• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 1994 Linus Torvalds
4  *
5  * Pentium III FXSR, SSE support
6  * General FPU state handling cleanups
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  * x86-64 work by Andi Kleen 2002
9  */
10 
11 #ifndef _ASM_X86_FPU_INTERNAL_H
12 #define _ASM_X86_FPU_INTERNAL_H
13 
14 #include <linux/compat.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 
18 #include <asm/user.h>
19 #include <asm/fpu/api.h>
20 #include <asm/fpu/xstate.h>
21 #include <asm/cpufeature.h>
22 #include <asm/trace/fpu.h>
23 
24 /*
25  * High level FPU state handling functions:
26  */
27 extern void fpu__initialize(struct fpu *fpu);
28 extern void fpu__prepare_read(struct fpu *fpu);
29 extern void fpu__prepare_write(struct fpu *fpu);
30 extern void fpu__save(struct fpu *fpu);
31 extern void fpu__restore(struct fpu *fpu);
32 extern int  fpu__restore_sig(void __user *buf, int ia32_frame);
33 extern void fpu__drop(struct fpu *fpu);
34 extern int  fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
35 extern void fpu__clear(struct fpu *fpu);
36 extern int  fpu__exception_code(struct fpu *fpu, int trap_nr);
37 extern int  dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
38 
39 /*
40  * Boot time FPU initialization functions:
41  */
42 extern void fpu__init_cpu(void);
43 extern void fpu__init_system_xstate(void);
44 extern void fpu__init_cpu_xstate(void);
45 extern void fpu__init_system(struct cpuinfo_x86 *c);
46 extern void fpu__init_check_bugs(void);
47 extern void fpu__resume_cpu(void);
48 extern u64 fpu__get_supported_xfeatures_mask(void);
49 
50 /*
51  * Debugging facility:
52  */
53 #ifdef CONFIG_X86_DEBUG_FPU
54 # define WARN_ON_FPU(x) WARN_ON_ONCE(x)
55 #else
56 # define WARN_ON_FPU(x) ({ (void)(x); 0; })
57 #endif
58 
59 /*
60  * FPU related CPU feature flag helper routines:
61  */
use_xsaveopt(void)62 static __always_inline __pure bool use_xsaveopt(void)
63 {
64 	return static_cpu_has(X86_FEATURE_XSAVEOPT);
65 }
66 
use_xsave(void)67 static __always_inline __pure bool use_xsave(void)
68 {
69 	return static_cpu_has(X86_FEATURE_XSAVE);
70 }
71 
use_fxsr(void)72 static __always_inline __pure bool use_fxsr(void)
73 {
74 	return static_cpu_has(X86_FEATURE_FXSR);
75 }
76 
77 /*
78  * fpstate handling functions:
79  */
80 
81 extern union fpregs_state init_fpstate;
82 
83 extern void fpstate_init(union fpregs_state *state);
84 #ifdef CONFIG_MATH_EMULATION
85 extern void fpstate_init_soft(struct swregs_state *soft);
86 #else
fpstate_init_soft(struct swregs_state * soft)87 static inline void fpstate_init_soft(struct swregs_state *soft) {}
88 #endif
89 
fpstate_init_xstate(struct xregs_state * xsave)90 static inline void fpstate_init_xstate(struct xregs_state *xsave)
91 {
92 	/*
93 	 * XRSTORS requires these bits set in xcomp_bv, or it will
94 	 * trigger #GP:
95 	 */
96 	xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask;
97 }
98 
fpstate_init_fxstate(struct fxregs_state * fx)99 static inline void fpstate_init_fxstate(struct fxregs_state *fx)
100 {
101 	fx->cwd = 0x37f;
102 	fx->mxcsr = MXCSR_DEFAULT;
103 }
104 extern void fpstate_sanitize_xstate(struct fpu *fpu);
105 
106 #define user_insn(insn, output, input...)				\
107 ({									\
108 	int err;							\
109 									\
110 	might_fault();							\
111 									\
112 	asm volatile(ASM_STAC "\n"					\
113 		     "1:" #insn "\n\t"					\
114 		     "2: " ASM_CLAC "\n"				\
115 		     ".section .fixup,\"ax\"\n"				\
116 		     "3:  movl $-1,%[err]\n"				\
117 		     "    jmp  2b\n"					\
118 		     ".previous\n"					\
119 		     _ASM_EXTABLE(1b, 3b)				\
120 		     : [err] "=r" (err), output				\
121 		     : "0"(0), input);					\
122 	err;								\
123 })
124 
125 #define kernel_insn(insn, output, input...)				\
126 	asm volatile("1:" #insn "\n\t"					\
127 		     "2:\n"						\
128 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_fprestore)	\
129 		     : output : input)
130 
copy_fregs_to_user(struct fregs_state __user * fx)131 static inline int copy_fregs_to_user(struct fregs_state __user *fx)
132 {
133 	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
134 }
135 
copy_fxregs_to_user(struct fxregs_state __user * fx)136 static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
