• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
22 
23 extern pgd_t swapper_pg_dir[];
24 extern void paging_init(void);
25 
26 enum {
27 	PG_DIRECT_MAP_4K = 0,
28 	PG_DIRECT_MAP_1M,
29 	PG_DIRECT_MAP_2G,
30 	PG_DIRECT_MAP_MAX
31 };
32 
33 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
34 
update_page_count(int level,long count)35 static inline void update_page_count(int level, long count)
36 {
37 	if (IS_ENABLED(CONFIG_PROC_FS))
38 		atomic_long_add(count, &direct_pages_count[level]);
39 }
40 
41 struct seq_file;
42 void arch_report_meminfo(struct seq_file *m);
43 
44 /*
45  * The S390 doesn't have any external MMU info: the kernel page
46  * tables contain all the necessary information.
47  */
48 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
49 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
50 
51 /*
52  * ZERO_PAGE is a global shared page that is always zero; used
53  * for zero-mapped memory areas etc..
54  */
55 
56 extern unsigned long empty_zero_page;
57 extern unsigned long zero_page_mask;
58 
59 #define ZERO_PAGE(vaddr) \
60 	(virt_to_page((void *)(empty_zero_page + \
61 	 (((unsigned long)(vaddr)) &zero_page_mask))))
62 #define __HAVE_COLOR_ZERO_PAGE
63 
64 /* TODO: s390 cannot support io_remap_pfn_range... */
65 
66 #define FIRST_USER_ADDRESS  0UL
67 
68 #define pte_ERROR(e) \
69 	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70 #define pmd_ERROR(e) \
71 	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72 #define pud_ERROR(e) \
73 	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74 #define p4d_ERROR(e) \
75 	printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76 #define pgd_ERROR(e) \
77 	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
78 
79 /*
80  * The vmalloc and module area will always be on the topmost area of the
81  * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82  * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83  * modules will reside. That makes sure that inter module branches always
84  * happen without trampolines and in addition the placement within a 2GB frame
85  * is branch prediction unit friendly.
86  */
87 extern unsigned long VMALLOC_START;
88 extern unsigned long VMALLOC_END;
89 extern struct page *vmemmap;
90 
91 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
92 
93 extern unsigned long MODULES_VADDR;
94 extern unsigned long MODULES_END;
95 #define MODULES_VADDR	MODULES_VADDR
96 #define MODULES_END	MODULES_END
97 #define MODULES_LEN	(1UL << 31)
98 
is_module_addr(void * addr)99 static inline int is_module_addr(void *addr)
100 {
101 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
102 	if (addr < (void *)MODULES_VADDR)
103 		return 0;
104 	if (addr > (void *)MODULES_END)
105 		return 0;
106 	return 1;
107 }
108 
109 /*
110  * A 64 bit pagetable entry of S390 has following format:
111  * |			 PFRA			      |0IPC|  OS  |
112  * 0000000000111111111122222222223333333333444444444455555555556666
113  * 0123456789012345678901234567890123456789012345678901234567890123
114  *
115  * I Page-Invalid Bit:    Page is not available for address-translation
116  * P Page-Protection Bit: Store access not possible for page
117  * C Change-bit override: HW is not required to set change bit
118  *
119  * A 64 bit segmenttable entry of S390 has following format:
120  * |        P-table origin                              |      TT
121  * 0000000000111111111122222222223333333333444444444455555555556666
122  * 0123456789012345678901234567890123456789012345678901234567890123
123  *
124  * I Segment-Invalid Bit:    Segment is not available for address-translation
125  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
126  * P Page-Protection Bit: Store access not possible for page
127  * TT Type 00
128  *
129  * A 64 bit region table entry of S390 has following format:
130  * |        S-table origin                             |   TF  TTTL
131  * 0000000000111111111122222222223333333333444444444455555555556666
132  * 0123456789012345678901234567890123456789012345678901234567890123
133  *
134  * I Segment-Invalid Bit:    Segment is not available for address-translation
135  * TT Type 01
136  * TF
137  * TL Table length
138  *
139  * The 64 bit regiontable origin of S390 has following format:
140  * |      region table origon                          |       DTTL
141  * 0000000000111111111122222222223333333333444444444455555555556666
142  * 0123456789012345678901234567890123456789012345678901234567890123
143  *
144  * X Space-Switch event:
145  * G Segment-Invalid Bit:
146  * P Private-Space Bit:
147  * S Storage-Alteration:
148  * R Real space
149  * TL Table-Length:
150  *
151  * A storage key has the following format:
152  * | ACC |F|R|C|0|
153  *  0   3 4 5 6 7
154  * ACC: access key
155  * F  : fetch protection bit
156  * R  : referenced bit
157  * C  : changed bit
158  */
159 
160 /* Hardware bits in the page table entry */
161 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
162 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
163 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
164 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
165 
166 /* Software bits in the page table entry */
167 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
168 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
169 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
170 #define _PAGE_READ	0x010		/* SW pte read bit */
171 #define _PAGE_WRITE	0x020		/* SW pte write bit */
172 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
173 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
174 #define __HAVE_ARCH_PTE_SPECIAL
175 
176 #ifdef CONFIG_MEM_SOFT_DIRTY
177 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
178 #else
179 #define _PAGE_SOFT_DIRTY 0x000
180 #endif
181 
182 /* Set of bits not changed in pte_modify */
183 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
184 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
185 
186 /*
187  * handle_pte_fault uses pte_present and pte_none to find out the pte type
188  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
189  * distinguish present from not-present ptes. It is changed only with the page
190  * table lock held.
