• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file implements the perfmon-2 subsystem which is used
3  * to program the IA-64 Performance Monitoring Unit (PMU).
4  *
5  * The initial version of perfmon.c was written by
6  * Ganesh Venkitachalam, IBM Corp.
7  *
8  * Then it was modified for perfmon-1.x by Stephane Eranian and
9  * David Mosberger, Hewlett Packard Co.
10  *
11  * Version Perfmon-2.x is a rewrite of perfmon-1.x
12  * by Stephane Eranian, Hewlett Packard Co.
13  *
14  * Copyright (C) 1999-2005  Hewlett Packard Co
15  *               Stephane Eranian <eranian@hpl.hp.com>
16  *               David Mosberger-Tang <davidm@hpl.hp.com>
17  *
18  * More information about perfmon available at:
19  * 	http://www.hpl.hp.com/research/linux/perfmon
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/sched/task.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/interrupt.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/mm.h>
33 #include <linux/sysctl.h>
34 #include <linux/list.h>
35 #include <linux/file.h>
36 #include <linux/poll.h>
37 #include <linux/vfs.h>
38 #include <linux/smp.h>
39 #include <linux/pagemap.h>
40 #include <linux/mount.h>
41 #include <linux/bitops.h>
42 #include <linux/capability.h>
43 #include <linux/rcupdate.h>
44 #include <linux/completion.h>
45 #include <linux/tracehook.h>
46 #include <linux/slab.h>
47 #include <linux/cpu.h>
48 
49 #include <asm/errno.h>
50 #include <asm/intrinsics.h>
51 #include <asm/page.h>
52 #include <asm/perfmon.h>
53 #include <asm/processor.h>
54 #include <asm/signal.h>
55 #include <linux/uaccess.h>
56 #include <asm/delay.h>
57 
58 #ifdef CONFIG_PERFMON
59 /*
60  * perfmon context state
61  */
62 #define PFM_CTX_UNLOADED	1	/* context is not loaded onto any task */
63 #define PFM_CTX_LOADED		2	/* context is loaded onto a task */
64 #define PFM_CTX_MASKED		3	/* context is loaded but monitoring is masked due to overflow */
65 #define PFM_CTX_ZOMBIE		4	/* owner of the context is closing it */
66 
67 #define PFM_INVALID_ACTIVATION	(~0UL)
68 
69 #define PFM_NUM_PMC_REGS	64	/* PMC save area for ctxsw */
70 #define PFM_NUM_PMD_REGS	64	/* PMD save area for ctxsw */
71 
72 /*
73  * depth of message queue
74  */
75 #define PFM_MAX_MSGS		32
76 #define PFM_CTXQ_EMPTY(g)	((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
77 
78 /*
79  * type of a PMU register (bitmask).
80  * bitmask structure:
81  * 	bit0   : register implemented
82  * 	bit1   : end marker
83  * 	bit2-3 : reserved
84  * 	bit4   : pmc has pmc.pm
85  * 	bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
86  * 	bit6-7 : register type
87  * 	bit8-31: reserved
88  */
89 #define PFM_REG_NOTIMPL		0x0 /* not implemented at all */
90 #define PFM_REG_IMPL		0x1 /* register implemented */
91 #define PFM_REG_END		0x2 /* end marker */
92 #define PFM_REG_MONITOR		(0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
93 #define PFM_REG_COUNTING	(0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
94 #define PFM_REG_CONTROL		(0x4<<4|PFM_REG_IMPL) /* PMU control register */
95 #define	PFM_REG_CONFIG		(0x8<<4|PFM_REG_IMPL) /* configuration register */
96 #define PFM_REG_BUFFER	 	(0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
97 
98 #define PMC_IS_LAST(i)	(pmu_conf->pmc_desc[i].type & PFM_REG_END)
99 #define PMD_IS_LAST(i)	(pmu_conf->pmd_desc[i].type & PFM_REG_END)
100 
101 #define PMC_OVFL_NOTIFY(ctx, i)	((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
102 
103 /* i assumed unsigned */
104 #define PMC_IS_IMPL(i)	  (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
105 #define PMD_IS_IMPL(i)	  (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
106 
107 /* XXX: these assume that register i is implemented */
108 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
109 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
110 #define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
111 #define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
112 
113 #define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
114 #define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
115 #define PMD_PMD_DEP(i)	   pmu_conf->pmd_desc[i].dep_pmd[0]
116 #define PMC_PMD_DEP(i)	   pmu_conf->pmc_desc[i].dep_pmd[0]
117 
118 #define PFM_NUM_IBRS	  IA64_NUM_DBG_REGS
119 #define PFM_NUM_DBRS	  IA64_NUM_DBG_REGS
120 
121 #define CTX_OVFL_NOBLOCK(c)	((c)->ctx_fl_block == 0)
122 #define CTX_HAS_SMPL(c)		((c)->ctx_fl_is_sampling)
123 #define PFM_CTX_TASK(h)		(h)->ctx_task
124 
125 #define PMU_PMC_OI		5 /* position of pmc.oi bit */
126 
127 /* XXX: does not support more than 64 PMDs */
128 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
129 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
130 
131 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
132 
133 #define CTX_USED_IBR(ctx,n) 	(ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
134 #define CTX_USED_DBR(ctx,n) 	(ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
135 #define CTX_USES_DBREGS(ctx)	(((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
136 #define PFM_CODE_RR	0	/* requesting code range restriction */
137 #define PFM_DATA_RR	1	/* requestion data range restriction */
138 
139 #define PFM_CPUINFO_CLEAR(v)	pfm_get_cpu_var(pfm_syst_info) &= ~(v)
140 #define PFM_CPUINFO_SET(v)	pfm_get_cpu_var(pfm_syst_info) |= (v)
141 #define PFM_CPUINFO_GET()	pfm_get_cpu_var(pfm_syst_info)
142 
143 #define RDEP(x)	(1UL<<(x))
144 
145 /*
146  * context protection macros
147  * in SMP:
148  * 	- we need to protect against CPU concurrency (spin_lock)
149  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
150  * in UP:
151  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
152  *
153  * spin_lock_irqsave()/spin_unlock_irqrestore():
154  * 	in SMP: local_irq_disable + spin_lock
155  * 	in UP : local_irq_disable
156  *
157  * spin_lock()/spin_lock():
158  * 	in UP : removed automatically
159  * 	in SMP: protect against context accesses from other CPU. interrupts
160  * 	        are not masked. This is useful for the PMU interrupt handler
161  * 	        because we know we will not get PMU concurrency in that code.
162  */
163 #define PROTECT_CTX(c, f) \
164 	do {  \
165 		DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
166 		spin_lock_irqsave(&(c)->ctx_lock, f); \
167 		DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
168 	} while(0)
169 
170 #define UNPROTECT_CTX(c, f) \
171 	do { \
172 		DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
173 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
174 	} while(0)
175 
176 #define PROTECT_CTX_NOPRINT(c, f) \
177 	do {  \
178 		spin_lock_irqsave(&(c)->ctx_lock, f); \
179 	} while(0)
180 
181 
182 #define UNPROTECT_CTX_NOPRINT(c, f) \
183 	do { \
184 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
185 	} while(0)
186 
187 
188 #define PROTECT_CTX_NOIRQ(c) \
189 	do {  \
190 		spin_lock(&(c)->ctx_lock); \
191 	} while(0)
192 
193 #define UNPROTECT_CTX_NOIRQ(c) \
194 	do { \
195 		spin_unlock(&(c)->ctx_lock); \
196 	} while(0)
197 
198 
199 #ifdef CONFIG_SMP
200 
201 #define GET_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)
202 #define INC_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)++
203 #define SET_ACTIVATION(c)	(c)->ctx_last_activation = GET_ACTIVATION()
204 
205 #else /* !CONFIG_SMP */
206 #define SET_ACTIVATION(t) 	do {} while(0)
207 #define GET_ACTIVATION(t) 	do {} while(0)
208 #define INC_ACTIVATION(t) 	do {} while(0)
209 #endif /* CONFIG_SMP */
210 
211 #define SET_PMU_OWNER(t, c)	do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
212 #define GET_PMU_OWNER()		pfm_get_cpu_var(pmu_owner)
213 #define GET_PMU_CTX()		pfm_get_cpu_var(pmu_ctx)
214 
215 #define LOCK_PFS(g)	    	spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
216 #define UNLOCK_PFS(g)	    	spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
217 
218 #define PFM_REG_RETFLAG_SET(flags, val)	do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
219 
220 /*
221  * cmp0 must be the value of pmc0
222  */
223 #define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
224 
225 #define PFMFS_MAGIC 0xa0b4d889
226 
227 /*
228  * debugging
229  */
230 #define PFM_DEBUGGING 1
231 #ifdef PFM_DEBUGGING
232 #define DPRINT(a) \
233 	do { \
234 		if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
235 	} while (0)
236 
237 #define DPRINT_ovfl(a) \
238 	do { \
239 		if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
240 	} while (0)
241 #endif
242 
243 /*
244  * 64-bit software counter structure
245  *
246  * the next_reset_type is applied to the next call to pfm_reset_regs()
247  */
248 typedef struct {
249 	unsigned long	val;		/* virtual 64bit counter value */
250 	unsigned long	lval;		/* last reset value */
251 	unsigned long	long_reset;	/* reset value on sampling overflow */
252 	unsigned long	short_reset;    /* reset value on overflow */
253 	unsigned long	reset_pmds[4];  /* which other pmds to reset when this counter overflows */
254 	unsigned long	smpl_pmds[4];   /* which pmds are accessed when counter overflow */
255 	unsigned long	seed;		/* seed for random-number generator */
256 	unsigned long	mask;		/* mask for random-number generator */
257 	unsigned int 	flags;		/* notify/do not notify */
258 	unsigned long	eventid;	/* overflow event identifier */
259 } pfm_counter_t;
260 
261 /*
262  * context flags
263  */
264 typedef struct {
265 	unsigned int block:1;		/* when 1, task will blocked on user notifications */
266 	unsigned int system:1;		/* do system wide monitoring */
267 	unsigned int using_dbreg:1;	/* using range restrictions (debug registers) */
268 	unsigned int is_sampling:1;	/* true if using a custom format */
269 	unsigned int excl_idle:1;	/* exclude idle task in system wide session */
270 	unsigned int going_zombie:1;	/* context is zombie (MASKED+blocking) */
271 	unsigned int trap_reason:2;	/* reason for going into pfm_handle_work() */
272 	unsigned int no_msg:1;		/* no message sent on overflow */
273 	unsigned int can_restart:1;	/* allowed to issue a PFM_RESTART */
274 	unsigned int reserved:22;
275 } pfm_context_flags_t;
276 
277 #define PFM_TRAP_REASON_NONE		0x0	/* default value */
278 #define PFM_TRAP_REASON_BLOCK		0x1	/* we need to block on overflow */
279 #define PFM_TRAP_REASON_RESET		0x2	/* we need to reset PMDs */
280 
281 
282 /*
283  * perfmon context: encapsulates all the state of a monitoring session
284  */
285 
286 typedef struct pfm_context {
287 	spinlock_t		ctx_lock;		/* context protection */
288 
289 	pfm_context_flags_t	ctx_flags;		/* bitmask of flags  (block reason incl.) */
290 	unsigned int		ctx_state;		/* state: active/inactive (no bitfield) */
291 
292 	struct task_struct 	*ctx_task;		/* task to which context is attached */
293 
294 	unsigned long		ctx_ovfl_regs[4];	/* which registers overflowed (notification) */
295 
296 	struct completion	ctx_restart_done;  	/* use for blocking notification mode */
297 
298 	unsigned long		ctx_used_pmds[4];	/* bitmask of PMD used            */
299 	unsigned long		ctx_all_pmds[4];	/* bitmask of all accessible PMDs */
300 	unsigned long		ctx_reload_pmds[4];	/* bitmask of force reload PMD on ctxsw in */
301 
302 	unsigned long		ctx_all_pmcs[4];	/* bitmask of all accessible PMCs */
303 	unsigned long		ctx_reload_pmcs[4];	/* bitmask of force reload PMC on ctxsw in */
304 	unsigned long		ctx_used_monitors[4];	/* bitmask of monitor PMC being used */
305 
306 	unsigned long		ctx_pmcs[PFM_NUM_PMC_REGS];	/*  saved copies of PMC values */
307 
308 	unsigned int		ctx_used_ibrs[1];		/* bitmask of used IBR (speedup ctxsw in) */
309 	unsigned int		ctx_used_dbrs[1];		/* bitmask of used DBR (speedup ctxsw in) */
310 	unsigned long		ctx_dbrs[IA64_NUM_DBG_REGS];	/* DBR values (cache) when not loaded */
311 	unsigned long		ctx_ibrs[IA64_NUM_DBG_REGS];	/* IBR values (cache) when not loaded */
312 
313 	pfm_counter_t		ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
314 
315 	unsigned long		th_pmcs[PFM_NUM_PMC_REGS];	/* PMC thread save state */
316 	unsigned long		th_pmds[PFM_NUM_PMD_REGS];	/* PMD thread save state */
317 
318 	unsigned long		ctx_saved_psr_up;	/* only contains psr.up value */
319 
320 	unsigned long		ctx_last_activation;	/* context last activation number for last_cpu */
321 	unsigned int		ctx_last_cpu;		/* CPU id of current or last CPU used (SMP only) */
322 	unsigned int		ctx_cpu;		/* cpu to which perfmon is applied (system wide) */
323 
324 	int			ctx_fd;			/* file descriptor used my this context */
325 	pfm_ovfl_arg_t		ctx_ovfl_arg;		/* argument to custom buffer format handler */
326 
327 	pfm_buffer_fmt_t	*ctx_buf_fmt;		/* buffer format callbacks */
328 	void			*ctx_smpl_hdr;		/* points to sampling buffer header kernel vaddr */
329 	unsigned long		ctx_smpl_size;		/* size of sampling buffer */
330 	void			*ctx_smpl_vaddr;	/* user level virtual address of smpl buffer */
331 
332 	wait_queue_head_t 	ctx_msgq_wait;
333 	pfm_msg_t		ctx_msgq[PFM_MAX_MSGS];
334 	int			ctx_msgq_head;
335 	int			ctx_msgq_tail;
336 	struct fasync_struct	*ctx_async_queue;
337 
338 	wait_queue_head_t 	ctx_zombieq;		/* termination cleanup wait queue */
339 } pfm_context_t;
340 
341 /*
342  * magic number used to verify that structure is really
343  * a perfmon context
344  */
345 #define PFM_IS_FILE(f)		((f)->f_op == &pfm_file_ops)
346 
347 #define PFM_GET_CTX(t)	 	((pfm_context_t *)(t)->thread.pfm_context)
348 
349 #ifdef CONFIG_SMP
350 #define SET_LAST_CPU(ctx, v)	(ctx)->ctx_last_cpu = (v)
351 #define GET_LAST_CPU(ctx)	(ctx)->ctx_last_cpu
352 #else
353 #define SET_LAST_CPU(ctx, v)	do {} while(0)
354 #define GET_LAST_CPU(ctx)	do {} while(0)
355 #endif
356 
357 
358 #define ctx_fl_block		ctx_flags.block
359 #define ctx_fl_system		ctx_flags.system
360 #define ctx_fl_using_dbreg	ctx_flags.using_dbreg
361 #define ctx_fl_is_sampling	ctx_flags.is_sampling
362 #define ctx_fl_excl_idle	ctx_flags.excl_idle
363 #define ctx_fl_going_zombie	ctx_flags.going_zombie
364 #define ctx_fl_trap_reason	ctx_flags.trap_reason
365 #define ctx_fl_no_msg		ctx_flags.no_msg
366 #define ctx_fl_can_restart	ctx_flags.can_restart
367 
368 #define PFM_SET_WORK_PENDING(t, v)	do { (t)->thread.pfm_needs_checking = v; } while(0);
369 #define PFM_GET_WORK_PENDING(t)		(t)->thread.pfm_needs_checking
370 
371 /*
372  * global information about all sessions
373  * mostly used to synchronize between system wide and per-process
374  */
375 typedef struct {
376 	spinlock_t		pfs_lock;		   /* lock the structure */
377 
378 	unsigned int		pfs_task_sessions;	   /* number of per task sessions */
379 	unsigned int		pfs_sys_sessions;	   /* number of per system wide sessions */
380 	unsigned int		pfs_sys_use_dbregs;	   /* incremented when a system wide session uses debug regs */
381 	unsigned int		pfs_ptrace_use_dbregs;	   /* incremented when a process uses debug regs */
382 	struct task_struct	*pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
383 } pfm_session_t;
384 
385 /*
386  * information about a PMC or PMD.
387  * dep_pmd[]: a bitmask of dependent PMD registers
388  * dep_pmc[]: a bitmask of dependent PMC registers
389  */
390 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
391 typedef struct {
392 	unsigned int		type;
393 	int			pm_pos;
394 	unsigned long		default_value;	/* power-on default value */
395 	unsigned long		reserved_mask;	/* bitmask of reserved bits */
396 	pfm_reg_check_t		read_check;
397 	pfm_reg_check_t		write_check;
398 	unsigned long		dep_pmd[4];
399 	unsigned long		dep_pmc[4];
400 } pfm_reg_desc_t;
401 
402 /* assume cnum is a valid monitor */
403 #define PMC_PM(cnum, val)	(((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
404 
405 /*
406  * This structure is initialized at boot time and contains
407  * a description of the PMU main characteristics.
408  *
409  * If the probe function is defined, detection is based
410  * on its return value:
411  * 	- 0 means recognized PMU
412  * 	- anything else means not supported
413  * When the probe function is not defined, then the pmu_family field
414  * is used and it must match the host CPU family such that:
415  * 	- cpu->family & config->pmu_family != 0
416  */
417 typedef struct {
418 	unsigned long  ovfl_val;	/* overflow value for counters */
419 
420 	pfm_reg_desc_t *pmc_desc;	/* detailed PMC register dependencies descriptions */
421 	pfm_reg_desc_t *pmd_desc;	/* detailed PMD register dependencies descriptions */
422 
423 	unsigned int   num_pmcs;	/* number of PMCS: computed at init time */
424 	unsigned int   num_pmds;	/* number of PMDS: computed at init time */
425 	unsigned long  impl_pmcs[4];	/* bitmask of implemented PMCS */
426 	unsigned long  impl_pmds[4];	/* bitmask of implemented PMDS */
427 
428 	char	      *pmu_name;	/* PMU family name */
429 	unsigned int  pmu_family;	/* cpuid family pattern used to identify pmu */
430 	unsigned int  flags;		/* pmu specific flags */
431 	unsigned int  num_ibrs;		/* number of IBRS: computed at init time */
432 	unsigned int  num_dbrs;		/* number of DBRS: computed at init time */
433 	unsigned int  num_counters;	/* PMC/PMD counting pairs : computed at init time */
434 	int           (*probe)(void);   /* customized probe routine */
435 	unsigned int  use_rr_dbregs:1;	/* set if debug registers used for range restriction */
436 } pmu_config_t;
437 /*
438  * PMU specific flags
439  */
440 #define PFM_PMU_IRQ_RESEND	1	/* PMU needs explicit IRQ resend */
441 
442 /*
443  * debug register related type definitions
444  */
445 typedef struct {
446 	unsigned long ibr_mask:56;
447 	unsigned long ibr_plm:4;
448 	unsigned long ibr_ig:3;
449 	unsigned long ibr_x:1;
450 } ibr_mask_reg_t;
451 
452 typedef struct {
453 	unsigned long dbr_mask:56;
454 	unsigned long dbr_plm:4;
455 	unsigned long dbr_ig:2;
456 	unsigned long dbr_w:1;
457 	unsigned long dbr_r:1;
458 } dbr_mask_reg_t;
459 
460 typedef union {
461 	unsigned long  val;
462 	ibr_mask_reg_t ibr;
463 	dbr_mask_reg_t dbr;
464 } dbreg_t;
465 
466 
467 /*
468  * perfmon command descriptions
469  */
470 typedef struct {
471 	int		(*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
472 	char		*cmd_name;
473 	int		cmd_flags;
474 	unsigned int	cmd_narg;
475 	size_t		cmd_argsize;
476 	int		(*cmd_getsize)(void *arg, size_t *sz);
477 } pfm_cmd_desc_t;
478 
479 #define PFM_CMD_FD		0x01	/* command requires a file descriptor */
480 #define PFM_CMD_ARG_READ	0x02	/* command must read argument(s) */
481 #define PFM_CMD_ARG_RW		0x04	/* command must read/write argument(s) */
482 #define PFM_CMD_STOP		0x08	/* command does not work on zombie context */
483 
484 
485 #define PFM_CMD_NAME(cmd)	pfm_cmd_tab[(cmd)].cmd_name
486 #define PFM_CMD_READ_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
487 #define PFM_CMD_RW_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
488 #define PFM_CMD_USE_FD(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
489 #define PFM_CMD_STOPPED(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
490 
491 #define PFM_CMD_ARG_MANY	-1 /* cannot be zero */
492 
493 typedef struct {
494 	unsigned long pfm_spurious_ovfl_intr_count;	/* keep track of spurious ovfl interrupts */
495 	unsigned long pfm_replay_ovfl_intr_count;	/* keep track of replayed ovfl interrupts */
496 	unsigned long pfm_ovfl_intr_count; 		/* keep track of ovfl interrupts */
497 	unsigned long pfm_ovfl_intr_cycles;		/* cycles spent processing ovfl interrupts */
498 	unsigned long pfm_ovfl_intr_cycles_min;		/* min cycles spent processing ovfl interrupts */
499 	unsigned long pfm_ovfl_intr_cycles_max;		/* max cycles spent processing ovfl interrupts */
500 	unsigned long pfm_smpl_handler_calls;
501 	unsigned long pfm_smpl_handler_cycles;
502 	char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
503 } pfm_stats_t;
504 
505 /*
506  * perfmon internal variables
507  */
508 static pfm_stats_t		pfm_stats[NR_CPUS];
509 static pfm_session_t		pfm_sessions;	/* global sessions information */
510 
511 static DEFINE_SPINLOCK(pfm_alt_install_check);
512 static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
513 
514 static struct proc_dir_entry 	*perfmon_dir;
515 static pfm_uuid_t		pfm_null_uuid = {0,};
516 
517 static spinlock_t		pfm_buffer_fmt_lock;
518 static LIST_HEAD(pfm_buffer_fmt_list);
519 
520 static pmu_config_t		*pmu_conf;
521 
522 /* sysctl() controls */
523 pfm_sysctl_t pfm_sysctl;
524 EXPORT_SYMBOL(pfm_sysctl);
525 
526 static struct ctl_table pfm_ctl_table[] = {
527 	{
528 		.procname	= "debug",
529 		.data		= &pfm_sysctl.debug,
530 		.maxlen		= sizeof(int),
531 		.mode		= 0666,
532 		.proc_handler	= proc_dointvec,
533 	},
534 	{
535 		.procname	= "debug_ovfl",
536 		.data		= &pfm_sysctl.debug_ovfl,
537 		.maxlen		= sizeof(int),
538 		.mode		= 0666,
539 		.proc_handler	= proc_dointvec,
540 	},
541 	{
542 		.procname	= "fastctxsw",
543 		.data		= &pfm_sysctl.fastctxsw,
544 		.maxlen		= sizeof(int),
545 		.mode		= 0600,
546 		.proc_handler	= proc_dointvec,
547 	},
548 	{
549 		.procname	= "expert_mode",
550 		.data		= &pfm_sysctl.expert_mode,
551 		.maxlen		= sizeof(int),
552 		.mode		= 0600,
553 		.proc_handler	= proc_dointvec,
554 	},
555 	{}
556 };
557 static struct ctl_table pfm_sysctl_dir[] = {
558 	{
559 		.procname	= "perfmon",
560 		.mode		= 0555,
561 		.child		= pfm_ctl_table,
562 	},
563  	{}
564 };
565 static struct ctl_table pfm_sysctl_root[] = {
566 	{
567 		.procname	= "kernel",
568 		.mode		= 0555,
569 		.child		= pfm_sysctl_dir,
570 	},
571  	{}
572 };
573 static struct ctl_table_header *pfm_sysctl_header;
574 
575 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
576 
577 #define pfm_get_cpu_var(v)		__ia64_per_cpu_var(v)
578 #define pfm_get_cpu_data(a,b)		per_cpu(a, b)
579 
580 static inline void
pfm_put_task(struct task_struct * task)581 pfm_put_task(struct task_struct *task)
582 {
583 	if (task != current) put_task_struct(task);
584 }
585 
586 static inline void
pfm_reserve_page(unsigned long a)587 pfm_reserve_page(unsigned long a)
588 {
589 	SetPageReserved(vmalloc_to_page((void *)a));
590 }
591 static inline void
pfm_unreserve_page(unsigned long a)592 pfm_unreserve_page(unsigned long a)
593 {
594 	ClearPageReserved(vmalloc_to_page((void*)a));
595 }
596 
597 static inline unsigned long
pfm_protect_ctx_ctxsw(pfm_context_t * x)598 pfm_protect_ctx_ctxsw(pfm_context_t *x)
599 {
600 	spin_lock(&(x)->ctx_lock);
601 	return 0UL;
602 }
603 
604 static inline void
pfm_unprotect_ctx_ctxsw(pfm_context_t * x,unsigned long f)605 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
606 {
607 	spin_unlock(&(x)->ctx_lock);
608 }
609 
610 /* forward declaration */
611 static const struct dentry_operations pfmfs_dentry_operations;
612 
613 static struct dentry *
pfmfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)614 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
615 {
616 	return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
617 			PFMFS_MAGIC);
618 }
619 
620 static struct file_system_type pfm_fs_type = {
621 	.name     = "pfmfs",
622 	.mount    = pfmfs_mount,
623 	.kill_sb  = kill_anon_super,
624 };
625 MODULE_ALIAS_FS("pfmfs");
626 
627 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
628 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
629 DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
630 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
631 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
632 
633 
634 /* forward declaration */
635 static const struct file_operations pfm_file_ops;
636 
637 /*
638  * forward declarations
639  */
640 #ifndef CONFIG_SMP
641 static void pfm_lazy_save_regs (struct task_struct *ta);
642 #endif
643 
644 void dump_pmu_state(const char *);
645 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
646 
647 #include "perfmon_itanium.h"
648 #include "perfmon_mckinley.h"
649 #include "perfmon_montecito.h"
650 #include "perfmon_generic.h"
651 
652 static pmu_config_t *pmu_confs[]={
653 	&pmu_conf_mont,
654 	&pmu_conf_mck,
655 	&pmu_conf_ita,
656 	&pmu_conf_gen, /* must be last */
657 	NULL
658 };
659 
660 
661 static int pfm_end_notify_user(pfm_context_t *ctx);
662 
663 static inline void
pfm_clear_psr_pp(void)664 pfm_clear_psr_pp(void)
665 {
666 	ia64_rsm(IA64_PSR_PP);
667 	ia64_srlz_i();
668 }
669 
670 static inline void
pfm_set_psr_pp(void)671 pfm_set_psr_pp(void)
672 {
