• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/ip.h>
37 #include <net/protocol.h>
38 #include <net/netlink.h>
39 #include <linux/skbuff.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <linux/bpf_trace.h>
59 
60 /**
61  *	sk_filter_trim_cap - run a packet through a socket filter
62  *	@sk: sock associated with &sk_buff
63  *	@skb: buffer to filter
64  *	@cap: limit on how short the eBPF program may trim the packet
65  *
66  * Run the eBPF program and then cut skb->data to correct size returned by
67  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
68  * than pkt_len we keep whole skb->data. This is the socket level
69  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
70  * be accepted or -EPERM if the packet should be tossed.
71  *
72  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)73 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
74 {
75 	int err;
76 	struct sk_filter *filter;
77 
78 	/*
79 	 * If the skb was allocated from pfmemalloc reserves, only
80 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
81 	 * helping free memory
82 	 */
83 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
84 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
85 		return -ENOMEM;
86 	}
87 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
88 	if (err)
89 		return err;
90 
91 	err = security_sock_rcv_skb(sk, skb);
92 	if (err)
93 		return err;
94 
95 	rcu_read_lock();
96 	filter = rcu_dereference(sk->sk_filter);
97 	if (filter) {
98 		struct sock *save_sk = skb->sk;
99 		unsigned int pkt_len;
100 
101 		skb->sk = sk;
102 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
103 		skb->sk = save_sk;
104 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
105 	}
106 	rcu_read_unlock();
107 
108 	return err;
109 }
110 EXPORT_SYMBOL(sk_filter_trim_cap);
111 
BPF_CALL_1(__skb_get_pay_offset,struct sk_buff *,skb)112 BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
113 {
114 	return skb_get_poff(skb);
115 }
116 
BPF_CALL_3(__skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)117 BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
118 {
119 	struct nlattr *nla;
120 
121 	if (skb_is_nonlinear(skb))
122 		return 0;
123 
124 	if (skb->len < sizeof(struct nlattr))
125 		return 0;
126 
127 	if (a > skb->len - sizeof(struct nlattr))
128 		return 0;
129 
130 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
131 	if (nla)
132 		return (void *) nla - (void *) skb->data;
133 
134 	return 0;
135 }
136 
BPF_CALL_3(__skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)137 BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
138 {
139 	struct nlattr *nla;
140 
141 	if (skb_is_nonlinear(skb))
142 		return 0;
143 
144 	if (skb->len < sizeof(struct nlattr))
145 		return 0;
146 
147 	if (a > skb->len - sizeof(struct nlattr))
148 		return 0;
149 
150 	nla = (struct nlattr *) &skb->data[a];
151 	if (nla->nla_len > skb->len - a)
152 		return 0;
153 
154 	nla = nla_find_nested(nla, x);
155 	if (nla)
156 		return (void *) nla - (void *) skb->data;
157 
158 	return 0;
159 }
160 
BPF_CALL_0(__get_raw_cpu_id)161 BPF_CALL_0(__get_raw_cpu_id)
162 {
163 	return raw_smp_processor_id();
164 }
165 
166 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
167 	.func		= __get_raw_cpu_id,
168 	.gpl_only	= false,
169 	.ret_type	= RET_INTEGER,
170 };
171 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)172 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
173 			      struct bpf_insn *insn_buf)
174 {
175 	struct bpf_insn *insn = insn_buf;
176 
177 	switch (skb_field) {
178 	case SKF_AD_MARK:
179 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
180 
181 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
182 				      offsetof(struct sk_buff, mark));
183 		break;
184 
185 	case SKF_AD_PKTTYPE:
186 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
187 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
188 #ifdef __BIG_ENDIAN_BITFIELD
189 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
190 #endif
191 		break;
192 
193 	case SKF_AD_QUEUE:
194 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
195 
196 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
197 				      offsetof(struct sk_buff, queue_mapping));
198 		break;
199 
200 	case SKF_AD_VLAN_TAG:
201 	case SKF_AD_VLAN_TAG_PRESENT:
202 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
203 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
204 
205 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
206 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
207 				      offsetof(struct sk_buff, vlan_tci));
208 		if (skb_field == SKF_AD_VLAN_TAG) {
209 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
210 						~VLAN_TAG_PRESENT);
211 		} else {
212 			/* dst_reg >>= 12 */
213 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
214 			/* dst_reg &= 1 */
215 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
216 		}
217 		break;
218 	}
219 
220 	return insn - insn_buf;
221 }
222 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)223 static bool convert_bpf_extensions(struct sock_filter *fp,
224 				   struct bpf_insn **insnp)
225 {
226 	struct bpf_insn *insn = *insnp;
227 	u32 cnt;
228 
229 	switch (fp->k) {
230 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
231 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
232 
233 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
234 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
235 				      offsetof(struct sk_buff, protocol));
236 		/* A = ntohs(A) [emitting a nop or swap16] */
237 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
238 		break;
239 
240 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
241 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
242 		insn += cnt - 1;
243 		break;
244 
245 	case SKF_AD_OFF + SKF_AD_IFINDEX:
246 	case SKF_AD_OFF + SKF_AD_HATYPE:
247 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
248 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
249 
250 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
251 				      BPF_REG_TMP, BPF_REG_CTX,
252 				      offsetof(struct sk_buff, dev));
253 		/* if (tmp != 0) goto pc + 1 */
254 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
255 		*insn++ = BPF_EXIT_INSN();
256 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
257 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
258 					    offsetof(struct net_device, ifindex));
259 		else
260 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
261 					    offsetof(struct net_device, type));
262 		break;
263 
264 	case SKF_AD_OFF + SKF_AD_MARK:
265 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
266 		insn += cnt - 1;
267 		break;
268 
269 	case SKF_AD_OFF + SKF_AD_RXHASH:
270 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
271 
272 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
273 				    offsetof(struct sk_buff, hash));
274 		break;
275 
276 	case SKF_AD_OFF + SKF_AD_QUEUE:
277 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
278 		insn += cnt - 1;
279 		break;
280 
281 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
282 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
283 					 BPF_REG_A, BPF_REG_CTX, insn);
284 		insn += cnt - 1;
285 		break;
286 
287 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
288 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
289 					 BPF_REG_A, BPF_REG_CTX, insn);
290 		insn += cnt - 1;
291 		break;
292 
293 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
294 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
295 
296 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
297 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
298 				      offsetof(struct sk_buff, vlan_proto));
299 		/* A = ntohs(A) [emitting a nop or swap16] */
300 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
301 		break;
302 
303 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
304 	case SKF_AD_OFF + SKF_AD_NLATTR:
305 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
306 	case SKF_AD_OFF + SKF_AD_CPU:
307 	case SKF_AD_OFF + SKF_AD_RANDOM:
308 		/* arg1 = CTX */
309 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
310 		/* arg2 = A */
311 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
312 		/* arg3 = X */
313 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
314 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
315 		switch (fp->k) {
316 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
317 			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
318 			break;
319 		case SKF_AD_OFF + SKF_AD_NLATTR:
320 			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
321 			break;
322 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
323 			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
324 			break;
325 		case SKF_AD_OFF + SKF_AD_CPU:
326 			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
327 			break;
328 		case SKF_AD_OFF + SKF_AD_RANDOM:
329 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
330 			bpf_user_rnd_init_once();
331 			break;
332 		}
333 		break;
334 
335 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
336 		/* A ^= X */
337 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
338 		break;
339 
340 	default:
341 		/* This is just a dummy call to avoid letting the compiler
342 		 * evict __bpf_call_base() as an optimization. Placed here
343 		 * where no-one bothers.
344 		 */
345 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
346 		return false;
347 	}
348 
349 	*insnp = insn;
350 	return true;
351 }
352 
353 /**
354  *	bpf_convert_filter - convert filter program
355  *	@prog: the user passed filter program
356  *	@len: the length of the user passed filter program
357  *	@new_prog: allocated 'struct bpf_prog' or NULL
358  *	@new_len: pointer to store length of converted program
359  *
360  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
361  * style extended BPF (eBPF).
362  * Conversion workflow:
363  *
364  * 1) First pass for calculating the new program length:
365  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
366  *
367  * 2) 2nd pass to remap in two passes: 1st pass finds new
368  *    jump offsets, 2nd pass remapping:
369  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
370  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len)371 static int bpf_convert_filter(struct sock_filter *prog, int len,
372 			      struct bpf_prog *new_prog, int *new_len)
373 {
374 	int new_flen = 0, pass = 0, target, i, stack_off;
375 	struct bpf_insn *new_insn, *first_insn = NULL;
376 	struct sock_filter *fp;
377 	int *addrs = NULL;
378 	u8 bpf_src;
379 
380 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
381 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
382 
383 	if (len <= 0 || len > BPF_MAXINSNS)
384 		return -EINVAL;
385 
386 	if (new_prog) {
387 		first_insn = new_prog->insnsi;
388 		addrs = kcalloc(len, sizeof(*addrs),
389 				GFP_KERNEL | __GFP_NOWARN);
390 		if (!addrs)
391 			return -ENOMEM;
392 	}
393 
394 do_pass:
395 	new_insn = first_insn;
396 	fp = prog;
397 
398 	/* Classic BPF related prologue emission. */
399 	if (new_prog) {
400 		/* Classic BPF expects A and X to be reset first. These need
401 		 * to be guaranteed to be the first two instructions.
402 		 */
403 		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
404 		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
405 
406 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
407 		 * In eBPF case it's done by the compiler, here we need to
408 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
409 		 */
410 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
411 	} else {
412 		new_insn += 3;
413 	}
414 
415 	for (i = 0; i < len; fp++, i++) {
416 		struct bpf_insn tmp_insns[6] = { };
417 		struct bpf_insn *insn = tmp_insns;
418 
419 		if (addrs)
420 			addrs[i] = new_insn - first_insn;
421 
422 		switch (fp->code) {
423 		/* All arithmetic insns and skb loads map as-is. */
424 		case BPF_ALU | BPF_ADD | BPF_X:
425 		case BPF_ALU | BPF_ADD | BPF_K:
426 		case BPF_ALU | BPF_SUB | BPF_X:
427 		case BPF_ALU | BPF_SUB | BPF_K:
428 		case BPF_ALU | BPF_AND | BPF_X:
429 		case BPF_ALU | BPF_AND | BPF_K:
430 		case BPF_ALU | BPF_OR | BPF_X:
431 		case BPF_ALU | BPF_OR | BPF_K:
432 		case BPF_ALU | BPF_LSH | BPF_X:
433 		case BPF_ALU | BPF_LSH | BPF_K:
434 		case BPF_ALU | BPF_RSH | BPF_X:
435 		case BPF_ALU | BPF_RSH | BPF_K:
436 		case BPF_ALU | BPF_XOR | BPF_X:
437 		case BPF_ALU | BPF_XOR | BPF_K:
438 		case BPF_ALU | BPF_MUL | BPF_X:
439 		case BPF_ALU | BPF_MUL | BPF_K:
440 		case BPF_ALU | BPF_DIV | BPF_X:
441 		case BPF_ALU | BPF_DIV | BPF_K:
442 		case BPF_ALU | BPF_MOD | BPF_X:
443 		case BPF_ALU | BPF_MOD | BPF_K:
444 		case BPF_ALU | BPF_NEG:
445 		case BPF_LD | BPF_ABS | BPF_W:
446 		case BPF_LD | BPF_ABS | BPF_H:
447 		case BPF_LD | BPF_ABS | BPF_B:
448 		case BPF_LD | BPF_IND | BPF_W:
449 		case BPF_LD | BPF_IND | BPF_H:
450 		case BPF_LD | BPF_IND | BPF_B:
451 			/* Check for overloaded BPF extension and
452 			 * directly convert it if found, otherwise
453 			 * just move on with mapping.
454 			 */
455 			if (BPF_CLASS(fp->code) == BPF_LD &&
456 			    BPF_MODE(fp->code) == BPF_ABS &&
457 			    convert_bpf_extensions(fp, &insn))
458 				break;
459 
460 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
461 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X))
462 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
463 
464 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
465 			break;
466 
467 		/* Jump transformation cannot use BPF block macros
468 		 * everywhere as offset calculation and target updates
469 		 * require a bit more work than the rest, i.e. jump
470 		 * opcodes map as-is, but offsets need adjustment.
471 		 */
472 
473 #define BPF_EMIT_JMP							\
474 	do {								\
475 		if (target >= len || target < 0)			\
476 			goto err;					\
477 		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
478 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
479 		insn->off -= insn - tmp_insns;				\
480 	} while (0)
481 
482 		case BPF_JMP | BPF_JA:
483 			target = i + fp->k + 1;
484 			insn->code = fp->code;
485 			BPF_EMIT_JMP;
486 			break;
487 
488 		case BPF_JMP | BPF_JEQ | BPF_K:
489 		case BPF_JMP | BPF_JEQ | BPF_X:
490 		case BPF_JMP | BPF_JSET | BPF_K:
491 		case BPF_JMP | BPF_JSET | BPF_X:
492 		case BPF_JMP | BPF_JGT | BPF_K:
493 		case BPF_JMP | BPF_JGT | BPF_X:
494 		case BPF_JMP | BPF_JGE | BPF_K:
495 		case BPF_JMP | BPF_JGE | BPF_X:
496 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
497 				/* BPF immediates are signed, zero extend
498 				 * immediate into tmp register and use it
499 				 * in compare insn.
500 				 */
501 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
502 
503 				insn->dst_reg = BPF_REG_A;
504 				insn->src_reg = BPF_REG_TMP;
505 				bpf_src = BPF_X;
506 			} else {
507 				insn->dst_reg = BPF_REG_A;
508 				insn->imm = fp->k;
509 				bpf_src = BPF_SRC(fp->code);
510 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
511 			}
512 
513 			/* Common case where 'jump_false' is next insn. */
514 			if (fp->jf == 0) {
515 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
516 				target = i + fp->jt + 1;
517 				BPF_EMIT_JMP;
518 				break;
519 			}
520 
521 			/* Convert some jumps when 'jump_true' is next insn. */
522 			if (fp->jt == 0) {
523 				switch (BPF_OP(fp->code)) {
524 				case BPF_JEQ:
525 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
526 					break;
527 				case BPF_JGT:
528 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
529 					break;
530 				case BPF_JGE:
531 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
532 					break;
533 				default:
534 					goto jmp_rest;
535 				}
536 
537 				target = i + fp->jf + 1;
538 				BPF_EMIT_JMP;
539 				break;
540 			}
541 jmp_rest:
542 			/* Other jumps are mapped into two insns: Jxx and JA. */
543 			target = i + fp->jt + 1;
544 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
545 			BPF_EMIT_JMP;
546 			insn++;
547 
548 			insn->code = BPF_JMP | BPF_JA;
549 			target = i + fp->jf + 1;
550 			BPF_EMIT_JMP;
551 			break;
552 
553 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
554 		case BPF_LDX | BPF_MSH | BPF_B:
555 			/* tmp = A */
556 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
557 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
558 			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
559 			/* A &= 0xf */
560 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
561 			/* A <<= 2 */
562 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
563 			/* X = A */
564 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
565 			/* A = tmp */
566 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
567 			break;
568 
569 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
570 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
571 		 */
572 		case BPF_RET | BPF_A:
573 		case BPF_RET | BPF_K:
574 			if (BPF_RVAL(fp->code) == BPF_K)
575 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
576 							0, fp->k);
577 			*insn = BPF_EXIT_INSN();
578 			break;
579 
580 		/* Store to stack. */
581 		case BPF_ST:
582 		case BPF_STX:
583 			stack_off = fp->k * 4  + 4;
584 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
585 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
586 					    -stack_off);
587 			/* check_load_and_stores() verifies that classic BPF can
588 			 * load from stack only after write, so tracking
589 			 * stack_depth for ST|STX insns is enough
590 			 */
591 			if (new_prog && new_prog->aux->stack_depth < stack_off)
592 				new_prog->aux->stack_depth = stack_off;
593 			break;
594 
595 		/* Load from stack. */
596 		case BPF_LD | BPF_MEM:
597 		case BPF_LDX | BPF_MEM:
598 			stack_off = fp->k * 4  + 4;
599 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
600 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
601 					    -stack_off);
602 			break;
603 
604 		/* A = K or X = K */
605 		case BPF_LD | BPF_IMM:
606 		case BPF_LDX | BPF_IMM:
607 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
608 					      BPF_REG_A : BPF_REG_X, fp->k);
609 			break;
610 
611 		/* X = A */
612 		case BPF_MISC | BPF_TAX:
613 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
614 			break;
615 
616 		/* A = X */
617 		case BPF_MISC | BPF_TXA:
618 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
619 			break;
620 
621 		/* A = skb->len or X = skb->len */
622 		case BPF_LD | BPF_W | BPF_LEN:
623 		case BPF_LDX | BPF_W | BPF_LEN:
624 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
625 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
626 					    offsetof(struct sk_buff, len));
627 			break;
628 
629 		/* Access seccomp_data fields. */
630 		case BPF_LDX | BPF_ABS | BPF_W:
631 			/* A = *(u32 *) (ctx + K) */
632 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
633 			break;
634 
635 		/* Unknown instruction. */
636 		default:
637 			goto err;
638 		}
639 
640 		insn++;
641 		if (new_prog)
642 			memcpy(new_insn, tmp_insns,
643 			       sizeof(*insn) * (insn - tmp_insns));
644 		new_insn += insn - tmp_insns;
645 	}
646 
647 	if (!new_prog) {
648 		/* Only calculating new length. */
649 		*new_len = new_insn - first_insn;
650 		return 0;
651 	}
652 
653 	pass++;
654 	if (new_flen != new_insn - first_insn) {
655 		new_flen = new_insn - first_insn;
656 		if (pass > 2)
657 			goto err;
658 		goto do_pass;
659 	}
660 
661 	kfree(addrs);
662 	BUG_ON(*new_len != new_flen);
663 	return 0;
664 err:
665 	kfree(addrs);
666 	return -EINVAL;
667 }
668 
669 /* Security:
670  *
671  * As we dont want to clear mem[] array for each packet going through
672  * __bpf_prog_run(), we check that filter loaded by user never try to read
673  * a cell if not previously written, and we check all branches to be sure
674  * a malicious user doesn't try to abuse us.