191  *
192  * The following table gives the different possible bit combinations for
193  * the pte hardware and software bits in the last 12 bits of a pte
194  * (. unassigned bit, x don't care, t swap type):
195  *
196  *				842100000000
197  *				000084210000
198  *				000000008421
199  *				.IR.uswrdy.p
200  * empty			.10.00000000
201  * swap				.11..ttttt.0
202  * prot-none, clean, old	.11.xx0000.1
203  * prot-none, clean, young	.11.xx0001.1
204  * prot-none, dirty, old	.11.xx0010.1
205  * prot-none, dirty, young	.11.xx0011.1
206  * read-only, clean, old	.11.xx0100.1
207  * read-only, clean, young	.01.xx0101.1
208  * read-only, dirty, old	.11.xx0110.1
209  * read-only, dirty, young	.01.xx0111.1
210  * read-write, clean, old	.11.xx1100.1
211  * read-write, clean, young	.01.xx1101.1
212  * read-write, dirty, old	.10.xx1110.1
213  * read-write, dirty, young	.00.xx1111.1
214  * HW-bits: R read-only, I invalid
215  * SW-bits: p present, y young, d dirty, r read, w write, s special,
216  *	    u unused, l large
217  *
218  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
219  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
220  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
221  */
222 
223 /* Bits in the segment/region table address-space-control-element */
224 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
225 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
226 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
227 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
228 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
229 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
230 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
231 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
232 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
233 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
234 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
235 
236 /* Bits in the region table entry */
237 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
238 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
239 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
240 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
241 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
242 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
243 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
244 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
245 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
246 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
247 
248 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
249 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
250 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
251 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
252 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
253 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
254 
255 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
256 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
257 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
258 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
259 #define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
260 #define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
261 
262 #ifdef CONFIG_MEM_SOFT_DIRTY
263 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
264 #else
265 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
266 #endif
267 
268 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
269 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
270 
271 /* Bits in the segment table entry */
272 #define _SEGMENT_ENTRY_BITS	0xfffffffffffffe33UL
273 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
274 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
275 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
276 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
277 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
278 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
279 
280 #define _SEGMENT_ENTRY		(0)
281 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
282 
283 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
284 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
285 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
286 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
287 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
288 
289 #ifdef CONFIG_MEM_SOFT_DIRTY
290 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
291 #else
292 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
293 #endif
294 
295 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
296 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
297 
298 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
299 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
300 
301 #define _REGION1_SHIFT	53
302 #define _REGION2_SHIFT	42
303 #define _REGION3_SHIFT	31
304 #define _SEGMENT_SHIFT	20
305 
306 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
307 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
308 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
309 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
310 #define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
311 
312 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
313 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
314 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
315 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
316 
317 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
318 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
319 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
320 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
321 
322 #define PMD_SHIFT	_SEGMENT_SHIFT
323 #define PUD_SHIFT	_REGION3_SHIFT
324 #define P4D_SHIFT	_REGION2_SHIFT
325 #define PGDIR_SHIFT	_REGION1_SHIFT
326 
327 #define PMD_SIZE	_SEGMENT_SIZE
328 #define PUD_SIZE	_REGION3_SIZE
329 #define P4D_SIZE	_REGION2_SIZE
330 #define PGDIR_SIZE	_REGION1_SIZE
331 
332 #define PMD_MASK	_SEGMENT_MASK
333 #define PUD_MASK	_REGION3_MASK
334 #define P4D_MASK	_REGION2_MASK
335 #define PGDIR_MASK	_REGION1_MASK
336 
337 #define PTRS_PER_PTE	_PAGE_ENTRIES
338 #define PTRS_PER_PMD	_CRST_ENTRIES
339 #define PTRS_PER_PUD	_CRST_ENTRIES
340 #define PTRS_PER_P4D	_CRST_ENTRIES
341 #define PTRS_PER_PGD	_CRST_ENTRIES
342 
343 /*
344  * Segment table and region3 table entry encoding
345  * (R = read-only, I = invalid, y = young bit):
346  *				dy..R...I...wr
347  * prot-none, clean, old	00..1...1...00
348  * prot-none, clean, young	01..1...1...00
349  * prot-none, dirty, old	10..1...1...00
350  * prot-none, dirty, young	11..1...1...00
351  * read-only, clean, old	00..1...1...01
352  * read-only, clean, young	01..1...0...01
353  * read-only, dirty, old	10..1...1...01
354  * read-only, dirty, young	11..1...0...01
355  * read-write, clean, old	00..1...1...11
356  * read-write, clean, young	01..1...0...11
357  * read-write, dirty, old	10..0...1...11
358  * read-write, dirty, young	11..0...0...11
359  * The segment table origin is used to distinguish empty (origin==0) from
360  * read-write, old segment table entries (origin!=0)
361  * HW-bits: R read-only, I invalid
362  * SW-bits: y young, d dirty, r read, w write
363  */
364 
365 /* Page status table bits for virtualization */
366 #define PGSTE_ACC_BITS	0xf000000000000000UL
367 #define PGSTE_FP_BIT	0x0800000000000000UL
368 #define PGSTE_PCL_BIT	0x0080000000000000UL
369 #define PGSTE_HR_BIT	0x0040000000000000UL
370 #define PGSTE_HC_BIT	0x0020000000000000UL
371 #define PGSTE_GR_BIT	0x0004000000000000UL
372 #define PGSTE_GC_BIT	0x0002000000000000UL
373 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
374 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
375 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
376 
377 /* Guest Page State used for virtualization */
378 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
379 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
380 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
381 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
382 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
383 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
384 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
385 
386 /*
387  * A user page table pointer has the space-switch-event bit, the
388  * private-space-control bit and the storage-alteration-event-control
389  * bit set. A kernel page table pointer doesn't need them.
390  */
391 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
392 				 _ASCE_ALT_EVENT)
393 
394 /*
395  * Page protection definitions.
396  */
397 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
398 #define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
399 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
400 #define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
401 				 _PAGE_INVALID | _PAGE_PROTECT)
402 #define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
403 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
404 #define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
405 				 _PAGE_INVALID | _PAGE_PROTECT)
406 
407 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
409 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
411 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
412 				 _PAGE_PROTECT | _PAGE_NOEXEC)
413 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
414 				  _PAGE_YOUNG |	_PAGE_DIRTY)
415 
416 /*
417  * On s390 the page table entry has an invalid bit and a read-only bit.