673 	ia64_ssm(IA64_PSR_PP);
674 	ia64_srlz_i();
675 }
676 
677 static inline void
pfm_clear_psr_up(void)678 pfm_clear_psr_up(void)
679 {
680 	ia64_rsm(IA64_PSR_UP);
681 	ia64_srlz_i();
682 }
683 
684 static inline void
pfm_set_psr_up(void)685 pfm_set_psr_up(void)
686 {
687 	ia64_ssm(IA64_PSR_UP);
688 	ia64_srlz_i();
689 }
690 
691 static inline unsigned long
pfm_get_psr(void)692 pfm_get_psr(void)
693 {
694 	unsigned long tmp;
695 	tmp = ia64_getreg(_IA64_REG_PSR);
696 	ia64_srlz_i();
697 	return tmp;
698 }
699 
700 static inline void
pfm_set_psr_l(unsigned long val)701 pfm_set_psr_l(unsigned long val)
702 {
703 	ia64_setreg(_IA64_REG_PSR_L, val);
704 	ia64_srlz_i();
705 }
706 
707 static inline void
pfm_freeze_pmu(void)708 pfm_freeze_pmu(void)
709 {
710 	ia64_set_pmc(0,1UL);
711 	ia64_srlz_d();
712 }
713 
714 static inline void
pfm_unfreeze_pmu(void)715 pfm_unfreeze_pmu(void)
716 {
717 	ia64_set_pmc(0,0UL);
718 	ia64_srlz_d();
719 }
720 
721 static inline void
pfm_restore_ibrs(unsigned long * ibrs,unsigned int nibrs)722 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
723 {
724 	int i;
725 
726 	for (i=0; i < nibrs; i++) {
727 		ia64_set_ibr(i, ibrs[i]);
728 		ia64_dv_serialize_instruction();
729 	}
730 	ia64_srlz_i();
731 }
732 
733 static inline void
pfm_restore_dbrs(unsigned long * dbrs,unsigned int ndbrs)734 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
735 {
736 	int i;
737 
738 	for (i=0; i < ndbrs; i++) {
739 		ia64_set_dbr(i, dbrs[i]);
740 		ia64_dv_serialize_data();
741 	}
742 	ia64_srlz_d();
743 }
744 
745 /*
746  * PMD[i] must be a counter. no check is made
747  */
748 static inline unsigned long
pfm_read_soft_counter(pfm_context_t * ctx,int i)749 pfm_read_soft_counter(pfm_context_t *ctx, int i)
750 {
751 	return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
752 }
753 
754 /*
755  * PMD[i] must be a counter. no check is made
756  */
757 static inline void
pfm_write_soft_counter(pfm_context_t * ctx,int i,unsigned long val)758 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
759 {
760 	unsigned long ovfl_val = pmu_conf->ovfl_val;
761 
762 	ctx->ctx_pmds[i].val = val  & ~ovfl_val;
763 	/*
764 	 * writing to unimplemented part is ignore, so we do not need to
765 	 * mask off top part
766 	 */
767 	ia64_set_pmd(i, val & ovfl_val);
768 }
769 
770 static pfm_msg_t *
pfm_get_new_msg(pfm_context_t * ctx)771 pfm_get_new_msg(pfm_context_t *ctx)
772 {
773 	int idx, next;
774 
775 	next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
776 
777 	DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
778 	if (next == ctx->ctx_msgq_head) return NULL;
779 
780  	idx = 	ctx->ctx_msgq_tail;
781 	ctx->ctx_msgq_tail = next;
782 
783 	DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
784 
785 	return ctx->ctx_msgq+idx;
786 }
787 
788 static pfm_msg_t *
pfm_get_next_msg(pfm_context_t * ctx)789 pfm_get_next_msg(pfm_context_t *ctx)
790 {
791 	pfm_msg_t *msg;
792 
793 	DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
794 
795 	if (PFM_CTXQ_EMPTY(ctx)) return NULL;
796 
797 	/*
798 	 * get oldest message
799 	 */
800 	msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
801 
802 	/*
803 	 * and move forward
804 	 */
805 	ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
806 
807 	DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
808 
809 	return msg;
810 }
811 
812 static void
pfm_reset_msgq(pfm_context_t * ctx)813 pfm_reset_msgq(pfm_context_t *ctx)
814 {
815 	ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
816 	DPRINT(("ctx=%p msgq reset\n", ctx));
817 }
818 
819 static void *
pfm_rvmalloc(unsigned long size)820 pfm_rvmalloc(unsigned long size)
821 {
822 	void *mem;
823 	unsigned long addr;
824 
825 	size = PAGE_ALIGN(size);
826 	mem  = vzalloc(size);
827 	if (mem) {
828 		//printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
829 		addr = (unsigned long)mem;
830 		while (size > 0) {
831 			pfm_reserve_page(addr);
832 			addr+=PAGE_SIZE;
833 			size-=PAGE_SIZE;
834 		}
835 	}
836 	return mem;
837 }
838 
839 static void
pfm_rvfree(void * mem,unsigned long size)840 pfm_rvfree(void *mem, unsigned long size)
841 {
842 	unsigned long addr;
843 
844 	if (mem) {
845 		DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
846 		addr = (unsigned long) mem;
847 		while ((long) size > 0) {
848 			pfm_unreserve_page(addr);
849 			addr+=PAGE_SIZE;
850 			size-=PAGE_SIZE;
851 		}
852 		vfree(mem);
853 	}
854 	return;
855 }
856 
857 static pfm_context_t *
pfm_context_alloc(int ctx_flags)858 pfm_context_alloc(int ctx_flags)
859 {
860 	pfm_context_t *ctx;
861 
862 	/*
863 	 * allocate context descriptor
864 	 * must be able to free with interrupts disabled
865 	 */
866 	ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
867 	if (ctx) {
868 		DPRINT(("alloc ctx @%p\n", ctx));
869 
870 		/*
871 		 * init context protection lock
872 		 */
873 		spin_lock_init(&ctx->ctx_lock);
874 
875 		/*
876 		 * context is unloaded
877 		 */
878 		ctx->ctx_state = PFM_CTX_UNLOADED;
879 
880 		/*
881 		 * initialization of context's flags
882 		 */
883 		ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
884 		ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
885 		ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
886 		/*
887 		 * will move to set properties
888 		 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
889 		 */
890 
891 		/*
892 		 * init restart semaphore to locked
893 		 */
894 		init_completion(&ctx->ctx_restart_done);
895 
896 		/*
897 		 * activation is used in SMP only
898 		 */
899 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
900 		SET_LAST_CPU(ctx, -1);
901 
902 		/*
903 		 * initialize notification message queue
904 		 */
905 		ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
906 		init_waitqueue_head(&ctx->ctx_msgq_wait);
907 		init_waitqueue_head(&ctx->ctx_zombieq);
908 
909 	}
910 	return ctx;
911 }
912 
913 static void
pfm_context_free(pfm_context_t * ctx)914 pfm_context_free(pfm_context_t *ctx)
915 {
916 	if (ctx) {
917 		DPRINT(("free ctx @%p\n", ctx));
918 		kfree(ctx);
919 	}
920 }
921 
922 static void
pfm_mask_monitoring(struct task_struct * task)923 pfm_mask_monitoring(struct task_struct *task)
924 {
925 	pfm_context_t *ctx = PFM_GET_CTX(task);
926 	unsigned long mask, val, ovfl_mask;
927 	int i;
928 
929 	DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
930 
931 	ovfl_mask = pmu_conf->ovfl_val;
932 	/*
933 	 * monitoring can only be masked as a result of a valid
934 	 * counter overflow. In UP, it means that the PMU still
935 	 * has an owner. Note that the owner can be different
936 	 * from the current task. However the PMU state belongs
937 	 * to the owner.
938 	 * In SMP, a valid overflow only happens when task is
939 	 * current. Therefore if we come here, we know that
940 	 * the PMU state belongs to the current task, therefore
941 	 * we can access the live registers.
942 	 *
943 	 * So in both cases, the live register contains the owner's
944 	 * state. We can ONLY touch the PMU registers and NOT the PSR.
945 	 *
946 	 * As a consequence to this call, the ctx->th_pmds[] array
947 	 * contains stale information which must be ignored
948 	 * when context is reloaded AND monitoring is active (see
949 	 * pfm_restart).
950 	 */
951 	mask = ctx->ctx_used_pmds[0];
952 	for (i = 0; mask; i++, mask>>=1) {
953 		/* skip non used pmds */
954 		if ((mask & 0x1) == 0) continue;
955 		val = ia64_get_pmd(i);
956 
957 		if (PMD_IS_COUNTING(i)) {
958 			/*
959 		 	 * we rebuild the full 64 bit value of the counter
960 		 	 */
961 			ctx->ctx_pmds[i].val += (val & ovfl_mask);
962 		} else {
963 			ctx->ctx_pmds[i].val = val;
964 		}
965 		DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
966 			i,
967 			ctx->ctx_pmds[i].val,
968 			val & ovfl_mask));
969 	}
970 	/*
971 	 * mask monitoring by setting the privilege level to 0
972 	 * we cannot use psr.pp/psr.up for this, it is controlled by
973 	 * the user
974 	 *
975 	 * if task is current, modify actual registers, otherwise modify
976 	 * thread save state, i.e., what will be restored in pfm_load_regs()
977 	 */
978 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
979 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
980 		if ((mask & 0x1) == 0UL) continue;
981 		ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
982 		ctx->th_pmcs[i] &= ~0xfUL;
983 		DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
984 	}
985 	/*
986 	 * make all of this visible
987 	 */
988 	ia64_srlz_d();
989 }
990 
991 /*
992  * must always be done with task == current
993  *
994  * context must be in MASKED state when calling
995  */
996 static void
pfm_restore_monitoring(struct task_struct * task)997 pfm_restore_monitoring(struct task_struct *task)
998 {
999 	pfm_context_t *ctx = PFM_GET_CTX(task);
1000 	unsigned long mask, ovfl_mask;
1001 	unsigned long psr, val;
1002 	int i, is_system;
1003 
1004 	is_system = ctx->ctx_fl_system;
1005 	ovfl_mask = pmu_conf->ovfl_val;
1006 
1007 	if (task != current) {
1008 		printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1009 		return;
1010 	}
1011 	if (ctx->ctx_state != PFM_CTX_MASKED) {
1012 		printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1013 			task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1014 		return;
1015 	}
1016 	psr = pfm_get_psr();
1017 	/*
1018 	 * monitoring is masked via the PMC.
1019 	 * As we restore their value, we do not want each counter to
1020 	 * restart right away. We stop monitoring using the PSR,
1021 	 * restore the PMC (and PMD) and then re-establish the psr
1022 	 * as it was. Note that there can be no pending overflow at
1023 	 * this point, because monitoring was MASKED.
1024 	 *
1025 	 * system-wide session are pinned and self-monitoring
1026 	 */
1027 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1028 		/* disable dcr pp */
1029 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1030 		pfm_clear_psr_pp();
1031 	} else {
1032 		pfm_clear_psr_up();
1033 	}
1034 	/*
1035 	 * first, we restore the PMD
1036 	 */
1037 	mask = ctx->ctx_used_pmds[0];
1038 	for (i = 0; mask; i++, mask>>=1) {
1039 		/* skip non used pmds */
1040 		if ((mask & 0x1) == 0) continue;
1041 
1042 		if (PMD_IS_COUNTING(i)) {
1043 			/*
1044 			 * we split the 64bit value according to
1045 			 * counter width
1046 			 */
1047 			val = ctx->ctx_pmds[i].val & ovfl_mask;
1048 			ctx->ctx_pmds[i].val &= ~ovfl_mask;
1049 		} else {
1050 			val = ctx->ctx_pmds[i].val;
1051 		}
1052 		ia64_set_pmd(i, val);
1053 
1054 		DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1055 			i,
1056 			ctx->ctx_pmds[i].val,
1057 			val));
1058 	}
1059 	/*
1060 	 * restore the PMCs
1061 	 */
1062 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1063 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1064 		if ((mask & 0x1) == 0UL) continue;
1065 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1066 		ia64_set_pmc(i, ctx->th_pmcs[i]);
1067 		DPRINT(("[%d] pmc[%d]=0x%lx\n",
1068 					task_pid_nr(task), i, ctx->th_pmcs[i]));
1069 	}
1070 	ia64_srlz_d();
1071 
1072 	/*
1073 	 * must restore DBR/IBR because could be modified while masked
1074 	 * XXX: need to optimize
1075 	 */
1076 	if (ctx->ctx_fl_using_dbreg) {
1077 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1078 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1079 	}
1080 
1081 	/*
1082 	 * now restore PSR
1083 	 */
1084 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1085 		/* enable dcr pp */
1086 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1087 		ia64_srlz_i();
1088 	}
1089 	pfm_set_psr_l(psr);
1090 }
1091 
1092 static inline void
pfm_save_pmds(unsigned long * pmds,unsigned long mask)1093 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1094 {
1095 	int i;
1096 
1097 	ia64_srlz_d();
1098 
1099 	for (i=0; mask; i++, mask>>=1) {
1100 		if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1101 	}
1102 }
1103 
1104 /*
1105  * reload from thread state (used for ctxw only)
1106  */
1107 static inline void
pfm_restore_pmds(unsigned long * pmds,unsigned long mask)1108 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1109 {
1110 	int i;
1111 	unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1112 
1113 	for (i=0; mask; i++, mask>>=1) {
1114 		if ((mask & 0x1) == 0) continue;
1115 		val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1116 		ia64_set_pmd(i, val);
1117 	}
1118 	ia64_srlz_d();
1119 }
1120 
1121 /*
1122  * propagate PMD from context to thread-state
1123  */
1124 static inline void
pfm_copy_pmds(struct task_struct * task,pfm_context_t * ctx)1125 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1126 {
1127 	unsigned long ovfl_val = pmu_conf->ovfl_val;
1128 	unsigned long mask = ctx->ctx_all_pmds[0];
1129 	unsigned long val;
1130 	int i;
1131 
1132 	DPRINT(("mask=0x%lx\n", mask));
1133 
1134 	for (i=0; mask; i++, mask>>=1) {
1135 
1136 		val = ctx->ctx_pmds[i].val;
1137 
1138 		/*
1139 		 * We break up the 64 bit value into 2 pieces
1140 		 * the lower bits go to the machine state in the
1141 		 * thread (will be reloaded on ctxsw in).
1142 		 * The upper part stays in the soft-counter.
1143 		 */
1144 		if (PMD_IS_COUNTING(i)) {
1145 			ctx->ctx_pmds[i].val = val & ~ovfl_val;
1146 			 val &= ovfl_val;
1147 		}
1148 		ctx->th_pmds[i] = val;
1149 
1150 		DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1151 			i,
1152 			ctx->th_pmds[i],
1153 			ctx->ctx_pmds[i].val));
1154 	}
1155 }
1156 
1157 /*
1158  * propagate PMC from context to thread-state
1159  */
1160 static inline void
pfm_copy_pmcs(struct task_struct * task,pfm_context_t * ctx)1161 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1162 {
1163 	unsigned long mask = ctx->ctx_all_pmcs[0];
1164 	int i;
1165 
1166 	DPRINT(("mask=0x%lx\n", mask));
1167 
1168 	for (i=0; mask; i++, mask>>=1) {
1169 		/* masking 0 with ovfl_val yields 0 */
1170 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1171 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1172 	}
1173 }
1174 
1175 
1176 
1177 static inline void
pfm_restore_pmcs(unsigned long * pmcs,unsigned long mask)1178 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1179 {
1180 	int i;
1181 
1182 	for (i=0; mask; i++, mask>>=1) {
1183 		if ((mask & 0x1) == 0) continue;
1184 		ia64_set_pmc(i, pmcs[i]);
1185 	}
1186 	ia64_srlz_d();
1187 }
1188 
1189 static inline int
pfm_uuid_cmp(pfm_uuid_t a,pfm_uuid_t b)1190 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1191 {
1192 	return memcmp(a, b, sizeof(pfm_uuid_t));
1193 }
1194 
1195 static inline int
pfm_buf_fmt_exit(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,struct pt_regs * regs)1196 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1197 {
1198 	int ret = 0;
1199 	if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1200 	return ret;
1201 }
1202 
1203 static inline int
pfm_buf_fmt_getsize(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg,unsigned long * size)1204 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1205 {
1206 	int ret = 0;
1207 	if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1208 	return ret;
1209 }
1210 
1211 
1212 static inline int
pfm_buf_fmt_validate(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg)1213 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1214 		     int cpu, void *arg)
1215 {
1216 	int ret = 0;
1217 	if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1218 	return ret;
1219 }
1220 
1221 static inline int
pfm_buf_fmt_init(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,unsigned int flags,int cpu,void * arg)1222 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1223 		     int cpu, void *arg)
1224 {
1225 	int ret = 0;
1226 	if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1227 	return ret;
1228 }
1229 
1230 static inline int
pfm_buf_fmt_restart(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1231 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1232 {
1233 	int ret = 0;
1234 	if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1235 	return ret;
1236 }
1237 
1238 static inline int
pfm_buf_fmt_restart_active(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1239 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1240 {
1241 	int ret = 0;
1242 	if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1243 	return ret;
1244 }
1245 
1246 static pfm_buffer_fmt_t *
__pfm_find_buffer_fmt(pfm_uuid_t uuid)1247 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1248 {
1249 	struct list_head * pos;
1250 	pfm_buffer_fmt_t * entry;
1251 
1252 	list_for_each(pos, &pfm_buffer_fmt_list) {
1253 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1254 		if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1255 			return entry;
1256 	}
1257 	return NULL;
1258 }
1259 
1260 /*
1261  * find a buffer format based on its uuid
1262  */
1263 static pfm_buffer_fmt_t *
pfm_find_buffer_fmt(pfm_uuid_t uuid)1264 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1265 {
1266 	pfm_buffer_fmt_t * fmt;
1267 	spin_lock(&pfm_buffer_fmt_lock);
1268 	fmt = __pfm_find_buffer_fmt(uuid);
1269 	spin_unlock(&pfm_buffer_fmt_lock);
1270 	return fmt;
1271 }
1272 
1273 int
pfm_register_buffer_fmt(pfm_buffer_fmt_t * fmt)1274 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1275 {
1276 	int ret = 0;
1277 
1278 	/* some sanity checks */
1279 	if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1280 
1281 	/* we need at least a handler */
1282 	if (fmt->fmt_handler == NULL) return -EINVAL;
1283 
1284 	/*
1285 	 * XXX: need check validity of fmt_arg_size
1286 	 */
1287 
1288 	spin_lock(&pfm_buffer_fmt_lock);
1289 
1290 	if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1291 		printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1292 		ret = -EBUSY;
1293 		goto out;
1294 	}
1295 	list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1296 	printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1297 
1298 out:
1299 	spin_unlock(&pfm_buffer_fmt_lock);
1300  	return ret;
1301 }
1302 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1303 
1304 int
pfm_unregister_buffer_fmt(pfm_uuid_t uuid)1305 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1306 {
1307 	pfm_buffer_fmt_t *fmt;
1308 	int ret = 0;
1309 
1310 	spin_lock(&pfm_buffer_fmt_lock);
1311 
1312 	fmt = __pfm_find_buffer_fmt(uuid);
1313 	if (!fmt) {
1314 		printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1315 		ret = -EINVAL;
1316 		goto out;
1317 	}
1318 	list_del_init(&fmt->fmt_list);
1319 	printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1320 
1321 out:
1322 	spin_unlock(&pfm_buffer_fmt_lock);
1323 	return ret;
1324 
1325 }
1326 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1327 
1328 static int
pfm_reserve_session(struct task_struct * task,int is_syswide,unsigned int cpu)1329 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1330 {
1331 	unsigned long flags;
1332 	/*
1333 	 * validity checks on cpu_mask have been done upstream
1334 	 */
1335 	LOCK_PFS(flags);
1336 
1337 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1338 		pfm_sessions.pfs_sys_sessions,
1339 		pfm_sessions.pfs_task_sessions,
1340 		pfm_sessions.pfs_sys_use_dbregs,
1341 		is_syswide,
1342 		cpu));
1343 
1344 	if (is_syswide) {
1345 		/*
1346 		 * cannot mix system wide and per-task sessions
1347 		 */
1348 		if (pfm_sessions.pfs_task_sessions > 0UL) {
1349 			DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1350 			  	pfm_sessions.pfs_task_sessions));
1351 			goto abort;
1352 		}
1353 
1354 		if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1355 
1356 		DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1357 
1358 		pfm_sessions.pfs_sys_session[cpu] = task;
1359 
1360 		pfm_sessions.pfs_sys_sessions++ ;
1361 
1362 	} else {
1363 		if (pfm_sessions.pfs_sys_sessions) goto abort;
1364 		pfm_sessions.pfs_task_sessions++;
1365 	}
1366 
1367 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1368 		pfm_sessions.pfs_sys_sessions,
1369 		pfm_sessions.pfs_task_sessions,
1370 		pfm_sessions.pfs_sys_use_dbregs,
1371 		is_syswide,
1372 		cpu));
1373 
1374 	/*
1375 	 * Force idle() into poll mode
1376 	 */
1377 	cpu_idle_poll_ctrl(true);
1378 
1379 	UNLOCK_PFS(flags);
1380 
1381 	return 0;
1382 
1383 error_conflict:
1384 	DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1385   		task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1386 		cpu));
1387 abort:
1388 	UNLOCK_PFS(flags);
1389 
1390 	return -EBUSY;
1391 
1392 }
1393 
1394 static int
pfm_unreserve_session(pfm_context_t * ctx,int is_syswide,unsigned int cpu)1395 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1396 {
1397 	unsigned long flags;
1398 	/*
1399 	 * validity checks on cpu_mask have been done upstream
1400 	 */
1401 	LOCK_PFS(flags);
1402 
1403 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1404 		pfm_sessions.pfs_sys_sessions,
1405 		pfm_sessions.pfs_task_sessions,
1406 		pfm_sessions.pfs_sys_use_dbregs,
1407 		is_syswide,
1408 		cpu));
1409 
1410 
1411 	if (is_syswide) {
1412 		pfm_sessions.pfs_sys_session[cpu] = NULL;
1413 		/*
1414 		 * would not work with perfmon+more than one bit in cpu_mask
1415 		 */
1416 		if (ctx && ctx->ctx_fl_using_dbreg) {
1417 			if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1418 				printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1419 			} else {
1420 				pfm_sessions.pfs_sys_use_dbregs--;
1421 			}
1422 		}
1423 		pfm_sessions.pfs_sys_sessions--;
1424 	} else {
1425 		pfm_sessions.pfs_task_sessions--;
1426 	}
1427 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1428 		pfm_sessions.pfs_sys_sessions,
1429 		pfm_sessions.pfs_task_sessions,
1430 		pfm_sessions.pfs_sys_use_dbregs,
1431 		is_syswide,
1432 		cpu));
1433 
1434 	/* Undo forced polling. Last session reenables pal_halt */
1435 	cpu_idle_poll_ctrl(false);
1436 
1437 	UNLOCK_PFS(flags);
1438 
1439 	return 0;
1440 }
1441 
1442 /*
1443  * removes virtual mapping of the sampling buffer.
1444  * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1445  * a PROTECT_CTX() section.
1446  */
1447 static int
pfm_remove_smpl_mapping(void * vaddr,unsigned long size)1448 pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1449 {
1450 	struct task_struct *task = current;
1451 	int r;
1452 
1453 	/* sanity checks */
1454 	if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1455 		printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1456 		return -EINVAL;
1457 	}
1458 
1459 	DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1460 
1461 	/*
1462 	 * does the actual unmapping
1463 	 */
1464 	r = vm_munmap((unsigned long)vaddr, size);
1465 
1466 	if (r !=0) {
1467 		printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1468 	}
1469 
1470 	DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1471 
1472 	return 0;
1473 }
1474 
1475 /*
1476  * free actual physical storage used by sampling buffer
1477  */
1478 #if 0
1479 static int
1480 pfm_free_smpl_buffer(pfm_context_t *ctx)
1481 {
1482 	pfm_buffer_fmt_t *fmt;
1483 
1484 	if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1485 
1486 	/*
1487 	 * we won't use the buffer format anymore
1488 	 */
1489 	fmt = ctx->ctx_buf_fmt;
1490 
1491 	DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1492 		ctx->ctx_smpl_hdr,
1493 		ctx->ctx_smpl_size,
1494 		ctx->ctx_smpl_vaddr));
1495 
1496 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1497 
1498 	/*
1499 	 * free the buffer
1500 	 */
1501 	pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1502 
1503 	ctx->ctx_smpl_hdr  = NULL;
1504 	ctx->ctx_smpl_size = 0UL;
1505 
1506 	return 0;
1507 
1508 invalid_free:
1509 	printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1510 	return -EINVAL;
1511 }
1512 #endif
1513 
1514 static inline void
pfm_exit_smpl_buffer(pfm_buffer_fmt_t * fmt)1515 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1516 {
1517 	if (fmt == NULL) return;
1518 
1519 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1520 
1521 }
1522 
1523 /*
1524  * pfmfs should _never_ be mounted by userland - too much of security hassle,
1525  * no real gain from having the whole whorehouse mounted. So we don't need
1526  * any operations on the root directory. However, we need a non-trivial
1527  * d_name - pfm: will go nicely and kill the special-casing in procfs.
