• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #ifndef __ASM_CPUFEATURE_H
10 #define __ASM_CPUFEATURE_H
11 
12 #include <asm/cpucaps.h>
13 #include <asm/cputype.h>
14 #include <asm/hwcap.h>
15 #include <asm/sysreg.h>
16 
17 /*
18  * In the arm64 world (as in the ARM world), elf_hwcap is used both internally
19  * in the kernel and for user space to keep track of which optional features
20  * are supported by the current system. So let's map feature 'x' to HWCAP_x.
21  * Note that HWCAP_x constants are bit fields so we need to take the log.
22  */
23 
24 #define MAX_CPU_FEATURES	(8 * sizeof(elf_hwcap))
25 #define cpu_feature(x)		ilog2(HWCAP_ ## x)
26 
27 #ifndef __ASSEMBLY__
28 
29 #include <linux/bug.h>
30 #include <linux/jump_label.h>
31 #include <linux/kernel.h>
32 
33 /*
34  * CPU feature register tracking
35  *
36  * The safe value of a CPUID feature field is dependent on the implications
37  * of the values assigned to it by the architecture. Based on the relationship
38  * between the values, the features are classified into 3 types - LOWER_SAFE,
39  * HIGHER_SAFE and EXACT.
40  *
41  * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
42  * for HIGHER_SAFE. It is expected that all CPUs have the same value for
43  * a field when EXACT is specified, failing which, the safe value specified
44  * in the table is chosen.
45  */
46 
47 enum ftr_type {
48 	FTR_EXACT,			/* Use a predefined safe value */
49 	FTR_LOWER_SAFE,			/* Smaller value is safe */
50 	FTR_HIGHER_SAFE,		/* Bigger value is safe */
51 	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
52 };
53 
54 #define FTR_STRICT	true	/* SANITY check strict matching required */
55 #define FTR_NONSTRICT	false	/* SANITY check ignored */
56 
57 #define FTR_SIGNED	true	/* Value should be treated as signed */
58 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
59 
60 #define FTR_VISIBLE	true	/* Feature visible to the user space */
61 #define FTR_HIDDEN	false	/* Feature is hidden from the user */
62 
63 struct arm64_ftr_bits {
64 	bool		sign;	/* Value is signed ? */
65 	bool		visible;
66 	bool		strict;	/* CPU Sanity check: strict matching required ? */
67 	enum ftr_type	type;
68 	u8		shift;
69 	u8		width;
70 	s64		safe_val; /* safe value for FTR_EXACT features */
71 };
72 
73 /*
74  * @arm64_ftr_reg - Feature register
75  * @strict_mask		Bits which should match across all CPUs for sanity.
76  * @sys_val		Safe value across the CPUs (system view)
77  */
78 struct arm64_ftr_reg {
79 	const char			*name;
80 	u64				strict_mask;
81 	u64				user_mask;
82 	u64				sys_val;
83 	u64				user_val;
84 	const struct arm64_ftr_bits	*ftr_bits;
85 };
86 
87 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
88 
89 /*
90  * CPU capabilities:
91  *
92  * We use arm64_cpu_capabilities to represent system features, errata work
93  * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
94  * ELF HWCAPs (which are exposed to user).
95  *
96  * To support systems with heterogeneous CPUs, we need to make sure that we
97  * detect the capabilities correctly on the system and take appropriate
98  * measures to ensure there are no incompatibilities.
99  *
100  * This comment tries to explain how we treat the capabilities.
101  * Each capability has the following list of attributes :
102  *
103  * 1) Scope of Detection : The system detects a given capability by
104  *    performing some checks at runtime. This could be, e.g, checking the
105  *    value of a field in CPU ID feature register or checking the cpu
106  *    model. The capability provides a call back ( @matches() ) to
107  *    perform the check. Scope defines how the checks should be performed.
108  *    There are three cases:
109  *
110  *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
111  *        matches. This implies, we have to run the check on all the
112  *        booting CPUs, until the system decides that state of the
113  *        capability is finalised. (See section 2 below)
114  *		Or
115  *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
116  *        matches. This implies, we run the check only once, when the
117  *        system decides to finalise the state of the capability. If the
118  *        capability relies on a field in one of the CPU ID feature
119  *        registers, we use the sanitised value of the register from the
120  *        CPU feature infrastructure to make the decision.
