1 /*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/sched/task.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/interrupt.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/mm.h>
33 #include <linux/sysctl.h>
34 #include <linux/list.h>
35 #include <linux/file.h>
36 #include <linux/poll.h>
37 #include <linux/vfs.h>
38 #include <linux/smp.h>
39 #include <linux/pagemap.h>
40 #include <linux/mount.h>
41 #include <linux/bitops.h>
42 #include <linux/capability.h>
43 #include <linux/rcupdate.h>
44 #include <linux/completion.h>
45 #include <linux/tracehook.h>
46 #include <linux/slab.h>
47 #include <linux/cpu.h>
48
49 #include <asm/errno.h>
50 #include <asm/intrinsics.h>
51 #include <asm/page.h>
52 #include <asm/perfmon.h>
53 #include <asm/processor.h>
54 #include <asm/signal.h>
55 #include <linux/uaccess.h>
56 #include <asm/delay.h>
57
58 #ifdef CONFIG_PERFMON
59 /*
60 * perfmon context state
61 */
62 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
63 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
64 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
65 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
66
67 #define PFM_INVALID_ACTIVATION (~0UL)
68
69 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
70 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
71
72 /*
73 * depth of message queue
74 */
75 #define PFM_MAX_MSGS 32
76 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
77
78 /*
79 * type of a PMU register (bitmask).
80 * bitmask structure:
81 * bit0 : register implemented
82 * bit1 : end marker
83 * bit2-3 : reserved
84 * bit4 : pmc has pmc.pm
85 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
86 * bit6-7 : register type
87 * bit8-31: reserved
88 */
89 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
90 #define PFM_REG_IMPL 0x1 /* register implemented */
91 #define PFM_REG_END 0x2 /* end marker */
92 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
93 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
94 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
95 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
96 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
97
98 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
99 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
100
101 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
102
103 /* i assumed unsigned */
104 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
105 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
106
107 /* XXX: these assume that register i is implemented */
108 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
109 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
110 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
111 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
112
113 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
114 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
115 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
116 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
117
118 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
119 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
120
121 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
122 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
123 #define PFM_CTX_TASK(h) (h)->ctx_task
124
125 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
126
127 /* XXX: does not support more than 64 PMDs */
128 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
129 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
130
131 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
132
133 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
134 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
135 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
136 #define PFM_CODE_RR 0 /* requesting code range restriction */
137 #define PFM_DATA_RR 1 /* requestion data range restriction */
138
139 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
140 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
141 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
142
143 #define RDEP(x) (1UL<<(x))
144
145 /*
146 * context protection macros
147 * in SMP:
148 * - we need to protect against CPU concurrency (spin_lock)
149 * - we need to protect against PMU overflow interrupts (local_irq_disable)
150 * in UP:
151 * - we need to protect against PMU overflow interrupts (local_irq_disable)
152 *
153 * spin_lock_irqsave()/spin_unlock_irqrestore():
154 * in SMP: local_irq_disable + spin_lock
155 * in UP : local_irq_disable
156 *
157 * spin_lock()/spin_lock():
158 * in UP : removed automatically
159 * in SMP: protect against context accesses from other CPU. interrupts
160 * are not masked. This is useful for the PMU interrupt handler
161 * because we know we will not get PMU concurrency in that code.
162 */
163 #define PROTECT_CTX(c, f) \
164 do { \
165 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
166 spin_lock_irqsave(&(c)->ctx_lock, f); \
167 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
168 } while(0)
169
170 #define UNPROTECT_CTX(c, f) \
171 do { \
172 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
173 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
174 } while(0)
175
176 #define PROTECT_CTX_NOPRINT(c, f) \
177 do { \
178 spin_lock_irqsave(&(c)->ctx_lock, f); \
179 } while(0)
180
181
182 #define UNPROTECT_CTX_NOPRINT(c, f) \
183 do { \
184 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
185 } while(0)
186
187
188 #define PROTECT_CTX_NOIRQ(c) \
189 do { \
190 spin_lock(&(c)->ctx_lock); \
191 } while(0)
192
193 #define UNPROTECT_CTX_NOIRQ(c) \
194 do { \
195 spin_unlock(&(c)->ctx_lock); \
196 } while(0)
197
198
199 #ifdef CONFIG_SMP
200
201 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
202 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
203 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
204
205 #else /* !CONFIG_SMP */
206 #define SET_ACTIVATION(t) do {} while(0)
207 #define GET_ACTIVATION(t) do {} while(0)
208 #define INC_ACTIVATION(t) do {} while(0)
209 #endif /* CONFIG_SMP */
210
211 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
212 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
213 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
214
215 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
216 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
217
218 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
219
220 /*
221 * cmp0 must be the value of pmc0
222 */
223 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
224
225 #define PFMFS_MAGIC 0xa0b4d889
226
227 /*
228 * debugging
229 */
230 #define PFM_DEBUGGING 1
231 #ifdef PFM_DEBUGGING
232 #define DPRINT(a) \
233 do { \
234 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
235 } while (0)
236
237 #define DPRINT_ovfl(a) \
238 do { \
239 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
240 } while (0)
241 #endif
242
243 /*
244 * 64-bit software counter structure
245 *
246 * the next_reset_type is applied to the next call to pfm_reset_regs()
247 */
248 typedef struct {
249 unsigned long val; /* virtual 64bit counter value */
250 unsigned long lval; /* last reset value */
251 unsigned long long_reset; /* reset value on sampling overflow */
252 unsigned long short_reset; /* reset value on overflow */
253 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
254 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
255 unsigned long seed; /* seed for random-number generator */
256 unsigned long mask; /* mask for random-number generator */
257 unsigned int flags; /* notify/do not notify */
258 unsigned long eventid; /* overflow event identifier */
259 } pfm_counter_t;
260
261 /*
262 * context flags
263 */
264 typedef struct {
265 unsigned int block:1; /* when 1, task will blocked on user notifications */
266 unsigned int system:1; /* do system wide monitoring */
267 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
268 unsigned int is_sampling:1; /* true if using a custom format */
269 unsigned int excl_idle:1; /* exclude idle task in system wide session */
270 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
271 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
272 unsigned int no_msg:1; /* no message sent on overflow */
273 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
274 unsigned int reserved:22;
275 } pfm_context_flags_t;
276
277 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
278 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
279 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
280
281
282 /*
283 * perfmon context: encapsulates all the state of a monitoring session
284 */
285
286 typedef struct pfm_context {
287 spinlock_t ctx_lock; /* context protection */
288
289 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
290 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
291
292 struct task_struct *ctx_task; /* task to which context is attached */
293
294 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
295
296 struct completion ctx_restart_done; /* use for blocking notification mode */
297
298 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
299 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
300 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
301
302 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
303 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
304 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
305
306 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
307
308 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
309 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
310 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
311 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
312
313 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
314
315 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
316 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
317
318 unsigned long ctx_saved_psr_up; /* only contains psr.up value */
319
320 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
321 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
322 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
323
324 int ctx_fd; /* file descriptor used my this context */
325 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
326
327 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
328 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
329 unsigned long ctx_smpl_size; /* size of sampling buffer */
330 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
331
332 wait_queue_head_t ctx_msgq_wait;
333 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
334 int ctx_msgq_head;
335 int ctx_msgq_tail;
336 struct fasync_struct *ctx_async_queue;
337
338 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
339 } pfm_context_t;
340
341 /*
342 * magic number used to verify that structure is really
343 * a perfmon context
344 */
345 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
346
347 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
348
349 #ifdef CONFIG_SMP
350 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
351 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
352 #else
353 #define SET_LAST_CPU(ctx, v) do {} while(0)
354 #define GET_LAST_CPU(ctx) do {} while(0)
355 #endif
356
357
358 #define ctx_fl_block ctx_flags.block
359 #define ctx_fl_system ctx_flags.system
360 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
361 #define ctx_fl_is_sampling ctx_flags.is_sampling
362 #define ctx_fl_excl_idle ctx_flags.excl_idle
363 #define ctx_fl_going_zombie ctx_flags.going_zombie
364 #define ctx_fl_trap_reason ctx_flags.trap_reason
365 #define ctx_fl_no_msg ctx_flags.no_msg
366 #define ctx_fl_can_restart ctx_flags.can_restart
367
368 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
369 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
370
371 /*
372 * global information about all sessions
373 * mostly used to synchronize between system wide and per-process
374 */
375 typedef struct {
376 spinlock_t pfs_lock; /* lock the structure */
377
378 unsigned int pfs_task_sessions; /* number of per task sessions */
379 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
380 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
381 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
382 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
383 } pfm_session_t;
384
385 /*
386 * information about a PMC or PMD.
387 * dep_pmd[]: a bitmask of dependent PMD registers
388 * dep_pmc[]: a bitmask of dependent PMC registers
389 */
390 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
391 typedef struct {
392 unsigned int type;
393 int pm_pos;
394 unsigned long default_value; /* power-on default value */
395 unsigned long reserved_mask; /* bitmask of reserved bits */
396 pfm_reg_check_t read_check;
397 pfm_reg_check_t write_check;
398 unsigned long dep_pmd[4];
399 unsigned long dep_pmc[4];
400 } pfm_reg_desc_t;
401
402 /* assume cnum is a valid monitor */
403 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
404
405 /*
406 * This structure is initialized at boot time and contains
407 * a description of the PMU main characteristics.
408 *
409 * If the probe function is defined, detection is based
410 * on its return value:
411 * - 0 means recognized PMU
412 * - anything else means not supported
413 * When the probe function is not defined, then the pmu_family field
414 * is used and it must match the host CPU family such that:
415 * - cpu->family & config->pmu_family != 0
416 */
417 typedef struct {
418 unsigned long ovfl_val; /* overflow value for counters */
419
420 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
421 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
422
423 unsigned int num_pmcs; /* number of PMCS: computed at init time */
424 unsigned int num_pmds; /* number of PMDS: computed at init time */
425 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
426 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
427
428 char *pmu_name; /* PMU family name */
429 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
430 unsigned int flags; /* pmu specific flags */
431 unsigned int num_ibrs; /* number of IBRS: computed at init time */
432 unsigned int num_dbrs; /* number of DBRS: computed at init time */
433 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
434 int (*probe)(void); /* customized probe routine */
435 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
436 } pmu_config_t;
437 /*
438 * PMU specific flags
439 */
440 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
441
442 /*
443 * debug register related type definitions
444 */
445 typedef struct {
446 unsigned long ibr_mask:56;
447 unsigned long ibr_plm:4;
448 unsigned long ibr_ig:3;
449 unsigned long ibr_x:1;
450 } ibr_mask_reg_t;
451
452 typedef struct {
453 unsigned long dbr_mask:56;
454 unsigned long dbr_plm:4;
455 unsigned long dbr_ig:2;
456 unsigned long dbr_w:1;
457 unsigned long dbr_r:1;
458 } dbr_mask_reg_t;
459
460 typedef union {
461 unsigned long val;
462 ibr_mask_reg_t ibr;
463 dbr_mask_reg_t dbr;
464 } dbreg_t;
465
466
467 /*
468 * perfmon command descriptions
469 */
470 typedef struct {
471 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
472 char *cmd_name;
473 int cmd_flags;
474 unsigned int cmd_narg;
475 size_t cmd_argsize;
476 int (*cmd_getsize)(void *arg, size_t *sz);
477 } pfm_cmd_desc_t;
478
479 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
480 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
481 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
482 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
483
484
485 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
486 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
487 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
488 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
489 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
490
491 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
492
493 typedef struct {
494 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
495 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
496 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
497 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
498 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
499 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
500 unsigned long pfm_smpl_handler_calls;
501 unsigned long pfm_smpl_handler_cycles;
502 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
503 } pfm_stats_t;
504
505 /*
506 * perfmon internal variables
507 */
508 static pfm_stats_t pfm_stats[NR_CPUS];
509 static pfm_session_t pfm_sessions; /* global sessions information */
510
511 static DEFINE_SPINLOCK(pfm_alt_install_check);
512 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
513
514 static struct proc_dir_entry *perfmon_dir;
515 static pfm_uuid_t pfm_null_uuid = {0,};
516
517 static spinlock_t pfm_buffer_fmt_lock;
518 static LIST_HEAD(pfm_buffer_fmt_list);
519
520 static pmu_config_t *pmu_conf;
521
522 /* sysctl() controls */
523 pfm_sysctl_t pfm_sysctl;
524 EXPORT_SYMBOL(pfm_sysctl);
525
526 static struct ctl_table pfm_ctl_table[] = {
527 {
528 .procname = "debug",
529 .data = &pfm_sysctl.debug,
530 .maxlen = sizeof(int),
531 .mode = 0666,
532 .proc_handler = proc_dointvec,
533 },
534 {
535 .procname = "debug_ovfl",
536 .data = &pfm_sysctl.debug_ovfl,
537 .maxlen = sizeof(int),
538 .mode = 0666,
539 .proc_handler = proc_dointvec,
540 },
541 {
542 .procname = "fastctxsw",
543 .data = &pfm_sysctl.fastctxsw,
544 .maxlen = sizeof(int),
545 .mode = 0600,
546 .proc_handler = proc_dointvec,
547 },
548 {
549 .procname = "expert_mode",
550 .data = &pfm_sysctl.expert_mode,
551 .maxlen = sizeof(int),
552 .mode = 0600,
553 .proc_handler = proc_dointvec,
554 },
555 {}
556 };
557 static struct ctl_table pfm_sysctl_dir[] = {
558 {
559 .procname = "perfmon",
560 .mode = 0555,
561 .child = pfm_ctl_table,
562 },
563 {}
564 };
565 static struct ctl_table pfm_sysctl_root[] = {
566 {
567 .procname = "kernel",
568 .mode = 0555,
569 .child = pfm_sysctl_dir,
570 },
571 {}
572 };
573 static struct ctl_table_header *pfm_sysctl_header;
574
575 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
576
577 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
578 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
579
580 static inline void
pfm_put_task(struct task_struct * task)581 pfm_put_task(struct task_struct *task)
582 {
583 if (task != current) put_task_struct(task);
584 }
585
586 static inline void
pfm_reserve_page(unsigned long a)587 pfm_reserve_page(unsigned long a)
588 {
589 SetPageReserved(vmalloc_to_page((void *)a));
590 }
591 static inline void
pfm_unreserve_page(unsigned long a)592 pfm_unreserve_page(unsigned long a)
593 {
594 ClearPageReserved(vmalloc_to_page((void*)a));
595 }
596
597 static inline unsigned long
pfm_protect_ctx_ctxsw(pfm_context_t * x)598 pfm_protect_ctx_ctxsw(pfm_context_t *x)
599 {
600 spin_lock(&(x)->ctx_lock);
601 return 0UL;
602 }
603
604 static inline void
pfm_unprotect_ctx_ctxsw(pfm_context_t * x,unsigned long f)605 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
606 {
607 spin_unlock(&(x)->ctx_lock);
608 }
609
610 /* forward declaration */
611 static const struct dentry_operations pfmfs_dentry_operations;
612
613 static struct dentry *
pfmfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)614 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
615 {
616 return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
617 PFMFS_MAGIC);
618 }
619
620 static struct file_system_type pfm_fs_type = {
621 .name = "pfmfs",
622 .mount = pfmfs_mount,
623 .kill_sb = kill_anon_super,
624 };
625 MODULE_ALIAS_FS("pfmfs");
626
627 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
628 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
629 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
630 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
631 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
632
633
634 /* forward declaration */
635 static const struct file_operations pfm_file_ops;
636
637 /*
638 * forward declarations
639 */
640 #ifndef CONFIG_SMP
641 static void pfm_lazy_save_regs (struct task_struct *ta);
642 #endif
643
644 void dump_pmu_state(const char *);
645 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
646
647 #include "perfmon_itanium.h"
648 #include "perfmon_mckinley.h"
649 #include "perfmon_montecito.h"
650 #include "perfmon_generic.h"
651
652 static pmu_config_t *pmu_confs[]={
653 &pmu_conf_mont,
654 &pmu_conf_mck,
655 &pmu_conf_ita,
656 &pmu_conf_gen, /* must be last */
657 NULL
658 };
659
660
661 static int pfm_end_notify_user(pfm_context_t *ctx);
662
663 static inline void
pfm_clear_psr_pp(void)664 pfm_clear_psr_pp(void)
665 {
666 ia64_rsm(IA64_PSR_PP);
667 ia64_srlz_i();
668 }
669
670 static inline void
pfm_set_psr_pp(void)671 pfm_set_psr_pp(void)
672 {
673 ia64_ssm(IA64_PSR_PP);
674 ia64_srlz_i();
675 }
676
677 static inline void
pfm_clear_psr_up(void)678 pfm_clear_psr_up(void)
679 {
680 ia64_rsm(IA64_PSR_UP);
681 ia64_srlz_i();
682 }
683
684 static inline void
pfm_set_psr_up(void)685 pfm_set_psr_up(void)
686 {
687 ia64_ssm(IA64_PSR_UP);
688 ia64_srlz_i();
689 }
690
691 static inline unsigned long
pfm_get_psr(void)692 pfm_get_psr(void)
693 {
694 unsigned long tmp;
695 tmp = ia64_getreg(_IA64_REG_PSR);
696 ia64_srlz_i();
697 return tmp;
698 }
699
700 static inline void
pfm_set_psr_l(unsigned long val)701 pfm_set_psr_l(unsigned long val)
702 {
703 ia64_setreg(_IA64_REG_PSR_L, val);
704 ia64_srlz_i();
705 }
706
707 static inline void
pfm_freeze_pmu(void)708 pfm_freeze_pmu(void)
709 {
710 ia64_set_pmc(0,1UL);
711 ia64_srlz_d();
712 }
713
714 static inline void
pfm_unfreeze_pmu(void)715 pfm_unfreeze_pmu(void)
716 {
717 ia64_set_pmc(0,0UL);
718 ia64_srlz_d();
719 }
720
721 static inline void
pfm_restore_ibrs(unsigned long * ibrs,unsigned int nibrs)722 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
723 {
724 int i;
725
726 for (i=0; i < nibrs; i++) {
727 ia64_set_ibr(i, ibrs[i]);
728 ia64_dv_serialize_instruction();
729 }
730 ia64_srlz_i();
731 }
732
733 static inline void
pfm_restore_dbrs(unsigned long * dbrs,unsigned int ndbrs)734 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
735 {
736 int i;
737
738 for (i=0; i < ndbrs; i++) {
739 ia64_set_dbr(i, dbrs[i]);
740 ia64_dv_serialize_data();
741 }
742 ia64_srlz_d();
743 }
744
745 /*
746 * PMD[i] must be a counter. no check is made
747 */
748 static inline unsigned long
pfm_read_soft_counter(pfm_context_t * ctx,int i)749 pfm_read_soft_counter(pfm_context_t *ctx, int i)
750 {
751 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
752 }
753
754 /*
755 * PMD[i] must be a counter. no check is made
756 */
757 static inline void
pfm_write_soft_counter(pfm_context_t * ctx,int i,unsigned long val)758 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
759 {
760 unsigned long ovfl_val = pmu_conf->ovfl_val;
761
762 ctx->ctx_pmds[i].val = val & ~ovfl_val;
763 /*
764 * writing to unimplemented part is ignore, so we do not need to
765 * mask off top part
766 */
767 ia64_set_pmd(i, val & ovfl_val);
768 }
769
770 static pfm_msg_t *
pfm_get_new_msg(pfm_context_t * ctx)771 pfm_get_new_msg(pfm_context_t *ctx)
772 {
773 int idx, next;
774
775 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
776
777 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
778 if (next == ctx->ctx_msgq_head) return NULL;
779
780 idx = ctx->ctx_msgq_tail;
781 ctx->ctx_msgq_tail = next;
782
783 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
784
785 return ctx->ctx_msgq+idx;
786 }
787
788 static pfm_msg_t *
pfm_get_next_msg(pfm_context_t * ctx)789 pfm_get_next_msg(pfm_context_t *ctx)
790 {
791 pfm_msg_t *msg;
792
793 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
794
795 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
796
797 /*
798 * get oldest message
799 */
800 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
801
802 /*
803 * and move forward
804 */
805 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
806
807 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
808
809 return msg;
810 }
811
812 static void
pfm_reset_msgq(pfm_context_t * ctx)813 pfm_reset_msgq(pfm_context_t *ctx)
814 {
815 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
816 DPRINT(("ctx=%p msgq reset\n", ctx));
817 }
818
819 static void *
pfm_rvmalloc(unsigned long size)820 pfm_rvmalloc(unsigned long size)
821 {
822 void *mem;
823 unsigned long addr;
824
825 size = PAGE_ALIGN(size);
826 mem = vzalloc(size);
827 if (mem) {
828 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
829 addr = (unsigned long)mem;
830 while (size > 0) {
831 pfm_reserve_page(addr);
832 addr+=PAGE_SIZE;
833 size-=PAGE_SIZE;
834 }
835 }
836 return mem;
837 }
838
839 static void
pfm_rvfree(void * mem,unsigned long size)840 pfm_rvfree(void *mem, unsigned long size)
841 {
842 unsigned long addr;
843
844 if (mem) {
845 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
846 addr = (unsigned long) mem;
847 while ((long) size > 0) {
848 pfm_unreserve_page(addr);
849 addr+=PAGE_SIZE;
850 size-=PAGE_SIZE;
851 }
852 vfree(mem);
853 }
854 return;
855 }
856
857 static pfm_context_t *
pfm_context_alloc(int ctx_flags)858 pfm_context_alloc(int ctx_flags)
859 {
860 pfm_context_t *ctx;
861
862 /*
863 * allocate context descriptor
864 * must be able to free with interrupts disabled
865 */
866 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
867 if (ctx) {
868 DPRINT(("alloc ctx @%p\n", ctx));
869
870 /*
871 * init context protection lock
872 */
873 spin_lock_init(&ctx->ctx_lock);
874
875 /*
876 * context is unloaded
877 */
878 ctx->ctx_state = PFM_CTX_UNLOADED;
879
880 /*
881 * initialization of context's flags
882 */
883 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
884 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
885 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
886 /*
887 * will move to set properties
888 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
889 */
890
891 /*
892 * init restart semaphore to locked
893 */
894 init_completion(&ctx->ctx_restart_done);
895
896 /*
897 * activation is used in SMP only
898 */
899 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
900 SET_LAST_CPU(ctx, -1);
901
902 /*
903 * initialize notification message queue
904 */
905 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
906 init_waitqueue_head(&ctx->ctx_msgq_wait);
907 init_waitqueue_head(&ctx->ctx_zombieq);
908
909 }
910 return ctx;
911 }
912
913 static void
pfm_context_free(pfm_context_t * ctx)914 pfm_context_free(pfm_context_t *ctx)
915 {
916 if (ctx) {
917 DPRINT(("free ctx @%p\n", ctx));
918 kfree(ctx);
919 }
920 }
921
922 static void
pfm_mask_monitoring(struct task_struct * task)923 pfm_mask_monitoring(struct task_struct *task)
924 {
925 pfm_context_t *ctx = PFM_GET_CTX(task);
926 unsigned long mask, val, ovfl_mask;
927 int i;
928
929 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
930
931 ovfl_mask = pmu_conf->ovfl_val;
932 /*
933 * monitoring can only be masked as a result of a valid
934 * counter overflow. In UP, it means that the PMU still
935 * has an owner. Note that the owner can be different
936 * from the current task. However the PMU state belongs
937 * to the owner.
