• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/bootmem.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/mips-cps.h>
54 #include <asm/mips-r2-to-r6-emul.h>
55 #include <asm/mipsregs.h>
56 #include <asm/mipsmtregs.h>
57 #include <asm/module.h>
58 #include <asm/msa.h>
59 #include <asm/pgtable.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/uasm.h>
71 
72 extern void check_wait(void);
73 extern asmlinkage void rollback_handle_int(void);
74 extern asmlinkage void handle_int(void);
75 extern u32 handle_tlbl[];
76 extern u32 handle_tlbs[];
77 extern u32 handle_tlbm[];
78 extern asmlinkage void handle_adel(void);
79 extern asmlinkage void handle_ades(void);
80 extern asmlinkage void handle_ibe(void);
81 extern asmlinkage void handle_dbe(void);
82 extern asmlinkage void handle_sys(void);
83 extern asmlinkage void handle_bp(void);
84 extern asmlinkage void handle_ri(void);
85 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
86 extern asmlinkage void handle_ri_rdhwr(void);
87 extern asmlinkage void handle_cpu(void);
88 extern asmlinkage void handle_ov(void);
89 extern asmlinkage void handle_tr(void);
90 extern asmlinkage void handle_msa_fpe(void);
91 extern asmlinkage void handle_fpe(void);
92 extern asmlinkage void handle_ftlb(void);
93 extern asmlinkage void handle_msa(void);
94 extern asmlinkage void handle_mdmx(void);
95 extern asmlinkage void handle_watch(void);
96 extern asmlinkage void handle_mt(void);
97 extern asmlinkage void handle_dsp(void);
98 extern asmlinkage void handle_mcheck(void);
99 extern asmlinkage void handle_reserved(void);
100 extern void tlb_do_page_fault_0(void);
101 
102 void (*board_be_init)(void);
103 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
104 void (*board_nmi_handler_setup)(void);
105 void (*board_ejtag_handler_setup)(void);
106 void (*board_bind_eic_interrupt)(int irq, int regset);
107 void (*board_ebase_setup)(void);
108 void(*board_cache_error_setup)(void);
109 
show_raw_backtrace(unsigned long reg29)110 static void show_raw_backtrace(unsigned long reg29)
111 {
112 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
113 	unsigned long addr;
114 
115 	printk("Call Trace:");
116 #ifdef CONFIG_KALLSYMS
117 	printk("\n");
118 #endif
119 	while (!kstack_end(sp)) {
120 		unsigned long __user *p =
121 			(unsigned long __user *)(unsigned long)sp++;
122 		if (__get_user(addr, p)) {
123 			printk(" (Bad stack address)");
124 			break;
125 		}
126 		if (__kernel_text_address(addr))
127 			print_ip_sym(addr);
128 	}
129 	printk("\n");
130 }
131 
132 #ifdef CONFIG_KALLSYMS
133 int raw_show_trace;
set_raw_show_trace(char * str)134 static int __init set_raw_show_trace(char *str)
135 {
136 	raw_show_trace = 1;
137 	return 1;
138 }
139 __setup("raw_show_trace", set_raw_show_trace);
140 #endif
141 
show_backtrace(struct task_struct * task,const struct pt_regs * regs)142 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
143 {
144 	unsigned long sp = regs->regs[29];
145 	unsigned long ra = regs->regs[31];
146 	unsigned long pc = regs->cp0_epc;
147 
148 	if (!task)
149 		task = current;
150 
151 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
152 		show_raw_backtrace(sp);
153 		return;
154 	}
155 	printk("Call Trace:\n");
156 	do {
157 		print_ip_sym(pc);
158 		pc = unwind_stack(task, &sp, pc, &ra);
159 	} while (pc);
160 	pr_cont("\n");
161 }
162 
163 /*
164  * This routine abuses get_user()/put_user() to reference pointers
165  * with at least a bit of error checking ...
166  */
show_stacktrace(struct task_struct * task,const struct pt_regs * regs)167 static void show_stacktrace(struct task_struct *task,
168 	const struct pt_regs *regs)
169 {
170 	const int field = 2 * sizeof(unsigned long);
171 	long stackdata;
172 	int i;
173 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
174 
175 	printk("Stack :");
176 	i = 0;
177 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
178 		if (i && ((i % (64 / field)) == 0)) {
179 			pr_cont("\n");
180 			printk("       ");
181 		}
182 		if (i > 39) {
183 			pr_cont(" ...");
184 			break;
185 		}
186 
187 		if (__get_user(stackdata, sp++)) {
188 			pr_cont(" (Bad stack address)");
189 			break;
190 		}
191 
192 		pr_cont(" %0*lx", field, stackdata);
193 		i++;
194 	}
195 	pr_cont("\n");
196 	show_backtrace(task, regs);
197 }
198 
show_stack(struct task_struct * task,unsigned long * sp)199 void show_stack(struct task_struct *task, unsigned long *sp)
200 {
201 	struct pt_regs regs;
202 	mm_segment_t old_fs = get_fs();
203 
204 	regs.cp0_status = KSU_KERNEL;
205 	if (sp) {
206 		regs.regs[29] = (unsigned long)sp;
207 		regs.regs[31] = 0;
208 		regs.cp0_epc = 0;
209 	} else {
210 		if (task && task != current) {
211 			regs.regs[29] = task->thread.reg29;
212 			regs.regs[31] = 0;
213 			regs.cp0_epc = task->thread.reg31;
214 #ifdef CONFIG_KGDB_KDB
215 		} else if (atomic_read(&kgdb_active) != -1 &&
216 			   kdb_current_regs) {
217 			memcpy(&regs, kdb_current_regs, sizeof(regs));
218 #endif /* CONFIG_KGDB_KDB */
219 		} else {
220 			prepare_frametrace(&regs);
221 		}
222 	}
223 	/*
224 	 * show_stack() deals exclusively with kernel mode, so be sure to access
225 	 * the stack in the kernel (not user) address space.
226 	 */
227 	set_fs(KERNEL_DS);
228 	show_stacktrace(task, &regs);
229 	set_fs(old_fs);
230 }
231 
show_code(unsigned int __user * pc)232 static void show_code(unsigned int __user *pc)
233 {
234 	long i;
235 	unsigned short __user *pc16 = NULL;
236 
237 	printk("Code:");
238 
239 	if ((unsigned long)pc & 1)
240 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
241 	for(i = -3 ; i < 6 ; i++) {
242 		unsigned int insn;
243 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
244 			pr_cont(" (Bad address in epc)\n");
245 			break;
246 		}
247 		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
248 	}
249 	pr_cont("\n");
250 }
251 
__show_regs(const struct pt_regs * regs)252 static void __show_regs(const struct pt_regs *regs)
253 {
254 	const int field = 2 * sizeof(unsigned long);
255 	unsigned int cause = regs->cp0_cause;
256 	unsigned int exccode;
257 	int i;
258 
259 	show_regs_print_info(KERN_DEFAULT);
260 
261 	/*
262 	 * Saved main processor registers
263 	 */
264 	for (i = 0; i < 32; ) {
265 		if ((i % 4) == 0)
266 			printk("$%2d   :", i);
267 		if (i == 0)
268 			pr_cont(" %0*lx", field, 0UL);
269 		else if (i == 26 || i == 27)
270 			pr_cont(" %*s", field, "");
271 		else
272 			pr_cont(" %0*lx", field, regs->regs[i]);
273 
274 		i++;
275 		if ((i % 4) == 0)
276 			pr_cont("\n");
277 	}
278 
279 #ifdef CONFIG_CPU_HAS_SMARTMIPS
280 	printk("Acx    : %0*lx\n", field, regs->acx);
281 #endif
282 	printk("Hi    : %0*lx\n", field, regs->hi);
283 	printk("Lo    : %0*lx\n", field, regs->lo);
284 
285 	/*
286 	 * Saved cp0 registers
287 	 */
288 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
289 	       (void *) regs->cp0_epc);
290 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
291 	       (void *) regs->regs[31]);
292 
293 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
294 
295 	if (cpu_has_3kex) {
296 		if (regs->cp0_status & ST0_KUO)
297 			pr_cont("KUo ");
298 		if (regs->cp0_status & ST0_IEO)
299 			pr_cont("IEo ");
300 		if (regs->cp0_status & ST0_KUP)
301 			pr_cont("KUp ");
302 		if (regs->cp0_status & ST0_IEP)
303 			pr_cont("IEp ");
304 		if (regs->cp0_status & ST0_KUC)
305 			pr_cont("KUc ");
306 		if (regs->cp0_status & ST0_IEC)
307 			pr_cont("IEc ");
308 	} else if (cpu_has_4kex) {
309 		if (regs->cp0_status & ST0_KX)
310 			pr_cont("KX ");
311 		if (regs->cp0_status & ST0_SX)
312 			pr_cont("SX ");
313 		if (regs->cp0_status & ST0_UX)
314 			pr_cont("UX ");
315 		switch (regs->cp0_status & ST0_KSU) {
316 		case KSU_USER:
317 			pr_cont("USER ");
318 			break;
319 		case KSU_SUPERVISOR:
320 			pr_cont("SUPERVISOR ");
321 			break;
322 		case KSU_KERNEL:
323 			pr_cont("KERNEL ");
324 			break;
325 		default:
326 			pr_cont("BAD_MODE ");
327 			break;
328 		}
329 		if (regs->cp0_status & ST0_ERL)
330 			pr_cont("ERL ");
331 		if (regs->cp0_status & ST0_EXL)
332 			pr_cont("EXL ");
333 		if (regs->cp0_status & ST0_IE)
334 			pr_cont("IE ");
335 	}
336 	pr_cont("\n");
337 
338 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
339 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
340 
341 	if (1 <= exccode && exccode <= 5)
342 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
343 
344 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
345 	       cpu_name_string());
346 }
347 
348 /*
349  * FIXME: really the generic show_regs should take a const pointer argument.