137 {
138 	if (IS_ENABLED(CONFIG_X86_32))
139 		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
140 	else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
141 		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
142 
143 	/* See comment in copy_fxregs_to_kernel() below. */
144 	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
145 }
146 
copy_kernel_to_fxregs(struct fxregs_state * fx)147 static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
148 {
149 	if (IS_ENABLED(CONFIG_X86_32)) {
150 		kernel_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
151 	} else {
152 		if (IS_ENABLED(CONFIG_AS_FXSAVEQ)) {
153 			kernel_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
154 		} else {
155 			/* See comment in copy_fxregs_to_kernel() below. */
156 			kernel_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
157 		}
158 	}
159 }
160 
copy_user_to_fxregs(struct fxregs_state __user * fx)161 static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
162 {
163 	if (IS_ENABLED(CONFIG_X86_32))
164 		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
165 	else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
166 		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
167 
168 	/* See comment in copy_fxregs_to_kernel() below. */
169 	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
170 			  "m" (*fx));
171 }
172 
copy_kernel_to_fregs(struct fregs_state * fx)173 static inline void copy_kernel_to_fregs(struct fregs_state *fx)
174 {
175 	kernel_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
176 }
177 
copy_user_to_fregs(struct fregs_state __user * fx)178 static inline int copy_user_to_fregs(struct fregs_state __user *fx)
179 {
180 	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
181 }
182 
copy_fxregs_to_kernel(struct fpu * fpu)183 static inline void copy_fxregs_to_kernel(struct fpu *fpu)
184 {
185 	if (IS_ENABLED(CONFIG_X86_32))
186 		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
187 	else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
188 		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
189 	else {
190 		/* Using "rex64; fxsave %0" is broken because, if the memory
191 		 * operand uses any extended registers for addressing, a second
192 		 * REX prefix will be generated (to the assembler, rex64
193 		 * followed by semicolon is a separate instruction), and hence
194 		 * the 64-bitness is lost.
195 		 *
196 		 * Using "fxsaveq %0" would be the ideal choice, but is only
197 		 * supported starting with gas 2.16.
198 		 *
199 		 * Using, as a workaround, the properly prefixed form below
200 		 * isn't accepted by any binutils version so far released,
201 		 * complaining that the same type of prefix is used twice if
202 		 * an extended register is needed for addressing (fix submitted
203 		 * to mainline 2005-11-21).
204 		 *
205 		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
206 		 *
207 		 * This, however, we can work around by forcing the compiler to
208 		 * select an addressing mode that doesn't require extended
209 		 * registers.
210 		 */
211 		asm volatile( "rex64/fxsave (%[fx])"
212 			     : "=m" (fpu->state.fxsave)
213 			     : [fx] "R" (&fpu->state.fxsave));
214 	}
215 }
216 
217 /* These macros all use (%edi)/(%rdi) as the single memory argument. */
218 #define XSAVE		".byte " REX_PREFIX "0x0f,0xae,0x27"
219 #define XSAVEOPT	".byte " REX_PREFIX "0x0f,0xae,0x37"
220 #define XSAVES		".byte " REX_PREFIX "0x0f,0xc7,0x2f"
221 #define XRSTOR		".byte " REX_PREFIX "0x0f,0xae,0x2f"
222 #define XRSTORS		".byte " REX_PREFIX "0x0f,0xc7,0x1f"
223 
224 #define XSTATE_OP(op, st, lmask, hmask, err)				\
225 	asm volatile("1:" op "\n\t"					\
226 		     "xor %[err], %[err]\n"				\
227 		     "2:\n\t"						\
228 		     ".pushsection .fixup,\"ax\"\n\t"			\
229 		     "3: movl $-2,%[err]\n\t"				\
230 		     "jmp 2b\n\t"					\
231 		     ".popsection\n\t"					\
232 		     _ASM_EXTABLE(1b, 3b)				\
233 		     : [err] "=r" (err)					\
234 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
235 		     : "memory")
236 
237 /*
238  * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
239  * format and supervisor states in addition to modified optimization in
240  * XSAVEOPT.