938 * In SMP, a valid overflow only happens when task is
939 * current. Therefore if we come here, we know that
940 * the PMU state belongs to the current task, therefore
941 * we can access the live registers.
942 *
943 * So in both cases, the live register contains the owner's
944 * state. We can ONLY touch the PMU registers and NOT the PSR.
945 *
946 * As a consequence to this call, the ctx->th_pmds[] array
947 * contains stale information which must be ignored
948 * when context is reloaded AND monitoring is active (see
949 * pfm_restart).
950 */
951 mask = ctx->ctx_used_pmds[0];
952 for (i = 0; mask; i++, mask>>=1) {
953 /* skip non used pmds */
954 if ((mask & 0x1) == 0) continue;
955 val = ia64_get_pmd(i);
956
957 if (PMD_IS_COUNTING(i)) {
958 /*
959 * we rebuild the full 64 bit value of the counter
960 */
961 ctx->ctx_pmds[i].val += (val & ovfl_mask);
962 } else {
963 ctx->ctx_pmds[i].val = val;
964 }
965 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
966 i,
967 ctx->ctx_pmds[i].val,
968 val & ovfl_mask));
969 }
970 /*
971 * mask monitoring by setting the privilege level to 0
972 * we cannot use psr.pp/psr.up for this, it is controlled by
973 * the user
974 *
975 * if task is current, modify actual registers, otherwise modify
976 * thread save state, i.e., what will be restored in pfm_load_regs()
977 */
978 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
979 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
980 if ((mask & 0x1) == 0UL) continue;
981 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
982 ctx->th_pmcs[i] &= ~0xfUL;
983 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
984 }
985 /*
986 * make all of this visible
987 */
988 ia64_srlz_d();
989 }
990
991 /*
992 * must always be done with task == current
993 *
994 * context must be in MASKED state when calling
995 */
996 static void
pfm_restore_monitoring(struct task_struct * task)997 pfm_restore_monitoring(struct task_struct *task)
998 {
999 pfm_context_t *ctx = PFM_GET_CTX(task);
1000 unsigned long mask, ovfl_mask;
1001 unsigned long psr, val;
1002 int i, is_system;
1003
1004 is_system = ctx->ctx_fl_system;
1005 ovfl_mask = pmu_conf->ovfl_val;
1006
1007 if (task != current) {
1008 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1009 return;
1010 }
1011 if (ctx->ctx_state != PFM_CTX_MASKED) {
1012 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1013 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1014 return;
1015 }
1016 psr = pfm_get_psr();
1017 /*
1018 * monitoring is masked via the PMC.
1019 * As we restore their value, we do not want each counter to
1020 * restart right away. We stop monitoring using the PSR,
1021 * restore the PMC (and PMD) and then re-establish the psr
1022 * as it was. Note that there can be no pending overflow at
1023 * this point, because monitoring was MASKED.
1024 *
1025 * system-wide session are pinned and self-monitoring
1026 */
1027 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1028 /* disable dcr pp */
1029 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1030 pfm_clear_psr_pp();
1031 } else {
1032 pfm_clear_psr_up();
1033 }
1034 /*
1035 * first, we restore the PMD
1036 */
1037 mask = ctx->ctx_used_pmds[0];
1038 for (i = 0; mask; i++, mask>>=1) {
1039 /* skip non used pmds */
1040 if ((mask & 0x1) == 0) continue;
1041
1042 if (PMD_IS_COUNTING(i)) {
1043 /*
1044 * we split the 64bit value according to
1045 * counter width
1046 */
1047 val = ctx->ctx_pmds[i].val & ovfl_mask;
1048 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1049 } else {
1050 val = ctx->ctx_pmds[i].val;
1051 }
1052 ia64_set_pmd(i, val);
1053
1054 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1055 i,
1056 ctx->ctx_pmds[i].val,
1057 val));
1058 }
1059 /*
1060 * restore the PMCs
1061 */
1062 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1063 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1064 if ((mask & 0x1) == 0UL) continue;
1065 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1066 ia64_set_pmc(i, ctx->th_pmcs[i]);
1067 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1068 task_pid_nr(task), i, ctx->th_pmcs[i]));
1069 }
1070 ia64_srlz_d();
1071
1072 /*
1073 * must restore DBR/IBR because could be modified while masked
1074 * XXX: need to optimize
1075 */
1076 if (ctx->ctx_fl_using_dbreg) {
1077 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1078 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1079 }
1080
1081 /*
1082 * now restore PSR
1083 */
1084 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1085 /* enable dcr pp */
1086 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1087 ia64_srlz_i();
1088 }
1089 pfm_set_psr_l(psr);
1090 }
1091
1092 static inline void
pfm_save_pmds(unsigned long * pmds,unsigned long mask)1093 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1094 {
1095 int i;
1096
1097 ia64_srlz_d();
1098
1099 for (i=0; mask; i++, mask>>=1) {
1100 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1101 }
1102 }
1103
1104 /*
1105 * reload from thread state (used for ctxw only)
1106 */
1107 static inline void
pfm_restore_pmds(unsigned long * pmds,unsigned long mask)1108 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1109 {
1110 int i;
1111 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1112
1113 for (i=0; mask; i++, mask>>=1) {
1114 if ((mask & 0x1) == 0) continue;
1115 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1116 ia64_set_pmd(i, val);
1117 }
1118 ia64_srlz_d();
1119 }
1120
1121 /*
1122 * propagate PMD from context to thread-state
1123 */
1124 static inline void
pfm_copy_pmds(struct task_struct * task,pfm_context_t * ctx)1125 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1126 {
1127 unsigned long ovfl_val = pmu_conf->ovfl_val;
1128 unsigned long mask = ctx->ctx_all_pmds[0];
1129 unsigned long val;
1130 int i;
1131
1132 DPRINT(("mask=0x%lx\n", mask));
1133
1134 for (i=0; mask; i++, mask>>=1) {
1135
1136 val = ctx->ctx_pmds[i].val;
1137
1138 /*
1139 * We break up the 64 bit value into 2 pieces
1140 * the lower bits go to the machine state in the
1141 * thread (will be reloaded on ctxsw in).
1142 * The upper part stays in the soft-counter.
1143 */
1144 if (PMD_IS_COUNTING(i)) {
1145 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1146 val &= ovfl_val;
1147 }
1148 ctx->th_pmds[i] = val;
1149
1150 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1151 i,
1152 ctx->th_pmds[i],
1153 ctx->ctx_pmds[i].val));
1154 }
1155 }
1156
1157 /*
1158 * propagate PMC from context to thread-state
1159 */
1160 static inline void
pfm_copy_pmcs(struct task_struct * task,pfm_context_t * ctx)1161 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1162 {
1163 unsigned long mask = ctx->ctx_all_pmcs[0];
1164 int i;
1165
1166 DPRINT(("mask=0x%lx\n", mask));
1167
1168 for (i=0; mask; i++, mask>>=1) {
1169 /* masking 0 with ovfl_val yields 0 */
1170 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1171 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1172 }
1173 }
1174
1175
1176
1177 static inline void
pfm_restore_pmcs(unsigned long * pmcs,unsigned long mask)1178 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1179 {
1180 int i;
1181
1182 for (i=0; mask; i++, mask>>=1) {
1183 if ((mask & 0x1) == 0) continue;
1184 ia64_set_pmc(i, pmcs[i]);
1185 }
1186 ia64_srlz_d();
1187 }
1188
1189 static inline int
pfm_uuid_cmp(pfm_uuid_t a,pfm_uuid_t b)1190 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1191 {
1192 return memcmp(a, b, sizeof(pfm_uuid_t));
1193 }
1194
1195 static inline int
pfm_buf_fmt_exit(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,struct pt_regs * regs)1196 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1197 {
1198 int ret = 0;
1199 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1200 return ret;
1201 }
1202
1203 static inline int
pfm_buf_fmt_getsize(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg,unsigned long * size)1204 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1205 {
1206 int ret = 0;
1207 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1208 return ret;
1209 }
1210
1211
1212 static inline int
pfm_buf_fmt_validate(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg)1213 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1214 int cpu, void *arg)
1215 {
1216 int ret = 0;
1217 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1218 return ret;
1219 }
1220
1221 static inline int
pfm_buf_fmt_init(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,unsigned int flags,int cpu,void * arg)1222 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1223 int cpu, void *arg)
1224 {
1225 int ret = 0;
1226 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1227 return ret;
1228 }
1229
1230 static inline int
pfm_buf_fmt_restart(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1231 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1232 {
1233 int ret = 0;
1234 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1235 return ret;
1236 }
1237
1238 static inline int
pfm_buf_fmt_restart_active(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1239 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1240 {
1241 int ret = 0;
1242 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1243 return ret;
1244 }
1245
1246 static pfm_buffer_fmt_t *
__pfm_find_buffer_fmt(pfm_uuid_t uuid)1247 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1248 {
1249 struct list_head * pos;
1250 pfm_buffer_fmt_t * entry;
1251
1252 list_for_each(pos, &pfm_buffer_fmt_list) {
1253 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1254 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1255 return entry;
1256 }
1257 return NULL;
1258 }
1259
1260 /*
1261 * find a buffer format based on its uuid
1262 */
1263 static pfm_buffer_fmt_t *
pfm_find_buffer_fmt(pfm_uuid_t uuid)1264 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1265 {
1266 pfm_buffer_fmt_t * fmt;
1267 spin_lock(&pfm_buffer_fmt_lock);
1268 fmt = __pfm_find_buffer_fmt(uuid);
1269 spin_unlock(&pfm_buffer_fmt_lock);
1270 return fmt;
1271 }
1272
1273 int
pfm_register_buffer_fmt(pfm_buffer_fmt_t * fmt)1274 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1275 {
1276 int ret = 0;
1277
1278 /* some sanity checks */
1279 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1280
1281 /* we need at least a handler */
1282 if (fmt->fmt_handler == NULL) return -EINVAL;
1283
1284 /*
1285 * XXX: need check validity of fmt_arg_size
1286 */
1287
1288 spin_lock(&pfm_buffer_fmt_lock);
1289
1290 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1291 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1292 ret = -EBUSY;
1293 goto out;
1294 }
1295 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1296 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1297
1298 out:
1299 spin_unlock(&pfm_buffer_fmt_lock);
1300 return ret;
1301 }
1302 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1303
1304 int
pfm_unregister_buffer_fmt(pfm_uuid_t uuid)1305 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1306 {
1307 pfm_buffer_fmt_t *fmt;
1308 int ret = 0;
1309
1310 spin_lock(&pfm_buffer_fmt_lock);
1311
1312 fmt = __pfm_find_buffer_fmt(uuid);
1313 if (!fmt) {
1314 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1315 ret = -EINVAL;
1316 goto out;
1317 }
1318 list_del_init(&fmt->fmt_list);
1319 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1320
1321 out:
1322 spin_unlock(&pfm_buffer_fmt_lock);
1323 return ret;
1324
1325 }
1326 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1327
1328 static int
pfm_reserve_session(struct task_struct * task,int is_syswide,unsigned int cpu)1329 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1330 {
1331 unsigned long flags;
1332 /*
1333 * validity checks on cpu_mask have been done upstream
1334 */
1335 LOCK_PFS(flags);
1336
1337 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1338 pfm_sessions.pfs_sys_sessions,
1339 pfm_sessions.pfs_task_sessions,
1340 pfm_sessions.pfs_sys_use_dbregs,
1341 is_syswide,
1342 cpu));
1343
1344 if (is_syswide) {
1345 /*
1346 * cannot mix system wide and per-task sessions
1347 */
1348 if (pfm_sessions.pfs_task_sessions > 0UL) {
1349 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1350 pfm_sessions.pfs_task_sessions));
1351 goto abort;
1352 }
1353
1354 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1355
1356 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1357
1358 pfm_sessions.pfs_sys_session[cpu] = task;
1359
1360 pfm_sessions.pfs_sys_sessions++ ;
1361
1362 } else {
1363 if (pfm_sessions.pfs_sys_sessions) goto abort;
1364 pfm_sessions.pfs_task_sessions++;
1365 }
1366
1367 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1368 pfm_sessions.pfs_sys_sessions,
1369 pfm_sessions.pfs_task_sessions,
1370 pfm_sessions.pfs_sys_use_dbregs,
1371 is_syswide,
1372 cpu));
1373
1374 /*
1375 * Force idle() into poll mode
1376 */
1377 cpu_idle_poll_ctrl(true);
1378
1379 UNLOCK_PFS(flags);
1380
1381 return 0;
1382
1383 error_conflict:
1384 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1385 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1386 cpu));
1387 abort:
1388 UNLOCK_PFS(flags);
1389
1390 return -EBUSY;
1391
1392 }
1393
1394 static int
pfm_unreserve_session(pfm_context_t * ctx,int is_syswide,unsigned int cpu)1395 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1396 {
1397 unsigned long flags;
1398 /*
1399 * validity checks on cpu_mask have been done upstream
1400 */
1401 LOCK_PFS(flags);
1402
1403 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1404 pfm_sessions.pfs_sys_sessions,
1405 pfm_sessions.pfs_task_sessions,
1406 pfm_sessions.pfs_sys_use_dbregs,
1407 is_syswide,
1408 cpu));
1409
1410
1411 if (is_syswide) {
1412 pfm_sessions.pfs_sys_session[cpu] = NULL;
1413 /*
1414 * would not work with perfmon+more than one bit in cpu_mask
1415 */
1416 if (ctx && ctx->ctx_fl_using_dbreg) {
1417 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1418 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1419 } else {
1420 pfm_sessions.pfs_sys_use_dbregs--;
1421 }
1422 }
1423 pfm_sessions.pfs_sys_sessions--;
1424 } else {
1425 pfm_sessions.pfs_task_sessions--;
1426 }
1427 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1428 pfm_sessions.pfs_sys_sessions,
1429 pfm_sessions.pfs_task_sessions,
1430 pfm_sessions.pfs_sys_use_dbregs,
1431 is_syswide,
1432 cpu));
1433
1434 /* Undo forced polling. Last session reenables pal_halt */
1435 cpu_idle_poll_ctrl(false);
1436
1437 UNLOCK_PFS(flags);
1438
1439 return 0;
1440 }
1441
1442 /*
1443 * removes virtual mapping of the sampling buffer.
1444 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1445 * a PROTECT_CTX() section.
1446 */
1447 static int
pfm_remove_smpl_mapping(void * vaddr,unsigned long size)1448 pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1449 {
1450 struct task_struct *task = current;
1451 int r;
1452
1453 /* sanity checks */
1454 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1455 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1456 return -EINVAL;
1457 }
1458
1459 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1460
1461 /*
1462 * does the actual unmapping
1463 */
1464 r = vm_munmap((unsigned long)vaddr, size);
1465
1466 if (r !=0) {
1467 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1468 }
1469
1470 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1471
1472 return 0;
1473 }
1474
1475 /*
1476 * free actual physical storage used by sampling buffer
1477 */
1478 #if 0
1479 static int
1480 pfm_free_smpl_buffer(pfm_context_t *ctx)
1481 {
1482 pfm_buffer_fmt_t *fmt;
1483
1484 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1485
1486 /*
1487 * we won't use the buffer format anymore
1488 */
1489 fmt = ctx->ctx_buf_fmt;
1490
1491 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1492 ctx->ctx_smpl_hdr,
1493 ctx->ctx_smpl_size,
1494 ctx->ctx_smpl_vaddr));
1495
1496 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1497
1498 /*
1499 * free the buffer
1500 */
1501 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1502
1503 ctx->ctx_smpl_hdr = NULL;
1504 ctx->ctx_smpl_size = 0UL;
1505
1506 return 0;
1507
1508 invalid_free:
1509 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1510 return -EINVAL;
1511 }
1512 #endif
1513
1514 static inline void
pfm_exit_smpl_buffer(pfm_buffer_fmt_t * fmt)1515 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1516 {
1517 if (fmt == NULL) return;
1518
1519 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1520
1521 }
1522
1523 /*
1524 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1525 * no real gain from having the whole whorehouse mounted. So we don't need
1526 * any operations on the root directory. However, we need a non-trivial
1527 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1528 */
1529 static struct vfsmount *pfmfs_mnt __read_mostly;
1530
1531 static int __init
init_pfm_fs(void)1532 init_pfm_fs(void)
1533 {
1534 int err = register_filesystem(&pfm_fs_type);
1535 if (!err) {
1536 pfmfs_mnt = kern_mount(&pfm_fs_type);
1537 err = PTR_ERR(pfmfs_mnt);
1538 if (IS_ERR(pfmfs_mnt))
1539 unregister_filesystem(&pfm_fs_type);
1540 else
1541 err = 0;
1542 }
1543 return err;
1544 }
1545
1546 static ssize_t
pfm_read(struct file * filp,char __user * buf,size_t size,loff_t * ppos)1547 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1548 {
1549 pfm_context_t *ctx;
1550 pfm_msg_t *msg;
1551 ssize_t ret;
1552 unsigned long flags;
1553 DECLARE_WAITQUEUE(wait, current);
1554 if (PFM_IS_FILE(filp) == 0) {
1555 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1556 return -EINVAL;
1557 }
1558
1559 ctx = filp->private_data;
1560 if (ctx == NULL) {
1561 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1562 return -EINVAL;
1563 }
1564
1565 /*
1566 * check even when there is no message
1567 */
1568 if (size < sizeof(pfm_msg_t)) {
1569 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1570 return -EINVAL;
1571 }
1572
1573 PROTECT_CTX(ctx, flags);
1574
1575 /*
1576 * put ourselves on the wait queue
1577 */
1578 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1579
1580
1581 for(;;) {
1582 /*
1583 * check wait queue
1584 */
1585
1586 set_current_state(TASK_INTERRUPTIBLE);
1587
1588 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1589
1590 ret = 0;
1591 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1592
1593 UNPROTECT_CTX(ctx, flags);
1594
1595 /*
1596 * check non-blocking read
1597 */
1598 ret = -EAGAIN;
1599 if(filp->f_flags & O_NONBLOCK) break;
1600
1601 /*
1602 * check pending signals
1603 */
1604 if(signal_pending(current)) {
1605 ret = -EINTR;
1606 break;
1607 }
1608 /*
1609 * no message, so wait
1610 */
1611 schedule();
1612
1613 PROTECT_CTX(ctx, flags);
1614 }
1615 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1616 set_current_state(TASK_RUNNING);
1617 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1618
1619 if (ret < 0) goto abort;
1620
1621 ret = -EINVAL;
1622 msg = pfm_get_next_msg(ctx);
1623 if (msg == NULL) {
1624 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1625 goto abort_locked;
1626 }
1627
1628 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1629
1630 ret = -EFAULT;
1631 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1632
1633 abort_locked:
1634 UNPROTECT_CTX(ctx, flags);
1635 abort:
1636 return ret;
1637 }
1638
1639 static ssize_t
pfm_write(struct file * file,const char __user * ubuf,size_t size,loff_t * ppos)1640 pfm_write(struct file *file, const char __user *ubuf,
1641 size_t size, loff_t *ppos)
1642 {
1643 DPRINT(("pfm_write called\n"));
1644 return -EINVAL;
1645 }
1646
1647 static unsigned int
pfm_poll(struct file * filp,poll_table * wait)1648 pfm_poll(struct file *filp, poll_table * wait)
1649 {
1650 pfm_context_t *ctx;
1651 unsigned long flags;
1652 unsigned int mask = 0;
1653
1654 if (PFM_IS_FILE(filp) == 0) {
1655 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1656 return 0;
1657 }
1658
1659 ctx = filp->private_data;
1660 if (ctx == NULL) {
1661 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1662 return 0;
1663 }
1664
1665
1666 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1667
1668 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1669
1670 PROTECT_CTX(ctx, flags);
1671
1672 if (PFM_CTXQ_EMPTY(ctx) == 0)
1673 mask = POLLIN | POLLRDNORM;
1674
1675 UNPROTECT_CTX(ctx, flags);
1676
1677 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1678
1679 return mask;
1680 }
1681
1682 static long
pfm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1683 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1684 {
1685 DPRINT(("pfm_ioctl called\n"));
1686 return -EINVAL;
1687 }
1688
1689 /*
1690 * interrupt cannot be masked when coming here
1691 */
1692 static inline int
pfm_do_fasync(int fd,struct file * filp,pfm_context_t * ctx,int on)1693 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1694 {
1695 int ret;
1696
1697 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1698
1699 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1700 task_pid_nr(current),
1701 fd,
1702 on,
1703 ctx->ctx_async_queue, ret));
1704
1705 return ret;
1706 }
1707
1708 static int
pfm_fasync(int fd,struct file * filp,int on)1709 pfm_fasync(int fd, struct file *filp, int on)
1710 {
1711 pfm_context_t *ctx;
1712 int ret;
1713
1714 if (PFM_IS_FILE(filp) == 0) {
1715 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1716 return -EBADF;
1717 }
1718
1719 ctx = filp->private_data;
1720 if (ctx == NULL) {
1721 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1722 return -EBADF;
1723 }
1724 /*
1725 * we cannot mask interrupts during this call because this may
1726 * may go to sleep if memory is not readily avalaible.
1727 *
1728 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1729 * done in caller. Serialization of this function is ensured by caller.
1730 */
1731 ret = pfm_do_fasync(fd, filp, ctx, on);
1732
1733
1734 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1735 fd,
1736 on,
1737 ctx->ctx_async_queue, ret));
1738
1739 return ret;
1740 }
1741
1742 #ifdef CONFIG_SMP
1743 /*
1744 * this function is exclusively called from pfm_close().
1745 * The context is not protected at that time, nor are interrupts
1746 * on the remote CPU. That's necessary to avoid deadlocks.
