• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43 
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48 
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_vgpu.h"
52 #include "intel_drv.h"
53 #include "intel_uc.h"
54 
55 static struct drm_driver driver;
56 
57 static unsigned int i915_load_fail_count;
58 
__i915_inject_load_failure(const char * func,int line)59 bool __i915_inject_load_failure(const char *func, int line)
60 {
61 	if (i915_load_fail_count >= i915.inject_load_failure)
62 		return false;
63 
64 	if (++i915_load_fail_count == i915.inject_load_failure) {
65 		DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
66 			 i915.inject_load_failure, func, line);
67 		return true;
68 	}
69 
70 	return false;
71 }
72 
73 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
74 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
75 		    "providing the dmesg log by booting with drm.debug=0xf"
76 
77 void
__i915_printk(struct drm_i915_private * dev_priv,const char * level,const char * fmt,...)78 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
79 	      const char *fmt, ...)
80 {
81 	static bool shown_bug_once;
82 	struct device *kdev = dev_priv->drm.dev;
83 	bool is_error = level[1] <= KERN_ERR[1];
84 	bool is_debug = level[1] == KERN_DEBUG[1];
85 	struct va_format vaf;
86 	va_list args;
87 
88 	if (is_debug && !(drm_debug & DRM_UT_DRIVER))
89 		return;
90 
91 	va_start(args, fmt);
92 
93 	vaf.fmt = fmt;
94 	vaf.va = &args;
95 
96 	dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
97 		   __builtin_return_address(0), &vaf);
98 
99 	if (is_error && !shown_bug_once) {
100 		dev_notice(kdev, "%s", FDO_BUG_MSG);
101 		shown_bug_once = true;
102 	}
103 
104 	va_end(args);
105 }
106 
i915_error_injected(struct drm_i915_private * dev_priv)107 static bool i915_error_injected(struct drm_i915_private *dev_priv)
108 {
109 	return i915.inject_load_failure &&
110 	       i915_load_fail_count == i915.inject_load_failure;
111 }
112 
113 #define i915_load_error(dev_priv, fmt, ...)				     \
114 	__i915_printk(dev_priv,						     \
115 		      i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
116 		      fmt, ##__VA_ARGS__)
117 
118 
intel_virt_detect_pch(struct drm_i915_private * dev_priv)119 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
120 {
121 	enum intel_pch ret = PCH_NOP;
122 
123 	/*
124 	 * In a virtualized passthrough environment we can be in a
125 	 * setup where the ISA bridge is not able to be passed through.
126 	 * In this case, a south bridge can be emulated and we have to
127 	 * make an educated guess as to which PCH is really there.
128 	 */
129 
130 	if (IS_GEN5(dev_priv)) {
131 		ret = PCH_IBX;
132 		DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
133 	} else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
134 		ret = PCH_CPT;
135 		DRM_DEBUG_KMS("Assuming CougarPoint PCH\n");
136 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
137 		ret = PCH_LPT;
138 		if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
139 			dev_priv->pch_id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
140 		else
141 			dev_priv->pch_id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
142 		DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
143 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
144 		ret = PCH_SPT;
145 		DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
146 	} else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) {
147 		ret = PCH_CNP;
148 		DRM_DEBUG_KMS("Assuming CannonPoint PCH\n");
149 	}
150 
151 	return ret;
152 }
153 
intel_detect_pch(struct drm_i915_private * dev_priv)154 static void intel_detect_pch(struct drm_i915_private *dev_priv)
155 {
156 	struct pci_dev *pch = NULL;
157 
158 	/* In all current cases, num_pipes is equivalent to the PCH_NOP setting
159 	 * (which really amounts to a PCH but no South Display).
160 	 */
161 	if (INTEL_INFO(dev_priv)->num_pipes == 0) {
162 		dev_priv->pch_type = PCH_NOP;
163 		return;
164 	}
165 
166 	/*
167 	 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
168 	 * make graphics device passthrough work easy for VMM, that only
169 	 * need to expose ISA bridge to let driver know the real hardware
170 	 * underneath. This is a requirement from virtualization team.
171 	 *
172 	 * In some virtualized environments (e.g. XEN), there is irrelevant
173 	 * ISA bridge in the system. To work reliably, we should scan trhough
174 	 * all the ISA bridge devices and check for the first match, instead
175 	 * of only checking the first one.