418  * Read permission implies execute permission and write permission
419  * implies read permission.
420  */
421          /*xwr*/
422 #define __P000	PAGE_NONE
423 #define __P001	PAGE_RO
424 #define __P010	PAGE_RO
425 #define __P011	PAGE_RO
426 #define __P100	PAGE_RX
427 #define __P101	PAGE_RX
428 #define __P110	PAGE_RX
429 #define __P111	PAGE_RX
430 
431 #define __S000	PAGE_NONE
432 #define __S001	PAGE_RO
433 #define __S010	PAGE_RW
434 #define __S011	PAGE_RW
435 #define __S100	PAGE_RX
436 #define __S101	PAGE_RX
437 #define __S110	PAGE_RWX
438 #define __S111	PAGE_RWX
439 
440 /*
441  * Segment entry (large page) protection definitions.
442  */
443 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
444 				 _SEGMENT_ENTRY_PROTECT)
445 #define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
446 				 _SEGMENT_ENTRY_READ | \
447 				 _SEGMENT_ENTRY_NOEXEC)
448 #define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
449 				 _SEGMENT_ENTRY_READ)
450 #define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
451 				 _SEGMENT_ENTRY_WRITE | \
452 				 _SEGMENT_ENTRY_NOEXEC)
453 #define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
454 				 _SEGMENT_ENTRY_WRITE)
455 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
456 				 _SEGMENT_ENTRY_LARGE |	\
457 				 _SEGMENT_ENTRY_READ |	\
458 				 _SEGMENT_ENTRY_WRITE | \
459 				 _SEGMENT_ENTRY_YOUNG | \
460 				 _SEGMENT_ENTRY_DIRTY | \
461 				 _SEGMENT_ENTRY_NOEXEC)
462 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
463 				 _SEGMENT_ENTRY_LARGE |	\
464 				 _SEGMENT_ENTRY_READ |	\
465 				 _SEGMENT_ENTRY_YOUNG |	\
466 				 _SEGMENT_ENTRY_PROTECT | \
467 				 _SEGMENT_ENTRY_NOEXEC)
468 
469 /*
470  * Region3 entry (large page) protection definitions.
471  */
472 
473 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
474 				 _REGION3_ENTRY_LARGE |	 \
475 				 _REGION3_ENTRY_READ |	 \
476 				 _REGION3_ENTRY_WRITE |	 \
477 				 _REGION3_ENTRY_YOUNG |	 \
478 				 _REGION3_ENTRY_DIRTY | \
479 				 _REGION_ENTRY_NOEXEC)
480 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
481 				   _REGION3_ENTRY_LARGE |  \
482 				   _REGION3_ENTRY_READ |   \
483 				   _REGION3_ENTRY_YOUNG |  \
484 				   _REGION_ENTRY_PROTECT | \
485 				   _REGION_ENTRY_NOEXEC)
486 
mm_has_pgste(struct mm_struct * mm)487 static inline int mm_has_pgste(struct mm_struct *mm)
488 {
489 #ifdef CONFIG_PGSTE
490 	if (unlikely(mm->context.has_pgste))
491 		return 1;
492 #endif
493 	return 0;
494 }
495 
mm_alloc_pgste(struct mm_struct * mm)496 static inline int mm_alloc_pgste(struct mm_struct *mm)
497 {
498 #ifdef CONFIG_PGSTE
499 	if (unlikely(mm->context.alloc_pgste))
500 		return 1;
501 #endif
502 	return 0;
503 }
504 
505 /*
506  * In the case that a guest uses storage keys
507  * faults should no longer be backed by zero pages
508  */
509 #define mm_forbids_zeropage mm_has_pgste
mm_use_skey(struct mm_struct * mm)510 static inline int mm_use_skey(struct mm_struct *mm)
511 {
512 #ifdef CONFIG_PGSTE
513 	if (mm->context.use_skey)
514 		return 1;
515 #endif
516 	return 0;
517 }
518 
csp(unsigned int * ptr,unsigned int old,unsigned int new)519 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
520 {
521 	register unsigned long reg2 asm("2") = old;
522 	register unsigned long reg3 asm("3") = new;
523 	unsigned long address = (unsigned long)ptr | 1;
524 
525 	asm volatile(
526 		"	csp	%0,%3"
527 		: "+d" (reg2), "+m" (*ptr)
528 		: "d" (reg3), "d" (address)
529 		: "cc");
530 }
531 
cspg(unsigned long * ptr,unsigned long old,unsigned long new)532 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
533 {
534 	register unsigned long reg2 asm("2") = old;
535 	register unsigned long reg3 asm("3") = new;
536 	unsigned long address = (unsigned long)ptr | 1;
537 
538 	asm volatile(
539 		"	.insn	rre,0xb98a0000,%0,%3"
540 		: "+d" (reg2), "+m" (*ptr)
541 		: "d" (reg3), "d" (address)
542 		: "cc");
543 }
544 
545 #define CRDTE_DTT_PAGE		0x00UL
546 #define CRDTE_DTT_SEGMENT	0x10UL
547 #define CRDTE_DTT_REGION3	0x14UL
548 #define CRDTE_DTT_REGION2	0x18UL
549 #define CRDTE_DTT_REGION1	0x1cUL
550 
crdte(unsigned long old,unsigned long new,unsigned long table,unsigned long dtt,unsigned long address,unsigned long asce)551 static inline void crdte(unsigned long old, unsigned long new,
552 			 unsigned long table, unsigned long dtt,
553 			 unsigned long address, unsigned long asce)
554 {
555 	register unsigned long reg2 asm("2") = old;
556 	register unsigned long reg3 asm("3") = new;
557 	register unsigned long reg4 asm("4") = table | dtt;
558 	register unsigned long reg5 asm("5") = address;
559 
560 	asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
561 		     : "+d" (reg2)
562 		     : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
563 		     : "memory", "cc");
564 }
565 
566 /*
567  * pgd/p4d/pud/pmd/pte query functions
568  */
pgd_folded(pgd_t pgd)569 static inline int pgd_folded(pgd_t pgd)
570 {
571 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
572 }
573 
pgd_present(pgd_t pgd)574 static inline int pgd_present(pgd_t pgd)
575 {
576 	if (pgd_folded(pgd))
577 		return 1;
578 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
579 }
580 
pgd_none(pgd_t pgd)581 static inline int pgd_none(pgd_t pgd)
582 {
583 	if (pgd_folded(pgd))
584 		return 0;
585 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
586 }
587 
pgd_bad(pgd_t pgd)588 static inline int pgd_bad(pgd_t pgd)
589 {
590 	/*
591 	 * With dynamic page table levels the pgd can be a region table
592 	 * entry or a segment table entry. Check for the bit that are
593 	 * invalid for either table entry.