1528  */
1529 static struct vfsmount *pfmfs_mnt __read_mostly;
1530 
1531 static int __init
init_pfm_fs(void)1532 init_pfm_fs(void)
1533 {
1534 	int err = register_filesystem(&pfm_fs_type);
1535 	if (!err) {
1536 		pfmfs_mnt = kern_mount(&pfm_fs_type);
1537 		err = PTR_ERR(pfmfs_mnt);
1538 		if (IS_ERR(pfmfs_mnt))
1539 			unregister_filesystem(&pfm_fs_type);
1540 		else
1541 			err = 0;
1542 	}
1543 	return err;
1544 }
1545 
1546 static ssize_t
pfm_read(struct file * filp,char __user * buf,size_t size,loff_t * ppos)1547 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1548 {
1549 	pfm_context_t *ctx;
1550 	pfm_msg_t *msg;
1551 	ssize_t ret;
1552 	unsigned long flags;
1553   	DECLARE_WAITQUEUE(wait, current);
1554 	if (PFM_IS_FILE(filp) == 0) {
1555 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1556 		return -EINVAL;
1557 	}
1558 
1559 	ctx = filp->private_data;
1560 	if (ctx == NULL) {
1561 		printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1562 		return -EINVAL;
1563 	}
1564 
1565 	/*
1566 	 * check even when there is no message
1567 	 */
1568 	if (size < sizeof(pfm_msg_t)) {
1569 		DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1570 		return -EINVAL;
1571 	}
1572 
1573 	PROTECT_CTX(ctx, flags);
1574 
1575   	/*
1576 	 * put ourselves on the wait queue
1577 	 */
1578   	add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1579 
1580 
1581   	for(;;) {
1582 		/*
1583 		 * check wait queue
1584 		 */
1585 
1586   		set_current_state(TASK_INTERRUPTIBLE);
1587 
1588 		DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1589 
1590 		ret = 0;
1591 		if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1592 
1593 		UNPROTECT_CTX(ctx, flags);
1594 
1595 		/*
1596 		 * check non-blocking read
1597 		 */
1598       		ret = -EAGAIN;
1599 		if(filp->f_flags & O_NONBLOCK) break;
1600 
1601 		/*
1602 		 * check pending signals
1603 		 */
1604 		if(signal_pending(current)) {
1605 			ret = -EINTR;
1606 			break;
1607 		}
1608       		/*
1609 		 * no message, so wait
1610 		 */
1611       		schedule();
1612 
1613 		PROTECT_CTX(ctx, flags);
1614 	}
1615 	DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1616   	set_current_state(TASK_RUNNING);
1617 	remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1618 
1619 	if (ret < 0) goto abort;
1620 
1621 	ret = -EINVAL;
1622 	msg = pfm_get_next_msg(ctx);
1623 	if (msg == NULL) {
1624 		printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1625 		goto abort_locked;
1626 	}
1627 
1628 	DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1629 
1630 	ret = -EFAULT;
1631   	if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1632 
1633 abort_locked:
1634 	UNPROTECT_CTX(ctx, flags);
1635 abort:
1636 	return ret;
1637 }
1638 
1639 static ssize_t
pfm_write(struct file * file,const char __user * ubuf,size_t size,loff_t * ppos)1640 pfm_write(struct file *file, const char __user *ubuf,
1641 			  size_t size, loff_t *ppos)
1642 {
1643 	DPRINT(("pfm_write called\n"));
1644 	return -EINVAL;
1645 }
1646 
1647 static unsigned int
pfm_poll(struct file * filp,poll_table * wait)1648 pfm_poll(struct file *filp, poll_table * wait)
1649 {
1650 	pfm_context_t *ctx;
1651 	unsigned long flags;
1652 	unsigned int mask = 0;
1653 
1654 	if (PFM_IS_FILE(filp) == 0) {
1655 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1656 		return 0;
1657 	}
1658 
1659 	ctx = filp->private_data;
1660 	if (ctx == NULL) {
1661 		printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1662 		return 0;
1663 	}
1664 
1665 
1666 	DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1667 
1668 	poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1669 
1670 	PROTECT_CTX(ctx, flags);
1671 
1672 	if (PFM_CTXQ_EMPTY(ctx) == 0)
1673 		mask =  POLLIN | POLLRDNORM;
1674 
1675 	UNPROTECT_CTX(ctx, flags);
1676 
1677 	DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1678 
1679 	return mask;
1680 }
1681 
1682 static long
pfm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1683 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1684 {
1685 	DPRINT(("pfm_ioctl called\n"));
1686 	return -EINVAL;
1687 }
1688 
1689 /*
1690  * interrupt cannot be masked when coming here
1691  */
1692 static inline int
pfm_do_fasync(int fd,struct file * filp,pfm_context_t * ctx,int on)1693 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1694 {
1695 	int ret;
1696 
1697 	ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1698 
1699 	DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1700 		task_pid_nr(current),
1701 		fd,
1702 		on,
1703 		ctx->ctx_async_queue, ret));
1704 
1705 	return ret;
1706 }
1707 
1708 static int
pfm_fasync(int fd,struct file * filp,int on)1709 pfm_fasync(int fd, struct file *filp, int on)
1710 {
1711 	pfm_context_t *ctx;
1712 	int ret;
1713 
1714 	if (PFM_IS_FILE(filp) == 0) {
1715 		printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1716 		return -EBADF;
1717 	}
1718 
1719 	ctx = filp->private_data;
1720 	if (ctx == NULL) {
1721 		printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1722 		return -EBADF;
1723 	}
1724 	/*
1725 	 * we cannot mask interrupts during this call because this may
1726 	 * may go to sleep if memory is not readily avalaible.
1727 	 *
1728 	 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1729 	 * done in caller. Serialization of this function is ensured by caller.
1730 	 */
1731 	ret = pfm_do_fasync(fd, filp, ctx, on);
1732 
1733 
1734 	DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1735 		fd,
1736 		on,
1737 		ctx->ctx_async_queue, ret));
1738 
1739 	return ret;
1740 }
1741 
1742 #ifdef CONFIG_SMP
1743 /*
1744  * this function is exclusively called from pfm_close().
1745  * The context is not protected at that time, nor are interrupts
1746  * on the remote CPU. That's necessary to avoid deadlocks.
1747  */
1748 static void
pfm_syswide_force_stop(void * info)1749 pfm_syswide_force_stop(void *info)
1750 {
1751 	pfm_context_t   *ctx = (pfm_context_t *)info;
1752 	struct pt_regs *regs = task_pt_regs(current);
1753 	struct task_struct *owner;
1754 	unsigned long flags;
1755 	int ret;
1756 
1757 	if (ctx->ctx_cpu != smp_processor_id()) {
1758 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1759 			ctx->ctx_cpu,
1760 			smp_processor_id());
1761 		return;
1762 	}
1763 	owner = GET_PMU_OWNER();
1764 	if (owner != ctx->ctx_task) {
1765 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1766 			smp_processor_id(),
1767 			task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1768 		return;
1769 	}
1770 	if (GET_PMU_CTX() != ctx) {
1771 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1772 			smp_processor_id(),
1773 			GET_PMU_CTX(), ctx);
1774 		return;
1775 	}
1776 
1777 	DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1778 	/*
1779 	 * the context is already protected in pfm_close(), we simply
1780 	 * need to mask interrupts to avoid a PMU interrupt race on
1781 	 * this CPU
1782 	 */
1783 	local_irq_save(flags);
1784 
1785 	ret = pfm_context_unload(ctx, NULL, 0, regs);
1786 	if (ret) {
1787 		DPRINT(("context_unload returned %d\n", ret));
1788 	}
1789 
1790 	/*
1791 	 * unmask interrupts, PMU interrupts are now spurious here
1792 	 */
1793 	local_irq_restore(flags);
1794 }
1795 
1796 static void
pfm_syswide_cleanup_other_cpu(pfm_context_t * ctx)1797 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1798 {
1799 	int ret;
1800 
1801 	DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1802 	ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1803 	DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1804 }
1805 #endif /* CONFIG_SMP */
1806 
1807 /*
1808  * called for each close(). Partially free resources.
1809  * When caller is self-monitoring, the context is unloaded.
1810  */
1811 static int
pfm_flush(struct file * filp,fl_owner_t id)1812 pfm_flush(struct file *filp, fl_owner_t id)
1813 {
1814 	pfm_context_t *ctx;
1815 	struct task_struct *task;
1816 	struct pt_regs *regs;
1817 	unsigned long flags;
1818 	unsigned long smpl_buf_size = 0UL;
1819 	void *smpl_buf_vaddr = NULL;
1820 	int state, is_system;
1821 
1822 	if (PFM_IS_FILE(filp) == 0) {
1823 		DPRINT(("bad magic for\n"));
1824 		return -EBADF;
1825 	}
1826 
1827 	ctx = filp->private_data;
1828 	if (ctx == NULL) {
1829 		printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1830 		return -EBADF;
1831 	}
1832 
1833 	/*
1834 	 * remove our file from the async queue, if we use this mode.
1835 	 * This can be done without the context being protected. We come
1836 	 * here when the context has become unreachable by other tasks.
1837 	 *
1838 	 * We may still have active monitoring at this point and we may
1839 	 * end up in pfm_overflow_handler(). However, fasync_helper()
1840 	 * operates with interrupts disabled and it cleans up the
1841 	 * queue. If the PMU handler is called prior to entering
1842 	 * fasync_helper() then it will send a signal. If it is
1843 	 * invoked after, it will find an empty queue and no
1844 	 * signal will be sent. In both case, we are safe
1845 	 */
1846 	PROTECT_CTX(ctx, flags);
1847 
1848 	state     = ctx->ctx_state;
1849 	is_system = ctx->ctx_fl_system;
1850 
1851 	task = PFM_CTX_TASK(ctx);
1852 	regs = task_pt_regs(task);
1853 
1854 	DPRINT(("ctx_state=%d is_current=%d\n",
1855 		state,
1856 		task == current ? 1 : 0));
1857 
1858 	/*
1859 	 * if state == UNLOADED, then task is NULL
1860 	 */
1861 
1862 	/*
1863 	 * we must stop and unload because we are losing access to the context.
1864 	 */
1865 	if (task == current) {
1866 #ifdef CONFIG_SMP
1867 		/*
1868 		 * the task IS the owner but it migrated to another CPU: that's bad
1869 		 * but we must handle this cleanly. Unfortunately, the kernel does
1870 		 * not provide a mechanism to block migration (while the context is loaded).
1871 		 *
1872 		 * We need to release the resource on the ORIGINAL cpu.
1873 		 */
1874 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1875 
1876 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1877 			/*
1878 			 * keep context protected but unmask interrupt for IPI
1879 			 */
1880 			local_irq_restore(flags);
1881 
1882 			pfm_syswide_cleanup_other_cpu(ctx);
1883 
1884 			/*
1885 			 * restore interrupt masking
1886 			 */
1887 			local_irq_save(flags);
1888 
1889 			/*
1890 			 * context is unloaded at this point
1891 			 */
1892 		} else
1893 #endif /* CONFIG_SMP */
1894 		{
1895 
1896 			DPRINT(("forcing unload\n"));
1897 			/*
1898 		 	* stop and unload, returning with state UNLOADED
1899 		 	* and session unreserved.
1900 		 	*/
1901 			pfm_context_unload(ctx, NULL, 0, regs);
1902 
1903 			DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1904 		}
1905 	}
1906 
1907 	/*
1908 	 * remove virtual mapping, if any, for the calling task.
1909 	 * cannot reset ctx field until last user is calling close().
1910 	 *
1911 	 * ctx_smpl_vaddr must never be cleared because it is needed
1912 	 * by every task with access to the context
1913 	 *
1914 	 * When called from do_exit(), the mm context is gone already, therefore
1915 	 * mm is NULL, i.e., the VMA is already gone  and we do not have to
1916 	 * do anything here
1917 	 */
1918 	if (ctx->ctx_smpl_vaddr && current->mm) {
1919 		smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1920 		smpl_buf_size  = ctx->ctx_smpl_size;
1921 	}
1922 
1923 	UNPROTECT_CTX(ctx, flags);
1924 
1925 	/*
1926 	 * if there was a mapping, then we systematically remove it
1927 	 * at this point. Cannot be done inside critical section
1928 	 * because some VM function reenables interrupts.
1929 	 *
1930 	 */
1931 	if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1932 
1933 	return 0;
1934 }
1935 /*
1936  * called either on explicit close() or from exit_files().
1937  * Only the LAST user of the file gets to this point, i.e., it is
1938  * called only ONCE.
1939  *
1940  * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1941  * (fput()),i.e, last task to access the file. Nobody else can access the
1942  * file at this point.
1943  *
1944  * When called from exit_files(), the VMA has been freed because exit_mm()
1945  * is executed before exit_files().
1946  *
1947  * When called from exit_files(), the current task is not yet ZOMBIE but we
1948  * flush the PMU state to the context.
1949  */
1950 static int
pfm_close(struct inode * inode,struct file * filp)1951 pfm_close(struct inode *inode, struct file *filp)
1952 {
1953 	pfm_context_t *ctx;
1954 	struct task_struct *task;
1955 	struct pt_regs *regs;
1956   	DECLARE_WAITQUEUE(wait, current);
1957 	unsigned long flags;
1958 	unsigned long smpl_buf_size = 0UL;
1959 	void *smpl_buf_addr = NULL;
1960 	int free_possible = 1;
1961 	int state, is_system;
1962 
1963 	DPRINT(("pfm_close called private=%p\n", filp->private_data));
1964 
1965 	if (PFM_IS_FILE(filp) == 0) {
1966 		DPRINT(("bad magic\n"));
1967 		return -EBADF;
1968 	}
1969 
1970 	ctx = filp->private_data;
1971 	if (ctx == NULL) {
1972 		printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1973 		return -EBADF;
1974 	}
1975 
1976 	PROTECT_CTX(ctx, flags);
1977 
1978 	state     = ctx->ctx_state;
1979 	is_system = ctx->ctx_fl_system;
1980 
1981 	task = PFM_CTX_TASK(ctx);
1982 	regs = task_pt_regs(task);
1983 
1984 	DPRINT(("ctx_state=%d is_current=%d\n",
1985 		state,
1986 		task == current ? 1 : 0));
1987 
1988 	/*
1989 	 * if task == current, then pfm_flush() unloaded the context
1990 	 */
1991 	if (state == PFM_CTX_UNLOADED) goto doit;
1992 
1993 	/*
1994 	 * context is loaded/masked and task != current, we need to
1995 	 * either force an unload or go zombie
1996 	 */
1997 
1998 	/*
1999 	 * The task is currently blocked or will block after an overflow.
2000 	 * we must force it to wakeup to get out of the
2001 	 * MASKED state and transition to the unloaded state by itself.
2002 	 *
2003 	 * This situation is only possible for per-task mode
2004 	 */
2005 	if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2006 
2007 		/*
2008 		 * set a "partial" zombie state to be checked
2009 		 * upon return from down() in pfm_handle_work().
2010 		 *
2011 		 * We cannot use the ZOMBIE state, because it is checked
2012 		 * by pfm_load_regs() which is called upon wakeup from down().
2013 		 * In such case, it would free the context and then we would
2014 		 * return to pfm_handle_work() which would access the
2015 		 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2016 		 * but visible to pfm_handle_work().
2017 		 *
2018 		 * For some window of time, we have a zombie context with
2019 		 * ctx_state = MASKED  and not ZOMBIE
2020 		 */
2021 		ctx->ctx_fl_going_zombie = 1;
2022 
2023 		/*
2024 		 * force task to wake up from MASKED state
2025 		 */
2026 		complete(&ctx->ctx_restart_done);
2027 
2028 		DPRINT(("waking up ctx_state=%d\n", state));
2029 
2030 		/*
2031 		 * put ourself to sleep waiting for the other
2032 		 * task to report completion
2033 		 *
2034 		 * the context is protected by mutex, therefore there
2035 		 * is no risk of being notified of completion before
2036 		 * begin actually on the waitq.
2037 		 */
2038   		set_current_state(TASK_INTERRUPTIBLE);
2039   		add_wait_queue(&ctx->ctx_zombieq, &wait);
2040 
2041 		UNPROTECT_CTX(ctx, flags);
2042 
2043 		/*
2044 		 * XXX: check for signals :
2045 		 * 	- ok for explicit close
2046 		 * 	- not ok when coming from exit_files()
2047 		 */
2048       		schedule();
2049 
2050 
2051 		PROTECT_CTX(ctx, flags);
2052 
2053 
2054 		remove_wait_queue(&ctx->ctx_zombieq, &wait);
2055   		set_current_state(TASK_RUNNING);
2056 
2057 		/*
2058 		 * context is unloaded at this point
2059 		 */
2060 		DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2061 	}
2062 	else if (task != current) {
2063 #ifdef CONFIG_SMP
2064 		/*
2065 	 	 * switch context to zombie state
2066 	 	 */
2067 		ctx->ctx_state = PFM_CTX_ZOMBIE;
2068 
2069 		DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2070 		/*
2071 		 * cannot free the context on the spot. deferred until
2072 		 * the task notices the ZOMBIE state
2073 		 */
2074 		free_possible = 0;
2075 #else
2076 		pfm_context_unload(ctx, NULL, 0, regs);
2077 #endif
2078 	}
2079 
2080 doit:
2081 	/* reload state, may have changed during  opening of critical section */
2082 	state = ctx->ctx_state;
2083 
2084 	/*
2085 	 * the context is still attached to a task (possibly current)
2086 	 * we cannot destroy it right now
2087 	 */
2088 
2089 	/*
2090 	 * we must free the sampling buffer right here because
2091 	 * we cannot rely on it being cleaned up later by the
2092 	 * monitored task. It is not possible to free vmalloc'ed
2093 	 * memory in pfm_load_regs(). Instead, we remove the buffer
2094 	 * now. should there be subsequent PMU overflow originally
2095 	 * meant for sampling, the will be converted to spurious
2096 	 * and that's fine because the monitoring tools is gone anyway.
2097 	 */
2098 	if (ctx->ctx_smpl_hdr) {
2099 		smpl_buf_addr = ctx->ctx_smpl_hdr;
2100 		smpl_buf_size = ctx->ctx_smpl_size;
2101 		/* no more sampling */
2102 		ctx->ctx_smpl_hdr = NULL;
2103 		ctx->ctx_fl_is_sampling = 0;
2104 	}
2105 
2106 	DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2107 		state,
2108 		free_possible,
2109 		smpl_buf_addr,
2110 		smpl_buf_size));
2111 
2112 	if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2113 
2114 	/*
2115 	 * UNLOADED that the session has already been unreserved.
2116 	 */
2117 	if (state == PFM_CTX_ZOMBIE) {
2118 		pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2119 	}
2120 
2121 	/*
2122 	 * disconnect file descriptor from context must be done
2123 	 * before we unlock.
2124 	 */
2125 	filp->private_data = NULL;
2126 
2127 	/*
2128 	 * if we free on the spot, the context is now completely unreachable
2129 	 * from the callers side. The monitored task side is also cut, so we
2130 	 * can freely cut.
2131 	 *
2132 	 * If we have a deferred free, only the caller side is disconnected.
2133 	 */
2134 	UNPROTECT_CTX(ctx, flags);
2135 
2136 	/*
2137 	 * All memory free operations (especially for vmalloc'ed memory)
2138 	 * MUST be done with interrupts ENABLED.
2139 	 */
2140 	if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2141 
2142 	/*
2143 	 * return the memory used by the context
2144 	 */
2145 	if (free_possible) pfm_context_free(ctx);
2146 
2147 	return 0;
2148 }
2149 
2150 static const struct file_operations pfm_file_ops = {
2151 	.llseek		= no_llseek,
2152 	.read		= pfm_read,
2153 	.write		= pfm_write,
2154 	.poll		= pfm_poll,
2155 	.unlocked_ioctl = pfm_ioctl,
2156 	.fasync		= pfm_fasync,
2157 	.release	= pfm_close,
2158 	.flush		= pfm_flush
2159 };
2160 
pfmfs_dname(struct dentry * dentry,char * buffer,int buflen)2161 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2162 {
2163 	return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2164 			     d_inode(dentry)->i_ino);
2165 }
2166 
2167 static const struct dentry_operations pfmfs_dentry_operations = {
2168 	.d_delete = always_delete_dentry,
2169 	.d_dname = pfmfs_dname,
2170 };
2171 
2172 
2173 static struct file *
pfm_alloc_file(pfm_context_t * ctx)2174 pfm_alloc_file(pfm_context_t *ctx)
2175 {
2176 	struct file *file;
2177 	struct inode *inode;
2178 	struct path path;
2179 	struct qstr this = { .name = "" };
2180 
2181 	/*
2182 	 * allocate a new inode
2183 	 */
2184 	inode = new_inode(pfmfs_mnt->mnt_sb);
2185 	if (!inode)
2186 		return ERR_PTR(-ENOMEM);
2187 
2188 	DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2189 
2190 	inode->i_mode = S_IFCHR|S_IRUGO;
2191 	inode->i_uid  = current_fsuid();
2192 	inode->i_gid  = current_fsgid();
2193 
2194 	/*
2195 	 * allocate a new dcache entry
2196 	 */
2197 	path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2198 	if (!path.dentry) {
2199 		iput(inode);
2200 		return ERR_PTR(-ENOMEM);
2201 	}
2202 	path.mnt = mntget(pfmfs_mnt);
2203 
2204 	d_add(path.dentry, inode);
2205 
2206 	file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2207 	if (IS_ERR(file)) {
2208 		path_put(&path);
2209 		return file;
2210 	}
2211 
2212 	file->f_flags = O_RDONLY;
2213 	file->private_data = ctx;
2214 
2215 	return file;
2216 }
2217 
2218 static int
pfm_remap_buffer(struct vm_area_struct * vma,unsigned long buf,unsigned long addr,unsigned long size)2219 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2220 {
2221 	DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2222 
2223 	while (size > 0) {
2224 		unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2225 
2226 
2227 		if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2228 			return -ENOMEM;
2229 
2230 		addr  += PAGE_SIZE;
2231 		buf   += PAGE_SIZE;
2232 		size  -= PAGE_SIZE;
2233 	}
2234 	return 0;
2235 }
2236 
2237 /*
2238  * allocate a sampling buffer and remaps it into the user address space of the task
2239  */
2240 static int
pfm_smpl_buffer_alloc(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned long rsize,void ** user_vaddr)2241 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2242 {
2243 	struct mm_struct *mm = task->mm;
2244 	struct vm_area_struct *vma = NULL;
2245 	unsigned long size;
2246 	void *smpl_buf;
2247 
2248 
2249 	/*
2250 	 * the fixed header + requested size and align to page boundary
2251 	 */
2252 	size = PAGE_ALIGN(rsize);
2253 
2254 	DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2255 
2256 	/*
2257 	 * check requested size to avoid Denial-of-service attacks
2258 	 * XXX: may have to refine this test
2259 	 * Check against address space limit.
2260 	 *
2261 	 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2262 	 * 	return -ENOMEM;
2263 	 */
2264 	if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2265 		return -ENOMEM;
2266 
2267 	/*
2268 	 * We do the easy to undo allocations first.
2269  	 *
2270 	 * pfm_rvmalloc(), clears the buffer, so there is no leak
2271 	 */
2272 	smpl_buf = pfm_rvmalloc(size);
2273 	if (smpl_buf == NULL) {
2274 		DPRINT(("Can't allocate sampling buffer\n"));
2275 		return -ENOMEM;
2276 	}
2277 
2278 	DPRINT(("smpl_buf @%p\n", smpl_buf));
2279 
2280 	/* allocate vma */
2281 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2282 	if (!vma) {
2283 		DPRINT(("Cannot allocate vma\n"));
2284 		goto error_kmem;
2285 	}
2286 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2287 
2288 	/*
2289 	 * partially initialize the vma for the sampling buffer
2290 	 */
2291 	vma->vm_mm	     = mm;
2292 	vma->vm_file	     = get_file(filp);
2293 	vma->vm_flags	     = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2294 	vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2295 
2296 	/*
2297 	 * Now we have everything we need and we can initialize
2298 	 * and connect all the data structures
2299 	 */
2300 
2301 	ctx->ctx_smpl_hdr   = smpl_buf;
2302 	ctx->ctx_smpl_size  = size; /* aligned size */
2303 
2304 	/*
2305 	 * Let's do the difficult operations next.
2306 	 *
2307 	 * now we atomically find some area in the address space and
2308 	 * remap the buffer in it.