1747 */
1748 static void
pfm_syswide_force_stop(void * info)1749 pfm_syswide_force_stop(void *info)
1750 {
1751 pfm_context_t *ctx = (pfm_context_t *)info;
1752 struct pt_regs *regs = task_pt_regs(current);
1753 struct task_struct *owner;
1754 unsigned long flags;
1755 int ret;
1756
1757 if (ctx->ctx_cpu != smp_processor_id()) {
1758 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1759 ctx->ctx_cpu,
1760 smp_processor_id());
1761 return;
1762 }
1763 owner = GET_PMU_OWNER();
1764 if (owner != ctx->ctx_task) {
1765 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1766 smp_processor_id(),
1767 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1768 return;
1769 }
1770 if (GET_PMU_CTX() != ctx) {
1771 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1772 smp_processor_id(),
1773 GET_PMU_CTX(), ctx);
1774 return;
1775 }
1776
1777 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1778 /*
1779 * the context is already protected in pfm_close(), we simply
1780 * need to mask interrupts to avoid a PMU interrupt race on
1781 * this CPU
1782 */
1783 local_irq_save(flags);
1784
1785 ret = pfm_context_unload(ctx, NULL, 0, regs);
1786 if (ret) {
1787 DPRINT(("context_unload returned %d\n", ret));
1788 }
1789
1790 /*
1791 * unmask interrupts, PMU interrupts are now spurious here
1792 */
1793 local_irq_restore(flags);
1794 }
1795
1796 static void
pfm_syswide_cleanup_other_cpu(pfm_context_t * ctx)1797 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1798 {
1799 int ret;
1800
1801 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1802 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1803 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1804 }
1805 #endif /* CONFIG_SMP */
1806
1807 /*
1808 * called for each close(). Partially free resources.
1809 * When caller is self-monitoring, the context is unloaded.
1810 */
1811 static int
pfm_flush(struct file * filp,fl_owner_t id)1812 pfm_flush(struct file *filp, fl_owner_t id)
1813 {
1814 pfm_context_t *ctx;
1815 struct task_struct *task;
1816 struct pt_regs *regs;
1817 unsigned long flags;
1818 unsigned long smpl_buf_size = 0UL;
1819 void *smpl_buf_vaddr = NULL;
1820 int state, is_system;
1821
1822 if (PFM_IS_FILE(filp) == 0) {
1823 DPRINT(("bad magic for\n"));
1824 return -EBADF;
1825 }
1826
1827 ctx = filp->private_data;
1828 if (ctx == NULL) {
1829 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1830 return -EBADF;
1831 }
1832
1833 /*
1834 * remove our file from the async queue, if we use this mode.
1835 * This can be done without the context being protected. We come
1836 * here when the context has become unreachable by other tasks.
1837 *
1838 * We may still have active monitoring at this point and we may
1839 * end up in pfm_overflow_handler(). However, fasync_helper()
1840 * operates with interrupts disabled and it cleans up the
1841 * queue. If the PMU handler is called prior to entering
1842 * fasync_helper() then it will send a signal. If it is
1843 * invoked after, it will find an empty queue and no
1844 * signal will be sent. In both case, we are safe
1845 */
1846 PROTECT_CTX(ctx, flags);
1847
1848 state = ctx->ctx_state;
1849 is_system = ctx->ctx_fl_system;
1850
1851 task = PFM_CTX_TASK(ctx);
1852 regs = task_pt_regs(task);
1853
1854 DPRINT(("ctx_state=%d is_current=%d\n",
1855 state,
1856 task == current ? 1 : 0));
1857
1858 /*
1859 * if state == UNLOADED, then task is NULL
1860 */
1861
1862 /*
1863 * we must stop and unload because we are losing access to the context.
1864 */
1865 if (task == current) {
1866 #ifdef CONFIG_SMP
1867 /*
1868 * the task IS the owner but it migrated to another CPU: that's bad
1869 * but we must handle this cleanly. Unfortunately, the kernel does
1870 * not provide a mechanism to block migration (while the context is loaded).
1871 *
1872 * We need to release the resource on the ORIGINAL cpu.
1873 */
1874 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1875
1876 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1877 /*
1878 * keep context protected but unmask interrupt for IPI
1879 */
1880 local_irq_restore(flags);
1881
1882 pfm_syswide_cleanup_other_cpu(ctx);
1883
1884 /*
1885 * restore interrupt masking
1886 */
1887 local_irq_save(flags);
1888
1889 /*
1890 * context is unloaded at this point
1891 */
1892 } else
1893 #endif /* CONFIG_SMP */
1894 {
1895
1896 DPRINT(("forcing unload\n"));
1897 /*
1898 * stop and unload, returning with state UNLOADED
1899 * and session unreserved.
1900 */
1901 pfm_context_unload(ctx, NULL, 0, regs);
1902
1903 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1904 }
1905 }
1906
1907 /*
1908 * remove virtual mapping, if any, for the calling task.
1909 * cannot reset ctx field until last user is calling close().
1910 *
1911 * ctx_smpl_vaddr must never be cleared because it is needed
1912 * by every task with access to the context
1913 *
1914 * When called from do_exit(), the mm context is gone already, therefore
1915 * mm is NULL, i.e., the VMA is already gone and we do not have to
1916 * do anything here
1917 */
1918 if (ctx->ctx_smpl_vaddr && current->mm) {
1919 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1920 smpl_buf_size = ctx->ctx_smpl_size;
1921 }
1922
1923 UNPROTECT_CTX(ctx, flags);
1924
1925 /*
1926 * if there was a mapping, then we systematically remove it
1927 * at this point. Cannot be done inside critical section
1928 * because some VM function reenables interrupts.
1929 *
1930 */
1931 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1932
1933 return 0;
1934 }
1935 /*
1936 * called either on explicit close() or from exit_files().
1937 * Only the LAST user of the file gets to this point, i.e., it is
1938 * called only ONCE.
1939 *
1940 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1941 * (fput()),i.e, last task to access the file. Nobody else can access the
1942 * file at this point.
1943 *
1944 * When called from exit_files(), the VMA has been freed because exit_mm()
1945 * is executed before exit_files().
1946 *
1947 * When called from exit_files(), the current task is not yet ZOMBIE but we
1948 * flush the PMU state to the context.
1949 */
1950 static int
pfm_close(struct inode * inode,struct file * filp)1951 pfm_close(struct inode *inode, struct file *filp)
1952 {
1953 pfm_context_t *ctx;
1954 struct task_struct *task;
1955 struct pt_regs *regs;
1956 DECLARE_WAITQUEUE(wait, current);
1957 unsigned long flags;
1958 unsigned long smpl_buf_size = 0UL;
1959 void *smpl_buf_addr = NULL;
1960 int free_possible = 1;
1961 int state, is_system;
1962
1963 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1964
1965 if (PFM_IS_FILE(filp) == 0) {
1966 DPRINT(("bad magic\n"));
1967 return -EBADF;
1968 }
1969
1970 ctx = filp->private_data;
1971 if (ctx == NULL) {
1972 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1973 return -EBADF;
1974 }
1975
1976 PROTECT_CTX(ctx, flags);
1977
1978 state = ctx->ctx_state;
1979 is_system = ctx->ctx_fl_system;
1980
1981 task = PFM_CTX_TASK(ctx);
1982 regs = task_pt_regs(task);
1983
1984 DPRINT(("ctx_state=%d is_current=%d\n",
1985 state,
1986 task == current ? 1 : 0));
1987
1988 /*
1989 * if task == current, then pfm_flush() unloaded the context
1990 */
1991 if (state == PFM_CTX_UNLOADED) goto doit;
1992
1993 /*
1994 * context is loaded/masked and task != current, we need to
1995 * either force an unload or go zombie
1996 */
1997
1998 /*
1999 * The task is currently blocked or will block after an overflow.
2000 * we must force it to wakeup to get out of the
2001 * MASKED state and transition to the unloaded state by itself.
2002 *
2003 * This situation is only possible for per-task mode
2004 */
2005 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2006
2007 /*
2008 * set a "partial" zombie state to be checked
2009 * upon return from down() in pfm_handle_work().
2010 *
2011 * We cannot use the ZOMBIE state, because it is checked
2012 * by pfm_load_regs() which is called upon wakeup from down().
2013 * In such case, it would free the context and then we would
2014 * return to pfm_handle_work() which would access the
2015 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2016 * but visible to pfm_handle_work().
2017 *
2018 * For some window of time, we have a zombie context with
2019 * ctx_state = MASKED and not ZOMBIE
2020 */
2021 ctx->ctx_fl_going_zombie = 1;
2022
2023 /*
2024 * force task to wake up from MASKED state
2025 */
2026 complete(&ctx->ctx_restart_done);
2027
2028 DPRINT(("waking up ctx_state=%d\n", state));
2029
2030 /*
2031 * put ourself to sleep waiting for the other
2032 * task to report completion
2033 *
2034 * the context is protected by mutex, therefore there
2035 * is no risk of being notified of completion before
2036 * begin actually on the waitq.
2037 */
2038 set_current_state(TASK_INTERRUPTIBLE);
2039 add_wait_queue(&ctx->ctx_zombieq, &wait);
2040
2041 UNPROTECT_CTX(ctx, flags);
2042
2043 /*
2044 * XXX: check for signals :
2045 * - ok for explicit close
2046 * - not ok when coming from exit_files()
2047 */
2048 schedule();
2049
2050
2051 PROTECT_CTX(ctx, flags);
2052
2053
2054 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2055 set_current_state(TASK_RUNNING);
2056
2057 /*
2058 * context is unloaded at this point
2059 */
2060 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2061 }
2062 else if (task != current) {
2063 #ifdef CONFIG_SMP
2064 /*
2065 * switch context to zombie state
2066 */
2067 ctx->ctx_state = PFM_CTX_ZOMBIE;
2068
2069 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2070 /*
2071 * cannot free the context on the spot. deferred until
2072 * the task notices the ZOMBIE state
2073 */
2074 free_possible = 0;
2075 #else
2076 pfm_context_unload(ctx, NULL, 0, regs);
2077 #endif
2078 }
2079
2080 doit:
2081 /* reload state, may have changed during opening of critical section */
2082 state = ctx->ctx_state;
2083
2084 /*
2085 * the context is still attached to a task (possibly current)
2086 * we cannot destroy it right now
2087 */
2088
2089 /*
2090 * we must free the sampling buffer right here because
2091 * we cannot rely on it being cleaned up later by the
2092 * monitored task. It is not possible to free vmalloc'ed
2093 * memory in pfm_load_regs(). Instead, we remove the buffer
2094 * now. should there be subsequent PMU overflow originally
2095 * meant for sampling, the will be converted to spurious
2096 * and that's fine because the monitoring tools is gone anyway.
2097 */
2098 if (ctx->ctx_smpl_hdr) {
2099 smpl_buf_addr = ctx->ctx_smpl_hdr;
2100 smpl_buf_size = ctx->ctx_smpl_size;
2101 /* no more sampling */
2102 ctx->ctx_smpl_hdr = NULL;
2103 ctx->ctx_fl_is_sampling = 0;
2104 }
2105
2106 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2107 state,
2108 free_possible,
2109 smpl_buf_addr,
2110 smpl_buf_size));
2111
2112 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2113
2114 /*
2115 * UNLOADED that the session has already been unreserved.
2116 */
2117 if (state == PFM_CTX_ZOMBIE) {
2118 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2119 }
2120
2121 /*
2122 * disconnect file descriptor from context must be done
2123 * before we unlock.
2124 */
2125 filp->private_data = NULL;
2126
2127 /*
2128 * if we free on the spot, the context is now completely unreachable
2129 * from the callers side. The monitored task side is also cut, so we
2130 * can freely cut.
2131 *
2132 * If we have a deferred free, only the caller side is disconnected.
2133 */
2134 UNPROTECT_CTX(ctx, flags);
2135
2136 /*
2137 * All memory free operations (especially for vmalloc'ed memory)
2138 * MUST be done with interrupts ENABLED.
2139 */
2140 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2141
2142 /*
2143 * return the memory used by the context
2144 */
2145 if (free_possible) pfm_context_free(ctx);
2146
2147 return 0;
2148 }
2149
2150 static const struct file_operations pfm_file_ops = {
2151 .llseek = no_llseek,
2152 .read = pfm_read,
2153 .write = pfm_write,
2154 .poll = pfm_poll,
2155 .unlocked_ioctl = pfm_ioctl,
2156 .fasync = pfm_fasync,
2157 .release = pfm_close,
2158 .flush = pfm_flush
2159 };
2160
pfmfs_dname(struct dentry * dentry,char * buffer,int buflen)2161 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2162 {
2163 return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2164 d_inode(dentry)->i_ino);
2165 }
2166
2167 static const struct dentry_operations pfmfs_dentry_operations = {
2168 .d_delete = always_delete_dentry,
2169 .d_dname = pfmfs_dname,
2170 };
2171
2172
2173 static struct file *
pfm_alloc_file(pfm_context_t * ctx)2174 pfm_alloc_file(pfm_context_t *ctx)
2175 {
2176 struct file *file;
2177 struct inode *inode;
2178 struct path path;
2179 struct qstr this = { .name = "" };
2180
2181 /*
2182 * allocate a new inode
2183 */
2184 inode = new_inode(pfmfs_mnt->mnt_sb);
2185 if (!inode)
2186 return ERR_PTR(-ENOMEM);
2187
2188 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2189
2190 inode->i_mode = S_IFCHR|S_IRUGO;
2191 inode->i_uid = current_fsuid();
2192 inode->i_gid = current_fsgid();
2193
2194 /*
2195 * allocate a new dcache entry
2196 */
2197 path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2198 if (!path.dentry) {
2199 iput(inode);
2200 return ERR_PTR(-ENOMEM);
2201 }
2202 path.mnt = mntget(pfmfs_mnt);
2203
2204 d_add(path.dentry, inode);
2205
2206 file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2207 if (IS_ERR(file)) {
2208 path_put(&path);
2209 return file;
2210 }
2211
2212 file->f_flags = O_RDONLY;
2213 file->private_data = ctx;
2214
2215 return file;
2216 }
2217
2218 static int
pfm_remap_buffer(struct vm_area_struct * vma,unsigned long buf,unsigned long addr,unsigned long size)2219 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2220 {
2221 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2222
2223 while (size > 0) {
2224 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2225
2226
2227 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2228 return -ENOMEM;
2229
2230 addr += PAGE_SIZE;
2231 buf += PAGE_SIZE;
2232 size -= PAGE_SIZE;
2233 }
2234 return 0;
2235 }
2236
2237 /*
2238 * allocate a sampling buffer and remaps it into the user address space of the task
2239 */
2240 static int
pfm_smpl_buffer_alloc(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned long rsize,void ** user_vaddr)2241 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2242 {
2243 struct mm_struct *mm = task->mm;
2244 struct vm_area_struct *vma = NULL;
2245 unsigned long size;
2246 void *smpl_buf;
2247
2248
2249 /*
2250 * the fixed header + requested size and align to page boundary
2251 */
2252 size = PAGE_ALIGN(rsize);
2253
2254 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2255
2256 /*
2257 * check requested size to avoid Denial-of-service attacks
2258 * XXX: may have to refine this test
2259 * Check against address space limit.
2260 *
2261 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2262 * return -ENOMEM;
2263 */
2264 if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2265 return -ENOMEM;
2266
2267 /*
2268 * We do the easy to undo allocations first.
2269 *
2270 * pfm_rvmalloc(), clears the buffer, so there is no leak
2271 */
2272 smpl_buf = pfm_rvmalloc(size);
2273 if (smpl_buf == NULL) {
2274 DPRINT(("Can't allocate sampling buffer\n"));
2275 return -ENOMEM;
2276 }
2277
2278 DPRINT(("smpl_buf @%p\n", smpl_buf));
2279
2280 /* allocate vma */
2281 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2282 if (!vma) {
2283 DPRINT(("Cannot allocate vma\n"));
2284 goto error_kmem;
2285 }
2286 INIT_LIST_HEAD(&vma->anon_vma_chain);
2287
2288 /*
2289 * partially initialize the vma for the sampling buffer
2290 */
2291 vma->vm_mm = mm;
2292 vma->vm_file = get_file(filp);
2293 vma->vm_flags = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2294 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2295
2296 /*
2297 * Now we have everything we need and we can initialize
2298 * and connect all the data structures
2299 */
2300
2301 ctx->ctx_smpl_hdr = smpl_buf;
2302 ctx->ctx_smpl_size = size; /* aligned size */
2303
2304 /*
2305 * Let's do the difficult operations next.
2306 *
2307 * now we atomically find some area in the address space and
2308 * remap the buffer in it.
2309 */
2310 down_write(&task->mm->mmap_sem);
2311
2312 /* find some free area in address space, must have mmap sem held */
2313 vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2314 if (IS_ERR_VALUE(vma->vm_start)) {
2315 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2316 up_write(&task->mm->mmap_sem);
2317 goto error;
2318 }
2319 vma->vm_end = vma->vm_start + size;
2320 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2321
2322 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2323
2324 /* can only be applied to current task, need to have the mm semaphore held when called */
2325 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2326 DPRINT(("Can't remap buffer\n"));
2327 up_write(&task->mm->mmap_sem);
2328 goto error;
2329 }
2330
2331 /*
2332 * now insert the vma in the vm list for the process, must be
2333 * done with mmap lock held
2334 */
2335 insert_vm_struct(mm, vma);
2336
2337 vm_stat_account(vma->vm_mm, vma->vm_flags, vma_pages(vma));
2338 up_write(&task->mm->mmap_sem);
2339
2340 /*
2341 * keep track of user level virtual address
2342 */
2343 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2344 *(unsigned long *)user_vaddr = vma->vm_start;
2345
2346 return 0;
2347
2348 error:
2349 kmem_cache_free(vm_area_cachep, vma);
2350 error_kmem:
2351 pfm_rvfree(smpl_buf, size);
2352
2353 return -ENOMEM;
2354 }
2355
2356 /*
2357 * XXX: do something better here
2358 */
2359 static int
pfm_bad_permissions(struct task_struct * task)2360 pfm_bad_permissions(struct task_struct *task)
2361 {
2362 const struct cred *tcred;
2363 kuid_t uid = current_uid();
2364 kgid_t gid = current_gid();
2365 int ret;
2366
2367 rcu_read_lock();
2368 tcred = __task_cred(task);
2369
2370 /* inspired by ptrace_attach() */
2371 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2372 from_kuid(&init_user_ns, uid),
2373 from_kgid(&init_user_ns, gid),
2374 from_kuid(&init_user_ns, tcred->euid),
2375 from_kuid(&init_user_ns, tcred->suid),
2376 from_kuid(&init_user_ns, tcred->uid),
2377 from_kgid(&init_user_ns, tcred->egid),
2378 from_kgid(&init_user_ns, tcred->sgid)));
2379
2380 ret = ((!uid_eq(uid, tcred->euid))
2381 || (!uid_eq(uid, tcred->suid))
2382 || (!uid_eq(uid, tcred->uid))
2383 || (!gid_eq(gid, tcred->egid))
2384 || (!gid_eq(gid, tcred->sgid))
2385 || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2386
2387 rcu_read_unlock();
2388 return ret;
2389 }
2390
2391 static int
pfarg_is_sane(struct task_struct * task,pfarg_context_t * pfx)2392 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2393 {
2394 int ctx_flags;
2395
2396 /* valid signal */
2397
2398 ctx_flags = pfx->ctx_flags;
2399
2400 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2401
2402 /*
2403 * cannot block in this mode
2404 */
2405 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2406 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2407 return -EINVAL;
2408 }
2409 } else {
2410 }
2411 /* probably more to add here */
2412
2413 return 0;
2414 }
2415
2416 static int
pfm_setup_buffer_fmt(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned int ctx_flags,unsigned int cpu,pfarg_context_t * arg)2417 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2418 unsigned int cpu, pfarg_context_t *arg)
2419 {
2420 pfm_buffer_fmt_t *fmt = NULL;
2421 unsigned long size = 0UL;
2422 void *uaddr = NULL;
2423 void *fmt_arg = NULL;
2424 int ret = 0;
2425 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2426
2427 /* invoke and lock buffer format, if found */
2428 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2429 if (fmt == NULL) {
2430 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2431 return -EINVAL;
2432 }
2433
2434 /*
2435 * buffer argument MUST be contiguous to pfarg_context_t
2436 */
2437 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2438
2439 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2440
2441 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2442
2443 if (ret) goto error;
2444
2445 /* link buffer format and context */
2446 ctx->ctx_buf_fmt = fmt;
2447 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2448
2449 /*
2450 * check if buffer format wants to use perfmon buffer allocation/mapping service
2451 */
2452 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2453 if (ret) goto error;
2454
2455 if (size) {
2456 /*
2457 * buffer is always remapped into the caller's address space
2458 */
2459 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2460 if (ret) goto error;
2461
2462 /* keep track of user address of buffer */
2463 arg->ctx_smpl_vaddr = uaddr;
2464 }
2465 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2466
2467 error:
2468 return ret;
2469 }
2470
2471 static void
pfm_reset_pmu_state(pfm_context_t * ctx)2472 pfm_reset_pmu_state(pfm_context_t *ctx)
2473 {
2474 int i;
2475
2476 /*
2477 * install reset values for PMC.
2478 */
2479 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2480 if (PMC_IS_IMPL(i) == 0) continue;
2481 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2482 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2483 }
2484 /*
2485 * PMD registers are set to 0UL when the context in memset()
2486 */
2487
2488 /*
2489 * On context switched restore, we must restore ALL pmc and ALL pmd even
2490 * when they are not actively used by the task. In UP, the incoming process
2491 * may otherwise pick up left over PMC, PMD state from the previous process.
2492 * As opposed to PMD, stale PMC can cause harm to the incoming
2493 * process because they may change what is being measured.
2494 * Therefore, we must systematically reinstall the entire
2495 * PMC state. In SMP, the same thing is possible on the
2496 * same CPU but also on between 2 CPUs.
2497 *
2498 * The problem with PMD is information leaking especially
2499 * to user level when psr.sp=0
2500 *
2501 * There is unfortunately no easy way to avoid this problem
2502 * on either UP or SMP. This definitively slows down the
2503 * pfm_load_regs() function.
2504 */
2505
2506 /*
2507 * bitmask of all PMCs accessible to this context
2508 *
2509 * PMC0 is treated differently.
