates exist */
308 	unsigned int mid_interval;	/* used for device busy */
309 	unsigned int max_interval;	/* used for candidates not exist */
310 	unsigned int max_requests;	/* # of discards issued per round */
311 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
312 	bool io_aware;			/* issue discard in idle time */
313 	bool sync;			/* submit discard with REQ_SYNC flag */
314 	bool ordered;			/* issue discard by lba order */
315 	unsigned int granularity;	/* discard granularity */
316 	int timeout;			/* discard timeout for put_super */
317 };
318 
319 struct discard_cmd_control {
320 	struct task_struct *f2fs_issue_discard;	/* discard thread */
321 	struct list_head entry_list;		/* 4KB discard entry list */
322 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
323 	struct list_head wait_list;		/* store on-flushing entries */
324 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
325 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
326 	unsigned int discard_wake;		/* to wake up discard thread */
327 	struct mutex cmd_lock;
328 	unsigned int nr_discards;		/* # of discards in the list */
329 	unsigned int max_discards;		/* max. discards to be issued */
330 	unsigned int discard_granularity;	/* discard granularity */
331 	unsigned int undiscard_blks;		/* # of undiscard blocks */
332 	unsigned int next_pos;			/* next discard position */
333 	atomic_t issued_discard;		/* # of issued discard */
334 	atomic_t queued_discard;		/* # of queued discard */
335 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
336 	struct rb_root_cached root;		/* root of discard rb-tree */
337 	bool rbtree_check;			/* config for consistence check */
338 };
339 
340 /* for the list of fsync inodes, used only during recovery */
341 struct fsync_inode_entry {
342 	struct list_head list;	/* list head */
343 	struct inode *inode;	/* vfs inode pointer */
344 	block_t blkaddr;	/* block address locating the last fsync */
345 	block_t last_dentry;	/* block address locating the last dentry */
346 };
347 
348 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
349 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
350 
351 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
352 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
353 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
354 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
355 
356 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
357 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
358 
update_nats_in_cursum(struct f2fs_journal * journal,int i)359 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
360 {
361 	int before = nats_in_cursum(journal);
362 
363 	journal->n_nats = cpu_to_le16(before + i);
364 	return before;
365 }
366 
update_sits_in_cursum(struct f2fs_journal * journal,int i)367 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
368 {
369 	int before = sits_in_cursum(journal);
370 
371 	journal->n_sits = cpu_to_le16(before + i);
372 	return before;
373 }
374 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)375 static inline bool __has_cursum_space(struct f2fs_journal *journal,
376 							int size, int type)
377 {
378 	if (type == NAT_JOURNAL)
379 		return size <= MAX_NAT_JENTRIES(journal);
380 	return size <= MAX_SIT_JENTRIES(journal);
381 }
382 
383 /*
384  * ioctl commands
385  */
386 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
387 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
388 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
389 
390 #define F2FS_IOCTL_MAGIC		0xf5
391 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
392 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
393 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
394 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
395 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
396 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
397 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
398 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
399 						struct f2fs_defragment)
400 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
401 						struct f2fs_move_range)
402 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
403 						struct f2fs_flush_device)
404 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
405 						struct f2fs_gc_range)
406 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
407 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
408 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
409 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
410 
411 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
412 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
413 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
414 
415 /*
416  * should be same as XFS_IOC_GOINGDOWN.
417  * Flags for going down operation used by FS_IOC_GOINGDOWN
418  */
419 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
420 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
421 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
422 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
423 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
424 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
425 
426 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
427 /*
428  * ioctl commands in 32 bit emulation
429  */
430 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
431 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
432 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
433 #endif
434 
435 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
436 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
437 
438 struct f2fs_gc_range {
439 	u32 sync;
440 	u64 start;
441 	u64 len;
442 };
443 
444 struct f2fs_defragment {
445 	u64 start;
446 	u64 len;
447 };
448 
449 struct f2fs_move_range {
450 	u32 dst_fd;		/* destination fd */
451 	u64 pos_in;		/* start position in src_fd */
452 	u64 pos_out;		/* start position in dst_fd */
453 	u64 len;		/* size to move */
454 };
455 
456 struct f2fs_flush_device {
457 	u32 dev_num;		/* device number to flush */
458 	u32 segments;		/* # of segments to flush */
459 };
460 
461 /* for inline stuff */
462 #define DEF_INLINE_RESERVED_SIZE	1
463 static inline int get_extra_isize(struct inode *inode);
464 static inline int get_inline_xattr_addrs(struct inode *inode);
465 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
466 				(CUR_ADDRS_PER_INODE(inode) -		\
467 				get_inline_xattr_addrs(inode) -	\
468 				DEF_INLINE_RESERVED_SIZE))
469 
470 /* for inline dir */
471 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
472 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
473 				BITS_PER_BYTE + 1))
474 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
475 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
476 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
477 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
478 				NR_INLINE_DENTRY(inode) + \
479 				INLINE_DENTRY_BITMAP_SIZE(inode)))
480 
481 /*
482  * For INODE and NODE manager
483  */
484 /* for directory operations */
485 struct f2fs_dentry_ptr {
486 	struct inode *inode;
487 	void *bitmap;
488 	struct f2fs_dir_entry *dentry;
489 	__u8 (*filename)[F2FS_SLOT_LEN];
490 	int max;
491 	int nr_bitmap;
492 };
493 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)494 static inline void make_dentry_ptr_block(struct inode *inode,
495 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
496 {
497 	d->inode = inode;
498 	d->max = NR_DENTRY_IN_BLOCK;
499 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
500 	d->bitmap = t->dentry_bitmap;
501 	d->dentry = t->dentry;
502 	d->filename = t->filename;
503 }
504 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)505 static inline void make_dentry_ptr_inline(struct inode *inode,
506 					struct f2fs_dentry_ptr *d, void *t)
507 {
508 	int entry_cnt = NR_INLINE_DENTRY(inode);
509 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
510 	int reserved_size = INLINE_RESERVED_SIZE(inode);
511 
512 	d->inode = inode;
513 	d->max = entry_cnt;
514 	d->nr_bitmap = bitmap_size;
515 	d->bitmap = t;
516 	d->dentry = t + bitmap_size + reserved_size;
517 	d->filename = t + bitmap_size + reserved_size +
518 					SIZE_OF_DIR_ENTRY * entry_cnt;
519 }
520 
521 /*
522  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
523  * as its node offset to distinguish from index node blocks.
524  * But some bits are used to mark the node block.
525  */
526 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
527 				>> OFFSET_BIT_SHIFT)
528 enum {
529 	ALLOC_NODE,			/* allocate a new node page if needed */
530 	LOOKUP_NODE,			/* look up a node without readahead */
531 	LOOKUP_NODE_RA,			/*
532 					 * look up a node with readahead called
533 					 * by get_data_block.
534 					 */
535 };
536 
537 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
538 
539 /* maximum retry quota flush count */
540 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
541 
542 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
543 
544 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
545 
546 /* for in-memory extent cache entry */
547 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
548 
549 /* number of extent info in extent cache we try to shrink */
550 #define EXTENT_CACHE_SHRINK_NUMBER	128
551 
552 struct rb_entry {
553 	struct rb_node rb_node;		/* rb node located in rb-tree */
554 	unsigned int ofs;		/* start offset of the entry */
555 	unsigned int len;		/* length of the entry */
556 };
557 
558 struct extent_info {
559 	unsigned int fofs;		/* start offset in a file */
560 	unsigned int len;		/* length of the extent */
561 	u32 blk;			/* start block address of the extent */
562 };
563 
564 struct extent_node {
565 	struct rb_node rb_node;		/* rb node located in rb-tree */
566 	struct extent_info ei;		/* extent info */
567 	struct list_head list;		/* node in global extent list of sbi */
568 	struct extent_tree *et;		/* extent tree pointer */
569 };
570 
571 struct extent_tree {
572 	nid_t ino;			/* inode number */
573 	struct rb_root_cached root;	/* root of extent info rb-tree */
574 	struct extent_node *cached_en;	/* recently accessed extent node */
575 	struct extent_info largest;	/* largested extent info */
576 	struct list_head list;		/* to be used by sbi->zombie_list */
577 	rwlock_t lock;			/* protect extent info rb-tree */
578 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
579 	bool largest_updated;		/* largest extent updated */
580 };
581 
582 /*
583  * This structure is taken from ext4_map_blocks.
584  *
585  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
586  */
587 #define F2FS_MAP_NEW		(1 << BH_New)
588 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
589 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
590 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
591 				F2FS_MAP_UNWRITTEN)
592 
593 struct f2fs_map_blocks {
594 	block_t m_pblk;
595 	block_t m_lblk;
596 	unsigned int m_len;
597 	unsigned int m_flags;
598 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
599 	pgoff_t *m_next_extent;		/* point to next possible extent */
600 	int m_seg_type;
601 	bool m_may_create;		/* indicate it is from write path */
602 };
603 
604 /* for flag in get_data_block */
605 enum {
606 	F2FS_GET_BLOCK_DEFAULT,
607 	F2FS_GET_BLOCK_FIEMAP,
608 	F2FS_GET_BLOCK_BMAP,
609 	F2FS_GET_BLOCK_DIO,
610 	F2FS_GET_BLOCK_PRE_DIO,
611 	F2FS_GET_BLOCK_PRE_AIO,
612 	F2FS_GET_BLOCK_PRECACHE,
613 };
614 
615 /*
616  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
617  */
618 #define FADVISE_COLD_BIT	0x01
619 #define FADVISE_LOST_PINO_BIT	0x02
620 #define FADVISE_ENCRYPT_BIT	0x04
621 #define FADVISE_ENC_NAME_BIT	0x08
622 #define FADVISE_KEEP_SIZE_BIT	0x10
623 #define FADVISE_HOT_BIT		0x20
624 #define FADVISE_VERITY_BIT	0x40	/* reserved */
625 
626 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
627 
628 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
629 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
630 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
631 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
632 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
633 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
634 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
635 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
636 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
637 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
638 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
639 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
640 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
641 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
642 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
643 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
644 
645 #define DEF_DIR_LEVEL		0
646 
647 enum {
648 	GC_FAILURE_PIN,
649 	GC_FAILURE_ATOMIC,
650 	MAX_GC_FAILURE
651 };
652 
653 struct f2fs_inode_info {
654 	struct inode vfs_inode;		/* serve a vfs inode */
655 	unsigned long i_flags;		/* keep an inode flags for ioctl */
656 	unsigned char i_advise;		/* use to give file attribute hints */
657 	unsigned char i_dir_level;	/* use for dentry level for large dir */
658 	unsigned int i_current_depth;	/* only for directory depth */
659 	/* for gc failure statistic */
660 	unsigned int i_gc_failures[MAX_GC_FAILURE];
661 	unsigned int i_pino;		/* parent inode number */
662 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
663 
664 	/* Use below internally in f2fs*/
665 	unsigned long flags;		/* use to pass per-file flags */
666 	struct rw_semaphore i_sem;	/* protect fi info */
667 	atomic_t dirty_pages;		/* # of dirty pages */
668 	f2fs_hash_t chash;		/* hash value of given file name */
669 	unsigned int clevel;		/* maximum level of given file name */
670 	struct task_struct *task;	/* lookup and create consistency */
671 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
672 	nid_t i_xattr_nid;		/* node id that contains xattrs */
673 	loff_t	last_disk_size;		/* lastly written file size */
674 
675 #ifdef CONFIG_QUOTA
676 	struct dquot *i_dquot[MAXQUOTAS];
677 
678 	/* quota space reservation, managed internally by quota code */
679 	qsize_t i_reserved_quota;
680 #endif
681 	struct list_head dirty_list;	/* dirty list for dirs and files */
682 	struct list_head gdirty_list;	/* linked in global dirty list */
683 	struct list_head inmem_ilist;	/* list for inmem inodes */
684 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
685 	struct task_struct *inmem_task;	/* store inmemory task */
686 	struct mutex inmem_lock;	/* lock for inmemory pages */
687 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
688 
689 	/* avoid racing between foreground op and gc */
690 	struct rw_semaphore i_gc_rwsem[2];
691 	struct rw_semaphore i_mmap_sem;
692 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
693 
694 	int i_extra_isize;		/* size of extra space located in i_addr */
695 	kprojid_t i_projid;		/* id for project quota */
696 	int i_inline_xattr_size;	/* inline xattr size */
697 	struct timespec i_crtime;	/* inode creation time */
698 	struct timespec i_disk_time[4];	/* inode disk times */
699 };
700 
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)701 static inline void get_extent_info(struct extent_info *ext,
702 					struct f2fs_extent *i_ext)
703 {
704 	ext->fofs = le32_to_cpu(i_ext->fofs);
705 	ext->blk = le32_to_cpu(i_ext->blk);
706 	ext->len = le32_to_cpu(i_ext->len);
707 }
708 
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)709 static inline void set_raw_extent(struct extent_info *ext,
710 					struct f2fs_extent *i_ext)
711 {
712 	i_ext->fofs = cpu_to_le32(ext->fofs);
713 	i_ext->blk = cpu_to_le32(ext->blk);
714 	i_ext->len = cpu_to_le32(ext->len);
715 }
716 
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)717 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
718 						u32 blk, unsigned int len)
719 {
720 	ei->fofs = fofs;
721 	ei->blk = blk;
722 	ei->len = len;
723 }
724 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)725 static inline bool __is_discard_mergeable(struct discard_info *back,
726 			struct discard_info *front, unsigned int max_len)
727 {
728 	return (back->lstart + back->len == front->lstart) &&
729 		(back->len + front->len <= max_len);
730 }
731 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)732 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
733 			struct discard_info *back, unsigned int max_len)
734 {
735 	return __is_discard_mergeable(back, cur, max_len);
736 }
737 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)738 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
739 			struct discard_info *front, unsigned int max_len)
740 {
741 	return __is_discard_mergeable(cur, front, max_len);
742 }
743 
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)744 static inline bool __is_extent_mergeable(struct extent_info *back,
745 						struct extent_info *front)
746 {
747 	return (back->fofs + back->len == front->fofs &&
748 			back->blk + back->len == front->blk);
749 }
750 
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)751 static inline bool __is_back_mergeable(struct extent_info *cur,
752 						struct extent_info *back)
753 {
754 	return __is_extent_mergeable(back, cur);
755 }
756 
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)757 static inline bool __is_front_mergeable(struct extent_info *cur,
758 						struct extent_info *front)
759 {
760 	return __is_extent_mergeable(cur, front);
761 }
762 
763 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)764 static inline void __try_update_largest_extent(struct extent_tree *et,
765 						struct extent_node *en)
766 {
767 	if (en->ei.len > et->largest.len) {
768 		et->largest = en->ei;
769 		et->largest_updated = true;
770 	}
771 }
772 
773 /*
774  * For free nid management
775  */
776 enum nid_state {
777 	FREE_NID,		/* newly added to free nid list */
778 	PREALLOC_NID,		/* it is preallocated */
779 	MAX_NID_STATE,
780 };
781 
782 struct f2fs_nm_info {
783 	block_t nat_blkaddr;		/* base disk address of NAT */
784 	nid_t max_nid;			/* maximum possible node ids */
785 	nid_t available_nids;		/* # of available node ids */
786 	nid_t next_scan_nid;		/* the next nid to be scanned */
787 	unsigned int ram_thresh;	/* control the memory footprint */
788 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
789 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
790 
791 	/* NAT cache management */
792 	struct radix_tree_root nat_root;/* root of the nat entry cache */
793 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
794 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
795 	struct list_head nat_entries;	/* cached nat entry list (clean) */
796 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
797 	unsigned int nat_cnt;		/* the # of cached nat entries */
798 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
799 	unsigned int nat_blocks;	/* # of nat blocks */
800 
801 	/* free node ids management */
802 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
803 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
804 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
805 	spinlock_t nid_list_lock;	/* protect nid lists ops */
806 	struct mutex build_lock;	/* lock for build free nids */
807 	unsigned char **free_nid_bitmap;
808 	unsigned char *nat_block_bitmap;
809 	unsigned short *free_nid_count;	/* free nid count of NAT block */
810 
811 	/* for checkpoint */
812 	char *nat_bitmap;		/* NAT bitmap pointer */
813 
814 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
815 	unsigned char *nat_bits;	/* NAT bits blocks */
816 	unsigned char *full_nat_bits;	/* full NAT pages */
817 	unsigned char *empty_nat_bits;	/* empty NAT pages */
818 #ifdef CONFIG_F2FS_CHECK_FS
819 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
820 #endif
821 	int bitmap_size;		/* bitmap size */
822 };
823 
824 /*
825  * this structure is used as one of function parameters.