121  *		Or
122  *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
123  *        feature. This category is for features that are "finalised"
124  *        (or used) by the kernel very early even before the SMP cpus
125  *        are brought up.
126  *
127  *    The process of detection is usually denoted by "update" capability
128  *    state in the code.
129  *
130  * 2) Finalise the state : The kernel should finalise the state of a
131  *    capability at some point during its execution and take necessary
132  *    actions if any. Usually, this is done, after all the boot-time
133  *    enabled CPUs are brought up by the kernel, so that it can make
134  *    better decision based on the available set of CPUs. However, there
135  *    are some special cases, where the action is taken during the early
136  *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
137  *    Virtualisation Host Extensions). The kernel usually disallows any
138  *    changes to the state of a capability once it finalises the capability
139  *    and takes any action, as it may be impossible to execute the actions
140  *    safely. A CPU brought up after a capability is "finalised" is
141  *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
142  *    CPUs are treated "late CPUs" for capabilities determined by the boot
143  *    CPU.
144  *
145  *    At the moment there are two passes of finalising the capabilities.
146  *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
147  *         setup_boot_cpu_capabilities().
148  *      b) Everything except (a) - Run via setup_system_capabilities().
149  *
150  * 3) Verification: When a CPU is brought online (e.g, by user or by the
151  *    kernel), the kernel should make sure that it is safe to use the CPU,
152  *    by verifying that the CPU is compliant with the state of the
153  *    capabilities finalised already. This happens via :
154  *
155  *	secondary_start_kernel()-> check_local_cpu_capabilities()
156  *
157  *    As explained in (2) above, capabilities could be finalised at
158  *    different points in the execution. Each newly booted CPU is verified
159  *    against the capabilities that have been finalised by the time it
160  *    boots.
161  *
162  *	a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
163  *	except for the primary boot CPU.
164  *
165  *	b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
166  *	user after the kernel boot are verified against the capability.
167  *
168  *    If there is a conflict, the kernel takes an action, based on the
169  *    severity (e.g, a CPU could be prevented from booting or cause a
170  *    kernel panic). The CPU is allowed to "affect" the state of the
171  *    capability, if it has not been finalised already. See section 5
172  *    for more details on conflicts.
173  *
174  * 4) Action: As mentioned in (2), the kernel can take an action for each
175  *    detected capability, on all CPUs on the system. Appropriate actions
176  *    include, turning on an architectural feature, modifying the control
177  *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
178  *    alternatives. The kernel patching is batched and performed at later
179  *    point. The actions are always initiated only after the capability
180  *    is finalised. This is usally denoted by "enabling" the capability.
181  *    The actions are initiated as follows :
182  *	a) Action is triggered on all online CPUs, after the capability is
183  *	finalised, invoked within the stop_machine() context from
184  *	enable_cpu_capabilitie().
185  *
186  *	b) Any late CPU, brought up after (1), the action is triggered via:
187  *
188  *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
189  *
190  * 5) Conflicts: Based on the state of the capability on a late CPU vs.
191  *    the system state, we could have the following combinations :
192  *
193  *		x-----------------------------x
194  *		| Type  | System   | Late CPU |
195  *		|-----------------------------|
196  *		|  a    |   y      |    n     |
197  *		|-----------------------------|
198  *		|  b    |   n      |    y     |
199  *		x-----------------------------x
200  *
201  *     Two separate flag bits are defined to indicate whether each kind of
202  *     conflict can be allowed:
203  *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
204  *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
205  *
206  *     Case (a) is not permitted for a capability that the system requires
207  *     all CPUs to have in order for the capability to be enabled. This is
208  *     typical for capabilities that represent enhanced functionality.
209  *
210  *     Case (b) is not permitted for a capability that must be enabled
211  *     during boot if any CPU in the system requires it in order to run
212  *     safely. This is typical for erratum work arounds that cannot be
213  *     enabled after the corresponding capability is finalised.
214  *
215  *     In some non-typical cases either both (a) and (b), or neither,
216  *     should be permitted. This can be described by including neither
217  *     or both flags in the capability's type field.
218  */
219 
220 
221 /*
222  * Decide how the capability is detected.
223  * On any local CPU vs System wide vs the primary boot CPU
224  */
225 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
226 #define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
227 /*
228  * The capabilitiy is detected on the Boot CPU and is used by kernel
229  * during early boot. i.e, the capability should be "detected" and
230  * "enabled" as early as possibly on all booting CPUs.