2309 	 */
2310 	down_write(&task->mm->mmap_sem);
2311 
2312 	/* find some free area in address space, must have mmap sem held */
2313 	vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2314 	if (IS_ERR_VALUE(vma->vm_start)) {
2315 		DPRINT(("Cannot find unmapped area for size %ld\n", size));
2316 		up_write(&task->mm->mmap_sem);
2317 		goto error;
2318 	}
2319 	vma->vm_end = vma->vm_start + size;
2320 	vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2321 
2322 	DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2323 
2324 	/* can only be applied to current task, need to have the mm semaphore held when called */
2325 	if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2326 		DPRINT(("Can't remap buffer\n"));
2327 		up_write(&task->mm->mmap_sem);
2328 		goto error;
2329 	}
2330 
2331 	/*
2332 	 * now insert the vma in the vm list for the process, must be
2333 	 * done with mmap lock held
2334 	 */
2335 	insert_vm_struct(mm, vma);
2336 
2337 	vm_stat_account(vma->vm_mm, vma->vm_flags, vma_pages(vma));
2338 	up_write(&task->mm->mmap_sem);
2339 
2340 	/*
2341 	 * keep track of user level virtual address
2342 	 */
2343 	ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2344 	*(unsigned long *)user_vaddr = vma->vm_start;
2345 
2346 	return 0;
2347 
2348 error:
2349 	kmem_cache_free(vm_area_cachep, vma);
2350 error_kmem:
2351 	pfm_rvfree(smpl_buf, size);
2352 
2353 	return -ENOMEM;
2354 }
2355 
2356 /*
2357  * XXX: do something better here
2358  */
2359 static int
pfm_bad_permissions(struct task_struct * task)2360 pfm_bad_permissions(struct task_struct *task)
2361 {
2362 	const struct cred *tcred;
2363 	kuid_t uid = current_uid();
2364 	kgid_t gid = current_gid();
2365 	int ret;
2366 
2367 	rcu_read_lock();
2368 	tcred = __task_cred(task);
2369 
2370 	/* inspired by ptrace_attach() */
2371 	DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2372 		from_kuid(&init_user_ns, uid),
2373 		from_kgid(&init_user_ns, gid),
2374 		from_kuid(&init_user_ns, tcred->euid),
2375 		from_kuid(&init_user_ns, tcred->suid),
2376 		from_kuid(&init_user_ns, tcred->uid),
2377 		from_kgid(&init_user_ns, tcred->egid),
2378 		from_kgid(&init_user_ns, tcred->sgid)));
2379 
2380 	ret = ((!uid_eq(uid, tcred->euid))
2381 	       || (!uid_eq(uid, tcred->suid))
2382 	       || (!uid_eq(uid, tcred->uid))
2383 	       || (!gid_eq(gid, tcred->egid))
2384 	       || (!gid_eq(gid, tcred->sgid))
2385 	       || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2386 
2387 	rcu_read_unlock();
2388 	return ret;
2389 }
2390 
2391 static int
pfarg_is_sane(struct task_struct * task,pfarg_context_t * pfx)2392 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2393 {
2394 	int ctx_flags;
2395 
2396 	/* valid signal */
2397 
2398 	ctx_flags = pfx->ctx_flags;
2399 
2400 	if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2401 
2402 		/*
2403 		 * cannot block in this mode
2404 		 */
2405 		if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2406 			DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2407 			return -EINVAL;
2408 		}
2409 	} else {
2410 	}
2411 	/* probably more to add here */
2412 
2413 	return 0;
2414 }
2415 
2416 static int
pfm_setup_buffer_fmt(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned int ctx_flags,unsigned int cpu,pfarg_context_t * arg)2417 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2418 		     unsigned int cpu, pfarg_context_t *arg)
2419 {
2420 	pfm_buffer_fmt_t *fmt = NULL;
2421 	unsigned long size = 0UL;
2422 	void *uaddr = NULL;
2423 	void *fmt_arg = NULL;
2424 	int ret = 0;
2425 #define PFM_CTXARG_BUF_ARG(a)	(pfm_buffer_fmt_t *)(a+1)
2426 
2427 	/* invoke and lock buffer format, if found */
2428 	fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2429 	if (fmt == NULL) {
2430 		DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2431 		return -EINVAL;
2432 	}
2433 
2434 	/*
2435 	 * buffer argument MUST be contiguous to pfarg_context_t
2436 	 */
2437 	if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2438 
2439 	ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2440 
2441 	DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2442 
2443 	if (ret) goto error;
2444 
2445 	/* link buffer format and context */
2446 	ctx->ctx_buf_fmt = fmt;
2447 	ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2448 
2449 	/*
2450 	 * check if buffer format wants to use perfmon buffer allocation/mapping service
2451 	 */
2452 	ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2453 	if (ret) goto error;
2454 
2455 	if (size) {
2456 		/*
2457 		 * buffer is always remapped into the caller's address space
2458 		 */
2459 		ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2460 		if (ret) goto error;
2461 
2462 		/* keep track of user address of buffer */
2463 		arg->ctx_smpl_vaddr = uaddr;
2464 	}
2465 	ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2466 
2467 error:
2468 	return ret;
2469 }
2470 
2471 static void
pfm_reset_pmu_state(pfm_context_t * ctx)2472 pfm_reset_pmu_state(pfm_context_t *ctx)
2473 {
2474 	int i;
2475 
2476 	/*
2477 	 * install reset values for PMC.
2478 	 */
2479 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
2480 		if (PMC_IS_IMPL(i) == 0) continue;
2481 		ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2482 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2483 	}
2484 	/*
2485 	 * PMD registers are set to 0UL when the context in memset()
2486 	 */
2487 
2488 	/*
2489 	 * On context switched restore, we must restore ALL pmc and ALL pmd even
2490 	 * when they are not actively used by the task. In UP, the incoming process
2491 	 * may otherwise pick up left over PMC, PMD state from the previous process.
2492 	 * As opposed to PMD, stale PMC can cause harm to the incoming
2493 	 * process because they may change what is being measured.
2494 	 * Therefore, we must systematically reinstall the entire
2495 	 * PMC state. In SMP, the same thing is possible on the
2496 	 * same CPU but also on between 2 CPUs.
2497 	 *
2498 	 * The problem with PMD is information leaking especially
2499 	 * to user level when psr.sp=0
2500 	 *
2501 	 * There is unfortunately no easy way to avoid this problem
2502 	 * on either UP or SMP. This definitively slows down the
2503 	 * pfm_load_regs() function.
2504 	 */
2505 
2506 	 /*
2507 	  * bitmask of all PMCs accessible to this context
2508 	  *
2509 	  * PMC0 is treated differently.
2510 	  */
2511 	ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2512 
2513 	/*
2514 	 * bitmask of all PMDs that are accessible to this context
2515 	 */
2516 	ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2517 
2518 	DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2519 
2520 	/*
2521 	 * useful in case of re-enable after disable
2522 	 */
2523 	ctx->ctx_used_ibrs[0] = 0UL;
2524 	ctx->ctx_used_dbrs[0] = 0UL;
2525 }
2526 
2527 static int
pfm_ctx_getsize(void * arg,size_t * sz)2528 pfm_ctx_getsize(void *arg, size_t *sz)
2529 {
2530 	pfarg_context_t *req = (pfarg_context_t *)arg;
2531 	pfm_buffer_fmt_t *fmt;
2532 
2533 	*sz = 0;
2534 
2535 	if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2536 
2537 	fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2538 	if (fmt == NULL) {
2539 		DPRINT(("cannot find buffer format\n"));
2540 		return -EINVAL;
2541 	}
2542 	/* get just enough to copy in user parameters */
2543 	*sz = fmt->fmt_arg_size;
2544 	DPRINT(("arg_size=%lu\n", *sz));
2545 
2546 	return 0;
2547 }
2548 
2549 
2550 
2551 /*
2552  * cannot attach if :
2553  * 	- kernel task
2554  * 	- task not owned by caller
2555  * 	- task incompatible with context mode
2556  */
2557 static int
pfm_task_incompatible(pfm_context_t * ctx,struct task_struct * task)2558 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2559 {
2560 	/*
2561 	 * no kernel task or task not owner by caller
2562 	 */
2563 	if (task->mm == NULL) {
2564 		DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2565 		return -EPERM;
2566 	}
2567 	if (pfm_bad_permissions(task)) {
2568 		DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2569 		return -EPERM;
2570 	}
2571 	/*
2572 	 * cannot block in self-monitoring mode
2573 	 */
2574 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2575 		DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2576 		return -EINVAL;
2577 	}
2578 
2579 	if (task->exit_state == EXIT_ZOMBIE) {
2580 		DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2581 		return -EBUSY;
2582 	}
2583 
2584 	/*
2585 	 * always ok for self
2586 	 */
2587 	if (task == current) return 0;
2588 
2589 	if (!task_is_stopped_or_traced(task)) {
2590 		DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2591 		return -EBUSY;
2592 	}
2593 	/*
2594 	 * make sure the task is off any CPU
2595 	 */
2596 	wait_task_inactive(task, 0);
2597 
2598 	/* more to come... */
2599 
2600 	return 0;
2601 }
2602 
2603 static int
pfm_get_task(pfm_context_t * ctx,pid_t pid,struct task_struct ** task)2604 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2605 {
2606 	struct task_struct *p = current;
2607 	int ret;
2608 
2609 	/* XXX: need to add more checks here */
2610 	if (pid < 2) return -EPERM;
2611 
2612 	if (pid != task_pid_vnr(current)) {
2613 
2614 		read_lock(&tasklist_lock);
2615 
2616 		p = find_task_by_vpid(pid);
2617 
2618 		/* make sure task cannot go away while we operate on it */
2619 		if (p) get_task_struct(p);
2620 
2621 		read_unlock(&tasklist_lock);
2622 
2623 		if (p == NULL) return -ESRCH;
2624 	}
2625 
2626 	ret = pfm_task_incompatible(ctx, p);
2627 	if (ret == 0) {
2628 		*task = p;
2629 	} else if (p != current) {
2630 		pfm_put_task(p);
2631 	}
2632 	return ret;
2633 }
2634 
2635 
2636 
2637 static int
pfm_context_create(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2638 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2639 {
2640 	pfarg_context_t *req = (pfarg_context_t *)arg;
2641 	struct file *filp;
2642 	struct path path;
2643 	int ctx_flags;
2644 	int fd;
2645 	int ret;
2646 
2647 	/* let's check the arguments first */
2648 	ret = pfarg_is_sane(current, req);
2649 	if (ret < 0)
2650 		return ret;
2651 
2652 	ctx_flags = req->ctx_flags;
2653 
2654 	ret = -ENOMEM;
2655 
2656 	fd = get_unused_fd_flags(0);
2657 	if (fd < 0)
2658 		return fd;
2659 
2660 	ctx = pfm_context_alloc(ctx_flags);
2661 	if (!ctx)
2662 		goto error;
2663 
2664 	filp = pfm_alloc_file(ctx);
2665 	if (IS_ERR(filp)) {
2666 		ret = PTR_ERR(filp);
2667 		goto error_file;
2668 	}
2669 
2670 	req->ctx_fd = ctx->ctx_fd = fd;
2671 
2672 	/*
2673 	 * does the user want to sample?
2674 	 */
2675 	if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2676 		ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2677 		if (ret)
2678 			goto buffer_error;
2679 	}
2680 
2681 	DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2682 		ctx,
2683 		ctx_flags,
2684 		ctx->ctx_fl_system,
2685 		ctx->ctx_fl_block,
2686 		ctx->ctx_fl_excl_idle,
2687 		ctx->ctx_fl_no_msg,
2688 		ctx->ctx_fd));
2689 
2690 	/*
2691 	 * initialize soft PMU state
2692 	 */
2693 	pfm_reset_pmu_state(ctx);
2694 
2695 	fd_install(fd, filp);
2696 
2697 	return 0;
2698 
2699 buffer_error:
2700 	path = filp->f_path;
2701 	put_filp(filp);
2702 	path_put(&path);
2703 
2704 	if (ctx->ctx_buf_fmt) {
2705 		pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2706 	}
2707 error_file:
2708 	pfm_context_free(ctx);
2709 
2710 error:
2711 	put_unused_fd(fd);
2712 	return ret;
2713 }
2714 
2715 static inline unsigned long
pfm_new_counter_value(pfm_counter_t * reg,int is_long_reset)2716 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2717 {
2718 	unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2719 	unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2720 	extern unsigned long carta_random32 (unsigned long seed);
2721 
2722 	if (reg->flags & PFM_REGFL_RANDOM) {
2723 		new_seed = carta_random32(old_seed);
2724 		val -= (old_seed & mask);	/* counter values are negative numbers! */
2725 		if ((mask >> 32) != 0)
2726 			/* construct a full 64-bit random value: */
2727 			new_seed |= carta_random32(old_seed >> 32) << 32;
2728 		reg->seed = new_seed;
2729 	}
2730 	reg->lval = val;
2731 	return val;
2732 }
2733 
2734 static void
pfm_reset_regs_masked(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2735 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2736 {
2737 	unsigned long mask = ovfl_regs[0];
2738 	unsigned long reset_others = 0UL;
2739 	unsigned long val;
2740 	int i;
2741 
2742 	/*
2743 	 * now restore reset value on sampling overflowed counters
2744 	 */
2745 	mask >>= PMU_FIRST_COUNTER;
2746 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2747 
2748 		if ((mask & 0x1UL) == 0UL) continue;
2749 
2750 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2751 		reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2752 
2753 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2754 	}
2755 
2756 	/*
2757 	 * Now take care of resetting the other registers
2758 	 */
2759 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2760 
2761 		if ((reset_others & 0x1) == 0) continue;
2762 
2763 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2764 
2765 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2766 			  is_long_reset ? "long" : "short", i, val));
2767 	}
2768 }
2769 
2770 static void
pfm_reset_regs(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2771 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2772 {
2773 	unsigned long mask = ovfl_regs[0];
2774 	unsigned long reset_others = 0UL;
2775 	unsigned long val;
2776 	int i;
2777 
2778 	DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2779 
2780 	if (ctx->ctx_state == PFM_CTX_MASKED) {
2781 		pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2782 		return;
2783 	}
2784 
2785 	/*
2786 	 * now restore reset value on sampling overflowed counters
2787 	 */
2788 	mask >>= PMU_FIRST_COUNTER;
2789 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2790 
2791 		if ((mask & 0x1UL) == 0UL) continue;
2792 
2793 		val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2794 		reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2795 
2796 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2797 
2798 		pfm_write_soft_counter(ctx, i, val);
2799 	}
2800 
2801 	/*
2802 	 * Now take care of resetting the other registers
2803 	 */
2804 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2805 
2806 		if ((reset_others & 0x1) == 0) continue;
2807 
2808 		val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2809 
2810 		if (PMD_IS_COUNTING(i)) {
2811 			pfm_write_soft_counter(ctx, i, val);
2812 		} else {
2813 			ia64_set_pmd(i, val);
2814 		}
2815 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2816 			  is_long_reset ? "long" : "short", i, val));
2817 	}
2818 	ia64_srlz_d();
2819 }
2820 
2821 static int
pfm_write_pmcs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2822 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2823 {
2824 	struct task_struct *task;
2825 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
2826 	unsigned long value, pmc_pm;
2827 	unsigned long smpl_pmds, reset_pmds, impl_pmds;
2828 	unsigned int cnum, reg_flags, flags, pmc_type;
2829 	int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2830 	int is_monitor, is_counting, state;
2831 	int ret = -EINVAL;
2832 	pfm_reg_check_t	wr_func;
2833 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2834 
2835 	state     = ctx->ctx_state;
2836 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2837 	is_system = ctx->ctx_fl_system;
2838 	task      = ctx->ctx_task;
2839 	impl_pmds = pmu_conf->impl_pmds[0];
2840 
2841 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2842 
2843 	if (is_loaded) {
2844 		/*
2845 		 * In system wide and when the context is loaded, access can only happen
2846 		 * when the caller is running on the CPU being monitored by the session.
2847 		 * It does not have to be the owner (ctx_task) of the context per se.
2848 		 */
2849 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2850 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2851 			return -EBUSY;
2852 		}
2853 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2854 	}
2855 	expert_mode = pfm_sysctl.expert_mode;
2856 
2857 	for (i = 0; i < count; i++, req++) {
2858 
2859 		cnum       = req->reg_num;
2860 		reg_flags  = req->reg_flags;
2861 		value      = req->reg_value;
2862 		smpl_pmds  = req->reg_smpl_pmds[0];
2863 		reset_pmds = req->reg_reset_pmds[0];
2864 		flags      = 0;
2865 
2866 
2867 		if (cnum >= PMU_MAX_PMCS) {
2868 			DPRINT(("pmc%u is invalid\n", cnum));
2869 			goto error;
2870 		}
2871 
2872 		pmc_type   = pmu_conf->pmc_desc[cnum].type;
2873 		pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2874 		is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2875 		is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2876 
2877 		/*
2878 		 * we reject all non implemented PMC as well
2879 		 * as attempts to modify PMC[0-3] which are used
2880 		 * as status registers by the PMU
2881 		 */
2882 		if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2883 			DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2884 			goto error;
2885 		}
2886 		wr_func = pmu_conf->pmc_desc[cnum].write_check;
2887 		/*
2888 		 * If the PMC is a monitor, then if the value is not the default:
2889 		 * 	- system-wide session: PMCx.pm=1 (privileged monitor)
2890 		 * 	- per-task           : PMCx.pm=0 (user monitor)
2891 		 */
2892 		if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2893 			DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2894 				cnum,
2895 				pmc_pm,
2896 				is_system));
2897 			goto error;
2898 		}
2899 
2900 		if (is_counting) {
2901 			/*
2902 		 	 * enforce generation of overflow interrupt. Necessary on all
2903 		 	 * CPUs.
2904 		 	 */
2905 			value |= 1 << PMU_PMC_OI;
2906 
2907 			if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2908 				flags |= PFM_REGFL_OVFL_NOTIFY;
2909 			}
2910 
2911 			if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2912 
2913 			/* verify validity of smpl_pmds */
2914 			if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2915 				DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2916 				goto error;
2917 			}
2918 
2919 			/* verify validity of reset_pmds */
2920 			if ((reset_pmds & impl_pmds) != reset_pmds) {
2921 				DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2922 				goto error;
2923 			}
2924 		} else {
2925 			if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2926 				DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2927 				goto error;
2928 			}
2929 			/* eventid on non-counting monitors are ignored */
2930 		}
2931 
2932 		/*
2933 		 * execute write checker, if any
2934 		 */
2935 		if (likely(expert_mode == 0 && wr_func)) {
2936 			ret = (*wr_func)(task, ctx, cnum, &value, regs);
2937 			if (ret) goto error;
2938 			ret = -EINVAL;
2939 		}
2940 
2941 		/*
2942 		 * no error on this register
2943 		 */
2944 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2945 
2946 		/*
2947 		 * Now we commit the changes to the software state
2948 		 */
2949 
2950 		/*
2951 		 * update overflow information
2952 		 */
2953 		if (is_counting) {
2954 			/*
2955 		 	 * full flag update each time a register is programmed
2956 		 	 */
2957 			ctx->ctx_pmds[cnum].flags = flags;
2958 
2959 			ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2960 			ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2961 			ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2962 
2963 			/*
2964 			 * Mark all PMDS to be accessed as used.
2965 			 *
2966 			 * We do not keep track of PMC because we have to
2967 			 * systematically restore ALL of them.
2968 			 *
2969 			 * We do not update the used_monitors mask, because
2970 			 * if we have not programmed them, then will be in
2971 			 * a quiescent state, therefore we will not need to
2972 			 * mask/restore then when context is MASKED.
2973 			 */
2974 			CTX_USED_PMD(ctx, reset_pmds);
2975 			CTX_USED_PMD(ctx, smpl_pmds);
2976 			/*
2977 		 	 * make sure we do not try to reset on
2978 		 	 * restart because we have established new values
2979 		 	 */
2980 			if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2981 		}
2982 		/*
2983 		 * Needed in case the user does not initialize the equivalent
2984 		 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2985 		 * possible leak here.
2986 		 */
2987 		CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2988 
2989 		/*
2990 		 * keep track of the monitor PMC that we are using.
2991 		 * we save the value of the pmc in ctx_pmcs[] and if
2992 		 * the monitoring is not stopped for the context we also
2993 		 * place it in the saved state area so that it will be
2994 		 * picked up later by the context switch code.
2995 		 *
2996 		 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2997 		 *
2998 		 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
2999 		 * monitoring needs to be stopped.
3000 		 */
3001 		if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3002 
3003 		/*
3004 		 * update context state
3005 		 */
3006 		ctx->ctx_pmcs[cnum] = value;
3007 
3008 		if (is_loaded) {
3009 			/*
3010 			 * write thread state
3011 			 */
3012 			if (is_system == 0) ctx->th_pmcs[cnum] = value;
3013 
3014 			/*
3015 			 * write hardware register if we can
3016 			 */
3017 			if (can_access_pmu) {
3018 				ia64_set_pmc(cnum, value);
3019 			}
3020 #ifdef CONFIG_SMP
3021 			else {
3022 				/*
3023 				 * per-task SMP only here
3024 				 *
3025 			 	 * we are guaranteed that the task is not running on the other CPU,
3026 			 	 * we indicate that this PMD will need to be reloaded if the task
3027 			 	 * is rescheduled on the CPU it ran last on.
3028 			 	 */
3029 				ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3030 			}
3031 #endif
3032 		}
3033 
3034 		DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3035 			  cnum,
3036 			  value,
3037 			  is_loaded,
3038 			  can_access_pmu,
3039 			  flags,
3040 			  ctx->ctx_all_pmcs[0],
3041 			  ctx->ctx_used_pmds[0],
3042 			  ctx->ctx_pmds[cnum].eventid,
3043 			  smpl_pmds,
3044 			  reset_pmds,
3045 			  ctx->ctx_reload_pmcs[0],
3046 			  ctx->ctx_used_monitors[0],
3047 			  ctx->ctx_ovfl_regs[0]));
3048 	}
3049 
3050 	/*
3051 	 * make sure the changes are visible
3052 	 */
3053 	if (can_access_pmu) ia64_srlz_d();
3054 
3055 	return 0;
3056 error:
3057 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3058 	return ret;
3059 }
3060 
3061 static int
pfm_write_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3062 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3063 {
3064 	struct task_struct *task;
3065 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3066 	unsigned long value, hw_value, ovfl_mask;
3067 	unsigned int cnum;
3068 	int i, can_access_pmu = 0, state;
3069 	int is_counting, is_loaded, is_system, expert_mode;
3070 	int ret = -EINVAL;
3071 	pfm_reg_check_t wr_func;
3072 
3073 
3074 	state     = ctx->ctx_state;
3075 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3076 	is_system = ctx->ctx_fl_system;
3077 	ovfl_mask = pmu_conf->ovfl_val;
3078 	task      = ctx->ctx_task;
3079 
3080 	if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3081 
3082 	/*
3083 	 * on both UP and SMP, we can only write to the PMC when the task is
3084 	 * the owner of the local PMU.
3085 	 */
3086 	if (likely(is_loaded)) {
3087 		/*
3088 		 * In system wide and when the context is loaded, access can only happen
3089 		 * when the caller is running on the CPU being monitored by the session.
3090 		 * It does not have to be the owner (ctx_task) of the context per se.
3091 		 */
3092 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3093 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3094 			return -EBUSY;
3095 		}
3096 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3097 	}
3098 	expert_mode = pfm_sysctl.expert_mode;
3099 
3100 	for (i = 0; i < count; i++, req++) {
3101 
3102 		cnum  = req->reg_num;
3103 		value = req->reg_value;
3104 
3105 		if (!PMD_IS_IMPL(cnum)) {
3106 			DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3107 			goto abort_mission;
3108 		}
3109 		is_counting = PMD_IS_COUNTING(cnum);
3110 		wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3111 
3112 		/*
3113 		 * execute write checker, if any
3114 		 */
3115 		if (unlikely(expert_mode == 0 && wr_func)) {
3116 			unsigned long v = value;
3117 
3118 			ret = (*wr_func)(task, ctx, cnum, &v, regs);
3119 			if (ret) goto abort_mission;
3120 
3121 			value = v;
3122 			ret   = -EINVAL;
3123 		}
3124 
3125 		/*
3126 		 * no error on this register
3127 		 */
3128 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3129 
3130 		/*
3131 		 * now commit changes to software state
3132 		 */
3133 		hw_value = value;
3134 
3135 		/*
3136 		 * update virtualized (64bits) counter
3137 		 */
3138 		if (is_counting) {
3139 			/*
3140 			 * write context state
3141 			 */
3142 			ctx->ctx_pmds[cnum].lval = value;
3143 
3144 			/*
3145 			 * when context is load we use the split value
3146 			 */
3147 			if (is_loaded) {
3148 				hw_value = value &  ovfl_mask;
3149 				value    = value & ~ovfl_mask;
3150 			}
3151 		}
3152 		/*
3153 		 * update reset values (not just for counters)
3154 		 */
3155 		ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3156 		ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3157 
3158 		/*
3159 		 * update randomization parameters (not just for counters)
3160 		 */
3161 		ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3162 		ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3163 
3164 		/*
3165 		 * update context value
3166 		 */
3167 		ctx->ctx_pmds[cnum].val  = value;
3168 
3169 		/*
3170 		 * Keep track of what we use
3171 		 *
3172 		 * We do not keep track of PMC because we have to
3173 		 * systematically restore ALL of them.
3174 		 */
3175 		CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3176 
3177 		/*
3178 		 * mark this PMD register used as well
3179 		 */
3180 		CTX_USED_PMD(ctx, RDEP(cnum));
3181 
3182 		/*
3183 		 * make sure we do not try to reset on
3184 		 * restart because we have established new values
3185 		 */
3186 		if (is_counting && state == PFM_CTX_MASKED) {
3187 			ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3188 		}
3189 
3190 		if (is_loaded) {
3191 			/*
3192 		 	 * write thread state
3193 		 	 */
3194 			if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3195 
3196 			/*
3197 			 * write hardware register if we can
3198 			 */
3199 			if (can_access_pmu) {
3200 				ia64_set_pmd(cnum, hw_value);
3201 			} else {
3202 #ifdef CONFIG_SMP
3203 				/*
3204 			 	 * we are guaranteed that the task is not running on the other CPU,
3205 			 	 * we indicate that this PMD will need to be reloaded if the task
3206 			 	 * is rescheduled on the CPU it ran last on.
3207 			 	 */
3208 				ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3209 #endif
3210 			}
3211 		}
3212 
3213 		DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3214 			  "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3215 			cnum,
3216 			value,
3217 			is_loaded,
3218 			can_access_pmu,
3219 			hw_value,
3220 			ctx->ctx_pmds[cnum].val,
3221 			ctx->ctx_pmds[cnum].short_reset,
3222 			ctx->ctx_pmds[cnum].long_reset,
3223 			PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3224 			ctx->ctx_pmds[cnum].seed,
3225 			ctx->ctx_pmds[cnum].mask,
3226 			ctx->ctx_used_pmds[0],
3227 			ctx->ctx_pmds[cnum].reset_pmds[0],
3228 			ctx->ctx_reload_pmds[0],
3229 			ctx->ctx_all_pmds[0],
3230 			ctx->ctx_ovfl_regs[0]));
3231 	}
3232 
3233 	/*
3234 	 * make changes visible
3235 	 */
3236 	if (can_access_pmu) ia64_srlz_d();
3237 
3238 	return 0;
3239 
3240 abort_mission:
3241 	/*
3242 	 * for now, we have only one possibility for error
3243 	 */
3244 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3245 	return ret;
3246 }
3247 
3248 /*
3249  * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3250  * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3251  * interrupt is delivered during the call, it will be kept pending until we leave, making
3252  * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3253  * guaranteed to return consistent data to the user, it may simply be old. It is not
3254  * trivial to treat the overflow while inside the call because you may end up in
3255  * some module sampling buffer code causing deadlocks.
3256  */
3257 static int
pfm_read_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3258 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3259 {
3260 	struct task_struct *task;
3261 	unsigned long val = 0UL, lval, ovfl_mask, sval;
3262 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3263 	unsigned int cnum, reg_flags = 0;
3264 	int i, can_access_pmu = 0, state;
3265 	int is_loaded, is_system, is_counting, expert_mode;
3266 	int ret = -EINVAL;
3267 	pfm_reg_check_t rd_func;
3268 
3269 	/*
3270 	 * access is possible when loaded only for
3271 	 * self-monitoring tasks or in UP mode
3272 	 */
3273 
3274 	state     = ctx->ctx_state;
3275 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3276 	is_system = ctx->ctx_fl_system;
3277 	ovfl_mask = pmu_conf->ovfl_val;
3278 	task      = ctx->ctx_task;
3279 
3280 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3281 
3282 	if (likely(is_loaded)) {
3283 		/*
3284 		 * In system wide and when the context is loaded, access can only happen
3285 		 * when the caller is running on the CPU being monitored by the session.