826  * all the information are dedicated to a given direct node block determined
827  * by the data offset in a file.
828  */
829 struct dnode_of_data {
830 	struct inode *inode;		/* vfs inode pointer */
831 	struct page *inode_page;	/* its inode page, NULL is possible */
832 	struct page *node_page;		/* cached direct node page */
833 	nid_t nid;			/* node id of the direct node block */
834 	unsigned int ofs_in_node;	/* data offset in the node page */
835 	bool inode_page_locked;		/* inode page is locked or not */
836 	bool node_changed;		/* is node block changed */
837 	char cur_level;			/* level of hole node page */
838 	char max_level;			/* level of current page located */
839 	block_t	data_blkaddr;		/* block address of the node block */
840 };
841 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)842 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
843 		struct page *ipage, struct page *npage, nid_t nid)
844 {
845 	memset(dn, 0, sizeof(*dn));
846 	dn->inode = inode;
847 	dn->inode_page = ipage;
848 	dn->node_page = npage;
849 	dn->nid = nid;
850 }
851 
852 /*
853  * For SIT manager
854  *
855  * By default, there are 6 active log areas across the whole main area.
856  * When considering hot and cold data separation to reduce cleaning overhead,
857  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
858  * respectively.
859  * In the current design, you should not change the numbers intentionally.
860  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
861  * logs individually according to the underlying devices. (default: 6)
862  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
863  * data and 8 for node logs.
864  */
865 #define	NR_CURSEG_DATA_TYPE	(3)
866 #define NR_CURSEG_NODE_TYPE	(3)
867 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
868 
869 enum {
870 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
871 	CURSEG_WARM_DATA,	/* data blocks */
872 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
873 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
874 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
875 	CURSEG_COLD_NODE,	/* indirect node blocks */
876 	NO_CHECK_TYPE,
877 };
878 
879 struct flush_cmd {
880 	struct completion wait;
881 	struct llist_node llnode;
882 	nid_t ino;
883 	int ret;
884 };
885 
886 struct flush_cmd_control {
887 	struct task_struct *f2fs_issue_flush;	/* flush thread */
888 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
889 	atomic_t issued_flush;			/* # of issued flushes */
890 	atomic_t queued_flush;			/* # of queued flushes */
891 	struct llist_head issue_list;		/* list for command issue */
892 	struct llist_node *dispatch_list;	/* list for command dispatch */
893 };
894 
895 struct f2fs_sm_info {
896 	struct sit_info *sit_info;		/* whole segment information */
897 	struct free_segmap_info *free_info;	/* free segment information */
898 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
899 	struct curseg_info *curseg_array;	/* active segment information */
900 
901 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
902 
903 	block_t seg0_blkaddr;		/* block address of 0'th segment */
904 	block_t main_blkaddr;		/* start block address of main area */
905 	block_t ssa_blkaddr;		/* start block address of SSA area */
906 
907 	unsigned int segment_count;	/* total # of segments */
908 	unsigned int main_segments;	/* # of segments in main area */
909 	unsigned int reserved_segments;	/* # of reserved segments */
910 	unsigned int ovp_segments;	/* # of overprovision segments */
911 
912 	/* a threshold to reclaim prefree segments */
913 	unsigned int rec_prefree_segments;
914 
915 	/* for batched trimming */
916 	unsigned int trim_sections;		/* # of sections to trim */
917 
918 	struct list_head sit_entry_set;	/* sit entry set list */
919 
920 	unsigned int ipu_policy;	/* in-place-update policy */
921 	unsigned int min_ipu_util;	/* in-place-update threshold */
922 	unsigned int min_fsync_blocks;	/* threshold for fsync */
923 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
924 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
925 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
926 
927 	/* for flush command control */
928 	struct flush_cmd_control *fcc_info;
929 
930 	/* for discard command control */
931 	struct discard_cmd_control *dcc_info;
932 };
933 
934 /*
935  * For superblock
936  */
937 /*
938  * COUNT_TYPE for monitoring
939  *
940  * f2fs monitors the number of several block types such as on-writeback,
941  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
942  */
943 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
944 enum count_type {
945 	F2FS_DIRTY_DENTS,
946 	F2FS_DIRTY_DATA,
947 	F2FS_DIRTY_QDATA,
948 	F2FS_DIRTY_NODES,
949 	F2FS_DIRTY_META,
950 	F2FS_INMEM_PAGES,
951 	F2FS_DIRTY_IMETA,
952 	F2FS_WB_CP_DATA,
953 	F2FS_WB_DATA,
954 	F2FS_RD_DATA,
955 	F2FS_RD_NODE,
956 	F2FS_RD_META,
957 	F2FS_DIO_WRITE,
958 	F2FS_DIO_READ,
959 	NR_COUNT_TYPE,
960 };
961 
962 /*
963  * The below are the page types of bios used in submit_bio().
964  * The available types are:
965  * DATA			User data pages. It operates as async mode.
966  * NODE			Node pages. It operates as async mode.
967  * META			FS metadata pages such as SIT, NAT, CP.
968  * NR_PAGE_TYPE		The number of page types.
969  * META_FLUSH		Make sure the previous pages are written
970  *			with waiting the bio's completion
971  * ...			Only can be used with META.
972  */
973 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
974 enum page_type {
975 	DATA,
976 	NODE,
977 	META,
978 	NR_PAGE_TYPE,
979 	META_FLUSH,
980 	INMEM,		/* the below types are used by tracepoints only. */
981 	INMEM_DROP,
982 	INMEM_INVALIDATE,
983 	INMEM_REVOKE,
984 	IPU,
985 	OPU,
986 };
987 
988 enum temp_type {
989 	HOT = 0,	/* must be zero for meta bio */
990 	WARM,
991 	COLD,
992 	NR_TEMP_TYPE,
993 };
994 
995 enum need_lock_type {
996 	LOCK_REQ = 0,
997 	LOCK_DONE,
998 	LOCK_RETRY,
999 };
1000 
1001 enum cp_reason_type {
1002 	CP_NO_NEEDED,
1003 	CP_NON_REGULAR,
1004 	CP_HARDLINK,
1005 	CP_SB_NEED_CP,
1006 	CP_WRONG_PINO,
1007 	CP_NO_SPC_ROLL,
1008 	CP_NODE_NEED_CP,
1009 	CP_FASTBOOT_MODE,
1010 	CP_SPEC_LOG_NUM,
1011 	CP_RECOVER_DIR,
1012 };
1013 
1014 enum iostat_type {
1015 	APP_DIRECT_IO,			/* app direct IOs */
1016 	APP_BUFFERED_IO,		/* app buffered IOs */
1017 	APP_WRITE_IO,			/* app write IOs */
1018 	APP_MAPPED_IO,			/* app mapped IOs */
1019 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1020 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1021 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1022 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1023 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1024 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1025 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1026 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1027 	FS_DISCARD,			/* discard */
1028 	NR_IO_TYPE,
1029 };
1030 
1031 struct f2fs_io_info {
1032 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1033 	nid_t ino;		/* inode number */
1034 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1035 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1036 	int op;			/* contains REQ_OP_ */
1037 	int op_flags;		/* req_flag_bits */
1038 	block_t new_blkaddr;	/* new block address to be written */
1039 	block_t old_blkaddr;	/* old block address before Cow */
1040 	struct page *page;	/* page to be written */
1041 	struct page *encrypted_page;	/* encrypted page */
1042 	struct list_head list;		/* serialize IOs */
1043 	bool submitted;		/* indicate IO submission */
1044 	int need_lock;		/* indicate we need to lock cp_rwsem */
1045 	bool in_list;		/* indicate fio is in io_list */
1046 	bool is_meta;		/* indicate borrow meta inode mapping or not */
1047 	bool retry;		/* need to reallocate block address */
1048 	enum iostat_type io_type;	/* io type */
1049 	struct writeback_control *io_wbc; /* writeback control */
1050 	unsigned char version;		/* version of the node */
1051 };
1052 
1053 #define is_read_io(rw) ((rw) == READ)
1054 struct f2fs_bio_info {
1055 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1056 	struct bio *bio;		/* bios to merge */
1057 	sector_t last_block_in_bio;	/* last block number */
1058 	struct f2fs_io_info fio;	/* store buffered io info. */
1059 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1060 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1061 	struct list_head io_list;	/* track fios */
1062 };
1063 
1064 #define FDEV(i)				(sbi->devs[i])
1065 #define RDEV(i)				(raw_super->devs[i])
1066 struct f2fs_dev_info {
1067 	struct block_device *bdev;
1068 	char path[MAX_PATH_LEN];
1069 	unsigned int total_segments;
1070 	block_t start_blk;
1071 	block_t end_blk;
1072 #ifdef CONFIG_BLK_DEV_ZONED
1073 	unsigned int nr_blkz;			/* Total number of zones */
1074 	u8 *blkz_type;				/* Array of zones type */
1075 #endif
1076 };
1077 
1078 enum inode_type {
1079 	DIR_INODE,			/* for dirty dir inode */
1080 	FILE_INODE,			/* for dirty regular/symlink inode */
1081 	DIRTY_META,			/* for all dirtied inode metadata */
1082 	ATOMIC_FILE,			/* for all atomic files */
1083 	NR_INODE_TYPE,
1084 };
1085 
1086 /* for inner inode cache management */
1087 struct inode_management {
1088 	struct radix_tree_root ino_root;	/* ino entry array */
1089 	spinlock_t ino_lock;			/* for ino entry lock */
1090 	struct list_head ino_list;		/* inode list head */
1091 	unsigned long ino_num;			/* number of entries */
1092 };
1093 
1094 /* For s_flag in struct f2fs_sb_info */
1095 enum {
1096 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1097 	SBI_IS_CLOSE,				/* specify unmounting */
1098 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1099 	SBI_POR_DOING,				/* recovery is doing or not */
1100 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1101 	SBI_NEED_CP,				/* need to checkpoint */
1102 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1103 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1104 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1105 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1106 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1107 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1108 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1109 };