350  */
show_regs(struct pt_regs * regs)351 void show_regs(struct pt_regs *regs)
352 {
353 	__show_regs((struct pt_regs *)regs);
354 	dump_stack();
355 }
356 
show_registers(struct pt_regs * regs)357 void show_registers(struct pt_regs *regs)
358 {
359 	const int field = 2 * sizeof(unsigned long);
360 	mm_segment_t old_fs = get_fs();
361 
362 	__show_regs(regs);
363 	print_modules();
364 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
365 	       current->comm, current->pid, current_thread_info(), current,
366 	      field, current_thread_info()->tp_value);
367 	if (cpu_has_userlocal) {
368 		unsigned long tls;
369 
370 		tls = read_c0_userlocal();
371 		if (tls != current_thread_info()->tp_value)
372 			printk("*HwTLS: %0*lx\n", field, tls);
373 	}
374 
375 	if (!user_mode(regs))
376 		/* Necessary for getting the correct stack content */
377 		set_fs(KERNEL_DS);
378 	show_stacktrace(current, regs);
379 	show_code((unsigned int __user *) regs->cp0_epc);
380 	printk("\n");
381 	set_fs(old_fs);
382 }
383 
384 static DEFINE_RAW_SPINLOCK(die_lock);
385 
die(const char * str,struct pt_regs * regs)386 void __noreturn die(const char *str, struct pt_regs *regs)
387 {
388 	static int die_counter;
389 	int sig = SIGSEGV;
390 
391 	oops_enter();
392 
393 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
394 		       SIGSEGV) == NOTIFY_STOP)
395 		sig = 0;
396 
397 	console_verbose();
398 	raw_spin_lock_irq(&die_lock);
399 	bust_spinlocks(1);
400 
401 	printk("%s[#%d]:\n", str, ++die_counter);
402 	show_registers(regs);
403 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
404 	raw_spin_unlock_irq(&die_lock);
405 
406 	oops_exit();
407 
408 	if (in_interrupt())
409 		panic("Fatal exception in interrupt");
410 
411 	if (panic_on_oops)
412 		panic("Fatal exception");
413 
414 	if (regs && kexec_should_crash(current))
415 		crash_kexec(regs);
416 
417 	do_exit(sig);
418 }
419 
420 extern struct exception_table_entry __start___dbe_table[];
421 extern struct exception_table_entry __stop___dbe_table[];
422 
423 __asm__(
424 "	.section	__dbe_table, \"a\"\n"
425 "	.previous			\n");
426 
427 /* Given an address, look for it in the exception tables. */
search_dbe_tables(unsigned long addr)428 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
429 {
430 	const struct exception_table_entry *e;
431 
432 	e = search_extable(__start___dbe_table,
433 			   __stop___dbe_table - __start___dbe_table, addr);
434 	if (!e)
435 		e = search_module_dbetables(addr);
436 	return e;
437 }
438 
do_be(struct pt_regs * regs)439 asmlinkage void do_be(struct pt_regs *regs)
440 {
441 	const int field = 2 * sizeof(unsigned long);
442 	const struct exception_table_entry *fixup = NULL;
443 	int data = regs->cp0_cause & 4;
444 	int action = MIPS_BE_FATAL;
445 	enum ctx_state prev_state;
446 
447 	prev_state = exception_enter();
448 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
449 	if (data && !user_mode(regs))
450 		fixup = search_dbe_tables(exception_epc(regs));
451 
452 	if (fixup)
453 		action = MIPS_BE_FIXUP;
454 
455 	if (board_be_handler)
456 		action = board_be_handler(regs, fixup != NULL);
457 	else
458 		mips_cm_error_report();
459 
460 	switch (action) {
461 	case MIPS_BE_DISCARD:
462 		goto out;
463 	case MIPS_BE_FIXUP:
464 		if (fixup) {
465 			regs->cp0_epc = fixup->nextinsn;
466 			goto out;
467 		}
468 		break;
469 	default:
470 		break;
471 	}
472 
473 	/*
474 	 * Assume it would be too dangerous to continue ...
475 	 */
476 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
477 	       data ? "Data" : "Instruction",
478 	       field, regs->cp0_epc, field, regs->regs[31]);
479 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
480 		       SIGBUS) == NOTIFY_STOP)
481 		goto out;
482 
483 	die_if_kernel("Oops", regs);
484 	force_sig(SIGBUS, current);
485 
486 out:
487 	exception_exit(prev_state);
488 }
489 
490 /*
491  * ll/sc, rdhwr, sync emulation
492  */
493 
494 #define OPCODE 0xfc000000
495 #define BASE   0x03e00000
496 #define RT     0x001f0000
497 #define OFFSET 0x0000ffff
498 #define LL     0xc0000000
499 #define SC     0xe0000000
500 #define SPEC0  0x00000000
501 #define SPEC3  0x7c000000
502 #define RD     0x0000f800
503 #define FUNC   0x0000003f
504 #define SYNC   0x0000000f
505 #define RDHWR  0x0000003b
506 
507 /*  microMIPS definitions   */
508 #define MM_POOL32A_FUNC 0xfc00ffff
509 #define MM_RDHWR        0x00006b3c
510 #define MM_RS           0x001f0000
511 #define MM_RT           0x03e00000
512 
513 /*
514  * The ll_bit is cleared by r*_switch.S
515  */
516 
517 unsigned int ll_bit;
518 struct task_struct *ll_task;
519 
simulate_ll(struct pt_regs * regs,unsigned int opcode)520 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
521 {
522 	unsigned long value, __user *vaddr;
523 	long offset;
524 
525 	/*
526 	 * analyse the ll instruction that just caused a ri exception
527 	 * and put the referenced address to addr.
528 	 */
529 
530 	/* sign extend offset */
531 	offset = opcode & OFFSET;
532 	offset <<= 16;
533 	offset >>= 16;
534 
535 	vaddr = (unsigned long __user *)
536 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
537 
538 	if ((unsigned long)vaddr & 3)
539 		return SIGBUS;
540 	if (get_user(value, vaddr))
541 		return SIGSEGV;
542 
543 	preempt_disable();
544 
545 	if (ll_task == NULL || ll_task == current) {
546 		ll_bit = 1;
547 	} else {
548 		ll_bit = 0;
549 	}
550 	ll_task = current;
551 
552 	preempt_enable();
553 
554 	regs->regs[(opcode & RT) >> 16] = value;
555 
556 	return 0;
557 }
558 
simulate_sc(struct pt_regs * regs,unsigned int opcode)559 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
560 {
561 	unsigned long __user *vaddr;
562 	unsigned long reg;
563 	long offset;
564 
565 	/*
566 	 * analyse the sc instruction that just caused a ri exception
567 	 * and put the referenced address to addr.
568 	 */
569 
570 	/* sign extend offset */
571 	offset = opcode & OFFSET;
572 	offset <<= 16;
573 	offset >>= 16;
574 
575 	vaddr = (unsigned long __user *)
576 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
577 	reg = (opcode & RT) >> 16;
578 
579 	if ((unsigned long)vaddr & 3)
580 		return SIGBUS;
581 
582 	preempt_disable();
583 
584 	if (ll_bit == 0 || ll_task != current) {
585 		regs->regs[reg] = 0;
586 		preempt_enable();
587 		return 0;
588 	}
589 
590 	preempt_enable();
591 
592 	if (put_user(regs->regs[reg], vaddr))
593 		return SIGSEGV;
594 
595 	regs->regs[reg] = 1;
596 
597 	return 0;
598 }
599 
600 /*
601  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
602  * opcodes are supposed to result in coprocessor unusable exceptions if
603  * executed on ll/sc-less processors.  That's the theory.  In practice a
604  * few processors such as NEC's VR4100 throw reserved instruction exceptions
605  * instead, so we're doing the emulation thing in both exception handlers.
606  */
simulate_llsc(struct pt_regs * regs,unsigned int opcode)607 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
608 {
609 	if ((opcode & OPCODE) == LL) {
610 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
611 				1, regs, 0);
612 		return simulate_ll(regs, opcode);
613 	}
614 	if ((opcode & OPCODE) == SC) {
615 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
616 				1, regs, 0);
617 		return simulate_sc(regs, opcode);
618 	}
619 
620 	return -1;			/* Must be something else ... */
621 }
622 
623 /*
624  * Simulate trapping 'rdhwr' instructions to provide user accessible
625  * registers not implemented in hardware.
626  */
simulate_rdhwr(struct pt_regs * regs,int rd,int rt)627 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
628 {
629 	struct thread_info *ti = task_thread_info(current);
630 
631 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
632 			1, regs, 0);
633 	switch (rd) {
634 	case MIPS_HWR_CPUNUM:		/* CPU number */
635 		regs->regs[rt] = smp_processor_id();
636 		return 0;
637 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
638 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
639 				     current_cpu_data.icache.linesz);
640 		return 0;
641 	case MIPS_HWR_CC:		/* Read count register */
642 		regs->regs[rt] = read_c0_count();
643 		return 0;
644 	case MIPS_HWR_CCRES:		/* Count register resolution */
645 		switch (current_cpu_type()) {
646 		case CPU_20KC:
647 		case CPU_25KF:
648 			regs->regs[rt] = 1;
649 			break;
650 		default:
651 			regs->regs[rt] = 2;
652 		}
653 		return 0;
654 	case MIPS_HWR_ULR:		/* Read UserLocal register */
655 		regs->regs[rt] = ti->tp_value;
656 		return 0;
657 	default:
658 		return -1;
659 	}
660 }
661 
simulate_rdhwr_normal(struct pt_regs * regs,unsigned int opcode)662 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
663 {
664 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
665 		int rd = (opcode & RD) >> 11;
666 		int rt = (opcode & RT) >> 16;
667 
668 		simulate_rdhwr(regs, rd, rt);
669 		return 0;
670 	}
671 
672 	/* Not ours.  */
673 	return -1;
674 }
675 
simulate_rdhwr_mm(struct pt_regs * regs,unsigned int opcode)676 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
677 {
678 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
679 		int rd = (opcode & MM_RS) >> 16;
680 		int rt = (opcode & MM_RT) >> 21;
681 		simulate_rdhwr(regs, rd, rt);
682 		return 0;
683 	}
684 
685 	/* Not ours.  */
686 	return -1;
687 }
688 
simulate_sync(struct pt_regs * regs,unsigned int opcode)689 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
690 {
691 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
692 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
693 				1, regs, 0);
694 		return 0;
695 	}
696 
697 	return -1;			/* Must be something else ... */
698 }
699 
do_ov(struct pt_regs * regs)700 asmlinkage void do_ov(struct pt_regs *regs)
701 {
702 	enum ctx_state prev_state;
703 	siginfo_t info = {
704 		.si_signo = SIGFPE,
705 		.si_code = FPE_INTOVF,
706 		.si_addr = (void __user *)regs->cp0_epc,
707 	};
708 
709 	prev_state = exception_enter();
710 	die_if_kernel("Integer overflow", regs);
711 
712 	force_sig_info(SIGFPE, &info, current);
713 	exception_exit(prev_state);
714 }
715 
716 /*
717  * Send SIGFPE according to FCSR Cause bits, which must have already
718  * been masked against Enable bits.  This is impotant as Inexact can
719  * happen together with Overflow or Underflow, and `ptrace' can set
720  * any bits.