675  */
check_load_and_stores(const struct sock_filter * filter,int flen)676 static int check_load_and_stores(const struct sock_filter *filter, int flen)
677 {
678 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
679 	int pc, ret = 0;
680 
681 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
682 
683 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
684 	if (!masks)
685 		return -ENOMEM;
686 
687 	memset(masks, 0xff, flen * sizeof(*masks));
688 
689 	for (pc = 0; pc < flen; pc++) {
690 		memvalid &= masks[pc];
691 
692 		switch (filter[pc].code) {
693 		case BPF_ST:
694 		case BPF_STX:
695 			memvalid |= (1 << filter[pc].k);
696 			break;
697 		case BPF_LD | BPF_MEM:
698 		case BPF_LDX | BPF_MEM:
699 			if (!(memvalid & (1 << filter[pc].k))) {
700 				ret = -EINVAL;
701 				goto error;
702 			}
703 			break;
704 		case BPF_JMP | BPF_JA:
705 			/* A jump must set masks on target */
706 			masks[pc + 1 + filter[pc].k] &= memvalid;
707 			memvalid = ~0;
708 			break;
709 		case BPF_JMP | BPF_JEQ | BPF_K:
710 		case BPF_JMP | BPF_JEQ | BPF_X:
711 		case BPF_JMP | BPF_JGE | BPF_K:
712 		case BPF_JMP | BPF_JGE | BPF_X:
713 		case BPF_JMP | BPF_JGT | BPF_K:
714 		case BPF_JMP | BPF_JGT | BPF_X:
715 		case BPF_JMP | BPF_JSET | BPF_K:
716 		case BPF_JMP | BPF_JSET | BPF_X:
717 			/* A jump must set masks on targets */
718 			masks[pc + 1 + filter[pc].jt] &= memvalid;
719 			masks[pc + 1 + filter[pc].jf] &= memvalid;
720 			memvalid = ~0;
721 			break;
722 		}
723 	}
724 error:
725 	kfree(masks);
726 	return ret;
727 }
728 
chk_code_allowed(u16 code_to_probe)729 static bool chk_code_allowed(u16 code_to_probe)
730 {
731 	static const bool codes[] = {
732 		/* 32 bit ALU operations */
733 		[BPF_ALU | BPF_ADD | BPF_K] = true,
734 		[BPF_ALU | BPF_ADD | BPF_X] = true,
735 		[BPF_ALU | BPF_SUB | BPF_K] = true,
736 		[BPF_ALU | BPF_SUB | BPF_X] = true,
737 		[BPF_ALU | BPF_MUL | BPF_K] = true,
738 		[BPF_ALU | BPF_MUL | BPF_X] = true,
739 		[BPF_ALU | BPF_DIV | BPF_K] = true,
740 		[BPF_ALU | BPF_DIV | BPF_X] = true,
741 		[BPF_ALU | BPF_MOD | BPF_K] = true,
742 		[BPF_ALU | BPF_MOD | BPF_X] = true,
743 		[BPF_ALU | BPF_AND | BPF_K] = true,
744 		[BPF_ALU | BPF_AND | BPF_X] = true,
745 		[BPF_ALU | BPF_OR | BPF_K] = true,
746 		[BPF_ALU | BPF_OR | BPF_X] = true,
747 		[BPF_ALU | BPF_XOR | BPF_K] = true,
748 		[BPF_ALU | BPF_XOR | BPF_X] = true,
749 		[BPF_ALU | BPF_LSH | BPF_K] = true,
750 		[BPF_ALU | BPF_LSH | BPF_X] = true,
751 		[BPF_ALU | BPF_RSH | BPF_K] = true,
752 		[BPF_ALU | BPF_RSH | BPF_X] = true,
753 		[BPF_ALU | BPF_NEG] = true,
754 		/* Load instructions */
755 		[BPF_LD | BPF_W | BPF_ABS] = true,
756 		[BPF_LD | BPF_H | BPF_ABS] = true,
757 		[BPF_LD | BPF_B | BPF_ABS] = true,
758 		[BPF_LD | BPF_W | BPF_LEN] = true,
759 		[BPF_LD | BPF_W | BPF_IND] = true,
760 		[BPF_LD | BPF_H | BPF_IND] = true,
761 		[BPF_LD | BPF_B | BPF_IND] = true,
762 		[BPF_LD | BPF_IMM] = true,
763 		[BPF_LD | BPF_MEM] = true,
764 		[BPF_LDX | BPF_W | BPF_LEN] = true,
765 		[BPF_LDX | BPF_B | BPF_MSH] = true,
766 		[BPF_LDX | BPF_IMM] = true,
767 		[BPF_LDX | BPF_MEM] = true,
768 		/* Store instructions */
769 		[BPF_ST] = true,
770 		[BPF_STX] = true,
771 		/* Misc instructions */
772 		[BPF_MISC | BPF_TAX] = true,
773 		[BPF_MISC | BPF_TXA] = true,
774 		/* Return instructions */
775 		[BPF_RET | BPF_K] = true,
776 		[BPF_RET | BPF_A] = true,
777 		/* Jump instructions */
778 		[BPF_JMP | BPF_JA] = true,
779 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
780 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
781 		[BPF_JMP | BPF_JGE | BPF_K] = true,
782 		[BPF_JMP | BPF_JGE | BPF_X] = true,
783 		[BPF_JMP | BPF_JGT | BPF_K] = true,
784 		[BPF_JMP | BPF_JGT | BPF_X] = true,
785 		[BPF_JMP | BPF_JSET | BPF_K] = true,
786 		[BPF_JMP | BPF_JSET | BPF_X] = true,
787 	};
788 
789 	if (code_to_probe >= ARRAY_SIZE(codes))
790 		return false;
791 
792 	return codes[code_to_probe];
793 }
794 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)795 static bool bpf_check_basics_ok(const struct sock_filter *filter,
796 				unsigned int flen)
797 {
798 	if (filter == NULL)
799 		return false;
800 	if (flen == 0 || flen > BPF_MAXINSNS)
801 		return false;
802 
803 	return true;
804 }
805 
806 /**
807  *	bpf_check_classic - verify socket filter code
808  *	@filter: filter to verify
809  *	@flen: length of filter
810  *
811  * Check the user's filter code. If we let some ugly
812  * filter code slip through kaboom! The filter must contain
813  * no references or jumps that are out of range, no illegal
814  * instructions, and must end with a RET instruction.
815  *
816  * All jumps are forward as they are not signed.
817  *
818  * Returns 0 if the rule set is legal or -EINVAL if not.
819  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)820 static int bpf_check_classic(const struct sock_filter *filter,
821 			     unsigned int flen)
822 {
823 	bool anc_found;
824 	int pc;
825 
826 	/* Check the filter code now */
827 	for (pc = 0; pc < flen; pc++) {
828 		const struct sock_filter *ftest = &filter[pc];
829 
830 		/* May we actually operate on this code? */
831 		if (!chk_code_allowed(ftest->code))
832 			return -EINVAL;
833 
834 		/* Some instructions need special checks */
835 		switch (ftest->code) {
836 		case BPF_ALU | BPF_DIV | BPF_K:
837 		case BPF_ALU | BPF_MOD | BPF_K:
838 			/* Check for division by zero */
839 			if (ftest->k == 0)
840 				return -EINVAL;
841 			break;
842 		case BPF_ALU | BPF_LSH | BPF_K:
843 		case BPF_ALU | BPF_RSH | BPF_K:
844 			if (ftest->k >= 32)
845 				return -EINVAL;
846 			break;
847 		case BPF_LD | BPF_MEM:
848 		case BPF_LDX | BPF_MEM:
849 		case BPF_ST:
850 		case BPF_STX:
851 			/* Check for invalid memory addresses */
852 			if (ftest->k >= BPF_MEMWORDS)
853 				return -EINVAL;
854 			break;
855 		case BPF_JMP | BPF_JA:
856 			/* Note, the large ftest->k might cause loops.
857 			 * Compare this with conditional jumps below,
858 			 * where offsets are limited. --ANK (981016)
859 			 */
860 			if (ftest->k >= (unsigned int)(flen - pc - 1))
861 				return -EINVAL;
862 			break;
863 		case BPF_JMP | BPF_JEQ | BPF_K:
864 		case BPF_JMP | BPF_JEQ | BPF_X:
865 		case BPF_JMP | BPF_JGE | BPF_K:
866 		case BPF_JMP | BPF_JGE | BPF_X:
867 		case BPF_JMP | BPF_JGT | BPF_K:
868 		case BPF_JMP | BPF_JGT | BPF_X:
869 		case BPF_JMP | BPF_JSET | BPF_K:
870 		case BPF_JMP | BPF_JSET | BPF_X:
871 			/* Both conditionals must be safe */
872 			if (pc + ftest->jt + 1 >= flen ||
873 			    pc + ftest->jf + 1 >= flen)
874 				return -EINVAL;
875 			break;
876 		case BPF_LD | BPF_W | BPF_ABS:
877 		case BPF_LD | BPF_H | BPF_ABS:
878 		case BPF_LD | BPF_B | BPF_ABS:
879 			anc_found = false;
880 			if (bpf_anc_helper(ftest) & BPF_ANC)
881 				anc_found = true;
882 			/* Ancillary operation unknown or unsupported */
883 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
884 				return -EINVAL;
885 		}
886 	}
887 
888 	/* Last instruction must be a RET code */
889 	switch (filter[flen - 1].code) {
890 	case BPF_RET | BPF_K:
891 	case BPF_RET | BPF_A:
892 		return check_load_and_stores(filter, flen);
893 	}
894 
895 	return -EINVAL;
896 }
897 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)898 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
899 				      const struct sock_fprog *fprog)
900 {
901 	unsigned int fsize = bpf_classic_proglen(fprog);
902 	struct sock_fprog_kern *fkprog;
903 
904 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
905 	if (!fp->orig_prog)
906 		return -ENOMEM;
907 
908 	fkprog = fp->orig_prog;
909 	fkprog->len = fprog->len;
910 
911 	fkprog->filter = kmemdup(fp->insns, fsize,
912 				 GFP_KERNEL | __GFP_NOWARN);
913 	if (!fkprog->filter) {
914 		kfree(fp->orig_prog);
915 		return -ENOMEM;
916 	}
917 
918 	return 0;
919 }
920 
bpf_release_orig_filter(struct bpf_prog * fp)921 static void bpf_release_orig_filter(struct bpf_prog *fp)
922 {
923 	struct sock_fprog_kern *fprog = fp->orig_prog;
924 
925 	if (fprog) {
926 		kfree(fprog->filter);
927 		kfree(fprog);
928 	}
929 }
930 
__bpf_prog_release(struct bpf_prog * prog)931 static void __bpf_prog_release(struct bpf_prog *prog)
932 {
933 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
934 		bpf_prog_put(prog);
935 	} else {
936 		bpf_release_orig_filter(prog);
937 		bpf_prog_free(prog);
938 	}
939 }
940 
__sk_filter_release(struct sk_filter * fp)941 static void __sk_filter_release(struct sk_filter *fp)
942 {
943 	__bpf_prog_release(fp->prog);
944 	kfree(fp);
945 }
946 
947 /**
948  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
949  *	@rcu: rcu_head that contains the sk_filter to free
950  */
sk_filter_release_rcu(struct rcu_head * rcu)951 static void sk_filter_release_rcu(struct rcu_head *rcu)
952 {
953 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
954 
955 	__sk_filter_release(fp);
956 }
957 
958 /**
959  *	sk_filter_release - release a socket filter
960  *	@fp: filter to remove
961  *
962  *	Remove a filter from a socket and release its resources.
963  */
sk_filter_release(struct sk_filter * fp)964 static void sk_filter_release(struct sk_filter *fp)
965 {
966 	if (refcount_dec_and_test(&fp->refcnt))
967 		call_rcu(&fp->rcu, sk_filter_release_rcu);
968 }
969 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)970 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
971 {
972 	u32 filter_size = bpf_prog_size(fp->prog->len);
973 
974 	atomic_sub(filter_size, &sk->sk_omem_alloc);
975 	sk_filter_release(fp);
976 }
977 
978 /* try to charge the socket memory if there is space available
979  * return true on success
980  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)981 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
982 {
983 	u32 filter_size = bpf_prog_size(fp->prog->len);
984 
985 	/* same check as in sock_kmalloc() */
986 	if (filter_size <= sysctl_optmem_max &&
987 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
988 		atomic_add(filter_size, &sk->sk_omem_alloc);
989 		return true;
990 	}
991 	return false;
992 }
993 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)994 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
995 {
996 	if (!refcount_inc_not_zero(&fp->refcnt))
997 		return false;
998 
999 	if (!__sk_filter_charge(sk, fp)) {
1000 		sk_filter_release(fp);
1001 		return false;
1002 	}
1003 	return true;
1004 }
1005 
bpf_migrate_filter(struct bpf_prog * fp)1006 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1007 {
1008 	struct sock_filter *old_prog;
1009 	struct bpf_prog *old_fp;
1010 	int err, new_len, old_len = fp->len;
1011 
1012 	/* We are free to overwrite insns et al right here as it
1013 	 * won't be used at this point in time anymore internally
1014 	 * after the migration to the internal BPF instruction
1015 	 * representation.
1016 	 */
1017 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1018 		     sizeof(struct bpf_insn));
1019 
1020 	/* Conversion cannot happen on overlapping memory areas,
1021 	 * so we need to keep the user BPF around until the 2nd
1022 	 * pass. At this time, the user BPF is stored in fp->insns.
1023 	 */
1024 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1025 			   GFP_KERNEL | __GFP_NOWARN);
1026 	if (!old_prog) {
1027 		err = -ENOMEM;
1028 		goto out_err;
1029 	}
1030 
1031 	/* 1st pass: calculate the new program length. */
1032 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
1033 	if (err)
1034 		goto out_err_free;
1035 
1036 	/* Expand fp for appending the new filter representation. */
1037 	old_fp = fp;
1038 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1039 	if (!fp) {
1040 		/* The old_fp is still around in case we couldn't
1041 		 * allocate new memory, so uncharge on that one.
1042 		 */
1043 		fp = old_fp;
1044 		err = -ENOMEM;
1045 		goto out_err_free;
1046 	}
1047 
1048 	fp->len = new_len;
1049 
1050 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1051 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len);
1052 	if (err)
1053 		/* 2nd bpf_convert_filter() can fail only if it fails
1054 		 * to allocate memory, remapping must succeed. Note,
1055 		 * that at this time old_fp has already been released
1056 		 * by krealloc().
1057 		 */
1058 		goto out_err_free;
1059 
1060 	fp = bpf_prog_select_runtime(fp, &err);
1061 	if (err)
1062 		goto out_err_free;
1063 
1064 	kfree(old_prog);
1065 	return fp;
1066 
1067 out_err_free:
1068 	kfree(old_prog);
1069 out_err:
1070 	__bpf_prog_release(fp);
1071 	return ERR_PTR(err);
1072 }
1073 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1074 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1075 					   bpf_aux_classic_check_t trans)
1076 {
1077 	int err;
1078 
1079 	fp->bpf_func = NULL;
1080 	fp->jited = 0;
1081 
1082 	err = bpf_check_classic(fp->insns, fp->len);
1083 	if (err) {
1084 		__bpf_prog_release(fp);
1085 		return ERR_PTR(err);
1086 	}
1087 
1088 	/* There might be additional checks and transformations
1089 	 * needed on classic filters, f.e. in case of seccomp.
1090 	 */
1091 	if (trans) {
1092 		err = trans(fp->insns, fp->len);
1093 		if (err) {
1094 			__bpf_prog_release(fp);
1095 			return ERR_PTR(err);
1096 		}
1097 	}
1098 
1099 	/* Probe if we can JIT compile the filter and if so, do
1100 	 * the compilation of the filter.
1101 	 */
1102 	bpf_jit_compile(fp);
1103 
1104 	/* JIT compiler couldn't process this filter, so do the
1105 	 * internal BPF translation for the optimized interpreter.
1106 	 */
1107 	if (!fp->jited)
1108 		fp = bpf_migrate_filter(fp);
1109 
1110 	return fp;
1111 }
1112 
1113 /**
1114  *	bpf_prog_create - create an unattached filter
1115  *	@pfp: the unattached filter that is created
1116  *	@fprog: the filter program
1117  *
1118  * Create a filter independent of any socket. We first run some
1119  * sanity checks on it to make sure it does not explode on us later.
1120  * If an error occurs or there is insufficient memory for the filter
1121  * a negative errno code is returned. On success the return is zero.
1122  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1123 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1124 {
1125 	unsigned int fsize = bpf_classic_proglen(fprog);
1126 	struct bpf_prog *fp;
1127 
1128 	/* Make sure new filter is there and in the right amounts. */
1129 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1130 		return -EINVAL;
1131 
1132 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1133 	if (!fp)
1134 		return -ENOMEM;
1135 
1136 	memcpy(fp->insns, fprog->filter, fsize);
1137 
1138 	fp->len = fprog->len;
1139 	/* Since unattached filters are not copied back to user
1140 	 * space through sk_get_filter(), we do not need to hold
1141 	 * a copy here, and can spare us the work.
1142 	 */
1143 	fp->orig_prog = NULL;
1144 
1145 	/* bpf_prepare_filter() already takes care of freeing
1146 	 * memory in case something goes wrong.
1147 	 */
1148 	fp = bpf_prepare_filter(fp, NULL);
1149 	if (IS_ERR(fp))
1150 		return PTR_ERR(fp);
1151 
1152 	*pfp = fp;
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(bpf_prog_create);
1156 
1157 /**
1158  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1159  *	@pfp: the unattached filter that is created
1160  *	@fprog: the filter program
1161  *	@trans: post-classic verifier transformation handler
1162  *	@save_orig: save classic BPF program
1163  *
1164  * This function effectively does the same as bpf_prog_create(), only
1165  * that it builds up its insns buffer from user space provided buffer.