1110 
1111 enum {
1112 	CP_TIME,
1113 	REQ_TIME,
1114 	DISCARD_TIME,
1115 	GC_TIME,
1116 	DISABLE_TIME,
1117 	UMOUNT_DISCARD_TIMEOUT,
1118 	MAX_TIME,
1119 };
1120 
1121 enum {
1122 	GC_NORMAL,
1123 	GC_IDLE_CB,
1124 	GC_IDLE_GREEDY,
1125 	GC_URGENT,
1126 };
1127 
1128 enum {
1129 	WHINT_MODE_OFF,		/* not pass down write hints */
1130 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1131 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1132 };
1133 
1134 enum {
1135 	ALLOC_MODE_DEFAULT,	/* stay default */
1136 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1137 };
1138 
1139 enum fsync_mode {
1140 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1141 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1142 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1143 };
1144 
1145 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1146 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1147 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1148 #else
1149 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1150 #endif
1151 
1152 struct f2fs_sb_info {
1153 	struct super_block *sb;			/* pointer to VFS super block */
1154 	struct proc_dir_entry *s_proc;		/* proc entry */
1155 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1156 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1157 	int valid_super_block;			/* valid super block no */
1158 	unsigned long s_flag;				/* flags for sbi */
1159 	struct mutex writepages;		/* mutex for writepages() */
1160 
1161 #ifdef CONFIG_BLK_DEV_ZONED
1162 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1163 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1164 #endif
1165 
1166 	/* for node-related operations */
1167 	struct f2fs_nm_info *nm_info;		/* node manager */
1168 	struct inode *node_inode;		/* cache node blocks */
1169 
1170 	/* for segment-related operations */
1171 	struct f2fs_sm_info *sm_info;		/* segment manager */
1172 
1173 	/* for bio operations */
1174 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1175 	/* keep migration IO order for LFS mode */
1176 	struct rw_semaphore io_order_lock;
1177 	mempool_t *write_io_dummy;		/* Dummy pages */
1178 
1179 	/* for checkpoint */
1180 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1181 	int cur_cp_pack;			/* remain current cp pack */
1182 	spinlock_t cp_lock;			/* for flag in ckpt */
1183 	struct inode *meta_inode;		/* cache meta blocks */
1184 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1185 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1186 	struct rw_semaphore node_write;		/* locking node writes */
1187 	struct rw_semaphore node_change;	/* locking node change */
1188 	wait_queue_head_t cp_wait;
1189 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1190 	long interval_time[MAX_TIME];		/* to store thresholds */
1191 
1192 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1193 
1194 	spinlock_t fsync_node_lock;		/* for node entry lock */
1195 	struct list_head fsync_node_list;	/* node list head */
1196 	unsigned int fsync_seg_id;		/* sequence id */
1197 	unsigned int fsync_node_num;		/* number of node entries */
1198 
1199 	/* for orphan inode, use 0'th array */
1200 	unsigned int max_orphans;		/* max orphan inodes */
1201 
1202 	/* for inode management */
1203 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1204 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1205 
1206 	/* for extent tree cache */
1207 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1208 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1209 	struct list_head extent_list;		/* lru list for shrinker */
1210 	spinlock_t extent_lock;			/* locking extent lru list */
1211 	atomic_t total_ext_tree;		/* extent tree count */
1212 	struct list_head zombie_list;		/* extent zombie tree list */
1213 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1214 	atomic_t total_ext_node;		/* extent info count */
1215 
1216 	/* basic filesystem units */
1217 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1218 	unsigned int log_blocksize;		/* log2 block size */
1219 	unsigned int blocksize;			/* block size */
1220 	unsigned int root_ino_num;		/* root inode number*/
1221 	unsigned int node_ino_num;		/* node inode number*/
1222 	unsigned int meta_ino_num;		/* meta inode number*/
1223 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1224 	unsigned int blocks_per_seg;		/* blocks per segment */
1225 	unsigned int segs_per_sec;		/* segments per section */
1226 	unsigned int secs_per_zone;		/* sections per zone */
1227 	unsigned int total_sections;		/* total section count */
1228 	unsigned int total_node_count;		/* total node block count */
1229 	unsigned int total_valid_node_count;	/* valid node block count */
1230 	loff_t max_file_blocks;			/* max block index of file */
1231 	int dir_level;				/* directory level */
1232 	int readdir_ra;				/* readahead inode in readdir */
1233 
1234 	block_t user_block_count;		/* # of user blocks */
1235 	block_t total_valid_block_count;	/* # of valid blocks */
1236 	block_t discard_blks;			/* discard command candidats */
1237 	block_t last_valid_block_count;		/* for recovery */
1238 	block_t reserved_blocks;		/* configurable reserved blocks */
1239 	block_t current_reserved_blocks;	/* current reserved blocks */
1240 
1241 	/* Additional tracking for no checkpoint mode */
1242 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1243 
1244 	unsigned int nquota_files;		/* # of quota sysfile */
1245 
1246 	/* # of pages, see count_type */
1247 	atomic_t nr_pages[NR_COUNT_TYPE];
1248 	/* # of allocated blocks */
1249 	struct percpu_counter alloc_valid_block_count;
1250 
1251 	/* writeback control */
1252 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1253 
1254 	/* valid inode count */
1255 	struct percpu_counter total_valid_inode_count;
1256 
1257 	struct f2fs_mount_info mount_opt;	/* mount options */
1258 
1259 	/* for cleaning operations */
1260 	struct mutex gc_mutex;			/* mutex for GC */
1261 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1262 	unsigned int cur_victim_sec;		/* current victim section num */
1263 	unsigned int gc_mode;			/* current GC state */
1264 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1265 	/* for skip statistic */
1266 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1267 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1268 
1269 	/* threshold for gc trials on pinned files */
1270 	u64 gc_pin_file_threshold;
1271 
1272 	/* maximum # of trials to find a victim segment for SSR and GC */
1273 	unsigned int max_victim_search;
1274 	/* migration granularity of garbage collection, unit: segment */
1275 	unsigned int migration_granularity;
1276 
1277 	/*
1278 	 * for stat information.
1279 	 * one is for the LFS mode, and the other is for the SSR mode.
1280 	 */
1281 #ifdef CONFIG_F2FS_STAT_FS
1282 	struct f2fs_stat_info *stat_info;	/* FS status information */
1283 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1284 	unsigned int segment_count[2];		/* # of allocated segments */
1285 	unsigned int block_count[2];		/* # of allocated blocks */
1286 	atomic_t inplace_count;		/* # of inplace update */
1287 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1288 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1289 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1290 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1291 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1292 	atomic_t inline_inode;			/* # of inline_data inodes */
1293 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1294 	atomic_t aw_cnt;			/* # of atomic writes */
1295 	atomic_t vw_cnt;			/* # of volatile writes */
1296 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1297 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1298 	int bg_gc;				/* background gc calls */
1299 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1300 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1301 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1302 #endif
1303 	spinlock_t stat_lock;			/* lock for stat operations */
1304 
1305 	/* For app/fs IO statistics */
1306 	spinlock_t iostat_lock;
1307 	unsigned long long write_iostat[NR_IO_TYPE];
1308 	bool iostat_enable;
1309 
1310 	/* For sysfs suppport */
1311 	struct kobject s_kobj;
1312 	struct completion s_kobj_unregister;
1313 
1314 	/* For shrinker support */
1315 	struct list_head s_list;
1316 	int s_ndevs;				/* number of devices */
1317 	struct f2fs_dev_info *devs;		/* for device list */
1318 	unsigned int dirty_device;		/* for checkpoint data flush */
1319 	spinlock_t dev_lock;			/* protect dirty_device */
1320 	struct mutex umount_mutex;
1321 	unsigned int shrinker_run_no;
1322 
1323 	/* For write statistics */
1324 	u64 sectors_written_start;
1325 	u64 kbytes_written;
1326 
1327 	/* Reference to checksum algorithm driver via cryptoapi */
1328 	struct crypto_shash *s_chksum_driver;
1329 
1330 	/* Precomputed FS UUID checksum for seeding other checksums */
1331 	__u32 s_chksum_seed;
1332 };
1333 
1334 struct f2fs_private_dio {
1335 	struct inode *inode;
1336 	void *orig_private;
1337 	bio_end_io_t *orig_end_io;
1338 	bool write;
1339 };
1340 
1341 #ifdef CONFIG_F2FS_FAULT_INJECTION
1342 #define f2fs_show_injection_info(type)					\
1343 	printk_ratelimited("%sF2FS-fs : inject %s in %s of %pF\n",	\
1344 		KERN_INFO, f2fs_fault_name[type],			\
1345 		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1346 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1347 {
1348 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1349 
1350 	if (!ffi->inject_rate)
1351 		return false;
1352 
1353 	if (!IS_FAULT_SET(ffi, type))
1354 		return false;
1355 
1356 	atomic_inc(&ffi->inject_ops);
1357 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1358 		atomic_set(&ffi->inject_ops, 0);
1359 		return true;
1360 	}
1361 	return false;
1362 }
1363 #else
1364 #define f2fs_show_injection_info(type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1365 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1366 {
1367 	return false;
1368 }
1369 #endif
1370 
1371 /*
1372  * Test if the mounted volume is a multi-device volume.