721  */
force_fcr31_sig(unsigned long fcr31,void __user * fault_addr,struct task_struct * tsk)722 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
723 		     struct task_struct *tsk)
724 {
725 	struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
726 
727 	if (fcr31 & FPU_CSR_INV_X)
728 		si.si_code = FPE_FLTINV;
729 	else if (fcr31 & FPU_CSR_DIV_X)
730 		si.si_code = FPE_FLTDIV;
731 	else if (fcr31 & FPU_CSR_OVF_X)
732 		si.si_code = FPE_FLTOVF;
733 	else if (fcr31 & FPU_CSR_UDF_X)
734 		si.si_code = FPE_FLTUND;
735 	else if (fcr31 & FPU_CSR_INE_X)
736 		si.si_code = FPE_FLTRES;
737 
738 	force_sig_info(SIGFPE, &si, tsk);
739 }
740 
process_fpemu_return(int sig,void __user * fault_addr,unsigned long fcr31)741 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
742 {
743 	struct siginfo si = { 0 };
744 	struct vm_area_struct *vma;
745 
746 	switch (sig) {
747 	case 0:
748 		return 0;
749 
750 	case SIGFPE:
751 		force_fcr31_sig(fcr31, fault_addr, current);
752 		return 1;
753 
754 	case SIGBUS:
755 		si.si_addr = fault_addr;
756 		si.si_signo = sig;
757 		si.si_code = BUS_ADRERR;
758 		force_sig_info(sig, &si, current);
759 		return 1;
760 
761 	case SIGSEGV:
762 		si.si_addr = fault_addr;
763 		si.si_signo = sig;
764 		down_read(&current->mm->mmap_sem);
765 		vma = find_vma(current->mm, (unsigned long)fault_addr);
766 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
767 			si.si_code = SEGV_ACCERR;
768 		else
769 			si.si_code = SEGV_MAPERR;
770 		up_read(&current->mm->mmap_sem);
771 		force_sig_info(sig, &si, current);
772 		return 1;
773 
774 	default:
775 		force_sig(sig, current);
776 		return 1;
777 	}
778 }
779 
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)780 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
781 		       unsigned long old_epc, unsigned long old_ra)
782 {
783 	union mips_instruction inst = { .word = opcode };
784 	void __user *fault_addr;
785 	unsigned long fcr31;
786 	int sig;
787 
788 	/* If it's obviously not an FP instruction, skip it */
789 	switch (inst.i_format.opcode) {
790 	case cop1_op:
791 	case cop1x_op:
792 	case lwc1_op:
793 	case ldc1_op:
794 	case swc1_op:
795 	case sdc1_op:
796 		break;
797 
798 	default:
799 		return -1;
800 	}
801 
802 	/*
803 	 * do_ri skipped over the instruction via compute_return_epc, undo
804 	 * that for the FPU emulator.
805 	 */
806 	regs->cp0_epc = old_epc;
807 	regs->regs[31] = old_ra;
808 
809 	/* Save the FP context to struct thread_struct */
810 	lose_fpu(1);
811 
812 	/* Run the emulator */
813 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
814 				       &fault_addr);
815 
816 	/*
817 	 * We can't allow the emulated instruction to leave any
818 	 * enabled Cause bits set in $fcr31.
819 	 */
820 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
821 	current->thread.fpu.fcr31 &= ~fcr31;
822 
823 	/* Restore the hardware register state */
824 	own_fpu(1);
825 
826 	/* Send a signal if required.  */
827 	process_fpemu_return(sig, fault_addr, fcr31);
828 
829 	return 0;
830 }
831 
832 /*
833  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
834  */
do_fpe(struct pt_regs * regs,unsigned long fcr31)835 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
836 {
837 	enum ctx_state prev_state;
838 	void __user *fault_addr;
839 	int sig;
840 
841 	prev_state = exception_enter();
842 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
843 		       SIGFPE) == NOTIFY_STOP)
844 		goto out;
845 
846 	/* Clear FCSR.Cause before enabling interrupts */
847 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
848 	local_irq_enable();
849 
850 	die_if_kernel("FP exception in kernel code", regs);
851 
852 	if (fcr31 & FPU_CSR_UNI_X) {
853 		/*
854 		 * Unimplemented operation exception.  If we've got the full
855 		 * software emulator on-board, let's use it...
856 		 *
857 		 * Force FPU to dump state into task/thread context.  We're
858 		 * moving a lot of data here for what is probably a single
859 		 * instruction, but the alternative is to pre-decode the FP
860 		 * register operands before invoking the emulator, which seems
861 		 * a bit extreme for what should be an infrequent event.
862 		 */
863 		/* Ensure 'resume' not overwrite saved fp context again. */
864 		lose_fpu(1);
865 
866 		/* Run the emulator */
867 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
868 					       &fault_addr);
869 
870 		/*
871 		 * We can't allow the emulated instruction to leave any
872 		 * enabled Cause bits set in $fcr31.
873 		 */
874 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
875 		current->thread.fpu.fcr31 &= ~fcr31;
876 
877 		/* Restore the hardware register state */
878 		own_fpu(1);	/* Using the FPU again.	 */
879 	} else {
880 		sig = SIGFPE;
881 		fault_addr = (void __user *) regs->cp0_epc;
882 	}
883 
884 	/* Send a signal if required.  */
885 	process_fpemu_return(sig, fault_addr, fcr31);
886 
887 out:
888 	exception_exit(prev_state);
889 }
890 
do_trap_or_bp(struct pt_regs * regs,unsigned int code,int si_code,const char * str)891 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
892 	const char *str)
893 {
894 	siginfo_t info = { 0 };
895 	char b[40];
896 
897 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
898 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
899 			 SIGTRAP) == NOTIFY_STOP)
900 		return;
901 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
902 
903 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
904 		       SIGTRAP) == NOTIFY_STOP)
905 		return;
906 
907 	/*
908 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
909 	 * insns, even for trap and break codes that indicate arithmetic
910 	 * failures.  Weird ...
911 	 * But should we continue the brokenness???  --macro
912 	 */
913 	switch (code) {
914 	case BRK_OVERFLOW:
915 	case BRK_DIVZERO:
916 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
917 		die_if_kernel(b, regs);
918 		if (code == BRK_DIVZERO)
919 			info.si_code = FPE_INTDIV;
920 		else
921 			info.si_code = FPE_INTOVF;
922 		info.si_signo = SIGFPE;
923 		info.si_addr = (void __user *) regs->cp0_epc;
924 		force_sig_info(SIGFPE, &info, current);
925 		break;
926 	case BRK_BUG:
927 		die_if_kernel("Kernel bug detected", regs);
928 		force_sig(SIGTRAP, current);
929 		break;
930 	case BRK_MEMU:
931 		/*
932 		 * This breakpoint code is used by the FPU emulator to retake
933 		 * control of the CPU after executing the instruction from the
934 		 * delay slot of an emulated branch.
935 		 *
936 		 * Terminate if exception was recognized as a delay slot return
937 		 * otherwise handle as normal.
938 		 */
939 		if (do_dsemulret(regs))
940 			return;
941 
942 		die_if_kernel("Math emu break/trap", regs);
943 		force_sig(SIGTRAP, current);
944 		break;
945 	default:
946 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
947 		die_if_kernel(b, regs);
948 		if (si_code) {
949 			info.si_signo = SIGTRAP;
950 			info.si_code = si_code;
951 			force_sig_info(SIGTRAP, &info, current);
952 		} else {
953 			force_sig(SIGTRAP, current);
954 		}
955 	}
956 }
957 
do_bp(struct pt_regs * regs)958 asmlinkage void do_bp(struct pt_regs *regs)
959 {
960 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
961 	unsigned int opcode, bcode;
962 	enum ctx_state prev_state;
963 	mm_segment_t seg;
964 
965 	seg = get_fs();
966 	if (!user_mode(regs))
967 		set_fs(KERNEL_DS);
968 
969 	prev_state = exception_enter();
970 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
971 	if (get_isa16_mode(regs->cp0_epc)) {
972 		u16 instr[2];
973 
974 		if (__get_user(instr[0], (u16 __user *)epc))
975 			goto out_sigsegv;
976 
977 		if (!cpu_has_mmips) {
978 			/* MIPS16e mode */
979 			bcode = (instr[0] >> 5) & 0x3f;
980 		} else if (mm_insn_16bit(instr[0])) {
981 			/* 16-bit microMIPS BREAK */
982 			bcode = instr[0] & 0xf;
983 		} else {
984 			/* 32-bit microMIPS BREAK */
985 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
986 				goto out_sigsegv;
987 			opcode = (instr[0] << 16) | instr[1];
988 			bcode = (opcode >> 6) & ((1 << 20) - 1);
989 		}
990 	} else {
991 		if (__get_user(opcode, (unsigned int __user *)epc))
992 			goto out_sigsegv;
993 		bcode = (opcode >> 6) & ((1 << 20) - 1);
994 	}
995 
996 	/*
997 	 * There is the ancient bug in the MIPS assemblers that the break
998 	 * code starts left to bit 16 instead to bit 6 in the opcode.
