• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _PARISC_PGTABLE_H
3 #define _PARISC_PGTABLE_H
4 
5 #include <asm-generic/4level-fixup.h>
6 
7 #include <asm/fixmap.h>
8 
9 #ifndef __ASSEMBLY__
10 /*
11  * we simulate an x86-style page table for the linux mm code
12  */
13 
14 #include <linux/bitops.h>
15 #include <linux/spinlock.h>
16 #include <linux/mm_types.h>
17 #include <asm/processor.h>
18 #include <asm/cache.h>
19 
20 extern spinlock_t pa_tlb_lock;
21 
22 /*
23  * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
24  * memory.  For the return value to be meaningful, ADDR must be >=
25  * PAGE_OFFSET.  This operation can be relatively expensive (e.g.,
26  * require a hash-, or multi-level tree-lookup or something of that
27  * sort) but it guarantees to return TRUE only if accessing the page
28  * at that address does not cause an error.  Note that there may be
29  * addresses for which kern_addr_valid() returns FALSE even though an
30  * access would not cause an error (e.g., this is typically true for
31  * memory mapped I/O regions.
32  *
33  * XXX Need to implement this for parisc.
34  */
35 #define kern_addr_valid(addr)	(1)
36 
37 /* Purge data and instruction TLB entries.  Must be called holding
38  * the pa_tlb_lock.  The TLB purge instructions are slow on SMP
39  * machines since the purge must be broadcast to all CPUs.
40  */
41 
purge_tlb_entries(struct mm_struct * mm,unsigned long addr)42 static inline void purge_tlb_entries(struct mm_struct *mm, unsigned long addr)
43 {
44 	mtsp(mm->context, 1);
45 	pdtlb(addr);
46 	if (unlikely(split_tlb))
47 		pitlb(addr);
48 }
49 
50 /* Certain architectures need to do special things when PTEs
51  * within a page table are directly modified.  Thus, the following
52  * hook is made available.
53  */
54 #define set_pte(pteptr, pteval)                                 \
55         do{                                                     \
56                 *(pteptr) = (pteval);                           \
57         } while(0)
58 
59 #define pte_inserted(x)						\
60 	((pte_val(x) & (_PAGE_PRESENT|_PAGE_ACCESSED))		\
61 	 == (_PAGE_PRESENT|_PAGE_ACCESSED))
62 
63 #define set_pte_at(mm, addr, ptep, pteval)			\
64 	do {							\
65 		pte_t old_pte;					\
66 		unsigned long flags;				\
67 		spin_lock_irqsave(&pa_tlb_lock, flags);		\
68 		old_pte = *ptep;				\
69 		if (pte_inserted(old_pte))			\
70 			purge_tlb_entries(mm, addr);		\
71 		set_pte(ptep, pteval);				\
72 		spin_unlock_irqrestore(&pa_tlb_lock, flags);	\
73 	} while (0)
74 
75 #endif /* !__ASSEMBLY__ */
76 
77 #include <asm/page.h>
78 
79 #define pte_ERROR(e) \
80 	printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
81 #define pmd_ERROR(e) \
82 	printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
83 #define pgd_ERROR(e) \
84 	printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
85 
86 /* This is the size of the initially mapped kernel memory */
87 #if defined(CONFIG_64BIT)
88 #define KERNEL_INITIAL_ORDER	26	/* 1<<26 = 64MB */
89 #else
90 #define KERNEL_INITIAL_ORDER	25	/* 1<<25 = 32MB */
91 #endif
92 #define KERNEL_INITIAL_SIZE	(1 << KERNEL_INITIAL_ORDER)
93 
94 #if CONFIG_PGTABLE_LEVELS == 3
95 #define PGD_ORDER	1 /* Number of pages per pgd */
96 #define PMD_ORDER	1 /* Number of pages per pmd */
97 #define PGD_ALLOC_ORDER	2 /* first pgd contains pmd */
98 #else
99 #define PGD_ORDER	1 /* Number of pages per pgd */
100 #define PGD_ALLOC_ORDER	PGD_ORDER
101 #endif
102 
103 /* Definitions for 3rd level (we use PLD here for Page Lower directory