1373  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1374  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1375  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1376  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1377 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1378 {
1379 	return sbi->s_ndevs > 1;
1380 }
1381 
1382 /* For write statistics. Suppose sector size is 512 bytes,
1383  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1384  */
1385 #define BD_PART_WRITTEN(s)						 \
1386 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1387 		(s)->sectors_written_start) >> 1)
1388 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1389 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1390 {
1391 	unsigned long now = jiffies;
1392 
1393 	sbi->last_time[type] = now;
1394 
1395 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1396 	if (type == REQ_TIME) {
1397 		sbi->last_time[DISCARD_TIME] = now;
1398 		sbi->last_time[GC_TIME] = now;
1399 	}
1400 }
1401 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1402 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1403 {
1404 	unsigned long interval = sbi->interval_time[type] * HZ;
1405 
1406 	return time_after(jiffies, sbi->last_time[type] + interval);
1407 }
1408 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1409 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1410 						int type)
1411 {
1412 	unsigned long interval = sbi->interval_time[type] * HZ;
1413 	unsigned int wait_ms = 0;
1414 	long delta;
1415 
1416 	delta = (sbi->last_time[type] + interval) - jiffies;
1417 	if (delta > 0)
1418 		wait_ms = jiffies_to_msecs(delta);
1419 
1420 	return wait_ms;
1421 }
1422 
1423 /*
1424  * Inline functions
1425  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1426 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1427 			      const void *address, unsigned int length)
1428 {
1429 	struct {
1430 		struct shash_desc shash;
1431 		char ctx[4];
1432 	} desc;
1433 	int err;
1434 
1435 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1436 
1437 	desc.shash.tfm = sbi->s_chksum_driver;
1438 	desc.shash.flags = 0;
1439 	*(u32 *)desc.ctx = crc;
1440 
1441 	err = crypto_shash_update(&desc.shash, address, length);
1442 	BUG_ON(err);
1443 
1444 	return *(u32 *)desc.ctx;
1445 }
1446 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1447 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1448 			   unsigned int length)
1449 {
1450 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1451 }
1452 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1453 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1454 				  void *buf, size_t buf_size)
1455 {
1456 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1457 }
1458 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1459 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1460 			      const void *address, unsigned int length)
1461 {
1462 	return __f2fs_crc32(sbi, crc, address, length);
1463 }
1464 
F2FS_I(struct inode * inode)1465 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1466 {
1467 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1468 }
1469 
F2FS_SB(struct super_block * sb)1470 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1471 {
1472 	return sb->s_fs_info;
1473 }
1474 
F2FS_I_SB(struct inode * inode)1475 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1476 {
1477 	return F2FS_SB(inode->i_sb);
1478 }
1479 
F2FS_M_SB(struct address_space * mapping)1480 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1481 {
1482 	return F2FS_I_SB(mapping->host);
1483 }
1484 
F2FS_P_SB(struct page * page)1485 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1486 {
1487 	return F2FS_M_SB(page->mapping);
1488 }
1489 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1490 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1491 {
1492 	return (struct f2fs_super_block *)(sbi->raw_super);
1493 }
1494 
F2FS_CKPT(struct f2fs_sb_info * sbi)1495 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1496 {
1497 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1498 }
1499 
F2FS_NODE(struct page * page)1500 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1501 {
1502 	return (struct f2fs_node *)page_address(page);
1503 }
1504 
F2FS_INODE(struct page * page)1505 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1506 {
1507 	return &((struct f2fs_node *)page_address(page))->i;
1508 }
1509 
NM_I(struct f2fs_sb_info * sbi)1510 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1511 {
1512 	return (struct f2fs_nm_info *)(sbi->nm_info);
1513 }
1514 
SM_I(struct f2fs_sb_info * sbi)1515 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1516 {
1517 	return (struct f2fs_sm_info *)(sbi->sm_info);
1518 }
1519 
SIT_I(struct f2fs_sb_info * sbi)1520 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1521 {
1522 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1523 }
1524 
FREE_I(struct f2fs_sb_info * sbi)1525 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1526 {
1527 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1528 }
1529 
DIRTY_I(struct f2fs_sb_info * sbi)1530 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1531 {
1532 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1533 }
1534 
META_MAPPING(struct f2fs_sb_info * sbi)1535 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1536 {
1537 	return sbi->meta_inode->i_mapping;
1538 }
1539 
NODE_MAPPING(struct f2fs_sb_info * sbi)1540 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1541 {
1542 	return sbi->node_inode->i_mapping;
1543 }
1544 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1545 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1546 {
1547 	return test_bit(type, &sbi->s_flag);
1548 }
1549 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1550 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1551 {
1552 	set_bit(type, &sbi->s_flag);
1553 }
1554 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1555 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1556 {
1557 	clear_bit(type, &sbi->s_flag);
1558 }
1559 
cur_cp_version(struct f2fs_checkpoint * cp)1560 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1561 {
1562 	return le64_to_cpu(cp->checkpoint_ver);
1563 }
1564 
f2fs_qf_ino(struct super_block * sb,int type)1565 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1566 {
1567 	if (type < F2FS_MAX_QUOTAS)
1568 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1569 	return 0;
1570 }
1571 
cur_cp_crc(struct f2fs_checkpoint * cp)1572 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1573 {
1574 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1575 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1576 }
1577 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1578 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1579 {
1580 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1581 
1582 	return ckpt_flags & f;
1583 }
1584 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1585 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1586 {
1587 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1588 }
1589 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1590 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1591 {
1592 	unsigned int ckpt_flags;
1593 
1594 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1595 	ckpt_flags |= f;
1596 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1597 }
1598 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1599 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1600 {
1601 	unsigned long flags;
1602 
1603 	spin_lock_irqsave(&sbi->cp_lock, flags);
1604 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1605 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1606 }
1607 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1608 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1609 {
1610 	unsigned int ckpt_flags;
1611 
1612 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1613 	ckpt_flags &= (~f);
1614 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1615 }
1616 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1617 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1618 {
1619 	unsigned long flags;
1620 
1621 	spin_lock_irqsave(&sbi->cp_lock, flags);
1622 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1623 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1624 }
1625 
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1626 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1627 {
1628 	unsigned long flags;
1629 
1630 	/*
1631 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1632 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1633 	 * so let's rely on regular fsck or unclean shutdown.
1634 	 */
1635 
1636 	if (lock)
1637 		spin_lock_irqsave(&sbi->cp_lock, flags);
1638 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1639 	kvfree(NM_I(sbi)->nat_bits);
1640 	NM_I(sbi)->nat_bits = NULL;
1641 	if (lock)
1642 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1643 }
1644 
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1645 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1646 					struct cp_control *cpc)
1647 {
1648 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1649 
1650 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1651 }
1652 
f2fs_lock_op(struct f2fs_sb_info * sbi)1653 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1654 {
1655 	down_read(&sbi->cp_rwsem);
1656 }
1657 
f2fs_trylock_op(struct f2fs_sb_info * sbi)1658 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1659 {
1660 	return down_read_trylock(&sbi->cp_rwsem);
1661 }
1662 
f2fs_unlock_op(struct f2fs_sb_info * sbi)1663 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1664 {
1665 	up_read(&sbi->cp_rwsem);
1666 }
1667 
f2fs_lock_all(struct f2fs_sb_info * sbi)1668 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1669 {
1670 	down_write(&sbi->cp_rwsem);
1671 }
1672 
f2fs_unlock_all(struct f2fs_sb_info * sbi)1673 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1674 {
1675 	up_write(&sbi->cp_rwsem);
1676 }
1677 
__get_cp_reason(struct f2fs_sb_info * sbi)1678 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1679 {
1680 	int reason = CP_SYNC;
1681 
1682 	if (test_opt(sbi, FASTBOOT))
1683 		reason = CP_FASTBOOT;
1684 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1685 		reason = CP_UMOUNT;
1686 	return reason;
1687 }
1688 
__remain_node_summaries(int reason)1689 static inline bool __remain_node_summaries(int reason)
1690 {
1691 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1692 }
1693 
__exist_node_summaries(struct f2fs_sb_info * sbi)1694 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1695 {
1696 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1697 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1698 }
1699 
1700 /*
1701  * Check whether the inode has blocks or not
1702  */
F2FS_HAS_BLOCKS(struct inode * inode)1703 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1704 {
1705 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1706 
1707 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1708 }
1709 
f2fs_has_xattr_block(unsigned int ofs)1710 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1711 {
1712 	return ofs == XATTR_NODE_OFFSET;
1713 }
1714 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)1715 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1716 					struct inode *inode, bool cap)
1717 {
1718 	if (!inode)
1719 		return true;
1720 	if (!test_opt(sbi, RESERVE_ROOT))
1721 		return false;
1722 	if (IS_NOQUOTA(inode))
1723 		return true;
1724 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1725 		return true;
1726 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1727 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1728 		return true;
1729 	if (cap && capable(CAP_SYS_RESOURCE))
1730 		return true;
1731 	return false;
1732 }
1733 
1734 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)1735 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1736 				 struct inode *inode, blkcnt_t *count)
1737 {
1738 	blkcnt_t diff = 0, release = 0;
1739 	block_t avail_user_block_count;
1740 	int ret;
1741 
1742 	ret = dquot_reserve_block(inode, *count);
1743 	if (ret)
1744 		return ret;
1745 
1746 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1747 		f2fs_show_injection_info(FAULT_BLOCK);
1748 		release = *count;
1749 		goto enospc;
1750 	}
1751 
1752 	/*
1753 	 * let's increase this in prior to actual block count change in order
1754 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1755 	 */
1756 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1757 
1758 	spin_lock(&sbi->stat_lock);
1759 	sbi->total_valid_block_count += (block_t)(*count);
1760 	avail_user_block_count = sbi->user_block_count -
1761 					sbi->current_reserved_blocks;
1762 
1763 	if (!__allow_reserved_blocks(sbi, inode, true))
1764 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1765 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1766 		avail_user_block_count -= sbi->unusable_block_count;
1767 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1768 		diff = sbi->total_valid_block_count - avail_user_block_count;
1769 		if (diff > *count)
1770 			diff = *count;
1771 		*count -= diff;
1772 		release = diff;
1773 		sbi->total_valid_block_count -= diff;
1774 		if (!*count) {
1775 			spin_unlock(&sbi->stat_lock);
1776 			goto enospc;
1777 		}
1778 	}
1779 	spin_unlock(&sbi->stat_lock);
1780 
1781 	if (unlikely(release)) {
1782 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1783 		dquot_release_reservation_block(inode, release);
1784 	}
1785 	f2fs_i_blocks_write(inode, *count, true, true);
1786 	return 0;
1787 
1788 enospc:
1789 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1790 	dquot_release_reservation_block(inode, release);
1791 	return -ENOSPC;
1792 }
1793 
1794 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)1795 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1796 						struct inode *inode,
1797 						block_t count)
1798 {
1799 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1800 
1801 	spin_lock(&sbi->stat_lock);
1802 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1803 	sbi->total_valid_block_count -= (block_t)count;
1804 	if (sbi->reserved_blocks &&
1805 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1806 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1807 					sbi->current_reserved_blocks + count);
1808 	spin_unlock(&sbi->stat_lock);
1809 	if (unlikely(inode->i_blocks < sectors)) {
1810 		f2fs_msg(sbi->sb, KERN_WARNING,
1811 			"Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1812 			inode->i_ino,
1813 			(unsigned long long)inode->i_blocks,
1814 			(unsigned long long)sectors);
1815 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1816 		return;
1817 	}
1818 	f2fs_i_blocks_write(inode, count, false, true);
1819 }
1820 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)1821 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1822 {
1823 	atomic_inc(&sbi->nr_pages[count_type]);
1824 
1825 	if (count_type == F2FS_DIRTY_DENTS ||
1826 			count_type == F2FS_DIRTY_NODES ||
1827 			count_type == F2FS_DIRTY_META ||
1828 			count_type == F2FS_DIRTY_QDATA ||
1829 			count_type == F2FS_DIRTY_IMETA)
1830 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1831 }
1832 
inode_inc_dirty_pages(struct inode * inode)1833 static inline void inode_inc_dirty_pages(struct inode *inode)
1834 {
1835 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1836 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1837 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1838 	if (IS_NOQUOTA(inode))
1839 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1840 }
1841 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)1842 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1843 {
1844 	atomic_dec(&sbi->nr_pages[count_type]);
1845 }
1846 
inode_dec_dirty_pages(struct inode * inode)1847 static inline void inode_dec_dirty_pages(struct inode *inode)
1848 {
1849 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1850 			!S_ISLNK(inode->i_mode))
1851 		return;
1852 
1853 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1854 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1855 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1856 	if (IS_NOQUOTA(inode))
1857 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1858 }
1859 
get_pages(struct f2fs_sb_info * sbi,int count_type)1860 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1861 {
1862 	return atomic_read(&sbi->nr_pages[count_type]);
1863 }
1864 
get_dirty_pages(struct inode * inode)1865 static inline int get_dirty_pages(struct inode *inode)
1866 {
1867 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1868 }
1869 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)1870 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1871 {
1872 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1873 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1874 						sbi->log_blocks_per_seg;
1875 
1876 	return segs / sbi->segs_per_sec;
1877 }
1878 
valid_user_blocks(struct f2fs_sb_info * sbi)1879 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1880 {
1881 	return sbi->total_valid_block_count;
1882 }
1883 
discard_blocks(struct f2fs_sb_info * sbi)1884 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1885 {
1886 	return sbi->discard_blks;
1887 }
1888 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)1889 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1890 {
1891 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1892 
1893 	/* return NAT or SIT bitmap */
1894 	if (flag == NAT_BITMAP)
1895 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1896 	else if (flag == SIT_BITMAP)
1897 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1898 
1899 	return 0;
1900 }
1901 
__cp_payload(struct f2fs_sb_info * sbi)1902 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1903 {
1904 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1905 }
1906 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)1907 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1908 {
1909 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1910 	int offset;
1911 
1912 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1913 		offset = (flag == SIT_BITMAP) ?
1914 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1915 		return &ckpt->sit_nat_version_bitmap + offset;
1916 	}
1917 
1918 	if (__cp_payload(sbi) > 0) {
1919 		if (flag == NAT_BITMAP)
1920 			return &ckpt->sit_nat_version_bitmap;
1921 		else
1922 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1923 	} else {
1924 		offset = (flag == NAT_BITMAP) ?