594 	 */
595 	unsigned long mask =
596 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
597 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
598 	return (pgd_val(pgd) & mask) != 0;
599 }
600 
p4d_folded(p4d_t p4d)601 static inline int p4d_folded(p4d_t p4d)
602 {
603 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
604 }
605 
p4d_present(p4d_t p4d)606 static inline int p4d_present(p4d_t p4d)
607 {
608 	if (p4d_folded(p4d))
609 		return 1;
610 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
611 }
612 
p4d_none(p4d_t p4d)613 static inline int p4d_none(p4d_t p4d)
614 {
615 	if (p4d_folded(p4d))
616 		return 0;
617 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
618 }
619 
p4d_pfn(p4d_t p4d)620 static inline unsigned long p4d_pfn(p4d_t p4d)
621 {
622 	unsigned long origin_mask;
623 
624 	origin_mask = _REGION_ENTRY_ORIGIN;
625 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
626 }
627 
pud_folded(pud_t pud)628 static inline int pud_folded(pud_t pud)
629 {
630 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
631 }
632 
pud_present(pud_t pud)633 static inline int pud_present(pud_t pud)
634 {
635 	if (pud_folded(pud))
636 		return 1;
637 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
638 }
639 
pud_none(pud_t pud)640 static inline int pud_none(pud_t pud)
641 {
642 	if (pud_folded(pud))
643 		return 0;
644 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
645 }
646 
pud_large(pud_t pud)647 static inline int pud_large(pud_t pud)
648 {
649 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
650 		return 0;
651 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
652 }
653 
pud_pfn(pud_t pud)654 static inline unsigned long pud_pfn(pud_t pud)
655 {
656 	unsigned long origin_mask;
657 
658 	origin_mask = _REGION_ENTRY_ORIGIN;
659 	if (pud_large(pud))
660 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
661 	return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
662 }
663 
pmd_large(pmd_t pmd)664 static inline int pmd_large(pmd_t pmd)
665 {
666 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
667 }
668 
pmd_bad(pmd_t pmd)669 static inline int pmd_bad(pmd_t pmd)
670 {
671 	if (pmd_large(pmd))
672 		return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
673 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
674 }
675 
pud_bad(pud_t pud)676 static inline int pud_bad(pud_t pud)
677 {
678 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
679 		return pmd_bad(__pmd(pud_val(pud)));
680 	if (pud_large(pud))
681 		return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
682 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
683 }
684 
p4d_bad(p4d_t p4d)685 static inline int p4d_bad(p4d_t p4d)
686 {
687 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
688 		return pud_bad(__pud(p4d_val(p4d)));
689 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
690 }
691 
pmd_present(pmd_t pmd)692 static inline int pmd_present(pmd_t pmd)
693 {
694 	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
695 }
696 
pmd_none(pmd_t pmd)697 static inline int pmd_none(pmd_t pmd)
698 {
699 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
700 }
701 
pmd_pfn(pmd_t pmd)702 static inline unsigned long pmd_pfn(pmd_t pmd)
703 {
704 	unsigned long origin_mask;
705 
706 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
707 	if (pmd_large(pmd))
708 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
709 	return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
710 }
711 
712 #define __HAVE_ARCH_PMD_WRITE
pmd_write(pmd_t pmd)713 static inline int pmd_write(pmd_t pmd)
714 {
715 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
716 }
717 
pmd_dirty(pmd_t pmd)718 static inline int pmd_dirty(pmd_t pmd)
719 {
720 	int dirty = 1;
721 	if (pmd_large(pmd))
722 		dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
723 	return dirty;
724 }
725 
pmd_young(pmd_t pmd)726 static inline int pmd_young(pmd_t pmd)
727 {
728 	int young = 1;
729 	if (pmd_large(pmd))
730 		young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
731 	return young;
732 }
733 
pte_present(pte_t pte)734 static inline int pte_present(pte_t pte)
735 {
736 	/* Bit pattern: (pte & 0x001) == 0x001 */
737 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
738 }
739 
pte_none(pte_t pte)740 static inline int pte_none(pte_t pte)
741 {
742 	/* Bit pattern: pte == 0x400 */
743 	return pte_val(pte) == _PAGE_INVALID;
744 }
745 
pte_swap(pte_t pte)746 static inline int pte_swap(pte_t pte)
747 {
748 	/* Bit pattern: (pte & 0x201) == 0x200 */
749 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
750 		== _PAGE_PROTECT;
751 }
752 
pte_special(pte_t pte)753 static inline int pte_special(pte_t pte)
754 {
755 	return (pte_val(pte) & _PAGE_SPECIAL);
756 }
757 
758 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)759 static inline int pte_same(pte_t a, pte_t b)
760 {
761 	return pte_val(a) == pte_val(b);
762 }
763 
764 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)765 static inline int pte_protnone(pte_t pte)
766 {
767 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
768 }
769 
pmd_protnone(pmd_t pmd)770 static inline int pmd_protnone(pmd_t pmd)
771 {
772 	/* pmd_large(pmd) implies pmd_present(pmd) */
773 	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
774 }
775 #endif
776 
pte_soft_dirty(pte_t pte)777 static inline int pte_soft_dirty(pte_t pte)
778 {
779 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
780 }
781 #define pte_swp_soft_dirty pte_soft_dirty
782 
pte_mksoft_dirty(pte_t pte)783 static inline pte_t pte_mksoft_dirty(pte_t pte)
784 {
785 	pte_val(pte) |= _PAGE_SOFT_DIRTY;
786 	return pte;
787 }
788 #define pte_swp_mksoft_dirty pte_mksoft_dirty
789 
pte_clear_soft_dirty(pte_t pte)790 static inline pte_t pte_clear_soft_dirty(pte_t pte)
791 {
792 	pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
793 	return pte;
794 }
795 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
796 
pmd_soft_dirty(pmd_t pmd)797 static inline int pmd_soft_dirty(pmd_t pmd)
798 {
799 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
800 }
801 
pmd_mksoft_dirty(pmd_t pmd)802 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
803 {
804 	pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
805 	return pmd;
806 }
807 
pmd_clear_soft_dirty(pmd_t pmd)808 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
809 {
810 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
811 	return pmd;
812 }
813 
814 /*
815  * query functions pte_write/pte_dirty/pte_young only work if
816  * pte_present() is true. Undefined behaviour if not..