176 	 */
177 	while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
178 		if (pch->vendor == PCI_VENDOR_ID_INTEL) {
179 			unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
180 
181 			dev_priv->pch_id = id;
182 
183 			if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
184 				dev_priv->pch_type = PCH_IBX;
185 				DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
186 				WARN_ON(!IS_GEN5(dev_priv));
187 			} else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
188 				dev_priv->pch_type = PCH_CPT;
189 				DRM_DEBUG_KMS("Found CougarPoint PCH\n");
190 				WARN_ON(!IS_GEN6(dev_priv) &&
191 					!IS_IVYBRIDGE(dev_priv));
192 			} else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
193 				/* PantherPoint is CPT compatible */
194 				dev_priv->pch_type = PCH_CPT;
195 				DRM_DEBUG_KMS("Found PantherPoint PCH\n");
196 				WARN_ON(!IS_GEN6(dev_priv) &&
197 					!IS_IVYBRIDGE(dev_priv));
198 			} else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
199 				dev_priv->pch_type = PCH_LPT;
200 				DRM_DEBUG_KMS("Found LynxPoint PCH\n");
201 				WARN_ON(!IS_HASWELL(dev_priv) &&
202 					!IS_BROADWELL(dev_priv));
203 				WARN_ON(IS_HSW_ULT(dev_priv) ||
204 					IS_BDW_ULT(dev_priv));
205 			} else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
206 				dev_priv->pch_type = PCH_LPT;
207 				DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
208 				WARN_ON(!IS_HASWELL(dev_priv) &&
209 					!IS_BROADWELL(dev_priv));
210 				WARN_ON(!IS_HSW_ULT(dev_priv) &&
211 					!IS_BDW_ULT(dev_priv));
212 			} else if (id == INTEL_PCH_WPT_DEVICE_ID_TYPE) {
213 				/* WildcatPoint is LPT compatible */
214 				dev_priv->pch_type = PCH_LPT;
215 				DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
216 				WARN_ON(!IS_HASWELL(dev_priv) &&
217 					!IS_BROADWELL(dev_priv));
218 				WARN_ON(IS_HSW_ULT(dev_priv) ||
219 					IS_BDW_ULT(dev_priv));
220 			} else if (id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) {
221 				/* WildcatPoint is LPT compatible */
222 				dev_priv->pch_type = PCH_LPT;
223 				DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
224 				WARN_ON(!IS_HASWELL(dev_priv) &&
225 					!IS_BROADWELL(dev_priv));
226 				WARN_ON(!IS_HSW_ULT(dev_priv) &&
227 					!IS_BDW_ULT(dev_priv));
228 			} else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
229 				dev_priv->pch_type = PCH_SPT;
230 				DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
231 				WARN_ON(!IS_SKYLAKE(dev_priv) &&
232 					!IS_KABYLAKE(dev_priv));
233 			} else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
234 				dev_priv->pch_type = PCH_SPT;
235 				DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
236 				WARN_ON(!IS_SKYLAKE(dev_priv) &&
237 					!IS_KABYLAKE(dev_priv));
238 			} else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
239 				dev_priv->pch_type = PCH_KBP;
240 				DRM_DEBUG_KMS("Found Kaby Lake PCH (KBP)\n");
241 				WARN_ON(!IS_SKYLAKE(dev_priv) &&
242 					!IS_KABYLAKE(dev_priv));
243 			} else if (id == INTEL_PCH_CNP_DEVICE_ID_TYPE) {
244 				dev_priv->pch_type = PCH_CNP;
245 				DRM_DEBUG_KMS("Found Cannon Lake PCH (CNP)\n");
246 				WARN_ON(!IS_CANNONLAKE(dev_priv) &&
247 					!IS_COFFEELAKE(dev_priv));
248 			} else if (id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) {
249 				dev_priv->pch_type = PCH_CNP;
250 				DRM_DEBUG_KMS("Found Cannon Lake LP PCH (CNP-LP)\n");
251 				WARN_ON(!IS_CANNONLAKE(dev_priv) &&
252 					!IS_COFFEELAKE(dev_priv));
253 			} else if (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
254 				   id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
255 				   (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
256 				    pch->subsystem_vendor ==
257 					    PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
258 				    pch->subsystem_device ==
259 					    PCI_SUBDEVICE_ID_QEMU)) {
260 				dev_priv->pch_type =
261 					intel_virt_detect_pch(dev_priv);
262 			} else
263 				continue;
264 
265 			break;
266 		}
267 	}
268 	if (!pch)