999 	 * Gas is bug-compatible, but not always, grrr...
1000 	 * We handle both cases with a simple heuristics.  --macro
1001 	 */
1002 	if (bcode >= (1 << 10))
1003 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1004 
1005 	/*
1006 	 * notify the kprobe handlers, if instruction is likely to
1007 	 * pertain to them.
1008 	 */
1009 	switch (bcode) {
1010 	case BRK_UPROBE:
1011 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1012 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1013 			goto out;
1014 		else
1015 			break;
1016 	case BRK_UPROBE_XOL:
1017 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1018 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1019 			goto out;
1020 		else
1021 			break;
1022 	case BRK_KPROBE_BP:
1023 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1024 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1025 			goto out;
1026 		else
1027 			break;
1028 	case BRK_KPROBE_SSTEPBP:
1029 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1030 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1031 			goto out;
1032 		else
1033 			break;
1034 	default:
1035 		break;
1036 	}
1037 
1038 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1039 
1040 out:
1041 	set_fs(seg);
1042 	exception_exit(prev_state);
1043 	return;
1044 
1045 out_sigsegv:
1046 	force_sig(SIGSEGV, current);
1047 	goto out;
1048 }
1049 
do_tr(struct pt_regs * regs)1050 asmlinkage void do_tr(struct pt_regs *regs)
1051 {
1052 	u32 opcode, tcode = 0;
1053 	enum ctx_state prev_state;
1054 	u16 instr[2];
1055 	mm_segment_t seg;
1056 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1057 
1058 	seg = get_fs();
1059 	if (!user_mode(regs))
1060 		set_fs(get_ds());
1061 
1062 	prev_state = exception_enter();
1063 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1064 	if (get_isa16_mode(regs->cp0_epc)) {
1065 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1066 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1067 			goto out_sigsegv;
1068 		opcode = (instr[0] << 16) | instr[1];
1069 		/* Immediate versions don't provide a code.  */
1070 		if (!(opcode & OPCODE))
1071 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1072 	} else {
1073 		if (__get_user(opcode, (u32 __user *)epc))
1074 			goto out_sigsegv;
1075 		/* Immediate versions don't provide a code.  */
1076 		if (!(opcode & OPCODE))
1077 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1078 	}
1079 
1080 	do_trap_or_bp(regs, tcode, 0, "Trap");
1081 
1082 out:
1083 	set_fs(seg);
1084 	exception_exit(prev_state);
1085 	return;
1086 
1087 out_sigsegv:
1088 	force_sig(SIGSEGV, current);
1089 	goto out;
1090 }
1091 
do_ri(struct pt_regs * regs)1092 asmlinkage void do_ri(struct pt_regs *regs)
1093 {
1094 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1095 	unsigned long old_epc = regs->cp0_epc;
1096 	unsigned long old31 = regs->regs[31];
1097 	enum ctx_state prev_state;
1098 	unsigned int opcode = 0;
1099 	int status = -1;
1100 
1101 	/*
1102 	 * Avoid any kernel code. Just emulate the R2 instruction
1103 	 * as quickly as possible.
1104 	 */
1105 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1106 	    likely(user_mode(regs)) &&
1107 	    likely(get_user(opcode, epc) >= 0)) {
1108 		unsigned long fcr31 = 0;
1109 
1110 		status = mipsr2_decoder(regs, opcode, &fcr31);
1111 		switch (status) {
1112 		case 0:
1113 		case SIGEMT:
1114 			return;
1115 		case SIGILL:
1116 			goto no_r2_instr;
1117 		default:
1118 			process_fpemu_return(status,
1119 					     &current->thread.cp0_baduaddr,
1120 					     fcr31);
1121 			return;
1122 		}
1123 	}
1124 
1125 no_r2_instr:
1126 
1127 	prev_state = exception_enter();
1128 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1129 
1130 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1131 		       SIGILL) == NOTIFY_STOP)
1132 		goto out;
1133 
1134 	die_if_kernel("Reserved instruction in kernel code", regs);
1135 
1136 	if (unlikely(compute_return_epc(regs) < 0))
1137 		goto out;
1138 
1139 	if (!get_isa16_mode(regs->cp0_epc)) {
1140 		if (unlikely(get_user(opcode, epc) < 0))
1141 			status = SIGSEGV;
1142 
1143 		if (!cpu_has_llsc && status < 0)
1144 			status = simulate_llsc(regs, opcode);
1145 
1146 		if (status < 0)
1147 			status = simulate_rdhwr_normal(regs, opcode);
1148 
1149 		if (status < 0)
1150 			status = simulate_sync(regs, opcode);
1151 
1152 		if (status < 0)
1153 			status = simulate_fp(regs, opcode, old_epc, old31);
1154 	} else if (cpu_has_mmips) {
1155 		unsigned short mmop[2] = { 0 };
1156 
1157 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1158 			status = SIGSEGV;
1159 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1160 			status = SIGSEGV;
1161 		opcode = mmop[0];
1162 		opcode = (opcode << 16) | mmop[1];
1163 
1164 		if (status < 0)
1165 			status = simulate_rdhwr_mm(regs, opcode);
1166 	}
1167 
1168 	if (status < 0)
1169 		status = SIGILL;
1170 
1171 	if (unlikely(status > 0)) {
1172 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1173 		regs->regs[31] = old31;
1174 		force_sig(status, current);
1175 	}
1176 
1177 out:
1178 	exception_exit(prev_state);
1179 }
1180 
1181 /*
1182  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1183  * emulated more than some threshold number of instructions, force migration to
1184  * a "CPU" that has FP support.
1185  */
mt_ase_fp_affinity(void)1186 static void mt_ase_fp_affinity(void)
1187 {
1188 #ifdef CONFIG_MIPS_MT_FPAFF
1189 	if (mt_fpemul_threshold > 0 &&
1190 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1191 		/*
1192 		 * If there's no FPU present, or if the application has already
1193 		 * restricted the allowed set to exclude any CPUs with FPUs,
1194 		 * we'll skip the procedure.
1195 		 */
1196 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1197 			cpumask_t tmask;
1198 
1199 			current->thread.user_cpus_allowed
1200 				= current->cpus_allowed;
1201 			cpumask_and(&tmask, &current->cpus_allowed,
1202 				    &mt_fpu_cpumask);
1203 			set_cpus_allowed_ptr(current, &tmask);
1204 			set_thread_flag(TIF_FPUBOUND);
1205 		}
1206 	}
1207 #endif /* CONFIG_MIPS_MT_FPAFF */
1208 }
1209 
1210 /*
1211  * No lock; only written during early bootup by CPU 0.
1212  */
1213 static RAW_NOTIFIER_HEAD(cu2_chain);
1214 
register_cu2_notifier(struct notifier_block * nb)1215 int __ref register_cu2_notifier(struct notifier_block *nb)
1216 {
1217 	return raw_notifier_chain_register(&cu2_chain, nb);
1218 }
1219 
cu2_notifier_call_chain(unsigned long val,void * v)1220 int cu2_notifier_call_chain(unsigned long val, void *v)
1221 {
1222 	return raw_notifier_call_chain(&cu2_chain, val, v);
1223 }
1224 
default_cu2_call(struct notifier_block * nfb,unsigned long action,void * data)1225 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1226 	void *data)
1227 {
1228 	struct pt_regs *regs = data;
1229 
1230 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1231 			      "instruction", regs);
1232 	force_sig(SIGILL, current);
1233 
1234 	return NOTIFY_OK;
1235 }
1236 
wait_on_fp_mode_switch(atomic_t * p)1237 static int wait_on_fp_mode_switch(atomic_t *p)
1238 {
1239 	/*
1240 	 * The FP mode for this task is currently being switched. That may
1241 	 * involve modifications to the format of this tasks FP context which
1242 	 * make it unsafe to proceed with execution for the moment. Instead,
1243 	 * schedule some other task.
1244 	 */
1245 	schedule();
1246 	return 0;
1247 }
1248 
enable_restore_fp_context(int msa)1249 static int enable_restore_fp_context(int msa)
1250 {
1251 	int err, was_fpu_owner, prior_msa;
1252 
1253 	/*
1254 	 * If an FP mode switch is currently underway, wait for it to
1255 	 * complete before proceeding.
1256 	 */
1257 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1258 			 wait_on_fp_mode_switch, TASK_KILLABLE);
1259 
1260 	if (!used_math()) {
1261 		/* First time FP context user. */
1262 		preempt_disable();
1263 		err = init_fpu();
1264 		if (msa && !err) {
1265 			enable_msa();
1266 			init_msa_upper();
1267 			set_thread_flag(TIF_USEDMSA);
1268 			set_thread_flag(TIF_MSA_CTX_LIVE);
1269 		}
1270 		preempt_enable();
1271 		if (!err)
1272 			set_used_math();
1273 		return err;
1274 	}
1275 
1276 	/*
1277 	 * This task has formerly used the FP context.
1278 	 *
1279 	 * If this thread has no live MSA vector context then we can simply
1280 	 * restore the scalar FP context. If it has live MSA vector context
1281 	 * (that is, it has or may have used MSA since last performing a
1282 	 * function call) then we'll need to restore the vector context. This
1283 	 * applies even if we're currently only executing a scalar FP
1284 	 * instruction. This is because if we were to later execute an MSA
1285 	 * instruction then we'd either have to:
1286 	 *
1287 	 *  - Restore the vector context & clobber any registers modified by
1288 	 *    scalar FP instructions between now & then.
1289 	 *
1290 	 * or
1291 	 *
1292 	 *  - Not restore the vector context & lose the most significant bits
1293 	 *    of all vector registers.