2510 */
2511 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2512
2513 /*
2514 * bitmask of all PMDs that are accessible to this context
2515 */
2516 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2517
2518 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2519
2520 /*
2521 * useful in case of re-enable after disable
2522 */
2523 ctx->ctx_used_ibrs[0] = 0UL;
2524 ctx->ctx_used_dbrs[0] = 0UL;
2525 }
2526
2527 static int
pfm_ctx_getsize(void * arg,size_t * sz)2528 pfm_ctx_getsize(void *arg, size_t *sz)
2529 {
2530 pfarg_context_t *req = (pfarg_context_t *)arg;
2531 pfm_buffer_fmt_t *fmt;
2532
2533 *sz = 0;
2534
2535 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2536
2537 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2538 if (fmt == NULL) {
2539 DPRINT(("cannot find buffer format\n"));
2540 return -EINVAL;
2541 }
2542 /* get just enough to copy in user parameters */
2543 *sz = fmt->fmt_arg_size;
2544 DPRINT(("arg_size=%lu\n", *sz));
2545
2546 return 0;
2547 }
2548
2549
2550
2551 /*
2552 * cannot attach if :
2553 * - kernel task
2554 * - task not owned by caller
2555 * - task incompatible with context mode
2556 */
2557 static int
pfm_task_incompatible(pfm_context_t * ctx,struct task_struct * task)2558 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2559 {
2560 /*
2561 * no kernel task or task not owner by caller
2562 */
2563 if (task->mm == NULL) {
2564 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2565 return -EPERM;
2566 }
2567 if (pfm_bad_permissions(task)) {
2568 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
2569 return -EPERM;
2570 }
2571 /*
2572 * cannot block in self-monitoring mode
2573 */
2574 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2575 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2576 return -EINVAL;
2577 }
2578
2579 if (task->exit_state == EXIT_ZOMBIE) {
2580 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
2581 return -EBUSY;
2582 }
2583
2584 /*
2585 * always ok for self
2586 */
2587 if (task == current) return 0;
2588
2589 if (!task_is_stopped_or_traced(task)) {
2590 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2591 return -EBUSY;
2592 }
2593 /*
2594 * make sure the task is off any CPU
2595 */
2596 wait_task_inactive(task, 0);
2597
2598 /* more to come... */
2599
2600 return 0;
2601 }
2602
2603 static int
pfm_get_task(pfm_context_t * ctx,pid_t pid,struct task_struct ** task)2604 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2605 {
2606 struct task_struct *p = current;
2607 int ret;
2608
2609 /* XXX: need to add more checks here */
2610 if (pid < 2) return -EPERM;
2611
2612 if (pid != task_pid_vnr(current)) {
2613
2614 read_lock(&tasklist_lock);
2615
2616 p = find_task_by_vpid(pid);
2617
2618 /* make sure task cannot go away while we operate on it */
2619 if (p) get_task_struct(p);
2620
2621 read_unlock(&tasklist_lock);
2622
2623 if (p == NULL) return -ESRCH;
2624 }
2625
2626 ret = pfm_task_incompatible(ctx, p);
2627 if (ret == 0) {
2628 *task = p;
2629 } else if (p != current) {
2630 pfm_put_task(p);
2631 }
2632 return ret;
2633 }
2634
2635
2636
2637 static int
pfm_context_create(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2638 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2639 {
2640 pfarg_context_t *req = (pfarg_context_t *)arg;
2641 struct file *filp;
2642 struct path path;
2643 int ctx_flags;
2644 int fd;
2645 int ret;
2646
2647 /* let's check the arguments first */
2648 ret = pfarg_is_sane(current, req);
2649 if (ret < 0)
2650 return ret;
2651
2652 ctx_flags = req->ctx_flags;
2653
2654 ret = -ENOMEM;
2655
2656 fd = get_unused_fd_flags(0);
2657 if (fd < 0)
2658 return fd;
2659
2660 ctx = pfm_context_alloc(ctx_flags);
2661 if (!ctx)
2662 goto error;
2663
2664 filp = pfm_alloc_file(ctx);
2665 if (IS_ERR(filp)) {
2666 ret = PTR_ERR(filp);
2667 goto error_file;
2668 }
2669
2670 req->ctx_fd = ctx->ctx_fd = fd;
2671
2672 /*
2673 * does the user want to sample?
2674 */
2675 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2676 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2677 if (ret)
2678 goto buffer_error;
2679 }
2680
2681 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2682 ctx,
2683 ctx_flags,
2684 ctx->ctx_fl_system,
2685 ctx->ctx_fl_block,
2686 ctx->ctx_fl_excl_idle,
2687 ctx->ctx_fl_no_msg,
2688 ctx->ctx_fd));
2689
2690 /*
2691 * initialize soft PMU state
2692 */
2693 pfm_reset_pmu_state(ctx);
2694
2695 fd_install(fd, filp);
2696
2697 return 0;
2698
2699 buffer_error:
2700 path = filp->f_path;
2701 put_filp(filp);
2702 path_put(&path);
2703
2704 if (ctx->ctx_buf_fmt) {
2705 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2706 }
2707 error_file:
2708 pfm_context_free(ctx);
2709
2710 error:
2711 put_unused_fd(fd);
2712 return ret;
2713 }
2714
2715 static inline unsigned long
pfm_new_counter_value(pfm_counter_t * reg,int is_long_reset)2716 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2717 {
2718 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2719 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2720 extern unsigned long carta_random32 (unsigned long seed);
2721
2722 if (reg->flags & PFM_REGFL_RANDOM) {
2723 new_seed = carta_random32(old_seed);
2724 val -= (old_seed & mask); /* counter values are negative numbers! */
2725 if ((mask >> 32) != 0)
2726 /* construct a full 64-bit random value: */
2727 new_seed |= carta_random32(old_seed >> 32) << 32;
2728 reg->seed = new_seed;
2729 }
2730 reg->lval = val;
2731 return val;
2732 }
2733
2734 static void
pfm_reset_regs_masked(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2735 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2736 {
2737 unsigned long mask = ovfl_regs[0];
2738 unsigned long reset_others = 0UL;
2739 unsigned long val;
2740 int i;
2741
2742 /*
2743 * now restore reset value on sampling overflowed counters
2744 */
2745 mask >>= PMU_FIRST_COUNTER;
2746 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2747
2748 if ((mask & 0x1UL) == 0UL) continue;
2749
2750 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2751 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2752
2753 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2754 }
2755
2756 /*
2757 * Now take care of resetting the other registers
2758 */
2759 for(i = 0; reset_others; i++, reset_others >>= 1) {
2760
2761 if ((reset_others & 0x1) == 0) continue;
2762
2763 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2764
2765 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2766 is_long_reset ? "long" : "short", i, val));
2767 }
2768 }
2769
2770 static void
pfm_reset_regs(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2771 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2772 {
2773 unsigned long mask = ovfl_regs[0];
2774 unsigned long reset_others = 0UL;
2775 unsigned long val;
2776 int i;
2777
2778 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2779
2780 if (ctx->ctx_state == PFM_CTX_MASKED) {
2781 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2782 return;
2783 }
2784
2785 /*
2786 * now restore reset value on sampling overflowed counters
2787 */
2788 mask >>= PMU_FIRST_COUNTER;
2789 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2790
2791 if ((mask & 0x1UL) == 0UL) continue;
2792
2793 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2794 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2795
2796 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2797
2798 pfm_write_soft_counter(ctx, i, val);
2799 }
2800
2801 /*
2802 * Now take care of resetting the other registers
2803 */
2804 for(i = 0; reset_others; i++, reset_others >>= 1) {
2805
2806 if ((reset_others & 0x1) == 0) continue;
2807
2808 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2809
2810 if (PMD_IS_COUNTING(i)) {
2811 pfm_write_soft_counter(ctx, i, val);
2812 } else {
2813 ia64_set_pmd(i, val);
2814 }
2815 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2816 is_long_reset ? "long" : "short", i, val));
2817 }
2818 ia64_srlz_d();
2819 }
2820
2821 static int
pfm_write_pmcs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2822 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2823 {
2824 struct task_struct *task;
2825 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2826 unsigned long value, pmc_pm;
2827 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2828 unsigned int cnum, reg_flags, flags, pmc_type;
2829 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2830 int is_monitor, is_counting, state;
2831 int ret = -EINVAL;
2832 pfm_reg_check_t wr_func;
2833 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2834
2835 state = ctx->ctx_state;
2836 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2837 is_system = ctx->ctx_fl_system;
2838 task = ctx->ctx_task;
2839 impl_pmds = pmu_conf->impl_pmds[0];
2840
2841 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2842
2843 if (is_loaded) {
2844 /*
2845 * In system wide and when the context is loaded, access can only happen
2846 * when the caller is running on the CPU being monitored by the session.
2847 * It does not have to be the owner (ctx_task) of the context per se.
2848 */
2849 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2850 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2851 return -EBUSY;
2852 }
2853 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2854 }
2855 expert_mode = pfm_sysctl.expert_mode;
2856
2857 for (i = 0; i < count; i++, req++) {
2858
2859 cnum = req->reg_num;
2860 reg_flags = req->reg_flags;
2861 value = req->reg_value;
2862 smpl_pmds = req->reg_smpl_pmds[0];
2863 reset_pmds = req->reg_reset_pmds[0];
2864 flags = 0;
2865
2866
2867 if (cnum >= PMU_MAX_PMCS) {
2868 DPRINT(("pmc%u is invalid\n", cnum));
2869 goto error;
2870 }
2871
2872 pmc_type = pmu_conf->pmc_desc[cnum].type;
2873 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2874 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2875 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2876
2877 /*
2878 * we reject all non implemented PMC as well
2879 * as attempts to modify PMC[0-3] which are used
2880 * as status registers by the PMU
2881 */
2882 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2883 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2884 goto error;
2885 }
2886 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2887 /*
2888 * If the PMC is a monitor, then if the value is not the default:
2889 * - system-wide session: PMCx.pm=1 (privileged monitor)
2890 * - per-task : PMCx.pm=0 (user monitor)
2891 */
2892 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2893 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2894 cnum,
2895 pmc_pm,
2896 is_system));
2897 goto error;
2898 }
2899
2900 if (is_counting) {
2901 /*
2902 * enforce generation of overflow interrupt. Necessary on all
2903 * CPUs.
2904 */
2905 value |= 1 << PMU_PMC_OI;
2906
2907 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2908 flags |= PFM_REGFL_OVFL_NOTIFY;
2909 }
2910
2911 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2912
2913 /* verify validity of smpl_pmds */
2914 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2915 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2916 goto error;
2917 }
2918
2919 /* verify validity of reset_pmds */
2920 if ((reset_pmds & impl_pmds) != reset_pmds) {
2921 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2922 goto error;
2923 }
2924 } else {
2925 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2926 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2927 goto error;
2928 }
2929 /* eventid on non-counting monitors are ignored */
2930 }
2931
2932 /*
2933 * execute write checker, if any
2934 */
2935 if (likely(expert_mode == 0 && wr_func)) {
2936 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2937 if (ret) goto error;
2938 ret = -EINVAL;
2939 }
2940
2941 /*
2942 * no error on this register
2943 */
2944 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2945
2946 /*
2947 * Now we commit the changes to the software state
2948 */
2949
2950 /*
2951 * update overflow information
2952 */
2953 if (is_counting) {
2954 /*
2955 * full flag update each time a register is programmed
2956 */
2957 ctx->ctx_pmds[cnum].flags = flags;
2958
2959 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2960 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2961 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2962
2963 /*
2964 * Mark all PMDS to be accessed as used.
2965 *
2966 * We do not keep track of PMC because we have to
2967 * systematically restore ALL of them.
2968 *
2969 * We do not update the used_monitors mask, because
2970 * if we have not programmed them, then will be in
2971 * a quiescent state, therefore we will not need to
2972 * mask/restore then when context is MASKED.
2973 */
2974 CTX_USED_PMD(ctx, reset_pmds);
2975 CTX_USED_PMD(ctx, smpl_pmds);
2976 /*
2977 * make sure we do not try to reset on
2978 * restart because we have established new values
2979 */
2980 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2981 }
2982 /*
2983 * Needed in case the user does not initialize the equivalent
2984 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2985 * possible leak here.
2986 */
2987 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2988
2989 /*
2990 * keep track of the monitor PMC that we are using.
2991 * we save the value of the pmc in ctx_pmcs[] and if
2992 * the monitoring is not stopped for the context we also
2993 * place it in the saved state area so that it will be
2994 * picked up later by the context switch code.
2995 *
2996 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2997 *
2998 * The value in th_pmcs[] may be modified on overflow, i.e., when
2999 * monitoring needs to be stopped.
3000 */
3001 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3002
3003 /*
3004 * update context state
3005 */
3006 ctx->ctx_pmcs[cnum] = value;
3007
3008 if (is_loaded) {
3009 /*
3010 * write thread state
3011 */
3012 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3013
3014 /*
3015 * write hardware register if we can
3016 */
3017 if (can_access_pmu) {
3018 ia64_set_pmc(cnum, value);
3019 }
3020 #ifdef CONFIG_SMP
3021 else {
3022 /*
3023 * per-task SMP only here
3024 *
3025 * we are guaranteed that the task is not running on the other CPU,
3026 * we indicate that this PMD will need to be reloaded if the task
3027 * is rescheduled on the CPU it ran last on.
3028 */
3029 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3030 }
3031 #endif
3032 }
3033
3034 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3035 cnum,
3036 value,
3037 is_loaded,
3038 can_access_pmu,
3039 flags,
3040 ctx->ctx_all_pmcs[0],
3041 ctx->ctx_used_pmds[0],
3042 ctx->ctx_pmds[cnum].eventid,
3043 smpl_pmds,
3044 reset_pmds,
3045 ctx->ctx_reload_pmcs[0],
3046 ctx->ctx_used_monitors[0],
3047 ctx->ctx_ovfl_regs[0]));
3048 }
3049
3050 /*
3051 * make sure the changes are visible
3052 */
3053 if (can_access_pmu) ia64_srlz_d();
3054
3055 return 0;
3056 error:
3057 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3058 return ret;
3059 }
3060
3061 static int
pfm_write_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3062 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3063 {
3064 struct task_struct *task;
3065 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3066 unsigned long value, hw_value, ovfl_mask;
3067 unsigned int cnum;
3068 int i, can_access_pmu = 0, state;
3069 int is_counting, is_loaded, is_system, expert_mode;
3070 int ret = -EINVAL;
3071 pfm_reg_check_t wr_func;
3072
3073
3074 state = ctx->ctx_state;
3075 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3076 is_system = ctx->ctx_fl_system;
3077 ovfl_mask = pmu_conf->ovfl_val;
3078 task = ctx->ctx_task;
3079
3080 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3081
3082 /*
3083 * on both UP and SMP, we can only write to the PMC when the task is
3084 * the owner of the local PMU.
3085 */
3086 if (likely(is_loaded)) {
3087 /*
3088 * In system wide and when the context is loaded, access can only happen
3089 * when the caller is running on the CPU being monitored by the session.
3090 * It does not have to be the owner (ctx_task) of the context per se.
3091 */
3092 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3093 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3094 return -EBUSY;
3095 }
3096 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3097 }
3098 expert_mode = pfm_sysctl.expert_mode;
3099
3100 for (i = 0; i < count; i++, req++) {
3101
3102 cnum = req->reg_num;
3103 value = req->reg_value;
3104
3105 if (!PMD_IS_IMPL(cnum)) {
3106 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3107 goto abort_mission;
3108 }
3109 is_counting = PMD_IS_COUNTING(cnum);
3110 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3111
3112 /*
3113 * execute write checker, if any
3114 */
3115 if (unlikely(expert_mode == 0 && wr_func)) {
3116 unsigned long v = value;
3117
3118 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3119 if (ret) goto abort_mission;
3120
3121 value = v;
3122 ret = -EINVAL;
3123 }
3124
3125 /*
3126 * no error on this register
3127 */
3128 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3129
3130 /*
3131 * now commit changes to software state
3132 */
3133 hw_value = value;
3134
3135 /*
3136 * update virtualized (64bits) counter
3137 */
3138 if (is_counting) {
3139 /*
3140 * write context state
3141 */
3142 ctx->ctx_pmds[cnum].lval = value;
3143
3144 /*
3145 * when context is load we use the split value
3146 */
3147 if (is_loaded) {
3148 hw_value = value & ovfl_mask;
3149 value = value & ~ovfl_mask;
3150 }
3151 }
3152 /*
3153 * update reset values (not just for counters)
3154 */
3155 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3156 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3157
3158 /*
3159 * update randomization parameters (not just for counters)
3160 */
3161 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3162 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3163
3164 /*
3165 * update context value
3166 */
3167 ctx->ctx_pmds[cnum].val = value;
3168
3169 /*
3170 * Keep track of what we use
3171 *
3172 * We do not keep track of PMC because we have to
3173 * systematically restore ALL of them.
3174 */
3175 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3176
3177 /*
3178 * mark this PMD register used as well
3179 */
3180 CTX_USED_PMD(ctx, RDEP(cnum));
3181
3182 /*
3183 * make sure we do not try to reset on
3184 * restart because we have established new values
3185 */
3186 if (is_counting && state == PFM_CTX_MASKED) {
3187 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3188 }
3189
3190 if (is_loaded) {
3191 /*
3192 * write thread state
3193 */
3194 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3195
3196 /*
3197 * write hardware register if we can
3198 */
3199 if (can_access_pmu) {
3200 ia64_set_pmd(cnum, hw_value);
3201 } else {
3202 #ifdef CONFIG_SMP
3203 /*
3204 * we are guaranteed that the task is not running on the other CPU,
3205 * we indicate that this PMD will need to be reloaded if the task
3206 * is rescheduled on the CPU it ran last on.
3207 */
3208 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3209 #endif
3210 }
3211 }
3212
3213 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3214 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3215 cnum,
3216 value,
3217 is_loaded,
3218 can_access_pmu,
3219 hw_value,
3220 ctx->ctx_pmds[cnum].val,
3221 ctx->ctx_pmds[cnum].short_reset,
3222 ctx->ctx_pmds[cnum].long_reset,
3223 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3224 ctx->ctx_pmds[cnum].seed,
3225 ctx->ctx_pmds[cnum].mask,
3226 ctx->ctx_used_pmds[0],
3227 ctx->ctx_pmds[cnum].reset_pmds[0],
3228 ctx->ctx_reload_pmds[0],
3229 ctx->ctx_all_pmds[0],
3230 ctx->ctx_ovfl_regs[0]));
3231 }
3232
3233 /*
3234 * make changes visible
3235 */
3236 if (can_access_pmu) ia64_srlz_d();
3237
3238 return 0;
3239
3240 abort_mission:
3241 /*
3242 * for now, we have only one possibility for error
3243 */
3244 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3245 return ret;
3246 }
3247
3248 /*
3249 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3250 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3251 * interrupt is delivered during the call, it will be kept pending until we leave, making
3252 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3253 * guaranteed to return consistent data to the user, it may simply be old. It is not
3254 * trivial to treat the overflow while inside the call because you may end up in
3255 * some module sampling buffer code causing deadlocks.
3256 */
3257 static int
pfm_read_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3258 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3259 {
3260 struct task_struct *task;
3261 unsigned long val = 0UL, lval, ovfl_mask, sval;
3262 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3263 unsigned int cnum, reg_flags = 0;
3264 int i, can_access_pmu = 0, state;
3265 int is_loaded, is_system, is_counting, expert_mode;
3266 int ret = -EINVAL;
3267 pfm_reg_check_t rd_func;
3268
3269 /*
3270 * access is possible when loaded only for
3271 * self-monitoring tasks or in UP mode
3272 */
3273
3274 state = ctx->ctx_state;
3275 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3276 is_system = ctx->ctx_fl_system;
3277 ovfl_mask = pmu_conf->ovfl_val;
3278 task = ctx->ctx_task;
3279
3280 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3281
3282 if (likely(is_loaded)) {
3283 /*
3284 * In system wide and when the context is loaded, access can only happen
3285 * when the caller is running on the CPU being monitored by the session.
3286 * It does not have to be the owner (ctx_task) of the context per se.
3287 */
3288 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3289 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3290 return -EBUSY;
3291 }
3292 /*
3293 * this can be true when not self-monitoring only in UP
3294 */
3295 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3296
3297 if (can_access_pmu) ia64_srlz_d();
3298 }
3299 expert_mode = pfm_sysctl.expert_mode;
3300
3301 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3302 is_loaded,
3303 can_access_pmu,
3304 state));
3305
3306 /*
3307 * on both UP and SMP, we can only read the PMD from the hardware register when
3308 * the task is the owner of the local PMU.
3309 */
3310
3311 for (i = 0; i < count; i++, req++) {
3312
3313 cnum = req->reg_num;
3314 reg_flags = req->reg_flags;
3315
3316 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3317 /*
3318 * we can only read the register that we use. That includes
3319 * the one we explicitly initialize AND the one we want included
3320 * in the sampling buffer (smpl_regs).
3321 *
3322 * Having this restriction allows optimization in the ctxsw routine
3323 * without compromising security (leaks)
3324 */
3325 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3326
3327 sval = ctx->ctx_pmds[cnum].val;
3328 lval = ctx->ctx_pmds[cnum].lval;
3329 is_counting = PMD_IS_COUNTING(cnum);
3330
3331 /*
3332 * If the task is not the current one, then we check if the
3333 * PMU state is still in the local live register due to lazy ctxsw.
3334 * If true, then we read directly from the registers.
3335 */
3336 if (can_access_pmu){
3337 val = ia64_get_pmd(cnum);
3338 } else {
3339 /*
3340 * context has been saved
3341 * if context is zombie, then task does not exist anymore.
3342 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3343 */
3344 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3345 }
3346 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3347
3348 if (is_counting) {
3349 /*
3350 * XXX: need to check for overflow when loaded
3351 */
3352 val &= ovfl_mask;
3353 val += sval;
3354 }
3355
3356 /*
3357 * execute read checker, if any
3358 */
3359 if (unlikely(expert_mode == 0 && rd_func)) {
3360 unsigned long v = val;
3361 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3362 if (ret) goto error;
3363 val = v;
3364 ret = -EINVAL;
3365 }
3366
3367 PFM_REG_RETFLAG_SET(reg_flags, 0);
3368
3369 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3370
3371 /*
3372 * update register return value, abort all if problem during copy.
3373 * we only modify the reg_flags field. no check mode is fine because
3374 * access has been verified upfront in sys_perfmonctl().
3375 */
3376 req->reg_value = val;
3377 req->reg_flags = reg_flags;
3378 req->reg_last_reset_val = lval;
3379 }
3380
3381 return 0;
3382
3383 error:
3384 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3385 return ret;
3386 }
3387
3388 int
pfm_mod_write_pmcs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3389 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3390 {
3391 pfm_context_t *ctx;
3392
3393 if (req == NULL) return -EINVAL;
3394
3395 ctx = GET_PMU_CTX();
3396
3397 if (ctx == NULL) return -EINVAL;
3398
3399 /*
3400 * for now limit to current task, which is enough when calling
3401 * from overflow handler
3402 */
3403 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3404
3405 return pfm_write_pmcs(ctx, req, nreq, regs);
3406 }
3407 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3408
3409 int
pfm_mod_read_pmds(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3410 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3411 {
3412 pfm_context_t *ctx;
3413
3414 if (req == NULL) return -EINVAL;
3415
3416 ctx = GET_PMU_CTX();
3417
3418 if (ctx == NULL) return -EINVAL;
3419
3420 /*
3421 * for now limit to current task, which is enough when calling
3422 * from overflow handler
3423 */
3424 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3425
3426 return pfm_read_pmds(ctx, req, nreq, regs);
3427 }
3428 EXPORT_SYMBOL(pfm_mod_read_pmds);
3429
3430 /*
3431 * Only call this function when a process it trying to
3432 * write the debug registers (reading is always allowed)
3433 */
3434 int
pfm_use_debug_registers(struct task_struct * task)3435 pfm_use_debug_registers(struct task_struct *task)
3436 {
3437 pfm_context_t *ctx = task->thread.pfm_context;
3438 unsigned long flags;
3439 int ret = 0;
3440
3441 if (pmu_conf->use_rr_dbregs == 0) return 0;
3442
3443 DPRINT(("called for [%d]\n", task_pid_nr(task)));
3444
3445 /*
3446 * do it only once
3447 */
3448 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3449
3450 /*
3451 * Even on SMP, we do not need to use an atomic here because
3452 * the only way in is via ptrace() and this is possible only when the
3453 * process is stopped. Even in the case where the ctxsw out is not totally
3454 * completed by the time we come here, there is no way the 'stopped' process
3455 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3456 * So this is always safe.