817  */
pte_write(pte_t pte)818 static inline int pte_write(pte_t pte)
819 {
820 	return (pte_val(pte) & _PAGE_WRITE) != 0;
821 }
822 
pte_dirty(pte_t pte)823 static inline int pte_dirty(pte_t pte)
824 {
825 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
826 }
827 
pte_young(pte_t pte)828 static inline int pte_young(pte_t pte)
829 {
830 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
831 }
832 
833 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)834 static inline int pte_unused(pte_t pte)
835 {
836 	return pte_val(pte) & _PAGE_UNUSED;
837 }
838 
839 /*
840  * pgd/pmd/pte modification functions
841  */
842 
pgd_clear(pgd_t * pgd)843 static inline void pgd_clear(pgd_t *pgd)
844 {
845 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
846 		pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
847 }
848 
p4d_clear(p4d_t * p4d)849 static inline void p4d_clear(p4d_t *p4d)
850 {
851 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
852 		p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
853 }
854 
pud_clear(pud_t * pud)855 static inline void pud_clear(pud_t *pud)
856 {
857 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
858 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
859 }
860 
pmd_clear(pmd_t * pmdp)861 static inline void pmd_clear(pmd_t *pmdp)
862 {
863 	pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
864 }
865 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)866 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
867 {
868 	pte_val(*ptep) = _PAGE_INVALID;
869 }
870 
871 /*
872  * The following pte modification functions only work if
873  * pte_present() is true. Undefined behaviour if not..
874  */
pte_modify(pte_t pte,pgprot_t newprot)875 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
876 {
877 	pte_val(pte) &= _PAGE_CHG_MASK;
878 	pte_val(pte) |= pgprot_val(newprot);
879 	/*
880 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
881 	 * has the invalid bit set, clear it again for readable, young pages
882 	 */
883 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
884 		pte_val(pte) &= ~_PAGE_INVALID;
885 	/*
886 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
887 	 * protection bit set, clear it again for writable, dirty pages
888 	 */
889 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
890 		pte_val(pte) &= ~_PAGE_PROTECT;
891 	return pte;
892 }
893 
pte_wrprotect(pte_t pte)894 static inline pte_t pte_wrprotect(pte_t pte)
895 {
896 	pte_val(pte) &= ~_PAGE_WRITE;
897 	pte_val(pte) |= _PAGE_PROTECT;
898 	return pte;
899 }
900 
pte_mkwrite(pte_t pte)901 static inline pte_t pte_mkwrite(pte_t pte)
902 {
903 	pte_val(pte) |= _PAGE_WRITE;
904 	if (pte_val(pte) & _PAGE_DIRTY)
905 		pte_val(pte) &= ~_PAGE_PROTECT;
906 	return pte;
907 }
908 
pte_mkclean(pte_t pte)909 static inline pte_t pte_mkclean(pte_t pte)
910 {
911 	pte_val(pte) &= ~_PAGE_DIRTY;
912 	pte_val(pte) |= _PAGE_PROTECT;
913 	return pte;
914 }
915 
pte_mkdirty(pte_t pte)916 static inline pte_t pte_mkdirty(pte_t pte)
917 {
918 	pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
919 	if (pte_val(pte) & _PAGE_WRITE)
920 		pte_val(pte) &= ~_PAGE_PROTECT;
921 	return pte;
922 }
923 
pte_mkold(pte_t pte)924 static inline pte_t pte_mkold(pte_t pte)
925 {
926 	pte_val(pte) &= ~_PAGE_YOUNG;
927 	pte_val(pte) |= _PAGE_INVALID;
928 	return pte;
929 }
930 
pte_mkyoung(pte_t pte)931 static inline pte_t pte_mkyoung(pte_t pte)
932 {
933 	pte_val(pte) |= _PAGE_YOUNG;
934 	if (pte_val(pte) & _PAGE_READ)
935 		pte_val(pte) &= ~_PAGE_INVALID;
936 	return pte;
937 }
938 
pte_mkspecial(pte_t pte)939 static inline pte_t pte_mkspecial(pte_t pte)
940 {
941 	pte_val(pte) |= _PAGE_SPECIAL;
942 	return pte;
943 }
944 
945 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)946 static inline pte_t pte_mkhuge(pte_t pte)
947 {
948 	pte_val(pte) |= _PAGE_LARGE;
949 	return pte;
950 }
951 #endif
952 
953 #define IPTE_GLOBAL	0
954 #define	IPTE_LOCAL	1
955 
956 #define IPTE_NODAT	0x400
957 #define IPTE_GUEST_ASCE	0x800
958 
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)959 static inline void __ptep_ipte(unsigned long address, pte_t *ptep,
960 			       unsigned long opt, unsigned long asce,
961 			       int local)
962 {
963 	unsigned long pto = (unsigned long) ptep;
964 
965 	if (__builtin_constant_p(opt) && opt == 0) {
966 		/* Invalidation + TLB flush for the pte */
967 		asm volatile(
968 			"	.insn	rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
969 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
970 			  [m4] "i" (local));
971 		return;
972 	}
973 
974 	/* Invalidate ptes with options + TLB flush of the ptes */
975 	opt = opt | (asce & _ASCE_ORIGIN);
976 	asm volatile(
977 		"	.insn	rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
978 		: [r2] "+a" (address), [r3] "+a" (opt)
979 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
980 }
981 
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)982 static inline void __ptep_ipte_range(unsigned long address, int nr,
983 				     pte_t *ptep, int local)
984 {
985 	unsigned long pto = (unsigned long) ptep;
986 
987 	/* Invalidate a range of ptes + TLB flush of the ptes */
988 	do {
989 		asm volatile(
990 			"       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
991 			: [r2] "+a" (address), [r3] "+a" (nr)
992 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
993 	} while (nr != 255);
994 }
995 
996 /*
997  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