1925 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1926 		return &ckpt->sit_nat_version_bitmap + offset;
1927 	}
1928 }
1929 
__start_cp_addr(struct f2fs_sb_info * sbi)1930 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1931 {
1932 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1933 
1934 	if (sbi->cur_cp_pack == 2)
1935 		start_addr += sbi->blocks_per_seg;
1936 	return start_addr;
1937 }
1938 
__start_cp_next_addr(struct f2fs_sb_info * sbi)1939 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1940 {
1941 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1942 
1943 	if (sbi->cur_cp_pack == 1)
1944 		start_addr += sbi->blocks_per_seg;
1945 	return start_addr;
1946 }
1947 
__set_cp_next_pack(struct f2fs_sb_info * sbi)1948 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1949 {
1950 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1951 }
1952 
__start_sum_addr(struct f2fs_sb_info * sbi)1953 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1954 {
1955 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1956 }
1957 
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1958 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1959 					struct inode *inode, bool is_inode)
1960 {
1961 	block_t	valid_block_count;
1962 	unsigned int valid_node_count;
1963 	int err;
1964 
1965 	if (is_inode) {
1966 		if (inode) {
1967 			err = dquot_alloc_inode(inode);
1968 			if (err)
1969 				return err;
1970 		}
1971 	} else {
1972 		err = dquot_reserve_block(inode, 1);
1973 		if (err)
1974 			return err;
1975 	}
1976 
1977 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1978 		f2fs_show_injection_info(FAULT_BLOCK);
1979 		goto enospc;
1980 	}
1981 
1982 	spin_lock(&sbi->stat_lock);
1983 
1984 	valid_block_count = sbi->total_valid_block_count +
1985 					sbi->current_reserved_blocks + 1;
1986 
1987 	if (!__allow_reserved_blocks(sbi, inode, false))
1988 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1989 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1990 		valid_block_count += sbi->unusable_block_count;
1991 
1992 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1993 		spin_unlock(&sbi->stat_lock);
1994 		goto enospc;
1995 	}
1996 
1997 	valid_node_count = sbi->total_valid_node_count + 1;
1998 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1999 		spin_unlock(&sbi->stat_lock);
2000 		goto enospc;
2001 	}
2002 
2003 	sbi->total_valid_node_count++;
2004 	sbi->total_valid_block_count++;
2005 	spin_unlock(&sbi->stat_lock);
2006 
2007 	if (inode) {
2008 		if (is_inode)
2009 			f2fs_mark_inode_dirty_sync(inode, true);
2010 		else
2011 			f2fs_i_blocks_write(inode, 1, true, true);
2012 	}
2013 
2014 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2015 	return 0;
2016 
2017 enospc:
2018 	if (is_inode) {
2019 		if (inode)
2020 			dquot_free_inode(inode);
2021 	} else {
2022 		dquot_release_reservation_block(inode, 1);
2023 	}
2024 	return -ENOSPC;
2025 }
2026 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2027 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2028 					struct inode *inode, bool is_inode)
2029 {
2030 	spin_lock(&sbi->stat_lock);
2031 
2032 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2033 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2034 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
2035 
2036 	sbi->total_valid_node_count--;
2037 	sbi->total_valid_block_count--;
2038 	if (sbi->reserved_blocks &&
2039 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2040 		sbi->current_reserved_blocks++;
2041 
2042 	spin_unlock(&sbi->stat_lock);
2043 
2044 	if (is_inode)
2045 		dquot_free_inode(inode);
2046 	else
2047 		f2fs_i_blocks_write(inode, 1, false, true);
2048 }
2049 
valid_node_count(struct f2fs_sb_info * sbi)2050 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2051 {
2052 	return sbi->total_valid_node_count;
2053 }
2054 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2055 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2056 {
2057 	percpu_counter_inc(&sbi->total_valid_inode_count);
2058 }
2059 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2060 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2061 {
2062 	percpu_counter_dec(&sbi->total_valid_inode_count);
2063 }
2064 
valid_inode_count(struct f2fs_sb_info * sbi)2065 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2066 {
2067 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2068 }
2069 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2070 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2071 						pgoff_t index, bool for_write)
2072 {
2073 	struct page *page;
2074 
2075 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2076 		if (!for_write)
2077 			page = find_get_page_flags(mapping, index,
2078 							FGP_LOCK | FGP_ACCESSED);
2079 		else
2080 			page = find_lock_page(mapping, index);
2081 		if (page)
2082 			return page;
2083 
2084 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2085 			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2086 			return NULL;
2087 		}
2088 	}
2089 
2090 	if (!for_write)
2091 		return grab_cache_page(mapping, index);
2092 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2093 }
2094 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2095 static inline struct page *f2fs_pagecache_get_page(
2096 				struct address_space *mapping, pgoff_t index,
2097 				int fgp_flags, gfp_t gfp_mask)
2098 {
2099 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2100 		f2fs_show_injection_info(FAULT_PAGE_GET);
2101 		return NULL;
2102 	}
2103 
2104 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2105 }
2106 
f2fs_copy_page(struct page * src,struct page * dst)2107 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2108 {
2109 	char *src_kaddr = kmap(src);
2110 	char *dst_kaddr = kmap(dst);
2111 
2112 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2113 	kunmap(dst);
2114 	kunmap(src);
2115 }
2116 
f2fs_put_page(struct page * page,int unlock)2117 static inline void f2fs_put_page(struct page *page, int unlock)
2118 {
2119 	if (!page)
2120 		return;
2121 
2122 	if (unlock) {
2123 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2124 		unlock_page(page);
2125 	}
2126 	put_page(page);
2127 }
2128 
f2fs_put_dnode(struct dnode_of_data * dn)2129 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2130 {
2131 	if (dn->node_page)
2132 		f2fs_put_page(dn->node_page, 1);
2133 	if (dn->inode_page && dn->node_page != dn->inode_page)
2134 		f2fs_put_page(dn->inode_page, 0);
2135 	dn->node_page = NULL;
2136 	dn->inode_page = NULL;
2137 }
2138 
f2fs_kmem_cache_create(const char * name,size_t size)2139 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2140 					size_t size)
2141 {
2142 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2143 }
2144 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2145 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2146 						gfp_t flags)
2147 {
2148 	void *entry;
2149 
2150 	entry = kmem_cache_alloc(cachep, flags);
2151 	if (!entry)
2152 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2153 	return entry;
2154 }
2155 
f2fs_bio_alloc(struct f2fs_sb_info * sbi,int npages,bool no_fail)2156 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2157 						int npages, bool no_fail)
2158 {
2159 	struct bio *bio;
2160 
2161 	if (no_fail) {
2162 		/* No failure on bio allocation */
2163 		bio = bio_alloc(GFP_NOIO, npages);
2164 		if (!bio)
2165 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2166 		return bio;
2167 	}
2168 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2169 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2170 		return NULL;
2171 	}
2172 
2173 	return bio_alloc(GFP_KERNEL, npages);
2174 }
2175 
is_idle(struct f2fs_sb_info * sbi,int type)2176 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2177 {
2178 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2179 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2180 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2181 		get_pages(sbi, F2FS_DIO_READ) ||
2182 		get_pages(sbi, F2FS_DIO_WRITE))
2183 		return false;
2184 
2185 	if (SM_I(sbi) && SM_I(sbi)->dcc_info &&
2186 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2187 		return false;
2188 
2189 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2190 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2191 		return false;
2192 
2193 	return f2fs_time_over(sbi, type);
2194 }
2195 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2196 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2197 				unsigned long index, void *item)
2198 {
2199 	while (radix_tree_insert(root, index, item))
2200 		cond_resched();
2201 }
2202 
2203 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2204 
IS_INODE(struct page * page)2205 static inline bool IS_INODE(struct page *page)
2206 {
2207 	struct f2fs_node *p = F2FS_NODE(page);
2208 
2209 	return RAW_IS_INODE(p);
2210 }
2211 
offset_in_addr(struct f2fs_inode * i)2212 static inline int offset_in_addr(struct f2fs_inode *i)
2213 {
2214 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2215 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2216 }
2217 
blkaddr_in_node(struct f2fs_node * node)2218 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2219 {
2220 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2221 }
2222 
2223 static inline int f2fs_has_extra_attr(struct inode *inode);
datablock_addr(struct inode * inode,struct page * node_page,unsigned int offset)2224 static inline block_t datablock_addr(struct inode *inode,
2225 			struct page *node_page, unsigned int offset)
2226 {
2227 	struct f2fs_node *raw_node;
2228 	__le32 *addr_array;
2229 	int base = 0;
2230 	bool is_inode = IS_INODE(node_page);
2231 
2232 	raw_node = F2FS_NODE(node_page);
2233 
2234 	/* from GC path only */
2235 	if (is_inode) {
2236 		if (!inode)
2237 			base = offset_in_addr(&raw_node->i);
2238 		else if (f2fs_has_extra_attr(inode))
2239 			base = get_extra_isize(inode);
2240 	}
2241 
2242 	addr_array = blkaddr_in_node(raw_node);
2243 	return le32_to_cpu(addr_array[base + offset]);
2244 }
2245 
f2fs_test_bit(unsigned int nr,char * addr)2246 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2247 {
2248 	int mask;
2249 
2250 	addr += (nr >> 3);
2251 	mask = 1 << (7 - (nr & 0x07));
2252 	return mask & *addr;
2253 }
2254 
f2fs_set_bit(unsigned int nr,char * addr)2255 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2256 {
2257 	int mask;
2258 
2259 	addr += (nr >> 3);
2260 	mask = 1 << (7 - (nr & 0x07));
2261 	*addr |= mask;
2262 }
2263 
f2fs_clear_bit(unsigned int nr,char * addr)2264 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2265 {
2266 	int mask;
2267 
2268 	addr += (nr >> 3);
2269 	mask = 1 << (7 - (nr & 0x07));
2270 	*addr &= ~mask;
2271 }
2272 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2273 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2274 {
2275 	int mask;
2276 	int ret;
2277 
2278 	addr += (nr >> 3);
2279 	mask = 1 << (7 - (nr & 0x07));
2280 	ret = mask & *addr;
2281 	*addr |= mask;
2282 	return ret;
2283 }
2284 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2285 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2286 {
2287 	int mask;
2288 	int ret;
2289 
2290 	addr += (nr >> 3);
2291 	mask = 1 << (7 - (nr & 0x07));
2292 	ret = mask & *addr;
2293 	*addr &= ~mask;
2294 	return ret;
2295 }
2296 
f2fs_change_bit(unsigned int nr,char * addr)2297 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2298 {
2299 	int mask;
2300 
2301 	addr += (nr >> 3);
2302 	mask = 1 << (7 - (nr & 0x07));
2303 	*addr ^= mask;
2304 }
2305 
2306 /*
2307  * Inode flags
2308  */
2309 #define F2FS_SECRM_FL			0x00000001 /* Secure deletion */
2310 #define F2FS_UNRM_FL			0x00000002 /* Undelete */
2311 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2312 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2313 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2314 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2315 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2316 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2317 /* Reserved for compression usage... */
2318 #define F2FS_DIRTY_FL			0x00000100
2319 #define F2FS_COMPRBLK_FL		0x00000200 /* One or more compressed clusters */
2320 #define F2FS_NOCOMPR_FL			0x00000400 /* Don't compress */
2321 #define F2FS_ENCRYPT_FL			0x00000800 /* encrypted file */
2322 /* End compression flags --- maybe not all used */
2323 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2324 #define F2FS_IMAGIC_FL			0x00002000 /* AFS directory */
2325 #define F2FS_JOURNAL_DATA_FL		0x00004000 /* file data should be journaled */
2326 #define F2FS_NOTAIL_FL			0x00008000 /* file tail should not be merged */
2327 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2328 #define F2FS_TOPDIR_FL			0x00020000 /* Top of directory hierarchies*/
2329 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2330 #define F2FS_EXTENTS_FL			0x00080000 /* Inode uses extents */
2331 #define F2FS_EA_INODE_FL	        0x00200000 /* Inode used for large EA */
2332 #define F2FS_EOFBLOCKS_FL		0x00400000 /* Blocks allocated beyond EOF */
2333 #define F2FS_NOCOW_FL			0x00800000 /* Do not cow file */
2334 #define F2FS_INLINE_DATA_FL		0x10000000 /* Inode has inline data. */
2335 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2336 #define F2FS_RESERVED_FL		0x80000000 /* reserved for ext4 lib */
2337 
2338 #define F2FS_FL_USER_VISIBLE		0x30CBDFFF /* User visible flags */
2339 #define F2FS_FL_USER_MODIFIABLE		0x204BC0FF /* User modifiable flags */
2340 
2341 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2342 #define F2FS_FL_XFLAG_VISIBLE		(F2FS_SYNC_FL | \
2343 					 F2FS_IMMUTABLE_FL | \
2344 					 F2FS_APPEND_FL | \
2345 					 F2FS_NODUMP_FL | \
2346 					 F2FS_NOATIME_FL | \
2347 					 F2FS_PROJINHERIT_FL)
2348 
2349 /* Flags that should be inherited by new inodes from their parent. */