3457 */
3458 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3459
3460 LOCK_PFS(flags);
3461
3462 /*
3463 * We cannot allow setting breakpoints when system wide monitoring
3464 * sessions are using the debug registers.
3465 */
3466 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3467 ret = -1;
3468 else
3469 pfm_sessions.pfs_ptrace_use_dbregs++;
3470
3471 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3472 pfm_sessions.pfs_ptrace_use_dbregs,
3473 pfm_sessions.pfs_sys_use_dbregs,
3474 task_pid_nr(task), ret));
3475
3476 UNLOCK_PFS(flags);
3477
3478 return ret;
3479 }
3480
3481 /*
3482 * This function is called for every task that exits with the
3483 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3484 * able to use the debug registers for debugging purposes via
3485 * ptrace(). Therefore we know it was not using them for
3486 * performance monitoring, so we only decrement the number
3487 * of "ptraced" debug register users to keep the count up to date
3488 */
3489 int
pfm_release_debug_registers(struct task_struct * task)3490 pfm_release_debug_registers(struct task_struct *task)
3491 {
3492 unsigned long flags;
3493 int ret;
3494
3495 if (pmu_conf->use_rr_dbregs == 0) return 0;
3496
3497 LOCK_PFS(flags);
3498 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3499 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3500 ret = -1;
3501 } else {
3502 pfm_sessions.pfs_ptrace_use_dbregs--;
3503 ret = 0;
3504 }
3505 UNLOCK_PFS(flags);
3506
3507 return ret;
3508 }
3509
3510 static int
pfm_restart(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3511 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3512 {
3513 struct task_struct *task;
3514 pfm_buffer_fmt_t *fmt;
3515 pfm_ovfl_ctrl_t rst_ctrl;
3516 int state, is_system;
3517 int ret = 0;
3518
3519 state = ctx->ctx_state;
3520 fmt = ctx->ctx_buf_fmt;
3521 is_system = ctx->ctx_fl_system;
3522 task = PFM_CTX_TASK(ctx);
3523
3524 switch(state) {
3525 case PFM_CTX_MASKED:
3526 break;
3527 case PFM_CTX_LOADED:
3528 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3529 /* fall through */
3530 case PFM_CTX_UNLOADED:
3531 case PFM_CTX_ZOMBIE:
3532 DPRINT(("invalid state=%d\n", state));
3533 return -EBUSY;
3534 default:
3535 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3536 return -EINVAL;
3537 }
3538
3539 /*
3540 * In system wide and when the context is loaded, access can only happen
3541 * when the caller is running on the CPU being monitored by the session.
3542 * It does not have to be the owner (ctx_task) of the context per se.
3543 */
3544 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3545 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3546 return -EBUSY;
3547 }
3548
3549 /* sanity check */
3550 if (unlikely(task == NULL)) {
3551 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3552 return -EINVAL;
3553 }
3554
3555 if (task == current || is_system) {
3556
3557 fmt = ctx->ctx_buf_fmt;
3558
3559 DPRINT(("restarting self %d ovfl=0x%lx\n",
3560 task_pid_nr(task),
3561 ctx->ctx_ovfl_regs[0]));
3562
3563 if (CTX_HAS_SMPL(ctx)) {
3564
3565 prefetch(ctx->ctx_smpl_hdr);
3566
3567 rst_ctrl.bits.mask_monitoring = 0;
3568 rst_ctrl.bits.reset_ovfl_pmds = 0;
3569
3570 if (state == PFM_CTX_LOADED)
3571 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3572 else
3573 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3574 } else {
3575 rst_ctrl.bits.mask_monitoring = 0;
3576 rst_ctrl.bits.reset_ovfl_pmds = 1;
3577 }
3578
3579 if (ret == 0) {
3580 if (rst_ctrl.bits.reset_ovfl_pmds)
3581 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3582
3583 if (rst_ctrl.bits.mask_monitoring == 0) {
3584 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3585
3586 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3587 } else {
3588 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3589
3590 // cannot use pfm_stop_monitoring(task, regs);
3591 }
3592 }
3593 /*
3594 * clear overflowed PMD mask to remove any stale information
3595 */
3596 ctx->ctx_ovfl_regs[0] = 0UL;
3597
3598 /*
3599 * back to LOADED state
3600 */
3601 ctx->ctx_state = PFM_CTX_LOADED;
3602
3603 /*
3604 * XXX: not really useful for self monitoring
3605 */
3606 ctx->ctx_fl_can_restart = 0;
3607
3608 return 0;
3609 }
3610
3611 /*
3612 * restart another task
3613 */
3614
3615 /*
3616 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3617 * one is seen by the task.
3618 */
3619 if (state == PFM_CTX_MASKED) {
3620 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3621 /*
3622 * will prevent subsequent restart before this one is
3623 * seen by other task
3624 */
3625 ctx->ctx_fl_can_restart = 0;
3626 }
3627
3628 /*
3629 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3630 * the task is blocked or on its way to block. That's the normal
3631 * restart path. If the monitoring is not masked, then the task
3632 * can be actively monitoring and we cannot directly intervene.
3633 * Therefore we use the trap mechanism to catch the task and
3634 * force it to reset the buffer/reset PMDs.
3635 *
3636 * if non-blocking, then we ensure that the task will go into
3637 * pfm_handle_work() before returning to user mode.
3638 *
3639 * We cannot explicitly reset another task, it MUST always
3640 * be done by the task itself. This works for system wide because
3641 * the tool that is controlling the session is logically doing
3642 * "self-monitoring".
3643 */
3644 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3645 DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3646 complete(&ctx->ctx_restart_done);
3647 } else {
3648 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3649
3650 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3651
3652 PFM_SET_WORK_PENDING(task, 1);
3653
3654 set_notify_resume(task);
3655
3656 /*
3657 * XXX: send reschedule if task runs on another CPU
3658 */
3659 }
3660 return 0;
3661 }
3662
3663 static int
pfm_debug(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3664 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3665 {
3666 unsigned int m = *(unsigned int *)arg;
3667
3668 pfm_sysctl.debug = m == 0 ? 0 : 1;
3669
3670 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3671
3672 if (m == 0) {
3673 memset(pfm_stats, 0, sizeof(pfm_stats));
3674 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3675 }
3676 return 0;
3677 }
3678
3679 /*
3680 * arg can be NULL and count can be zero for this function
3681 */
3682 static int
pfm_write_ibr_dbr(int mode,pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3683 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3684 {
3685 struct thread_struct *thread = NULL;
3686 struct task_struct *task;
3687 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3688 unsigned long flags;
3689 dbreg_t dbreg;
3690 unsigned int rnum;
3691 int first_time;
3692 int ret = 0, state;
3693 int i, can_access_pmu = 0;
3694 int is_system, is_loaded;
3695
3696 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3697
3698 state = ctx->ctx_state;
3699 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3700 is_system = ctx->ctx_fl_system;
3701 task = ctx->ctx_task;
3702
3703 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3704
3705 /*
3706 * on both UP and SMP, we can only write to the PMC when the task is
3707 * the owner of the local PMU.
3708 */
3709 if (is_loaded) {
3710 thread = &task->thread;
3711 /*
3712 * In system wide and when the context is loaded, access can only happen
3713 * when the caller is running on the CPU being monitored by the session.
3714 * It does not have to be the owner (ctx_task) of the context per se.
3715 */
3716 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3717 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3718 return -EBUSY;
3719 }
3720 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3721 }
3722
3723 /*
3724 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3725 * ensuring that no real breakpoint can be installed via this call.
3726 *
3727 * IMPORTANT: regs can be NULL in this function
3728 */
3729
3730 first_time = ctx->ctx_fl_using_dbreg == 0;
3731
3732 /*
3733 * don't bother if we are loaded and task is being debugged
3734 */
3735 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3736 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3737 return -EBUSY;
3738 }
3739
3740 /*
3741 * check for debug registers in system wide mode
3742 *
3743 * If though a check is done in pfm_context_load(),
3744 * we must repeat it here, in case the registers are
3745 * written after the context is loaded
3746 */
3747 if (is_loaded) {
3748 LOCK_PFS(flags);
3749
3750 if (first_time && is_system) {
3751 if (pfm_sessions.pfs_ptrace_use_dbregs)
3752 ret = -EBUSY;
3753 else
3754 pfm_sessions.pfs_sys_use_dbregs++;
3755 }
3756 UNLOCK_PFS(flags);
3757 }
3758
3759 if (ret != 0) return ret;
3760
3761 /*
3762 * mark ourself as user of the debug registers for
3763 * perfmon purposes.
3764 */
3765 ctx->ctx_fl_using_dbreg = 1;
3766
3767 /*
3768 * clear hardware registers to make sure we don't
3769 * pick up stale state.
3770 *
3771 * for a system wide session, we do not use
3772 * thread.dbr, thread.ibr because this process
3773 * never leaves the current CPU and the state
3774 * is shared by all processes running on it
3775 */
3776 if (first_time && can_access_pmu) {
3777 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3778 for (i=0; i < pmu_conf->num_ibrs; i++) {
3779 ia64_set_ibr(i, 0UL);
3780 ia64_dv_serialize_instruction();
3781 }
3782 ia64_srlz_i();
3783 for (i=0; i < pmu_conf->num_dbrs; i++) {
3784 ia64_set_dbr(i, 0UL);
3785 ia64_dv_serialize_data();
3786 }
3787 ia64_srlz_d();
3788 }
3789
3790 /*
3791 * Now install the values into the registers
3792 */
3793 for (i = 0; i < count; i++, req++) {
3794
3795 rnum = req->dbreg_num;
3796 dbreg.val = req->dbreg_value;
3797
3798 ret = -EINVAL;
3799
3800 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3801 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3802 rnum, dbreg.val, mode, i, count));
3803
3804 goto abort_mission;
3805 }
3806
3807 /*
3808 * make sure we do not install enabled breakpoint
3809 */
3810 if (rnum & 0x1) {
3811 if (mode == PFM_CODE_RR)
3812 dbreg.ibr.ibr_x = 0;
3813 else
3814 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3815 }
3816
3817 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3818
3819 /*
3820 * Debug registers, just like PMC, can only be modified
3821 * by a kernel call. Moreover, perfmon() access to those
3822 * registers are centralized in this routine. The hardware
3823 * does not modify the value of these registers, therefore,
3824 * if we save them as they are written, we can avoid having
3825 * to save them on context switch out. This is made possible
3826 * by the fact that when perfmon uses debug registers, ptrace()
3827 * won't be able to modify them concurrently.
3828 */
3829 if (mode == PFM_CODE_RR) {
3830 CTX_USED_IBR(ctx, rnum);
3831
3832 if (can_access_pmu) {
3833 ia64_set_ibr(rnum, dbreg.val);
3834 ia64_dv_serialize_instruction();
3835 }
3836
3837 ctx->ctx_ibrs[rnum] = dbreg.val;
3838
3839 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3840 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3841 } else {
3842 CTX_USED_DBR(ctx, rnum);
3843
3844 if (can_access_pmu) {
3845 ia64_set_dbr(rnum, dbreg.val);
3846 ia64_dv_serialize_data();
3847 }
3848 ctx->ctx_dbrs[rnum] = dbreg.val;
3849
3850 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3851 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3852 }
3853 }
3854
3855 return 0;
3856
3857 abort_mission:
3858 /*
3859 * in case it was our first attempt, we undo the global modifications
3860 */
3861 if (first_time) {
3862 LOCK_PFS(flags);
3863 if (ctx->ctx_fl_system) {
3864 pfm_sessions.pfs_sys_use_dbregs--;
3865 }
3866 UNLOCK_PFS(flags);
3867 ctx->ctx_fl_using_dbreg = 0;
3868 }
3869 /*
3870 * install error return flag
3871 */
3872 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3873
3874 return ret;
3875 }
3876
3877 static int
pfm_write_ibrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3878 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3879 {
3880 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3881 }
3882
3883 static int
pfm_write_dbrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3884 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3885 {
3886 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3887 }
3888
3889 int
pfm_mod_write_ibrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3890 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3891 {
3892 pfm_context_t *ctx;
3893
3894 if (req == NULL) return -EINVAL;
3895
3896 ctx = GET_PMU_CTX();
3897
3898 if (ctx == NULL) return -EINVAL;
3899
3900 /*
3901 * for now limit to current task, which is enough when calling
3902 * from overflow handler
3903 */
3904 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3905
3906 return pfm_write_ibrs(ctx, req, nreq, regs);
3907 }
3908 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3909
3910 int
pfm_mod_write_dbrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3911 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3912 {
3913 pfm_context_t *ctx;
3914
3915 if (req == NULL) return -EINVAL;
3916
3917 ctx = GET_PMU_CTX();
3918
3919 if (ctx == NULL) return -EINVAL;
3920
3921 /*
3922 * for now limit to current task, which is enough when calling
3923 * from overflow handler
3924 */
3925 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3926
3927 return pfm_write_dbrs(ctx, req, nreq, regs);
3928 }
3929 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3930
3931
3932 static int
pfm_get_features(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3933 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3934 {
3935 pfarg_features_t *req = (pfarg_features_t *)arg;
3936
3937 req->ft_version = PFM_VERSION;
3938 return 0;
3939 }
3940
3941 static int
pfm_stop(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3942 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3943 {
3944 struct pt_regs *tregs;
3945 struct task_struct *task = PFM_CTX_TASK(ctx);
3946 int state, is_system;
3947
3948 state = ctx->ctx_state;
3949 is_system = ctx->ctx_fl_system;
3950
3951 /*
3952 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3953 */
3954 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3955
3956 /*
3957 * In system wide and when the context is loaded, access can only happen
3958 * when the caller is running on the CPU being monitored by the session.
3959 * It does not have to be the owner (ctx_task) of the context per se.
3960 */
3961 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3962 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3963 return -EBUSY;
3964 }
3965 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3966 task_pid_nr(PFM_CTX_TASK(ctx)),
3967 state,
3968 is_system));
3969 /*
3970 * in system mode, we need to update the PMU directly
3971 * and the user level state of the caller, which may not
3972 * necessarily be the creator of the context.
3973 */
3974 if (is_system) {
3975 /*
3976 * Update local PMU first
3977 *
3978 * disable dcr pp
3979 */
3980 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3981 ia64_srlz_i();
3982
3983 /*
3984 * update local cpuinfo
3985 */
3986 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3987
3988 /*
3989 * stop monitoring, does srlz.i
3990 */
3991 pfm_clear_psr_pp();
3992
3993 /*
3994 * stop monitoring in the caller
3995 */
3996 ia64_psr(regs)->pp = 0;
3997
3998 return 0;
3999 }
4000 /*
4001 * per-task mode
4002 */
4003
4004 if (task == current) {
4005 /* stop monitoring at kernel level */
4006 pfm_clear_psr_up();
4007
4008 /*
4009 * stop monitoring at the user level
4010 */
4011 ia64_psr(regs)->up = 0;
4012 } else {
4013 tregs = task_pt_regs(task);
4014
4015 /*
4016 * stop monitoring at the user level
4017 */
4018 ia64_psr(tregs)->up = 0;
4019
4020 /*
4021 * monitoring disabled in kernel at next reschedule
4022 */
4023 ctx->ctx_saved_psr_up = 0;
4024 DPRINT(("task=[%d]\n", task_pid_nr(task)));
4025 }
4026 return 0;
4027 }
4028
4029
4030 static int
pfm_start(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4031 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4032 {
4033 struct pt_regs *tregs;
4034 int state, is_system;
4035
4036 state = ctx->ctx_state;
4037 is_system = ctx->ctx_fl_system;
4038
4039 if (state != PFM_CTX_LOADED) return -EINVAL;
4040
4041 /*
4042 * In system wide and when the context is loaded, access can only happen
4043 * when the caller is running on the CPU being monitored by the session.
4044 * It does not have to be the owner (ctx_task) of the context per se.
4045 */
4046 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4047 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4048 return -EBUSY;
4049 }
4050
4051 /*
4052 * in system mode, we need to update the PMU directly
4053 * and the user level state of the caller, which may not
4054 * necessarily be the creator of the context.
4055 */
4056 if (is_system) {
4057
4058 /*
4059 * set user level psr.pp for the caller
4060 */
4061 ia64_psr(regs)->pp = 1;
4062
4063 /*
4064 * now update the local PMU and cpuinfo
4065 */
4066 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4067
4068 /*
4069 * start monitoring at kernel level
4070 */
4071 pfm_set_psr_pp();
4072
4073 /* enable dcr pp */
4074 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4075 ia64_srlz_i();
4076
4077 return 0;
4078 }
4079
4080 /*
4081 * per-process mode
4082 */
4083
4084 if (ctx->ctx_task == current) {
4085
4086 /* start monitoring at kernel level */
4087 pfm_set_psr_up();
4088
4089 /*
4090 * activate monitoring at user level
4091 */
4092 ia64_psr(regs)->up = 1;
4093
4094 } else {
4095 tregs = task_pt_regs(ctx->ctx_task);
4096
4097 /*
4098 * start monitoring at the kernel level the next
4099 * time the task is scheduled
4100 */
4101 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4102
4103 /*
4104 * activate monitoring at user level
4105 */
4106 ia64_psr(tregs)->up = 1;
4107 }
4108 return 0;
4109 }
4110
4111 static int
pfm_get_pmc_reset(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4112 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4113 {
4114 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4115 unsigned int cnum;
4116 int i;
4117 int ret = -EINVAL;
4118
4119 for (i = 0; i < count; i++, req++) {
4120
4121 cnum = req->reg_num;
4122
4123 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4124
4125 req->reg_value = PMC_DFL_VAL(cnum);
4126
4127 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4128
4129 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4130 }
4131 return 0;
4132
4133 abort_mission:
4134 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4135 return ret;
4136 }
4137
4138 static int
pfm_check_task_exist(pfm_context_t * ctx)4139 pfm_check_task_exist(pfm_context_t *ctx)
4140 {
4141 struct task_struct *g, *t;
4142 int ret = -ESRCH;
4143
4144 read_lock(&tasklist_lock);
4145
4146 do_each_thread (g, t) {
4147 if (t->thread.pfm_context == ctx) {
4148 ret = 0;
4149 goto out;
4150 }
4151 } while_each_thread (g, t);
4152 out:
4153 read_unlock(&tasklist_lock);
4154
4155 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4156
4157 return ret;
4158 }
4159
4160 static int
pfm_context_load(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4161 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4162 {
4163 struct task_struct *task;
4164 struct thread_struct *thread;
4165 struct pfm_context_t *old;
4166 unsigned long flags;
4167 #ifndef CONFIG_SMP
4168 struct task_struct *owner_task = NULL;
4169 #endif
4170 pfarg_load_t *req = (pfarg_load_t *)arg;
4171 unsigned long *pmcs_source, *pmds_source;
4172 int the_cpu;
4173 int ret = 0;
4174 int state, is_system, set_dbregs = 0;
4175
4176 state = ctx->ctx_state;
4177 is_system = ctx->ctx_fl_system;
4178 /*
4179 * can only load from unloaded or terminated state
4180 */
4181 if (state != PFM_CTX_UNLOADED) {
4182 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4183 req->load_pid,
4184 ctx->ctx_state));
4185 return -EBUSY;
4186 }
4187
4188 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4189
4190 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4191 DPRINT(("cannot use blocking mode on self\n"));
4192 return -EINVAL;
4193 }
4194
4195 ret = pfm_get_task(ctx, req->load_pid, &task);
4196 if (ret) {
4197 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4198 return ret;
4199 }
4200
4201 ret = -EINVAL;
4202
4203 /*
4204 * system wide is self monitoring only
4205 */
4206 if (is_system && task != current) {
4207 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4208 req->load_pid));
4209 goto error;
4210 }
4211
4212 thread = &task->thread;
4213
4214 ret = 0;
4215 /*
4216 * cannot load a context which is using range restrictions,
4217 * into a task that is being debugged.
4218 */
4219 if (ctx->ctx_fl_using_dbreg) {
4220 if (thread->flags & IA64_THREAD_DBG_VALID) {
4221 ret = -EBUSY;
4222 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4223 goto error;
4224 }
4225 LOCK_PFS(flags);
4226
4227 if (is_system) {
4228 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4229 DPRINT(("cannot load [%d] dbregs in use\n",
4230 task_pid_nr(task)));
4231 ret = -EBUSY;
4232 } else {
4233 pfm_sessions.pfs_sys_use_dbregs++;
4234 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4235 set_dbregs = 1;
4236 }
4237 }
4238
4239 UNLOCK_PFS(flags);
4240
4241 if (ret) goto error;
4242 }
4243
4244 /*
4245 * SMP system-wide monitoring implies self-monitoring.
4246 *
4247 * The programming model expects the task to
4248 * be pinned on a CPU throughout the session.
4249 * Here we take note of the current CPU at the
4250 * time the context is loaded. No call from
4251 * another CPU will be allowed.
4252 *
4253 * The pinning via shed_setaffinity()
4254 * must be done by the calling task prior
4255 * to this call.
4256 *
4257 * systemwide: keep track of CPU this session is supposed to run on
4258 */
4259 the_cpu = ctx->ctx_cpu = smp_processor_id();
4260
4261 ret = -EBUSY;
4262 /*
4263 * now reserve the session
4264 */
4265 ret = pfm_reserve_session(current, is_system, the_cpu);
4266 if (ret) goto error;
4267
4268 /*
4269 * task is necessarily stopped at this point.
4270 *
4271 * If the previous context was zombie, then it got removed in
4272 * pfm_save_regs(). Therefore we should not see it here.