1294 	 *
1295 	 * Neither of those options is acceptable. We cannot restore the least
1296 	 * significant bits of the registers now & only restore the most
1297 	 * significant bits later because the most significant bits of any
1298 	 * vector registers whose aliased FP register is modified now will have
1299 	 * been zeroed. We'd have no way to know that when restoring the vector
1300 	 * context & thus may load an outdated value for the most significant
1301 	 * bits of a vector register.
1302 	 */
1303 	if (!msa && !thread_msa_context_live())
1304 		return own_fpu(1);
1305 
1306 	/*
1307 	 * This task is using or has previously used MSA. Thus we require
1308 	 * that Status.FR == 1.
1309 	 */
1310 	preempt_disable();
1311 	was_fpu_owner = is_fpu_owner();
1312 	err = own_fpu_inatomic(0);
1313 	if (err)
1314 		goto out;
1315 
1316 	enable_msa();
1317 	write_msa_csr(current->thread.fpu.msacsr);
1318 	set_thread_flag(TIF_USEDMSA);
1319 
1320 	/*
1321 	 * If this is the first time that the task is using MSA and it has
1322 	 * previously used scalar FP in this time slice then we already nave
1323 	 * FP context which we shouldn't clobber. We do however need to clear
1324 	 * the upper 64b of each vector register so that this task has no
1325 	 * opportunity to see data left behind by another.
1326 	 */
1327 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1328 	if (!prior_msa && was_fpu_owner) {
1329 		init_msa_upper();
1330 
1331 		goto out;
1332 	}
1333 
1334 	if (!prior_msa) {
1335 		/*
1336 		 * Restore the least significant 64b of each vector register
1337 		 * from the existing scalar FP context.
1338 		 */
1339 		_restore_fp(current);
1340 
1341 		/*
1342 		 * The task has not formerly used MSA, so clear the upper 64b
1343 		 * of each vector register such that it cannot see data left
1344 		 * behind by another task.
1345 		 */
1346 		init_msa_upper();
1347 	} else {
1348 		/* We need to restore the vector context. */
1349 		restore_msa(current);
1350 
1351 		/* Restore the scalar FP control & status register */
1352 		if (!was_fpu_owner)
1353 			write_32bit_cp1_register(CP1_STATUS,
1354 						 current->thread.fpu.fcr31);
1355 	}
1356 
1357 out:
1358 	preempt_enable();
1359 
1360 	return 0;
1361 }
1362 
do_cpu(struct pt_regs * regs)1363 asmlinkage void do_cpu(struct pt_regs *regs)
1364 {
1365 	enum ctx_state prev_state;
1366 	unsigned int __user *epc;
1367 	unsigned long old_epc, old31;
1368 	void __user *fault_addr;
1369 	unsigned int opcode;
1370 	unsigned long fcr31;
1371 	unsigned int cpid;
1372 	int status, err;
1373 	int sig;
1374 
1375 	prev_state = exception_enter();
1376 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1377 
1378 	if (cpid != 2)
1379 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1380 
1381 	switch (cpid) {
1382 	case 0:
1383 		epc = (unsigned int __user *)exception_epc(regs);
1384 		old_epc = regs->cp0_epc;
1385 		old31 = regs->regs[31];
1386 		opcode = 0;
1387 		status = -1;
1388 
1389 		if (unlikely(compute_return_epc(regs) < 0))
1390 			break;
1391 
1392 		if (!get_isa16_mode(regs->cp0_epc)) {
1393 			if (unlikely(get_user(opcode, epc) < 0))
1394 				status = SIGSEGV;
1395 
1396 			if (!cpu_has_llsc && status < 0)
1397 				status = simulate_llsc(regs, opcode);
1398 		}
1399 
1400 		if (status < 0)
1401 			status = SIGILL;
1402 
1403 		if (unlikely(status > 0)) {
1404 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1405 			regs->regs[31] = old31;
1406 			force_sig(status, current);
1407 		}
1408 
1409 		break;
1410 
1411 	case 3:
1412 		/*
1413 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1414 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1415 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1416 		 * up the space has been reused for COP1X instructions, that
1417 		 * are enabled by the CP0.Status.CU1 bit and consequently
1418 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1419 		 * exceptions.  Some FPU-less processors that implement one
1420 		 * of these ISAs however use this code erroneously for COP1X
1421 		 * instructions.  Therefore we redirect this trap to the FP
1422 		 * emulator too.
1423 		 */
1424 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1425 			force_sig(SIGILL, current);
1426 			break;
1427 		}
1428 		/* Fall through.  */
1429 
1430 	case 1:
1431 		err = enable_restore_fp_context(0);
1432 
1433 		if (raw_cpu_has_fpu && !err)
1434 			break;
1435 
1436 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1437 					       &fault_addr);
1438 
1439 		/*
1440 		 * We can't allow the emulated instruction to leave
1441 		 * any enabled Cause bits set in $fcr31.
1442 		 */
1443 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1444 		current->thread.fpu.fcr31 &= ~fcr31;
1445 
1446 		/* Send a signal if required.  */
1447 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1448 			mt_ase_fp_affinity();
1449 
1450 		break;
1451 
1452 	case 2:
1453 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1454 		break;
1455 	}
1456 
1457 	exception_exit(prev_state);
1458 }
1459 
do_msa_fpe(struct pt_regs * regs,unsigned int msacsr)1460 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1461 {
1462 	enum ctx_state prev_state;
1463 
1464 	prev_state = exception_enter();
1465 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1466 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1467 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1468 		goto out;
1469 
1470 	/* Clear MSACSR.Cause before enabling interrupts */
1471 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1472 	local_irq_enable();
1473 
1474 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1475 	force_sig(SIGFPE, current);
1476 out:
1477 	exception_exit(prev_state);
1478 }
1479 
do_msa(struct pt_regs * regs)1480 asmlinkage void do_msa(struct pt_regs *regs)
1481 {
1482 	enum ctx_state prev_state;
1483 	int err;
1484 
1485 	prev_state = exception_enter();
1486 
1487 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1488 		force_sig(SIGILL, current);
1489 		goto out;
1490 	}
1491 
1492 	die_if_kernel("do_msa invoked from kernel context!", regs);
1493 
1494 	err = enable_restore_fp_context(1);
1495 	if (err)
1496 		force_sig(SIGILL, current);
1497 out:
1498 	exception_exit(prev_state);
1499 }
1500 
do_mdmx(struct pt_regs * regs)1501 asmlinkage void do_mdmx(struct pt_regs *regs)
1502 {
1503 	enum ctx_state prev_state;
1504 
1505 	prev_state = exception_enter();
1506 	force_sig(SIGILL, current);
1507 	exception_exit(prev_state);
1508 }
1509 
1510 /*
1511  * Called with interrupts disabled.
1512  */
do_watch(struct pt_regs * regs)1513 asmlinkage void do_watch(struct pt_regs *regs)
1514 {
1515 	siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1516 	enum ctx_state prev_state;
1517 
1518 	prev_state = exception_enter();
1519 	/*
1520 	 * Clear WP (bit 22) bit of cause register so we don't loop
1521 	 * forever.
1522 	 */
1523 	clear_c0_cause(CAUSEF_WP);
1524 
1525 	/*
1526 	 * If the current thread has the watch registers loaded, save
1527 	 * their values and send SIGTRAP.  Otherwise another thread
1528 	 * left the registers set, clear them and continue.
1529 	 */
1530 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1531 		mips_read_watch_registers();
1532 		local_irq_enable();
1533 		force_sig_info(SIGTRAP, &info, current);
1534 	} else {
1535 		mips_clear_watch_registers();
1536 		local_irq_enable();
1537 	}
1538 	exception_exit(prev_state);
1539 }
1540 
do_mcheck(struct pt_regs * regs)1541 asmlinkage void do_mcheck(struct pt_regs *regs)
1542 {
1543 	int multi_match = regs->cp0_status & ST0_TS;
1544 	enum ctx_state prev_state;
1545 	mm_segment_t old_fs = get_fs();
1546 
1547 	prev_state = exception_enter();
1548 	show_regs(regs);
1549 
1550 	if (multi_match) {
1551 		dump_tlb_regs();
1552 		pr_info("\n");
1553 		dump_tlb_all();
1554 	}
1555 
1556 	if (!user_mode(regs))
1557 		set_fs(KERNEL_DS);
1558 
1559 	show_code((unsigned int __user *) regs->cp0_epc);
1560 
1561 	set_fs(old_fs);
1562 
1563 	/*
1564 	 * Some chips may have other causes of machine check (e.g. SB1
1565 	 * graduation timer)
1566 	 */
1567 	panic("Caught Machine Check exception - %scaused by multiple "
1568 	      "matching entries in the TLB.",
1569 	      (multi_match) ? "" : "not ");
1570 }
1571 
do_mt(struct pt_regs * regs)1572 asmlinkage void do_mt(struct pt_regs *regs)
1573 {
1574 	int subcode;
1575 
1576 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1577 			>> VPECONTROL_EXCPT_SHIFT;
1578 	switch (subcode) {
1579 	case 0:
1580 		printk(KERN_DEBUG "Thread Underflow\n");
1581 		break;
1582 	case 1:
1583 		printk(KERN_DEBUG "Thread Overflow\n");
1584 		break;
1585 	case 2:
1586 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1587 		break;
1588 	case 3:
1589 		printk(KERN_DEBUG "Gating Storage Exception\n");
1590 		break;
1591 	case 4:
1592 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1593 		break;
1594 	case 5:
1595 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1596 		break;
1597 	default:
1598 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1599 			subcode);
1600 		break;
1601 	}
1602 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1603 
1604 	force_sig(SIGILL, current);
1605 }
1606 
1607 
do_dsp(struct pt_regs * regs)1608 asmlinkage void do_dsp(struct pt_regs *regs)
1609 {
1610 	if (cpu_has_dsp)
1611 		panic("Unexpected DSP exception");
1612 
1613 	force_sig(SIGILL, current);
1614 }
1615 
do_reserved(struct pt_regs * regs)1616 asmlinkage void do_reserved(struct pt_regs *regs)
1617 {
1618 	/*
1619 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1620 	 * caused by a new unknown cpu type or after another deadly
1621 	 * hard/software error.