241  *
242  * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
243  * supports modified optimization which is not supported by XSAVE.
244  *
245  * We use XSAVE as a fallback.
246  *
247  * The 661 label is defined in the ALTERNATIVE* macros as the address of the
248  * original instruction which gets replaced. We need to use it here as the
249  * address of the instruction where we might get an exception at.
250  */
251 #define XSTATE_XSAVE(st, lmask, hmask, err)				\
252 	asm volatile(ALTERNATIVE_2(XSAVE,				\
253 				   XSAVEOPT, X86_FEATURE_XSAVEOPT,	\
254 				   XSAVES,   X86_FEATURE_XSAVES)	\
255 		     "\n"						\
256 		     "xor %[err], %[err]\n"				\
257 		     "3:\n"						\
258 		     ".pushsection .fixup,\"ax\"\n"			\
259 		     "4: movl $-2, %[err]\n"				\
260 		     "jmp 3b\n"						\
261 		     ".popsection\n"					\
262 		     _ASM_EXTABLE(661b, 4b)				\
263 		     : [err] "=r" (err)					\
264 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
265 		     : "memory")
266 
267 /*
268  * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
269  * XSAVE area format.
270  */
271 #define XSTATE_XRESTORE(st, lmask, hmask)				\
272 	asm volatile(ALTERNATIVE(XRSTOR,				\
273 				 XRSTORS, X86_FEATURE_XSAVES)		\
274 		     "\n"						\
275 		     "3:\n"						\
276 		     _ASM_EXTABLE_HANDLE(661b, 3b, ex_handler_fprestore)\
277 		     :							\
278 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
279 		     : "memory")
280 
281 /*
282  * This function is called only during boot time when x86 caps are not set
283  * up and alternative can not be used yet.
284  */
copy_xregs_to_kernel_booting(struct xregs_state * xstate)285 static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
286 {
287 	u64 mask = -1;
288 	u32 lmask = mask;
289 	u32 hmask = mask >> 32;
290 	int err;
291 
292 	WARN_ON(system_state != SYSTEM_BOOTING);
293 
294 	if (static_cpu_has(X86_FEATURE_XSAVES))
295 		XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
296 	else
297 		XSTATE_OP(XSAVE, xstate, lmask, hmask, err);
298 
299 	/* We should never fault when copying to a kernel buffer: */
300 	WARN_ON_FPU(err);
301 }
302 
303 /*
304  * This function is called only during boot time when x86 caps are not set
305  * up and alternative can not be used yet.
306  */
copy_kernel_to_xregs_booting(struct xregs_state * xstate)307 static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
308 {
309 	u64 mask = -1;
310 	u32 lmask = mask;
311 	u32 hmask = mask >> 32;
312 	int err;
313 
314 	WARN_ON(system_state != SYSTEM_BOOTING);
315 
316 	if (static_cpu_has(X86_FEATURE_XSAVES))
317 		XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
318 	else
319 		XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
320 
321 	/*
322 	 * We should never fault when copying from a kernel buffer, and the FPU
323 	 * state we set at boot time should be valid.
324 	 */
325 	WARN_ON_FPU(err);
326 }
327 
328 /*
329  * Save processor xstate to xsave area.
330  */
copy_xregs_to_kernel(struct xregs_state * xstate)331 static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
332 {
333 	u64 mask = -1;
334 	u32 lmask = mask;
335 	u32 hmask = mask >> 32;
336 	int err;
337 
338 	WARN_ON_FPU(!alternatives_patched);
339 
340 	XSTATE_XSAVE(xstate, lmask, hmask, err);
341 
342 	/* We should never fault when copying to a kernel buffer: */
343 	WARN_ON_FPU(err);
344 }
345 
346 /*
347  * Restore processor xstate from xsave area.