231  */
232 #define ARM64_CPUCAP_SCOPE_BOOT_CPU		((u16)BIT(2))
233 #define ARM64_CPUCAP_SCOPE_MASK			\
234 	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
235 	 ARM64_CPUCAP_SCOPE_LOCAL_CPU	|	\
236 	 ARM64_CPUCAP_SCOPE_BOOT_CPU)
237 
238 #define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
239 #define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
240 #define SCOPE_BOOT_CPU				ARM64_CPUCAP_SCOPE_BOOT_CPU
241 #define SCOPE_ALL				ARM64_CPUCAP_SCOPE_MASK
242 
243 /*
244  * Is it permitted for a late CPU to have this capability when system
245  * hasn't already enabled it ?
246  */
247 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
248 /* Is it safe for a late CPU to miss this capability when system has it */
249 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))
250 
251 /*
252  * CPU errata workarounds that need to be enabled at boot time if one or
253  * more CPUs in the system requires it. When one of these capabilities
254  * has been enabled, it is safe to allow any CPU to boot that doesn't
255  * require the workaround. However, it is not safe if a "late" CPU
256  * requires a workaround and the system hasn't enabled it already.
257  */
258 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
259 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
260 /*
261  * CPU feature detected at boot time based on system-wide value of a
262  * feature. It is safe for a late CPU to have this feature even though
263  * the system hasn't enabled it, although the featuer will not be used
264  * by Linux in this case. If the system has enabled this feature already,
265  * then every late CPU must have it.
266  */
267 #define ARM64_CPUCAP_SYSTEM_FEATURE	\
268 	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
269 /*
270  * CPU feature detected at boot time based on feature of one or more CPUs.
271  * All possible conflicts for a late CPU are ignored.
272  */
273 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE		\
274 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
275 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	|	\
276 	 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
277 
278 /*
279  * CPU feature detected at boot time, on one or more CPUs. A late CPU
280  * is not allowed to have the capability when the system doesn't have it.
281  * It is Ok for a late CPU to miss the feature.
282  */
283 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE	\
284 	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
285 	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
286 
287 /*
288  * CPU feature used early in the boot based on the boot CPU. All secondary
289  * CPUs must match the state of the capability as detected by the boot CPU.
290  */
291 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU
292 
293 struct arm64_cpu_capabilities {
294 	const char *desc;
295 	u16 capability;
296 	u16 type;
297 	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
298 	/*
299 	 * Take the appropriate actions to enable this capability for this CPU.
300 	 * For each successfully booted CPU, this method is called for each
301 	 * globally detected capability.
302 	 */
303 	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
304 	union {
305 		struct {	/* To be used for erratum handling only */
306 			struct midr_range midr_range;
307 		};
308 
309 		const struct midr_range *midr_range_list;
310 		struct {	/* Feature register checking */
311 			u32 sys_reg;
312 			u8 field_pos;
313 			u8 min_field_value;
314 			u8 hwcap_type;
315 			bool sign;
316 			unsigned long hwcap;
317 		};
318 	};
319 };
320 
cpucap_default_scope(const struct arm64_cpu_capabilities * cap)321 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
322 {
323 	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
324 }
325 
326 static inline bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities * cap)327 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
328 {
329 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
330 }
331 
332 static inline bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities * cap)333 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
334 {
335 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
336 }
337 
338 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
339 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
340 extern struct static_key_false arm64_const_caps_ready;
341 
342 bool this_cpu_has_cap(unsigned int cap);
343 
cpu_have_feature(unsigned int num)344 static inline bool cpu_have_feature(unsigned int num)
345 {
346 	return elf_hwcap & (1UL << num);
347 }
348 
349 /* System capability check for constant caps */
__cpus_have_const_cap(int num)350 static inline bool __cpus_have_const_cap(int num)
351 {
352 	if (num >= ARM64_NCAPS)
353 		return false;
354 	return static_branch_unlikely(&cpu_hwcap_keys[num]);
355 }