998  * both clear the TLB for the unmapped pte. The reason is that
999  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1000  * to modify an active pte. The sequence is
1001  *   1) ptep_get_and_clear
1002  *   2) set_pte_at
1003  *   3) flush_tlb_range
1004  * On s390 the tlb needs to get flushed with the modification of the pte
1005  * if the pte is active. The only way how this can be implemented is to
1006  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1007  * is a nop.
1008  */
1009 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1010 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1011 
1012 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1013 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1014 					    unsigned long addr, pte_t *ptep)
1015 {
1016 	pte_t pte = *ptep;
1017 
1018 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1019 	return pte_young(pte);
1020 }
1021 
1022 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1023 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1024 					 unsigned long address, pte_t *ptep)
1025 {
1026 	return ptep_test_and_clear_young(vma, address, ptep);
1027 }
1028 
1029 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1030 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1031 				       unsigned long addr, pte_t *ptep)
1032 {
1033 	return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1034 }
1035 
1036 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1037 pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
1038 void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
1039 
1040 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1041 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1042 				     unsigned long addr, pte_t *ptep)
1043 {
1044 	return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1045 }
1046 
1047 /*
1048  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1049  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1050  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1051  * cannot be accessed while the batched unmap is running. In this case
1052  * full==1 and a simple pte_clear is enough. See tlb.h.
1053  */
1054 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1055 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1056 					    unsigned long addr,
1057 					    pte_t *ptep, int full)
1058 {
1059 	if (full) {
1060 		pte_t pte = *ptep;
1061 		*ptep = __pte(_PAGE_INVALID);
1062 		return pte;
1063 	}
1064 	return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1065 }
1066 
1067 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1068 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1069 				      unsigned long addr, pte_t *ptep)
1070 {
1071 	pte_t pte = *ptep;
1072 
1073 	if (pte_write(pte))
1074 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1075 }
1076 
1077 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1078 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1079 					unsigned long addr, pte_t *ptep,
1080 					pte_t entry, int dirty)
1081 {
1082 	if (pte_same(*ptep, entry))
1083 		return 0;
1084 	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1085 	return 1;
1086 }
1087 
1088 /*
1089  * Additional functions to handle KVM guest page tables
1090  */
1091 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1092 		     pte_t *ptep, pte_t entry);
1093 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1094 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1095 		 pte_t *ptep, unsigned long bits);
1096 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1097 		    pte_t *ptep, int prot, unsigned long bit);
1098 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1099 		     pte_t *ptep , int reset);
1100 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1101 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1102 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1103 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1104 
1105 bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
1106 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1107 			  unsigned char key, bool nq);
1108 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1109 			       unsigned char key, unsigned char *oldkey,
1110 			       bool nq, bool mr, bool mc);
1111 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1112 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1113 			  unsigned char *key);
1114 
1115 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1116 				unsigned long bits, unsigned long value);
1117 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1118 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1119 			unsigned long *oldpte, unsigned long *oldpgste);
1120 
1121 /*
1122  * Certain architectures need to do special things when PTEs
1123  * within a page table are directly modified.  Thus, the following
1124  * hook is made available.
1125  */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)1126 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1127 			      pte_t *ptep, pte_t entry)
1128 {
1129 	if (pte_present(entry))
1130 		pte_val(entry) &= ~_PAGE_UNUSED;
1131 	if (mm_has_pgste(mm))
1132 		ptep_set_pte_at(mm, addr, ptep, entry);
1133 	else
1134 		*ptep = entry;
1135 }
1136 
1137 /*
1138  * Conversion functions: convert a page and protection to a page entry,
1139  * and a page entry and page directory to the page they refer to.