1622 	 */
1623 	show_regs(regs);
1624 	panic("Caught reserved exception %ld - should not happen.",
1625 	      (regs->cp0_cause & 0x7f) >> 2);
1626 }
1627 
1628 static int __initdata l1parity = 1;
nol1parity(char * s)1629 static int __init nol1parity(char *s)
1630 {
1631 	l1parity = 0;
1632 	return 1;
1633 }
1634 __setup("nol1par", nol1parity);
1635 static int __initdata l2parity = 1;
nol2parity(char * s)1636 static int __init nol2parity(char *s)
1637 {
1638 	l2parity = 0;
1639 	return 1;
1640 }
1641 __setup("nol2par", nol2parity);
1642 
1643 /*
1644  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1645  * it different ways.
1646  */
parity_protection_init(void)1647 static inline void parity_protection_init(void)
1648 {
1649 #define ERRCTL_PE	0x80000000
1650 #define ERRCTL_L2P	0x00800000
1651 
1652 	if (mips_cm_revision() >= CM_REV_CM3) {
1653 		ulong gcr_ectl, cp0_ectl;
1654 
1655 		/*
1656 		 * With CM3 systems we need to ensure that the L1 & L2
1657 		 * parity enables are set to the same value, since this
1658 		 * is presumed by the hardware engineers.
1659 		 *
1660 		 * If the user disabled either of L1 or L2 ECC checking,
1661 		 * disable both.
1662 		 */
1663 		l1parity &= l2parity;
1664 		l2parity &= l1parity;
1665 
1666 		/* Probe L1 ECC support */
1667 		cp0_ectl = read_c0_ecc();
1668 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1669 		back_to_back_c0_hazard();
1670 		cp0_ectl = read_c0_ecc();
1671 
1672 		/* Probe L2 ECC support */
1673 		gcr_ectl = read_gcr_err_control();
1674 
1675 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1676 		    !(cp0_ectl & ERRCTL_PE)) {
1677 			/*
1678 			 * One of L1 or L2 ECC checking isn't supported,
1679 			 * so we cannot enable either.
1680 			 */
1681 			l1parity = l2parity = 0;
1682 		}
1683 
1684 		/* Configure L1 ECC checking */
1685 		if (l1parity)
1686 			cp0_ectl |= ERRCTL_PE;
1687 		else
1688 			cp0_ectl &= ~ERRCTL_PE;
1689 		write_c0_ecc(cp0_ectl);
1690 		back_to_back_c0_hazard();
1691 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1692 
1693 		/* Configure L2 ECC checking */
1694 		if (l2parity)
1695 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1696 		else
1697 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1698 		write_gcr_err_control(gcr_ectl);
1699 		gcr_ectl = read_gcr_err_control();
1700 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1701 		WARN_ON(!!gcr_ectl != l2parity);
1702 
1703 		pr_info("Cache parity protection %sabled\n",
1704 			l1parity ? "en" : "dis");
1705 		return;
1706 	}
1707 
1708 	switch (current_cpu_type()) {
1709 	case CPU_24K:
1710 	case CPU_34K:
1711 	case CPU_74K:
1712 	case CPU_1004K:
1713 	case CPU_1074K:
1714 	case CPU_INTERAPTIV:
1715 	case CPU_PROAPTIV:
1716 	case CPU_P5600:
1717 	case CPU_QEMU_GENERIC:
1718 	case CPU_P6600:
1719 		{
1720 			unsigned long errctl;
1721 			unsigned int l1parity_present, l2parity_present;
1722 
1723 			errctl = read_c0_ecc();
1724 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1725 
1726 			/* probe L1 parity support */
1727 			write_c0_ecc(errctl | ERRCTL_PE);
1728 			back_to_back_c0_hazard();
1729 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1730 
1731 			/* probe L2 parity support */
1732 			write_c0_ecc(errctl|ERRCTL_L2P);
1733 			back_to_back_c0_hazard();
1734 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1735 
1736 			if (l1parity_present && l2parity_present) {
1737 				if (l1parity)
1738 					errctl |= ERRCTL_PE;
1739 				if (l1parity ^ l2parity)
1740 					errctl |= ERRCTL_L2P;
1741 			} else if (l1parity_present) {
1742 				if (l1parity)
1743 					errctl |= ERRCTL_PE;
1744 			} else if (l2parity_present) {
1745 				if (l2parity)
1746 					errctl |= ERRCTL_L2P;
1747 			} else {
1748 				/* No parity available */
1749 			}
1750 
1751 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1752 
1753 			write_c0_ecc(errctl);
1754 			back_to_back_c0_hazard();
1755 			errctl = read_c0_ecc();
1756 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1757 
1758 			if (l1parity_present)
1759 				printk(KERN_INFO "Cache parity protection %sabled\n",
1760 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1761 
1762 			if (l2parity_present) {
1763 				if (l1parity_present && l1parity)
1764 					errctl ^= ERRCTL_L2P;
1765 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1766 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1767 			}
1768 		}
1769 		break;
1770 
1771 	case CPU_5KC:
1772 	case CPU_5KE:
1773 	case CPU_LOONGSON1:
1774 		write_c0_ecc(0x80000000);
1775 		back_to_back_c0_hazard();
1776 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1777 		printk(KERN_INFO "Cache parity protection %sabled\n",
1778 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1779 		break;
1780 	case CPU_20KC:
1781 	case CPU_25KF:
1782 		/* Clear the DE bit (bit 16) in the c0_status register. */
1783 		printk(KERN_INFO "Enable cache parity protection for "
1784 		       "MIPS 20KC/25KF CPUs.\n");
1785 		clear_c0_status(ST0_DE);
1786 		break;
1787 	default:
1788 		break;
1789 	}
1790 }
1791 
cache_parity_error(void)1792 asmlinkage void cache_parity_error(void)
1793 {
1794 	const int field = 2 * sizeof(unsigned long);
1795 	unsigned int reg_val;
1796 
1797 	/* For the moment, report the problem and hang. */
1798 	printk("Cache error exception:\n");
1799 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1800 	reg_val = read_c0_cacheerr();
1801 	printk("c0_cacheerr == %08x\n", reg_val);
1802 
1803 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1804 	       reg_val & (1<<30) ? "secondary" : "primary",
1805 	       reg_val & (1<<31) ? "data" : "insn");
1806 	if ((cpu_has_mips_r2_r6) &&
1807 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1808 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1809 			reg_val & (1<<29) ? "ED " : "",
1810 			reg_val & (1<<28) ? "ET " : "",
1811 			reg_val & (1<<27) ? "ES " : "",
1812 			reg_val & (1<<26) ? "EE " : "",
1813 			reg_val & (1<<25) ? "EB " : "",
1814 			reg_val & (1<<24) ? "EI " : "",
1815 			reg_val & (1<<23) ? "E1 " : "",
1816 			reg_val & (1<<22) ? "E0 " : "");
1817 	} else {
1818 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1819 			reg_val & (1<<29) ? "ED " : "",
1820 			reg_val & (1<<28) ? "ET " : "",
1821 			reg_val & (1<<26) ? "EE " : "",
1822 			reg_val & (1<<25) ? "EB " : "",
1823 			reg_val & (1<<24) ? "EI " : "",
1824 			reg_val & (1<<23) ? "E1 " : "",
1825 			reg_val & (1<<22) ? "E0 " : "");
1826 	}
1827 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1828 
1829 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1830 	if (reg_val & (1<<22))
1831 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1832 
1833 	if (reg_val & (1<<23))
1834 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1835 #endif
1836 
1837 	panic("Can't handle the cache error!");
1838 }
1839 
do_ftlb(void)1840 asmlinkage void do_ftlb(void)
1841 {
1842 	const int field = 2 * sizeof(unsigned long);
1843 	unsigned int reg_val;
1844 
1845 	/* For the moment, report the problem and hang. */
1846 	if ((cpu_has_mips_r2_r6) &&
1847 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1848 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1849 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1850 		       read_c0_ecc());
1851 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1852 		reg_val = read_c0_cacheerr();
1853 		pr_err("c0_cacheerr == %08x\n", reg_val);
1854 
1855 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1856 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1857 		} else {
1858 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1859 			       reg_val & (1<<30) ? "secondary" : "primary",
1860 			       reg_val & (1<<31) ? "data" : "insn");
1861 		}
1862 	} else {
1863 		pr_err("FTLB error exception\n");
1864 	}
1865 	/* Just print the cacheerr bits for now */
1866 	cache_parity_error();
1867 }
1868 
1869 /*
1870  * SDBBP EJTAG debug exception handler.
1871  * We skip the instruction and return to the next instruction.
1872  */
ejtag_exception_handler(struct pt_regs * regs)1873 void ejtag_exception_handler(struct pt_regs *regs)
1874 {
1875 	const int field = 2 * sizeof(unsigned long);
1876 	unsigned long depc, old_epc, old_ra;
1877 	unsigned int debug;
1878 
1879 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1880 	depc = read_c0_depc();
1881 	debug = read_c0_debug();
1882 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1883 	if (debug & 0x80000000) {
1884 		/*
1885 		 * In branch delay slot.
1886 		 * We cheat a little bit here and use EPC to calculate the
1887 		 * debug return address (DEPC). EPC is restored after the
1888 		 * calculation.
1889 		 */
1890 		old_epc = regs->cp0_epc;
1891 		old_ra = regs->regs[31];
1892 		regs->cp0_epc = depc;
1893 		compute_return_epc(regs);
1894 		depc = regs->cp0_epc;
1895 		regs->cp0_epc = old_epc;
1896 		regs->regs[31] = old_ra;
1897 	} else
1898 		depc += 4;
1899 	write_c0_depc(depc);
1900 
1901 #if 0
1902 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1903 	write_c0_debug(debug | 0x100);
1904 #endif
1905 }
1906 
1907 /*
1908  * NMI exception handler.