3286 		 * It does not have to be the owner (ctx_task) of the context per se.
3287 		 */
3288 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3289 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3290 			return -EBUSY;
3291 		}
3292 		/*
3293 		 * this can be true when not self-monitoring only in UP
3294 		 */
3295 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3296 
3297 		if (can_access_pmu) ia64_srlz_d();
3298 	}
3299 	expert_mode = pfm_sysctl.expert_mode;
3300 
3301 	DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3302 		is_loaded,
3303 		can_access_pmu,
3304 		state));
3305 
3306 	/*
3307 	 * on both UP and SMP, we can only read the PMD from the hardware register when
3308 	 * the task is the owner of the local PMU.
3309 	 */
3310 
3311 	for (i = 0; i < count; i++, req++) {
3312 
3313 		cnum        = req->reg_num;
3314 		reg_flags   = req->reg_flags;
3315 
3316 		if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3317 		/*
3318 		 * we can only read the register that we use. That includes
3319 		 * the one we explicitly initialize AND the one we want included
3320 		 * in the sampling buffer (smpl_regs).
3321 		 *
3322 		 * Having this restriction allows optimization in the ctxsw routine
3323 		 * without compromising security (leaks)
3324 		 */
3325 		if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3326 
3327 		sval        = ctx->ctx_pmds[cnum].val;
3328 		lval        = ctx->ctx_pmds[cnum].lval;
3329 		is_counting = PMD_IS_COUNTING(cnum);
3330 
3331 		/*
3332 		 * If the task is not the current one, then we check if the
3333 		 * PMU state is still in the local live register due to lazy ctxsw.
3334 		 * If true, then we read directly from the registers.
3335 		 */
3336 		if (can_access_pmu){
3337 			val = ia64_get_pmd(cnum);
3338 		} else {
3339 			/*
3340 			 * context has been saved
3341 			 * if context is zombie, then task does not exist anymore.
3342 			 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3343 			 */
3344 			val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3345 		}
3346 		rd_func = pmu_conf->pmd_desc[cnum].read_check;
3347 
3348 		if (is_counting) {
3349 			/*
3350 			 * XXX: need to check for overflow when loaded
3351 			 */
3352 			val &= ovfl_mask;
3353 			val += sval;
3354 		}
3355 
3356 		/*
3357 		 * execute read checker, if any
3358 		 */
3359 		if (unlikely(expert_mode == 0 && rd_func)) {
3360 			unsigned long v = val;
3361 			ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3362 			if (ret) goto error;
3363 			val = v;
3364 			ret = -EINVAL;
3365 		}
3366 
3367 		PFM_REG_RETFLAG_SET(reg_flags, 0);
3368 
3369 		DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3370 
3371 		/*
3372 		 * update register return value, abort all if problem during copy.
3373 		 * we only modify the reg_flags field. no check mode is fine because
3374 		 * access has been verified upfront in sys_perfmonctl().
3375 		 */
3376 		req->reg_value            = val;
3377 		req->reg_flags            = reg_flags;
3378 		req->reg_last_reset_val   = lval;
3379 	}
3380 
3381 	return 0;
3382 
3383 error:
3384 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3385 	return ret;
3386 }
3387 
3388 int
pfm_mod_write_pmcs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3389 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3390 {
3391 	pfm_context_t *ctx;
3392 
3393 	if (req == NULL) return -EINVAL;
3394 
3395  	ctx = GET_PMU_CTX();
3396 
3397 	if (ctx == NULL) return -EINVAL;
3398 
3399 	/*
3400 	 * for now limit to current task, which is enough when calling
3401 	 * from overflow handler
3402 	 */
3403 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3404 
3405 	return pfm_write_pmcs(ctx, req, nreq, regs);
3406 }
3407 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3408 
3409 int
pfm_mod_read_pmds(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3410 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3411 {
3412 	pfm_context_t *ctx;
3413 
3414 	if (req == NULL) return -EINVAL;
3415 
3416  	ctx = GET_PMU_CTX();
3417 
3418 	if (ctx == NULL) return -EINVAL;
3419 
3420 	/*
3421 	 * for now limit to current task, which is enough when calling
3422 	 * from overflow handler
3423 	 */
3424 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3425 
3426 	return pfm_read_pmds(ctx, req, nreq, regs);
3427 }
3428 EXPORT_SYMBOL(pfm_mod_read_pmds);
3429 
3430 /*
3431  * Only call this function when a process it trying to
3432  * write the debug registers (reading is always allowed)
3433  */
3434 int
pfm_use_debug_registers(struct task_struct * task)3435 pfm_use_debug_registers(struct task_struct *task)
3436 {
3437 	pfm_context_t *ctx = task->thread.pfm_context;
3438 	unsigned long flags;
3439 	int ret = 0;
3440 
3441 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3442 
3443 	DPRINT(("called for [%d]\n", task_pid_nr(task)));
3444 
3445 	/*
3446 	 * do it only once
3447 	 */
3448 	if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3449 
3450 	/*
3451 	 * Even on SMP, we do not need to use an atomic here because
3452 	 * the only way in is via ptrace() and this is possible only when the
3453 	 * process is stopped. Even in the case where the ctxsw out is not totally
3454 	 * completed by the time we come here, there is no way the 'stopped' process
3455 	 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3456 	 * So this is always safe.
3457 	 */
3458 	if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3459 
3460 	LOCK_PFS(flags);
3461 
3462 	/*
3463 	 * We cannot allow setting breakpoints when system wide monitoring
3464 	 * sessions are using the debug registers.
3465 	 */
3466 	if (pfm_sessions.pfs_sys_use_dbregs> 0)
3467 		ret = -1;
3468 	else
3469 		pfm_sessions.pfs_ptrace_use_dbregs++;
3470 
3471 	DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3472 		  pfm_sessions.pfs_ptrace_use_dbregs,
3473 		  pfm_sessions.pfs_sys_use_dbregs,
3474 		  task_pid_nr(task), ret));
3475 
3476 	UNLOCK_PFS(flags);
3477 
3478 	return ret;
3479 }
3480 
3481 /*
3482  * This function is called for every task that exits with the
3483  * IA64_THREAD_DBG_VALID set. This indicates a task which was
3484  * able to use the debug registers for debugging purposes via
3485  * ptrace(). Therefore we know it was not using them for
3486  * performance monitoring, so we only decrement the number
3487  * of "ptraced" debug register users to keep the count up to date
3488  */
3489 int
pfm_release_debug_registers(struct task_struct * task)3490 pfm_release_debug_registers(struct task_struct *task)
3491 {
3492 	unsigned long flags;
3493 	int ret;
3494 
3495 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3496 
3497 	LOCK_PFS(flags);
3498 	if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3499 		printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3500 		ret = -1;
3501 	}  else {
3502 		pfm_sessions.pfs_ptrace_use_dbregs--;
3503 		ret = 0;
3504 	}
3505 	UNLOCK_PFS(flags);
3506 
3507 	return ret;
3508 }
3509 
3510 static int
pfm_restart(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3511 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3512 {
3513 	struct task_struct *task;
3514 	pfm_buffer_fmt_t *fmt;
3515 	pfm_ovfl_ctrl_t rst_ctrl;
3516 	int state, is_system;
3517 	int ret = 0;
3518 
3519 	state     = ctx->ctx_state;
3520 	fmt       = ctx->ctx_buf_fmt;
3521 	is_system = ctx->ctx_fl_system;
3522 	task      = PFM_CTX_TASK(ctx);
3523 
3524 	switch(state) {
3525 		case PFM_CTX_MASKED:
3526 			break;
3527 		case PFM_CTX_LOADED:
3528 			if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3529 			/* fall through */
3530 		case PFM_CTX_UNLOADED:
3531 		case PFM_CTX_ZOMBIE:
3532 			DPRINT(("invalid state=%d\n", state));
3533 			return -EBUSY;
3534 		default:
3535 			DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3536 			return -EINVAL;
3537 	}
3538 
3539 	/*
3540  	 * In system wide and when the context is loaded, access can only happen
3541  	 * when the caller is running on the CPU being monitored by the session.
3542  	 * It does not have to be the owner (ctx_task) of the context per se.
3543  	 */
3544 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3545 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3546 		return -EBUSY;
3547 	}
3548 
3549 	/* sanity check */
3550 	if (unlikely(task == NULL)) {
3551 		printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3552 		return -EINVAL;
3553 	}
3554 
3555 	if (task == current || is_system) {
3556 
3557 		fmt = ctx->ctx_buf_fmt;
3558 
3559 		DPRINT(("restarting self %d ovfl=0x%lx\n",
3560 			task_pid_nr(task),
3561 			ctx->ctx_ovfl_regs[0]));
3562 
3563 		if (CTX_HAS_SMPL(ctx)) {
3564 
3565 			prefetch(ctx->ctx_smpl_hdr);
3566 
3567 			rst_ctrl.bits.mask_monitoring = 0;
3568 			rst_ctrl.bits.reset_ovfl_pmds = 0;
3569 
3570 			if (state == PFM_CTX_LOADED)
3571 				ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3572 			else
3573 				ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3574 		} else {
3575 			rst_ctrl.bits.mask_monitoring = 0;
3576 			rst_ctrl.bits.reset_ovfl_pmds = 1;
3577 		}
3578 
3579 		if (ret == 0) {
3580 			if (rst_ctrl.bits.reset_ovfl_pmds)
3581 				pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3582 
3583 			if (rst_ctrl.bits.mask_monitoring == 0) {
3584 				DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3585 
3586 				if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3587 			} else {
3588 				DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3589 
3590 				// cannot use pfm_stop_monitoring(task, regs);
3591 			}
3592 		}
3593 		/*
3594 		 * clear overflowed PMD mask to remove any stale information
3595 		 */
3596 		ctx->ctx_ovfl_regs[0] = 0UL;
3597 
3598 		/*
3599 		 * back to LOADED state
3600 		 */
3601 		ctx->ctx_state = PFM_CTX_LOADED;
3602 
3603 		/*
3604 		 * XXX: not really useful for self monitoring
3605 		 */
3606 		ctx->ctx_fl_can_restart = 0;
3607 
3608 		return 0;
3609 	}
3610 
3611 	/*
3612 	 * restart another task
3613 	 */
3614 
3615 	/*
3616 	 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3617 	 * one is seen by the task.
3618 	 */
3619 	if (state == PFM_CTX_MASKED) {
3620 		if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3621 		/*
3622 		 * will prevent subsequent restart before this one is
3623 		 * seen by other task
3624 		 */
3625 		ctx->ctx_fl_can_restart = 0;
3626 	}
3627 
3628 	/*
3629 	 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3630 	 * the task is blocked or on its way to block. That's the normal
3631 	 * restart path. If the monitoring is not masked, then the task
3632 	 * can be actively monitoring and we cannot directly intervene.
3633 	 * Therefore we use the trap mechanism to catch the task and
3634 	 * force it to reset the buffer/reset PMDs.
3635 	 *
3636 	 * if non-blocking, then we ensure that the task will go into
3637 	 * pfm_handle_work() before returning to user mode.
3638 	 *
3639 	 * We cannot explicitly reset another task, it MUST always
3640 	 * be done by the task itself. This works for system wide because
3641 	 * the tool that is controlling the session is logically doing
3642 	 * "self-monitoring".
3643 	 */
3644 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3645 		DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3646 		complete(&ctx->ctx_restart_done);
3647 	} else {
3648 		DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3649 
3650 		ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3651 
3652 		PFM_SET_WORK_PENDING(task, 1);
3653 
3654 		set_notify_resume(task);
3655 
3656 		/*
3657 		 * XXX: send reschedule if task runs on another CPU
3658 		 */
3659 	}
3660 	return 0;
3661 }
3662 
3663 static int
pfm_debug(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3664 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3665 {
3666 	unsigned int m = *(unsigned int *)arg;
3667 
3668 	pfm_sysctl.debug = m == 0 ? 0 : 1;
3669 
3670 	printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3671 
3672 	if (m == 0) {
3673 		memset(pfm_stats, 0, sizeof(pfm_stats));
3674 		for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3675 	}
3676 	return 0;
3677 }
3678 
3679 /*
3680  * arg can be NULL and count can be zero for this function
3681  */
3682 static int
pfm_write_ibr_dbr(int mode,pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3683 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3684 {
3685 	struct thread_struct *thread = NULL;
3686 	struct task_struct *task;
3687 	pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3688 	unsigned long flags;
3689 	dbreg_t dbreg;
3690 	unsigned int rnum;
3691 	int first_time;
3692 	int ret = 0, state;
3693 	int i, can_access_pmu = 0;
3694 	int is_system, is_loaded;
3695 
3696 	if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3697 
3698 	state     = ctx->ctx_state;
3699 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3700 	is_system = ctx->ctx_fl_system;
3701 	task      = ctx->ctx_task;
3702 
3703 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3704 
3705 	/*
3706 	 * on both UP and SMP, we can only write to the PMC when the task is
3707 	 * the owner of the local PMU.
3708 	 */
3709 	if (is_loaded) {
3710 		thread = &task->thread;
3711 		/*
3712 		 * In system wide and when the context is loaded, access can only happen
3713 		 * when the caller is running on the CPU being monitored by the session.
3714 		 * It does not have to be the owner (ctx_task) of the context per se.
3715 		 */
3716 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3717 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3718 			return -EBUSY;
3719 		}
3720 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3721 	}
3722 
3723 	/*
3724 	 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3725 	 * ensuring that no real breakpoint can be installed via this call.
3726 	 *
3727 	 * IMPORTANT: regs can be NULL in this function
3728 	 */
3729 
3730 	first_time = ctx->ctx_fl_using_dbreg == 0;
3731 
3732 	/*
3733 	 * don't bother if we are loaded and task is being debugged
3734 	 */
3735 	if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3736 		DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3737 		return -EBUSY;
3738 	}
3739 
3740 	/*
3741 	 * check for debug registers in system wide mode
3742 	 *
3743 	 * If though a check is done in pfm_context_load(),
3744 	 * we must repeat it here, in case the registers are
3745 	 * written after the context is loaded
3746 	 */
3747 	if (is_loaded) {
3748 		LOCK_PFS(flags);
3749 
3750 		if (first_time && is_system) {
3751 			if (pfm_sessions.pfs_ptrace_use_dbregs)
3752 				ret = -EBUSY;
3753 			else
3754 				pfm_sessions.pfs_sys_use_dbregs++;
3755 		}
3756 		UNLOCK_PFS(flags);
3757 	}
3758 
3759 	if (ret != 0) return ret;
3760 
3761 	/*
3762 	 * mark ourself as user of the debug registers for
3763 	 * perfmon purposes.
3764 	 */
3765 	ctx->ctx_fl_using_dbreg = 1;
3766 
3767 	/*
3768  	 * clear hardware registers to make sure we don't
3769  	 * pick up stale state.
3770 	 *
3771 	 * for a system wide session, we do not use
3772 	 * thread.dbr, thread.ibr because this process
3773 	 * never leaves the current CPU and the state
3774 	 * is shared by all processes running on it
3775  	 */
3776 	if (first_time && can_access_pmu) {
3777 		DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3778 		for (i=0; i < pmu_conf->num_ibrs; i++) {
3779 			ia64_set_ibr(i, 0UL);
3780 			ia64_dv_serialize_instruction();
3781 		}
3782 		ia64_srlz_i();
3783 		for (i=0; i < pmu_conf->num_dbrs; i++) {
3784 			ia64_set_dbr(i, 0UL);
3785 			ia64_dv_serialize_data();
3786 		}
3787 		ia64_srlz_d();
3788 	}
3789 
3790 	/*
3791 	 * Now install the values into the registers
3792 	 */
3793 	for (i = 0; i < count; i++, req++) {
3794 
3795 		rnum      = req->dbreg_num;
3796 		dbreg.val = req->dbreg_value;
3797 
3798 		ret = -EINVAL;
3799 
3800 		if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3801 			DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3802 				  rnum, dbreg.val, mode, i, count));
3803 
3804 			goto abort_mission;
3805 		}
3806 
3807 		/*
3808 		 * make sure we do not install enabled breakpoint
3809 		 */
3810 		if (rnum & 0x1) {
3811 			if (mode == PFM_CODE_RR)
3812 				dbreg.ibr.ibr_x = 0;
3813 			else
3814 				dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3815 		}
3816 
3817 		PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3818 
3819 		/*
3820 		 * Debug registers, just like PMC, can only be modified
3821 		 * by a kernel call. Moreover, perfmon() access to those
3822 		 * registers are centralized in this routine. The hardware
3823 		 * does not modify the value of these registers, therefore,
3824 		 * if we save them as they are written, we can avoid having
3825 		 * to save them on context switch out. This is made possible
3826 		 * by the fact that when perfmon uses debug registers, ptrace()
3827 		 * won't be able to modify them concurrently.
3828 		 */
3829 		if (mode == PFM_CODE_RR) {
3830 			CTX_USED_IBR(ctx, rnum);
3831 
3832 			if (can_access_pmu) {
3833 				ia64_set_ibr(rnum, dbreg.val);
3834 				ia64_dv_serialize_instruction();
3835 			}
3836 
3837 			ctx->ctx_ibrs[rnum] = dbreg.val;
3838 
3839 			DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3840 				rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3841 		} else {
3842 			CTX_USED_DBR(ctx, rnum);
3843 
3844 			if (can_access_pmu) {
3845 				ia64_set_dbr(rnum, dbreg.val);
3846 				ia64_dv_serialize_data();
3847 			}
3848 			ctx->ctx_dbrs[rnum] = dbreg.val;
3849 
3850 			DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3851 				rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3852 		}
3853 	}
3854 
3855 	return 0;
3856 
3857 abort_mission:
3858 	/*
3859 	 * in case it was our first attempt, we undo the global modifications
3860 	 */
3861 	if (first_time) {
3862 		LOCK_PFS(flags);
3863 		if (ctx->ctx_fl_system) {
3864 			pfm_sessions.pfs_sys_use_dbregs--;
3865 		}
3866 		UNLOCK_PFS(flags);
3867 		ctx->ctx_fl_using_dbreg = 0;
3868 	}
3869 	/*
3870 	 * install error return flag
3871 	 */
3872 	PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3873 
3874 	return ret;
3875 }
3876 
3877 static int
pfm_write_ibrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3878 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3879 {
3880 	return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3881 }
3882 
3883 static int
pfm_write_dbrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3884 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3885 {
3886 	return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3887 }
3888 
3889 int
pfm_mod_write_ibrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3890 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3891 {
3892 	pfm_context_t *ctx;
3893 
3894 	if (req == NULL) return -EINVAL;
3895 
3896  	ctx = GET_PMU_CTX();
3897 
3898 	if (ctx == NULL) return -EINVAL;
3899 
3900 	/*
3901 	 * for now limit to current task, which is enough when calling
3902 	 * from overflow handler
3903 	 */
3904 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3905 
3906 	return pfm_write_ibrs(ctx, req, nreq, regs);
3907 }
3908 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3909 
3910 int
pfm_mod_write_dbrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3911 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3912 {
3913 	pfm_context_t *ctx;
3914 
3915 	if (req == NULL) return -EINVAL;
3916 
3917  	ctx = GET_PMU_CTX();
3918 
3919 	if (ctx == NULL) return -EINVAL;
3920 
3921 	/*
3922 	 * for now limit to current task, which is enough when calling
3923 	 * from overflow handler
3924 	 */
3925 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3926 
3927 	return pfm_write_dbrs(ctx, req, nreq, regs);
3928 }
3929 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3930 
3931 
3932 static int
pfm_get_features(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3933 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3934 {
3935 	pfarg_features_t *req = (pfarg_features_t *)arg;
3936 
3937 	req->ft_version = PFM_VERSION;
3938 	return 0;
3939 }
3940 
3941 static int
pfm_stop(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3942 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3943 {
3944 	struct pt_regs *tregs;
3945 	struct task_struct *task = PFM_CTX_TASK(ctx);
3946 	int state, is_system;
3947 
3948 	state     = ctx->ctx_state;
3949 	is_system = ctx->ctx_fl_system;
3950 
3951 	/*
3952 	 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3953 	 */
3954 	if (state == PFM_CTX_UNLOADED) return -EINVAL;
3955 
3956 	/*
3957  	 * In system wide and when the context is loaded, access can only happen
3958  	 * when the caller is running on the CPU being monitored by the session.
3959  	 * It does not have to be the owner (ctx_task) of the context per se.
3960  	 */
3961 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3962 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3963 		return -EBUSY;
3964 	}
3965 	DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3966 		task_pid_nr(PFM_CTX_TASK(ctx)),
3967 		state,
3968 		is_system));
3969 	/*
3970 	 * in system mode, we need to update the PMU directly
3971 	 * and the user level state of the caller, which may not
3972 	 * necessarily be the creator of the context.
3973 	 */
3974 	if (is_system) {
3975 		/*
3976 		 * Update local PMU first
3977 		 *
3978 		 * disable dcr pp
3979 		 */
3980 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3981 		ia64_srlz_i();
3982 
3983 		/*
3984 		 * update local cpuinfo
3985 		 */
3986 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3987 
3988 		/*
3989 		 * stop monitoring, does srlz.i
3990 		 */
3991 		pfm_clear_psr_pp();
3992 
3993 		/*
3994 		 * stop monitoring in the caller
3995 		 */
3996 		ia64_psr(regs)->pp = 0;
3997 
3998 		return 0;
3999 	}
4000 	/*
4001 	 * per-task mode
4002 	 */
4003 
4004 	if (task == current) {
4005 		/* stop monitoring  at kernel level */
4006 		pfm_clear_psr_up();
4007 
4008 		/*
4009 	 	 * stop monitoring at the user level
4010 	 	 */
4011 		ia64_psr(regs)->up = 0;
4012 	} else {
4013 		tregs = task_pt_regs(task);
4014 
4015 		/*
4016 	 	 * stop monitoring at the user level
4017 	 	 */
4018 		ia64_psr(tregs)->up = 0;
4019 
4020 		/*
4021 		 * monitoring disabled in kernel at next reschedule
4022 		 */
4023 		ctx->ctx_saved_psr_up = 0;
4024 		DPRINT(("task=[%d]\n", task_pid_nr(task)));
4025 	}
4026 	return 0;
4027 }
4028 
4029 
4030 static int
pfm_start(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4031 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4032 {
4033 	struct pt_regs *tregs;
4034 	int state, is_system;
4035 
4036 	state     = ctx->ctx_state;
4037 	is_system = ctx->ctx_fl_system;
4038 
4039 	if (state != PFM_CTX_LOADED) return -EINVAL;
4040 
4041 	/*
4042  	 * In system wide and when the context is loaded, access can only happen
4043  	 * when the caller is running on the CPU being monitored by the session.
4044  	 * It does not have to be the owner (ctx_task) of the context per se.
4045  	 */
4046 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4047 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4048 		return -EBUSY;
4049 	}
4050 
4051 	/*
4052 	 * in system mode, we need to update the PMU directly
4053 	 * and the user level state of the caller, which may not
4054 	 * necessarily be the creator of the context.
4055 	 */
4056 	if (is_system) {
4057 
4058 		/*
4059 		 * set user level psr.pp for the caller
4060 		 */
4061 		ia64_psr(regs)->pp = 1;
4062 
4063 		/*
4064 		 * now update the local PMU and cpuinfo
4065 		 */
4066 		PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4067 
4068 		/*
4069 		 * start monitoring at kernel level
4070 		 */
4071 		pfm_set_psr_pp();
4072 
4073 		/* enable dcr pp */
4074 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4075 		ia64_srlz_i();
4076 
4077 		return 0;
4078 	}
4079 
4080 	/*
4081 	 * per-process mode
4082 	 */
4083 
4084 	if (ctx->ctx_task == current) {
4085 
4086 		/* start monitoring at kernel level */
4087 		pfm_set_psr_up();
4088 
4089 		/*
4090 		 * activate monitoring at user level
4091 		 */
4092 		ia64_psr(regs)->up = 1;
4093 
4094 	} else {
4095 		tregs = task_pt_regs(ctx->ctx_task);
4096 
4097 		/*
4098 		 * start monitoring at the kernel level the next
4099 		 * time the task is scheduled
4100 		 */
4101 		ctx->ctx_saved_psr_up = IA64_PSR_UP;
4102 
4103 		/*
4104 		 * activate monitoring at user level
4105 		 */
4106 		ia64_psr(tregs)->up = 1;
4107 	}
4108 	return 0;
4109 }
4110 
4111 static int
pfm_get_pmc_reset(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4112 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4113 {
4114 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
4115 	unsigned int cnum;
4116 	int i;
4117 	int ret = -EINVAL;
4118 
4119 	for (i = 0; i < count; i++, req++) {
4120 
4121 		cnum = req->reg_num;
4122 
4123 		if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4124 
4125 		req->reg_value = PMC_DFL_VAL(cnum);
4126 
4127 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4128 
4129 		DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4130 	}
4131 	return 0;
4132 
4133 abort_mission:
4134 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4135 	return ret;
4136 }
4137 
4138 static int
pfm_check_task_exist(pfm_context_t * ctx)4139 pfm_check_task_exist(pfm_context_t *ctx)
4140 {
4141 	struct task_struct *g, *t;
4142 	int ret = -ESRCH;
4143 
4144 	read_lock(&tasklist_lock);
4145 
4146 	do_each_thread (g, t) {
4147 		if (t->thread.pfm_context == ctx) {
4148 			ret = 0;
4149 			goto out;
4150 		}
4151 	} while_each_thread (g, t);
4152 out:
4153 	read_unlock(&tasklist_lock);
4154 
4155 	DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4156 
4157 	return ret;
4158 }
4159 
4160 static int
pfm_context_load(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4161 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4162 {
4163 	struct task_struct *task;
4164 	struct thread_struct *thread;
4165 	struct pfm_context_t *old;
4166 	unsigned long flags;
4167 #ifndef CONFIG_SMP
4168 	struct task_struct *owner_task = NULL;
4169 #endif
4170 	pfarg_load_t *req = (pfarg_load_t *)arg;
4171 	unsigned long *pmcs_source, *pmds_source;
4172 	int the_cpu;
4173 	int ret = 0;
4174 	int state, is_system, set_dbregs = 0;
4175 
4176 	state     = ctx->ctx_state;
4177 	is_system = ctx->ctx_fl_system;
4178 	/*
4179 	 * can only load from unloaded or terminated state
4180 	 */
4181 	if (state != PFM_CTX_UNLOADED) {
4182 		DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4183 			req->load_pid,
4184 			ctx->ctx_state));
4185 		return -EBUSY;
4186 	}
4187 
4188 	DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4189 
4190 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4191 		DPRINT(("cannot use blocking mode on self\n"));
4192 		return -EINVAL;
4193 	}
4194 
4195 	ret = pfm_get_task(ctx, req->load_pid, &task);
4196 	if (ret) {
4197 		DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4198 		return ret;
4199 	}
4200 
4201 	ret = -EINVAL;
4202 
4203 	/*
4204 	 * system wide is self monitoring only
4205 	 */
4206 	if (is_system && task != current) {
4207 		DPRINT(("system wide is self monitoring only load_pid=%d\n",
4208 			req->load_pid));
4209 		goto error;
4210 	}
4211 
4212 	thread = &task->thread;
4213 
4214 	ret = 0;
4215 	/*
4216 	 * cannot load a context which is using range restrictions,
4217 	 * into a task that is being debugged.