2350 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2351 			   F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2352 			   F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2353 			   F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2354 			   F2FS_PROJINHERIT_FL)
2355 
2356 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2357 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2358 
2359 /* Flags that are appropriate for non-directories/regular files. */
2360 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2361 
f2fs_mask_flags(umode_t mode,__u32 flags)2362 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2363 {
2364 	if (S_ISDIR(mode))
2365 		return flags;
2366 	else if (S_ISREG(mode))
2367 		return flags & F2FS_REG_FLMASK;
2368 	else
2369 		return flags & F2FS_OTHER_FLMASK;
2370 }
2371 
2372 /* used for f2fs_inode_info->flags */
2373 enum {
2374 	FI_NEW_INODE,		/* indicate newly allocated inode */
2375 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2376 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2377 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2378 	FI_INC_LINK,		/* need to increment i_nlink */
2379 	FI_ACL_MODE,		/* indicate acl mode */
2380 	FI_NO_ALLOC,		/* should not allocate any blocks */
2381 	FI_FREE_NID,		/* free allocated nide */
2382 	FI_NO_EXTENT,		/* not to use the extent cache */
2383 	FI_INLINE_XATTR,	/* used for inline xattr */
2384 	FI_INLINE_DATA,		/* used for inline data*/
2385 	FI_INLINE_DENTRY,	/* used for inline dentry */
2386 	FI_APPEND_WRITE,	/* inode has appended data */
2387 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2388 	FI_NEED_IPU,		/* used for ipu per file */
2389 	FI_ATOMIC_FILE,		/* indicate atomic file */
2390 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2391 	FI_VOLATILE_FILE,	/* indicate volatile file */
2392 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2393 	FI_DROP_CACHE,		/* drop dirty page cache */
2394 	FI_DATA_EXIST,		/* indicate data exists */
2395 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2396 	FI_DO_DEFRAG,		/* indicate defragment is running */
2397 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2398 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2399 	FI_HOT_DATA,		/* indicate file is hot */
2400 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2401 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2402 	FI_PIN_FILE,		/* indicate file should not be gced */
2403 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2404 };
2405 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2406 static inline void __mark_inode_dirty_flag(struct inode *inode,
2407 						int flag, bool set)
2408 {
2409 	switch (flag) {
2410 	case FI_INLINE_XATTR:
2411 	case FI_INLINE_DATA:
2412 	case FI_INLINE_DENTRY:
2413 	case FI_NEW_INODE:
2414 		if (set)
2415 			return;
2416 		/* fall through */
2417 	case FI_DATA_EXIST:
2418 	case FI_INLINE_DOTS:
2419 	case FI_PIN_FILE:
2420 		f2fs_mark_inode_dirty_sync(inode, true);
2421 	}
2422 }
2423 
set_inode_flag(struct inode * inode,int flag)2424 static inline void set_inode_flag(struct inode *inode, int flag)
2425 {
2426 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2427 		set_bit(flag, &F2FS_I(inode)->flags);
2428 	__mark_inode_dirty_flag(inode, flag, true);
2429 }
2430 
is_inode_flag_set(struct inode * inode,int flag)2431 static inline int is_inode_flag_set(struct inode *inode, int flag)
2432 {
2433 	return test_bit(flag, &F2FS_I(inode)->flags);
2434 }
2435 
clear_inode_flag(struct inode * inode,int flag)2436 static inline void clear_inode_flag(struct inode *inode, int flag)
2437 {
2438 	if (test_bit(flag, &F2FS_I(inode)->flags))
2439 		clear_bit(flag, &F2FS_I(inode)->flags);
2440 	__mark_inode_dirty_flag(inode, flag, false);
2441 }
2442 
set_acl_inode(struct inode * inode,umode_t mode)2443 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2444 {
2445 	F2FS_I(inode)->i_acl_mode = mode;
2446 	set_inode_flag(inode, FI_ACL_MODE);
2447 	f2fs_mark_inode_dirty_sync(inode, false);
2448 }
2449 
f2fs_i_links_write(struct inode * inode,bool inc)2450 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2451 {
2452 	if (inc)
2453 		inc_nlink(inode);
2454 	else
2455 		drop_nlink(inode);
2456 	f2fs_mark_inode_dirty_sync(inode, true);
2457 }
2458 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2459 static inline void f2fs_i_blocks_write(struct inode *inode,
2460 					block_t diff, bool add, bool claim)
2461 {
2462 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2463 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2464 
2465 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2466 	if (add) {
2467 		if (claim)
2468 			dquot_claim_block(inode, diff);
2469 		else
2470 			dquot_alloc_block_nofail(inode, diff);
2471 	} else {
2472 		dquot_free_block(inode, diff);
2473 	}
2474 
2475 	f2fs_mark_inode_dirty_sync(inode, true);
2476 	if (clean || recover)
2477 		set_inode_flag(inode, FI_AUTO_RECOVER);
2478 }
2479 
f2fs_i_size_write(struct inode * inode,loff_t i_size)2480 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2481 {
2482 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2483 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2484 
2485 	if (i_size_read(inode) == i_size)
2486 		return;
2487 
2488 	i_size_write(inode, i_size);
2489 	f2fs_mark_inode_dirty_sync(inode, true);
2490 	if (clean || recover)
2491 		set_inode_flag(inode, FI_AUTO_RECOVER);
2492 }
2493 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2494 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2495 {
2496 	F2FS_I(inode)->i_current_depth = depth;
2497 	f2fs_mark_inode_dirty_sync(inode, true);
2498 }
2499 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2500 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2501 					unsigned int count)
2502 {
2503 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2504 	f2fs_mark_inode_dirty_sync(inode, true);
2505 }
2506 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2507 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2508 {
2509 	F2FS_I(inode)->i_xattr_nid = xnid;
2510 	f2fs_mark_inode_dirty_sync(inode, true);
2511 }
2512 
f2fs_i_pino_write(struct inode * inode,nid_t pino)2513 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2514 {
2515 	F2FS_I(inode)->i_pino = pino;
2516 	f2fs_mark_inode_dirty_sync(inode, true);
2517 }
2518 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2519 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2520 {
2521 	struct f2fs_inode_info *fi = F2FS_I(inode);
2522 
2523 	if (ri->i_inline & F2FS_INLINE_XATTR)
2524 		set_bit(FI_INLINE_XATTR, &fi->flags);
2525 	if (ri->i_inline & F2FS_INLINE_DATA)
2526 		set_bit(FI_INLINE_DATA, &fi->flags);
2527 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2528 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2529 	if (ri->i_inline & F2FS_DATA_EXIST)
2530 		set_bit(FI_DATA_EXIST, &fi->flags);
2531 	if (ri->i_inline & F2FS_INLINE_DOTS)
2532 		set_bit(FI_INLINE_DOTS, &fi->flags);
2533 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2534 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2535 	if (ri->i_inline & F2FS_PIN_FILE)
2536 		set_bit(FI_PIN_FILE, &fi->flags);
2537 }
2538 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2539 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2540 {
2541 	ri->i_inline = 0;
2542 
2543 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2544 		ri->i_inline |= F2FS_INLINE_XATTR;
2545 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2546 		ri->i_inline |= F2FS_INLINE_DATA;
2547 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2548 		ri->i_inline |= F2FS_INLINE_DENTRY;
2549 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2550 		ri->i_inline |= F2FS_DATA_EXIST;
2551 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2552 		ri->i_inline |= F2FS_INLINE_DOTS;
2553 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2554 		ri->i_inline |= F2FS_EXTRA_ATTR;
2555 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2556 		ri->i_inline |= F2FS_PIN_FILE;
2557 }
2558 
f2fs_has_extra_attr(struct inode * inode)2559 static inline int f2fs_has_extra_attr(struct inode *inode)
2560 {
2561 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2562 }
2563 
f2fs_has_inline_xattr(struct inode * inode)2564 static inline int f2fs_has_inline_xattr(struct inode *inode)
2565 {
2566 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2567 }
2568 
addrs_per_inode(struct inode * inode)2569 static inline unsigned int addrs_per_inode(struct inode *inode)
2570 {
2571 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2572 }
2573 
inline_xattr_addr(struct inode * inode,struct page * page)2574 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2575 {
2576 	struct f2fs_inode *ri = F2FS_INODE(page);
2577 
2578 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2579 					get_inline_xattr_addrs(inode)]);
2580 }
2581 
inline_xattr_size(struct inode * inode)2582 static inline int inline_xattr_size(struct inode *inode)
2583 {
2584 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2585 }
2586 
f2fs_has_inline_data(struct inode * inode)2587 static inline int f2fs_has_inline_data(struct inode *inode)
2588 {
2589 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2590 }
2591 
f2fs_exist_data(struct inode * inode)2592 static inline int f2fs_exist_data(struct inode *inode)
2593 {
2594 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2595 }
2596 
f2fs_has_inline_dots(struct inode * inode)2597 static inline int f2fs_has_inline_dots(struct inode *inode)
2598 {
2599 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2600 }
2601 
f2fs_is_pinned_file(struct inode * inode)2602 static inline bool f2fs_is_pinned_file(struct inode *inode)
2603 {
2604 	return is_inode_flag_set(inode, FI_PIN_FILE);
2605 }
2606 
f2fs_is_atomic_file(struct inode * inode)2607 static inline bool f2fs_is_atomic_file(struct inode *inode)
2608 {
2609 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2610 }
2611 
f2fs_is_commit_atomic_write(struct inode * inode)2612 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2613 {
2614 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2615 }
2616 
f2fs_is_volatile_file(struct inode * inode)2617 static inline bool f2fs_is_volatile_file(struct inode *inode)
2618 {
2619 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2620 }
2621 
f2fs_is_first_block_written(struct inode * inode)2622 static inline bool f2fs_is_first_block_written(struct inode *inode)
2623 {
2624 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2625 }
2626 
f2fs_is_drop_cache(struct inode * inode)2627 static inline bool f2fs_is_drop_cache(struct inode *inode)
2628 {
2629 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2630 }
2631 
inline_data_addr(struct inode * inode,struct page * page)2632 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2633 {
2634 	struct f2fs_inode *ri = F2FS_INODE(page);
2635 	int extra_size = get_extra_isize(inode);
2636 
2637 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2638 }
2639 
f2fs_has_inline_dentry(struct inode * inode)2640 static inline int f2fs_has_inline_dentry(struct inode *inode)
2641 {
2642 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2643 }
2644 
is_file(struct inode * inode,int type)2645 static inline int is_file(struct inode *inode, int type)
2646 {
2647 	return F2FS_I(inode)->i_advise & type;
2648 }
2649 
set_file(struct inode * inode,int type)2650 static inline void set_file(struct inode *inode, int type)
2651 {
2652 	F2FS_I(inode)->i_advise |= type;
2653 	f2fs_mark_inode_dirty_sync(inode, true);
2654 }
2655 
clear_file(struct inode * inode,int type)2656 static inline void clear_file(struct inode *inode, int type)
2657 {
2658 	F2FS_I(inode)->i_advise &= ~type;
2659 	f2fs_mark_inode_dirty_sync(inode, true);
2660 }
2661 
f2fs_skip_inode_update(struct inode * inode,int dsync)2662 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2663 {
2664 	bool ret;
2665 
2666 	if (dsync) {
2667 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2668 
2669 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2670 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2671 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2672 		return ret;
2673 	}
2674 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2675 			file_keep_isize(inode) ||
2676 			i_size_read(inode) & ~PAGE_MASK)
2677 		return false;
2678 
2679 	if (!timespec_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2680 		return false;
2681 	if (!timespec_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2682 		return false;
2683 	if (!timespec_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2684 		return false;
2685 	if (!timespec_equal(F2FS_I(inode)->i_disk_time + 3,
2686 						&F2FS_I(inode)->i_crtime))
2687 		return false;
2688 
2689 	down_read(&F2FS_I(inode)->i_sem);
2690 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2691 	up_read(&F2FS_I(inode)->i_sem);
2692 
2693 	return ret;
2694 }
2695 
f2fs_readonly(struct super_block * sb)2696 static inline bool f2fs_readonly(struct super_block *sb)
2697 {
2698 	return sb_rdonly(sb);
2699 }
2700 
f2fs_cp_error(struct f2fs_sb_info * sbi)2701 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2702 {
2703 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2704 }
2705 
is_dot_dotdot(const struct qstr * str)2706 static inline bool is_dot_dotdot(const struct qstr *str)
2707 {
2708 	if (str->len == 1 && str->name[0] == '.')
2709 		return true;
2710 
2711 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2712 		return true;
2713 
2714 	return false;
2715 }
2716 
f2fs_may_extent_tree(struct inode * inode)2717 static inline bool f2fs_may_extent_tree(struct inode *inode)
2718 {
2719 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2720 
2721 	if (!test_opt(sbi, EXTENT_CACHE) ||
2722 			is_inode_flag_set(inode, FI_NO_EXTENT))
2723 		return false;
2724 
2725 	/*
2726 	 * for recovered files during mount do not create extents
2727 	 * if shrinker is not registered.