1909  * No lock; only written during early bootup by CPU 0.
1910  */
1911 static RAW_NOTIFIER_HEAD(nmi_chain);
1912 
register_nmi_notifier(struct notifier_block * nb)1913 int register_nmi_notifier(struct notifier_block *nb)
1914 {
1915 	return raw_notifier_chain_register(&nmi_chain, nb);
1916 }
1917 
nmi_exception_handler(struct pt_regs * regs)1918 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1919 {
1920 	char str[100];
1921 
1922 	nmi_enter();
1923 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1924 	bust_spinlocks(1);
1925 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1926 		 smp_processor_id(), regs->cp0_epc);
1927 	regs->cp0_epc = read_c0_errorepc();
1928 	die(str, regs);
1929 	nmi_exit();
1930 }
1931 
1932 #define VECTORSPACING 0x100	/* for EI/VI mode */
1933 
1934 unsigned long ebase;
1935 EXPORT_SYMBOL_GPL(ebase);
1936 unsigned long exception_handlers[32];
1937 unsigned long vi_handlers[64];
1938 
set_except_vector(int n,void * addr)1939 void __init *set_except_vector(int n, void *addr)
1940 {
1941 	unsigned long handler = (unsigned long) addr;
1942 	unsigned long old_handler;
1943 
1944 #ifdef CONFIG_CPU_MICROMIPS
1945 	/*
1946 	 * Only the TLB handlers are cache aligned with an even
1947 	 * address. All other handlers are on an odd address and
1948 	 * require no modification. Otherwise, MIPS32 mode will
1949 	 * be entered when handling any TLB exceptions. That
1950 	 * would be bad...since we must stay in microMIPS mode.
1951 	 */
1952 	if (!(handler & 0x1))
1953 		handler |= 1;
1954 #endif
1955 	old_handler = xchg(&exception_handlers[n], handler);
1956 
1957 	if (n == 0 && cpu_has_divec) {
1958 #ifdef CONFIG_CPU_MICROMIPS
1959 		unsigned long jump_mask = ~((1 << 27) - 1);
1960 #else
1961 		unsigned long jump_mask = ~((1 << 28) - 1);
1962 #endif
1963 		u32 *buf = (u32 *)(ebase + 0x200);
1964 		unsigned int k0 = 26;
1965 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1966 			uasm_i_j(&buf, handler & ~jump_mask);
1967 			uasm_i_nop(&buf);
1968 		} else {
1969 			UASM_i_LA(&buf, k0, handler);
1970 			uasm_i_jr(&buf, k0);
1971 			uasm_i_nop(&buf);
1972 		}
1973 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1974 	}
1975 	return (void *)old_handler;
1976 }
1977 
do_default_vi(void)1978 static void do_default_vi(void)
1979 {
1980 	show_regs(get_irq_regs());
1981 	panic("Caught unexpected vectored interrupt.");
1982 }
1983 
set_vi_srs_handler(int n,vi_handler_t addr,int srs)1984 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1985 {
1986 	unsigned long handler;
1987 	unsigned long old_handler = vi_handlers[n];
1988 	int srssets = current_cpu_data.srsets;
1989 	u16 *h;
1990 	unsigned char *b;
1991 
1992 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1993 
1994 	if (addr == NULL) {
1995 		handler = (unsigned long) do_default_vi;
1996 		srs = 0;
1997 	} else
1998 		handler = (unsigned long) addr;
1999 	vi_handlers[n] = handler;
2000 
2001 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2002 
2003 	if (srs >= srssets)
2004 		panic("Shadow register set %d not supported", srs);
2005 
2006 	if (cpu_has_veic) {
2007 		if (board_bind_eic_interrupt)
2008 			board_bind_eic_interrupt(n, srs);
2009 	} else if (cpu_has_vint) {
2010 		/* SRSMap is only defined if shadow sets are implemented */
2011 		if (srssets > 1)
2012 			change_c0_srsmap(0xf << n*4, srs << n*4);
2013 	}
2014 
2015 	if (srs == 0) {
2016 		/*
2017 		 * If no shadow set is selected then use the default handler
2018 		 * that does normal register saving and standard interrupt exit
2019 		 */
2020 		extern char except_vec_vi, except_vec_vi_lui;
2021 		extern char except_vec_vi_ori, except_vec_vi_end;
2022 		extern char rollback_except_vec_vi;
2023 		char *vec_start = using_rollback_handler() ?
2024 			&rollback_except_vec_vi : &except_vec_vi;
2025 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2026 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2027 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2028 #else
2029 		const int lui_offset = &except_vec_vi_lui - vec_start;
2030 		const int ori_offset = &except_vec_vi_ori - vec_start;
2031 #endif
2032 		const int handler_len = &except_vec_vi_end - vec_start;
2033 
2034 		if (handler_len > VECTORSPACING) {
2035 			/*
2036 			 * Sigh... panicing won't help as the console
2037 			 * is probably not configured :(
2038 			 */
2039 			panic("VECTORSPACING too small");
2040 		}
2041 
2042 		set_handler(((unsigned long)b - ebase), vec_start,
2043 #ifdef CONFIG_CPU_MICROMIPS
2044 				(handler_len - 1));
2045 #else
2046 				handler_len);
2047 #endif
2048 		h = (u16 *)(b + lui_offset);
2049 		*h = (handler >> 16) & 0xffff;
2050 		h = (u16 *)(b + ori_offset);
2051 		*h = (handler & 0xffff);
2052 		local_flush_icache_range((unsigned long)b,
2053 					 (unsigned long)(b+handler_len));
2054 	}
2055 	else {
2056 		/*
2057 		 * In other cases jump directly to the interrupt handler. It
2058 		 * is the handler's responsibility to save registers if required
2059 		 * (eg hi/lo) and return from the exception using "eret".
2060 		 */
2061 		u32 insn;
2062 
2063 		h = (u16 *)b;
2064 		/* j handler */
2065 #ifdef CONFIG_CPU_MICROMIPS
2066 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2067 #else
2068 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2069 #endif
2070 		h[0] = (insn >> 16) & 0xffff;
2071 		h[1] = insn & 0xffff;
2072 		h[2] = 0;
2073 		h[3] = 0;
2074 		local_flush_icache_range((unsigned long)b,
2075 					 (unsigned long)(b+8));
2076 	}
2077 
2078 	return (void *)old_handler;
2079 }
2080 
set_vi_handler(int n,vi_handler_t addr)2081 void *set_vi_handler(int n, vi_handler_t addr)
2082 {
2083 	return set_vi_srs_handler(n, addr, 0);
2084 }
2085 
2086 extern void tlb_init(void);
2087 
2088 /*
2089  * Timer interrupt
2090  */
2091 int cp0_compare_irq;
2092 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2093 int cp0_compare_irq_shift;
2094 
2095 /*
2096  * Performance counter IRQ or -1 if shared with timer
2097  */
2098 int cp0_perfcount_irq;
2099 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2100 
2101 /*
2102  * Fast debug channel IRQ or -1 if not present
2103  */
2104 int cp0_fdc_irq;
2105 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2106 
2107 static int noulri;
2108 
ulri_disable(char * s)2109 static int __init ulri_disable(char *s)
2110 {
2111 	pr_info("Disabling ulri\n");
2112 	noulri = 1;
2113 
2114 	return 1;
2115 }
2116 __setup("noulri", ulri_disable);
2117 
2118 /* configure STATUS register */
configure_status(void)2119 static void configure_status(void)
2120 {
2121 	/*
2122 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2123 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2124 	 * flag that some firmware may have left set and the TS bit (for
2125 	 * IP27).  Set XX for ISA IV code to work.
2126 	 */
2127 	unsigned int status_set = ST0_CU0;
2128 #ifdef CONFIG_64BIT
2129 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2130 #endif
2131 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2132 		status_set |= ST0_XX;
2133 	if (cpu_has_dsp)
2134 		status_set |= ST0_MX;
2135 
2136 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2137 			 status_set);
2138 }
2139 
2140 unsigned int hwrena;
2141 EXPORT_SYMBOL_GPL(hwrena);
2142 
2143 /* configure HWRENA register */
configure_hwrena(void)2144 static void configure_hwrena(void)
2145 {
2146 	hwrena = cpu_hwrena_impl_bits;
2147 
2148 	if (cpu_has_mips_r2_r6)
2149 		hwrena |= MIPS_HWRENA_CPUNUM |
2150 			  MIPS_HWRENA_SYNCISTEP |
2151 			  MIPS_HWRENA_CC |
2152 			  MIPS_HWRENA_CCRES;
2153 
2154 	if (!noulri && cpu_has_userlocal)
2155 		hwrena |= MIPS_HWRENA_ULR;
2156 
2157 	if (hwrena)
2158 		write_c0_hwrena(hwrena);
2159 }
2160 
configure_exception_vector(void)2161 static void configure_exception_vector(void)
2162 {
2163 	if (cpu_has_veic || cpu_has_vint) {
2164 		unsigned long sr = set_c0_status(ST0_BEV);
2165 		/* If available, use WG to set top bits of EBASE */
2166 		if (cpu_has_ebase_wg) {
2167 #ifdef CONFIG_64BIT
2168 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2169 #else
2170 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2171 #endif
2172 		}
2173 		write_c0_ebase(ebase);
2174 		write_c0_status(sr);
2175 		/* Setting vector spacing enables EI/VI mode  */
2176 		change_c0_intctl(0x3e0, VECTORSPACING);
2177 	}
2178 	if (cpu_has_divec) {
2179 		if (cpu_has_mipsmt) {
2180 			unsigned int vpflags = dvpe();
2181 			set_c0_cause(CAUSEF_IV);
2182 			evpe(vpflags);
2183 		} else
2184 			set_c0_cause(CAUSEF_IV);
2185 	}
2186 }
2187 
per_cpu_trap_init(bool is_boot_cpu)2188 void per_cpu_trap_init(bool is_boot_cpu)
2189 {
2190 	unsigned int cpu = smp_processor_id();
2191 
2192 	configure_status();
2193 	configure_hwrena();
2194 
2195 	configure_exception_vector();
2196 
2197 	/*
2198 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2199 	 *
2200 	 *  o read IntCtl.IPTI to determine the timer interrupt
2201 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2202 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2203 	 */
2204 	if (cpu_has_mips_r2_r6) {
2205 		/*
2206 		 * We shouldn't trust a secondary core has a sane EBASE register
2207 		 * so use the one calculated by the boot CPU.