356 
cpus_have_cap(unsigned int num)357 static inline bool cpus_have_cap(unsigned int num)
358 {
359 	if (num >= ARM64_NCAPS)
360 		return false;
361 	return test_bit(num, cpu_hwcaps);
362 }
363 
cpus_have_const_cap(int num)364 static inline bool cpus_have_const_cap(int num)
365 {
366 	if (static_branch_likely(&arm64_const_caps_ready))
367 		return __cpus_have_const_cap(num);
368 	else
369 		return cpus_have_cap(num);
370 }
371 
cpus_set_cap(unsigned int num)372 static inline void cpus_set_cap(unsigned int num)
373 {
374 	if (num >= ARM64_NCAPS) {
375 		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
376 			num, ARM64_NCAPS);
377 	} else {
378 		__set_bit(num, cpu_hwcaps);
379 	}
380 }
381 
382 static inline int __attribute_const__
cpuid_feature_extract_signed_field_width(u64 features,int field,int width)383 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
384 {
385 	return (s64)(features << (64 - width - field)) >> (64 - width);
386 }
387 
388 static inline int __attribute_const__
cpuid_feature_extract_signed_field(u64 features,int field)389 cpuid_feature_extract_signed_field(u64 features, int field)
390 {
391 	return cpuid_feature_extract_signed_field_width(features, field, 4);
392 }
393 
394 static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features,int field,int width)395 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
396 {
397 	return (u64)(features << (64 - width - field)) >> (64 - width);
398 }
399 
400 static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features,int field)401 cpuid_feature_extract_unsigned_field(u64 features, int field)
402 {
403 	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
404 }
405 
arm64_ftr_mask(const struct arm64_ftr_bits * ftrp)406 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
407 {
408 	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
409 }
410 
arm64_ftr_reg_user_value(const struct arm64_ftr_reg * reg)411 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
412 {
413 	return (reg->user_val | (reg->sys_val & reg->user_mask));
414 }
415 
416 static inline int __attribute_const__
cpuid_feature_extract_field_width(u64 features,int field,int width,bool sign)417 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
418 {
419 	return (sign) ?
420 		cpuid_feature_extract_signed_field_width(features, field, width) :
421 		cpuid_feature_extract_unsigned_field_width(features, field, width);
422 }
423 
424 static inline int __attribute_const__
cpuid_feature_extract_field(u64 features,int field,bool sign)425 cpuid_feature_extract_field(u64 features, int field, bool sign)
426 {
427 	return cpuid_feature_extract_field_width(features, field, 4, sign);
428 }
429 
arm64_ftr_value(const struct arm64_ftr_bits * ftrp,u64 val)430 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
431 {
432 	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
433 }
434 
id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)435 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
436 {
437 	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
438 		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
439 }
440 
id_aa64pfr0_32bit_el0(u64 pfr0)441 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
442 {
443 	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
444 
445 	return val == ID_AA64PFR0_EL0_32BIT_64BIT;
446 }
447 
448 void __init setup_cpu_features(void);
449 void check_local_cpu_capabilities(void);
450 
451 
452 u64 read_sanitised_ftr_reg(u32 id);
453 
cpu_supports_mixed_endian_el0(void)454 static inline bool cpu_supports_mixed_endian_el0(void)
455 {
456 	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
457 }
458 
system_supports_32bit_el0(void)459 static inline bool system_supports_32bit_el0(void)
460 {
461 	return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
462 }
463 
system_supports_mixed_endian_el0(void)464 static inline bool system_supports_mixed_endian_el0(void)
465 {
466 	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
467 }
468 
system_supports_fpsimd(void)469 static inline bool system_supports_fpsimd(void)
470 {
471 	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
472 }
473 
system_uses_ttbr0_pan(void)474 static inline bool system_uses_ttbr0_pan(void)
475 {
476 	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
477 		!cpus_have_const_cap(ARM64_HAS_PAN);
478 }
479 
480 #define ARM64_SSBD_UNKNOWN		-1
481 #define ARM64_SSBD_FORCE_DISABLE	0
482 #define ARM64_SSBD_KERNEL		1
483 #define ARM64_SSBD_FORCE_ENABLE		2
484 #define ARM64_SSBD_MITIGATED		3
485 
arm64_get_ssbd_state(void)486 static inline int arm64_get_ssbd_state(void)
487 {
488 #ifdef CONFIG_ARM64_SSBD
489 	extern int ssbd_state;
490 	return ssbd_state;
491 #else
492 	return ARM64_SSBD_UNKNOWN;
493 #endif
494 }
495 
496 void arm64_set_ssbd_mitigation(bool state);
497 
498 #endif /* __ASSEMBLY__ */
499 
500 #endif
501