2728 	 */
2729 	if (list_empty(&sbi->s_list))
2730 		return false;
2731 
2732 	return S_ISREG(inode->i_mode);
2733 }
2734 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2735 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2736 					size_t size, gfp_t flags)
2737 {
2738 	void *ret;
2739 
2740 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2741 		f2fs_show_injection_info(FAULT_KMALLOC);
2742 		return NULL;
2743 	}
2744 
2745 	ret = kmalloc(size, flags);
2746 	if (ret)
2747 		return ret;
2748 
2749 	return kvmalloc(size, flags);
2750 }
2751 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2752 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2753 					size_t size, gfp_t flags)
2754 {
2755 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2756 }
2757 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2758 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2759 					size_t size, gfp_t flags)
2760 {
2761 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2762 		f2fs_show_injection_info(FAULT_KVMALLOC);
2763 		return NULL;
2764 	}
2765 
2766 	return kvmalloc(size, flags);
2767 }
2768 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2769 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2770 					size_t size, gfp_t flags)
2771 {
2772 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2773 }
2774 
get_extra_isize(struct inode * inode)2775 static inline int get_extra_isize(struct inode *inode)
2776 {
2777 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2778 }
2779 
get_inline_xattr_addrs(struct inode * inode)2780 static inline int get_inline_xattr_addrs(struct inode *inode)
2781 {
2782 	return F2FS_I(inode)->i_inline_xattr_size;
2783 }
2784 
2785 #define f2fs_get_inode_mode(i) \
2786 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2787 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2788 
2789 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2790 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2791 	offsetof(struct f2fs_inode, i_extra_isize))	\
2792 
2793 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2794 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2795 		((offsetof(typeof(*(f2fs_inode)), field) +	\
2796 		sizeof((f2fs_inode)->field))			\
2797 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2798 
f2fs_reset_iostat(struct f2fs_sb_info * sbi)2799 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2800 {
2801 	int i;
2802 
2803 	spin_lock(&sbi->iostat_lock);
2804 	for (i = 0; i < NR_IO_TYPE; i++)
2805 		sbi->write_iostat[i] = 0;
2806 	spin_unlock(&sbi->iostat_lock);
2807 }
2808 
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)2809 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2810 			enum iostat_type type, unsigned long long io_bytes)
2811 {
2812 	if (!sbi->iostat_enable)
2813 		return;
2814 	spin_lock(&sbi->iostat_lock);
2815 	sbi->write_iostat[type] += io_bytes;
2816 
2817 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2818 		sbi->write_iostat[APP_BUFFERED_IO] =
2819 			sbi->write_iostat[APP_WRITE_IO] -
2820 			sbi->write_iostat[APP_DIRECT_IO];
2821 	spin_unlock(&sbi->iostat_lock);
2822 }
2823 
2824 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2825 
2826 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META &&	\
2827 				(!is_read_io((fio)->op) || (fio)->is_meta))
2828 
2829 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2830 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)2831 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2832 					block_t blkaddr, int type)
2833 {
2834 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2835 		f2fs_msg(sbi->sb, KERN_ERR,
2836 			"invalid blkaddr: %u, type: %d, run fsck to fix.",
2837 			blkaddr, type);
2838 		f2fs_bug_on(sbi, 1);
2839 	}
2840 }
2841 
__is_valid_data_blkaddr(block_t blkaddr)2842 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2843 {
2844 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2845 		return false;
2846 	return true;
2847 }
2848 
is_valid_data_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)2849 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2850 						block_t blkaddr)
2851 {
2852 	if (!__is_valid_data_blkaddr(blkaddr))
2853 		return false;
2854 	verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2855 	return true;
2856 }
2857 
f2fs_set_page_private(struct page * page,unsigned long data)2858 static inline void f2fs_set_page_private(struct page *page,
2859 						unsigned long data)
2860 {
2861 	if (PagePrivate(page))
2862 		return;
2863 
2864 	get_page(page);
2865 	SetPagePrivate(page);
2866 	set_page_private(page, data);
2867 }
2868 
f2fs_clear_page_private(struct page * page)2869 static inline void f2fs_clear_page_private(struct page *page)
2870 {
2871 	if (!PagePrivate(page))
2872 		return;
2873 
2874 	set_page_private(page, 0);
2875 	ClearPagePrivate(page);
2876 	f2fs_put_page(page, 0);
2877 }
2878 
2879 /*
2880  * file.c
2881  */
2882 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2883 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2884 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2885 int f2fs_truncate(struct inode *inode);
2886 int f2fs_getattr(const struct path *path, struct kstat *stat,
2887 			u32 request_mask, unsigned int flags);
2888 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2889 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2890 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2891 int f2fs_precache_extents(struct inode *inode);
2892 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2893 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2894 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2895 int f2fs_pin_file_control(struct inode *inode, bool inc);
2896 
2897 /*
2898  * inode.c
2899  */
2900 void f2fs_set_inode_flags(struct inode *inode);
2901 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2902 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2903 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2904 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2905 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2906 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2907 void f2fs_update_inode_page(struct inode *inode);
2908 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2909 void f2fs_evict_inode(struct inode *inode);
2910 void f2fs_handle_failed_inode(struct inode *inode);
2911 
2912 /*
2913  * namei.c
2914  */
2915 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2916 							bool hot, bool set);
2917 struct dentry *f2fs_get_parent(struct dentry *child);
2918 
2919 /*
2920  * dir.c
2921  */
2922 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2923 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2924 			f2fs_hash_t namehash, int *max_slots,
2925 			struct f2fs_dentry_ptr *d);
2926 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2927 			unsigned int start_pos, struct fscrypt_str *fstr);
2928 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2929 			struct f2fs_dentry_ptr *d);
2930 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2931 			const struct qstr *new_name,
2932 			const struct qstr *orig_name, struct page *dpage);
2933 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2934 			unsigned int current_depth);
2935 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2936 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2937 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2938 			struct fscrypt_name *fname, struct page **res_page);
2939 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2940 			const struct qstr *child, struct page **res_page);
2941 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2942 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2943 			struct page **page);
2944 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2945 			struct page *page, struct inode *inode);
2946 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2947 			const struct qstr *name, f2fs_hash_t name_hash,
2948 			unsigned int bit_pos);
2949 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2950 			const struct qstr *orig_name,
2951 			struct inode *inode, nid_t ino, umode_t mode);
2952 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2953 			struct inode *inode, nid_t ino, umode_t mode);
2954 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2955 			struct inode *inode, nid_t ino, umode_t mode);
2956 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2957 			struct inode *dir, struct inode *inode);
2958 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2959 bool f2fs_empty_dir(struct inode *dir);
2960 
f2fs_add_link(struct dentry * dentry,struct inode * inode)2961 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2962 {
2963 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2964 				inode, inode->i_ino, inode->i_mode);
2965 }
2966 
2967 /*
2968  * super.c
2969  */
2970 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2971 void f2fs_inode_synced(struct inode *inode);
2972 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2973 int f2fs_quota_sync(struct super_block *sb, int type);
2974 void f2fs_quota_off_umount(struct super_block *sb);
2975 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2976 int f2fs_sync_fs(struct super_block *sb, int sync);
2977 extern __printf(3, 4)
2978 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2979 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2980 
2981 /*
2982  * hash.c
2983  */
2984 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2985 				struct fscrypt_name *fname);
2986 
2987 /*
2988  * node.c
2989  */
2990 struct dnode_of_data;
2991 struct node_info;
2992 
2993 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2994 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2995 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2996 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2997 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2998 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2999 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3000 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3001 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3002 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3003 						struct node_info *ni);
3004 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3005 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3006 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3007 int f2fs_truncate_xattr_node(struct inode *inode);
3008 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3009 					unsigned int seq_id);
3010 int f2fs_remove_inode_page(struct inode *inode);
3011 struct page *f2fs_new_inode_page(struct inode *inode);
3012 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3013 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3014 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3015 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3016 int f2fs_move_node_page(struct page *node_page, int gc_type);
3017 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3018 			struct writeback_control *wbc, bool atomic,
3019 			unsigned int *seq_id);
3020 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3021 			struct writeback_control *wbc,
3022 			bool do_balance, enum iostat_type io_type);
3023 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3024 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3025 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3026 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3027 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3028 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3029 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3030 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3031 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3032 			unsigned int segno, struct f2fs_summary_block *sum);
3033 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3034 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3035 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3036 int __init f2fs_create_node_manager_caches(void);
3037 void f2fs_destroy_node_manager_caches(void);
3038 
3039 /*
3040  * segment.c
3041  */
3042 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3043 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3044 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3045 void f2fs_drop_inmem_pages(struct inode *inode);
3046 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3047 int f2fs_commit_inmem_pages(struct inode *inode);
3048 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3049 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3050 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3051 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3052 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3053 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3054 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3055 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3056 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3057 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3058 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3059 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3060 					struct cp_control *cpc);
3061 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3062 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi);
3063 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3064 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3065 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3066 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3067 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3068 					struct cp_control *cpc);
3069 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3070 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3071 					block_t blk_addr);
3072 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3073 						enum iostat_type io_type);
3074 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3075 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3076 			struct f2fs_io_info *fio);
3077 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3078 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3079 			block_t old_blkaddr, block_t new_blkaddr,
3080 			bool recover_curseg, bool recover_newaddr);
3081 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3082 			block_t old_addr, block_t new_addr,
3083 			unsigned char version, bool recover_curseg,
3084 			bool recover_newaddr);
3085 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3086 			block_t old_blkaddr, block_t *new_blkaddr,
3087 			struct f2fs_summary *sum, int type,
3088 			struct f2fs_io_info *fio, bool add_list);
3089 void f2fs_wait_on_page_writeback(struct page *page,
3090 			enum page_type type, bool ordered, bool locked);
3091 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3092 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3093 								block_t len);
3094 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3095 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3096 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3097 			unsigned int val, int alloc);
3098 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3099 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3100 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3101 int __init f2fs_create_segment_manager_caches(void);
3102 void f2fs_destroy_segment_manager_caches(void);
3103 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3104 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3105 			enum page_type type, enum temp_type temp);
3106 
3107 /*
3108  * checkpoint.c
3109  */
3110 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3111 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3112 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3113 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3114 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3115 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3116 					block_t blkaddr, int type);
3117 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3118 			int type, bool sync);
3119 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3120 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3121 			long nr_to_write, enum iostat_type io_type);
3122 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3123 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3124 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3125 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3126 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3127 					unsigned int devidx, int type);
3128 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3129 					unsigned int devidx, int type);
3130 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3131 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3132 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3133 void f2fs_add_orphan_inode(struct inode *inode);
3134 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3135 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3136 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3137 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3138 void f2fs_remove_dirty_inode(struct inode *inode);
3139 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3140 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3141 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3142 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3143 int __init f2fs_create_checkpoint_caches(void);
3144 void f2fs_destroy_checkpoint_caches(void);
3145 
3146 /*
3147  * data.c
3148  */
3149 int f2fs_init_post_read_processing(void);
3150 void f2fs_destroy_post_read_processing(void);
3151 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3152 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3153 				struct inode *inode, struct page *page,
3154 				nid_t ino, enum page_type type);
3155 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3156 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3157 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3158 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3159 			block_t blk_addr, struct bio *bio);
3160 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3161 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3162 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3163 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3164 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3165 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3166 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3167 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3168 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3169 			int op_flags, bool for_write);
3170 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3171 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3172 			bool for_write);
3173 struct page *f2fs_get_new_data_page(struct inode *inode,
3174 			struct page *ipage, pgoff_t index, bool new_i_size);
3175 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3176 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3177 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3178 			int create, int flag);
3179 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3180 			u64 start, u64 len);
3181 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3182 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3183 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3184 			unsigned int length);
3185 int f2fs_release_page(struct page *page, gfp_t wait);
3186 #ifdef CONFIG_MIGRATION
3187 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3188 			struct page *page, enum migrate_mode mode);
3189 #endif
3190 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3191 void f2fs_clear_radix_tree_dirty_tag(struct page *page);
3192 
3193 /*
3194  * gc.c
3195  */