348  */
copy_kernel_to_xregs(struct xregs_state * xstate,u64 mask)349 static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
350 {
351 	u32 lmask = mask;
352 	u32 hmask = mask >> 32;
353 
354 	XSTATE_XRESTORE(xstate, lmask, hmask);
355 }
356 
357 /*
358  * Save xstate to user space xsave area.
359  *
360  * We don't use modified optimization because xrstor/xrstors might track
361  * a different application.
362  *
363  * We don't use compacted format xsave area for
364  * backward compatibility for old applications which don't understand
365  * compacted format of xsave area.
366  */
copy_xregs_to_user(struct xregs_state __user * buf)367 static inline int copy_xregs_to_user(struct xregs_state __user *buf)
368 {
369 	int err;
370 
371 	/*
372 	 * Clear the xsave header first, so that reserved fields are
373 	 * initialized to zero.
374 	 */
375 	err = __clear_user(&buf->header, sizeof(buf->header));
376 	if (unlikely(err))
377 		return -EFAULT;
378 
379 	stac();
380 	XSTATE_OP(XSAVE, buf, -1, -1, err);
381 	clac();
382 
383 	return err;
384 }
385 
386 /*
387  * Restore xstate from user space xsave area.
388  */
copy_user_to_xregs(struct xregs_state __user * buf,u64 mask)389 static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
390 {
391 	struct xregs_state *xstate = ((__force struct xregs_state *)buf);
392 	u32 lmask = mask;
393 	u32 hmask = mask >> 32;
394 	int err;
395 
396 	stac();
397 	XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
398 	clac();
399 
400 	return err;
401 }
402 
403 /*
404  * These must be called with preempt disabled. Returns
405  * 'true' if the FPU state is still intact and we can
406  * keep registers active.
407  *
408  * The legacy FNSAVE instruction cleared all FPU state
409  * unconditionally, so registers are essentially destroyed.
410  * Modern FPU state can be kept in registers, if there are
411  * no pending FP exceptions.
412  */
copy_fpregs_to_fpstate(struct fpu * fpu)413 static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
414 {
415 	if (likely(use_xsave())) {
416 		copy_xregs_to_kernel(&fpu->state.xsave);
417 		return 1;
418 	}
419 
420 	if (likely(use_fxsr())) {
421 		copy_fxregs_to_kernel(fpu);
422 		return 1;
423 	}
424 
425 	/*
426 	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
427 	 * so we have to mark them inactive:
428 	 */
429 	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
430 
431 	return 0;
432 }
433 
__copy_kernel_to_fpregs(union fpregs_state * fpstate,u64 mask)434 static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate, u64 mask)
435 {
436 	if (use_xsave()) {
437 		copy_kernel_to_xregs(&fpstate->xsave, mask);
438 	} else {
439 		if (use_fxsr())
440 			copy_kernel_to_fxregs(&fpstate->fxsave);
441 		else
442 			copy_kernel_to_fregs(&fpstate->fsave);
443 	}
444 }
445 
copy_kernel_to_fpregs(union fpregs_state * fpstate)446 static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
447 {
448 	/*
449 	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
450 	 * pending. Clear the x87 state here by setting it to fixed values.
451 	 * "m" is a random variable that should be in L1.
452 	 */
453 	if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
454 		asm volatile(
455 			"fnclex\n\t"
456 			"emms\n\t"
457 			"fildl %P[addr]"	/* set F?P to defined value */
458 			: : [addr] "m" (fpstate));
459 	}
460 
461 	__copy_kernel_to_fpregs(fpstate, -1);
462 }
463 
464 extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
465 
466 /*
467  * FPU context switch related helper methods:
468  */
469 
470 DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
471 
472 /*
473  * The in-register FPU state for an FPU context on a CPU is assumed to be
474  * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx
475  * matches the FPU.
476  *
477  * If the FPU register state is valid, the kernel can skip restoring the
478  * FPU state from memory.
479  *
480  * Any code that clobbers the FPU registers or updates the in-memory
481  * FPU state for a task MUST let the rest of the kernel know that the
482  * FPU registers are no longer valid for this task.
483  *
484  * Either one of these invalidation functions is enough. Invalidate
485  * a resource you control: CPU if using the CPU for something else
486  * (with preemption disabled), FPU for the current task, or a task that
487  * is prevented from running by the current task.