1166  * It also allows for passing a bpf_aux_classic_check_t handler.
1167  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1168 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1169 			      bpf_aux_classic_check_t trans, bool save_orig)
1170 {
1171 	unsigned int fsize = bpf_classic_proglen(fprog);
1172 	struct bpf_prog *fp;
1173 	int err;
1174 
1175 	/* Make sure new filter is there and in the right amounts. */
1176 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1177 		return -EINVAL;
1178 
1179 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1180 	if (!fp)
1181 		return -ENOMEM;
1182 
1183 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1184 		__bpf_prog_free(fp);
1185 		return -EFAULT;
1186 	}
1187 
1188 	fp->len = fprog->len;
1189 	fp->orig_prog = NULL;
1190 
1191 	if (save_orig) {
1192 		err = bpf_prog_store_orig_filter(fp, fprog);
1193 		if (err) {
1194 			__bpf_prog_free(fp);
1195 			return -ENOMEM;
1196 		}
1197 	}
1198 
1199 	/* bpf_prepare_filter() already takes care of freeing
1200 	 * memory in case something goes wrong.
1201 	 */
1202 	fp = bpf_prepare_filter(fp, trans);
1203 	if (IS_ERR(fp))
1204 		return PTR_ERR(fp);
1205 
1206 	*pfp = fp;
1207 	return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1210 
bpf_prog_destroy(struct bpf_prog * fp)1211 void bpf_prog_destroy(struct bpf_prog *fp)
1212 {
1213 	__bpf_prog_release(fp);
1214 }
1215 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1216 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1217 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1218 {
1219 	struct sk_filter *fp, *old_fp;
1220 
1221 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1222 	if (!fp)
1223 		return -ENOMEM;
1224 
1225 	fp->prog = prog;
1226 
1227 	if (!__sk_filter_charge(sk, fp)) {
1228 		kfree(fp);
1229 		return -ENOMEM;
1230 	}
1231 	refcount_set(&fp->refcnt, 1);
1232 
1233 	old_fp = rcu_dereference_protected(sk->sk_filter,
1234 					   lockdep_sock_is_held(sk));
1235 	rcu_assign_pointer(sk->sk_filter, fp);
1236 
1237 	if (old_fp)
1238 		sk_filter_uncharge(sk, old_fp);
1239 
1240 	return 0;
1241 }
1242 
__reuseport_attach_prog(struct bpf_prog * prog,struct sock * sk)1243 static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1244 {
1245 	struct bpf_prog *old_prog;
1246 	int err;
1247 
1248 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1249 		return -ENOMEM;
1250 
1251 	if (sk_unhashed(sk) && sk->sk_reuseport) {
1252 		err = reuseport_alloc(sk);
1253 		if (err)
1254 			return err;
1255 	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1256 		/* The socket wasn't bound with SO_REUSEPORT */
1257 		return -EINVAL;
1258 	}
1259 
1260 	old_prog = reuseport_attach_prog(sk, prog);
1261 	if (old_prog)
1262 		bpf_prog_destroy(old_prog);
1263 
1264 	return 0;
1265 }
1266 
1267 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1268 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1269 {
1270 	unsigned int fsize = bpf_classic_proglen(fprog);
1271 	struct bpf_prog *prog;
1272 	int err;
1273 
1274 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1275 		return ERR_PTR(-EPERM);
1276 
1277 	/* Make sure new filter is there and in the right amounts. */
1278 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1279 		return ERR_PTR(-EINVAL);
1280 
1281 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1282 	if (!prog)
1283 		return ERR_PTR(-ENOMEM);
1284 
1285 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1286 		__bpf_prog_free(prog);
1287 		return ERR_PTR(-EFAULT);
1288 	}
1289 
1290 	prog->len = fprog->len;
1291 
1292 	err = bpf_prog_store_orig_filter(prog, fprog);
1293 	if (err) {
1294 		__bpf_prog_free(prog);
1295 		return ERR_PTR(-ENOMEM);
1296 	}
1297 
1298 	/* bpf_prepare_filter() already takes care of freeing
1299 	 * memory in case something goes wrong.
1300 	 */
1301 	return bpf_prepare_filter(prog, NULL);
1302 }
1303 
1304 /**
1305  *	sk_attach_filter - attach a socket filter
1306  *	@fprog: the filter program
1307  *	@sk: the socket to use
1308  *
1309  * Attach the user's filter code. We first run some sanity checks on
1310  * it to make sure it does not explode on us later. If an error
1311  * occurs or there is insufficient memory for the filter a negative
1312  * errno code is returned. On success the return is zero.
1313  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1314 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1315 {
1316 	struct bpf_prog *prog = __get_filter(fprog, sk);
1317 	int err;
1318 
1319 	if (IS_ERR(prog))
1320 		return PTR_ERR(prog);
1321 
1322 	err = __sk_attach_prog(prog, sk);
1323 	if (err < 0) {
1324 		__bpf_prog_release(prog);
1325 		return err;
1326 	}
1327 
1328 	return 0;
1329 }
1330 EXPORT_SYMBOL_GPL(sk_attach_filter);
1331 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1332 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1333 {
1334 	struct bpf_prog *prog = __get_filter(fprog, sk);
1335 	int err;
1336 
1337 	if (IS_ERR(prog))
1338 		return PTR_ERR(prog);
1339 
1340 	err = __reuseport_attach_prog(prog, sk);
1341 	if (err < 0) {
1342 		__bpf_prog_release(prog);
1343 		return err;
1344 	}
1345 
1346 	return 0;
1347 }
1348 
__get_bpf(u32 ufd,struct sock * sk)1349 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1350 {
1351 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1352 		return ERR_PTR(-EPERM);
1353 
1354 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1355 }
1356 
sk_attach_bpf(u32 ufd,struct sock * sk)1357 int sk_attach_bpf(u32 ufd, struct sock *sk)
1358 {
1359 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1360 	int err;
1361 
1362 	if (IS_ERR(prog))
1363 		return PTR_ERR(prog);
1364 
1365 	err = __sk_attach_prog(prog, sk);
1366 	if (err < 0) {
1367 		bpf_prog_put(prog);
1368 		return err;
1369 	}
1370 
1371 	return 0;
1372 }
1373 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1374 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1375 {
1376 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1377 	int err;
1378 
1379 	if (IS_ERR(prog))
1380 		return PTR_ERR(prog);
1381 
1382 	err = __reuseport_attach_prog(prog, sk);
1383 	if (err < 0) {
1384 		bpf_prog_put(prog);
1385 		return err;
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 struct bpf_scratchpad {
1392 	union {
1393 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1394 		u8     buff[MAX_BPF_STACK];
1395 	};
1396 };
1397 
1398 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1399 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1400 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1401 					  unsigned int write_len)
1402 {
1403 	return skb_ensure_writable(skb, write_len);
1404 }
1405 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1406 static inline int bpf_try_make_writable(struct sk_buff *skb,
1407 					unsigned int write_len)
1408 {
1409 	int err = __bpf_try_make_writable(skb, write_len);
1410 
1411 	bpf_compute_data_end(skb);
1412 	return err;
1413 }
1414 
bpf_try_make_head_writable(struct sk_buff * skb)1415 static int bpf_try_make_head_writable(struct sk_buff *skb)
1416 {
1417 	return bpf_try_make_writable(skb, skb_headlen(skb));
1418 }
1419 
bpf_push_mac_rcsum(struct sk_buff * skb)1420 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1421 {
1422 	if (skb_at_tc_ingress(skb))
1423 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1424 }
1425 
bpf_pull_mac_rcsum(struct sk_buff * skb)1426 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1427 {
1428 	if (skb_at_tc_ingress(skb))
1429 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1430 }
1431 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1432 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1433 	   const void *, from, u32, len, u64, flags)
1434 {
1435 	void *ptr;
1436 
1437 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1438 		return -EINVAL;
1439 	if (unlikely(offset > 0xffff))
1440 		return -EFAULT;
1441 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1442 		return -EFAULT;
1443 
1444 	ptr = skb->data + offset;
1445 	if (flags & BPF_F_RECOMPUTE_CSUM)
1446 		__skb_postpull_rcsum(skb, ptr, len, offset);
1447 
1448 	memcpy(ptr, from, len);
1449 
1450 	if (flags & BPF_F_RECOMPUTE_CSUM)
1451 		__skb_postpush_rcsum(skb, ptr, len, offset);
1452 	if (flags & BPF_F_INVALIDATE_HASH)
1453 		skb_clear_hash(skb);
1454 
1455 	return 0;
1456 }
1457 
1458 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1459 	.func		= bpf_skb_store_bytes,
1460 	.gpl_only	= false,
1461 	.ret_type	= RET_INTEGER,
1462 	.arg1_type	= ARG_PTR_TO_CTX,
1463 	.arg2_type	= ARG_ANYTHING,
1464 	.arg3_type	= ARG_PTR_TO_MEM,
1465 	.arg4_type	= ARG_CONST_SIZE,
1466 	.arg5_type	= ARG_ANYTHING,
1467 };
1468 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1469 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1470 	   void *, to, u32, len)
1471 {
1472 	void *ptr;
1473 
1474 	if (unlikely(offset > 0xffff))
1475 		goto err_clear;
1476 
1477 	ptr = skb_header_pointer(skb, offset, len, to);
1478 	if (unlikely(!ptr))
1479 		goto err_clear;
1480 	if (ptr != to)
1481 		memcpy(to, ptr, len);
1482 
1483 	return 0;
1484 err_clear:
1485 	memset(to, 0, len);
1486 	return -EFAULT;
1487 }
1488 
1489 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1490 	.func		= bpf_skb_load_bytes,
1491 	.gpl_only	= false,
1492 	.ret_type	= RET_INTEGER,
1493 	.arg1_type	= ARG_PTR_TO_CTX,
1494 	.arg2_type	= ARG_ANYTHING,
1495 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1496 	.arg4_type	= ARG_CONST_SIZE,
1497 };
1498 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1499 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1500 {
1501 	/* Idea is the following: should the needed direct read/write
1502 	 * test fail during runtime, we can pull in more data and redo
1503 	 * again, since implicitly, we invalidate previous checks here.
1504 	 *
1505 	 * Or, since we know how much we need to make read/writeable,
1506 	 * this can be done once at the program beginning for direct
1507 	 * access case. By this we overcome limitations of only current
1508 	 * headroom being accessible.
1509 	 */
1510 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1511 }
1512 
1513 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1514 	.func		= bpf_skb_pull_data,
1515 	.gpl_only	= false,
1516 	.ret_type	= RET_INTEGER,
1517 	.arg1_type	= ARG_PTR_TO_CTX,
1518 	.arg2_type	= ARG_ANYTHING,
1519 };
1520 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1521 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1522 	   u64, from, u64, to, u64, flags)
1523 {
1524 	__sum16 *ptr;
1525 
1526 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1527 		return -EINVAL;
1528 	if (unlikely(offset > 0xffff || offset & 1))
1529 		return -EFAULT;
1530 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1531 		return -EFAULT;
1532 
1533 	ptr = (__sum16 *)(skb->data + offset);
1534 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1535 	case 0:
1536 		if (unlikely(from != 0))
1537 			return -EINVAL;
1538 
1539 		csum_replace_by_diff(ptr, to);
1540 		break;
1541 	case 2:
1542 		csum_replace2(ptr, from, to);
1543 		break;
1544 	case 4:
1545 		csum_replace4(ptr, from, to);
1546 		break;
1547 	default:
1548 		return -EINVAL;
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1555 	.func		= bpf_l3_csum_replace,
1556 	.gpl_only	= false,
1557 	.ret_type	= RET_INTEGER,
1558 	.arg1_type	= ARG_PTR_TO_CTX,
1559 	.arg2_type	= ARG_ANYTHING,
1560 	.arg3_type	= ARG_ANYTHING,
1561 	.arg4_type	= ARG_ANYTHING,
1562 	.arg5_type	= ARG_ANYTHING,
1563 };
1564 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1565 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1566 	   u64, from, u64, to, u64, flags)
1567 {
1568 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1569 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1570 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1571 	__sum16 *ptr;
1572 
1573 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1574 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1575 		return -EINVAL;
1576 	if (unlikely(offset > 0xffff || offset & 1))
1577 		return -EFAULT;
1578 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1579 		return -EFAULT;
1580 
1581 	ptr = (__sum16 *)(skb->data + offset);
1582 	if (is_mmzero && !do_mforce && !*ptr)
1583 		return 0;
1584 
1585 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1586 	case 0:
1587 		if (unlikely(from != 0))
1588 			return -EINVAL;
1589 
1590 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1591 		break;
1592 	case 2:
1593 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1594 		break;
1595 	case 4:
1596 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1597 		break;
1598 	default:
1599 		return -EINVAL;
1600 	}
1601 
1602 	if (is_mmzero && !*ptr)
1603 		*ptr = CSUM_MANGLED_0;
1604 	return 0;
1605 }
1606 
1607 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1608 	.func		= bpf_l4_csum_replace,
1609 	.gpl_only	= false,
1610 	.ret_type	= RET_INTEGER,
1611 	.arg1_type	= ARG_PTR_TO_CTX,
1612 	.arg2_type	= ARG_ANYTHING,
1613 	.arg3_type	= ARG_ANYTHING,
1614 	.arg4_type	= ARG_ANYTHING,
1615 	.arg5_type	= ARG_ANYTHING,
1616 };
1617 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)1618 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1619 	   __be32 *, to, u32, to_size, __wsum, seed)
1620 {
1621 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1622 	u32 diff_size = from_size + to_size;
1623 	int i, j = 0;
1624 
1625 	/* This is quite flexible, some examples:
1626 	 *
1627 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1628 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1629 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1630 	 *
1631 	 * Even for diffing, from_size and to_size don't need to be equal.
1632 	 */
1633 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1634 		     diff_size > sizeof(sp->diff)))
1635 		return -EINVAL;
1636 
1637 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1638 		sp->diff[j] = ~from[i];
1639 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1640 		sp->diff[j] = to[i];
1641 
1642 	return csum_partial(sp->diff, diff_size, seed);
1643 }
1644 
1645 static const struct bpf_func_proto bpf_csum_diff_proto = {
1646 	.func		= bpf_csum_diff,
1647 	.gpl_only	= false,
1648 	.pkt_access	= true,
1649 	.ret_type	= RET_INTEGER,
1650 	.arg1_type	= ARG_PTR_TO_MEM,
1651 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1652 	.arg3_type	= ARG_PTR_TO_MEM,
1653 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1654 	.arg5_type	= ARG_ANYTHING,
1655 };
1656 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)1657 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1658 {
1659 	/* The interface is to be used in combination with bpf_csum_diff()
1660 	 * for direct packet writes. csum rotation for alignment as well
1661 	 * as emulating csum_sub() can be done from the eBPF program.
1662 	 */
1663 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1664 		return (skb->csum = csum_add(skb->csum, csum));
1665 
1666 	return -ENOTSUPP;
1667 }
1668 
1669 static const struct bpf_func_proto bpf_csum_update_proto = {
1670 	.func		= bpf_csum_update,
1671 	.gpl_only	= false,
1672 	.ret_type	= RET_INTEGER,
1673 	.arg1_type	= ARG_PTR_TO_CTX,
1674 	.arg2_type	= ARG_ANYTHING,
1675 };
1676 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)1677 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1678 {
1679 	return dev_forward_skb(dev, skb);
1680 }
1681 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)1682 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1683 				      struct sk_buff *skb)
1684 {
1685 	int ret = ____dev_forward_skb(dev, skb);
1686 
1687 	if (likely(!ret)) {
1688 		skb->dev = dev;
1689 		ret = netif_rx(skb);
1690 	}
1691 
1692 	return ret;
1693 }
1694 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)1695 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
1696 {
1697 	int ret;
1698 
1699 	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
1700 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
1701 		kfree_skb(skb);
1702 		return -ENETDOWN;
1703 	}
1704 
1705 	skb->dev = dev;
1706 
1707 	__this_cpu_inc(xmit_recursion);
1708 	ret = dev_queue_xmit(skb);
1709 	__this_cpu_dec(xmit_recursion);
1710 
1711 	return ret;
1712 }
1713 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)1714 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
1715 				 u32 flags)
1716 {
1717 	unsigned int mlen = skb_network_offset(skb);
1718 
1719 	if (mlen) {
1720 		__skb_pull(skb, mlen);
1721 
1722 		/* At ingress, the mac header has already been pulled once.
1723 		 * At egress, skb_pospull_rcsum has to be done in case that
1724 		 * the skb is originated from ingress (i.e. a forwarded skb)
1725 		 * to ensure that rcsum starts at net header.
1726 		 */
1727 		if (!skb_at_tc_ingress(skb))
1728 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
1729 	}
1730 	skb_pop_mac_header(skb);
1731 	skb_reset_mac_len(skb);
1732 	return flags & BPF_F_INGRESS ?
1733 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
1734 }
1735 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)1736 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
1737 				 u32 flags)
1738 {
1739 	/* Verify that a link layer header is carried */
1740 	if (unlikely(skb->mac_header >= skb->network_header)) {
1741 		kfree_skb(skb);
1742 		return -ERANGE;
1743 	}
1744 
1745 	bpf_push_mac_rcsum(skb);
1746 	return flags & BPF_F_INGRESS ?
1747 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1748 }
1749 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)1750 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
1751 			  u32 flags)
1752 {
1753 	if (dev_is_mac_header_xmit(dev))
1754 		return __bpf_redirect_common(skb, dev, flags);
1755 	else
1756 		return __bpf_redirect_no_mac(skb, dev, flags);
1757 }
1758 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)1759 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1760 {
1761 	struct net_device *dev;
1762 	struct sk_buff *clone;
1763 	int ret;
1764 
1765 	if (unlikely(flags & ~(BPF_F_INGRESS)))
1766 		return -EINVAL;
1767 
1768 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1769 	if (unlikely(!dev))
1770 		return -EINVAL;
1771 
1772 	clone = skb_clone(skb, GFP_ATOMIC);
1773 	if (unlikely(!clone))
1774 		return -ENOMEM;
1775 
1776 	/* For direct write, we need to keep the invariant that the skbs
1777 	 * we're dealing with need to be uncloned. Should uncloning fail
1778 	 * here, we need to free the just generated clone to unclone once
1779 	 * again.