4218 	 */
4219 	if (ctx->ctx_fl_using_dbreg) {
4220 		if (thread->flags & IA64_THREAD_DBG_VALID) {
4221 			ret = -EBUSY;
4222 			DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4223 			goto error;
4224 		}
4225 		LOCK_PFS(flags);
4226 
4227 		if (is_system) {
4228 			if (pfm_sessions.pfs_ptrace_use_dbregs) {
4229 				DPRINT(("cannot load [%d] dbregs in use\n",
4230 							task_pid_nr(task)));
4231 				ret = -EBUSY;
4232 			} else {
4233 				pfm_sessions.pfs_sys_use_dbregs++;
4234 				DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4235 				set_dbregs = 1;
4236 			}
4237 		}
4238 
4239 		UNLOCK_PFS(flags);
4240 
4241 		if (ret) goto error;
4242 	}
4243 
4244 	/*
4245 	 * SMP system-wide monitoring implies self-monitoring.
4246 	 *
4247 	 * The programming model expects the task to
4248 	 * be pinned on a CPU throughout the session.
4249 	 * Here we take note of the current CPU at the
4250 	 * time the context is loaded. No call from
4251 	 * another CPU will be allowed.
4252 	 *
4253 	 * The pinning via shed_setaffinity()
4254 	 * must be done by the calling task prior
4255 	 * to this call.
4256 	 *
4257 	 * systemwide: keep track of CPU this session is supposed to run on
4258 	 */
4259 	the_cpu = ctx->ctx_cpu = smp_processor_id();
4260 
4261 	ret = -EBUSY;
4262 	/*
4263 	 * now reserve the session
4264 	 */
4265 	ret = pfm_reserve_session(current, is_system, the_cpu);
4266 	if (ret) goto error;
4267 
4268 	/*
4269 	 * task is necessarily stopped at this point.
4270 	 *
4271 	 * If the previous context was zombie, then it got removed in
4272 	 * pfm_save_regs(). Therefore we should not see it here.
4273 	 * If we see a context, then this is an active context
4274 	 *
4275 	 * XXX: needs to be atomic
4276 	 */
4277 	DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4278 		thread->pfm_context, ctx));
4279 
4280 	ret = -EBUSY;
4281 	old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4282 	if (old != NULL) {
4283 		DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4284 		goto error_unres;
4285 	}
4286 
4287 	pfm_reset_msgq(ctx);
4288 
4289 	ctx->ctx_state = PFM_CTX_LOADED;
4290 
4291 	/*
4292 	 * link context to task
4293 	 */
4294 	ctx->ctx_task = task;
4295 
4296 	if (is_system) {
4297 		/*
4298 		 * we load as stopped
4299 		 */
4300 		PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4301 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4302 
4303 		if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4304 	} else {
4305 		thread->flags |= IA64_THREAD_PM_VALID;
4306 	}
4307 
4308 	/*
4309 	 * propagate into thread-state
4310 	 */
4311 	pfm_copy_pmds(task, ctx);
4312 	pfm_copy_pmcs(task, ctx);
4313 
4314 	pmcs_source = ctx->th_pmcs;
4315 	pmds_source = ctx->th_pmds;
4316 
4317 	/*
4318 	 * always the case for system-wide
4319 	 */
4320 	if (task == current) {
4321 
4322 		if (is_system == 0) {
4323 
4324 			/* allow user level control */
4325 			ia64_psr(regs)->sp = 0;
4326 			DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4327 
4328 			SET_LAST_CPU(ctx, smp_processor_id());
4329 			INC_ACTIVATION();
4330 			SET_ACTIVATION(ctx);
4331 #ifndef CONFIG_SMP
4332 			/*
4333 			 * push the other task out, if any
4334 			 */
4335 			owner_task = GET_PMU_OWNER();
4336 			if (owner_task) pfm_lazy_save_regs(owner_task);
4337 #endif
4338 		}
4339 		/*
4340 		 * load all PMD from ctx to PMU (as opposed to thread state)
4341 		 * restore all PMC from ctx to PMU
4342 		 */
4343 		pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4344 		pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4345 
4346 		ctx->ctx_reload_pmcs[0] = 0UL;
4347 		ctx->ctx_reload_pmds[0] = 0UL;
4348 
4349 		/*
4350 		 * guaranteed safe by earlier check against DBG_VALID
4351 		 */
4352 		if (ctx->ctx_fl_using_dbreg) {
4353 			pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4354 			pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4355 		}
4356 		/*
4357 		 * set new ownership
4358 		 */
4359 		SET_PMU_OWNER(task, ctx);
4360 
4361 		DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4362 	} else {
4363 		/*
4364 		 * when not current, task MUST be stopped, so this is safe
4365 		 */
4366 		regs = task_pt_regs(task);
4367 
4368 		/* force a full reload */
4369 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4370 		SET_LAST_CPU(ctx, -1);
4371 
4372 		/* initial saved psr (stopped) */
4373 		ctx->ctx_saved_psr_up = 0UL;
4374 		ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4375 	}
4376 
4377 	ret = 0;
4378 
4379 error_unres:
4380 	if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4381 error:
4382 	/*
4383 	 * we must undo the dbregs setting (for system-wide)
4384 	 */
4385 	if (ret && set_dbregs) {
4386 		LOCK_PFS(flags);
4387 		pfm_sessions.pfs_sys_use_dbregs--;
4388 		UNLOCK_PFS(flags);
4389 	}
4390 	/*
4391 	 * release task, there is now a link with the context
4392 	 */
4393 	if (is_system == 0 && task != current) {
4394 		pfm_put_task(task);
4395 
4396 		if (ret == 0) {
4397 			ret = pfm_check_task_exist(ctx);
4398 			if (ret) {
4399 				ctx->ctx_state = PFM_CTX_UNLOADED;
4400 				ctx->ctx_task  = NULL;
4401 			}
4402 		}
4403 	}
4404 	return ret;
4405 }
4406 
4407 /*
4408  * in this function, we do not need to increase the use count
4409  * for the task via get_task_struct(), because we hold the
4410  * context lock. If the task were to disappear while having
4411  * a context attached, it would go through pfm_exit_thread()
4412  * which also grabs the context lock  and would therefore be blocked
4413  * until we are here.
4414  */
4415 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4416 
4417 static int
pfm_context_unload(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4418 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4419 {
4420 	struct task_struct *task = PFM_CTX_TASK(ctx);
4421 	struct pt_regs *tregs;
4422 	int prev_state, is_system;
4423 	int ret;
4424 
4425 	DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4426 
4427 	prev_state = ctx->ctx_state;
4428 	is_system  = ctx->ctx_fl_system;
4429 
4430 	/*
4431 	 * unload only when necessary
4432 	 */
4433 	if (prev_state == PFM_CTX_UNLOADED) {
4434 		DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4435 		return 0;
4436 	}
4437 
4438 	/*
4439 	 * clear psr and dcr bits
4440 	 */
4441 	ret = pfm_stop(ctx, NULL, 0, regs);
4442 	if (ret) return ret;
4443 
4444 	ctx->ctx_state = PFM_CTX_UNLOADED;
4445 
4446 	/*
4447 	 * in system mode, we need to update the PMU directly
4448 	 * and the user level state of the caller, which may not
4449 	 * necessarily be the creator of the context.
4450 	 */
4451 	if (is_system) {
4452 
4453 		/*
4454 		 * Update cpuinfo
4455 		 *
4456 		 * local PMU is taken care of in pfm_stop()
4457 		 */
4458 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4459 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4460 
4461 		/*
4462 		 * save PMDs in context
4463 		 * release ownership
4464 		 */
4465 		pfm_flush_pmds(current, ctx);
4466 
4467 		/*
4468 		 * at this point we are done with the PMU
4469 		 * so we can unreserve the resource.
4470 		 */
4471 		if (prev_state != PFM_CTX_ZOMBIE)
4472 			pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4473 
4474 		/*
4475 		 * disconnect context from task
4476 		 */
4477 		task->thread.pfm_context = NULL;
4478 		/*
4479 		 * disconnect task from context
4480 		 */
4481 		ctx->ctx_task = NULL;
4482 
4483 		/*
4484 		 * There is nothing more to cleanup here.
4485 		 */
4486 		return 0;
4487 	}
4488 
4489 	/*
4490 	 * per-task mode
4491 	 */
4492 	tregs = task == current ? regs : task_pt_regs(task);
4493 
4494 	if (task == current) {
4495 		/*
4496 		 * cancel user level control
4497 		 */
4498 		ia64_psr(regs)->sp = 1;
4499 
4500 		DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4501 	}
4502 	/*
4503 	 * save PMDs to context
4504 	 * release ownership
4505 	 */
4506 	pfm_flush_pmds(task, ctx);
4507 
4508 	/*
4509 	 * at this point we are done with the PMU
4510 	 * so we can unreserve the resource.
4511 	 *
4512 	 * when state was ZOMBIE, we have already unreserved.
4513 	 */
4514 	if (prev_state != PFM_CTX_ZOMBIE)
4515 		pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4516 
4517 	/*
4518 	 * reset activation counter and psr
4519 	 */
4520 	ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4521 	SET_LAST_CPU(ctx, -1);
4522 
4523 	/*
4524 	 * PMU state will not be restored
4525 	 */
4526 	task->thread.flags &= ~IA64_THREAD_PM_VALID;
4527 
4528 	/*
4529 	 * break links between context and task
4530 	 */
4531 	task->thread.pfm_context  = NULL;
4532 	ctx->ctx_task             = NULL;
4533 
4534 	PFM_SET_WORK_PENDING(task, 0);
4535 
4536 	ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4537 	ctx->ctx_fl_can_restart  = 0;
4538 	ctx->ctx_fl_going_zombie = 0;
4539 
4540 	DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4541 
4542 	return 0;
4543 }
4544 
4545 
4546 /*
4547  * called only from exit_thread()
4548  * we come here only if the task has a context attached (loaded or masked)
4549  */
4550 void
pfm_exit_thread(struct task_struct * task)4551 pfm_exit_thread(struct task_struct *task)
4552 {
4553 	pfm_context_t *ctx;
4554 	unsigned long flags;
4555 	struct pt_regs *regs = task_pt_regs(task);
4556 	int ret, state;
4557 	int free_ok = 0;
4558 
4559 	ctx = PFM_GET_CTX(task);
4560 
4561 	PROTECT_CTX(ctx, flags);
4562 
4563 	DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4564 
4565 	state = ctx->ctx_state;
4566 	switch(state) {
4567 		case PFM_CTX_UNLOADED:
4568 			/*
4569 	 		 * only comes to this function if pfm_context is not NULL, i.e., cannot
4570 			 * be in unloaded state
4571 	 		 */
4572 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4573 			break;
4574 		case PFM_CTX_LOADED:
4575 		case PFM_CTX_MASKED:
4576 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4577 			if (ret) {
4578 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4579 			}
4580 			DPRINT(("ctx unloaded for current state was %d\n", state));
4581 
4582 			pfm_end_notify_user(ctx);
4583 			break;
4584 		case PFM_CTX_ZOMBIE:
4585 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4586 			if (ret) {
4587 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4588 			}
4589 			free_ok = 1;
4590 			break;
4591 		default:
4592 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4593 			break;
4594 	}
4595 	UNPROTECT_CTX(ctx, flags);
4596 
4597 	{ u64 psr = pfm_get_psr();
4598 	  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4599 	  BUG_ON(GET_PMU_OWNER());
4600 	  BUG_ON(ia64_psr(regs)->up);
4601 	  BUG_ON(ia64_psr(regs)->pp);
4602 	}
4603 
4604 	/*
4605 	 * All memory free operations (especially for vmalloc'ed memory)
4606 	 * MUST be done with interrupts ENABLED.
4607 	 */
4608 	if (free_ok) pfm_context_free(ctx);
4609 }
4610 
4611 /*
4612  * functions MUST be listed in the increasing order of their index (see permfon.h)
4613  */
4614 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4615 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4616 #define PFM_CMD_PCLRWS	(PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4617 #define PFM_CMD_PCLRW	(PFM_CMD_FD|PFM_CMD_ARG_RW)
4618 #define PFM_CMD_NONE	{ NULL, "no-cmd", 0, 0, 0, NULL}
4619 
4620 static pfm_cmd_desc_t pfm_cmd_tab[]={
4621 /* 0  */PFM_CMD_NONE,
4622 /* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4623 /* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4624 /* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4625 /* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4626 /* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4627 /* 6  */PFM_CMD_NONE,
4628 /* 7  */PFM_CMD_NONE,
4629 /* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4630 /* 9  */PFM_CMD_NONE,
4631 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4632 /* 11 */PFM_CMD_NONE,
4633 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4634 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4635 /* 14 */PFM_CMD_NONE,
4636 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4637 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4638 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4639 /* 18 */PFM_CMD_NONE,
4640 /* 19 */PFM_CMD_NONE,
4641 /* 20 */PFM_CMD_NONE,
4642 /* 21 */PFM_CMD_NONE,
4643 /* 22 */PFM_CMD_NONE,
4644 /* 23 */PFM_CMD_NONE,
4645 /* 24 */PFM_CMD_NONE,
4646 /* 25 */PFM_CMD_NONE,
4647 /* 26 */PFM_CMD_NONE,
4648 /* 27 */PFM_CMD_NONE,
4649 /* 28 */PFM_CMD_NONE,
4650 /* 29 */PFM_CMD_NONE,
4651 /* 30 */PFM_CMD_NONE,
4652 /* 31 */PFM_CMD_NONE,
4653 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4654 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4655 };
4656 #define PFM_CMD_COUNT	(sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4657 
4658 static int
pfm_check_task_state(pfm_context_t * ctx,int cmd,unsigned long flags)4659 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4660 {
4661 	struct task_struct *task;
4662 	int state, old_state;
4663 
4664 recheck:
4665 	state = ctx->ctx_state;
4666 	task  = ctx->ctx_task;
4667 
4668 	if (task == NULL) {
4669 		DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4670 		return 0;
4671 	}
4672 
4673 	DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4674 		ctx->ctx_fd,
4675 		state,
4676 		task_pid_nr(task),
4677 		task->state, PFM_CMD_STOPPED(cmd)));
4678 
4679 	/*
4680 	 * self-monitoring always ok.
4681 	 *
4682 	 * for system-wide the caller can either be the creator of the
4683 	 * context (to one to which the context is attached to) OR
4684 	 * a task running on the same CPU as the session.
4685 	 */
4686 	if (task == current || ctx->ctx_fl_system) return 0;
4687 
4688 	/*
4689 	 * we are monitoring another thread
4690 	 */
4691 	switch(state) {
4692 		case PFM_CTX_UNLOADED:
4693 			/*
4694 			 * if context is UNLOADED we are safe to go
4695 			 */
4696 			return 0;
4697 		case PFM_CTX_ZOMBIE:
4698 			/*
4699 			 * no command can operate on a zombie context
4700 			 */
4701 			DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4702 			return -EINVAL;
4703 		case PFM_CTX_MASKED:
4704 			/*
4705 			 * PMU state has been saved to software even though
4706 			 * the thread may still be running.
4707 			 */
4708 			if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4709 	}
4710 
4711 	/*
4712 	 * context is LOADED or MASKED. Some commands may need to have
4713 	 * the task stopped.
4714 	 *
4715 	 * We could lift this restriction for UP but it would mean that
4716 	 * the user has no guarantee the task would not run between
4717 	 * two successive calls to perfmonctl(). That's probably OK.
4718 	 * If this user wants to ensure the task does not run, then
4719 	 * the task must be stopped.
4720 	 */
4721 	if (PFM_CMD_STOPPED(cmd)) {
4722 		if (!task_is_stopped_or_traced(task)) {
4723 			DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4724 			return -EBUSY;
4725 		}
4726 		/*
4727 		 * task is now stopped, wait for ctxsw out
4728 		 *
4729 		 * This is an interesting point in the code.
4730 		 * We need to unprotect the context because
4731 		 * the pfm_save_regs() routines needs to grab
4732 		 * the same lock. There are danger in doing
4733 		 * this because it leaves a window open for
4734 		 * another task to get access to the context
4735 		 * and possibly change its state. The one thing
4736 		 * that is not possible is for the context to disappear
4737 		 * because we are protected by the VFS layer, i.e.,
4738 		 * get_fd()/put_fd().
4739 		 */
4740 		old_state = state;
4741 
4742 		UNPROTECT_CTX(ctx, flags);
4743 
4744 		wait_task_inactive(task, 0);
4745 
4746 		PROTECT_CTX(ctx, flags);
4747 
4748 		/*
4749 		 * we must recheck to verify if state has changed
4750 		 */
4751 		if (ctx->ctx_state != old_state) {
4752 			DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4753 			goto recheck;
4754 		}
4755 	}
4756 	return 0;
4757 }
4758 
4759 /*
4760  * system-call entry point (must return long)
4761  */
4762 asmlinkage long
sys_perfmonctl(int fd,int cmd,void __user * arg,int count)4763 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4764 {
4765 	struct fd f = {NULL, 0};
4766 	pfm_context_t *ctx = NULL;
4767 	unsigned long flags = 0UL;
4768 	void *args_k = NULL;
4769 	long ret; /* will expand int return types */
4770 	size_t base_sz, sz, xtra_sz = 0;
4771 	int narg, completed_args = 0, call_made = 0, cmd_flags;
4772 	int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4773 	int (*getsize)(void *arg, size_t *sz);
4774 #define PFM_MAX_ARGSIZE	4096
4775 
4776 	/*
4777 	 * reject any call if perfmon was disabled at initialization
4778 	 */
4779 	if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4780 
4781 	if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4782 		DPRINT(("invalid cmd=%d\n", cmd));
4783 		return -EINVAL;
4784 	}
4785 
4786 	func      = pfm_cmd_tab[cmd].cmd_func;
4787 	narg      = pfm_cmd_tab[cmd].cmd_narg;
4788 	base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4789 	getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4790 	cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4791 
4792 	if (unlikely(func == NULL)) {
4793 		DPRINT(("invalid cmd=%d\n", cmd));
4794 		return -EINVAL;
4795 	}
4796 
4797 	DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4798 		PFM_CMD_NAME(cmd),
4799 		cmd,
4800 		narg,
4801 		base_sz,
4802 		count));
4803 
4804 	/*
4805 	 * check if number of arguments matches what the command expects
4806 	 */
4807 	if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4808 		return -EINVAL;
4809 
4810 restart_args:
4811 	sz = xtra_sz + base_sz*count;
4812 	/*
4813 	 * limit abuse to min page size
4814 	 */
4815 	if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4816 		printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4817 		return -E2BIG;
4818 	}
4819 
4820 	/*
4821 	 * allocate default-sized argument buffer
4822 	 */
4823 	if (likely(count && args_k == NULL)) {
4824 		args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4825 		if (args_k == NULL) return -ENOMEM;
4826 	}
4827 
4828 	ret = -EFAULT;
4829 
4830 	/*
4831 	 * copy arguments
4832 	 *
4833 	 * assume sz = 0 for command without parameters
4834 	 */
4835 	if (sz && copy_from_user(args_k, arg, sz)) {
4836 		DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4837 		goto error_args;
4838 	}
4839 
4840 	/*
4841 	 * check if command supports extra parameters
4842 	 */
4843 	if (completed_args == 0 && getsize) {
4844 		/*
4845 		 * get extra parameters size (based on main argument)
4846 		 */
4847 		ret = (*getsize)(args_k, &xtra_sz);
4848 		if (ret) goto error_args;
4849 
4850 		completed_args = 1;
4851 
4852 		DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4853 
4854 		/* retry if necessary */
4855 		if (likely(xtra_sz)) goto restart_args;
4856 	}
4857 
4858 	if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4859 
4860 	ret = -EBADF;
4861 
4862 	f = fdget(fd);
4863 	if (unlikely(f.file == NULL)) {
4864 		DPRINT(("invalid fd %d\n", fd));
4865 		goto error_args;
4866 	}
4867 	if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4868 		DPRINT(("fd %d not related to perfmon\n", fd));
4869 		goto error_args;
4870 	}
4871 
4872 	ctx = f.file->private_data;
4873 	if (unlikely(ctx == NULL)) {
4874 		DPRINT(("no context for fd %d\n", fd));
4875 		goto error_args;
4876 	}
4877 	prefetch(&ctx->ctx_state);
4878 
4879 	PROTECT_CTX(ctx, flags);
4880 
4881 	/*
4882 	 * check task is stopped
4883 	 */
4884 	ret = pfm_check_task_state(ctx, cmd, flags);
4885 	if (unlikely(ret)) goto abort_locked;
4886 
4887 skip_fd:
4888 	ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4889 
4890 	call_made = 1;
4891 
4892 abort_locked:
4893 	if (likely(ctx)) {
4894 		DPRINT(("context unlocked\n"));
4895 		UNPROTECT_CTX(ctx, flags);
4896 	}
4897 
4898 	/* copy argument back to user, if needed */
4899 	if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4900 
4901 error_args:
4902 	if (f.file)
4903 		fdput(f);
4904 
4905 	kfree(args_k);
4906 
4907 	DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4908 
4909 	return ret;
4910 }
4911 
4912 static void
pfm_resume_after_ovfl(pfm_context_t * ctx,unsigned long ovfl_regs,struct pt_regs * regs)4913 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4914 {
4915 	pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4916 	pfm_ovfl_ctrl_t rst_ctrl;
4917 	int state;
4918 	int ret = 0;
4919 
4920 	state = ctx->ctx_state;
4921 	/*
4922 	 * Unlock sampling buffer and reset index atomically
4923 	 * XXX: not really needed when blocking
4924 	 */
4925 	if (CTX_HAS_SMPL(ctx)) {
4926 
4927 		rst_ctrl.bits.mask_monitoring = 0;
4928 		rst_ctrl.bits.reset_ovfl_pmds = 0;
4929 
4930 		if (state == PFM_CTX_LOADED)
4931 			ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4932 		else
4933 			ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4934 	} else {
4935 		rst_ctrl.bits.mask_monitoring = 0;
4936 		rst_ctrl.bits.reset_ovfl_pmds = 1;
4937 	}
4938 
4939 	if (ret == 0) {
4940 		if (rst_ctrl.bits.reset_ovfl_pmds) {
4941 			pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4942 		}
4943 		if (rst_ctrl.bits.mask_monitoring == 0) {
4944 			DPRINT(("resuming monitoring\n"));
4945 			if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4946 		} else {
4947 			DPRINT(("stopping monitoring\n"));
4948 			//pfm_stop_monitoring(current, regs);
4949 		}
4950 		ctx->ctx_state = PFM_CTX_LOADED;
4951 	}
4952 }
4953 
4954 /*
4955  * context MUST BE LOCKED when calling
4956  * can only be called for current
4957  */
4958 static void
pfm_context_force_terminate(pfm_context_t * ctx,struct pt_regs * regs)4959 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4960 {
4961 	int ret;
4962 
4963 	DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4964 
4965 	ret = pfm_context_unload(ctx, NULL, 0, regs);
4966 	if (ret) {
4967 		printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4968 	}
4969 
4970 	/*
4971 	 * and wakeup controlling task, indicating we are now disconnected
4972 	 */
4973 	wake_up_interruptible(&ctx->ctx_zombieq);
4974 
4975 	/*
4976 	 * given that context is still locked, the controlling
4977 	 * task will only get access when we return from
4978 	 * pfm_handle_work().
4979 	 */
4980 }
4981 
4982 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4983 
4984  /*
4985   * pfm_handle_work() can be called with interrupts enabled
4986   * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4987   * call may sleep, therefore we must re-enable interrupts
4988   * to avoid deadlocks. It is safe to do so because this function
4989   * is called ONLY when returning to user level (pUStk=1), in which case
4990   * there is no risk of kernel stack overflow due to deep
4991   * interrupt nesting.
4992   */
4993 void
pfm_handle_work(void)4994 pfm_handle_work(void)
4995 {
4996 	pfm_context_t *ctx;
4997 	struct pt_regs *regs;
4998 	unsigned long flags, dummy_flags;
4999 	unsigned long ovfl_regs;
5000 	unsigned int reason;
5001 	int ret;
5002 
5003 	ctx = PFM_GET_CTX(current);
5004 	if (ctx == NULL) {
5005 		printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5006 			task_pid_nr(current));
5007 		return;
5008 	}
5009 
5010 	PROTECT_CTX(ctx, flags);
5011 
5012 	PFM_SET_WORK_PENDING(current, 0);
5013 
5014 	regs = task_pt_regs(current);
5015 
5016 	/*
5017 	 * extract reason for being here and clear
5018 	 */
5019 	reason = ctx->ctx_fl_trap_reason;
5020 	ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5021 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5022 
5023 	DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5024 
5025 	/*
5026 	 * must be done before we check for simple-reset mode
5027 	 */
5028 	if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5029 		goto do_zombie;
5030 
5031 	//if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5032 	if (reason == PFM_TRAP_REASON_RESET)
5033 		goto skip_blocking;
5034 
5035 	/*
5036 	 * restore interrupt mask to what it was on entry.
5037 	 * Could be enabled/diasbled.
5038 	 */
5039 	UNPROTECT_CTX(ctx, flags);
5040 
5041 	/*
5042 	 * force interrupt enable because of down_interruptible()
5043 	 */
5044 	local_irq_enable();
5045 
5046 	DPRINT(("before block sleeping\n"));
5047 
5048 	/*
5049 	 * may go through without blocking on SMP systems
5050 	 * if restart has been received already by the time we call down()
5051 	 */
5052 	ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5053 
5054 	DPRINT(("after block sleeping ret=%d\n", ret));
5055 
5056 	/*
5057 	 * lock context and mask interrupts again
5058 	 * We save flags into a dummy because we may have
5059 	 * altered interrupts mask compared to entry in this
5060 	 * function.