488  */
__cpu_invalidate_fpregs_state(void)489 static inline void __cpu_invalidate_fpregs_state(void)
490 {
491 	__this_cpu_write(fpu_fpregs_owner_ctx, NULL);
492 }
493 
__fpu_invalidate_fpregs_state(struct fpu * fpu)494 static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu)
495 {
496 	fpu->last_cpu = -1;
497 }
498 
fpregs_state_valid(struct fpu * fpu,unsigned int cpu)499 static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu)
500 {
501 	return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
502 }
503 
504 /*
505  * These generally need preemption protection to work,
506  * do try to avoid using these on their own:
507  */
fpregs_deactivate(struct fpu * fpu)508 static inline void fpregs_deactivate(struct fpu *fpu)
509 {
510 	this_cpu_write(fpu_fpregs_owner_ctx, NULL);
511 	trace_x86_fpu_regs_deactivated(fpu);
512 }
513 
fpregs_activate(struct fpu * fpu)514 static inline void fpregs_activate(struct fpu *fpu)
515 {
516 	this_cpu_write(fpu_fpregs_owner_ctx, fpu);
517 	trace_x86_fpu_regs_activated(fpu);
518 }
519 
520 /*
521  * FPU state switching for scheduling.
522  *
523  * This is a two-stage process:
524  *
525  *  - switch_fpu_prepare() saves the old state.
526  *    This is done within the context of the old process.
527  *
528  *  - switch_fpu_finish() restores the new state as
529  *    necessary.
530  */
531 static inline void
switch_fpu_prepare(struct fpu * old_fpu,int cpu)532 switch_fpu_prepare(struct fpu *old_fpu, int cpu)
533 {
534 	if (static_cpu_has(X86_FEATURE_FPU) && old_fpu->initialized) {
535 		if (!copy_fpregs_to_fpstate(old_fpu))
536 			old_fpu->last_cpu = -1;
537 		else
538 			old_fpu->last_cpu = cpu;
539 
540 		/* But leave fpu_fpregs_owner_ctx! */
541 		trace_x86_fpu_regs_deactivated(old_fpu);
542 	} else
543 		old_fpu->last_cpu = -1;
544 }
545 
546 /*
547  * Misc helper functions:
548  */
549 
550 /*
551  * Set up the userspace FPU context for the new task, if the task
552  * has used the FPU.
553  */
switch_fpu_finish(struct fpu * new_fpu,int cpu)554 static inline void switch_fpu_finish(struct fpu *new_fpu, int cpu)
555 {
556 	bool preload = static_cpu_has(X86_FEATURE_FPU) &&
557 		       new_fpu->initialized;
558 
559 	if (preload) {
560 		if (!fpregs_state_valid(new_fpu, cpu))
561 			copy_kernel_to_fpregs(&new_fpu->state);
562 		fpregs_activate(new_fpu);
563 	}
564 }
565 
566 /*
567  * Needs to be preemption-safe.
568  *
569  * NOTE! user_fpu_begin() must be used only immediately before restoring
570  * the save state. It does not do any saving/restoring on its own. In
571  * lazy FPU mode, it is just an optimization to avoid a #NM exception,
572  * the task can lose the FPU right after preempt_enable().
573  */
user_fpu_begin(void)574 static inline void user_fpu_begin(void)
575 {
576 	struct fpu *fpu = &current->thread.fpu;
577 
578 	preempt_disable();
579 	fpregs_activate(fpu);
580 	preempt_enable();
581 }
582 
583 /*
584  * MXCSR and XCR definitions:
585  */
586 
587 extern unsigned int mxcsr_feature_mask;
588 
589 #define XCR_XFEATURE_ENABLED_MASK	0x00000000
590 
xgetbv(u32 index)591 static inline u64 xgetbv(u32 index)
592 {
593 	u32 eax, edx;
594 
595 	asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
596 		     : "=a" (eax), "=d" (edx)
597 		     : "c" (index));
598 	return eax + ((u64)edx << 32);
599 }
600 
xsetbv(u32 index,u64 value)601 static inline void xsetbv(u32 index, u64 value)
602 {
603 	u32 eax = value;
604 	u32 edx = value >> 32;
605 
606 	asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
607 		     : : "a" (eax), "d" (edx), "c" (index));
608 }
609 
610 #endif /* _ASM_X86_FPU_INTERNAL_H */
611