1780 	 */
1781 	ret = bpf_try_make_head_writable(skb);
1782 	if (unlikely(ret)) {
1783 		kfree_skb(clone);
1784 		return -ENOMEM;
1785 	}
1786 
1787 	return __bpf_redirect(clone, dev, flags);
1788 }
1789 
1790 static const struct bpf_func_proto bpf_clone_redirect_proto = {
1791 	.func           = bpf_clone_redirect,
1792 	.gpl_only       = false,
1793 	.ret_type       = RET_INTEGER,
1794 	.arg1_type      = ARG_PTR_TO_CTX,
1795 	.arg2_type      = ARG_ANYTHING,
1796 	.arg3_type      = ARG_ANYTHING,
1797 };
1798 
1799 struct redirect_info {
1800 	u32 ifindex;
1801 	u32 flags;
1802 	struct bpf_map *map;
1803 	struct bpf_map *map_to_flush;
1804 	unsigned long   map_owner;
1805 };
1806 
1807 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1808 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)1809 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1810 {
1811 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1812 
1813 	if (unlikely(flags & ~(BPF_F_INGRESS)))
1814 		return TC_ACT_SHOT;
1815 
1816 	ri->ifindex = ifindex;
1817 	ri->flags = flags;
1818 
1819 	return TC_ACT_REDIRECT;
1820 }
1821 
skb_do_redirect(struct sk_buff * skb)1822 int skb_do_redirect(struct sk_buff *skb)
1823 {
1824 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1825 	struct net_device *dev;
1826 
1827 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1828 	ri->ifindex = 0;
1829 	if (unlikely(!dev)) {
1830 		kfree_skb(skb);
1831 		return -EINVAL;
1832 	}
1833 
1834 	return __bpf_redirect(skb, dev, ri->flags);
1835 }
1836 
1837 static const struct bpf_func_proto bpf_redirect_proto = {
1838 	.func           = bpf_redirect,
1839 	.gpl_only       = false,
1840 	.ret_type       = RET_INTEGER,
1841 	.arg1_type      = ARG_ANYTHING,
1842 	.arg2_type      = ARG_ANYTHING,
1843 };
1844 
BPF_CALL_4(bpf_sk_redirect_map,struct sk_buff *,skb,struct bpf_map *,map,u32,key,u64,flags)1845 BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
1846 	   struct bpf_map *, map, u32, key, u64, flags)
1847 {
1848 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1849 
1850 	/* If user passes invalid input drop the packet. */
1851 	if (unlikely(flags))
1852 		return SK_DROP;
1853 
1854 	tcb->bpf.key = key;
1855 	tcb->bpf.flags = flags;
1856 	tcb->bpf.map = map;
1857 
1858 	return SK_PASS;
1859 }
1860 
do_sk_redirect_map(struct sk_buff * skb)1861 struct sock *do_sk_redirect_map(struct sk_buff *skb)
1862 {
1863 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1864 	struct sock *sk = NULL;
1865 
1866 	if (tcb->bpf.map) {
1867 		sk = __sock_map_lookup_elem(tcb->bpf.map, tcb->bpf.key);
1868 
1869 		tcb->bpf.key = 0;
1870 		tcb->bpf.map = NULL;
1871 	}
1872 
1873 	return sk;
1874 }
1875 
1876 static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
1877 	.func           = bpf_sk_redirect_map,
1878 	.gpl_only       = false,
1879 	.ret_type       = RET_INTEGER,
1880 	.arg1_type	= ARG_PTR_TO_CTX,
1881 	.arg2_type      = ARG_CONST_MAP_PTR,
1882 	.arg3_type      = ARG_ANYTHING,
1883 	.arg4_type      = ARG_ANYTHING,
1884 };
1885 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)1886 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
1887 {
1888 	return task_get_classid(skb);
1889 }
1890 
1891 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1892 	.func           = bpf_get_cgroup_classid,
1893 	.gpl_only       = false,
1894 	.ret_type       = RET_INTEGER,
1895 	.arg1_type      = ARG_PTR_TO_CTX,
1896 };
1897 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)1898 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
1899 {
1900 	return dst_tclassid(skb);
1901 }
1902 
1903 static const struct bpf_func_proto bpf_get_route_realm_proto = {
1904 	.func           = bpf_get_route_realm,
1905 	.gpl_only       = false,
1906 	.ret_type       = RET_INTEGER,
1907 	.arg1_type      = ARG_PTR_TO_CTX,
1908 };
1909 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)1910 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
1911 {
1912 	/* If skb_clear_hash() was called due to mangling, we can
1913 	 * trigger SW recalculation here. Later access to hash
1914 	 * can then use the inline skb->hash via context directly
1915 	 * instead of calling this helper again.
1916 	 */
1917 	return skb_get_hash(skb);
1918 }
1919 
1920 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
1921 	.func		= bpf_get_hash_recalc,
1922 	.gpl_only	= false,
1923 	.ret_type	= RET_INTEGER,
1924 	.arg1_type	= ARG_PTR_TO_CTX,
1925 };
1926 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)1927 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
1928 {
1929 	/* After all direct packet write, this can be used once for
1930 	 * triggering a lazy recalc on next skb_get_hash() invocation.
1931 	 */
1932 	skb_clear_hash(skb);
1933 	return 0;
1934 }
1935 
1936 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
1937 	.func		= bpf_set_hash_invalid,
1938 	.gpl_only	= false,
1939 	.ret_type	= RET_INTEGER,
1940 	.arg1_type	= ARG_PTR_TO_CTX,
1941 };
1942 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)1943 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
1944 {
1945 	/* Set user specified hash as L4(+), so that it gets returned
1946 	 * on skb_get_hash() call unless BPF prog later on triggers a
1947 	 * skb_clear_hash().
1948 	 */
1949 	__skb_set_sw_hash(skb, hash, true);
1950 	return 0;
1951 }
1952 
1953 static const struct bpf_func_proto bpf_set_hash_proto = {
1954 	.func		= bpf_set_hash,
1955 	.gpl_only	= false,
1956 	.ret_type	= RET_INTEGER,
1957 	.arg1_type	= ARG_PTR_TO_CTX,
1958 	.arg2_type	= ARG_ANYTHING,
1959 };
1960 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)1961 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
1962 	   u16, vlan_tci)
1963 {
1964 	int ret;
1965 
1966 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1967 		     vlan_proto != htons(ETH_P_8021AD)))
1968 		vlan_proto = htons(ETH_P_8021Q);
1969 
1970 	bpf_push_mac_rcsum(skb);
1971 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
1972 	bpf_pull_mac_rcsum(skb);
1973 
1974 	bpf_compute_data_end(skb);
1975 	return ret;
1976 }
1977 
1978 const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1979 	.func           = bpf_skb_vlan_push,
1980 	.gpl_only       = false,
1981 	.ret_type       = RET_INTEGER,
1982 	.arg1_type      = ARG_PTR_TO_CTX,
1983 	.arg2_type      = ARG_ANYTHING,
1984 	.arg3_type      = ARG_ANYTHING,
1985 };
1986 EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1987 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)1988 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
1989 {
1990 	int ret;
1991 
1992 	bpf_push_mac_rcsum(skb);
1993 	ret = skb_vlan_pop(skb);
1994 	bpf_pull_mac_rcsum(skb);
1995 
1996 	bpf_compute_data_end(skb);
1997 	return ret;
1998 }
1999 
2000 const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2001 	.func           = bpf_skb_vlan_pop,
2002 	.gpl_only       = false,
2003 	.ret_type       = RET_INTEGER,
2004 	.arg1_type      = ARG_PTR_TO_CTX,
2005 };
2006 EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
2007 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)2008 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2009 {
2010 	/* Caller already did skb_cow() with len as headroom,
2011 	 * so no need to do it here.
2012 	 */
2013 	skb_push(skb, len);
2014 	memmove(skb->data, skb->data + len, off);
2015 	memset(skb->data + off, 0, len);
2016 
2017 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
2018 	 * needed here as it does not change the skb->csum
2019 	 * result for checksum complete when summing over
2020 	 * zeroed blocks.
2021 	 */
2022 	return 0;
2023 }
2024 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)2025 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2026 {
2027 	/* skb_ensure_writable() is not needed here, as we're
2028 	 * already working on an uncloned skb.
2029 	 */
2030 	if (unlikely(!pskb_may_pull(skb, off + len)))
2031 		return -ENOMEM;
2032 
2033 	skb_postpull_rcsum(skb, skb->data + off, len);
2034 	memmove(skb->data + len, skb->data, off);
2035 	__skb_pull(skb, len);
2036 
2037 	return 0;
2038 }
2039 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)2040 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2041 {
2042 	bool trans_same = skb->transport_header == skb->network_header;
2043 	int ret;
2044 
2045 	/* There's no need for __skb_push()/__skb_pull() pair to
2046 	 * get to the start of the mac header as we're guaranteed
2047 	 * to always start from here under eBPF.
2048 	 */
2049 	ret = bpf_skb_generic_push(skb, off, len);
2050 	if (likely(!ret)) {
2051 		skb->mac_header -= len;
2052 		skb->network_header -= len;
2053 		if (trans_same)
2054 			skb->transport_header = skb->network_header;
2055 	}
2056 
2057 	return ret;
2058 }
2059 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)2060 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2061 {
2062 	bool trans_same = skb->transport_header == skb->network_header;
2063 	int ret;
2064 
2065 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
2066 	ret = bpf_skb_generic_pop(skb, off, len);
2067 	if (likely(!ret)) {
2068 		skb->mac_header += len;
2069 		skb->network_header += len;
2070 		if (trans_same)
2071 			skb->transport_header = skb->network_header;
2072 	}
2073 
2074 	return ret;
2075 }
2076 
bpf_skb_proto_4_to_6(struct sk_buff * skb)2077 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2078 {
2079 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2080 	u32 off = skb_mac_header_len(skb);
2081 	int ret;
2082 
2083 	ret = skb_cow(skb, len_diff);
2084 	if (unlikely(ret < 0))
2085 		return ret;
2086 
2087 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2088 	if (unlikely(ret < 0))
2089 		return ret;
2090 
2091 	if (skb_is_gso(skb)) {
2092 		/* SKB_GSO_TCPV4 needs to be changed into
2093 		 * SKB_GSO_TCPV6.
2094 		 */
2095 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2096 			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV4;
2097 			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV6;
2098 		}
2099 
2100 		/* Due to IPv6 header, MSS needs to be downgraded. */
2101 		skb_shinfo(skb)->gso_size -= len_diff;
2102 		/* Header must be checked, and gso_segs recomputed. */
2103 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2104 		skb_shinfo(skb)->gso_segs = 0;
2105 	}
2106 
2107 	skb->protocol = htons(ETH_P_IPV6);
2108 	skb_clear_hash(skb);
2109 
2110 	return 0;
2111 }
2112 
bpf_skb_proto_6_to_4(struct sk_buff * skb)2113 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2114 {
2115 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2116 	u32 off = skb_mac_header_len(skb);
2117 	int ret;
2118 
2119 	ret = skb_unclone(skb, GFP_ATOMIC);
2120 	if (unlikely(ret < 0))
2121 		return ret;
2122 
2123 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2124 	if (unlikely(ret < 0))
2125 		return ret;
2126 
2127 	if (skb_is_gso(skb)) {
2128 		/* SKB_GSO_TCPV6 needs to be changed into
2129 		 * SKB_GSO_TCPV4.
2130 		 */
2131 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
2132 			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV6;
2133 			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV4;
2134 		}
2135 
2136 		/* Due to IPv4 header, MSS can be upgraded. */
2137 		skb_shinfo(skb)->gso_size += len_diff;
2138 		/* Header must be checked, and gso_segs recomputed. */
2139 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2140 		skb_shinfo(skb)->gso_segs = 0;
2141 	}
2142 
2143 	skb->protocol = htons(ETH_P_IP);
2144 	skb_clear_hash(skb);
2145 
2146 	return 0;
2147 }
2148 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)2149 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2150 {
2151 	__be16 from_proto = skb->protocol;
2152 
2153 	if (from_proto == htons(ETH_P_IP) &&
2154 	      to_proto == htons(ETH_P_IPV6))
2155 		return bpf_skb_proto_4_to_6(skb);
2156 
2157 	if (from_proto == htons(ETH_P_IPV6) &&
2158 	      to_proto == htons(ETH_P_IP))
2159 		return bpf_skb_proto_6_to_4(skb);
2160 
2161 	return -ENOTSUPP;
2162 }
2163 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)2164 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2165 	   u64, flags)
2166 {
2167 	int ret;
2168 
2169 	if (unlikely(flags))
2170 		return -EINVAL;
2171 
2172 	/* General idea is that this helper does the basic groundwork
2173 	 * needed for changing the protocol, and eBPF program fills the
2174 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2175 	 * and other helpers, rather than passing a raw buffer here.
2176 	 *
2177 	 * The rationale is to keep this minimal and without a need to
2178 	 * deal with raw packet data. F.e. even if we would pass buffers
2179 	 * here, the program still needs to call the bpf_lX_csum_replace()
2180 	 * helpers anyway. Plus, this way we keep also separation of
2181 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
2182 	 * care of stores.
2183 	 *
2184 	 * Currently, additional options and extension header space are
2185 	 * not supported, but flags register is reserved so we can adapt
2186 	 * that. For offloads, we mark packet as dodgy, so that headers
2187 	 * need to be verified first.
2188 	 */
2189 	ret = bpf_skb_proto_xlat(skb, proto);
2190 	bpf_compute_data_end(skb);
2191 	return ret;
2192 }
2193 
2194 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2195 	.func		= bpf_skb_change_proto,
2196 	.gpl_only	= false,
2197 	.ret_type	= RET_INTEGER,
2198 	.arg1_type	= ARG_PTR_TO_CTX,
2199 	.arg2_type	= ARG_ANYTHING,
2200 	.arg3_type	= ARG_ANYTHING,
2201 };
2202 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)2203 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2204 {
2205 	/* We only allow a restricted subset to be changed for now. */
2206 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2207 		     !skb_pkt_type_ok(pkt_type)))
2208 		return -EINVAL;
2209 
2210 	skb->pkt_type = pkt_type;
2211 	return 0;
2212 }
2213 
2214 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2215 	.func		= bpf_skb_change_type,
2216 	.gpl_only	= false,
2217 	.ret_type	= RET_INTEGER,
2218 	.arg1_type	= ARG_PTR_TO_CTX,
2219 	.arg2_type	= ARG_ANYTHING,
2220 };
2221 
bpf_skb_net_base_len(const struct sk_buff * skb)2222 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2223 {
2224 	switch (skb->protocol) {
2225 	case htons(ETH_P_IP):
2226 		return sizeof(struct iphdr);
2227 	case htons(ETH_P_IPV6):
2228 		return sizeof(struct ipv6hdr);
2229 	default:
2230 		return ~0U;
2231 	}
2232 }
2233 
bpf_skb_net_grow(struct sk_buff * skb,u32 len_diff)2234 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2235 {
2236 	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2237 	int ret;
2238 
2239 	ret = skb_cow(skb, len_diff);
2240 	if (unlikely(ret < 0))
2241 		return ret;
2242 
2243 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2244 	if (unlikely(ret < 0))
2245 		return ret;
2246 
2247 	if (skb_is_gso(skb)) {
2248 		/* Due to header grow, MSS needs to be downgraded. */
2249 		skb_shinfo(skb)->gso_size -= len_diff;
2250 		/* Header must be checked, and gso_segs recomputed. */
2251 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2252 		skb_shinfo(skb)->gso_segs = 0;
2253 	}
2254 
2255 	return 0;
2256 }
2257 
bpf_skb_net_shrink(struct sk_buff * skb,u32 len_diff)2258 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2259 {
2260 	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2261 	int ret;
2262 
2263 	ret = skb_unclone(skb, GFP_ATOMIC);
2264 	if (unlikely(ret < 0))
2265 		return ret;
2266 
2267 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2268 	if (unlikely(ret < 0))
2269 		return ret;
2270 
2271 	if (skb_is_gso(skb)) {
2272 		/* Due to header shrink, MSS can be upgraded. */
2273 		skb_shinfo(skb)->gso_size += len_diff;
2274 		/* Header must be checked, and gso_segs recomputed. */
2275 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2276 		skb_shinfo(skb)->gso_segs = 0;
2277 	}
2278 
2279 	return 0;
2280 }
2281 
__bpf_skb_max_len(const struct sk_buff * skb)2282 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2283 {
2284 	return skb->dev->mtu + skb->dev->hard_header_len;
2285 }
2286 
bpf_skb_adjust_net(struct sk_buff * skb,s32 len_diff)2287 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2288 {
2289 	bool trans_same = skb->transport_header == skb->network_header;
2290 	u32 len_cur, len_diff_abs = abs(len_diff);
2291 	u32 len_min = bpf_skb_net_base_len(skb);
2292 	u32 len_max = __bpf_skb_max_len(skb);
2293 	__be16 proto = skb->protocol;
2294 	bool shrink = len_diff < 0;
2295 	int ret;
2296 
2297 	if (unlikely(len_diff_abs > 0xfffU))
2298 		return -EFAULT;
2299 	if (unlikely(proto != htons(ETH_P_IP) &&
2300 		     proto != htons(ETH_P_IPV6)))
2301 		return -ENOTSUPP;
2302 
2303 	len_cur = skb->len - skb_network_offset(skb);
2304 	if (skb_transport_header_was_set(skb) && !trans_same)
2305 		len_cur = skb_network_header_len(skb);
2306 	if ((shrink && (len_diff_abs >= len_cur ||
2307 			len_cur - len_diff_abs < len_min)) ||
2308 	    (!shrink && (skb->len + len_diff_abs > len_max &&
2309 			 !skb_is_gso(skb))))
2310 		return -ENOTSUPP;
2311 
2312 	ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2313 		       bpf_skb_net_grow(skb, len_diff_abs);
2314 
2315 	bpf_compute_data_end(skb);
2316 	return ret;
2317 }
2318 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)2319 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2320 	   u32, mode, u64, flags)
2321 {
2322 	if (unlikely(flags))
2323 		return -EINVAL;
2324 	if (likely(mode == BPF_ADJ_ROOM_NET))
2325 		return bpf_skb_adjust_net(skb, len_diff);
2326 
2327 	return -ENOTSUPP;
2328 }
2329 
2330 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2331 	.func		= bpf_skb_adjust_room,
2332 	.gpl_only	= false,
2333 	.ret_type	= RET_INTEGER,
2334 	.arg1_type	= ARG_PTR_TO_CTX,
2335 	.arg2_type	= ARG_ANYTHING,
2336 	.arg3_type	= ARG_ANYTHING,
2337 	.arg4_type	= ARG_ANYTHING,
2338 };
2339 
__bpf_skb_min_len(const struct sk_buff * skb)2340 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2341 {
2342 	u32 min_len = skb_network_offset(skb);
2343 
2344 	if (skb_transport_header_was_set(skb))
2345 		min_len = skb_transport_offset(skb);
2346 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2347 		min_len = skb_checksum_start_offset(skb) +
2348 			  skb->csum_offset + sizeof(__sum16);
2349 	return min_len;
2350 }
2351 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)2352 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2353 {
2354 	unsigned int old_len = skb->len;
2355 	int ret;
2356 
2357 	ret = __skb_grow_rcsum(skb, new_len);
2358 	if (!ret)
2359 		memset(skb->data + old_len, 0, new_len - old_len);
2360 	return ret;
2361 }
2362 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)2363 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2364 {
2365 	return __skb_trim_rcsum(skb, new_len);
2366 }
2367 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)2368 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2369 	   u64, flags)
2370 {
2371 	u32 max_len = __bpf_skb_max_len(skb);
2372 	u32 min_len = __bpf_skb_min_len(skb);
2373 	int ret;
2374 
2375 	if (unlikely(flags || new_len > max_len || new_len < min_len))
2376 		return -EINVAL;
2377 	if (skb->encapsulation)
2378 		return -ENOTSUPP;
2379 
2380 	/* The basic idea of this helper is that it's performing the
2381 	 * needed work to either grow or trim an skb, and eBPF program
2382 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
2383 	 * bpf_lX_csum_replace() and others rather than passing a raw
2384 	 * buffer here. This one is a slow path helper and intended
2385 	 * for replies with control messages.