1140  */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1141 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1142 {
1143 	pte_t __pte;
1144 	pte_val(__pte) = physpage + pgprot_val(pgprot);
1145 	if (!MACHINE_HAS_NX)
1146 		pte_val(__pte) &= ~_PAGE_NOEXEC;
1147 	return pte_mkyoung(__pte);
1148 }
1149 
mk_pte(struct page * page,pgprot_t pgprot)1150 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1151 {
1152 	unsigned long physpage = page_to_phys(page);
1153 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1154 
1155 	if (pte_write(__pte) && PageDirty(page))
1156 		__pte = pte_mkdirty(__pte);
1157 	return __pte;
1158 }
1159 
1160 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1161 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1162 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1163 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1164 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1165 
1166 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1167 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1168 
1169 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1170 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1171 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1172 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1173 
p4d_offset(pgd_t * pgd,unsigned long address)1174 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1175 {
1176 	p4d_t *p4d = (p4d_t *) pgd;
1177 
1178 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1179 		p4d = (p4d_t *) pgd_deref(*pgd);
1180 	return p4d + p4d_index(address);
1181 }
1182 
pud_offset(p4d_t * p4d,unsigned long address)1183 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1184 {
1185 	pud_t *pud = (pud_t *) p4d;
1186 
1187 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1188 		pud = (pud_t *) p4d_deref(*p4d);
1189 	return pud + pud_index(address);
1190 }
1191 
pmd_offset(pud_t * pud,unsigned long address)1192 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1193 {
1194 	pmd_t *pmd = (pmd_t *) pud;
1195 
1196 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1197 		pmd = (pmd_t *) pud_deref(*pud);
1198 	return pmd + pmd_index(address);
1199 }
1200 
1201 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1202 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1203 #define pte_page(x) pfn_to_page(pte_pfn(x))
1204 
1205 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1206 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1207 #define p4d_page(pud) pfn_to_page(p4d_pfn(p4d))
1208 
1209 /* Find an entry in the lowest level page table.. */
1210 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1211 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1212 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1213 #define pte_unmap(pte) do { } while (0)
1214 
pmd_wrprotect(pmd_t pmd)1215 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1216 {
1217 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1218 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1219 	return pmd;
1220 }
1221 
pmd_mkwrite(pmd_t pmd)1222 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1223 {
1224 	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1225 	if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1226 		return pmd;
1227 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1228 	return pmd;
1229 }
1230 
pmd_mkclean(pmd_t pmd)1231 static inline pmd_t pmd_mkclean(pmd_t pmd)
1232 {
1233 	if (pmd_large(pmd)) {
1234 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1235 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1236 	}
1237 	return pmd;
1238 }
1239 
pmd_mkdirty(pmd_t pmd)1240 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1241 {
1242 	if (pmd_large(pmd)) {
1243 		pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1244 				_SEGMENT_ENTRY_SOFT_DIRTY;
1245 		if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1246 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1247 	}
1248 	return pmd;
1249 }
1250 
pud_wrprotect(pud_t pud)1251 static inline pud_t pud_wrprotect(pud_t pud)
1252 {
1253 	pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1254 	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1255 	return pud;
1256 }
1257 
pud_mkwrite(pud_t pud)1258 static inline pud_t pud_mkwrite(pud_t pud)
1259 {
1260 	pud_val(pud) |= _REGION3_ENTRY_WRITE;
1261 	if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1262 		return pud;
1263 	pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1264 	return pud;
1265 }
1266 
pud_mkclean(pud_t pud)1267 static inline pud_t pud_mkclean(pud_t pud)
1268 {
1269 	if (pud_large(pud)) {
1270 		pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1271 		pud_val(pud) |= _REGION_ENTRY_PROTECT;
1272 	}
1273 	return pud;
1274 }
1275 
pud_mkdirty(pud_t pud)1276 static inline pud_t pud_mkdirty(pud_t pud)
1277 {
1278 	if (pud_large(pud)) {
1279 		pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1280 				_REGION3_ENTRY_SOFT_DIRTY;
1281 		if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1282 			pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1283 	}
1284 	return pud;
1285 }
1286 
1287 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1288 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1289 {
1290 	/*
1291 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1292 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1293 	 */
1294 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1295 		return pgprot_val(SEGMENT_NONE);
1296 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1297 		return pgprot_val(SEGMENT_RO);
1298 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1299 		return pgprot_val(SEGMENT_RX);
1300 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1301 		return pgprot_val(SEGMENT_RW);
1302 	return pgprot_val(SEGMENT_RWX);
1303 }
1304 
pmd_mkyoung(pmd_t pmd)1305 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1306 {
1307 	if (pmd_large(pmd)) {
1308 		pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1309 		if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1310 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1311 	}
1312 	return pmd;
1313 }
1314 
pmd_mkold(pmd_t pmd)1315 static inline pmd_t pmd_mkold(pmd_t pmd)
1316 {
1317 	if (pmd_large(pmd)) {
1318 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1319 		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1320 	}
1321 	return pmd;
1322 }
1323 
pmd_modify(pmd_t pmd,pgprot_t newprot)1324 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1325 {
1326 	if (pmd_large(pmd)) {
1327 		pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1328 			_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1329 			_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1330 		pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1331 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1332 			pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1333 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1334 			pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1335 		return pmd;
1336 	}
1337 	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1338 	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1339 	return pmd;
1340 }
1341 
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1342 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1343 {
1344 	pmd_t __pmd;
1345 	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1346 	return __pmd;
1347 }
1348 
1349 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1350 
__pmdp_csp(pmd_t * pmdp)1351 static inline void __pmdp_csp(pmd_t *pmdp)
1352 {
1353 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1354 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1355 }
1356 
1357 #define IDTE_GLOBAL	0
1358 #define IDTE_LOCAL	1
1359 
1360 #define IDTE_PTOA	0x0800
1361 #define IDTE_NODAT	0x1000
1362 #define IDTE_GUEST_ASCE	0x2000
1363 
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1364 static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1365 			       unsigned long opt, unsigned long asce,
1366 			       int local)
1367 {
1368 	unsigned long sto;
1369 
1370 	sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1371 	if (__builtin_constant_p(opt) && opt == 0) {
1372 		/* flush without guest asce */
1373 		asm volatile(
1374 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1375 			: "+m" (*pmdp)
1376 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1377 			  [m4] "i" (local)