5061 	 */
5062 	PROTECT_CTX(ctx, dummy_flags);
5063 
5064 	/*
5065 	 * we need to read the ovfl_regs only after wake-up
5066 	 * because we may have had pfm_write_pmds() in between
5067 	 * and that can changed PMD values and therefore
5068 	 * ovfl_regs is reset for these new PMD values.
5069 	 */
5070 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5071 
5072 	if (ctx->ctx_fl_going_zombie) {
5073 do_zombie:
5074 		DPRINT(("context is zombie, bailing out\n"));
5075 		pfm_context_force_terminate(ctx, regs);
5076 		goto nothing_to_do;
5077 	}
5078 	/*
5079 	 * in case of interruption of down() we don't restart anything
5080 	 */
5081 	if (ret < 0)
5082 		goto nothing_to_do;
5083 
5084 skip_blocking:
5085 	pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5086 	ctx->ctx_ovfl_regs[0] = 0UL;
5087 
5088 nothing_to_do:
5089 	/*
5090 	 * restore flags as they were upon entry
5091 	 */
5092 	UNPROTECT_CTX(ctx, flags);
5093 }
5094 
5095 static int
pfm_notify_user(pfm_context_t * ctx,pfm_msg_t * msg)5096 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5097 {
5098 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5099 		DPRINT(("ignoring overflow notification, owner is zombie\n"));
5100 		return 0;
5101 	}
5102 
5103 	DPRINT(("waking up somebody\n"));
5104 
5105 	if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5106 
5107 	/*
5108 	 * safe, we are not in intr handler, nor in ctxsw when
5109 	 * we come here
5110 	 */
5111 	kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5112 
5113 	return 0;
5114 }
5115 
5116 static int
pfm_ovfl_notify_user(pfm_context_t * ctx,unsigned long ovfl_pmds)5117 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5118 {
5119 	pfm_msg_t *msg = NULL;
5120 
5121 	if (ctx->ctx_fl_no_msg == 0) {
5122 		msg = pfm_get_new_msg(ctx);
5123 		if (msg == NULL) {
5124 			printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5125 			return -1;
5126 		}
5127 
5128 		msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5129 		msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5130 		msg->pfm_ovfl_msg.msg_active_set   = 0;
5131 		msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5132 		msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5133 		msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5134 		msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5135 		msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5136 	}
5137 
5138 	DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5139 		msg,
5140 		ctx->ctx_fl_no_msg,
5141 		ctx->ctx_fd,
5142 		ovfl_pmds));
5143 
5144 	return pfm_notify_user(ctx, msg);
5145 }
5146 
5147 static int
pfm_end_notify_user(pfm_context_t * ctx)5148 pfm_end_notify_user(pfm_context_t *ctx)
5149 {
5150 	pfm_msg_t *msg;
5151 
5152 	msg = pfm_get_new_msg(ctx);
5153 	if (msg == NULL) {
5154 		printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5155 		return -1;
5156 	}
5157 	/* no leak */
5158 	memset(msg, 0, sizeof(*msg));
5159 
5160 	msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5161 	msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5162 	msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5163 
5164 	DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5165 		msg,
5166 		ctx->ctx_fl_no_msg,
5167 		ctx->ctx_fd));
5168 
5169 	return pfm_notify_user(ctx, msg);
5170 }
5171 
5172 /*
5173  * main overflow processing routine.
5174  * it can be called from the interrupt path or explicitly during the context switch code
5175  */
pfm_overflow_handler(struct task_struct * task,pfm_context_t * ctx,unsigned long pmc0,struct pt_regs * regs)5176 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5177 				unsigned long pmc0, struct pt_regs *regs)
5178 {
5179 	pfm_ovfl_arg_t *ovfl_arg;
5180 	unsigned long mask;
5181 	unsigned long old_val, ovfl_val, new_val;
5182 	unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5183 	unsigned long tstamp;
5184 	pfm_ovfl_ctrl_t	ovfl_ctrl;
5185 	unsigned int i, has_smpl;
5186 	int must_notify = 0;
5187 
5188 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5189 
5190 	/*
5191 	 * sanity test. Should never happen
5192 	 */
5193 	if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5194 
5195 	tstamp   = ia64_get_itc();
5196 	mask     = pmc0 >> PMU_FIRST_COUNTER;
5197 	ovfl_val = pmu_conf->ovfl_val;
5198 	has_smpl = CTX_HAS_SMPL(ctx);
5199 
5200 	DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5201 		     "used_pmds=0x%lx\n",
5202 			pmc0,
5203 			task ? task_pid_nr(task): -1,
5204 			(regs ? regs->cr_iip : 0),
5205 			CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5206 			ctx->ctx_used_pmds[0]));
5207 
5208 
5209 	/*
5210 	 * first we update the virtual counters
5211 	 * assume there was a prior ia64_srlz_d() issued
5212 	 */
5213 	for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5214 
5215 		/* skip pmd which did not overflow */
5216 		if ((mask & 0x1) == 0) continue;
5217 
5218 		/*
5219 		 * Note that the pmd is not necessarily 0 at this point as qualified events
5220 		 * may have happened before the PMU was frozen. The residual count is not
5221 		 * taken into consideration here but will be with any read of the pmd via
5222 		 * pfm_read_pmds().
5223 		 */
5224 		old_val              = new_val = ctx->ctx_pmds[i].val;
5225 		new_val             += 1 + ovfl_val;
5226 		ctx->ctx_pmds[i].val = new_val;
5227 
5228 		/*
5229 		 * check for overflow condition
5230 		 */
5231 		if (likely(old_val > new_val)) {
5232 			ovfl_pmds |= 1UL << i;
5233 			if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5234 		}
5235 
5236 		DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5237 			i,
5238 			new_val,
5239 			old_val,
5240 			ia64_get_pmd(i) & ovfl_val,
5241 			ovfl_pmds,
5242 			ovfl_notify));
5243 	}
5244 
5245 	/*
5246 	 * there was no 64-bit overflow, nothing else to do
5247 	 */
5248 	if (ovfl_pmds == 0UL) return;
5249 
5250 	/*
5251 	 * reset all control bits
5252 	 */
5253 	ovfl_ctrl.val = 0;
5254 	reset_pmds    = 0UL;
5255 
5256 	/*
5257 	 * if a sampling format module exists, then we "cache" the overflow by
5258 	 * calling the module's handler() routine.
5259 	 */
5260 	if (has_smpl) {
5261 		unsigned long start_cycles, end_cycles;
5262 		unsigned long pmd_mask;
5263 		int j, k, ret = 0;
5264 		int this_cpu = smp_processor_id();
5265 
5266 		pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5267 		ovfl_arg = &ctx->ctx_ovfl_arg;
5268 
5269 		prefetch(ctx->ctx_smpl_hdr);
5270 
5271 		for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5272 
5273 			mask = 1UL << i;
5274 
5275 			if ((pmd_mask & 0x1) == 0) continue;
5276 
5277 			ovfl_arg->ovfl_pmd      = (unsigned char )i;
5278 			ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5279 			ovfl_arg->active_set    = 0;
5280 			ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5281 			ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5282 
5283 			ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5284 			ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5285 			ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5286 
5287 			/*
5288 		 	 * copy values of pmds of interest. Sampling format may copy them
5289 		 	 * into sampling buffer.
5290 		 	 */
5291 			if (smpl_pmds) {
5292 				for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5293 					if ((smpl_pmds & 0x1) == 0) continue;
5294 					ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5295 					DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5296 				}
5297 			}
5298 
5299 			pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5300 
5301 			start_cycles = ia64_get_itc();
5302 
5303 			/*
5304 		 	 * call custom buffer format record (handler) routine
5305 		 	 */
5306 			ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5307 
5308 			end_cycles = ia64_get_itc();
5309 
5310 			/*
5311 			 * For those controls, we take the union because they have
5312 			 * an all or nothing behavior.
5313 			 */
5314 			ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5315 			ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5316 			ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5317 			/*
5318 			 * build the bitmask of pmds to reset now
5319 			 */
5320 			if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5321 
5322 			pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5323 		}
5324 		/*
5325 		 * when the module cannot handle the rest of the overflows, we abort right here
5326 		 */
5327 		if (ret && pmd_mask) {
5328 			DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5329 				pmd_mask<<PMU_FIRST_COUNTER));
5330 		}
5331 		/*
5332 		 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5333 		 */
5334 		ovfl_pmds &= ~reset_pmds;
5335 	} else {
5336 		/*
5337 		 * when no sampling module is used, then the default
5338 		 * is to notify on overflow if requested by user
5339 		 */
5340 		ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5341 		ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5342 		ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5343 		ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5344 		/*
5345 		 * if needed, we reset all overflowed pmds
5346 		 */
5347 		if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5348 	}
5349 
5350 	DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5351 
5352 	/*
5353 	 * reset the requested PMD registers using the short reset values
5354 	 */
5355 	if (reset_pmds) {
5356 		unsigned long bm = reset_pmds;
5357 		pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5358 	}
5359 
5360 	if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5361 		/*
5362 		 * keep track of what to reset when unblocking
5363 		 */
5364 		ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5365 
5366 		/*
5367 		 * check for blocking context
5368 		 */
5369 		if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5370 
5371 			ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5372 
5373 			/*
5374 			 * set the perfmon specific checking pending work for the task
5375 			 */
5376 			PFM_SET_WORK_PENDING(task, 1);
5377 
5378 			/*
5379 			 * when coming from ctxsw, current still points to the
5380 			 * previous task, therefore we must work with task and not current.
5381 			 */
5382 			set_notify_resume(task);
5383 		}
5384 		/*
5385 		 * defer until state is changed (shorten spin window). the context is locked
5386 		 * anyway, so the signal receiver would come spin for nothing.
5387 		 */
5388 		must_notify = 1;
5389 	}
5390 
5391 	DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5392 			GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5393 			PFM_GET_WORK_PENDING(task),
5394 			ctx->ctx_fl_trap_reason,
5395 			ovfl_pmds,
5396 			ovfl_notify,
5397 			ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5398 	/*
5399 	 * in case monitoring must be stopped, we toggle the psr bits
5400 	 */
5401 	if (ovfl_ctrl.bits.mask_monitoring) {
5402 		pfm_mask_monitoring(task);
5403 		ctx->ctx_state = PFM_CTX_MASKED;
5404 		ctx->ctx_fl_can_restart = 1;
5405 	}
5406 
5407 	/*
5408 	 * send notification now
5409 	 */
5410 	if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5411 
5412 	return;
5413 
5414 sanity_check:
5415 	printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5416 			smp_processor_id(),
5417 			task ? task_pid_nr(task) : -1,
5418 			pmc0);
5419 	return;
5420 
5421 stop_monitoring:
5422 	/*
5423 	 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5424 	 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5425 	 * come here as zombie only if the task is the current task. In which case, we
5426 	 * can access the PMU  hardware directly.
5427 	 *
5428 	 * Note that zombies do have PM_VALID set. So here we do the minimal.
5429 	 *
5430 	 * In case the context was zombified it could not be reclaimed at the time
5431 	 * the monitoring program exited. At this point, the PMU reservation has been
5432 	 * returned, the sampiing buffer has been freed. We must convert this call
5433 	 * into a spurious interrupt. However, we must also avoid infinite overflows
5434 	 * by stopping monitoring for this task. We can only come here for a per-task
5435 	 * context. All we need to do is to stop monitoring using the psr bits which
5436 	 * are always task private. By re-enabling secure montioring, we ensure that
5437 	 * the monitored task will not be able to re-activate monitoring.
5438 	 * The task will eventually be context switched out, at which point the context
5439 	 * will be reclaimed (that includes releasing ownership of the PMU).
5440 	 *
5441 	 * So there might be a window of time where the number of per-task session is zero
5442 	 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5443 	 * context. This is safe because if a per-task session comes in, it will push this one
5444 	 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5445 	 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5446 	 * also push our zombie context out.
5447 	 *
5448 	 * Overall pretty hairy stuff....
5449 	 */
5450 	DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5451 	pfm_clear_psr_up();
5452 	ia64_psr(regs)->up = 0;
5453 	ia64_psr(regs)->sp = 1;
5454 	return;
5455 }
5456 
5457 static int
pfm_do_interrupt_handler(void * arg,struct pt_regs * regs)5458 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5459 {
5460 	struct task_struct *task;
5461 	pfm_context_t *ctx;
5462 	unsigned long flags;
5463 	u64 pmc0;
5464 	int this_cpu = smp_processor_id();
5465 	int retval = 0;
5466 
5467 	pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5468 
5469 	/*
5470 	 * srlz.d done before arriving here
5471 	 */
5472 	pmc0 = ia64_get_pmc(0);
5473 
5474 	task = GET_PMU_OWNER();
5475 	ctx  = GET_PMU_CTX();
5476 
5477 	/*
5478 	 * if we have some pending bits set
5479 	 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5480 	 */
5481 	if (PMC0_HAS_OVFL(pmc0) && task) {
5482 		/*
5483 		 * we assume that pmc0.fr is always set here
5484 		 */
5485 
5486 		/* sanity check */
5487 		if (!ctx) goto report_spurious1;
5488 
5489 		if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5490 			goto report_spurious2;
5491 
5492 		PROTECT_CTX_NOPRINT(ctx, flags);
5493 
5494 		pfm_overflow_handler(task, ctx, pmc0, regs);
5495 
5496 		UNPROTECT_CTX_NOPRINT(ctx, flags);
5497 
5498 	} else {
5499 		pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5500 		retval = -1;
5501 	}
5502 	/*
5503 	 * keep it unfrozen at all times
5504 	 */
5505 	pfm_unfreeze_pmu();
5506 
5507 	return retval;
5508 
5509 report_spurious1:
5510 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5511 		this_cpu, task_pid_nr(task));
5512 	pfm_unfreeze_pmu();
5513 	return -1;
5514 report_spurious2:
5515 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5516 		this_cpu,
5517 		task_pid_nr(task));
5518 	pfm_unfreeze_pmu();
5519 	return -1;
5520 }
5521 
5522 static irqreturn_t
pfm_interrupt_handler(int irq,void * arg)5523 pfm_interrupt_handler(int irq, void *arg)
5524 {
5525 	unsigned long start_cycles, total_cycles;
5526 	unsigned long min, max;
5527 	int this_cpu;
5528 	int ret;
5529 	struct pt_regs *regs = get_irq_regs();
5530 
5531 	this_cpu = get_cpu();
5532 	if (likely(!pfm_alt_intr_handler)) {
5533 		min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5534 		max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5535 
5536 		start_cycles = ia64_get_itc();
5537 
5538 		ret = pfm_do_interrupt_handler(arg, regs);
5539 
5540 		total_cycles = ia64_get_itc();
5541 
5542 		/*
5543 		 * don't measure spurious interrupts
5544 		 */
5545 		if (likely(ret == 0)) {
5546 			total_cycles -= start_cycles;
5547 
5548 			if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5549 			if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5550 
5551 			pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5552 		}
5553 	}
5554 	else {
5555 		(*pfm_alt_intr_handler->handler)(irq, arg, regs);
5556 	}
5557 
5558 	put_cpu();
5559 	return IRQ_HANDLED;
5560 }
5561 
5562 /*
5563  * /proc/perfmon interface, for debug only
5564  */
5565 
5566 #define PFM_PROC_SHOW_HEADER	((void *)(long)nr_cpu_ids+1)
5567 
5568 static void *
pfm_proc_start(struct seq_file * m,loff_t * pos)5569 pfm_proc_start(struct seq_file *m, loff_t *pos)
5570 {
5571 	if (*pos == 0) {
5572 		return PFM_PROC_SHOW_HEADER;
5573 	}
5574 
5575 	while (*pos <= nr_cpu_ids) {
5576 		if (cpu_online(*pos - 1)) {
5577 			return (void *)*pos;
5578 		}
5579 		++*pos;
5580 	}
5581 	return NULL;
5582 }
5583 
5584 static void *
pfm_proc_next(struct seq_file * m,void * v,loff_t * pos)5585 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5586 {
5587 	++*pos;
5588 	return pfm_proc_start(m, pos);
5589 }
5590 
5591 static void
pfm_proc_stop(struct seq_file * m,void * v)5592 pfm_proc_stop(struct seq_file *m, void *v)
5593 {
5594 }
5595 
5596 static void
pfm_proc_show_header(struct seq_file * m)5597 pfm_proc_show_header(struct seq_file *m)
5598 {
5599 	struct list_head * pos;
5600 	pfm_buffer_fmt_t * entry;
5601 	unsigned long flags;
5602 
5603  	seq_printf(m,
5604 		"perfmon version           : %u.%u\n"
5605 		"model                     : %s\n"
5606 		"fastctxsw                 : %s\n"
5607 		"expert mode               : %s\n"
5608 		"ovfl_mask                 : 0x%lx\n"
5609 		"PMU flags                 : 0x%x\n",
5610 		PFM_VERSION_MAJ, PFM_VERSION_MIN,
5611 		pmu_conf->pmu_name,
5612 		pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5613 		pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5614 		pmu_conf->ovfl_val,
5615 		pmu_conf->flags);
5616 
5617   	LOCK_PFS(flags);
5618 
5619  	seq_printf(m,
5620  		"proc_sessions             : %u\n"
5621  		"sys_sessions              : %u\n"
5622  		"sys_use_dbregs            : %u\n"
5623  		"ptrace_use_dbregs         : %u\n",
5624  		pfm_sessions.pfs_task_sessions,
5625  		pfm_sessions.pfs_sys_sessions,
5626  		pfm_sessions.pfs_sys_use_dbregs,
5627  		pfm_sessions.pfs_ptrace_use_dbregs);
5628 
5629   	UNLOCK_PFS(flags);
5630 
5631 	spin_lock(&pfm_buffer_fmt_lock);
5632 
5633 	list_for_each(pos, &pfm_buffer_fmt_list) {
5634 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5635 		seq_printf(m, "format                    : %16phD %s\n",
5636 			   entry->fmt_uuid, entry->fmt_name);
5637 	}
5638 	spin_unlock(&pfm_buffer_fmt_lock);
5639 
5640 }
5641 
5642 static int
pfm_proc_show(struct seq_file * m,void * v)5643 pfm_proc_show(struct seq_file *m, void *v)
5644 {
5645 	unsigned long psr;
5646 	unsigned int i;
5647 	int cpu;
5648 
5649 	if (v == PFM_PROC_SHOW_HEADER) {
5650 		pfm_proc_show_header(m);
5651 		return 0;
5652 	}
5653 
5654 	/* show info for CPU (v - 1) */
5655 
5656 	cpu = (long)v - 1;
5657 	seq_printf(m,
5658 		"CPU%-2d overflow intrs      : %lu\n"
5659 		"CPU%-2d overflow cycles     : %lu\n"
5660 		"CPU%-2d overflow min        : %lu\n"
5661 		"CPU%-2d overflow max        : %lu\n"
5662 		"CPU%-2d smpl handler calls  : %lu\n"
5663 		"CPU%-2d smpl handler cycles : %lu\n"
5664 		"CPU%-2d spurious intrs      : %lu\n"
5665 		"CPU%-2d replay   intrs      : %lu\n"
5666 		"CPU%-2d syst_wide           : %d\n"
5667 		"CPU%-2d dcr_pp              : %d\n"
5668 		"CPU%-2d exclude idle        : %d\n"
5669 		"CPU%-2d owner               : %d\n"
5670 		"CPU%-2d context             : %p\n"
5671 		"CPU%-2d activations         : %lu\n",
5672 		cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5673 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5674 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5675 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5676 		cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5677 		cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5678 		cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5679 		cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5680 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5681 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5682 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5683 		cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5684 		cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5685 		cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5686 
5687 	if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5688 
5689 		psr = pfm_get_psr();
5690 
5691 		ia64_srlz_d();
5692 
5693 		seq_printf(m,
5694 			"CPU%-2d psr                 : 0x%lx\n"
5695 			"CPU%-2d pmc0                : 0x%lx\n",
5696 			cpu, psr,
5697 			cpu, ia64_get_pmc(0));
5698 
5699 		for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5700 			if (PMC_IS_COUNTING(i) == 0) continue;
5701    			seq_printf(m,
5702 				"CPU%-2d pmc%u                : 0x%lx\n"
5703    				"CPU%-2d pmd%u                : 0x%lx\n",
5704 				cpu, i, ia64_get_pmc(i),
5705 				cpu, i, ia64_get_pmd(i));
5706   		}
5707 	}
5708 	return 0;
5709 }
5710 
5711 const struct seq_operations pfm_seq_ops = {
5712 	.start =	pfm_proc_start,
5713  	.next =		pfm_proc_next,
5714  	.stop =		pfm_proc_stop,
5715  	.show =		pfm_proc_show
5716 };
5717 
5718 static int
pfm_proc_open(struct inode * inode,struct file * file)5719 pfm_proc_open(struct inode *inode, struct file *file)
5720 {
5721 	return seq_open(file, &pfm_seq_ops);
5722 }
5723 
5724 
5725 /*
5726  * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5727  * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5728  * is active or inactive based on mode. We must rely on the value in
5729  * local_cpu_data->pfm_syst_info
5730  */
5731 void
pfm_syst_wide_update_task(struct task_struct * task,unsigned long info,int is_ctxswin)5732 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5733 {
5734 	struct pt_regs *regs;
5735 	unsigned long dcr;
5736 	unsigned long dcr_pp;
5737 
5738 	dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5739 
5740 	/*
5741 	 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5742 	 * on every CPU, so we can rely on the pid to identify the idle task.
5743 	 */
5744 	if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5745 		regs = task_pt_regs(task);
5746 		ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5747 		return;
5748 	}
5749 	/*
5750 	 * if monitoring has started
5751 	 */
5752 	if (dcr_pp) {
5753 		dcr = ia64_getreg(_IA64_REG_CR_DCR);
5754 		/*
5755 		 * context switching in?
5756 		 */
5757 		if (is_ctxswin) {
5758 			/* mask monitoring for the idle task */
5759 			ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5760 			pfm_clear_psr_pp();
5761 			ia64_srlz_i();
5762 			return;
5763 		}
5764 		/*
5765 		 * context switching out
5766 		 * restore monitoring for next task
5767 		 *
5768 		 * Due to inlining this odd if-then-else construction generates
5769 		 * better code.
5770 		 */
5771 		ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5772 		pfm_set_psr_pp();
5773 		ia64_srlz_i();
5774 	}
5775 }
5776 
5777 #ifdef CONFIG_SMP
5778 
5779 static void
pfm_force_cleanup(pfm_context_t * ctx,struct pt_regs * regs)5780 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5781 {
5782 	struct task_struct *task = ctx->ctx_task;
5783 
5784 	ia64_psr(regs)->up = 0;
5785 	ia64_psr(regs)->sp = 1;
5786 
5787 	if (GET_PMU_OWNER() == task) {
5788 		DPRINT(("cleared ownership for [%d]\n",
5789 					task_pid_nr(ctx->ctx_task)));
5790 		SET_PMU_OWNER(NULL, NULL);
5791 	}
5792 
5793 	/*
5794 	 * disconnect the task from the context and vice-versa
5795 	 */
5796 	PFM_SET_WORK_PENDING(task, 0);
5797 
5798 	task->thread.pfm_context  = NULL;
5799 	task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5800 
5801 	DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5802 }
5803 
5804 
5805 /*
5806  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5807  */
5808 void
pfm_save_regs(struct task_struct * task)5809 pfm_save_regs(struct task_struct *task)
5810 {
5811 	pfm_context_t *ctx;
5812 	unsigned long flags;
5813 	u64 psr;
5814 
5815 
5816 	ctx = PFM_GET_CTX(task);
5817 	if (ctx == NULL) return;
5818 
5819 	/*
5820  	 * we always come here with interrupts ALREADY disabled by
5821  	 * the scheduler. So we simply need to protect against concurrent
5822 	 * access, not CPU concurrency.
5823 	 */
5824 	flags = pfm_protect_ctx_ctxsw(ctx);
5825 
5826 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5827 		struct pt_regs *regs = task_pt_regs(task);
5828 
5829 		pfm_clear_psr_up();
5830 
5831 		pfm_force_cleanup(ctx, regs);
5832 
5833 		BUG_ON(ctx->ctx_smpl_hdr);
5834 
5835 		pfm_unprotect_ctx_ctxsw(ctx, flags);
5836 
5837 		pfm_context_free(ctx);
5838 		return;
5839 	}
5840 
5841 	/*
5842 	 * save current PSR: needed because we modify it
5843 	 */
5844 	ia64_srlz_d();
5845 	psr = pfm_get_psr();
5846 
5847 	BUG_ON(psr & (IA64_PSR_I));
5848 
5849 	/*
5850 	 * stop monitoring:
5851 	 * This is the last instruction which may generate an overflow
5852 	 *
5853 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5854 	 * It will be restored from ipsr when going back to user level
5855 	 */
5856 	pfm_clear_psr_up();
5857 
5858 	/*
5859 	 * keep a copy of psr.up (for reload)
5860 	 */
5861 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5862 
5863 	/*
5864 	 * release ownership of this PMU.
5865 	 * PM interrupts are masked, so nothing
5866 	 * can happen.
5867 	 */
5868 	SET_PMU_OWNER(NULL, NULL);
5869 
5870 	/*
5871 	 * we systematically save the PMD as we have no
5872 	 * guarantee we will be schedule at that same
5873 	 * CPU again.
5874 	 */
5875 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5876 
5877 	/*
5878 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5879 	 * we will need it on the restore path to check
5880 	 * for pending overflow.
5881 	 */
5882 	ctx->th_pmcs[0] = ia64_get_pmc(0);
5883 
5884 	/*
5885 	 * unfreeze PMU if had pending overflows
5886 	 */
5887 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5888 
5889 	/*
5890 	 * finally, allow context access.
5891 	 * interrupts will still be masked after this call.