3196 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3197 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3198 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3199 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3200 			unsigned int segno);
3201 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3202 
3203 /*
3204  * recovery.c
3205  */
3206 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3207 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3208 
3209 /*
3210  * debug.c
3211  */
3212 #ifdef CONFIG_F2FS_STAT_FS
3213 struct f2fs_stat_info {
3214 	struct list_head stat_list;
3215 	struct f2fs_sb_info *sbi;
3216 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3217 	int main_area_segs, main_area_sections, main_area_zones;
3218 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3219 	unsigned long long hit_total, total_ext;
3220 	int ext_tree, zombie_tree, ext_node;
3221 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3222 	int ndirty_data, ndirty_qdata;
3223 	int inmem_pages;
3224 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3225 	int nats, dirty_nats, sits, dirty_sits;
3226 	int free_nids, avail_nids, alloc_nids;
3227 	int total_count, utilization;
3228 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3229 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3230 	int nr_dio_read, nr_dio_write;
3231 	unsigned int io_skip_bggc, other_skip_bggc;
3232 	int nr_flushing, nr_flushed, flush_list_empty;
3233 	int nr_discarding, nr_discarded;
3234 	int nr_discard_cmd;
3235 	unsigned int undiscard_blks;
3236 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3237 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3238 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3239 	unsigned int bimodal, avg_vblocks;
3240 	int util_free, util_valid, util_invalid;
3241 	int rsvd_segs, overp_segs;
3242 	int dirty_count, node_pages, meta_pages;
3243 	int prefree_count, call_count, cp_count, bg_cp_count;
3244 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3245 	int bg_node_segs, bg_data_segs;
3246 	int tot_blks, data_blks, node_blks;
3247 	int bg_data_blks, bg_node_blks;
3248 	unsigned long long skipped_atomic_files[2];
3249 	int curseg[NR_CURSEG_TYPE];
3250 	int cursec[NR_CURSEG_TYPE];
3251 	int curzone[NR_CURSEG_TYPE];
3252 
3253 	unsigned int meta_count[META_MAX];
3254 	unsigned int segment_count[2];
3255 	unsigned int block_count[2];
3256 	unsigned int inplace_count;
3257 	unsigned long long base_mem, cache_mem, page_mem;
3258 };
3259 
F2FS_STAT(struct f2fs_sb_info * sbi)3260 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3261 {
3262 	return (struct f2fs_stat_info *)sbi->stat_info;
3263 }
3264 
3265 #define stat_inc_cp_count(si)		((si)->cp_count++)
3266 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3267 #define stat_inc_call_count(si)		((si)->call_count++)
3268 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3269 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3270 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3271 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3272 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3273 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3274 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3275 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3276 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3277 #define stat_inc_inline_xattr(inode)					\
3278 	do {								\
3279 		if (f2fs_has_inline_xattr(inode))			\
3280 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3281 	} while (0)
3282 #define stat_dec_inline_xattr(inode)					\
3283 	do {								\
3284 		if (f2fs_has_inline_xattr(inode))			\
3285 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3286 	} while (0)
3287 #define stat_inc_inline_inode(inode)					\
3288 	do {								\
3289 		if (f2fs_has_inline_data(inode))			\
3290 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3291 	} while (0)
3292 #define stat_dec_inline_inode(inode)					\
3293 	do {								\
3294 		if (f2fs_has_inline_data(inode))			\
3295 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3296 	} while (0)
3297 #define stat_inc_inline_dir(inode)					\
3298 	do {								\
3299 		if (f2fs_has_inline_dentry(inode))			\
3300 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3301 	} while (0)
3302 #define stat_dec_inline_dir(inode)					\
3303 	do {								\
3304 		if (f2fs_has_inline_dentry(inode))			\
3305 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3306 	} while (0)
3307 #define stat_inc_meta_count(sbi, blkaddr)				\
3308 	do {								\
3309 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3310 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3311 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3312 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3313 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3314 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3315 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3316 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3317 	} while (0)
3318 #define stat_inc_seg_type(sbi, curseg)					\
3319 		((sbi)->segment_count[(curseg)->alloc_type]++)
3320 #define stat_inc_block_count(sbi, curseg)				\
3321 		((sbi)->block_count[(curseg)->alloc_type]++)
3322 #define stat_inc_inplace_blocks(sbi)					\
3323 		(atomic_inc(&(sbi)->inplace_count))
3324 #define stat_inc_atomic_write(inode)					\
3325 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3326 #define stat_dec_atomic_write(inode)					\
3327 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3328 #define stat_update_max_atomic_write(inode)				\
3329 	do {								\
3330 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3331 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3332 		if (cur > max)						\
3333 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3334 	} while (0)
3335 #define stat_inc_volatile_write(inode)					\
3336 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3337 #define stat_dec_volatile_write(inode)					\
3338 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3339 #define stat_update_max_volatile_write(inode)				\
3340 	do {								\
3341 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3342 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3343 		if (cur > max)						\
3344 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3345 	} while (0)
3346 #define stat_inc_seg_count(sbi, type, gc_type)				\
3347 	do {								\
3348 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3349 		si->tot_segs++;						\
3350 		if ((type) == SUM_TYPE_DATA) {				\
3351 			si->data_segs++;				\
3352 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3353 		} else {						\
3354 			si->node_segs++;				\
3355 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3356 		}							\
3357 	} while (0)
3358 
3359 #define stat_inc_tot_blk_count(si, blks)				\
3360 	((si)->tot_blks += (blks))
3361 
3362 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3363 	do {								\
3364 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3365 		stat_inc_tot_blk_count(si, blks);			\
3366 		si->data_blks += (blks);				\
3367 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3368 	} while (0)
3369 
3370 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3371 	do {								\
3372 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3373 		stat_inc_tot_blk_count(si, blks);			\
3374 		si->node_blks += (blks);				\
3375 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3376 	} while (0)
3377 
3378 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3379 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3380 void __init f2fs_create_root_stats(void);
3381 void f2fs_destroy_root_stats(void);
3382 #else
3383 #define stat_inc_cp_count(si)				do { } while (0)
3384 #define stat_inc_bg_cp_count(si)			do { } while (0)
3385 #define stat_inc_call_count(si)				do { } while (0)
3386 #define stat_inc_bggc_count(si)				do { } while (0)
3387 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3388 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3389 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3390 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3391 #define stat_inc_total_hit(sb)				do { } while (0)
3392 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3393 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3394 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3395 #define stat_inc_inline_xattr(inode)			do { } while (0)
3396 #define stat_dec_inline_xattr(inode)			do { } while (0)
3397 #define stat_inc_inline_inode(inode)			do { } while (0)
3398 #define stat_dec_inline_inode(inode)			do { } while (0)
3399 #define stat_inc_inline_dir(inode)			do { } while (0)
3400 #define stat_dec_inline_dir(inode)			do { } while (0)
3401 #define stat_inc_atomic_write(inode)			do { } while (0)
3402 #define stat_dec_atomic_write(inode)			do { } while (0)
3403 #define stat_update_max_atomic_write(inode)		do { } while (0)
3404 #define stat_inc_volatile_write(inode)			do { } while (0)
3405 #define stat_dec_volatile_write(inode)			do { } while (0)
3406 #define stat_update_max_volatile_write(inode)		do { } while (0)
3407 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3408 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3409 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3410 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3411 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3412 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3413 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3414 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3415 
f2fs_build_stats(struct f2fs_sb_info * sbi)3416 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3417 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3418 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3419 static inline void f2fs_destroy_root_stats(void) { }
3420 #endif
3421 
3422 extern const struct file_operations f2fs_dir_operations;
3423 extern const struct file_operations f2fs_file_operations;
3424 extern const struct inode_operations f2fs_file_inode_operations;
3425 extern const struct address_space_operations f2fs_dblock_aops;
3426 extern const struct address_space_operations f2fs_node_aops;
3427 extern const struct address_space_operations f2fs_meta_aops;
3428 extern const struct inode_operations f2fs_dir_inode_operations;
3429 extern const struct inode_operations f2fs_symlink_inode_operations;
3430 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3431 extern const struct inode_operations f2fs_special_inode_operations;
3432 extern struct kmem_cache *f2fs_inode_entry_slab;
3433 
3434 /*
3435  * inline.c
3436  */
3437 bool f2fs_may_inline_data(struct inode *inode);
3438 bool f2fs_may_inline_dentry(struct inode *inode);
3439 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3440 void f2fs_truncate_inline_inode(struct inode *inode,
3441 						struct page *ipage, u64 from);
3442 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3443 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3444 int f2fs_convert_inline_inode(struct inode *inode);
3445 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3446 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3447 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3448 			struct fscrypt_name *fname, struct page **res_page);
3449 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3450 			struct page *ipage);
3451 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3452 			const struct qstr *orig_name,
3453 			struct inode *inode, nid_t ino, umode_t mode);
3454 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3455 				struct page *page, struct inode *dir,
3456 				struct inode *inode);
3457 bool f2fs_empty_inline_dir(struct inode *dir);
3458 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3459 			struct fscrypt_str *fstr);
3460 int f2fs_inline_data_fiemap(struct inode *inode,
3461 			struct fiemap_extent_info *fieinfo,
3462 			__u64 start, __u64 len);
3463 
3464 /*
3465  * shrinker.c
3466  */
3467 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3468 			struct shrink_control *sc);
3469 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3470 			struct shrink_control *sc);
3471 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3472 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3473 
3474 /*
3475  * extent_cache.c
3476  */
3477 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3478 				struct rb_entry *cached_re, unsigned int ofs);
3479 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3480 				struct rb_root_cached *root,
3481 				struct rb_node **parent,
3482 				unsigned int ofs, bool *leftmost);
3483 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3484 		struct rb_entry *cached_re, unsigned int ofs,
3485 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3486 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3487 		bool force, bool *leftmost);
3488 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3489 						struct rb_root_cached *root);
3490 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3491 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3492 void f2fs_drop_extent_tree(struct inode *inode);
3493 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3494 void f2fs_destroy_extent_tree(struct inode *inode);
3495 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3496 			struct extent_info *ei);
3497 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3498 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3499 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3500 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3501 int __init f2fs_create_extent_cache(void);
3502 void f2fs_destroy_extent_cache(void);
3503 
3504 /*
3505  * sysfs.c
3506  */
3507 int __init f2fs_init_sysfs(void);
3508 void f2fs_exit_sysfs(void);
3509 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3510 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3511 
3512 /*
3513  * crypto support
3514  */
f2fs_encrypted_inode(struct inode * inode)3515 static inline bool f2fs_encrypted_inode(struct inode *inode)
3516 {
3517 	return file_is_encrypt(inode);
3518 }
3519 
f2fs_encrypted_file(struct inode * inode)3520 static inline bool f2fs_encrypted_file(struct inode *inode)
3521 {
3522 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3523 }
3524 
f2fs_set_encrypted_inode(struct inode * inode)3525 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3526 {
3527 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3528 	file_set_encrypt(inode);
3529 	f2fs_set_inode_flags(inode);
3530 #endif
3531 }
3532 
3533 /*
3534  * Returns true if the reads of the inode's data need to undergo some
3535  * postprocessing step, like decryption or authenticity verification.
3536  */
f2fs_post_read_required(struct inode * inode)3537 static inline bool f2fs_post_read_required(struct inode *inode)
3538 {
3539 	return f2fs_encrypted_file(inode);
3540 }
3541 
3542 #define F2FS_FEATURE_FUNCS(name, flagname) \
3543 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3544 { \
3545 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3546 }
3547 
3548 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3549 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3550 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3551 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3552 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3553 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3554 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3555 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3556 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3557 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3558 
3559 #ifdef CONFIG_BLK_DEV_ZONED
get_blkz_type(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkaddr)3560 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3561 			struct block_device *bdev, block_t blkaddr)
3562 {
3563 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3564 	int i;
3565 
3566 	for (i = 0; i < sbi->s_ndevs; i++)
3567 		if (FDEV(i).bdev == bdev)
3568 			return FDEV(i).blkz_type[zno];
3569 	return -EINVAL;
3570 }
3571 #endif
3572 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)3573 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3574 {
3575 	return f2fs_sb_has_blkzoned(sbi);
3576 }
3577 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)3578 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3579 {
3580 	return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev));
3581 }
3582 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)3583 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3584 {
3585 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3586 					f2fs_hw_should_discard(sbi);
3587 }
3588 
set_opt_mode(struct f2fs_sb_info * sbi,unsigned int mt)3589 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3590 {
3591 	clear_opt(sbi, ADAPTIVE);
3592 	clear_opt(sbi, LFS);
3593 
3594 	switch (mt) {
3595 	case F2FS_MOUNT_ADAPTIVE:
3596 		set_opt(sbi, ADAPTIVE);
3597 		break;
3598 	case F2FS_MOUNT_LFS:
3599 		set_opt(sbi, LFS);
3600 		break;
3601 	}
3602 }
3603 
f2fs_may_encrypt(struct inode * inode)3604 static inline bool f2fs_may_encrypt(struct inode *inode)
3605 {
3606 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3607 	umode_t mode = inode->i_mode;
3608 
3609 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3610 #else
3611 	return false;
3612 #endif
3613 }
3614 
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)3615 static inline int block_unaligned_IO(struct inode *inode,
3616 				struct kiocb *iocb, struct iov_iter *iter)
3617 {
3618 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3619 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3620 	loff_t offset = iocb->ki_pos;
3621 	unsigned long align = offset | iov_iter_alignment(iter);
3622 
3623 	return align & blocksize_mask;
3624 }
3625 
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)3626 static inline int allow_outplace_dio(struct inode *inode,
3627 				struct kiocb *iocb, struct iov_iter *iter)
3628 {
3629 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3630 	int rw = iov_iter_rw(iter);
3631 
3632 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3633 				!block_unaligned_IO(inode, iocb, iter));
3634 }
3635 
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)3636 static inline bool f2fs_force_buffered_io(struct inode *inode,
3637 				struct kiocb *iocb, struct iov_iter *iter)
3638 {
3639 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3640 	int rw = iov_iter_rw(iter);
3641 
3642 	if (f2fs_post_read_required(inode))
3643 		return true;
3644 	if (sbi->s_ndevs)
3645 		return true;
3646 	/*
3647 	 * for blkzoned device, fallback direct IO to buffered IO, so
3648 	 * all IOs can be serialized by log-structured write.
3649 	 */
3650 	if (f2fs_sb_has_blkzoned(sbi))
3651 		return true;
3652 	if (test_opt(sbi, LFS) && (rw == WRITE) &&
3653 				block_unaligned_IO(inode, iocb, iter))
3654 		return true;
3655 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3656 		return true;
3657 
3658 	return false;
3659 }
3660 
3661 #ifdef CONFIG_F2FS_FAULT_INJECTION
3662 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3663 							unsigned int type);
3664 #else
3665 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3666 #endif
3667 
is_journalled_quota(struct f2fs_sb_info * sbi)3668 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3669 {
3670 #ifdef CONFIG_QUOTA
3671 	if (f2fs_sb_has_quota_ino(sbi))
3672 		return true;
3673 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3674 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3675 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3676 		return true;
3677 #endif
3678 	return false;
3679 }
3680 
3681 #endif
3682 
3683 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
3684 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
3685 
3686