1378 			: "cc" );
1379 	} else {
1380 		/* flush with guest asce */
1381 		asm volatile(
1382 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1383 			: "+m" (*pmdp)
1384 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1385 			  [r3] "a" (asce), [m4] "i" (local)
1386 			: "cc" );
1387 	}
1388 }
1389 
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1390 static inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1391 			       unsigned long opt, unsigned long asce,
1392 			       int local)
1393 {
1394 	unsigned long r3o;
1395 
1396 	r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1397 	r3o |= _ASCE_TYPE_REGION3;
1398 	if (__builtin_constant_p(opt) && opt == 0) {
1399 		/* flush without guest asce */
1400 		asm volatile(
1401 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1402 			: "+m" (*pudp)
1403 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1404 			  [m4] "i" (local)
1405 			: "cc");
1406 	} else {
1407 		/* flush with guest asce */
1408 		asm volatile(
1409 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1410 			: "+m" (*pudp)
1411 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1412 			  [r3] "a" (asce), [m4] "i" (local)
1413 			: "cc" );
1414 	}
1415 }
1416 
1417 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1418 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1419 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1420 
1421 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1422 
1423 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1424 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1425 				pgtable_t pgtable);
1426 
1427 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1428 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1429 
1430 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1431 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1432 					unsigned long addr, pmd_t *pmdp,
1433 					pmd_t entry, int dirty)
1434 {
1435 	VM_BUG_ON(addr & ~HPAGE_MASK);
1436 
1437 	entry = pmd_mkyoung(entry);
1438 	if (dirty)
1439 		entry = pmd_mkdirty(entry);
1440 	if (pmd_val(*pmdp) == pmd_val(entry))
1441 		return 0;
1442 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1443 	return 1;
1444 }
1445 
1446 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1447 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1448 					    unsigned long addr, pmd_t *pmdp)
1449 {
1450 	pmd_t pmd = *pmdp;
1451 
1452 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1453 	return pmd_young(pmd);
1454 }
1455 
1456 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1457 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1458 					 unsigned long addr, pmd_t *pmdp)
1459 {
1460 	VM_BUG_ON(addr & ~HPAGE_MASK);
1461 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1462 }
1463 
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1464 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1465 			      pmd_t *pmdp, pmd_t entry)
1466 {
1467 	if (!MACHINE_HAS_NX)
1468 		pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1469 	*pmdp = entry;
1470 }
1471 
pmd_mkhuge(pmd_t pmd)1472 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1473 {
1474 	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1475 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1476 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1477 	return pmd;
1478 }
1479 
1480 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1481 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1482 					    unsigned long addr, pmd_t *pmdp)
1483 {
1484 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1485 }
1486 
1487 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,int full)1488 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1489 						 unsigned long addr,
1490 						 pmd_t *pmdp, int full)
1491 {
1492 	if (full) {
1493 		pmd_t pmd = *pmdp;
1494 		*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1495 		return pmd;
1496 	}
1497 	return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1498 }
1499 
1500 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1501 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1502 					  unsigned long addr, pmd_t *pmdp)
1503 {
1504 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1505 }
1506 
1507 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1508 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1509 				   unsigned long addr, pmd_t *pmdp)
1510 {
1511 	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1512 
1513 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1514 }
1515 
1516 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1517 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1518 				      unsigned long addr, pmd_t *pmdp)
1519 {
1520 	pmd_t pmd = *pmdp;
1521 
1522 	if (pmd_write(pmd))
1523 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1524 }
1525 
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1526 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1527 					unsigned long address,
1528 					pmd_t *pmdp)
1529 {
1530 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1531 }
1532 #define pmdp_collapse_flush pmdp_collapse_flush
1533 
1534 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1535 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1536 
pmd_trans_huge(pmd_t pmd)1537 static inline int pmd_trans_huge(pmd_t pmd)
1538 {
1539 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1540 }
1541 
1542 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1543 static inline int has_transparent_hugepage(void)
1544 {
1545 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1546 }
1547 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1548 
1549 /*
1550  * 64 bit swap entry format:
1551  * A page-table entry has some bits we have to treat in a special way.
1552  * Bits 52 and bit 55 have to be zero, otherwise a specification
1553  * exception will occur instead of a page translation exception. The
1554  * specification exception has the bad habit not to store necessary
1555  * information in the lowcore.
1556  * Bits 54 and 63 are used to indicate the page type.
1557  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1558  * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1559  * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1560  * for the offset.
1561  * |			  offset			|01100|type |00|
1562  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1563  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1564  */
1565 
1566 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1567 #define __SWP_OFFSET_SHIFT	12
1568 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1569 #define __SWP_TYPE_SHIFT	2
1570 
mk_swap_pte(unsigned long type,unsigned long offset)1571 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1572 {
1573 	pte_t pte;
1574 
1575 	pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1576 	pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1577 	pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1578 	return pte;
1579 }
1580 
__swp_type(swp_entry_t entry)1581 static inline unsigned long __swp_type(swp_entry_t entry)
1582 {
1583 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1584 }
1585 
__swp_offset(swp_entry_t entry)1586 static inline unsigned long __swp_offset(swp_entry_t entry)
1587 {
1588 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1589 }
1590 
__swp_entry(unsigned long type,unsigned long offset)1591 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1592 {
1593 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1594 }
1595 
1596 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1597 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1598 
1599 #define kern_addr_valid(addr)   (1)
1600 
1601 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1602 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1603 extern int s390_enable_sie(void);
1604 extern int s390_enable_skey(void);
1605 extern void s390_reset_cmma(struct mm_struct *mm);
1606 
1607 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1608 #define HAVE_ARCH_UNMAPPED_AREA
1609 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1610 
1611 /*
1612  * No page table caches to initialise
1613  */
pgtable_cache_init(void)1614 static inline void pgtable_cache_init(void) { }
check_pgt_cache(void)1615 static inline void check_pgt_cache(void) { }
1616 
1617 #include <asm-generic/pgtable.h>
1618 
1619 #endif /* _S390_PAGE_H */
1620