5892 	 */
5893 	pfm_unprotect_ctx_ctxsw(ctx, flags);
5894 }
5895 
5896 #else /* !CONFIG_SMP */
5897 void
pfm_save_regs(struct task_struct * task)5898 pfm_save_regs(struct task_struct *task)
5899 {
5900 	pfm_context_t *ctx;
5901 	u64 psr;
5902 
5903 	ctx = PFM_GET_CTX(task);
5904 	if (ctx == NULL) return;
5905 
5906 	/*
5907 	 * save current PSR: needed because we modify it
5908 	 */
5909 	psr = pfm_get_psr();
5910 
5911 	BUG_ON(psr & (IA64_PSR_I));
5912 
5913 	/*
5914 	 * stop monitoring:
5915 	 * This is the last instruction which may generate an overflow
5916 	 *
5917 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5918 	 * It will be restored from ipsr when going back to user level
5919 	 */
5920 	pfm_clear_psr_up();
5921 
5922 	/*
5923 	 * keep a copy of psr.up (for reload)
5924 	 */
5925 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5926 }
5927 
5928 static void
pfm_lazy_save_regs(struct task_struct * task)5929 pfm_lazy_save_regs (struct task_struct *task)
5930 {
5931 	pfm_context_t *ctx;
5932 	unsigned long flags;
5933 
5934 	{ u64 psr  = pfm_get_psr();
5935 	  BUG_ON(psr & IA64_PSR_UP);
5936 	}
5937 
5938 	ctx = PFM_GET_CTX(task);
5939 
5940 	/*
5941 	 * we need to mask PMU overflow here to
5942 	 * make sure that we maintain pmc0 until
5943 	 * we save it. overflow interrupts are
5944 	 * treated as spurious if there is no
5945 	 * owner.
5946 	 *
5947 	 * XXX: I don't think this is necessary
5948 	 */
5949 	PROTECT_CTX(ctx,flags);
5950 
5951 	/*
5952 	 * release ownership of this PMU.
5953 	 * must be done before we save the registers.
5954 	 *
5955 	 * after this call any PMU interrupt is treated
5956 	 * as spurious.
5957 	 */
5958 	SET_PMU_OWNER(NULL, NULL);
5959 
5960 	/*
5961 	 * save all the pmds we use
5962 	 */
5963 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5964 
5965 	/*
5966 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5967 	 * it is needed to check for pended overflow
5968 	 * on the restore path
5969 	 */
5970 	ctx->th_pmcs[0] = ia64_get_pmc(0);
5971 
5972 	/*
5973 	 * unfreeze PMU if had pending overflows
5974 	 */
5975 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5976 
5977 	/*
5978 	 * now get can unmask PMU interrupts, they will
5979 	 * be treated as purely spurious and we will not
5980 	 * lose any information
5981 	 */
5982 	UNPROTECT_CTX(ctx,flags);
5983 }
5984 #endif /* CONFIG_SMP */
5985 
5986 #ifdef CONFIG_SMP
5987 /*
5988  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5989  */
5990 void
pfm_load_regs(struct task_struct * task)5991 pfm_load_regs (struct task_struct *task)
5992 {
5993 	pfm_context_t *ctx;
5994 	unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5995 	unsigned long flags;
5996 	u64 psr, psr_up;
5997 	int need_irq_resend;
5998 
5999 	ctx = PFM_GET_CTX(task);
6000 	if (unlikely(ctx == NULL)) return;
6001 
6002 	BUG_ON(GET_PMU_OWNER());
6003 
6004 	/*
6005 	 * possible on unload
6006 	 */
6007 	if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6008 
6009 	/*
6010  	 * we always come here with interrupts ALREADY disabled by
6011  	 * the scheduler. So we simply need to protect against concurrent
6012 	 * access, not CPU concurrency.
6013 	 */
6014 	flags = pfm_protect_ctx_ctxsw(ctx);
6015 	psr   = pfm_get_psr();
6016 
6017 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6018 
6019 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6020 	BUG_ON(psr & IA64_PSR_I);
6021 
6022 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6023 		struct pt_regs *regs = task_pt_regs(task);
6024 
6025 		BUG_ON(ctx->ctx_smpl_hdr);
6026 
6027 		pfm_force_cleanup(ctx, regs);
6028 
6029 		pfm_unprotect_ctx_ctxsw(ctx, flags);
6030 
6031 		/*
6032 		 * this one (kmalloc'ed) is fine with interrupts disabled
6033 		 */
6034 		pfm_context_free(ctx);
6035 
6036 		return;
6037 	}
6038 
6039 	/*
6040 	 * we restore ALL the debug registers to avoid picking up
6041 	 * stale state.
6042 	 */
6043 	if (ctx->ctx_fl_using_dbreg) {
6044 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6045 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6046 	}
6047 	/*
6048 	 * retrieve saved psr.up
6049 	 */
6050 	psr_up = ctx->ctx_saved_psr_up;
6051 
6052 	/*
6053 	 * if we were the last user of the PMU on that CPU,
6054 	 * then nothing to do except restore psr
6055 	 */
6056 	if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6057 
6058 		/*
6059 		 * retrieve partial reload masks (due to user modifications)
6060 		 */
6061 		pmc_mask = ctx->ctx_reload_pmcs[0];
6062 		pmd_mask = ctx->ctx_reload_pmds[0];
6063 
6064 	} else {
6065 		/*
6066 	 	 * To avoid leaking information to the user level when psr.sp=0,
6067 	 	 * we must reload ALL implemented pmds (even the ones we don't use).
6068 	 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6069 	 	 * we initialized or requested (sampling) so there is no risk there.
6070 	 	 */
6071 		pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6072 
6073 		/*
6074 	 	 * ALL accessible PMCs are systematically reloaded, unused registers
6075 	 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6076 	 	 * up stale configuration.
6077 	 	 *
6078 	 	 * PMC0 is never in the mask. It is always restored separately.
6079 	 	 */
6080 		pmc_mask = ctx->ctx_all_pmcs[0];
6081 	}
6082 	/*
6083 	 * when context is MASKED, we will restore PMC with plm=0
6084 	 * and PMD with stale information, but that's ok, nothing
6085 	 * will be captured.
6086 	 *
6087 	 * XXX: optimize here
6088 	 */
6089 	if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6090 	if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6091 
6092 	/*
6093 	 * check for pending overflow at the time the state
6094 	 * was saved.
6095 	 */
6096 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6097 		/*
6098 		 * reload pmc0 with the overflow information
6099 		 * On McKinley PMU, this will trigger a PMU interrupt
6100 		 */
6101 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6102 		ia64_srlz_d();
6103 		ctx->th_pmcs[0] = 0UL;
6104 
6105 		/*
6106 		 * will replay the PMU interrupt
6107 		 */
6108 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6109 
6110 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6111 	}
6112 
6113 	/*
6114 	 * we just did a reload, so we reset the partial reload fields
6115 	 */
6116 	ctx->ctx_reload_pmcs[0] = 0UL;
6117 	ctx->ctx_reload_pmds[0] = 0UL;
6118 
6119 	SET_LAST_CPU(ctx, smp_processor_id());
6120 
6121 	/*
6122 	 * dump activation value for this PMU
6123 	 */
6124 	INC_ACTIVATION();
6125 	/*
6126 	 * record current activation for this context
6127 	 */
6128 	SET_ACTIVATION(ctx);
6129 
6130 	/*
6131 	 * establish new ownership.
6132 	 */
6133 	SET_PMU_OWNER(task, ctx);
6134 
6135 	/*
6136 	 * restore the psr.up bit. measurement
6137 	 * is active again.
6138 	 * no PMU interrupt can happen at this point
6139 	 * because we still have interrupts disabled.
6140 	 */
6141 	if (likely(psr_up)) pfm_set_psr_up();
6142 
6143 	/*
6144 	 * allow concurrent access to context
6145 	 */
6146 	pfm_unprotect_ctx_ctxsw(ctx, flags);
6147 }
6148 #else /*  !CONFIG_SMP */
6149 /*
6150  * reload PMU state for UP kernels
6151  * in 2.5 we come here with interrupts disabled
6152  */
6153 void
pfm_load_regs(struct task_struct * task)6154 pfm_load_regs (struct task_struct *task)
6155 {
6156 	pfm_context_t *ctx;
6157 	struct task_struct *owner;
6158 	unsigned long pmd_mask, pmc_mask;
6159 	u64 psr, psr_up;
6160 	int need_irq_resend;
6161 
6162 	owner = GET_PMU_OWNER();
6163 	ctx   = PFM_GET_CTX(task);
6164 	psr   = pfm_get_psr();
6165 
6166 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6167 	BUG_ON(psr & IA64_PSR_I);
6168 
6169 	/*
6170 	 * we restore ALL the debug registers to avoid picking up
6171 	 * stale state.
6172 	 *
6173 	 * This must be done even when the task is still the owner
6174 	 * as the registers may have been modified via ptrace()
6175 	 * (not perfmon) by the previous task.
6176 	 */
6177 	if (ctx->ctx_fl_using_dbreg) {
6178 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6179 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6180 	}
6181 
6182 	/*
6183 	 * retrieved saved psr.up
6184 	 */
6185 	psr_up = ctx->ctx_saved_psr_up;
6186 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6187 
6188 	/*
6189 	 * short path, our state is still there, just
6190 	 * need to restore psr and we go
6191 	 *
6192 	 * we do not touch either PMC nor PMD. the psr is not touched
6193 	 * by the overflow_handler. So we are safe w.r.t. to interrupt
6194 	 * concurrency even without interrupt masking.
6195 	 */
6196 	if (likely(owner == task)) {
6197 		if (likely(psr_up)) pfm_set_psr_up();
6198 		return;
6199 	}
6200 
6201 	/*
6202 	 * someone else is still using the PMU, first push it out and
6203 	 * then we'll be able to install our stuff !
6204 	 *
6205 	 * Upon return, there will be no owner for the current PMU
6206 	 */
6207 	if (owner) pfm_lazy_save_regs(owner);
6208 
6209 	/*
6210 	 * To avoid leaking information to the user level when psr.sp=0,
6211 	 * we must reload ALL implemented pmds (even the ones we don't use).
6212 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6213 	 * we initialized or requested (sampling) so there is no risk there.
6214 	 */
6215 	pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6216 
6217 	/*
6218 	 * ALL accessible PMCs are systematically reloaded, unused registers
6219 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6220 	 * up stale configuration.
6221 	 *
6222 	 * PMC0 is never in the mask. It is always restored separately
6223 	 */
6224 	pmc_mask = ctx->ctx_all_pmcs[0];
6225 
6226 	pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6227 	pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6228 
6229 	/*
6230 	 * check for pending overflow at the time the state
6231 	 * was saved.
6232 	 */
6233 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6234 		/*
6235 		 * reload pmc0 with the overflow information
6236 		 * On McKinley PMU, this will trigger a PMU interrupt
6237 		 */
6238 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6239 		ia64_srlz_d();
6240 
6241 		ctx->th_pmcs[0] = 0UL;
6242 
6243 		/*
6244 		 * will replay the PMU interrupt
6245 		 */
6246 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6247 
6248 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6249 	}
6250 
6251 	/*
6252 	 * establish new ownership.
6253 	 */
6254 	SET_PMU_OWNER(task, ctx);
6255 
6256 	/*
6257 	 * restore the psr.up bit. measurement
6258 	 * is active again.
6259 	 * no PMU interrupt can happen at this point
6260 	 * because we still have interrupts disabled.
6261 	 */
6262 	if (likely(psr_up)) pfm_set_psr_up();
6263 }
6264 #endif /* CONFIG_SMP */
6265 
6266 /*
6267  * this function assumes monitoring is stopped
6268  */
6269 static void
pfm_flush_pmds(struct task_struct * task,pfm_context_t * ctx)6270 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6271 {
6272 	u64 pmc0;
6273 	unsigned long mask2, val, pmd_val, ovfl_val;
6274 	int i, can_access_pmu = 0;
6275 	int is_self;
6276 
6277 	/*
6278 	 * is the caller the task being monitored (or which initiated the
6279 	 * session for system wide measurements)
6280 	 */
6281 	is_self = ctx->ctx_task == task ? 1 : 0;
6282 
6283 	/*
6284 	 * can access PMU is task is the owner of the PMU state on the current CPU
6285 	 * or if we are running on the CPU bound to the context in system-wide mode
6286 	 * (that is not necessarily the task the context is attached to in this mode).
6287 	 * In system-wide we always have can_access_pmu true because a task running on an
6288 	 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6289 	 */
6290 	can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6291 	if (can_access_pmu) {
6292 		/*
6293 		 * Mark the PMU as not owned
6294 		 * This will cause the interrupt handler to do nothing in case an overflow
6295 		 * interrupt was in-flight
6296 		 * This also guarantees that pmc0 will contain the final state
6297 		 * It virtually gives us full control on overflow processing from that point
6298 		 * on.
6299 		 */
6300 		SET_PMU_OWNER(NULL, NULL);
6301 		DPRINT(("releasing ownership\n"));
6302 
6303 		/*
6304 		 * read current overflow status:
6305 		 *
6306 		 * we are guaranteed to read the final stable state
6307 		 */
6308 		ia64_srlz_d();
6309 		pmc0 = ia64_get_pmc(0); /* slow */
6310 
6311 		/*
6312 		 * reset freeze bit, overflow status information destroyed
6313 		 */
6314 		pfm_unfreeze_pmu();
6315 	} else {
6316 		pmc0 = ctx->th_pmcs[0];
6317 		/*
6318 		 * clear whatever overflow status bits there were
6319 		 */
6320 		ctx->th_pmcs[0] = 0;
6321 	}
6322 	ovfl_val = pmu_conf->ovfl_val;
6323 	/*
6324 	 * we save all the used pmds
6325 	 * we take care of overflows for counting PMDs
6326 	 *
6327 	 * XXX: sampling situation is not taken into account here
6328 	 */
6329 	mask2 = ctx->ctx_used_pmds[0];
6330 
6331 	DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6332 
6333 	for (i = 0; mask2; i++, mask2>>=1) {
6334 
6335 		/* skip non used pmds */
6336 		if ((mask2 & 0x1) == 0) continue;
6337 
6338 		/*
6339 		 * can access PMU always true in system wide mode
6340 		 */
6341 		val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6342 
6343 		if (PMD_IS_COUNTING(i)) {
6344 			DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6345 				task_pid_nr(task),
6346 				i,
6347 				ctx->ctx_pmds[i].val,
6348 				val & ovfl_val));
6349 
6350 			/*
6351 			 * we rebuild the full 64 bit value of the counter
6352 			 */
6353 			val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6354 
6355 			/*
6356 			 * now everything is in ctx_pmds[] and we need
6357 			 * to clear the saved context from save_regs() such that
6358 			 * pfm_read_pmds() gets the correct value
6359 			 */
6360 			pmd_val = 0UL;
6361 
6362 			/*
6363 			 * take care of overflow inline
6364 			 */
6365 			if (pmc0 & (1UL << i)) {
6366 				val += 1 + ovfl_val;
6367 				DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6368 			}
6369 		}
6370 
6371 		DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6372 
6373 		if (is_self) ctx->th_pmds[i] = pmd_val;
6374 
6375 		ctx->ctx_pmds[i].val = val;
6376 	}
6377 }
6378 
6379 static struct irqaction perfmon_irqaction = {
6380 	.handler = pfm_interrupt_handler,
6381 	.name    = "perfmon"
6382 };
6383 
6384 static void
pfm_alt_save_pmu_state(void * data)6385 pfm_alt_save_pmu_state(void *data)
6386 {
6387 	struct pt_regs *regs;
6388 
6389 	regs = task_pt_regs(current);
6390 
6391 	DPRINT(("called\n"));
6392 
6393 	/*
6394 	 * should not be necessary but
6395 	 * let's take not risk
6396 	 */
6397 	pfm_clear_psr_up();
6398 	pfm_clear_psr_pp();
6399 	ia64_psr(regs)->pp = 0;
6400 
6401 	/*
6402 	 * This call is required
6403 	 * May cause a spurious interrupt on some processors
6404 	 */
6405 	pfm_freeze_pmu();
6406 
6407 	ia64_srlz_d();
6408 }
6409 
6410 void
pfm_alt_restore_pmu_state(void * data)6411 pfm_alt_restore_pmu_state(void *data)
6412 {
6413 	struct pt_regs *regs;
6414 
6415 	regs = task_pt_regs(current);
6416 
6417 	DPRINT(("called\n"));
6418 
6419 	/*
6420 	 * put PMU back in state expected
6421 	 * by perfmon
6422 	 */
6423 	pfm_clear_psr_up();
6424 	pfm_clear_psr_pp();
6425 	ia64_psr(regs)->pp = 0;
6426 
6427 	/*
6428 	 * perfmon runs with PMU unfrozen at all times
6429 	 */
6430 	pfm_unfreeze_pmu();
6431 
6432 	ia64_srlz_d();
6433 }
6434 
6435 int
pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6436 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6437 {
6438 	int ret, i;
6439 	int reserve_cpu;
6440 
6441 	/* some sanity checks */
6442 	if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6443 
6444 	/* do the easy test first */
6445 	if (pfm_alt_intr_handler) return -EBUSY;
6446 
6447 	/* one at a time in the install or remove, just fail the others */
6448 	if (!spin_trylock(&pfm_alt_install_check)) {
6449 		return -EBUSY;
6450 	}
6451 
6452 	/* reserve our session */
6453 	for_each_online_cpu(reserve_cpu) {
6454 		ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6455 		if (ret) goto cleanup_reserve;
6456 	}
6457 
6458 	/* save the current system wide pmu states */
6459 	ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6460 	if (ret) {
6461 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6462 		goto cleanup_reserve;
6463 	}
6464 
6465 	/* officially change to the alternate interrupt handler */
6466 	pfm_alt_intr_handler = hdl;
6467 
6468 	spin_unlock(&pfm_alt_install_check);
6469 
6470 	return 0;
6471 
6472 cleanup_reserve:
6473 	for_each_online_cpu(i) {
6474 		/* don't unreserve more than we reserved */
6475 		if (i >= reserve_cpu) break;
6476 
6477 		pfm_unreserve_session(NULL, 1, i);
6478 	}
6479 
6480 	spin_unlock(&pfm_alt_install_check);
6481 
6482 	return ret;
6483 }
6484 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6485 
6486 int
pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6487 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6488 {
6489 	int i;
6490 	int ret;
6491 
6492 	if (hdl == NULL) return -EINVAL;
6493 
6494 	/* cannot remove someone else's handler! */
6495 	if (pfm_alt_intr_handler != hdl) return -EINVAL;
6496 
6497 	/* one at a time in the install or remove, just fail the others */
6498 	if (!spin_trylock(&pfm_alt_install_check)) {
6499 		return -EBUSY;
6500 	}
6501 
6502 	pfm_alt_intr_handler = NULL;
6503 
6504 	ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6505 	if (ret) {
6506 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6507 	}
6508 
6509 	for_each_online_cpu(i) {
6510 		pfm_unreserve_session(NULL, 1, i);
6511 	}
6512 
6513 	spin_unlock(&pfm_alt_install_check);
6514 
6515 	return 0;
6516 }
6517 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6518 
6519 /*
6520  * perfmon initialization routine, called from the initcall() table
6521  */
6522 static int init_pfm_fs(void);
6523 
6524 static int __init
pfm_probe_pmu(void)6525 pfm_probe_pmu(void)
6526 {
6527 	pmu_config_t **p;
6528 	int family;
6529 
6530 	family = local_cpu_data->family;
6531 	p      = pmu_confs;
6532 
6533 	while(*p) {
6534 		if ((*p)->probe) {
6535 			if ((*p)->probe() == 0) goto found;
6536 		} else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6537 			goto found;
6538 		}
6539 		p++;
6540 	}
6541 	return -1;
6542 found:
6543 	pmu_conf = *p;
6544 	return 0;
6545 }
6546 
6547 static const struct file_operations pfm_proc_fops = {
6548 	.open		= pfm_proc_open,
6549 	.read		= seq_read,
6550 	.llseek		= seq_lseek,
6551 	.release	= seq_release,
6552 };
6553 
6554 int __init
pfm_init(void)6555 pfm_init(void)
6556 {
6557 	unsigned int n, n_counters, i;
6558 
6559 	printk("perfmon: version %u.%u IRQ %u\n",
6560 		PFM_VERSION_MAJ,
6561 		PFM_VERSION_MIN,
6562 		IA64_PERFMON_VECTOR);
6563 
6564 	if (pfm_probe_pmu()) {
6565 		printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6566 				local_cpu_data->family);
6567 		return -ENODEV;
6568 	}
6569 
6570 	/*
6571 	 * compute the number of implemented PMD/PMC from the
6572 	 * description tables
6573 	 */
6574 	n = 0;
6575 	for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6576 		if (PMC_IS_IMPL(i) == 0) continue;
6577 		pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6578 		n++;
6579 	}
6580 	pmu_conf->num_pmcs = n;
6581 
6582 	n = 0; n_counters = 0;
6583 	for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6584 		if (PMD_IS_IMPL(i) == 0) continue;
6585 		pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6586 		n++;
6587 		if (PMD_IS_COUNTING(i)) n_counters++;
6588 	}
6589 	pmu_conf->num_pmds      = n;
6590 	pmu_conf->num_counters  = n_counters;
6591 
6592 	/*
6593 	 * sanity checks on the number of debug registers
6594 	 */
6595 	if (pmu_conf->use_rr_dbregs) {
6596 		if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6597 			printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6598 			pmu_conf = NULL;
6599 			return -1;
6600 		}
6601 		if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6602 			printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6603 			pmu_conf = NULL;
6604 			return -1;
6605 		}
6606 	}
6607 
6608 	printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6609 	       pmu_conf->pmu_name,
6610 	       pmu_conf->num_pmcs,
6611 	       pmu_conf->num_pmds,
6612 	       pmu_conf->num_counters,
6613 	       ffz(pmu_conf->ovfl_val));
6614 
6615 	/* sanity check */
6616 	if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6617 		printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6618 		pmu_conf = NULL;
6619 		return -1;
6620 	}
6621 
6622 	/*
6623 	 * create /proc/perfmon (mostly for debugging purposes)
6624 	 */
6625 	perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6626 	if (perfmon_dir == NULL) {
6627 		printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6628 		pmu_conf = NULL;
6629 		return -1;
6630 	}
6631 
6632 	/*
6633 	 * create /proc/sys/kernel/perfmon (for debugging purposes)
6634 	 */
6635 	pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6636 
6637 	/*
6638 	 * initialize all our spinlocks
6639 	 */
6640 	spin_lock_init(&pfm_sessions.pfs_lock);
6641 	spin_lock_init(&pfm_buffer_fmt_lock);
6642 
6643 	init_pfm_fs();
6644 
6645 	for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6646 
6647 	return 0;
6648 }
6649 
6650 __initcall(pfm_init);
6651 
6652 /*
6653  * this function is called before pfm_init()
6654  */
6655 void
pfm_init_percpu(void)6656 pfm_init_percpu (void)
6657 {
6658 	static int first_time=1;
6659 	/*
6660 	 * make sure no measurement is active
6661 	 * (may inherit programmed PMCs from EFI).
6662 	 */
6663 	pfm_clear_psr_pp();
6664 	pfm_clear_psr_up();
6665 
6666 	/*
6667 	 * we run with the PMU not frozen at all times
6668 	 */
6669 	pfm_unfreeze_pmu();
6670 
6671 	if (first_time) {
6672 		register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6673 		first_time=0;
6674 	}
6675 
6676 	ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6677 	ia64_srlz_d();
6678 }
6679 
6680 /*
6681  * used for debug purposes only
6682  */
6683 void
dump_pmu_state(const char * from)6684 dump_pmu_state(const char *from)
6685 {
6686 	struct task_struct *task;
6687 	struct pt_regs *regs;
6688 	pfm_context_t *ctx;
6689 	unsigned long psr, dcr, info, flags;
6690 	int i, this_cpu;
6691 
6692 	local_irq_save(flags);
6693 
6694 	this_cpu = smp_processor_id();
6695 	regs     = task_pt_regs(current);
6696 	info     = PFM_CPUINFO_GET();
6697 	dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6698 
6699 	if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6700 		local_irq_restore(flags);
6701 		return;
6702 	}
6703 
6704 	printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6705 		this_cpu,
6706 		from,
6707 		task_pid_nr(current),
6708 		regs->cr_iip,
6709 		current->comm);
6710 
6711 	task = GET_PMU_OWNER();
6712 	ctx  = GET_PMU_CTX();
6713 
6714 	printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6715 
6716 	psr = pfm_get_psr();
6717 
6718 	printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6719 		this_cpu,
6720 		ia64_get_pmc(0),
6721 		psr & IA64_PSR_PP ? 1 : 0,
6722 		psr & IA64_PSR_UP ? 1 : 0,
6723 		dcr & IA64_DCR_PP ? 1 : 0,
6724 		info,
6725 		ia64_psr(regs)->up,
6726 		ia64_psr(regs)->pp);
6727 
6728 	ia64_psr(regs)->up = 0;
6729 	ia64_psr(regs)->pp = 0;
6730 
6731 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
6732 		if (PMC_IS_IMPL(i) == 0) continue;
6733 		printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6734 	}
6735 
6736 	for (i=1; PMD_IS_LAST(i) == 0; i++) {
6737 		if (PMD_IS_IMPL(i) == 0) continue;
6738 		printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6739 	}
6740 
6741 	if (ctx) {
6742 		printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6743 				this_cpu,
6744 				ctx->ctx_state,
6745 				ctx->ctx_smpl_vaddr,
6746 				ctx->ctx_smpl_hdr,
6747 				ctx->ctx_msgq_head,
6748 				ctx->ctx_msgq_tail,
6749 				ctx->ctx_saved_psr_up);
6750 	}
6751 	local_irq_restore(flags);
6752 }
6753 
6754 /*
6755  * called from process.c:copy_thread(). task is new child.
6756  */
6757 void
pfm_inherit(struct task_struct * task,struct pt_regs * regs)6758 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6759 {
6760 	struct thread_struct *thread;
6761 
6762 	DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6763 
6764 	thread = &task->thread;
6765 
6766 	/*
6767 	 * cut links inherited from parent (current)
6768 	 */
6769 	thread->pfm_context = NULL;
6770 
6771 	PFM_SET_WORK_PENDING(task, 0);
6772 
6773 	/*
6774 	 * the psr bits are already set properly in copy_threads()
6775 	 */
6776 }
6777 #else  /* !CONFIG_PERFMON */
6778 asmlinkage long
sys_perfmonctl(int fd,int cmd,void * arg,int count)6779 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6780 {
6781 	return -ENOSYS;
6782 }
6783 #endif /* CONFIG_PERFMON */
6784