104  * because PTE_SHIFT is used lower down to mean shift that has to be
105  * done to get usable bits out of the PTE) */
106 #define PLD_SHIFT	PAGE_SHIFT
107 #define PLD_SIZE	PAGE_SIZE
108 #define BITS_PER_PTE	(PAGE_SHIFT - BITS_PER_PTE_ENTRY)
109 #define PTRS_PER_PTE    (1UL << BITS_PER_PTE)
110 
111 /* Definitions for 2nd level */
112 #define pgtable_cache_init()	do { } while (0)
113 
114 #define PMD_SHIFT       (PLD_SHIFT + BITS_PER_PTE)
115 #define PMD_SIZE	(1UL << PMD_SHIFT)
116 #define PMD_MASK	(~(PMD_SIZE-1))
117 #if CONFIG_PGTABLE_LEVELS == 3
118 #define BITS_PER_PMD	(PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY)
119 #else
120 #define __PAGETABLE_PMD_FOLDED
121 #define BITS_PER_PMD	0
122 #endif
123 #define PTRS_PER_PMD    (1UL << BITS_PER_PMD)
124 
125 /* Definitions for 1st level */
126 #define PGDIR_SHIFT	(PMD_SHIFT + BITS_PER_PMD)
127 #if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG
128 #define BITS_PER_PGD	(BITS_PER_LONG - PGDIR_SHIFT)
129 #else
130 #define BITS_PER_PGD	(PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY)
131 #endif
132 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
133 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
134 #define PTRS_PER_PGD    (1UL << BITS_PER_PGD)
135 #define USER_PTRS_PER_PGD       PTRS_PER_PGD
136 
137 #ifdef CONFIG_64BIT
138 #define MAX_ADDRBITS	(PGDIR_SHIFT + BITS_PER_PGD)
139 #define MAX_ADDRESS	(1UL << MAX_ADDRBITS)
140 #define SPACEID_SHIFT	(MAX_ADDRBITS - 32)
141 #else
142 #define MAX_ADDRBITS	(BITS_PER_LONG)
143 #define MAX_ADDRESS	(1UL << MAX_ADDRBITS)
144 #define SPACEID_SHIFT	0
145 #endif
146 
147 /* This calculates the number of initial pages we need for the initial
148  * page tables */
149 #if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT)
150 # define PT_INITIAL	(1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
151 #else
152 # define PT_INITIAL	(1)  /* all initial PTEs fit into one page */
153 #endif
154 
155 /*
156  * pgd entries used up by user/kernel:
157  */
158 
159 #define FIRST_USER_ADDRESS	0UL
160 
161 /* NB: The tlb miss handlers make certain assumptions about the order */
162 /*     of the following bits, so be careful (One example, bits 25-31  */
163 /*     are moved together in one instruction).                        */
164 
165 #define _PAGE_READ_BIT     31   /* (0x001) read access allowed */
166 #define _PAGE_WRITE_BIT    30   /* (0x002) write access allowed */
167 #define _PAGE_EXEC_BIT     29   /* (0x004) execute access allowed */
168 #define _PAGE_GATEWAY_BIT  28   /* (0x008) privilege promotion allowed */
169 #define _PAGE_DMB_BIT      27   /* (0x010) Data Memory Break enable (B bit) */
170 #define _PAGE_DIRTY_BIT    26   /* (0x020) Page Dirty (D bit) */
171 #define _PAGE_REFTRAP_BIT  25   /* (0x040) Page Ref. Trap enable (T bit) */
172 #define _PAGE_NO_CACHE_BIT 24   /* (0x080) Uncached Page (U bit) */
173 #define _PAGE_ACCESSED_BIT 23   /* (0x100) Software: Page Accessed */
174 #define _PAGE_PRESENT_BIT  22   /* (0x200) Software: translation valid */
175 #define _PAGE_HPAGE_BIT    21   /* (0x400) Software: Huge Page */
176 #define _PAGE_USER_BIT     20   /* (0x800) Software: User accessible page */
177 
178 /* N.B. The bits are defined in terms of a 32 bit word above, so the */
179 /*      following macro is ok for both 32 and 64 bit.                */
180 
181 #define xlate_pabit(x) (31 - x)
182 
183 /* this defines the shift to the usable bits in the PTE it is set so
184  * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
185  * to zero */
186 #define PTE_SHIFT	   	xlate_pabit(_PAGE_USER_BIT)