2386 	 *
2387 	 * Like in bpf_skb_change_proto(), we want to keep this rather
2388 	 * minimal and without protocol specifics so that we are able
2389 	 * to separate concerns as in bpf_skb_store_bytes() should only
2390 	 * be the one responsible for writing buffers.
2391 	 *
2392 	 * It's really expected to be a slow path operation here for
2393 	 * control message replies, so we're implicitly linearizing,
2394 	 * uncloning and drop offloads from the skb by this.
2395 	 */
2396 	ret = __bpf_try_make_writable(skb, skb->len);
2397 	if (!ret) {
2398 		if (new_len > skb->len)
2399 			ret = bpf_skb_grow_rcsum(skb, new_len);
2400 		else if (new_len < skb->len)
2401 			ret = bpf_skb_trim_rcsum(skb, new_len);
2402 		if (!ret && skb_is_gso(skb))
2403 			skb_gso_reset(skb);
2404 	}
2405 
2406 	bpf_compute_data_end(skb);
2407 	return ret;
2408 }
2409 
2410 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2411 	.func		= bpf_skb_change_tail,
2412 	.gpl_only	= false,
2413 	.ret_type	= RET_INTEGER,
2414 	.arg1_type	= ARG_PTR_TO_CTX,
2415 	.arg2_type	= ARG_ANYTHING,
2416 	.arg3_type	= ARG_ANYTHING,
2417 };
2418 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)2419 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
2420 	   u64, flags)
2421 {
2422 	u32 max_len = __bpf_skb_max_len(skb);
2423 	u32 new_len = skb->len + head_room;
2424 	int ret;
2425 
2426 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
2427 		     new_len < skb->len))
2428 		return -EINVAL;
2429 
2430 	ret = skb_cow(skb, head_room);
2431 	if (likely(!ret)) {
2432 		/* Idea for this helper is that we currently only
2433 		 * allow to expand on mac header. This means that
2434 		 * skb->protocol network header, etc, stay as is.
2435 		 * Compared to bpf_skb_change_tail(), we're more
2436 		 * flexible due to not needing to linearize or
2437 		 * reset GSO. Intention for this helper is to be
2438 		 * used by an L3 skb that needs to push mac header
2439 		 * for redirection into L2 device.
2440 		 */
2441 		__skb_push(skb, head_room);
2442 		memset(skb->data, 0, head_room);
2443 		skb_reset_mac_header(skb);
2444 	}
2445 
2446 	bpf_compute_data_end(skb);
2447 	return 0;
2448 }
2449 
2450 static const struct bpf_func_proto bpf_skb_change_head_proto = {
2451 	.func		= bpf_skb_change_head,
2452 	.gpl_only	= false,
2453 	.ret_type	= RET_INTEGER,
2454 	.arg1_type	= ARG_PTR_TO_CTX,
2455 	.arg2_type	= ARG_ANYTHING,
2456 	.arg3_type	= ARG_ANYTHING,
2457 };
2458 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)2459 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
2460 {
2461 	void *data = xdp->data + offset;
2462 
2463 	if (unlikely(data < xdp->data_hard_start ||
2464 		     data > xdp->data_end - ETH_HLEN))
2465 		return -EINVAL;
2466 
2467 	xdp->data = data;
2468 
2469 	return 0;
2470 }
2471 
2472 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
2473 	.func		= bpf_xdp_adjust_head,
2474 	.gpl_only	= false,
2475 	.ret_type	= RET_INTEGER,
2476 	.arg1_type	= ARG_PTR_TO_CTX,
2477 	.arg2_type	= ARG_ANYTHING,
2478 };
2479 
__bpf_tx_xdp(struct net_device * dev,struct bpf_map * map,struct xdp_buff * xdp,u32 index)2480 static int __bpf_tx_xdp(struct net_device *dev,
2481 			struct bpf_map *map,
2482 			struct xdp_buff *xdp,
2483 			u32 index)
2484 {
2485 	int err;
2486 
2487 	if (!dev->netdev_ops->ndo_xdp_xmit) {
2488 		return -EOPNOTSUPP;
2489 	}
2490 
2491 	err = dev->netdev_ops->ndo_xdp_xmit(dev, xdp);
2492 	if (err)
2493 		return err;
2494 	if (map)
2495 		__dev_map_insert_ctx(map, index);
2496 	else
2497 		dev->netdev_ops->ndo_xdp_flush(dev);
2498 	return 0;
2499 }
2500 
xdp_do_flush_map(void)2501 void xdp_do_flush_map(void)
2502 {
2503 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2504 	struct bpf_map *map = ri->map_to_flush;
2505 
2506 	ri->map_to_flush = NULL;
2507 	if (map)
2508 		__dev_map_flush(map);
2509 }
2510 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
2511 
xdp_map_invalid(const struct bpf_prog * xdp_prog,unsigned long aux)2512 static inline bool xdp_map_invalid(const struct bpf_prog *xdp_prog,
2513 				   unsigned long aux)
2514 {
2515 	return (unsigned long)xdp_prog->aux != aux;
2516 }
2517 
xdp_do_redirect_map(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)2518 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
2519 			       struct bpf_prog *xdp_prog)
2520 {
2521 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2522 	unsigned long map_owner = ri->map_owner;
2523 	struct bpf_map *map = ri->map;
2524 	struct net_device *fwd = NULL;
2525 	u32 index = ri->ifindex;
2526 	int err;
2527 
2528 	ri->ifindex = 0;
2529 	ri->map = NULL;
2530 	ri->map_owner = 0;
2531 
2532 	if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2533 		err = -EFAULT;
2534 		map = NULL;
2535 		goto err;
2536 	}
2537 
2538 	fwd = __dev_map_lookup_elem(map, index);
2539 	if (!fwd) {
2540 		err = -EINVAL;
2541 		goto err;
2542 	}
2543 	if (ri->map_to_flush && ri->map_to_flush != map)
2544 		xdp_do_flush_map();
2545 
2546 	err = __bpf_tx_xdp(fwd, map, xdp, index);
2547 	if (unlikely(err))
2548 		goto err;
2549 
2550 	ri->map_to_flush = map;
2551 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
2552 	return 0;
2553 err:
2554 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
2555 	return err;
2556 }
2557 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)2558 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
2559 		    struct bpf_prog *xdp_prog)
2560 {
2561 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2562 	struct net_device *fwd;
2563 	u32 index = ri->ifindex;
2564 	int err;
2565 
2566 	if (ri->map)
2567 		return xdp_do_redirect_map(dev, xdp, xdp_prog);
2568 
2569 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
2570 	ri->ifindex = 0;
2571 	if (unlikely(!fwd)) {
2572 		err = -EINVAL;
2573 		goto err;
2574 	}
2575 
2576 	err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
2577 	if (unlikely(err))
2578 		goto err;
2579 
2580 	_trace_xdp_redirect(dev, xdp_prog, index);
2581 	return 0;
2582 err:
2583 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
2584 	return err;
2585 }
2586 EXPORT_SYMBOL_GPL(xdp_do_redirect);
2587 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct bpf_prog * xdp_prog)2588 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
2589 			    struct bpf_prog *xdp_prog)
2590 {
2591 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2592 	unsigned long map_owner = ri->map_owner;
2593 	struct bpf_map *map = ri->map;
2594 	struct net_device *fwd = NULL;
2595 	u32 index = ri->ifindex;
2596 	unsigned int len;
2597 	int err = 0;
2598 
2599 	ri->ifindex = 0;
2600 	ri->map = NULL;
2601 	ri->map_owner = 0;
2602 
2603 	if (map) {
2604 		if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2605 			err = -EFAULT;
2606 			map = NULL;
2607 			goto err;
2608 		}
2609 		fwd = __dev_map_lookup_elem(map, index);
2610 	} else {
2611 		fwd = dev_get_by_index_rcu(dev_net(dev), index);
2612 	}
2613 	if (unlikely(!fwd)) {
2614 		err = -EINVAL;
2615 		goto err;
2616 	}
2617 
2618 	if (unlikely(!(fwd->flags & IFF_UP))) {
2619 		err = -ENETDOWN;
2620 		goto err;
2621 	}
2622 
2623 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
2624 	if (skb->len > len) {
2625 		err = -EMSGSIZE;
2626 		goto err;
2627 	}
2628 
2629 	skb->dev = fwd;
2630 	map ? _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index)
2631 		: _trace_xdp_redirect(dev, xdp_prog, index);
2632 	return 0;
2633 err:
2634 	map ? _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err)
2635 		: _trace_xdp_redirect_err(dev, xdp_prog, index, err);
2636 	return err;
2637 }
2638 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
2639 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)2640 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
2641 {
2642 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2643 
2644 	if (unlikely(flags))
2645 		return XDP_ABORTED;
2646 
2647 	ri->ifindex = ifindex;
2648 	ri->flags = flags;
2649 	ri->map = NULL;
2650 	ri->map_owner = 0;
2651 
2652 	return XDP_REDIRECT;
2653 }
2654 
2655 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
2656 	.func           = bpf_xdp_redirect,
2657 	.gpl_only       = false,
2658 	.ret_type       = RET_INTEGER,
2659 	.arg1_type      = ARG_ANYTHING,
2660 	.arg2_type      = ARG_ANYTHING,
2661 };
2662 
BPF_CALL_4(bpf_xdp_redirect_map,struct bpf_map *,map,u32,ifindex,u64,flags,unsigned long,map_owner)2663 BPF_CALL_4(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags,
2664 	   unsigned long, map_owner)
2665 {
2666 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2667 
2668 	if (unlikely(flags))
2669 		return XDP_ABORTED;
2670 
2671 	ri->ifindex = ifindex;
2672 	ri->flags = flags;
2673 	ri->map = map;
2674 	ri->map_owner = map_owner;
2675 
2676 	return XDP_REDIRECT;
2677 }
2678 
2679 /* Note, arg4 is hidden from users and populated by the verifier
2680  * with the right pointer.
2681  */
2682 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
2683 	.func           = bpf_xdp_redirect_map,
2684 	.gpl_only       = false,
2685 	.ret_type       = RET_INTEGER,
2686 	.arg1_type      = ARG_CONST_MAP_PTR,
2687 	.arg2_type      = ARG_ANYTHING,
2688 	.arg3_type      = ARG_ANYTHING,
2689 };
2690 
bpf_helper_changes_pkt_data(void * func)2691 bool bpf_helper_changes_pkt_data(void *func)
2692 {
2693 	if (func == bpf_skb_vlan_push ||
2694 	    func == bpf_skb_vlan_pop ||
2695 	    func == bpf_skb_store_bytes ||
2696 	    func == bpf_skb_change_proto ||
2697 	    func == bpf_skb_change_head ||
2698 	    func == bpf_skb_change_tail ||
2699 	    func == bpf_skb_adjust_room ||
2700 	    func == bpf_skb_pull_data ||
2701 	    func == bpf_clone_redirect ||
2702 	    func == bpf_l3_csum_replace ||
2703 	    func == bpf_l4_csum_replace ||
2704 	    func == bpf_xdp_adjust_head)
2705 		return true;
2706 
2707 	return false;
2708 }
2709 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)2710 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
2711 				  unsigned long off, unsigned long len)
2712 {
2713 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
2714 
2715 	if (unlikely(!ptr))
2716 		return len;
2717 	if (ptr != dst_buff)
2718 		memcpy(dst_buff, ptr, len);
2719 
2720 	return 0;
2721 }
2722 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)2723 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
2724 	   u64, flags, void *, meta, u64, meta_size)
2725 {
2726 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
2727 
2728 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
2729 		return -EINVAL;
2730 	if (unlikely(skb_size > skb->len))
2731 		return -EFAULT;
2732 
2733 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
2734 				bpf_skb_copy);
2735 }
2736 
2737 static const struct bpf_func_proto bpf_skb_event_output_proto = {
2738 	.func		= bpf_skb_event_output,
2739 	.gpl_only	= true,
2740 	.ret_type	= RET_INTEGER,
2741 	.arg1_type	= ARG_PTR_TO_CTX,
2742 	.arg2_type	= ARG_CONST_MAP_PTR,
2743 	.arg3_type	= ARG_ANYTHING,
2744 	.arg4_type	= ARG_PTR_TO_MEM,
2745 	.arg5_type	= ARG_CONST_SIZE,
2746 };
2747 
bpf_tunnel_key_af(u64 flags)2748 static unsigned short bpf_tunnel_key_af(u64 flags)
2749 {
2750 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
2751 }
2752 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)2753 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
2754 	   u32, size, u64, flags)
2755 {
2756 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2757 	u8 compat[sizeof(struct bpf_tunnel_key)];
2758 	void *to_orig = to;
2759 	int err;
2760 
2761 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
2762 		err = -EINVAL;
2763 		goto err_clear;
2764 	}
2765 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
2766 		err = -EPROTO;
2767 		goto err_clear;
2768 	}
2769 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2770 		err = -EINVAL;
2771 		switch (size) {
2772 		case offsetof(struct bpf_tunnel_key, tunnel_label):
2773 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2774 			goto set_compat;
2775 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
2776 			/* Fixup deprecated structure layouts here, so we have
2777 			 * a common path later on.
2778 			 */
2779 			if (ip_tunnel_info_af(info) != AF_INET)
2780 				goto err_clear;
2781 set_compat:
2782 			to = (struct bpf_tunnel_key *)compat;
2783 			break;
2784 		default:
2785 			goto err_clear;
2786 		}
2787 	}
2788 
2789 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
2790 	to->tunnel_tos = info->key.tos;
2791 	to->tunnel_ttl = info->key.ttl;
2792 
2793 	if (flags & BPF_F_TUNINFO_IPV6) {
2794 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
2795 		       sizeof(to->remote_ipv6));
2796 		to->tunnel_label = be32_to_cpu(info->key.label);
2797 	} else {
2798 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
2799 	}
2800 
2801 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
2802 		memcpy(to_orig, to, size);
2803 
2804 	return 0;
2805 err_clear:
2806 	memset(to_orig, 0, size);
2807 	return err;
2808 }
2809 
2810 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
2811 	.func		= bpf_skb_get_tunnel_key,
2812 	.gpl_only	= false,
2813 	.ret_type	= RET_INTEGER,
2814 	.arg1_type	= ARG_PTR_TO_CTX,
2815 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
2816 	.arg3_type	= ARG_CONST_SIZE,
2817 	.arg4_type	= ARG_ANYTHING,
2818 };
2819 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)2820 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
2821 {
2822 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2823 	int err;
2824 
2825 	if (unlikely(!info ||
2826 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
2827 		err = -ENOENT;
2828 		goto err_clear;
2829 	}
2830 	if (unlikely(size < info->options_len)) {
2831 		err = -ENOMEM;
2832 		goto err_clear;
2833 	}
2834 
2835 	ip_tunnel_info_opts_get(to, info);
2836 	if (size > info->options_len)
2837 		memset(to + info->options_len, 0, size - info->options_len);
2838 
2839 	return info->options_len;
2840 err_clear:
2841 	memset(to, 0, size);
2842 	return err;
2843 }
2844 
2845 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
2846 	.func		= bpf_skb_get_tunnel_opt,
2847 	.gpl_only	= false,
2848 	.ret_type	= RET_INTEGER,
2849 	.arg1_type	= ARG_PTR_TO_CTX,
2850 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
2851 	.arg3_type	= ARG_CONST_SIZE,
2852 };
2853 
2854 static struct metadata_dst __percpu *md_dst;
2855 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)2856 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
2857 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
2858 {
2859 	struct metadata_dst *md = this_cpu_ptr(md_dst);
2860 	u8 compat[sizeof(struct bpf_tunnel_key)];
2861 	struct ip_tunnel_info *info;
2862 
2863 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
2864 			       BPF_F_DONT_FRAGMENT)))
2865 		return -EINVAL;
2866 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2867 		switch (size) {
2868 		case offsetof(struct bpf_tunnel_key, tunnel_label):
2869 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2870 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
2871 			/* Fixup deprecated structure layouts here, so we have
2872 			 * a common path later on.