2208 		 */
2209 		if (!is_boot_cpu) {
2210 			/* If available, use WG to set top bits of EBASE */
2211 			if (cpu_has_ebase_wg) {
2212 #ifdef CONFIG_64BIT
2213 				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2214 #else
2215 				write_c0_ebase(ebase | MIPS_EBASE_WG);
2216 #endif
2217 			}
2218 			write_c0_ebase(ebase);
2219 		}
2220 
2221 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2222 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2223 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2224 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2225 		if (!cp0_fdc_irq)
2226 			cp0_fdc_irq = -1;
2227 
2228 	} else {
2229 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2230 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2231 		cp0_perfcount_irq = -1;
2232 		cp0_fdc_irq = -1;
2233 	}
2234 
2235 	if (!cpu_data[cpu].asid_cache)
2236 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2237 
2238 	mmgrab(&init_mm);
2239 	current->active_mm = &init_mm;
2240 	BUG_ON(current->mm);
2241 	enter_lazy_tlb(&init_mm, current);
2242 
2243 	/* Boot CPU's cache setup in setup_arch(). */
2244 	if (!is_boot_cpu)
2245 		cpu_cache_init();
2246 	tlb_init();
2247 	TLBMISS_HANDLER_SETUP();
2248 }
2249 
2250 /* Install CPU exception handler */
set_handler(unsigned long offset,void * addr,unsigned long size)2251 void set_handler(unsigned long offset, void *addr, unsigned long size)
2252 {
2253 #ifdef CONFIG_CPU_MICROMIPS
2254 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2255 #else
2256 	memcpy((void *)(ebase + offset), addr, size);
2257 #endif
2258 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2259 }
2260 
2261 static const char panic_null_cerr[] =
2262 	"Trying to set NULL cache error exception handler\n";
2263 
2264 /*
2265  * Install uncached CPU exception handler.
2266  * This is suitable only for the cache error exception which is the only
2267  * exception handler that is being run uncached.
2268  */
set_uncached_handler(unsigned long offset,void * addr,unsigned long size)2269 void set_uncached_handler(unsigned long offset, void *addr,
2270 	unsigned long size)
2271 {
2272 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2273 
2274 	if (!addr)
2275 		panic(panic_null_cerr);
2276 
2277 	memcpy((void *)(uncached_ebase + offset), addr, size);
2278 }
2279 
2280 static int __initdata rdhwr_noopt;
set_rdhwr_noopt(char * str)2281 static int __init set_rdhwr_noopt(char *str)
2282 {
2283 	rdhwr_noopt = 1;
2284 	return 1;
2285 }
2286 
2287 __setup("rdhwr_noopt", set_rdhwr_noopt);
2288 
trap_init(void)2289 void __init trap_init(void)
2290 {
2291 	extern char except_vec3_generic;
2292 	extern char except_vec4;
2293 	extern char except_vec3_r4000;
2294 	unsigned long i;
2295 
2296 	check_wait();
2297 
2298 	if (cpu_has_veic || cpu_has_vint) {
2299 		unsigned long size = 0x200 + VECTORSPACING*64;
2300 		phys_addr_t ebase_pa;
2301 
2302 		ebase = (unsigned long)
2303 			__alloc_bootmem(size, 1 << fls(size), 0);
2304 
2305 		/*
2306 		 * Try to ensure ebase resides in KSeg0 if possible.
2307 		 *
2308 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2309 		 * hitting a poorly defined exception base for Cache Errors.
2310 		 * The allocation is likely to be in the low 512MB of physical,
2311 		 * in which case we should be able to convert to KSeg0.
2312 		 *
2313 		 * EVA is special though as it allows segments to be rearranged
2314 		 * and to become uncached during cache error handling.
2315 		 */
2316 		ebase_pa = __pa(ebase);
2317 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2318 			ebase = CKSEG0ADDR(ebase_pa);
2319 	} else {
2320 		ebase = CAC_BASE;
2321 
2322 		if (cpu_has_mips_r2_r6) {
2323 			if (cpu_has_ebase_wg) {
2324 #ifdef CONFIG_64BIT
2325 				ebase = (read_c0_ebase_64() & ~0xfff);
2326 #else
2327 				ebase = (read_c0_ebase() & ~0xfff);
2328 #endif
2329 			} else {
2330 				ebase += (read_c0_ebase() & 0x3ffff000);
2331 			}
2332 		}
2333 	}
2334 
2335 	if (cpu_has_mmips) {
2336 		unsigned int config3 = read_c0_config3();
2337 
2338 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2339 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2340 		else
2341 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2342 	}
2343 
2344 	if (board_ebase_setup)
2345 		board_ebase_setup();
2346 	per_cpu_trap_init(true);
2347 
2348 	/*
2349 	 * Copy the generic exception handlers to their final destination.
2350 	 * This will be overridden later as suitable for a particular
2351 	 * configuration.
2352 	 */
2353 	set_handler(0x180, &except_vec3_generic, 0x80);
2354 
2355 	/*
2356 	 * Setup default vectors
2357 	 */
2358 	for (i = 0; i <= 31; i++)
2359 		set_except_vector(i, handle_reserved);
2360 
2361 	/*
2362 	 * Copy the EJTAG debug exception vector handler code to it's final
2363 	 * destination.
2364 	 */
2365 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2366 		board_ejtag_handler_setup();
2367 
2368 	/*
2369 	 * Only some CPUs have the watch exceptions.
2370 	 */
2371 	if (cpu_has_watch)
2372 		set_except_vector(EXCCODE_WATCH, handle_watch);
2373 
2374 	/*
2375 	 * Initialise interrupt handlers
2376 	 */
2377 	if (cpu_has_veic || cpu_has_vint) {
2378 		int nvec = cpu_has_veic ? 64 : 8;
2379 		for (i = 0; i < nvec; i++)
2380 			set_vi_handler(i, NULL);
2381 	}
2382 	else if (cpu_has_divec)
2383 		set_handler(0x200, &except_vec4, 0x8);
2384 
2385 	/*
2386 	 * Some CPUs can enable/disable for cache parity detection, but does
2387 	 * it different ways.
2388 	 */
2389 	parity_protection_init();
2390 
2391 	/*
2392 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2393 	 * by external hardware.  Therefore these two exceptions
2394 	 * may have board specific handlers.
2395 	 */
2396 	if (board_be_init)
2397 		board_be_init();
2398 
2399 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2400 					rollback_handle_int : handle_int);
2401 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2402 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2403 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2404 
2405 	set_except_vector(EXCCODE_ADEL, handle_adel);
2406 	set_except_vector(EXCCODE_ADES, handle_ades);
2407 
2408 	set_except_vector(EXCCODE_IBE, handle_ibe);
2409 	set_except_vector(EXCCODE_DBE, handle_dbe);
2410 
2411 	set_except_vector(EXCCODE_SYS, handle_sys);
2412 	set_except_vector(EXCCODE_BP, handle_bp);
2413 
2414 	if (rdhwr_noopt)
2415 		set_except_vector(EXCCODE_RI, handle_ri);
2416 	else {
2417 		if (cpu_has_vtag_icache)
2418 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2419 		else if (current_cpu_type() == CPU_LOONGSON3)
2420 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2421 		else
2422 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2423 	}
2424 
2425 	set_except_vector(EXCCODE_CPU, handle_cpu);
2426 	set_except_vector(EXCCODE_OV, handle_ov);
2427 	set_except_vector(EXCCODE_TR, handle_tr);
2428 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2429 
2430 	if (board_nmi_handler_setup)
2431 		board_nmi_handler_setup();
2432 
2433 	if (cpu_has_fpu && !cpu_has_nofpuex)
2434 		set_except_vector(EXCCODE_FPE, handle_fpe);
2435 
2436 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2437 
2438 	if (cpu_has_rixiex) {
2439 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2440 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2441 	}
2442 
2443 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2444 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2445 
2446 	if (cpu_has_mcheck)
2447 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2448 
2449 	if (cpu_has_mipsmt)
2450 		set_except_vector(EXCCODE_THREAD, handle_mt);
2451 
2452 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2453 
2454 	if (board_cache_error_setup)
2455 		board_cache_error_setup();
2456 
2457 	if (cpu_has_vce)
2458 		/* Special exception: R4[04]00 uses also the divec space. */
2459 		set_handler(0x180, &except_vec3_r4000, 0x100);
2460 	else if (cpu_has_4kex)
2461 		set_handler(0x180, &except_vec3_generic, 0x80);
2462 	else
2463 		set_handler(0x080, &except_vec3_generic, 0x80);
2464 
2465 	local_flush_icache_range(ebase, ebase + 0x400);
2466 
2467 	sort_extable(__start___dbe_table, __stop___dbe_table);
2468 
2469 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2470 }
2471 
trap_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2472 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2473 			    void *v)
2474 {
2475 	switch (cmd) {
2476 	case CPU_PM_ENTER_FAILED:
2477 	case CPU_PM_EXIT:
2478 		configure_status();
2479 		configure_hwrena();
2480 		configure_exception_vector();
2481 
2482 		/* Restore register with CPU number for TLB handlers */
2483 		TLBMISS_HANDLER_RESTORE();
2484 
2485 		break;
2486 	}
2487 
2488 	return NOTIFY_OK;
2489 }
2490 
2491 static struct notifier_block trap_pm_notifier_block = {
2492 	.notifier_call = trap_pm_notifier,
2493 };
2494 
trap_pm_init(void)2495 static int __init trap_pm_init(void)
2496 {
2497 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2498 }
2499 arch_initcall(trap_pm_init);
2500