187 
188 /* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */
189 #define PFN_PTE_SHIFT		12
190 
191 #define _PAGE_READ     (1 << xlate_pabit(_PAGE_READ_BIT))
192 #define _PAGE_WRITE    (1 << xlate_pabit(_PAGE_WRITE_BIT))
193 #define _PAGE_RW       (_PAGE_READ | _PAGE_WRITE)
194 #define _PAGE_EXEC     (1 << xlate_pabit(_PAGE_EXEC_BIT))
195 #define _PAGE_GATEWAY  (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
196 #define _PAGE_DMB      (1 << xlate_pabit(_PAGE_DMB_BIT))
197 #define _PAGE_DIRTY    (1 << xlate_pabit(_PAGE_DIRTY_BIT))
198 #define _PAGE_REFTRAP  (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
199 #define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
200 #define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
201 #define _PAGE_PRESENT  (1 << xlate_pabit(_PAGE_PRESENT_BIT))
202 #define _PAGE_HUGE     (1 << xlate_pabit(_PAGE_HPAGE_BIT))
203 #define _PAGE_USER     (1 << xlate_pabit(_PAGE_USER_BIT))
204 
205 #define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_ACCESSED)
206 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
207 #define _PAGE_KERNEL_RO	(_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED)
208 #define _PAGE_KERNEL_EXEC	(_PAGE_KERNEL_RO | _PAGE_EXEC)
209 #define _PAGE_KERNEL_RWX	(_PAGE_KERNEL_EXEC | _PAGE_WRITE)
210 #define _PAGE_KERNEL		(_PAGE_KERNEL_RO | _PAGE_WRITE)
211 
212 /* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
213  * are page-aligned, we don't care about the PAGE_OFFSET bits, except
214  * for a few meta-information bits, so we shift the address to be
215  * able to effectively address 40/42/44-bits of physical address space
216  * depending on 4k/16k/64k PAGE_SIZE */
217 #define _PxD_PRESENT_BIT   31
218 #define _PxD_ATTACHED_BIT  30
219 #define _PxD_VALID_BIT     29
220 
221 #define PxD_FLAG_PRESENT  (1 << xlate_pabit(_PxD_PRESENT_BIT))
222 #define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT))
223 #define PxD_FLAG_VALID    (1 << xlate_pabit(_PxD_VALID_BIT))
224 #define PxD_FLAG_MASK     (0xf)
225 #define PxD_FLAG_SHIFT    (4)
226 #define PxD_VALUE_SHIFT   (PFN_PTE_SHIFT-PxD_FLAG_SHIFT)
227 
228 #ifndef __ASSEMBLY__
229 
230 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
231 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED)
232 /* Others seem to make this executable, I don't know if that's correct
233    or not.  The stack is mapped this way though so this is necessary
234    in the short term - dhd@linuxcare.com, 2000-08-08 */
235 #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED)
236 #define PAGE_WRITEONLY  __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED)
237 #define PAGE_EXECREAD   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED)
238 #define PAGE_COPY       PAGE_EXECREAD
239 #define PAGE_RWX        __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED)
240 #define PAGE_KERNEL	__pgprot(_PAGE_KERNEL)
241 #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL_EXEC)
242 #define PAGE_KERNEL_RWX	__pgprot(_PAGE_KERNEL_RWX)
243 #define PAGE_KERNEL_RO	__pgprot(_PAGE_KERNEL_RO)
244 #define PAGE_KERNEL_UNC	__pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
245 #define PAGE_GATEWAY    __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ)
246 
247 
248 /*
249  * We could have an execute only page using "gateway - promote to priv
250  * level 3", but that is kind of silly. So, the way things are defined
251  * now, we must always have read permission for pages with execute
252  * permission. For the fun of it we'll go ahead and support write only
253  * pages.