2873 			 */
2874 			memcpy(compat, from, size);
2875 			memset(compat + size, 0, sizeof(compat) - size);
2876 			from = (const struct bpf_tunnel_key *) compat;
2877 			break;
2878 		default:
2879 			return -EINVAL;
2880 		}
2881 	}
2882 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
2883 		     from->tunnel_ext))
2884 		return -EINVAL;
2885 
2886 	skb_dst_drop(skb);
2887 	dst_hold((struct dst_entry *) md);
2888 	skb_dst_set(skb, (struct dst_entry *) md);
2889 
2890 	info = &md->u.tun_info;
2891 	info->mode = IP_TUNNEL_INFO_TX;
2892 
2893 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
2894 	if (flags & BPF_F_DONT_FRAGMENT)
2895 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
2896 
2897 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
2898 	info->key.tos = from->tunnel_tos;
2899 	info->key.ttl = from->tunnel_ttl;
2900 
2901 	if (flags & BPF_F_TUNINFO_IPV6) {
2902 		info->mode |= IP_TUNNEL_INFO_IPV6;
2903 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
2904 		       sizeof(from->remote_ipv6));
2905 		info->key.label = cpu_to_be32(from->tunnel_label) &
2906 				  IPV6_FLOWLABEL_MASK;
2907 	} else {
2908 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
2909 		if (flags & BPF_F_ZERO_CSUM_TX)
2910 			info->key.tun_flags &= ~TUNNEL_CSUM;
2911 	}
2912 
2913 	return 0;
2914 }
2915 
2916 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
2917 	.func		= bpf_skb_set_tunnel_key,
2918 	.gpl_only	= false,
2919 	.ret_type	= RET_INTEGER,
2920 	.arg1_type	= ARG_PTR_TO_CTX,
2921 	.arg2_type	= ARG_PTR_TO_MEM,
2922 	.arg3_type	= ARG_CONST_SIZE,
2923 	.arg4_type	= ARG_ANYTHING,
2924 };
2925 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)2926 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
2927 	   const u8 *, from, u32, size)
2928 {
2929 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
2930 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
2931 
2932 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
2933 		return -EINVAL;
2934 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
2935 		return -ENOMEM;
2936 
2937 	ip_tunnel_info_opts_set(info, from, size);
2938 
2939 	return 0;
2940 }
2941 
2942 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
2943 	.func		= bpf_skb_set_tunnel_opt,
2944 	.gpl_only	= false,
2945 	.ret_type	= RET_INTEGER,
2946 	.arg1_type	= ARG_PTR_TO_CTX,
2947 	.arg2_type	= ARG_PTR_TO_MEM,
2948 	.arg3_type	= ARG_CONST_SIZE,
2949 };
2950 
2951 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)2952 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
2953 {
2954 	if (!md_dst) {
2955 		/* Race is not possible, since it's called from verifier
2956 		 * that is holding verifier mutex.
2957 		 */
2958 		md_dst = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
2959 						   METADATA_IP_TUNNEL,
2960 						   GFP_KERNEL);
2961 		if (!md_dst)
2962 			return NULL;
2963 	}
2964 
2965 	switch (which) {
2966 	case BPF_FUNC_skb_set_tunnel_key:
2967 		return &bpf_skb_set_tunnel_key_proto;
2968 	case BPF_FUNC_skb_set_tunnel_opt:
2969 		return &bpf_skb_set_tunnel_opt_proto;
2970 	default:
2971 		return NULL;
2972 	}
2973 }
2974 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)2975 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
2976 	   u32, idx)
2977 {
2978 	struct bpf_array *array = container_of(map, struct bpf_array, map);
2979 	struct cgroup *cgrp;
2980 	struct sock *sk;
2981 
2982 	sk = skb_to_full_sk(skb);
2983 	if (!sk || !sk_fullsock(sk))
2984 		return -ENOENT;
2985 	if (unlikely(idx >= array->map.max_entries))
2986 		return -E2BIG;
2987 
2988 	cgrp = READ_ONCE(array->ptrs[idx]);
2989 	if (unlikely(!cgrp))
2990 		return -EAGAIN;
2991 
2992 	return sk_under_cgroup_hierarchy(sk, cgrp);
2993 }
2994 
2995 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
2996 	.func		= bpf_skb_under_cgroup,
2997 	.gpl_only	= false,
2998 	.ret_type	= RET_INTEGER,
2999 	.arg1_type	= ARG_PTR_TO_CTX,
3000 	.arg2_type	= ARG_CONST_MAP_PTR,
3001 	.arg3_type	= ARG_ANYTHING,
3002 };
3003 
bpf_xdp_copy(void * dst_buff,const void * src_buff,unsigned long off,unsigned long len)3004 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3005 				  unsigned long off, unsigned long len)
3006 {
3007 	memcpy(dst_buff, src_buff + off, len);
3008 	return 0;
3009 }
3010 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)3011 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3012 	   u64, flags, void *, meta, u64, meta_size)
3013 {
3014 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3015 
3016 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3017 		return -EINVAL;
3018 	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
3019 		return -EFAULT;
3020 
3021 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
3022 				xdp_size, bpf_xdp_copy);
3023 }
3024 
3025 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
3026 	.func		= bpf_xdp_event_output,
3027 	.gpl_only	= true,
3028 	.ret_type	= RET_INTEGER,
3029 	.arg1_type	= ARG_PTR_TO_CTX,
3030 	.arg2_type	= ARG_CONST_MAP_PTR,
3031 	.arg3_type	= ARG_ANYTHING,
3032 	.arg4_type	= ARG_PTR_TO_MEM,
3033 	.arg5_type	= ARG_CONST_SIZE,
3034 };
3035 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)3036 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
3037 {
3038 	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
3039 }
3040 
3041 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
3042 	.func           = bpf_get_socket_cookie,
3043 	.gpl_only       = false,
3044 	.ret_type       = RET_INTEGER,
3045 	.arg1_type      = ARG_PTR_TO_CTX,
3046 };
3047 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)3048 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
3049 {
3050 	struct sock *sk = sk_to_full_sk(skb->sk);
3051 	kuid_t kuid;
3052 
3053 	if (!sk || !sk_fullsock(sk))
3054 		return overflowuid;
3055 	kuid = sock_net_uid(sock_net(sk), sk);
3056 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
3057 }
3058 
3059 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
3060 	.func           = bpf_get_socket_uid,
3061 	.gpl_only       = false,
3062 	.ret_type       = RET_INTEGER,
3063 	.arg1_type      = ARG_PTR_TO_CTX,
3064 };
3065 
BPF_CALL_5(bpf_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)3066 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3067 	   int, level, int, optname, char *, optval, int, optlen)
3068 {
3069 	struct sock *sk = bpf_sock->sk;
3070 	int ret = 0;
3071 	int val;
3072 
3073 	if (!sk_fullsock(sk))
3074 		return -EINVAL;
3075 
3076 	if (level == SOL_SOCKET) {
3077 		if (optlen != sizeof(int))
3078 			return -EINVAL;
3079 		val = *((int *)optval);
3080 
3081 		/* Only some socketops are supported */
3082 		switch (optname) {
3083 		case SO_RCVBUF:
3084 			val = min_t(u32, val, sysctl_rmem_max);
3085 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
3086 			sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
3087 			break;
3088 		case SO_SNDBUF:
3089 			val = min_t(u32, val, sysctl_wmem_max);
3090 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
3091 			sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
3092 			break;
3093 		case SO_MAX_PACING_RATE:
3094 			sk->sk_max_pacing_rate = val;
3095 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
3096 						 sk->sk_max_pacing_rate);
3097 			break;
3098 		case SO_PRIORITY:
3099 			sk->sk_priority = val;
3100 			break;
3101 		case SO_RCVLOWAT:
3102 			if (val < 0)
3103 				val = INT_MAX;
3104 			sk->sk_rcvlowat = val ? : 1;
3105 			break;
3106 		case SO_MARK:
3107 			if (sk->sk_mark != val) {
3108 				sk->sk_mark = val;
3109 				sk_dst_reset(sk);
3110 			}
3111 			break;
3112 		default:
3113 			ret = -EINVAL;
3114 		}
3115 #ifdef CONFIG_INET
3116 	} else if (level == SOL_TCP &&
3117 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
3118 		if (optname == TCP_CONGESTION) {
3119 			char name[TCP_CA_NAME_MAX];
3120 			bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3121 
3122 			strncpy(name, optval, min_t(long, optlen,
3123 						    TCP_CA_NAME_MAX-1));
3124 			name[TCP_CA_NAME_MAX-1] = 0;
3125 			ret = tcp_set_congestion_control(sk, name, false,
3126 							 reinit, true);
3127 		} else {
3128 			struct tcp_sock *tp = tcp_sk(sk);
3129 
3130 			if (optlen != sizeof(int))
3131 				return -EINVAL;
3132 
3133 			val = *((int *)optval);
3134 			/* Only some options are supported */
3135 			switch (optname) {
3136 			case TCP_BPF_IW:
3137 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
3138 					ret = -EINVAL;
3139 				else
3140 					tp->snd_cwnd = val;
3141 				break;
3142 			case TCP_BPF_SNDCWND_CLAMP:
3143 				if (val <= 0) {
3144 					ret = -EINVAL;
3145 				} else {
3146 					tp->snd_cwnd_clamp = val;
3147 					tp->snd_ssthresh = val;
3148 				}
3149 				break;
3150 			default:
3151 				ret = -EINVAL;
3152 			}
3153 		}
3154 #endif
3155 	} else {
3156 		ret = -EINVAL;
3157 	}
3158 	return ret;
3159 }
3160 
3161 static const struct bpf_func_proto bpf_setsockopt_proto = {
3162 	.func		= bpf_setsockopt,
3163 	.gpl_only	= true,
3164 	.ret_type	= RET_INTEGER,
3165 	.arg1_type	= ARG_PTR_TO_CTX,
3166 	.arg2_type	= ARG_ANYTHING,
3167 	.arg3_type	= ARG_ANYTHING,
3168 	.arg4_type	= ARG_PTR_TO_MEM,
3169 	.arg5_type	= ARG_CONST_SIZE,
3170 };
3171 
3172 static const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)3173 bpf_base_func_proto(enum bpf_func_id func_id)
3174 {
3175 	switch (func_id) {
3176 	case BPF_FUNC_map_lookup_elem:
3177 		return &bpf_map_lookup_elem_proto;
3178 	case BPF_FUNC_map_update_elem:
3179 		return &bpf_map_update_elem_proto;
3180 	case BPF_FUNC_map_delete_elem:
3181 		return &bpf_map_delete_elem_proto;
3182 	case BPF_FUNC_get_prandom_u32:
3183 		return &bpf_get_prandom_u32_proto;
3184 	case BPF_FUNC_get_smp_processor_id:
3185 		return &bpf_get_raw_smp_processor_id_proto;
3186 	case BPF_FUNC_get_numa_node_id:
3187 		return &bpf_get_numa_node_id_proto;
3188 	case BPF_FUNC_tail_call:
3189 		return &bpf_tail_call_proto;
3190 	case BPF_FUNC_ktime_get_ns:
3191 		return &bpf_ktime_get_ns_proto;
3192 	case BPF_FUNC_trace_printk:
3193 		if (capable(CAP_SYS_ADMIN))
3194 			return bpf_get_trace_printk_proto();
3195 	default:
3196 		return NULL;
3197 	}
3198 }
3199 
3200 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id)3201 sock_filter_func_proto(enum bpf_func_id func_id)
3202 {
3203 	switch (func_id) {
3204 	/* inet and inet6 sockets are created in a process
3205 	 * context so there is always a valid uid/gid
3206 	 */
3207 	case BPF_FUNC_get_current_uid_gid:
3208 		return &bpf_get_current_uid_gid_proto;
3209 	default:
3210 		return bpf_base_func_proto(func_id);
3211 	}
3212 }
3213 
3214 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)3215 sk_filter_func_proto(enum bpf_func_id func_id)
3216 {
3217 	switch (func_id) {
3218 	case BPF_FUNC_skb_load_bytes:
3219 		return &bpf_skb_load_bytes_proto;
3220 	case BPF_FUNC_get_socket_cookie:
3221 		return &bpf_get_socket_cookie_proto;
3222 	case BPF_FUNC_get_socket_uid:
3223 		return &bpf_get_socket_uid_proto;
3224 	default:
3225 		return bpf_base_func_proto(func_id);
3226 	}
3227 }
3228 
3229 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)3230 tc_cls_act_func_proto(enum bpf_func_id func_id)
3231 {
3232 	switch (func_id) {
3233 	case BPF_FUNC_skb_store_bytes:
3234 		return &bpf_skb_store_bytes_proto;
3235 	case BPF_FUNC_skb_load_bytes:
3236 		return &bpf_skb_load_bytes_proto;
3237 	case BPF_FUNC_skb_pull_data:
3238 		return &bpf_skb_pull_data_proto;
3239 	case BPF_FUNC_csum_diff:
3240 		return &bpf_csum_diff_proto;
3241 	case BPF_FUNC_csum_update:
3242 		return &bpf_csum_update_proto;
3243 	case BPF_FUNC_l3_csum_replace:
3244 		return &bpf_l3_csum_replace_proto;
3245 	case BPF_FUNC_l4_csum_replace:
3246 		return &bpf_l4_csum_replace_proto;
3247 	case BPF_FUNC_clone_redirect:
3248 		return &bpf_clone_redirect_proto;
3249 	case BPF_FUNC_get_cgroup_classid:
3250 		return &bpf_get_cgroup_classid_proto;
3251 	case BPF_FUNC_skb_vlan_push:
3252 		return &bpf_skb_vlan_push_proto;
3253 	case BPF_FUNC_skb_vlan_pop:
3254 		return &bpf_skb_vlan_pop_proto;
3255 	case BPF_FUNC_skb_change_proto:
3256 		return &bpf_skb_change_proto_proto;
3257 	case BPF_FUNC_skb_change_type:
3258 		return &bpf_skb_change_type_proto;
3259 	case BPF_FUNC_skb_adjust_room:
3260 		return &bpf_skb_adjust_room_proto;
3261 	case BPF_FUNC_skb_change_tail:
3262 		return &bpf_skb_change_tail_proto;
3263 	case BPF_FUNC_skb_change_head:
3264 		return &bpf_skb_change_head_proto;
3265 	case BPF_FUNC_skb_get_tunnel_key:
3266 		return &bpf_skb_get_tunnel_key_proto;
3267 	case BPF_FUNC_skb_set_tunnel_key:
3268 		return bpf_get_skb_set_tunnel_proto(func_id);
3269 	case BPF_FUNC_skb_get_tunnel_opt:
3270 		return &bpf_skb_get_tunnel_opt_proto;
3271 	case BPF_FUNC_skb_set_tunnel_opt:
3272 		return bpf_get_skb_set_tunnel_proto(func_id);
3273 	case BPF_FUNC_redirect:
3274 		return &bpf_redirect_proto;
3275 	case BPF_FUNC_get_route_realm:
3276 		return &bpf_get_route_realm_proto;
3277 	case BPF_FUNC_get_hash_recalc:
3278 		return &bpf_get_hash_recalc_proto;
3279 	case BPF_FUNC_set_hash_invalid:
3280 		return &bpf_set_hash_invalid_proto;
3281 	case BPF_FUNC_set_hash:
3282 		return &bpf_set_hash_proto;
3283 	case BPF_FUNC_perf_event_output:
3284 		return &bpf_skb_event_output_proto;
3285 	case BPF_FUNC_get_smp_processor_id:
3286 		return &bpf_get_smp_processor_id_proto;
3287 	case BPF_FUNC_skb_under_cgroup:
3288 		return &bpf_skb_under_cgroup_proto;
3289 	case BPF_FUNC_get_socket_cookie:
3290 		return &bpf_get_socket_cookie_proto;
3291 	case BPF_FUNC_get_socket_uid:
3292 		return &bpf_get_socket_uid_proto;
3293 	default:
3294 		return bpf_base_func_proto(func_id);
3295 	}
3296 }
3297 
3298 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id)3299 xdp_func_proto(enum bpf_func_id func_id)
3300 {
3301 	switch (func_id) {
3302 	case BPF_FUNC_perf_event_output:
3303 		return &bpf_xdp_event_output_proto;
3304 	case BPF_FUNC_get_smp_processor_id:
3305 		return &bpf_get_smp_processor_id_proto;
3306 	case BPF_FUNC_xdp_adjust_head:
3307 		return &bpf_xdp_adjust_head_proto;
3308 	case BPF_FUNC_redirect:
3309 		return &bpf_xdp_redirect_proto;
3310 	case BPF_FUNC_redirect_map:
3311 		return &bpf_xdp_redirect_map_proto;
3312 	default:
3313 		return bpf_base_func_proto(func_id);
3314 	}
3315 }
3316 
3317 static const struct bpf_func_proto *
lwt_inout_func_proto(enum bpf_func_id func_id)3318 lwt_inout_func_proto(enum bpf_func_id func_id)
3319 {
3320 	switch (func_id) {
3321 	case BPF_FUNC_skb_load_bytes:
3322 		return &bpf_skb_load_bytes_proto;
3323 	case BPF_FUNC_skb_pull_data:
3324 		return &bpf_skb_pull_data_proto;
3325 	case BPF_FUNC_csum_diff:
3326 		return &bpf_csum_diff_proto;
3327 	case BPF_FUNC_get_cgroup_classid:
3328 		return &bpf_get_cgroup_classid_proto;
3329 	case BPF_FUNC_get_route_realm:
3330 		return &bpf_get_route_realm_proto;
3331 	case BPF_FUNC_get_hash_recalc:
3332 		return &bpf_get_hash_recalc_proto;
3333 	case BPF_FUNC_perf_event_output:
3334 		return &bpf_skb_event_output_proto;
3335 	case BPF_FUNC_get_smp_processor_id:
3336 		return &bpf_get_smp_processor_id_proto;
3337 	case BPF_FUNC_skb_under_cgroup:
3338 		return &bpf_skb_under_cgroup_proto;
3339 	default:
3340 		return bpf_base_func_proto(func_id);
3341 	}
3342 }
3343 
3344 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id)3345 	sock_ops_func_proto(enum bpf_func_id func_id)
3346 {
3347 	switch (func_id) {
3348 	case BPF_FUNC_setsockopt:
3349 		return &bpf_setsockopt_proto;
3350 	case BPF_FUNC_sock_map_update:
3351 		return &bpf_sock_map_update_proto;
3352 	default:
3353 		return bpf_base_func_proto(func_id);
3354 	}
3355 }
3356 