4273 * If we see a context, then this is an active context
4274 *
4275 * XXX: needs to be atomic
4276 */
4277 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4278 thread->pfm_context, ctx));
4279
4280 ret = -EBUSY;
4281 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4282 if (old != NULL) {
4283 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4284 goto error_unres;
4285 }
4286
4287 pfm_reset_msgq(ctx);
4288
4289 ctx->ctx_state = PFM_CTX_LOADED;
4290
4291 /*
4292 * link context to task
4293 */
4294 ctx->ctx_task = task;
4295
4296 if (is_system) {
4297 /*
4298 * we load as stopped
4299 */
4300 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4301 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4302
4303 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4304 } else {
4305 thread->flags |= IA64_THREAD_PM_VALID;
4306 }
4307
4308 /*
4309 * propagate into thread-state
4310 */
4311 pfm_copy_pmds(task, ctx);
4312 pfm_copy_pmcs(task, ctx);
4313
4314 pmcs_source = ctx->th_pmcs;
4315 pmds_source = ctx->th_pmds;
4316
4317 /*
4318 * always the case for system-wide
4319 */
4320 if (task == current) {
4321
4322 if (is_system == 0) {
4323
4324 /* allow user level control */
4325 ia64_psr(regs)->sp = 0;
4326 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4327
4328 SET_LAST_CPU(ctx, smp_processor_id());
4329 INC_ACTIVATION();
4330 SET_ACTIVATION(ctx);
4331 #ifndef CONFIG_SMP
4332 /*
4333 * push the other task out, if any
4334 */
4335 owner_task = GET_PMU_OWNER();
4336 if (owner_task) pfm_lazy_save_regs(owner_task);
4337 #endif
4338 }
4339 /*
4340 * load all PMD from ctx to PMU (as opposed to thread state)
4341 * restore all PMC from ctx to PMU
4342 */
4343 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4344 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4345
4346 ctx->ctx_reload_pmcs[0] = 0UL;
4347 ctx->ctx_reload_pmds[0] = 0UL;
4348
4349 /*
4350 * guaranteed safe by earlier check against DBG_VALID
4351 */
4352 if (ctx->ctx_fl_using_dbreg) {
4353 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4354 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4355 }
4356 /*
4357 * set new ownership
4358 */
4359 SET_PMU_OWNER(task, ctx);
4360
4361 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4362 } else {
4363 /*
4364 * when not current, task MUST be stopped, so this is safe
4365 */
4366 regs = task_pt_regs(task);
4367
4368 /* force a full reload */
4369 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4370 SET_LAST_CPU(ctx, -1);
4371
4372 /* initial saved psr (stopped) */
4373 ctx->ctx_saved_psr_up = 0UL;
4374 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4375 }
4376
4377 ret = 0;
4378
4379 error_unres:
4380 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4381 error:
4382 /*
4383 * we must undo the dbregs setting (for system-wide)
4384 */
4385 if (ret && set_dbregs) {
4386 LOCK_PFS(flags);
4387 pfm_sessions.pfs_sys_use_dbregs--;
4388 UNLOCK_PFS(flags);
4389 }
4390 /*
4391 * release task, there is now a link with the context
4392 */
4393 if (is_system == 0 && task != current) {
4394 pfm_put_task(task);
4395
4396 if (ret == 0) {
4397 ret = pfm_check_task_exist(ctx);
4398 if (ret) {
4399 ctx->ctx_state = PFM_CTX_UNLOADED;
4400 ctx->ctx_task = NULL;
4401 }
4402 }
4403 }
4404 return ret;
4405 }
4406
4407 /*
4408 * in this function, we do not need to increase the use count
4409 * for the task via get_task_struct(), because we hold the
4410 * context lock. If the task were to disappear while having
4411 * a context attached, it would go through pfm_exit_thread()
4412 * which also grabs the context lock and would therefore be blocked
4413 * until we are here.
4414 */
4415 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4416
4417 static int
pfm_context_unload(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4418 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4419 {
4420 struct task_struct *task = PFM_CTX_TASK(ctx);
4421 struct pt_regs *tregs;
4422 int prev_state, is_system;
4423 int ret;
4424
4425 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4426
4427 prev_state = ctx->ctx_state;
4428 is_system = ctx->ctx_fl_system;
4429
4430 /*
4431 * unload only when necessary
4432 */
4433 if (prev_state == PFM_CTX_UNLOADED) {
4434 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4435 return 0;
4436 }
4437
4438 /*
4439 * clear psr and dcr bits
4440 */
4441 ret = pfm_stop(ctx, NULL, 0, regs);
4442 if (ret) return ret;
4443
4444 ctx->ctx_state = PFM_CTX_UNLOADED;
4445
4446 /*
4447 * in system mode, we need to update the PMU directly
4448 * and the user level state of the caller, which may not
4449 * necessarily be the creator of the context.
4450 */
4451 if (is_system) {
4452
4453 /*
4454 * Update cpuinfo
4455 *
4456 * local PMU is taken care of in pfm_stop()
4457 */
4458 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4459 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4460
4461 /*
4462 * save PMDs in context
4463 * release ownership
4464 */
4465 pfm_flush_pmds(current, ctx);
4466
4467 /*
4468 * at this point we are done with the PMU
4469 * so we can unreserve the resource.
4470 */
4471 if (prev_state != PFM_CTX_ZOMBIE)
4472 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4473
4474 /*
4475 * disconnect context from task
4476 */
4477 task->thread.pfm_context = NULL;
4478 /*
4479 * disconnect task from context
4480 */
4481 ctx->ctx_task = NULL;
4482
4483 /*
4484 * There is nothing more to cleanup here.
4485 */
4486 return 0;
4487 }
4488
4489 /*
4490 * per-task mode
4491 */
4492 tregs = task == current ? regs : task_pt_regs(task);
4493
4494 if (task == current) {
4495 /*
4496 * cancel user level control
4497 */
4498 ia64_psr(regs)->sp = 1;
4499
4500 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4501 }
4502 /*
4503 * save PMDs to context
4504 * release ownership
4505 */
4506 pfm_flush_pmds(task, ctx);
4507
4508 /*
4509 * at this point we are done with the PMU
4510 * so we can unreserve the resource.
4511 *
4512 * when state was ZOMBIE, we have already unreserved.
4513 */
4514 if (prev_state != PFM_CTX_ZOMBIE)
4515 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4516
4517 /*
4518 * reset activation counter and psr
4519 */
4520 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4521 SET_LAST_CPU(ctx, -1);
4522
4523 /*
4524 * PMU state will not be restored
4525 */
4526 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4527
4528 /*
4529 * break links between context and task
4530 */
4531 task->thread.pfm_context = NULL;
4532 ctx->ctx_task = NULL;
4533
4534 PFM_SET_WORK_PENDING(task, 0);
4535
4536 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4537 ctx->ctx_fl_can_restart = 0;
4538 ctx->ctx_fl_going_zombie = 0;
4539
4540 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4541
4542 return 0;
4543 }
4544
4545
4546 /*
4547 * called only from exit_thread()
4548 * we come here only if the task has a context attached (loaded or masked)
4549 */
4550 void
pfm_exit_thread(struct task_struct * task)4551 pfm_exit_thread(struct task_struct *task)
4552 {
4553 pfm_context_t *ctx;
4554 unsigned long flags;
4555 struct pt_regs *regs = task_pt_regs(task);
4556 int ret, state;
4557 int free_ok = 0;
4558
4559 ctx = PFM_GET_CTX(task);
4560
4561 PROTECT_CTX(ctx, flags);
4562
4563 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4564
4565 state = ctx->ctx_state;
4566 switch(state) {
4567 case PFM_CTX_UNLOADED:
4568 /*
4569 * only comes to this function if pfm_context is not NULL, i.e., cannot
4570 * be in unloaded state
4571 */
4572 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4573 break;
4574 case PFM_CTX_LOADED:
4575 case PFM_CTX_MASKED:
4576 ret = pfm_context_unload(ctx, NULL, 0, regs);
4577 if (ret) {
4578 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4579 }
4580 DPRINT(("ctx unloaded for current state was %d\n", state));
4581
4582 pfm_end_notify_user(ctx);
4583 break;
4584 case PFM_CTX_ZOMBIE:
4585 ret = pfm_context_unload(ctx, NULL, 0, regs);
4586 if (ret) {
4587 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4588 }
4589 free_ok = 1;
4590 break;
4591 default:
4592 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4593 break;
4594 }
4595 UNPROTECT_CTX(ctx, flags);
4596
4597 { u64 psr = pfm_get_psr();
4598 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4599 BUG_ON(GET_PMU_OWNER());
4600 BUG_ON(ia64_psr(regs)->up);
4601 BUG_ON(ia64_psr(regs)->pp);
4602 }
4603
4604 /*
4605 * All memory free operations (especially for vmalloc'ed memory)
4606 * MUST be done with interrupts ENABLED.
4607 */
4608 if (free_ok) pfm_context_free(ctx);
4609 }
4610
4611 /*
4612 * functions MUST be listed in the increasing order of their index (see permfon.h)
4613 */
4614 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4615 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4616 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4617 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4618 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4619
4620 static pfm_cmd_desc_t pfm_cmd_tab[]={
4621 /* 0 */PFM_CMD_NONE,
4622 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4623 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4624 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4625 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4626 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4627 /* 6 */PFM_CMD_NONE,
4628 /* 7 */PFM_CMD_NONE,
4629 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4630 /* 9 */PFM_CMD_NONE,
4631 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4632 /* 11 */PFM_CMD_NONE,
4633 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4634 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4635 /* 14 */PFM_CMD_NONE,
4636 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4637 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4638 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4639 /* 18 */PFM_CMD_NONE,
4640 /* 19 */PFM_CMD_NONE,
4641 /* 20 */PFM_CMD_NONE,
4642 /* 21 */PFM_CMD_NONE,
4643 /* 22 */PFM_CMD_NONE,
4644 /* 23 */PFM_CMD_NONE,
4645 /* 24 */PFM_CMD_NONE,
4646 /* 25 */PFM_CMD_NONE,
4647 /* 26 */PFM_CMD_NONE,
4648 /* 27 */PFM_CMD_NONE,
4649 /* 28 */PFM_CMD_NONE,
4650 /* 29 */PFM_CMD_NONE,
4651 /* 30 */PFM_CMD_NONE,
4652 /* 31 */PFM_CMD_NONE,
4653 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4654 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4655 };
4656 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4657
4658 static int
pfm_check_task_state(pfm_context_t * ctx,int cmd,unsigned long flags)4659 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4660 {
4661 struct task_struct *task;
4662 int state, old_state;
4663
4664 recheck:
4665 state = ctx->ctx_state;
4666 task = ctx->ctx_task;
4667
4668 if (task == NULL) {
4669 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4670 return 0;
4671 }
4672
4673 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4674 ctx->ctx_fd,
4675 state,
4676 task_pid_nr(task),
4677 task->state, PFM_CMD_STOPPED(cmd)));
4678
4679 /*
4680 * self-monitoring always ok.
4681 *
4682 * for system-wide the caller can either be the creator of the
4683 * context (to one to which the context is attached to) OR
4684 * a task running on the same CPU as the session.
4685 */
4686 if (task == current || ctx->ctx_fl_system) return 0;
4687
4688 /*
4689 * we are monitoring another thread
4690 */
4691 switch(state) {
4692 case PFM_CTX_UNLOADED:
4693 /*
4694 * if context is UNLOADED we are safe to go
4695 */
4696 return 0;
4697 case PFM_CTX_ZOMBIE:
4698 /*
4699 * no command can operate on a zombie context
4700 */
4701 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4702 return -EINVAL;
4703 case PFM_CTX_MASKED:
4704 /*
4705 * PMU state has been saved to software even though
4706 * the thread may still be running.
4707 */
4708 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4709 }
4710
4711 /*
4712 * context is LOADED or MASKED. Some commands may need to have
4713 * the task stopped.
4714 *
4715 * We could lift this restriction for UP but it would mean that
4716 * the user has no guarantee the task would not run between
4717 * two successive calls to perfmonctl(). That's probably OK.
4718 * If this user wants to ensure the task does not run, then
4719 * the task must be stopped.
4720 */
4721 if (PFM_CMD_STOPPED(cmd)) {
4722 if (!task_is_stopped_or_traced(task)) {
4723 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4724 return -EBUSY;
4725 }
4726 /*
4727 * task is now stopped, wait for ctxsw out
4728 *
4729 * This is an interesting point in the code.
4730 * We need to unprotect the context because
4731 * the pfm_save_regs() routines needs to grab
4732 * the same lock. There are danger in doing
4733 * this because it leaves a window open for
4734 * another task to get access to the context
4735 * and possibly change its state. The one thing
4736 * that is not possible is for the context to disappear
4737 * because we are protected by the VFS layer, i.e.,
4738 * get_fd()/put_fd().
4739 */
4740 old_state = state;
4741
4742 UNPROTECT_CTX(ctx, flags);
4743
4744 wait_task_inactive(task, 0);
4745
4746 PROTECT_CTX(ctx, flags);
4747
4748 /*
4749 * we must recheck to verify if state has changed
4750 */
4751 if (ctx->ctx_state != old_state) {
4752 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4753 goto recheck;
4754 }
4755 }
4756 return 0;
4757 }
4758
4759 /*
4760 * system-call entry point (must return long)
4761 */
4762 asmlinkage long
sys_perfmonctl(int fd,int cmd,void __user * arg,int count)4763 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4764 {
4765 struct fd f = {NULL, 0};
4766 pfm_context_t *ctx = NULL;
4767 unsigned long flags = 0UL;
4768 void *args_k = NULL;
4769 long ret; /* will expand int return types */
4770 size_t base_sz, sz, xtra_sz = 0;
4771 int narg, completed_args = 0, call_made = 0, cmd_flags;
4772 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4773 int (*getsize)(void *arg, size_t *sz);
4774 #define PFM_MAX_ARGSIZE 4096
4775
4776 /*
4777 * reject any call if perfmon was disabled at initialization
4778 */
4779 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4780
4781 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4782 DPRINT(("invalid cmd=%d\n", cmd));
4783 return -EINVAL;
4784 }
4785
4786 func = pfm_cmd_tab[cmd].cmd_func;
4787 narg = pfm_cmd_tab[cmd].cmd_narg;
4788 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4789 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4790 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4791
4792 if (unlikely(func == NULL)) {
4793 DPRINT(("invalid cmd=%d\n", cmd));
4794 return -EINVAL;
4795 }
4796
4797 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4798 PFM_CMD_NAME(cmd),
4799 cmd,
4800 narg,
4801 base_sz,
4802 count));
4803
4804 /*
4805 * check if number of arguments matches what the command expects
4806 */
4807 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4808 return -EINVAL;
4809
4810 restart_args:
4811 sz = xtra_sz + base_sz*count;
4812 /*
4813 * limit abuse to min page size
4814 */
4815 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4816 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4817 return -E2BIG;
4818 }
4819
4820 /*
4821 * allocate default-sized argument buffer
4822 */
4823 if (likely(count && args_k == NULL)) {
4824 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4825 if (args_k == NULL) return -ENOMEM;
4826 }
4827
4828 ret = -EFAULT;
4829
4830 /*
4831 * copy arguments
4832 *
4833 * assume sz = 0 for command without parameters
4834 */
4835 if (sz && copy_from_user(args_k, arg, sz)) {
4836 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4837 goto error_args;
4838 }
4839
4840 /*
4841 * check if command supports extra parameters
4842 */
4843 if (completed_args == 0 && getsize) {
4844 /*
4845 * get extra parameters size (based on main argument)
4846 */
4847 ret = (*getsize)(args_k, &xtra_sz);
4848 if (ret) goto error_args;
4849
4850 completed_args = 1;
4851
4852 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4853
4854 /* retry if necessary */
4855 if (likely(xtra_sz)) goto restart_args;
4856 }
4857
4858 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4859
4860 ret = -EBADF;
4861
4862 f = fdget(fd);
4863 if (unlikely(f.file == NULL)) {
4864 DPRINT(("invalid fd %d\n", fd));
4865 goto error_args;
4866 }
4867 if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4868 DPRINT(("fd %d not related to perfmon\n", fd));
4869 goto error_args;
4870 }
4871
4872 ctx = f.file->private_data;
4873 if (unlikely(ctx == NULL)) {
4874 DPRINT(("no context for fd %d\n", fd));
4875 goto error_args;
4876 }
4877 prefetch(&ctx->ctx_state);
4878
4879 PROTECT_CTX(ctx, flags);
4880
4881 /*
4882 * check task is stopped
4883 */
4884 ret = pfm_check_task_state(ctx, cmd, flags);
4885 if (unlikely(ret)) goto abort_locked;
4886
4887 skip_fd:
4888 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4889
4890 call_made = 1;
4891
4892 abort_locked:
4893 if (likely(ctx)) {
4894 DPRINT(("context unlocked\n"));
4895 UNPROTECT_CTX(ctx, flags);
4896 }
4897
4898 /* copy argument back to user, if needed */
4899 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4900
4901 error_args:
4902 if (f.file)
4903 fdput(f);
4904
4905 kfree(args_k);
4906
4907 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4908
4909 return ret;
4910 }
4911
4912 static void
pfm_resume_after_ovfl(pfm_context_t * ctx,unsigned long ovfl_regs,struct pt_regs * regs)4913 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4914 {
4915 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4916 pfm_ovfl_ctrl_t rst_ctrl;
4917 int state;
4918 int ret = 0;
4919
4920 state = ctx->ctx_state;
4921 /*
4922 * Unlock sampling buffer and reset index atomically
4923 * XXX: not really needed when blocking
4924 */
4925 if (CTX_HAS_SMPL(ctx)) {
4926
4927 rst_ctrl.bits.mask_monitoring = 0;
4928 rst_ctrl.bits.reset_ovfl_pmds = 0;
4929
4930 if (state == PFM_CTX_LOADED)
4931 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4932 else
4933 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4934 } else {
4935 rst_ctrl.bits.mask_monitoring = 0;
4936 rst_ctrl.bits.reset_ovfl_pmds = 1;
4937 }
4938
4939 if (ret == 0) {
4940 if (rst_ctrl.bits.reset_ovfl_pmds) {
4941 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4942 }
4943 if (rst_ctrl.bits.mask_monitoring == 0) {
4944 DPRINT(("resuming monitoring\n"));
4945 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4946 } else {
4947 DPRINT(("stopping monitoring\n"));
4948 //pfm_stop_monitoring(current, regs);
4949 }
4950 ctx->ctx_state = PFM_CTX_LOADED;
4951 }
4952 }
4953
4954 /*
4955 * context MUST BE LOCKED when calling
4956 * can only be called for current
4957 */
4958 static void
pfm_context_force_terminate(pfm_context_t * ctx,struct pt_regs * regs)4959 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4960 {
4961 int ret;
4962
4963 DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4964
4965 ret = pfm_context_unload(ctx, NULL, 0, regs);
4966 if (ret) {
4967 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4968 }
4969
4970 /*
4971 * and wakeup controlling task, indicating we are now disconnected
4972 */
4973 wake_up_interruptible(&ctx->ctx_zombieq);
4974
4975 /*
4976 * given that context is still locked, the controlling
4977 * task will only get access when we return from
4978 * pfm_handle_work().
4979 */
4980 }
4981
4982 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4983
4984 /*
4985 * pfm_handle_work() can be called with interrupts enabled
4986 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4987 * call may sleep, therefore we must re-enable interrupts
4988 * to avoid deadlocks. It is safe to do so because this function
4989 * is called ONLY when returning to user level (pUStk=1), in which case
4990 * there is no risk of kernel stack overflow due to deep
4991 * interrupt nesting.
4992 */
4993 void
pfm_handle_work(void)4994 pfm_handle_work(void)
4995 {
4996 pfm_context_t *ctx;
4997 struct pt_regs *regs;
4998 unsigned long flags, dummy_flags;
4999 unsigned long ovfl_regs;
5000 unsigned int reason;
5001 int ret;
5002
5003 ctx = PFM_GET_CTX(current);
5004 if (ctx == NULL) {
5005 printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5006 task_pid_nr(current));
5007 return;
5008 }
5009
5010 PROTECT_CTX(ctx, flags);
5011
5012 PFM_SET_WORK_PENDING(current, 0);
5013
5014 regs = task_pt_regs(current);
5015
5016 /*
5017 * extract reason for being here and clear
5018 */
5019 reason = ctx->ctx_fl_trap_reason;
5020 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5021 ovfl_regs = ctx->ctx_ovfl_regs[0];
5022
5023 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5024
5025 /*
5026 * must be done before we check for simple-reset mode
5027 */
5028 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5029 goto do_zombie;
5030
5031 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5032 if (reason == PFM_TRAP_REASON_RESET)
5033 goto skip_blocking;
5034
5035 /*
5036 * restore interrupt mask to what it was on entry.
5037 * Could be enabled/diasbled.
5038 */
5039 UNPROTECT_CTX(ctx, flags);
5040
5041 /*
5042 * force interrupt enable because of down_interruptible()
5043 */
5044 local_irq_enable();
5045
5046 DPRINT(("before block sleeping\n"));
5047
5048 /*
5049 * may go through without blocking on SMP systems
5050 * if restart has been received already by the time we call down()
5051 */
5052 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5053
5054 DPRINT(("after block sleeping ret=%d\n", ret));
5055
5056 /*
5057 * lock context and mask interrupts again
5058 * We save flags into a dummy because we may have
5059 * altered interrupts mask compared to entry in this
5060 * function.
5061 */
5062 PROTECT_CTX(ctx, dummy_flags);
5063
5064 /*
5065 * we need to read the ovfl_regs only after wake-up
5066 * because we may have had pfm_write_pmds() in between
5067 * and that can changed PMD values and therefore
5068 * ovfl_regs is reset for these new PMD values.
5069 */
5070 ovfl_regs = ctx->ctx_ovfl_regs[0];
5071
5072 if (ctx->ctx_fl_going_zombie) {
5073 do_zombie:
5074 DPRINT(("context is zombie, bailing out\n"));
5075 pfm_context_force_terminate(ctx, regs);
5076 goto nothing_to_do;
5077 }
5078 /*
5079 * in case of interruption of down() we don't restart anything
5080 */
5081 if (ret < 0)
5082 goto nothing_to_do;
5083
5084 skip_blocking:
5085 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5086 ctx->ctx_ovfl_regs[0] = 0UL;
5087
5088 nothing_to_do:
5089 /*
5090 * restore flags as they were upon entry
5091 */
5092 UNPROTECT_CTX(ctx, flags);
5093 }
5094
5095 static int
pfm_notify_user(pfm_context_t * ctx,pfm_msg_t * msg)5096 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5097 {
5098 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5099 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5100 return 0;
5101 }
5102
5103 DPRINT(("waking up somebody\n"));
5104
5105 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5106
5107 /*
5108 * safe, we are not in intr handler, nor in ctxsw when
5109 * we come here
5110 */
5111 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5112
5113 return 0;
5114 }
5115
5116 static int
pfm_ovfl_notify_user(pfm_context_t * ctx,unsigned long ovfl_pmds)5117 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5118 {
5119 pfm_msg_t *msg = NULL;
5120
5121 if (ctx->ctx_fl_no_msg == 0) {
5122 msg = pfm_get_new_msg(ctx);
5123 if (msg == NULL) {
5124 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5125 return -1;
5126 }
5127
5128 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5129 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5130 msg->pfm_ovfl_msg.msg_active_set = 0;
5131 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5132 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5133 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5134 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5135 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5136 }
5137
5138 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5139 msg,
5140 ctx->ctx_fl_no_msg,
5141 ctx->ctx_fd,
5142 ovfl_pmds));
5143
5144 return pfm_notify_user(ctx, msg);
5145 }
5146
5147 static int
pfm_end_notify_user(pfm_context_t * ctx)5148 pfm_end_notify_user(pfm_context_t *ctx)
5149 {
5150 pfm_msg_t *msg;
5151
5152 msg = pfm_get_new_msg(ctx);
5153 if (msg == NULL) {
5154 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5155 return -1;
5156 }
5157 /* no leak */
5158 memset(msg, 0, sizeof(*msg));
5159
5160 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5161 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5162 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5163
5164 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5165 msg,
5166 ctx->ctx_fl_no_msg,
5167 ctx->ctx_fd));
5168
5169 return pfm_notify_user(ctx, msg);
5170 }
5171
5172 /*
5173 * main overflow processing routine.