254  */
255 
256 	 /*xwr*/
257 #define __P000  PAGE_NONE
258 #define __P001  PAGE_READONLY
259 #define __P010  __P000 /* copy on write */
260 #define __P011  __P001 /* copy on write */
261 #define __P100  PAGE_EXECREAD
262 #define __P101  PAGE_EXECREAD
263 #define __P110  __P100 /* copy on write */
264 #define __P111  __P101 /* copy on write */
265 
266 #define __S000  PAGE_NONE
267 #define __S001  PAGE_READONLY
268 #define __S010  PAGE_WRITEONLY
269 #define __S011  PAGE_SHARED
270 #define __S100  PAGE_EXECREAD
271 #define __S101  PAGE_EXECREAD
272 #define __S110  PAGE_RWX
273 #define __S111  PAGE_RWX
274 
275 
276 extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
277 
278 /* initial page tables for 0-8MB for kernel */
279 
280 extern pte_t pg0[];
281 
282 /* zero page used for uninitialized stuff */
283 
284 extern unsigned long *empty_zero_page;
285 
286 /*
287  * ZERO_PAGE is a global shared page that is always zero: used
288  * for zero-mapped memory areas etc..
289  */
290 
291 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
292 
293 #define pte_none(x)     (pte_val(x) == 0)
294 #define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
295 #define pte_clear(mm, addr, xp)  set_pte_at(mm, addr, xp, __pte(0))
296 
297 #define pmd_flag(x)	(pmd_val(x) & PxD_FLAG_MASK)
298 #define pmd_address(x)	((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
299 #define pgd_flag(x)	(pgd_val(x) & PxD_FLAG_MASK)
300 #define pgd_address(x)	((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
301 
302 #if CONFIG_PGTABLE_LEVELS == 3
303 /* The first entry of the permanent pmd is not there if it contains
304  * the gateway marker */
305 #define pmd_none(x)	(!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED)
306 #else
307 #define pmd_none(x)	(!pmd_val(x))
308 #endif
309 #define pmd_bad(x)	(!(pmd_flag(x) & PxD_FLAG_VALID))
310 #define pmd_present(x)	(pmd_flag(x) & PxD_FLAG_PRESENT)
pmd_clear(pmd_t * pmd)311 static inline void pmd_clear(pmd_t *pmd) {
312 #if CONFIG_PGTABLE_LEVELS == 3
313 	if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
314 		/* This is the entry pointing to the permanent pmd
315 		 * attached to the pgd; cannot clear it */
316 		__pmd_val_set(*pmd, PxD_FLAG_ATTACHED);
317 	else
318 #endif
319 		__pmd_val_set(*pmd,  0);
320 }
321 
322 
323 
324 #if CONFIG_PGTABLE_LEVELS == 3
325 #define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd)))
326 #define pgd_page(pgd)	virt_to_page((void *)pgd_page_vaddr(pgd))
327 
328 /* For 64 bit we have three level tables */
329 
330 #define pgd_none(x)     (!pgd_val(x))
331 #define pgd_bad(x)      (!(pgd_flag(x) & PxD_FLAG_VALID))
332 #define pgd_present(x)  (pgd_flag(x) & PxD_FLAG_PRESENT)
pgd_clear(pgd_t * pgd)333 static inline void pgd_clear(pgd_t *pgd) {
334 #if CONFIG_PGTABLE_LEVELS == 3
335 	if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED)
336 		/* This is the permanent pmd attached to the pgd; cannot
337 		 * free it */
338 		return;
339 #endif
340 	__pgd_val_set(*pgd, 0);
341 }
342 #else
343 /*
344  * The "pgd_xxx()" functions here are trivial for a folded two-level
345  * setup: the pgd is never bad, and a pmd always exists (as it's folded
346  * into the pgd entry)
347  */
pgd_none(pgd_t pgd)348 static inline int pgd_none(pgd_t pgd)		{ return 0; }
pgd_bad(pgd_t pgd)349 static inline int pgd_bad(pgd_t pgd)		{ return 0; }
pgd_present(pgd_t pgd)350 static inline int pgd_present(pgd_t pgd)	{ return 1; }
pgd_clear(pgd_t * pgdp)351 static inline void pgd_clear(pgd_t * pgdp)	{ }
352 #endif
353 
354 /*
355  * The following only work if pte_present() is true.