sk_skb_func_proto(enum bpf_func_id func_id)3357 static const struct bpf_func_proto *sk_skb_func_proto(enum bpf_func_id func_id)
3358 {
3359 	switch (func_id) {
3360 	case BPF_FUNC_skb_store_bytes:
3361 		return &bpf_skb_store_bytes_proto;
3362 	case BPF_FUNC_skb_load_bytes:
3363 		return &bpf_skb_load_bytes_proto;
3364 	case BPF_FUNC_skb_pull_data:
3365 		return &bpf_skb_pull_data_proto;
3366 	case BPF_FUNC_skb_change_tail:
3367 		return &bpf_skb_change_tail_proto;
3368 	case BPF_FUNC_skb_change_head:
3369 		return &bpf_skb_change_head_proto;
3370 	case BPF_FUNC_get_socket_cookie:
3371 		return &bpf_get_socket_cookie_proto;
3372 	case BPF_FUNC_get_socket_uid:
3373 		return &bpf_get_socket_uid_proto;
3374 	case BPF_FUNC_sk_redirect_map:
3375 		return &bpf_sk_redirect_map_proto;
3376 	default:
3377 		return bpf_base_func_proto(func_id);
3378 	}
3379 }
3380 
3381 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id)3382 lwt_xmit_func_proto(enum bpf_func_id func_id)
3383 {
3384 	switch (func_id) {
3385 	case BPF_FUNC_skb_get_tunnel_key:
3386 		return &bpf_skb_get_tunnel_key_proto;
3387 	case BPF_FUNC_skb_set_tunnel_key:
3388 		return bpf_get_skb_set_tunnel_proto(func_id);
3389 	case BPF_FUNC_skb_get_tunnel_opt:
3390 		return &bpf_skb_get_tunnel_opt_proto;
3391 	case BPF_FUNC_skb_set_tunnel_opt:
3392 		return bpf_get_skb_set_tunnel_proto(func_id);
3393 	case BPF_FUNC_redirect:
3394 		return &bpf_redirect_proto;
3395 	case BPF_FUNC_clone_redirect:
3396 		return &bpf_clone_redirect_proto;
3397 	case BPF_FUNC_skb_change_tail:
3398 		return &bpf_skb_change_tail_proto;
3399 	case BPF_FUNC_skb_change_head:
3400 		return &bpf_skb_change_head_proto;
3401 	case BPF_FUNC_skb_store_bytes:
3402 		return &bpf_skb_store_bytes_proto;
3403 	case BPF_FUNC_csum_update:
3404 		return &bpf_csum_update_proto;
3405 	case BPF_FUNC_l3_csum_replace:
3406 		return &bpf_l3_csum_replace_proto;
3407 	case BPF_FUNC_l4_csum_replace:
3408 		return &bpf_l4_csum_replace_proto;
3409 	case BPF_FUNC_set_hash_invalid:
3410 		return &bpf_set_hash_invalid_proto;
3411 	default:
3412 		return lwt_inout_func_proto(func_id);
3413 	}
3414 }
3415 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3416 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
3417 				    struct bpf_insn_access_aux *info)
3418 {
3419 	const int size_default = sizeof(__u32);
3420 
3421 	if (off < 0 || off >= sizeof(struct __sk_buff))
3422 		return false;
3423 
3424 	/* The verifier guarantees that size > 0. */
3425 	if (off % size != 0)
3426 		return false;
3427 
3428 	switch (off) {
3429 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3430 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
3431 			return false;
3432 		break;
3433 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
3434 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
3435 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
3436 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
3437 	case bpf_ctx_range(struct __sk_buff, data):
3438 	case bpf_ctx_range(struct __sk_buff, data_end):
3439 		if (size != size_default)
3440 			return false;
3441 		break;
3442 	default:
3443 		/* Only narrow read access allowed for now. */
3444 		if (type == BPF_WRITE) {
3445 			if (size != size_default)
3446 				return false;
3447 		} else {
3448 			bpf_ctx_record_field_size(info, size_default);
3449 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
3450 				return false;
3451 		}
3452 	}
3453 
3454 	return true;
3455 }
3456 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3457 static bool sk_filter_is_valid_access(int off, int size,
3458 				      enum bpf_access_type type,
3459 				      struct bpf_insn_access_aux *info)
3460 {
3461 	switch (off) {
3462 	case bpf_ctx_range(struct __sk_buff, tc_classid):
3463 	case bpf_ctx_range(struct __sk_buff, data):
3464 	case bpf_ctx_range(struct __sk_buff, data_end):
3465 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
3466 		return false;
3467 	}
3468 
3469 	if (type == BPF_WRITE) {
3470 		switch (off) {
3471 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3472 			break;
3473 		default:
3474 			return false;
3475 		}
3476 	}
3477 
3478 	return bpf_skb_is_valid_access(off, size, type, info);
3479 }
3480 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3481 static bool lwt_is_valid_access(int off, int size,
3482 				enum bpf_access_type type,
3483 				struct bpf_insn_access_aux *info)
3484 {
3485 	switch (off) {
3486 	case bpf_ctx_range(struct __sk_buff, tc_classid):
3487 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
3488 		return false;
3489 	}
3490 
3491 	if (type == BPF_WRITE) {
3492 		switch (off) {
3493 		case bpf_ctx_range(struct __sk_buff, mark):
3494 		case bpf_ctx_range(struct __sk_buff, priority):
3495 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3496 			break;
3497 		default:
3498 			return false;
3499 		}
3500 	}
3501 
3502 	switch (off) {
3503 	case bpf_ctx_range(struct __sk_buff, data):
3504 		info->reg_type = PTR_TO_PACKET;
3505 		break;
3506 	case bpf_ctx_range(struct __sk_buff, data_end):
3507 		info->reg_type = PTR_TO_PACKET_END;
3508 		break;
3509 	}
3510 
3511 	return bpf_skb_is_valid_access(off, size, type, info);
3512 }
3513 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3514 static bool sock_filter_is_valid_access(int off, int size,
3515 					enum bpf_access_type type,
3516 					struct bpf_insn_access_aux *info)
3517 {
3518 	if (type == BPF_WRITE) {
3519 		switch (off) {
3520 		case offsetof(struct bpf_sock, bound_dev_if):
3521 		case offsetof(struct bpf_sock, mark):
3522 		case offsetof(struct bpf_sock, priority):
3523 			break;
3524 		default:
3525 			return false;
3526 		}
3527 	}
3528 
3529 	if (off < 0 || off + size > sizeof(struct bpf_sock))
3530 		return false;
3531 	/* The verifier guarantees that size > 0. */
3532 	if (off % size != 0)
3533 		return false;
3534 	if (size != sizeof(__u32))
3535 		return false;
3536 
3537 	return true;
3538 }
3539 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)3540 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
3541 				const struct bpf_prog *prog, int drop_verdict)
3542 {
3543 	struct bpf_insn *insn = insn_buf;
3544 
3545 	if (!direct_write)
3546 		return 0;
3547 
3548 	/* if (!skb->cloned)
3549 	 *       goto start;
3550 	 *
3551 	 * (Fast-path, otherwise approximation that we might be
3552 	 *  a clone, do the rest in helper.)
3553 	 */
3554 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
3555 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
3556 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
3557 
3558 	/* ret = bpf_skb_pull_data(skb, 0); */
3559 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
3560 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
3561 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
3562 			       BPF_FUNC_skb_pull_data);
3563 	/* if (!ret)
3564 	 *      goto restore;
3565 	 * return TC_ACT_SHOT;
3566 	 */
3567 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
3568 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
3569 	*insn++ = BPF_EXIT_INSN();
3570 
3571 	/* restore: */
3572 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
3573 	/* start: */
3574 	*insn++ = prog->insnsi[0];
3575 
3576 	return insn - insn_buf;
3577 }
3578 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)3579 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
3580 			       const struct bpf_prog *prog)
3581 {
3582 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
3583 }
3584 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3585 static bool tc_cls_act_is_valid_access(int off, int size,
3586 				       enum bpf_access_type type,
3587 				       struct bpf_insn_access_aux *info)
3588 {
3589 	if (type == BPF_WRITE) {
3590 		switch (off) {
3591 		case bpf_ctx_range(struct __sk_buff, mark):
3592 		case bpf_ctx_range(struct __sk_buff, tc_index):
3593 		case bpf_ctx_range(struct __sk_buff, priority):
3594 		case bpf_ctx_range(struct __sk_buff, tc_classid):
3595 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3596 			break;
3597 		default:
3598 			return false;
3599 		}
3600 	}
3601 
3602 	switch (off) {
3603 	case bpf_ctx_range(struct __sk_buff, data):
3604 		info->reg_type = PTR_TO_PACKET;
3605 		break;
3606 	case bpf_ctx_range(struct __sk_buff, data_end):
3607 		info->reg_type = PTR_TO_PACKET_END;
3608 		break;
3609 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
3610 		return false;
3611 	}
3612 
3613 	return bpf_skb_is_valid_access(off, size, type, info);
3614 }
3615 
__is_valid_xdp_access(int off,int size)3616 static bool __is_valid_xdp_access(int off, int size)
3617 {
3618 	if (off < 0 || off >= sizeof(struct xdp_md))
3619 		return false;
3620 	if (off % size != 0)
3621 		return false;
3622 	if (size != sizeof(__u32))
3623 		return false;
3624 
3625 	return true;
3626 }
3627 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3628 static bool xdp_is_valid_access(int off, int size,
3629 				enum bpf_access_type type,
3630 				struct bpf_insn_access_aux *info)
3631 {
3632 	if (type == BPF_WRITE)
3633 		return false;
3634 
3635 	switch (off) {
3636 	case offsetof(struct xdp_md, data):
3637 		info->reg_type = PTR_TO_PACKET;
3638 		break;
3639 	case offsetof(struct xdp_md, data_end):
3640 		info->reg_type = PTR_TO_PACKET_END;
3641 		break;
3642 	}
3643 
3644 	return __is_valid_xdp_access(off, size);
3645 }
3646 
bpf_warn_invalid_xdp_action(u32 act)3647 void bpf_warn_invalid_xdp_action(u32 act)
3648 {
3649 	const u32 act_max = XDP_REDIRECT;
3650 
3651 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
3652 		  act > act_max ? "Illegal" : "Driver unsupported",
3653 		  act);
3654 }
3655 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
3656 
__is_valid_sock_ops_access(int off,int size)3657 static bool __is_valid_sock_ops_access(int off, int size)
3658 {
3659 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
3660 		return false;
3661 	/* The verifier guarantees that size > 0. */
3662 	if (off % size != 0)
3663 		return false;
3664 	if (size != sizeof(__u32))
3665 		return false;
3666 
3667 	return true;
3668 }
3669 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3670 static bool sock_ops_is_valid_access(int off, int size,
3671 				     enum bpf_access_type type,
3672 				     struct bpf_insn_access_aux *info)
3673 {
3674 	if (type == BPF_WRITE) {
3675 		switch (off) {
3676 		case offsetof(struct bpf_sock_ops, op) ...
3677 		     offsetof(struct bpf_sock_ops, replylong[3]):
3678 			break;
3679 		default:
3680 			return false;
3681 		}
3682 	}
3683 
3684 	return __is_valid_sock_ops_access(off, size);
3685 }
3686 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)3687 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
3688 			   const struct bpf_prog *prog)
3689 {
3690 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
3691 }
3692 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3693 static bool sk_skb_is_valid_access(int off, int size,
3694 				   enum bpf_access_type type,
3695 				   struct bpf_insn_access_aux *info)
3696 {
3697 	if (type == BPF_WRITE) {
3698 		switch (off) {
3699 		case bpf_ctx_range(struct __sk_buff, tc_index):
3700 		case bpf_ctx_range(struct __sk_buff, priority):
3701 			break;
3702 		default:
3703 			return false;
3704 		}
3705 	}
3706 
3707 	switch (off) {
3708 	case bpf_ctx_range(struct __sk_buff, mark):
3709 	case bpf_ctx_range(struct __sk_buff, tc_classid):
3710 		return false;
3711 	case bpf_ctx_range(struct __sk_buff, data):
3712 		info->reg_type = PTR_TO_PACKET;
3713 		break;
3714 	case bpf_ctx_range(struct __sk_buff, data_end):
3715 		info->reg_type = PTR_TO_PACKET_END;
3716 		break;
3717 	}
3718 
3719 	return bpf_skb_is_valid_access(off, size, type, info);
3720 }
3721 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3722 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
3723 				  const struct bpf_insn *si,
3724 				  struct bpf_insn *insn_buf,
3725 				  struct bpf_prog *prog, u32 *target_size)
3726 {
3727 	struct bpf_insn *insn = insn_buf;
3728 	int off;
3729 
3730 	switch (si->off) {
3731 	case offsetof(struct __sk_buff, len):
3732 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3733 				      bpf_target_off(struct sk_buff, len, 4,
3734 						     target_size));
3735 		break;
3736 
3737 	case offsetof(struct __sk_buff, protocol):
3738 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3739 				      bpf_target_off(struct sk_buff, protocol, 2,
3740 						     target_size));
3741 		break;
3742 
3743 	case offsetof(struct __sk_buff, vlan_proto):
3744 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3745 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
3746 						     target_size));
3747 		break;
3748 
3749 	case offsetof(struct __sk_buff, priority):
3750 		if (type == BPF_WRITE)
3751 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3752 					      bpf_target_off(struct sk_buff, priority, 4,
3753 							     target_size));
3754 		else
3755 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3756 					      bpf_target_off(struct sk_buff, priority, 4,
3757 							     target_size));
3758 		break;
3759 
3760 	case offsetof(struct __sk_buff, ingress_ifindex):
3761 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3762 				      bpf_target_off(struct sk_buff, skb_iif, 4,
3763 						     target_size));
3764 		break;
3765 
3766 	case offsetof(struct __sk_buff, ifindex):
3767 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3768 				      si->dst_reg, si->src_reg,
3769 				      offsetof(struct sk_buff, dev));
3770 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
3771 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3772 				      bpf_target_off(struct net_device, ifindex, 4,
3773 						     target_size));
3774 		break;
3775 
3776 	case offsetof(struct __sk_buff, hash):
3777 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3778 				      bpf_target_off(struct sk_buff, hash, 4,
3779 						     target_size));
3780 		break;
3781 
3782 	case offsetof(struct __sk_buff, mark):
3783 		if (type == BPF_WRITE)
3784 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3785 					      bpf_target_off(struct sk_buff, mark, 4,
3786 							     target_size));
3787 		else
3788 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3789 					      bpf_target_off(struct sk_buff, mark, 4,
3790 							     target_size));
3791 		break;
3792 
3793 	case offsetof(struct __sk_buff, pkt_type):
3794 		*target_size = 1;
3795 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
3796 				      PKT_TYPE_OFFSET());
3797 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
3798 #ifdef __BIG_ENDIAN_BITFIELD
3799 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
3800 #endif
3801 		break;
3802 
3803 	case offsetof(struct __sk_buff, queue_mapping):
3804 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3805 				      bpf_target_off(struct sk_buff, queue_mapping, 2,
3806 						     target_size));
3807 		break;
3808 
3809 	case offsetof(struct __sk_buff, vlan_present):
3810 	case offsetof(struct __sk_buff, vlan_tci):
3811 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
3812 
3813 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3814 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
3815 						     target_size));
3816 		if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
3817 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
3818 						~VLAN_TAG_PRESENT);
3819 		} else {
3820 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
3821 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
3822 		}
3823 		break;
3824 
3825 	case offsetof(struct __sk_buff, cb[0]) ...