5174 * it can be called from the interrupt path or explicitly during the context switch code
5175 */
pfm_overflow_handler(struct task_struct * task,pfm_context_t * ctx,unsigned long pmc0,struct pt_regs * regs)5176 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5177 unsigned long pmc0, struct pt_regs *regs)
5178 {
5179 pfm_ovfl_arg_t *ovfl_arg;
5180 unsigned long mask;
5181 unsigned long old_val, ovfl_val, new_val;
5182 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5183 unsigned long tstamp;
5184 pfm_ovfl_ctrl_t ovfl_ctrl;
5185 unsigned int i, has_smpl;
5186 int must_notify = 0;
5187
5188 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5189
5190 /*
5191 * sanity test. Should never happen
5192 */
5193 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5194
5195 tstamp = ia64_get_itc();
5196 mask = pmc0 >> PMU_FIRST_COUNTER;
5197 ovfl_val = pmu_conf->ovfl_val;
5198 has_smpl = CTX_HAS_SMPL(ctx);
5199
5200 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5201 "used_pmds=0x%lx\n",
5202 pmc0,
5203 task ? task_pid_nr(task): -1,
5204 (regs ? regs->cr_iip : 0),
5205 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5206 ctx->ctx_used_pmds[0]));
5207
5208
5209 /*
5210 * first we update the virtual counters
5211 * assume there was a prior ia64_srlz_d() issued
5212 */
5213 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5214
5215 /* skip pmd which did not overflow */
5216 if ((mask & 0x1) == 0) continue;
5217
5218 /*
5219 * Note that the pmd is not necessarily 0 at this point as qualified events
5220 * may have happened before the PMU was frozen. The residual count is not
5221 * taken into consideration here but will be with any read of the pmd via
5222 * pfm_read_pmds().
5223 */
5224 old_val = new_val = ctx->ctx_pmds[i].val;
5225 new_val += 1 + ovfl_val;
5226 ctx->ctx_pmds[i].val = new_val;
5227
5228 /*
5229 * check for overflow condition
5230 */
5231 if (likely(old_val > new_val)) {
5232 ovfl_pmds |= 1UL << i;
5233 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5234 }
5235
5236 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5237 i,
5238 new_val,
5239 old_val,
5240 ia64_get_pmd(i) & ovfl_val,
5241 ovfl_pmds,
5242 ovfl_notify));
5243 }
5244
5245 /*
5246 * there was no 64-bit overflow, nothing else to do
5247 */
5248 if (ovfl_pmds == 0UL) return;
5249
5250 /*
5251 * reset all control bits
5252 */
5253 ovfl_ctrl.val = 0;
5254 reset_pmds = 0UL;
5255
5256 /*
5257 * if a sampling format module exists, then we "cache" the overflow by
5258 * calling the module's handler() routine.
5259 */
5260 if (has_smpl) {
5261 unsigned long start_cycles, end_cycles;
5262 unsigned long pmd_mask;
5263 int j, k, ret = 0;
5264 int this_cpu = smp_processor_id();
5265
5266 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5267 ovfl_arg = &ctx->ctx_ovfl_arg;
5268
5269 prefetch(ctx->ctx_smpl_hdr);
5270
5271 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5272
5273 mask = 1UL << i;
5274
5275 if ((pmd_mask & 0x1) == 0) continue;
5276
5277 ovfl_arg->ovfl_pmd = (unsigned char )i;
5278 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5279 ovfl_arg->active_set = 0;
5280 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5281 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5282
5283 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5284 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5285 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5286
5287 /*
5288 * copy values of pmds of interest. Sampling format may copy them
5289 * into sampling buffer.
5290 */
5291 if (smpl_pmds) {
5292 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5293 if ((smpl_pmds & 0x1) == 0) continue;
5294 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5295 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5296 }
5297 }
5298
5299 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5300
5301 start_cycles = ia64_get_itc();
5302
5303 /*
5304 * call custom buffer format record (handler) routine
5305 */
5306 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5307
5308 end_cycles = ia64_get_itc();
5309
5310 /*
5311 * For those controls, we take the union because they have
5312 * an all or nothing behavior.
5313 */
5314 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5315 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5316 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5317 /*
5318 * build the bitmask of pmds to reset now
5319 */
5320 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5321
5322 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5323 }
5324 /*
5325 * when the module cannot handle the rest of the overflows, we abort right here
5326 */
5327 if (ret && pmd_mask) {
5328 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5329 pmd_mask<<PMU_FIRST_COUNTER));
5330 }
5331 /*
5332 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5333 */
5334 ovfl_pmds &= ~reset_pmds;
5335 } else {
5336 /*
5337 * when no sampling module is used, then the default
5338 * is to notify on overflow if requested by user
5339 */
5340 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5341 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5342 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5343 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5344 /*
5345 * if needed, we reset all overflowed pmds
5346 */
5347 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5348 }
5349
5350 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5351
5352 /*
5353 * reset the requested PMD registers using the short reset values
5354 */
5355 if (reset_pmds) {
5356 unsigned long bm = reset_pmds;
5357 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5358 }
5359
5360 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5361 /*
5362 * keep track of what to reset when unblocking
5363 */
5364 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5365
5366 /*
5367 * check for blocking context
5368 */
5369 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5370
5371 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5372
5373 /*
5374 * set the perfmon specific checking pending work for the task
5375 */
5376 PFM_SET_WORK_PENDING(task, 1);
5377
5378 /*
5379 * when coming from ctxsw, current still points to the
5380 * previous task, therefore we must work with task and not current.
5381 */
5382 set_notify_resume(task);
5383 }
5384 /*
5385 * defer until state is changed (shorten spin window). the context is locked
5386 * anyway, so the signal receiver would come spin for nothing.
5387 */
5388 must_notify = 1;
5389 }
5390
5391 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5392 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5393 PFM_GET_WORK_PENDING(task),
5394 ctx->ctx_fl_trap_reason,
5395 ovfl_pmds,
5396 ovfl_notify,
5397 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5398 /*
5399 * in case monitoring must be stopped, we toggle the psr bits
5400 */
5401 if (ovfl_ctrl.bits.mask_monitoring) {
5402 pfm_mask_monitoring(task);
5403 ctx->ctx_state = PFM_CTX_MASKED;
5404 ctx->ctx_fl_can_restart = 1;
5405 }
5406
5407 /*
5408 * send notification now
5409 */
5410 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5411
5412 return;
5413
5414 sanity_check:
5415 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5416 smp_processor_id(),
5417 task ? task_pid_nr(task) : -1,
5418 pmc0);
5419 return;
5420
5421 stop_monitoring:
5422 /*
5423 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5424 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5425 * come here as zombie only if the task is the current task. In which case, we
5426 * can access the PMU hardware directly.
5427 *
5428 * Note that zombies do have PM_VALID set. So here we do the minimal.
5429 *
5430 * In case the context was zombified it could not be reclaimed at the time
5431 * the monitoring program exited. At this point, the PMU reservation has been
5432 * returned, the sampiing buffer has been freed. We must convert this call
5433 * into a spurious interrupt. However, we must also avoid infinite overflows
5434 * by stopping monitoring for this task. We can only come here for a per-task
5435 * context. All we need to do is to stop monitoring using the psr bits which
5436 * are always task private. By re-enabling secure montioring, we ensure that
5437 * the monitored task will not be able to re-activate monitoring.
5438 * The task will eventually be context switched out, at which point the context
5439 * will be reclaimed (that includes releasing ownership of the PMU).
5440 *
5441 * So there might be a window of time where the number of per-task session is zero
5442 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5443 * context. This is safe because if a per-task session comes in, it will push this one
5444 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5445 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5446 * also push our zombie context out.
5447 *
5448 * Overall pretty hairy stuff....
5449 */
5450 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5451 pfm_clear_psr_up();
5452 ia64_psr(regs)->up = 0;
5453 ia64_psr(regs)->sp = 1;
5454 return;
5455 }
5456
5457 static int
pfm_do_interrupt_handler(void * arg,struct pt_regs * regs)5458 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5459 {
5460 struct task_struct *task;
5461 pfm_context_t *ctx;
5462 unsigned long flags;
5463 u64 pmc0;
5464 int this_cpu = smp_processor_id();
5465 int retval = 0;
5466
5467 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5468
5469 /*
5470 * srlz.d done before arriving here
5471 */
5472 pmc0 = ia64_get_pmc(0);
5473
5474 task = GET_PMU_OWNER();
5475 ctx = GET_PMU_CTX();
5476
5477 /*
5478 * if we have some pending bits set
5479 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5480 */
5481 if (PMC0_HAS_OVFL(pmc0) && task) {
5482 /*
5483 * we assume that pmc0.fr is always set here
5484 */
5485
5486 /* sanity check */
5487 if (!ctx) goto report_spurious1;
5488
5489 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5490 goto report_spurious2;
5491
5492 PROTECT_CTX_NOPRINT(ctx, flags);
5493
5494 pfm_overflow_handler(task, ctx, pmc0, regs);
5495
5496 UNPROTECT_CTX_NOPRINT(ctx, flags);
5497
5498 } else {
5499 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5500 retval = -1;
5501 }
5502 /*
5503 * keep it unfrozen at all times
5504 */
5505 pfm_unfreeze_pmu();
5506
5507 return retval;
5508
5509 report_spurious1:
5510 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5511 this_cpu, task_pid_nr(task));
5512 pfm_unfreeze_pmu();
5513 return -1;
5514 report_spurious2:
5515 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5516 this_cpu,
5517 task_pid_nr(task));
5518 pfm_unfreeze_pmu();
5519 return -1;
5520 }
5521
5522 static irqreturn_t
pfm_interrupt_handler(int irq,void * arg)5523 pfm_interrupt_handler(int irq, void *arg)
5524 {
5525 unsigned long start_cycles, total_cycles;
5526 unsigned long min, max;
5527 int this_cpu;
5528 int ret;
5529 struct pt_regs *regs = get_irq_regs();
5530
5531 this_cpu = get_cpu();
5532 if (likely(!pfm_alt_intr_handler)) {
5533 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5534 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5535
5536 start_cycles = ia64_get_itc();
5537
5538 ret = pfm_do_interrupt_handler(arg, regs);
5539
5540 total_cycles = ia64_get_itc();
5541
5542 /*
5543 * don't measure spurious interrupts
5544 */
5545 if (likely(ret == 0)) {
5546 total_cycles -= start_cycles;
5547
5548 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5549 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5550
5551 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5552 }
5553 }
5554 else {
5555 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5556 }
5557
5558 put_cpu();
5559 return IRQ_HANDLED;
5560 }
5561
5562 /*
5563 * /proc/perfmon interface, for debug only
5564 */
5565
5566 #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5567
5568 static void *
pfm_proc_start(struct seq_file * m,loff_t * pos)5569 pfm_proc_start(struct seq_file *m, loff_t *pos)
5570 {
5571 if (*pos == 0) {
5572 return PFM_PROC_SHOW_HEADER;
5573 }
5574
5575 while (*pos <= nr_cpu_ids) {
5576 if (cpu_online(*pos - 1)) {
5577 return (void *)*pos;
5578 }
5579 ++*pos;
5580 }
5581 return NULL;
5582 }
5583
5584 static void *
pfm_proc_next(struct seq_file * m,void * v,loff_t * pos)5585 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5586 {
5587 ++*pos;
5588 return pfm_proc_start(m, pos);
5589 }
5590
5591 static void
pfm_proc_stop(struct seq_file * m,void * v)5592 pfm_proc_stop(struct seq_file *m, void *v)
5593 {
5594 }
5595
5596 static void
pfm_proc_show_header(struct seq_file * m)5597 pfm_proc_show_header(struct seq_file *m)
5598 {
5599 struct list_head * pos;
5600 pfm_buffer_fmt_t * entry;
5601 unsigned long flags;
5602
5603 seq_printf(m,
5604 "perfmon version : %u.%u\n"
5605 "model : %s\n"
5606 "fastctxsw : %s\n"
5607 "expert mode : %s\n"
5608 "ovfl_mask : 0x%lx\n"
5609 "PMU flags : 0x%x\n",
5610 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5611 pmu_conf->pmu_name,
5612 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5613 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5614 pmu_conf->ovfl_val,
5615 pmu_conf->flags);
5616
5617 LOCK_PFS(flags);
5618
5619 seq_printf(m,
5620 "proc_sessions : %u\n"
5621 "sys_sessions : %u\n"
5622 "sys_use_dbregs : %u\n"
5623 "ptrace_use_dbregs : %u\n",
5624 pfm_sessions.pfs_task_sessions,
5625 pfm_sessions.pfs_sys_sessions,
5626 pfm_sessions.pfs_sys_use_dbregs,
5627 pfm_sessions.pfs_ptrace_use_dbregs);
5628
5629 UNLOCK_PFS(flags);
5630
5631 spin_lock(&pfm_buffer_fmt_lock);
5632
5633 list_for_each(pos, &pfm_buffer_fmt_list) {
5634 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5635 seq_printf(m, "format : %16phD %s\n",
5636 entry->fmt_uuid, entry->fmt_name);
5637 }
5638 spin_unlock(&pfm_buffer_fmt_lock);
5639
5640 }
5641
5642 static int
pfm_proc_show(struct seq_file * m,void * v)5643 pfm_proc_show(struct seq_file *m, void *v)
5644 {
5645 unsigned long psr;
5646 unsigned int i;
5647 int cpu;
5648
5649 if (v == PFM_PROC_SHOW_HEADER) {
5650 pfm_proc_show_header(m);
5651 return 0;
5652 }
5653
5654 /* show info for CPU (v - 1) */
5655
5656 cpu = (long)v - 1;
5657 seq_printf(m,
5658 "CPU%-2d overflow intrs : %lu\n"
5659 "CPU%-2d overflow cycles : %lu\n"
5660 "CPU%-2d overflow min : %lu\n"
5661 "CPU%-2d overflow max : %lu\n"
5662 "CPU%-2d smpl handler calls : %lu\n"
5663 "CPU%-2d smpl handler cycles : %lu\n"
5664 "CPU%-2d spurious intrs : %lu\n"
5665 "CPU%-2d replay intrs : %lu\n"
5666 "CPU%-2d syst_wide : %d\n"
5667 "CPU%-2d dcr_pp : %d\n"
5668 "CPU%-2d exclude idle : %d\n"
5669 "CPU%-2d owner : %d\n"
5670 "CPU%-2d context : %p\n"
5671 "CPU%-2d activations : %lu\n",
5672 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5673 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5674 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5675 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5676 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5677 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5678 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5679 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5680 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5681 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5682 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5683 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5684 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5685 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5686
5687 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5688
5689 psr = pfm_get_psr();
5690
5691 ia64_srlz_d();
5692
5693 seq_printf(m,
5694 "CPU%-2d psr : 0x%lx\n"
5695 "CPU%-2d pmc0 : 0x%lx\n",
5696 cpu, psr,
5697 cpu, ia64_get_pmc(0));
5698
5699 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5700 if (PMC_IS_COUNTING(i) == 0) continue;
5701 seq_printf(m,
5702 "CPU%-2d pmc%u : 0x%lx\n"
5703 "CPU%-2d pmd%u : 0x%lx\n",
5704 cpu, i, ia64_get_pmc(i),
5705 cpu, i, ia64_get_pmd(i));
5706 }
5707 }
5708 return 0;
5709 }
5710
5711 const struct seq_operations pfm_seq_ops = {
5712 .start = pfm_proc_start,
5713 .next = pfm_proc_next,
5714 .stop = pfm_proc_stop,
5715 .show = pfm_proc_show
5716 };
5717
5718 static int
pfm_proc_open(struct inode * inode,struct file * file)5719 pfm_proc_open(struct inode *inode, struct file *file)
5720 {
5721 return seq_open(file, &pfm_seq_ops);
5722 }
5723
5724
5725 /*
5726 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5727 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5728 * is active or inactive based on mode. We must rely on the value in
5729 * local_cpu_data->pfm_syst_info
5730 */
5731 void
pfm_syst_wide_update_task(struct task_struct * task,unsigned long info,int is_ctxswin)5732 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5733 {
5734 struct pt_regs *regs;
5735 unsigned long dcr;
5736 unsigned long dcr_pp;
5737
5738 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5739
5740 /*
5741 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5742 * on every CPU, so we can rely on the pid to identify the idle task.
5743 */
5744 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5745 regs = task_pt_regs(task);
5746 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5747 return;
5748 }
5749 /*
5750 * if monitoring has started
5751 */
5752 if (dcr_pp) {
5753 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5754 /*
5755 * context switching in?
5756 */
5757 if (is_ctxswin) {
5758 /* mask monitoring for the idle task */
5759 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5760 pfm_clear_psr_pp();
5761 ia64_srlz_i();
5762 return;
5763 }
5764 /*
5765 * context switching out
5766 * restore monitoring for next task
5767 *
5768 * Due to inlining this odd if-then-else construction generates
5769 * better code.
5770 */
5771 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5772 pfm_set_psr_pp();
5773 ia64_srlz_i();
5774 }
5775 }
5776
5777 #ifdef CONFIG_SMP
5778
5779 static void
pfm_force_cleanup(pfm_context_t * ctx,struct pt_regs * regs)5780 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5781 {
5782 struct task_struct *task = ctx->ctx_task;
5783
5784 ia64_psr(regs)->up = 0;
5785 ia64_psr(regs)->sp = 1;
5786
5787 if (GET_PMU_OWNER() == task) {
5788 DPRINT(("cleared ownership for [%d]\n",
5789 task_pid_nr(ctx->ctx_task)));
5790 SET_PMU_OWNER(NULL, NULL);
5791 }
5792
5793 /*
5794 * disconnect the task from the context and vice-versa
5795 */
5796 PFM_SET_WORK_PENDING(task, 0);
5797
5798 task->thread.pfm_context = NULL;
5799 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5800
5801 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
5802 }
5803
5804
5805 /*
5806 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5807 */
5808 void
pfm_save_regs(struct task_struct * task)5809 pfm_save_regs(struct task_struct *task)
5810 {
5811 pfm_context_t *ctx;
5812 unsigned long flags;
5813 u64 psr;
5814
5815
5816 ctx = PFM_GET_CTX(task);
5817 if (ctx == NULL) return;
5818
5819 /*
5820 * we always come here with interrupts ALREADY disabled by
5821 * the scheduler. So we simply need to protect against concurrent
5822 * access, not CPU concurrency.
5823 */
5824 flags = pfm_protect_ctx_ctxsw(ctx);
5825
5826 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5827 struct pt_regs *regs = task_pt_regs(task);
5828
5829 pfm_clear_psr_up();
5830
5831 pfm_force_cleanup(ctx, regs);
5832
5833 BUG_ON(ctx->ctx_smpl_hdr);
5834
5835 pfm_unprotect_ctx_ctxsw(ctx, flags);
5836
5837 pfm_context_free(ctx);
5838 return;
5839 }
5840
5841 /*
5842 * save current PSR: needed because we modify it
5843 */
5844 ia64_srlz_d();
5845 psr = pfm_get_psr();
5846
5847 BUG_ON(psr & (IA64_PSR_I));
5848
5849 /*
5850 * stop monitoring:
5851 * This is the last instruction which may generate an overflow
5852 *
5853 * We do not need to set psr.sp because, it is irrelevant in kernel.
5854 * It will be restored from ipsr when going back to user level
5855 */
5856 pfm_clear_psr_up();
5857
5858 /*
5859 * keep a copy of psr.up (for reload)
5860 */
5861 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5862
5863 /*
5864 * release ownership of this PMU.
5865 * PM interrupts are masked, so nothing
5866 * can happen.
5867 */
5868 SET_PMU_OWNER(NULL, NULL);
5869
5870 /*
5871 * we systematically save the PMD as we have no
5872 * guarantee we will be schedule at that same
5873 * CPU again.
5874 */
5875 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5876
5877 /*
5878 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5879 * we will need it on the restore path to check
5880 * for pending overflow.
5881 */
5882 ctx->th_pmcs[0] = ia64_get_pmc(0);
5883
5884 /*
5885 * unfreeze PMU if had pending overflows
5886 */
5887 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5888
5889 /*
5890 * finally, allow context access.
5891 * interrupts will still be masked after this call.
5892 */
5893 pfm_unprotect_ctx_ctxsw(ctx, flags);
5894 }
5895
5896 #else /* !CONFIG_SMP */
5897 void
pfm_save_regs(struct task_struct * task)5898 pfm_save_regs(struct task_struct *task)
5899 {
5900 pfm_context_t *ctx;
5901 u64 psr;
5902
5903 ctx = PFM_GET_CTX(task);
5904 if (ctx == NULL) return;
5905
5906 /*
5907 * save current PSR: needed because we modify it
5908 */
5909 psr = pfm_get_psr();
5910
5911 BUG_ON(psr & (IA64_PSR_I));
5912
5913 /*
5914 * stop monitoring:
5915 * This is the last instruction which may generate an overflow
5916 *
5917 * We do not need to set psr.sp because, it is irrelevant in kernel.
5918 * It will be restored from ipsr when going back to user level
5919 */
5920 pfm_clear_psr_up();
5921
5922 /*
5923 * keep a copy of psr.up (for reload)
5924 */
5925 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5926 }
5927
5928 static void
pfm_lazy_save_regs(struct task_struct * task)5929 pfm_lazy_save_regs (struct task_struct *task)
5930 {
5931 pfm_context_t *ctx;
5932 unsigned long flags;
5933
5934 { u64 psr = pfm_get_psr();
5935 BUG_ON(psr & IA64_PSR_UP);
5936 }
5937
5938 ctx = PFM_GET_CTX(task);
5939
5940 /*
5941 * we need to mask PMU overflow here to
5942 * make sure that we maintain pmc0 until
5943 * we save it. overflow interrupts are
5944 * treated as spurious if there is no
5945 * owner.