356  * Undefined behaviour if not..
357  */
pte_dirty(pte_t pte)358 static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)359 static inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
pte_write(pte_t pte)360 static inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_WRITE; }
pte_special(pte_t pte)361 static inline int pte_special(pte_t pte)	{ return 0; }
362 
pte_mkclean(pte_t pte)363 static inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
pte_mkold(pte_t pte)364 static inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
pte_wrprotect(pte_t pte)365 static inline pte_t pte_wrprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_WRITE; return pte; }
pte_mkdirty(pte_t pte)366 static inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
pte_mkyoung(pte_t pte)367 static inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
pte_mkwrite(pte_t pte)368 static inline pte_t pte_mkwrite(pte_t pte)	{ pte_val(pte) |= _PAGE_WRITE; return pte; }
pte_mkspecial(pte_t pte)369 static inline pte_t pte_mkspecial(pte_t pte)	{ return pte; }
370 
371 /*
372  * Huge pte definitions.
373  */
374 #ifdef CONFIG_HUGETLB_PAGE
375 #define pte_huge(pte)           (pte_val(pte) & _PAGE_HUGE)
376 #define pte_mkhuge(pte)         (__pte(pte_val(pte) | \
377 				 (parisc_requires_coherency() ? 0 : _PAGE_HUGE)))
378 #else
379 #define pte_huge(pte)           (0)
380 #define pte_mkhuge(pte)         (pte)
381 #endif
382 
383 
384 /*
385  * Conversion functions: convert a page and protection to a page entry,
386  * and a page entry and page directory to the page they refer to.
387  */
388 #define __mk_pte(addr,pgprot) \
389 ({									\
390 	pte_t __pte;							\
391 									\
392 	pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot));	\
393 									\
394 	__pte;								\
395 })
396 
397 #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
398 
pfn_pte(unsigned long pfn,pgprot_t pgprot)399 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
400 {
401 	pte_t pte;
402 	pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot);
403 	return pte;
404 }
405 
pte_modify(pte_t pte,pgprot_t newprot)406 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
407 { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
408 
409 /* Permanent address of a page.  On parisc we don't have highmem. */
410 
411 #define pte_pfn(x)		(pte_val(x) >> PFN_PTE_SHIFT)
412 
413 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
414 
415 #define pmd_page_vaddr(pmd)	((unsigned long) __va(pmd_address(pmd)))
416 
417 #define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
418 #define pmd_page(pmd)	virt_to_page((void *)__pmd_page(pmd))
419 
420 #define pgd_index(address) ((address) >> PGDIR_SHIFT)
421 
422 /* to find an entry in a page-table-directory */
423 #define pgd_offset(mm, address) \
424 ((mm)->pgd + ((address) >> PGDIR_SHIFT))
425 
426 /* to find an entry in a kernel page-table-directory */
427 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
428 
429 /* Find an entry in the second-level page table.. */
430 
431 #if CONFIG_PGTABLE_LEVELS == 3
432 #define pmd_index(addr)         (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
433 #define pmd_offset(dir,address) \
434 ((pmd_t *) pgd_page_vaddr(*(dir)) + pmd_index(address))
435 #else
436 #define pmd_offset(dir,addr) ((pmd_t *) dir)
437 #endif
438 
439 /* Find an entry in the third-level page table.. */
440 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
441 #define pte_offset_kernel(pmd, address) \
442 	((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address))
443 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