3826 	     offsetofend(struct __sk_buff, cb[4]) - 1:
3827 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
3828 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
3829 			      offsetof(struct qdisc_skb_cb, data)) %
3830 			     sizeof(__u64));
3831 
3832 		prog->cb_access = 1;
3833 		off  = si->off;
3834 		off -= offsetof(struct __sk_buff, cb[0]);
3835 		off += offsetof(struct sk_buff, cb);
3836 		off += offsetof(struct qdisc_skb_cb, data);
3837 		if (type == BPF_WRITE)
3838 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
3839 					      si->src_reg, off);
3840 		else
3841 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
3842 					      si->src_reg, off);
3843 		break;
3844 
3845 	case offsetof(struct __sk_buff, tc_classid):
3846 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
3847 
3848 		off  = si->off;
3849 		off -= offsetof(struct __sk_buff, tc_classid);
3850 		off += offsetof(struct sk_buff, cb);
3851 		off += offsetof(struct qdisc_skb_cb, tc_classid);
3852 		*target_size = 2;
3853 		if (type == BPF_WRITE)
3854 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
3855 					      si->src_reg, off);
3856 		else
3857 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
3858 					      si->src_reg, off);
3859 		break;
3860 
3861 	case offsetof(struct __sk_buff, data):
3862 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
3863 				      si->dst_reg, si->src_reg,
3864 				      offsetof(struct sk_buff, data));
3865 		break;
3866 
3867 	case offsetof(struct __sk_buff, data_end):
3868 		off  = si->off;
3869 		off -= offsetof(struct __sk_buff, data_end);
3870 		off += offsetof(struct sk_buff, cb);
3871 		off += offsetof(struct bpf_skb_data_end, data_end);
3872 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
3873 				      si->src_reg, off);
3874 		break;
3875 
3876 	case offsetof(struct __sk_buff, tc_index):
3877 #ifdef CONFIG_NET_SCHED
3878 		if (type == BPF_WRITE)
3879 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
3880 					      bpf_target_off(struct sk_buff, tc_index, 2,
3881 							     target_size));
3882 		else
3883 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3884 					      bpf_target_off(struct sk_buff, tc_index, 2,
3885 							     target_size));
3886 #else
3887 		*target_size = 2;
3888 		if (type == BPF_WRITE)
3889 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
3890 		else
3891 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3892 #endif
3893 		break;
3894 
3895 	case offsetof(struct __sk_buff, napi_id):
3896 #if defined(CONFIG_NET_RX_BUSY_POLL)
3897 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3898 				      bpf_target_off(struct sk_buff, napi_id, 4,
3899 						     target_size));
3900 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
3901 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3902 #else
3903 		*target_size = 4;
3904 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3905 #endif
3906 		break;
3907 	case offsetof(struct __sk_buff, family):
3908 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
3909 
3910 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
3911 				      si->dst_reg, si->src_reg,
3912 				      offsetof(struct sk_buff, sk));
3913 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
3914 				      bpf_target_off(struct sock_common,
3915 						     skc_family,
3916 						     2, target_size));
3917 		break;
3918 	case offsetof(struct __sk_buff, remote_ip4):
3919 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
3920 
3921 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
3922 				      si->dst_reg, si->src_reg,
3923 				      offsetof(struct sk_buff, sk));
3924 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3925 				      bpf_target_off(struct sock_common,
3926 						     skc_daddr,
3927 						     4, target_size));
3928 		break;
3929 	case offsetof(struct __sk_buff, local_ip4):
3930 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
3931 					  skc_rcv_saddr) != 4);
3932 
3933 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
3934 				      si->dst_reg, si->src_reg,
3935 				      offsetof(struct sk_buff, sk));
3936 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3937 				      bpf_target_off(struct sock_common,
3938 						     skc_rcv_saddr,
3939 						     4, target_size));
3940 		break;
3941 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
3942 	     offsetof(struct __sk_buff, remote_ip6[3]):
3943 #if IS_ENABLED(CONFIG_IPV6)
3944 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
3945 					  skc_v6_daddr.s6_addr32[0]) != 4);
3946 
3947 		off = si->off;
3948 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
3949 
3950 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
3951 				      si->dst_reg, si->src_reg,
3952 				      offsetof(struct sk_buff, sk));
3953 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3954 				      offsetof(struct sock_common,
3955 					       skc_v6_daddr.s6_addr32[0]) +
3956 				      off);
3957 #else
3958 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
3959 #endif
3960 		break;
3961 	case offsetof(struct __sk_buff, local_ip6[0]) ...
3962 	     offsetof(struct __sk_buff, local_ip6[3]):
3963 #if IS_ENABLED(CONFIG_IPV6)
3964 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
3965 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
3966 
3967 		off = si->off;
3968 		off -= offsetof(struct __sk_buff, local_ip6[0]);
3969 
3970 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
3971 				      si->dst_reg, si->src_reg,
3972 				      offsetof(struct sk_buff, sk));
3973 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3974 				      offsetof(struct sock_common,
3975 					       skc_v6_rcv_saddr.s6_addr32[0]) +
3976 				      off);
3977 #else
3978 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
3979 #endif
3980 		break;
3981 
3982 	case offsetof(struct __sk_buff, remote_port):
3983 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
3984 
3985 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
3986 				      si->dst_reg, si->src_reg,
3987 				      offsetof(struct sk_buff, sk));
3988 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
3989 				      bpf_target_off(struct sock_common,
3990 						     skc_dport,
3991 						     2, target_size));
3992 #ifndef __BIG_ENDIAN_BITFIELD
3993 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
3994 #endif
3995 		break;
3996 
3997 	case offsetof(struct __sk_buff, local_port):
3998 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
3999 
4000 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4001 				      si->dst_reg, si->src_reg,
4002 				      offsetof(struct sk_buff, sk));
4003 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4004 				      bpf_target_off(struct sock_common,
4005 						     skc_num, 2, target_size));
4006 		break;
4007 	}
4008 
4009 	return insn - insn_buf;
4010 }
4011 
sock_filter_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)4012 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
4013 					  const struct bpf_insn *si,
4014 					  struct bpf_insn *insn_buf,
4015 					  struct bpf_prog *prog, u32 *target_size)
4016 {
4017 	struct bpf_insn *insn = insn_buf;
4018 
4019 	switch (si->off) {
4020 	case offsetof(struct bpf_sock, bound_dev_if):
4021 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
4022 
4023 		if (type == BPF_WRITE)
4024 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4025 					offsetof(struct sock, sk_bound_dev_if));
4026 		else
4027 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4028 				      offsetof(struct sock, sk_bound_dev_if));
4029 		break;
4030 
4031 	case offsetof(struct bpf_sock, mark):
4032 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
4033 
4034 		if (type == BPF_WRITE)
4035 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4036 					offsetof(struct sock, sk_mark));
4037 		else
4038 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4039 				      offsetof(struct sock, sk_mark));
4040 		break;
4041 
4042 	case offsetof(struct bpf_sock, priority):
4043 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
4044 
4045 		if (type == BPF_WRITE)
4046 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4047 					offsetof(struct sock, sk_priority));
4048 		else
4049 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4050 				      offsetof(struct sock, sk_priority));
4051 		break;
4052 
4053 	case offsetof(struct bpf_sock, family):
4054 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
4055 
4056 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4057 				      offsetof(struct sock, sk_family));
4058 		break;
4059 
4060 	case offsetof(struct bpf_sock, type):
4061 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4062 				      offsetof(struct sock, __sk_flags_offset));
4063 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
4064 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
4065 		break;
4066 
4067 	case offsetof(struct bpf_sock, protocol):
4068 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4069 				      offsetof(struct sock, __sk_flags_offset));
4070 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
4071 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
4072 		break;
4073 	}
4074 
4075 	return insn - insn_buf;
4076 }
4077 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)4078 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
4079 					 const struct bpf_insn *si,
4080 					 struct bpf_insn *insn_buf,
4081 					 struct bpf_prog *prog, u32 *target_size)
4082 {
4083 	struct bpf_insn *insn = insn_buf;
4084 
4085 	switch (si->off) {
4086 	case offsetof(struct __sk_buff, ifindex):
4087 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
4088 				      si->dst_reg, si->src_reg,
4089 				      offsetof(struct sk_buff, dev));
4090 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4091 				      bpf_target_off(struct net_device, ifindex, 4,
4092 						     target_size));
4093 		break;
4094 	default:
4095 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
4096 					      target_size);
4097 	}
4098 
4099 	return insn - insn_buf;
4100 }
4101 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)4102 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
4103 				  const struct bpf_insn *si,
4104 				  struct bpf_insn *insn_buf,
4105 				  struct bpf_prog *prog, u32 *target_size)
4106 {
4107 	struct bpf_insn *insn = insn_buf;
4108 
4109 	switch (si->off) {
4110 	case offsetof(struct xdp_md, data):
4111 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
4112 				      si->dst_reg, si->src_reg,
4113 				      offsetof(struct xdp_buff, data));
4114 		break;
4115 	case offsetof(struct xdp_md, data_end):
4116 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
4117 				      si->dst_reg, si->src_reg,
4118 				      offsetof(struct xdp_buff, data_end));
4119 		break;
4120 	}
4121 
4122 	return insn - insn_buf;
4123 }
4124 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)4125 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
4126 				       const struct bpf_insn *si,
4127 				       struct bpf_insn *insn_buf,
4128 				       struct bpf_prog *prog,
4129 				       u32 *target_size)
4130 {
4131 	struct bpf_insn *insn = insn_buf;
4132 	int off;
4133 
4134 	switch (si->off) {
4135 	case offsetof(struct bpf_sock_ops, op) ...
4136 	     offsetof(struct bpf_sock_ops, replylong[3]):
4137 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
4138 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
4139 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
4140 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
4141 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
4142 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
4143 		off = si->off;
4144 		off -= offsetof(struct bpf_sock_ops, op);
4145 		off += offsetof(struct bpf_sock_ops_kern, op);
4146 		if (type == BPF_WRITE)
4147 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4148 					      off);
4149 		else
4150 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4151 					      off);
4152 		break;
4153 
4154 	case offsetof(struct bpf_sock_ops, family):
4155 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
4156 
4157 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4158 					      struct bpf_sock_ops_kern, sk),
4159 				      si->dst_reg, si->src_reg,
4160 				      offsetof(struct bpf_sock_ops_kern, sk));
4161 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4162 				      offsetof(struct sock_common, skc_family));
4163 		break;
4164 
4165 	case offsetof(struct bpf_sock_ops, remote_ip4):
4166 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
4167 
4168 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4169 						struct bpf_sock_ops_kern, sk),
4170 				      si->dst_reg, si->src_reg,
4171 				      offsetof(struct bpf_sock_ops_kern, sk));
4172 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4173 				      offsetof(struct sock_common, skc_daddr));
4174 		break;
4175 
4176 	case offsetof(struct bpf_sock_ops, local_ip4):
4177 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_rcv_saddr) != 4);
4178 
4179 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4180 					      struct bpf_sock_ops_kern, sk),
4181 				      si->dst_reg, si->src_reg,
4182 				      offsetof(struct bpf_sock_ops_kern, sk));
4183 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4184 				      offsetof(struct sock_common,
4185 					       skc_rcv_saddr));
4186 		break;
4187 
4188 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
4189 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
4190 #if IS_ENABLED(CONFIG_IPV6)
4191 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4192 					  skc_v6_daddr.s6_addr32[0]) != 4);
4193 
4194 		off = si->off;
4195 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
4196 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4197 						struct bpf_sock_ops_kern, sk),
4198 				      si->dst_reg, si->src_reg,
4199 				      offsetof(struct bpf_sock_ops_kern, sk));
4200 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4201 				      offsetof(struct sock_common,
4202 					       skc_v6_daddr.s6_addr32[0]) +
4203 				      off);
4204 #else
4205 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
4206 #endif
4207 		break;
4208 
4209 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
4210 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
4211 #if IS_ENABLED(CONFIG_IPV6)
4212 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4213 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
4214 
4215 		off = si->off;
4216 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
4217 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4218 						struct bpf_sock_ops_kern, sk),
4219 				      si->dst_reg, si->src_reg,
4220 				      offsetof(struct bpf_sock_ops_kern, sk));
4221 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4222 				      offsetof(struct sock_common,
4223 					       skc_v6_rcv_saddr.s6_addr32[0]) +
4224 				      off);
4225 #else
4226 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
4227 #endif
4228 		break;
4229 
4230 	case offsetof(struct bpf_sock_ops, remote_port):
4231 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
4232 
4233 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4234 						struct bpf_sock_ops_kern, sk),
4235 				      si->dst_reg, si->src_reg,
4236 				      offsetof(struct bpf_sock_ops_kern, sk));
4237 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4238 				      offsetof(struct sock_common, skc_dport));
4239 #ifndef __BIG_ENDIAN_BITFIELD
4240 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
4241 #endif
4242 		break;
4243 
4244 	case offsetof(struct bpf_sock_ops, local_port):
4245 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
4246 
4247 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4248 						struct bpf_sock_ops_kern, sk),
4249 				      si->dst_reg, si->src_reg,
4250 				      offsetof(struct bpf_sock_ops_kern, sk));
4251 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4252 				      offsetof(struct sock_common, skc_num));
4253 		break;
4254 	}
4255 	return insn - insn_buf;
4256 }
4257 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)4258 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
4259 				     const struct bpf_insn *si,
4260 				     struct bpf_insn *insn_buf,
4261 				     struct bpf_prog *prog, u32 *target_size)
4262 {
4263 	struct bpf_insn *insn = insn_buf;
4264 	int off;
4265 
4266 	switch (si->off) {
4267 	case offsetof(struct __sk_buff, data_end):
4268 		off  = si->off;
4269 		off -= offsetof(struct __sk_buff, data_end);
4270 		off += offsetof(struct sk_buff, cb);
4271 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
4272 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
4273 				      si->src_reg, off);
4274 		break;
4275 	default:
4276 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
4277 					      target_size);
4278 	}
4279 
4280 	return insn - insn_buf;
4281 }
4282 
4283 const struct bpf_verifier_ops sk_filter_prog_ops = {
4284 	.get_func_proto		= sk_filter_func_proto,
4285 	.is_valid_access	= sk_filter_is_valid_access,
4286 	.convert_ctx_access	= bpf_convert_ctx_access,
4287 };
4288 
4289 const struct bpf_verifier_ops tc_cls_act_prog_ops = {
4290 	.get_func_proto		= tc_cls_act_func_proto,
4291 	.is_valid_access	= tc_cls_act_is_valid_access,
4292 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
4293 	.gen_prologue		= tc_cls_act_prologue,
4294 	.test_run		= bpf_prog_test_run_skb,
4295 };
4296 
4297 const struct bpf_verifier_ops xdp_prog_ops = {
4298 	.get_func_proto		= xdp_func_proto,
4299 	.is_valid_access	= xdp_is_valid_access,
4300 	.convert_ctx_access	= xdp_convert_ctx_access,
4301 	.test_run		= bpf_prog_test_run_xdp,
4302 };
4303 
4304 const struct bpf_verifier_ops cg_skb_prog_ops = {
4305 	.get_func_proto		= sk_filter_func_proto,
4306 	.is_valid_access	= sk_filter_is_valid_access,
4307 	.convert_ctx_access	= bpf_convert_ctx_access,
4308 	.test_run		= bpf_prog_test_run_skb,
4309 };
4310 
4311 const struct bpf_verifier_ops lwt_inout_prog_ops = {
4312 	.get_func_proto		= lwt_inout_func_proto,
4313 	.is_valid_access	= lwt_is_valid_access,
4314 	.convert_ctx_access	= bpf_convert_ctx_access,
4315 	.test_run		= bpf_prog_test_run_skb,
4316 };
4317 
4318 const struct bpf_verifier_ops lwt_xmit_prog_ops = {
4319 	.get_func_proto		= lwt_xmit_func_proto,
4320 	.is_valid_access	= lwt_is_valid_access,
4321 	.convert_ctx_access	= bpf_convert_ctx_access,
4322 	.gen_prologue		= tc_cls_act_prologue,
4323 	.test_run		= bpf_prog_test_run_skb,
4324 };
4325 
4326 const struct bpf_verifier_ops cg_sock_prog_ops = {
4327 	.get_func_proto		= sock_filter_func_proto,
4328 	.is_valid_access	= sock_filter_is_valid_access,
4329 	.convert_ctx_access	= sock_filter_convert_ctx_access,
4330 };
4331 
4332 const struct bpf_verifier_ops sock_ops_prog_ops = {
4333 	.get_func_proto		= sock_ops_func_proto,
4334 	.is_valid_access	= sock_ops_is_valid_access,
4335 	.convert_ctx_access	= sock_ops_convert_ctx_access,
4336 };
4337 
4338 const struct bpf_verifier_ops sk_skb_prog_ops = {
4339 	.get_func_proto		= sk_skb_func_proto,
4340 	.is_valid_access	= sk_skb_is_valid_access,
4341 	.convert_ctx_access	= sk_skb_convert_ctx_access,
4342 	.gen_prologue		= sk_skb_prologue,
4343 };
4344 
sk_detach_filter(struct sock * sk)4345 int sk_detach_filter(struct sock *sk)
4346 {
4347 	int ret = -ENOENT;
4348 	struct sk_filter *filter;
4349 
4350 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
4351 		return -EPERM;
4352 
4353 	filter = rcu_dereference_protected(sk->sk_filter,
4354 					   lockdep_sock_is_held(sk));
4355 	if (filter) {
4356 		RCU_INIT_POINTER(sk->sk_filter, NULL);
4357 		sk_filter_uncharge(sk, filter);
4358 		ret = 0;
4359 	}
4360 
4361 	return ret;
4362 }
4363 EXPORT_SYMBOL_GPL(sk_detach_filter);
4364 
sk_get_filter(struct sock * sk,struct sock_filter __user * ubuf,unsigned int len)4365 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
4366 		  unsigned int len)
4367 {
4368 	struct sock_fprog_kern *fprog;
4369 	struct sk_filter *filter;
4370 	int ret = 0;
4371 
4372 	lock_sock(sk);
4373 	filter = rcu_dereference_protected(sk->sk_filter,
4374 					   lockdep_sock_is_held(sk));
4375 	if (!filter)
4376 		goto out;
4377 
4378 	/* We're copying the filter that has been originally attached,
4379 	 * so no conversion/decode needed anymore. eBPF programs that
4380 	 * have no original program cannot be dumped through this.
4381 	 */
4382 	ret = -EACCES;
4383 	fprog = filter->prog->orig_prog;
4384 	if (!fprog)
4385 		goto out;
4386 
4387 	ret = fprog->len;
4388 	if (!len)
4389 		/* User space only enquires number of filter blocks. */
4390 		goto out;
4391 
4392 	ret = -EINVAL;
4393 	if (len < fprog->len)
4394 		goto out;
4395 
4396 	ret = -EFAULT;
4397 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
4398 		goto out;
4399 
4400 	/* Instead of bytes, the API requests to return the number
4401 	 * of filter blocks.
4402 	 */
4403 	ret = fprog->len;
4404 out:
4405 	release_sock(sk);
4406 	return ret;
4407 }
4408