5946 *
5947 * XXX: I don't think this is necessary
5948 */
5949 PROTECT_CTX(ctx,flags);
5950
5951 /*
5952 * release ownership of this PMU.
5953 * must be done before we save the registers.
5954 *
5955 * after this call any PMU interrupt is treated
5956 * as spurious.
5957 */
5958 SET_PMU_OWNER(NULL, NULL);
5959
5960 /*
5961 * save all the pmds we use
5962 */
5963 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5964
5965 /*
5966 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5967 * it is needed to check for pended overflow
5968 * on the restore path
5969 */
5970 ctx->th_pmcs[0] = ia64_get_pmc(0);
5971
5972 /*
5973 * unfreeze PMU if had pending overflows
5974 */
5975 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5976
5977 /*
5978 * now get can unmask PMU interrupts, they will
5979 * be treated as purely spurious and we will not
5980 * lose any information
5981 */
5982 UNPROTECT_CTX(ctx,flags);
5983 }
5984 #endif /* CONFIG_SMP */
5985
5986 #ifdef CONFIG_SMP
5987 /*
5988 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5989 */
5990 void
pfm_load_regs(struct task_struct * task)5991 pfm_load_regs (struct task_struct *task)
5992 {
5993 pfm_context_t *ctx;
5994 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5995 unsigned long flags;
5996 u64 psr, psr_up;
5997 int need_irq_resend;
5998
5999 ctx = PFM_GET_CTX(task);
6000 if (unlikely(ctx == NULL)) return;
6001
6002 BUG_ON(GET_PMU_OWNER());
6003
6004 /*
6005 * possible on unload
6006 */
6007 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6008
6009 /*
6010 * we always come here with interrupts ALREADY disabled by
6011 * the scheduler. So we simply need to protect against concurrent
6012 * access, not CPU concurrency.
6013 */
6014 flags = pfm_protect_ctx_ctxsw(ctx);
6015 psr = pfm_get_psr();
6016
6017 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6018
6019 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6020 BUG_ON(psr & IA64_PSR_I);
6021
6022 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6023 struct pt_regs *regs = task_pt_regs(task);
6024
6025 BUG_ON(ctx->ctx_smpl_hdr);
6026
6027 pfm_force_cleanup(ctx, regs);
6028
6029 pfm_unprotect_ctx_ctxsw(ctx, flags);
6030
6031 /*
6032 * this one (kmalloc'ed) is fine with interrupts disabled
6033 */
6034 pfm_context_free(ctx);
6035
6036 return;
6037 }
6038
6039 /*
6040 * we restore ALL the debug registers to avoid picking up
6041 * stale state.
6042 */
6043 if (ctx->ctx_fl_using_dbreg) {
6044 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6045 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6046 }
6047 /*
6048 * retrieve saved psr.up
6049 */
6050 psr_up = ctx->ctx_saved_psr_up;
6051
6052 /*
6053 * if we were the last user of the PMU on that CPU,
6054 * then nothing to do except restore psr
6055 */
6056 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6057
6058 /*
6059 * retrieve partial reload masks (due to user modifications)
6060 */
6061 pmc_mask = ctx->ctx_reload_pmcs[0];
6062 pmd_mask = ctx->ctx_reload_pmds[0];
6063
6064 } else {
6065 /*
6066 * To avoid leaking information to the user level when psr.sp=0,
6067 * we must reload ALL implemented pmds (even the ones we don't use).
6068 * In the kernel we only allow PFM_READ_PMDS on registers which
6069 * we initialized or requested (sampling) so there is no risk there.
6070 */
6071 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6072
6073 /*
6074 * ALL accessible PMCs are systematically reloaded, unused registers
6075 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6076 * up stale configuration.
6077 *
6078 * PMC0 is never in the mask. It is always restored separately.
6079 */
6080 pmc_mask = ctx->ctx_all_pmcs[0];
6081 }
6082 /*
6083 * when context is MASKED, we will restore PMC with plm=0
6084 * and PMD with stale information, but that's ok, nothing
6085 * will be captured.
6086 *
6087 * XXX: optimize here
6088 */
6089 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6090 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6091
6092 /*
6093 * check for pending overflow at the time the state
6094 * was saved.
6095 */
6096 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6097 /*
6098 * reload pmc0 with the overflow information
6099 * On McKinley PMU, this will trigger a PMU interrupt
6100 */
6101 ia64_set_pmc(0, ctx->th_pmcs[0]);
6102 ia64_srlz_d();
6103 ctx->th_pmcs[0] = 0UL;
6104
6105 /*
6106 * will replay the PMU interrupt
6107 */
6108 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6109
6110 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6111 }
6112
6113 /*
6114 * we just did a reload, so we reset the partial reload fields
6115 */
6116 ctx->ctx_reload_pmcs[0] = 0UL;
6117 ctx->ctx_reload_pmds[0] = 0UL;
6118
6119 SET_LAST_CPU(ctx, smp_processor_id());
6120
6121 /*
6122 * dump activation value for this PMU
6123 */
6124 INC_ACTIVATION();
6125 /*
6126 * record current activation for this context
6127 */
6128 SET_ACTIVATION(ctx);
6129
6130 /*
6131 * establish new ownership.
6132 */
6133 SET_PMU_OWNER(task, ctx);
6134
6135 /*
6136 * restore the psr.up bit. measurement
6137 * is active again.
6138 * no PMU interrupt can happen at this point
6139 * because we still have interrupts disabled.
6140 */
6141 if (likely(psr_up)) pfm_set_psr_up();
6142
6143 /*
6144 * allow concurrent access to context
6145 */
6146 pfm_unprotect_ctx_ctxsw(ctx, flags);
6147 }
6148 #else /* !CONFIG_SMP */
6149 /*
6150 * reload PMU state for UP kernels
6151 * in 2.5 we come here with interrupts disabled
6152 */
6153 void
pfm_load_regs(struct task_struct * task)6154 pfm_load_regs (struct task_struct *task)
6155 {
6156 pfm_context_t *ctx;
6157 struct task_struct *owner;
6158 unsigned long pmd_mask, pmc_mask;
6159 u64 psr, psr_up;
6160 int need_irq_resend;
6161
6162 owner = GET_PMU_OWNER();
6163 ctx = PFM_GET_CTX(task);
6164 psr = pfm_get_psr();
6165
6166 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6167 BUG_ON(psr & IA64_PSR_I);
6168
6169 /*
6170 * we restore ALL the debug registers to avoid picking up
6171 * stale state.
6172 *
6173 * This must be done even when the task is still the owner
6174 * as the registers may have been modified via ptrace()
6175 * (not perfmon) by the previous task.
6176 */
6177 if (ctx->ctx_fl_using_dbreg) {
6178 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6179 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6180 }
6181
6182 /*
6183 * retrieved saved psr.up
6184 */
6185 psr_up = ctx->ctx_saved_psr_up;
6186 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6187
6188 /*
6189 * short path, our state is still there, just
6190 * need to restore psr and we go
6191 *
6192 * we do not touch either PMC nor PMD. the psr is not touched
6193 * by the overflow_handler. So we are safe w.r.t. to interrupt
6194 * concurrency even without interrupt masking.
6195 */
6196 if (likely(owner == task)) {
6197 if (likely(psr_up)) pfm_set_psr_up();
6198 return;
6199 }
6200
6201 /*
6202 * someone else is still using the PMU, first push it out and
6203 * then we'll be able to install our stuff !
6204 *
6205 * Upon return, there will be no owner for the current PMU
6206 */
6207 if (owner) pfm_lazy_save_regs(owner);
6208
6209 /*
6210 * To avoid leaking information to the user level when psr.sp=0,
6211 * we must reload ALL implemented pmds (even the ones we don't use).
6212 * In the kernel we only allow PFM_READ_PMDS on registers which
6213 * we initialized or requested (sampling) so there is no risk there.
6214 */
6215 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6216
6217 /*
6218 * ALL accessible PMCs are systematically reloaded, unused registers
6219 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6220 * up stale configuration.
6221 *
6222 * PMC0 is never in the mask. It is always restored separately
6223 */
6224 pmc_mask = ctx->ctx_all_pmcs[0];
6225
6226 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6227 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6228
6229 /*
6230 * check for pending overflow at the time the state
6231 * was saved.
6232 */
6233 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6234 /*
6235 * reload pmc0 with the overflow information
6236 * On McKinley PMU, this will trigger a PMU interrupt
6237 */
6238 ia64_set_pmc(0, ctx->th_pmcs[0]);
6239 ia64_srlz_d();
6240
6241 ctx->th_pmcs[0] = 0UL;
6242
6243 /*
6244 * will replay the PMU interrupt
6245 */
6246 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6247
6248 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6249 }
6250
6251 /*
6252 * establish new ownership.
6253 */
6254 SET_PMU_OWNER(task, ctx);
6255
6256 /*
6257 * restore the psr.up bit. measurement
6258 * is active again.
6259 * no PMU interrupt can happen at this point
6260 * because we still have interrupts disabled.
6261 */
6262 if (likely(psr_up)) pfm_set_psr_up();
6263 }
6264 #endif /* CONFIG_SMP */
6265
6266 /*
6267 * this function assumes monitoring is stopped
6268 */
6269 static void
pfm_flush_pmds(struct task_struct * task,pfm_context_t * ctx)6270 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6271 {
6272 u64 pmc0;
6273 unsigned long mask2, val, pmd_val, ovfl_val;
6274 int i, can_access_pmu = 0;
6275 int is_self;
6276
6277 /*
6278 * is the caller the task being monitored (or which initiated the
6279 * session for system wide measurements)
6280 */
6281 is_self = ctx->ctx_task == task ? 1 : 0;
6282
6283 /*
6284 * can access PMU is task is the owner of the PMU state on the current CPU
6285 * or if we are running on the CPU bound to the context in system-wide mode
6286 * (that is not necessarily the task the context is attached to in this mode).
6287 * In system-wide we always have can_access_pmu true because a task running on an
6288 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6289 */
6290 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6291 if (can_access_pmu) {
6292 /*
6293 * Mark the PMU as not owned
6294 * This will cause the interrupt handler to do nothing in case an overflow
6295 * interrupt was in-flight
6296 * This also guarantees that pmc0 will contain the final state
6297 * It virtually gives us full control on overflow processing from that point
6298 * on.
6299 */
6300 SET_PMU_OWNER(NULL, NULL);
6301 DPRINT(("releasing ownership\n"));
6302
6303 /*
6304 * read current overflow status:
6305 *
6306 * we are guaranteed to read the final stable state
6307 */
6308 ia64_srlz_d();
6309 pmc0 = ia64_get_pmc(0); /* slow */
6310
6311 /*
6312 * reset freeze bit, overflow status information destroyed
6313 */
6314 pfm_unfreeze_pmu();
6315 } else {
6316 pmc0 = ctx->th_pmcs[0];
6317 /*
6318 * clear whatever overflow status bits there were
6319 */
6320 ctx->th_pmcs[0] = 0;
6321 }
6322 ovfl_val = pmu_conf->ovfl_val;
6323 /*
6324 * we save all the used pmds
6325 * we take care of overflows for counting PMDs
6326 *
6327 * XXX: sampling situation is not taken into account here
6328 */
6329 mask2 = ctx->ctx_used_pmds[0];
6330
6331 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6332
6333 for (i = 0; mask2; i++, mask2>>=1) {
6334
6335 /* skip non used pmds */
6336 if ((mask2 & 0x1) == 0) continue;
6337
6338 /*
6339 * can access PMU always true in system wide mode
6340 */
6341 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6342
6343 if (PMD_IS_COUNTING(i)) {
6344 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6345 task_pid_nr(task),
6346 i,
6347 ctx->ctx_pmds[i].val,
6348 val & ovfl_val));
6349
6350 /*
6351 * we rebuild the full 64 bit value of the counter
6352 */
6353 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6354
6355 /*
6356 * now everything is in ctx_pmds[] and we need
6357 * to clear the saved context from save_regs() such that
6358 * pfm_read_pmds() gets the correct value
6359 */
6360 pmd_val = 0UL;
6361
6362 /*
6363 * take care of overflow inline
6364 */
6365 if (pmc0 & (1UL << i)) {
6366 val += 1 + ovfl_val;
6367 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6368 }
6369 }
6370
6371 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6372
6373 if (is_self) ctx->th_pmds[i] = pmd_val;
6374
6375 ctx->ctx_pmds[i].val = val;
6376 }
6377 }
6378
6379 static struct irqaction perfmon_irqaction = {
6380 .handler = pfm_interrupt_handler,
6381 .name = "perfmon"
6382 };
6383
6384 static void
pfm_alt_save_pmu_state(void * data)6385 pfm_alt_save_pmu_state(void *data)
6386 {
6387 struct pt_regs *regs;
6388
6389 regs = task_pt_regs(current);
6390
6391 DPRINT(("called\n"));
6392
6393 /*
6394 * should not be necessary but
6395 * let's take not risk
6396 */
6397 pfm_clear_psr_up();
6398 pfm_clear_psr_pp();
6399 ia64_psr(regs)->pp = 0;
6400
6401 /*
6402 * This call is required
6403 * May cause a spurious interrupt on some processors
6404 */
6405 pfm_freeze_pmu();
6406
6407 ia64_srlz_d();
6408 }
6409
6410 void
pfm_alt_restore_pmu_state(void * data)6411 pfm_alt_restore_pmu_state(void *data)
6412 {
6413 struct pt_regs *regs;
6414
6415 regs = task_pt_regs(current);
6416
6417 DPRINT(("called\n"));
6418
6419 /*
6420 * put PMU back in state expected
6421 * by perfmon
6422 */
6423 pfm_clear_psr_up();
6424 pfm_clear_psr_pp();
6425 ia64_psr(regs)->pp = 0;
6426
6427 /*
6428 * perfmon runs with PMU unfrozen at all times
6429 */
6430 pfm_unfreeze_pmu();
6431
6432 ia64_srlz_d();
6433 }
6434
6435 int
pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6436 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6437 {
6438 int ret, i;
6439 int reserve_cpu;
6440
6441 /* some sanity checks */
6442 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6443
6444 /* do the easy test first */
6445 if (pfm_alt_intr_handler) return -EBUSY;
6446
6447 /* one at a time in the install or remove, just fail the others */
6448 if (!spin_trylock(&pfm_alt_install_check)) {
6449 return -EBUSY;
6450 }
6451
6452 /* reserve our session */
6453 for_each_online_cpu(reserve_cpu) {
6454 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6455 if (ret) goto cleanup_reserve;
6456 }
6457
6458 /* save the current system wide pmu states */
6459 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6460 if (ret) {
6461 DPRINT(("on_each_cpu() failed: %d\n", ret));
6462 goto cleanup_reserve;
6463 }
6464
6465 /* officially change to the alternate interrupt handler */
6466 pfm_alt_intr_handler = hdl;
6467
6468 spin_unlock(&pfm_alt_install_check);
6469
6470 return 0;
6471
6472 cleanup_reserve:
6473 for_each_online_cpu(i) {
6474 /* don't unreserve more than we reserved */
6475 if (i >= reserve_cpu) break;
6476
6477 pfm_unreserve_session(NULL, 1, i);
6478 }
6479
6480 spin_unlock(&pfm_alt_install_check);
6481
6482 return ret;
6483 }
6484 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6485
6486 int
pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6487 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6488 {
6489 int i;
6490 int ret;
6491
6492 if (hdl == NULL) return -EINVAL;
6493
6494 /* cannot remove someone else's handler! */
6495 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6496
6497 /* one at a time in the install or remove, just fail the others */
6498 if (!spin_trylock(&pfm_alt_install_check)) {
6499 return -EBUSY;
6500 }
6501
6502 pfm_alt_intr_handler = NULL;
6503
6504 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6505 if (ret) {
6506 DPRINT(("on_each_cpu() failed: %d\n", ret));
6507 }
6508
6509 for_each_online_cpu(i) {
6510 pfm_unreserve_session(NULL, 1, i);
6511 }
6512
6513 spin_unlock(&pfm_alt_install_check);
6514
6515 return 0;
6516 }
6517 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6518
6519 /*
6520 * perfmon initialization routine, called from the initcall() table
6521 */
6522 static int init_pfm_fs(void);
6523
6524 static int __init
pfm_probe_pmu(void)6525 pfm_probe_pmu(void)
6526 {
6527 pmu_config_t **p;
6528 int family;
6529
6530 family = local_cpu_data->family;
6531 p = pmu_confs;
6532
6533 while(*p) {
6534 if ((*p)->probe) {
6535 if ((*p)->probe() == 0) goto found;
6536 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6537 goto found;
6538 }
6539 p++;
6540 }
6541 return -1;
6542 found:
6543 pmu_conf = *p;
6544 return 0;
6545 }
6546
6547 static const struct file_operations pfm_proc_fops = {
6548 .open = pfm_proc_open,
6549 .read = seq_read,
6550 .llseek = seq_lseek,
6551 .release = seq_release,
6552 };
6553
6554 int __init
pfm_init(void)6555 pfm_init(void)
6556 {
6557 unsigned int n, n_counters, i;
6558
6559 printk("perfmon: version %u.%u IRQ %u\n",
6560 PFM_VERSION_MAJ,
6561 PFM_VERSION_MIN,
6562 IA64_PERFMON_VECTOR);
6563
6564 if (pfm_probe_pmu()) {
6565 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6566 local_cpu_data->family);
6567 return -ENODEV;
6568 }
6569
6570 /*
6571 * compute the number of implemented PMD/PMC from the
6572 * description tables
6573 */
6574 n = 0;
6575 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6576 if (PMC_IS_IMPL(i) == 0) continue;
6577 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6578 n++;
6579 }
6580 pmu_conf->num_pmcs = n;
6581
6582 n = 0; n_counters = 0;
6583 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6584 if (PMD_IS_IMPL(i) == 0) continue;
6585 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6586 n++;
6587 if (PMD_IS_COUNTING(i)) n_counters++;
6588 }
6589 pmu_conf->num_pmds = n;
6590 pmu_conf->num_counters = n_counters;
6591
6592 /*
6593 * sanity checks on the number of debug registers
6594 */
6595 if (pmu_conf->use_rr_dbregs) {
6596 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6597 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6598 pmu_conf = NULL;
6599 return -1;
6600 }
6601 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6602 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6603 pmu_conf = NULL;
6604 return -1;
6605 }
6606 }
6607
6608 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6609 pmu_conf->pmu_name,
6610 pmu_conf->num_pmcs,
6611 pmu_conf->num_pmds,
6612 pmu_conf->num_counters,
6613 ffz(pmu_conf->ovfl_val));
6614
6615 /* sanity check */
6616 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6617 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6618 pmu_conf = NULL;
6619 return -1;
6620 }
6621
6622 /*
6623 * create /proc/perfmon (mostly for debugging purposes)
6624 */
6625 perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6626 if (perfmon_dir == NULL) {
6627 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6628 pmu_conf = NULL;
6629 return -1;
6630 }
6631
6632 /*
6633 * create /proc/sys/kernel/perfmon (for debugging purposes)
6634 */
6635 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6636
6637 /*
6638 * initialize all our spinlocks
6639 */
6640 spin_lock_init(&pfm_sessions.pfs_lock);
6641 spin_lock_init(&pfm_buffer_fmt_lock);
6642
6643 init_pfm_fs();
6644
6645 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6646
6647 return 0;
6648 }
6649
6650 __initcall(pfm_init);
6651
6652 /*
6653 * this function is called before pfm_init()
6654 */
6655 void
pfm_init_percpu(void)6656 pfm_init_percpu (void)
6657 {
6658 static int first_time=1;
6659 /*
6660 * make sure no measurement is active
6661 * (may inherit programmed PMCs from EFI).
6662 */
6663 pfm_clear_psr_pp();
6664 pfm_clear_psr_up();
6665
6666 /*
6667 * we run with the PMU not frozen at all times
6668 */
6669 pfm_unfreeze_pmu();
6670
6671 if (first_time) {
6672 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6673 first_time=0;
6674 }
6675
6676 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6677 ia64_srlz_d();
6678 }
6679
6680 /*
6681 * used for debug purposes only
6682 */
6683 void
dump_pmu_state(const char * from)6684 dump_pmu_state(const char *from)
6685 {
6686 struct task_struct *task;
6687 struct pt_regs *regs;
6688 pfm_context_t *ctx;
6689 unsigned long psr, dcr, info, flags;
6690 int i, this_cpu;
6691
6692 local_irq_save(flags);
6693
6694 this_cpu = smp_processor_id();
6695 regs = task_pt_regs(current);
6696 info = PFM_CPUINFO_GET();
6697 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6698
6699 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6700 local_irq_restore(flags);
6701 return;
6702 }
6703
6704 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6705 this_cpu,
6706 from,
6707 task_pid_nr(current),
6708 regs->cr_iip,
6709 current->comm);
6710
6711 task = GET_PMU_OWNER();
6712 ctx = GET_PMU_CTX();
6713
6714 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6715
6716 psr = pfm_get_psr();
6717
6718 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6719 this_cpu,
6720 ia64_get_pmc(0),
6721 psr & IA64_PSR_PP ? 1 : 0,
6722 psr & IA64_PSR_UP ? 1 : 0,
6723 dcr & IA64_DCR_PP ? 1 : 0,
6724 info,
6725 ia64_psr(regs)->up,
6726 ia64_psr(regs)->pp);
6727
6728 ia64_psr(regs)->up = 0;
6729 ia64_psr(regs)->pp = 0;
6730
6731 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6732 if (PMC_IS_IMPL(i) == 0) continue;
6733 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6734 }
6735
6736 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6737 if (PMD_IS_IMPL(i) == 0) continue;
6738 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6739 }
6740
6741 if (ctx) {
6742 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6743 this_cpu,
6744 ctx->ctx_state,
6745 ctx->ctx_smpl_vaddr,
6746 ctx->ctx_smpl_hdr,
6747 ctx->ctx_msgq_head,
6748 ctx->ctx_msgq_tail,
6749 ctx->ctx_saved_psr_up);
6750 }
6751 local_irq_restore(flags);
6752 }
6753
6754 /*
6755 * called from process.c:copy_thread(). task is new child.
6756 */
6757 void
pfm_inherit(struct task_struct * task,struct pt_regs * regs)6758 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6759 {
6760 struct thread_struct *thread;
6761
6762 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6763
6764 thread = &task->thread;
6765
6766 /*
6767 * cut links inherited from parent (current)
6768 */
6769 thread->pfm_context = NULL;
6770
6771 PFM_SET_WORK_PENDING(task, 0);
6772
6773 /*
6774 * the psr bits are already set properly in copy_threads()
6775 */
6776 }
6777 #else /* !CONFIG_PERFMON */
6778 asmlinkage long
sys_perfmonctl(int fd,int cmd,void * arg,int count)6779 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6780 {
6781 return -ENOSYS;
6782 }
6783 #endif /* CONFIG_PERFMON */
6784