444 #define pte_unmap(pte) do { } while (0)
445 
446 #define pte_unmap(pte)			do { } while (0)
447 #define pte_unmap_nested(pte)		do { } while (0)
448 
449 extern void paging_init (void);
450 
451 /* Used for deferring calls to flush_dcache_page() */
452 
453 #define PG_dcache_dirty         PG_arch_1
454 
455 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
456 
457 /* Encode and de-code a swap entry */
458 
459 #define __swp_type(x)                     ((x).val & 0x1f)
460 #define __swp_offset(x)                   ( (((x).val >> 6) &  0x7) | \
461 					  (((x).val >> 8) & ~0x7) )
462 #define __swp_entry(type, offset)         ((swp_entry_t) { (type) | \
463 					    ((offset &  0x7) << 6) | \
464 					    ((offset & ~0x7) << 8) })
465 #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
466 #define __swp_entry_to_pte(x)		((pte_t) { (x).val })
467 
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)468 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
469 {
470 	pte_t pte;
471 	unsigned long flags;
472 
473 	if (!pte_young(*ptep))
474 		return 0;
475 
476 	spin_lock_irqsave(&pa_tlb_lock, flags);
477 	pte = *ptep;
478 	if (!pte_young(pte)) {
479 		spin_unlock_irqrestore(&pa_tlb_lock, flags);
480 		return 0;
481 	}
482 	purge_tlb_entries(vma->vm_mm, addr);
483 	set_pte(ptep, pte_mkold(pte));
484 	spin_unlock_irqrestore(&pa_tlb_lock, flags);
485 	return 1;
486 }
487 
488 struct mm_struct;
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)489 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
490 {
491 	pte_t old_pte;
492 	unsigned long flags;
493 
494 	spin_lock_irqsave(&pa_tlb_lock, flags);
495 	old_pte = *ptep;
496 	if (pte_inserted(old_pte))
497 		purge_tlb_entries(mm, addr);
498 	set_pte(ptep, __pte(0));
499 	spin_unlock_irqrestore(&pa_tlb_lock, flags);
500 
501 	return old_pte;
502 }
503 
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)504 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
505 {
506 	unsigned long flags;
507 	spin_lock_irqsave(&pa_tlb_lock, flags);
508 	purge_tlb_entries(mm, addr);
509 	set_pte(ptep, pte_wrprotect(*ptep));
510 	spin_unlock_irqrestore(&pa_tlb_lock, flags);
511 }
512 
513 #define pte_same(A,B)	(pte_val(A) == pte_val(B))
514 
515 struct seq_file;
516 extern void arch_report_meminfo(struct seq_file *m);
517 
518 #endif /* !__ASSEMBLY__ */
519 
520 
521 /* TLB page size encoding - see table 3-1 in parisc20.pdf */
522 #define _PAGE_SIZE_ENCODING_4K		0
523 #define _PAGE_SIZE_ENCODING_16K		1
524 #define _PAGE_SIZE_ENCODING_64K		2
525 #define _PAGE_SIZE_ENCODING_256K	3
526 #define _PAGE_SIZE_ENCODING_1M		4
527 #define _PAGE_SIZE_ENCODING_4M		5
528 #define _PAGE_SIZE_ENCODING_16M		6
529 #define _PAGE_SIZE_ENCODING_64M		7
530 
531 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
532 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K
533 #elif defined(CONFIG_PARISC_PAGE_SIZE_16KB)
534 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K
535 #elif defined(CONFIG_PARISC_PAGE_SIZE_64KB)
536 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K
537 #endif
538 
539 
540 #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
541 
542 /* We provide our own get_unmapped_area to provide cache coherency */
543 
544 #define HAVE_ARCH_UNMAPPED_AREA
545 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
546 
547 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
548 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
549 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
550 #define __HAVE_ARCH_PTE_SAME
551 #include <asm-generic/pgtable.h>
552 
553 #endif /* _PARISC_PGTABLE_H */
554