269 		DRM_DEBUG_KMS("No PCH found.\n");
270 
271 	pci_dev_put(pch);
272 }
273 
i915_getparam(struct drm_device * dev,void * data,struct drm_file * file_priv)274 static int i915_getparam(struct drm_device *dev, void *data,
275 			 struct drm_file *file_priv)
276 {
277 	struct drm_i915_private *dev_priv = to_i915(dev);
278 	struct pci_dev *pdev = dev_priv->drm.pdev;
279 	drm_i915_getparam_t *param = data;
280 	int value;
281 
282 	switch (param->param) {
283 	case I915_PARAM_IRQ_ACTIVE:
284 	case I915_PARAM_ALLOW_BATCHBUFFER:
285 	case I915_PARAM_LAST_DISPATCH:
286 	case I915_PARAM_HAS_EXEC_CONSTANTS:
287 		/* Reject all old ums/dri params. */
288 		return -ENODEV;
289 	case I915_PARAM_CHIPSET_ID:
290 		value = pdev->device;
291 		break;
292 	case I915_PARAM_REVISION:
293 		value = pdev->revision;
294 		break;
295 	case I915_PARAM_NUM_FENCES_AVAIL:
296 		value = dev_priv->num_fence_regs;
297 		break;
298 	case I915_PARAM_HAS_OVERLAY:
299 		value = dev_priv->overlay ? 1 : 0;
300 		break;
301 	case I915_PARAM_HAS_BSD:
302 		value = !!dev_priv->engine[VCS];
303 		break;
304 	case I915_PARAM_HAS_BLT:
305 		value = !!dev_priv->engine[BCS];
306 		break;
307 	case I915_PARAM_HAS_VEBOX:
308 		value = !!dev_priv->engine[VECS];
309 		break;
310 	case I915_PARAM_HAS_BSD2:
311 		value = !!dev_priv->engine[VCS2];
312 		break;
313 	case I915_PARAM_HAS_LLC:
314 		value = HAS_LLC(dev_priv);
315 		break;
316 	case I915_PARAM_HAS_WT:
317 		value = HAS_WT(dev_priv);
318 		break;
319 	case I915_PARAM_HAS_ALIASING_PPGTT:
320 		value = USES_PPGTT(dev_priv);
321 		break;
322 	case I915_PARAM_HAS_SEMAPHORES:
323 		value = i915.semaphores;
324 		break;
325 	case I915_PARAM_HAS_SECURE_BATCHES:
326 		value = HAS_SECURE_BATCHES(dev_priv) && capable(CAP_SYS_ADMIN);
327 		break;
328 	case I915_PARAM_CMD_PARSER_VERSION:
329 		value = i915_cmd_parser_get_version(dev_priv);
330 		break;
331 	case I915_PARAM_SUBSLICE_TOTAL:
332 		value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
333 		if (!value)
334 			return -ENODEV;
335 		break;
336 	case I915_PARAM_EU_TOTAL:
337 		value = INTEL_INFO(dev_priv)->sseu.eu_total;
338 		if (!value)
339 			return -ENODEV;
340 		break;
341 	case I915_PARAM_HAS_GPU_RESET:
342 		value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
343 		if (value && intel_has_reset_engine(dev_priv))
344 			value = 2;
345 		break;
346 	case I915_PARAM_HAS_RESOURCE_STREAMER:
347 		value = HAS_RESOURCE_STREAMER(dev_priv);
348 		break;
349 	case I915_PARAM_HAS_POOLED_EU:
350 		value = HAS_POOLED_EU(dev_priv);
351 		break;
352 	case I915_PARAM_MIN_EU_IN_POOL:
353 		value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
354 		break;
355 	case I915_PARAM_HUC_STATUS:
356 		intel_runtime_pm_get(dev_priv);
357 		value = I915_READ(HUC_STATUS2) & HUC_FW_VERIFIED;
358 		intel_runtime_pm_put(dev_priv);
359 		break;
360 	case I915_PARAM_MMAP_GTT_VERSION:
361 		/* Though we've started our numbering from 1, and so class all
362 		 * earlier versions as 0, in effect their value is undefined as
363 		 * the ioctl will report EINVAL for the unknown param!
364 		 */
365 		value = i915_gem_mmap_gtt_version();
366 		break;
367 	case I915_PARAM_HAS_SCHEDULER:
368 		value = dev_priv->engine[RCS] &&
369 			dev_priv->engine[RCS]->schedule;
370 		break;
371 	case I915_PARAM_MMAP_VERSION:
372 		/* Remember to bump this if the version changes! */
373 	case I915_PARAM_HAS_GEM:
374 	case I915_PARAM_HAS_PAGEFLIPPING:
375 	case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
376 	case I915_PARAM_HAS_RELAXED_FENCING:
377 	case I915_PARAM_HAS_COHERENT_RINGS:
378 	case I915_PARAM_HAS_RELAXED_DELTA:
379 	case I915_PARAM_HAS_GEN7_SOL_RESET:
380 	case I915_PARAM_HAS_WAIT_TIMEOUT:
381 	case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
382 	case I915_PARAM_HAS_PINNED_BATCHES:
383 	case I915_PARAM_HAS_EXEC_NO_RELOC:
384 	case I915_PARAM_HAS_EXEC_HANDLE_LUT:
385 	case I915_PARAM_HAS_COHERENT_PHYS_GTT:
386 	case I915_PARAM_HAS_EXEC_SOFTPIN:
387 	case I915_PARAM_HAS_EXEC_ASYNC:
388 	case I915_PARAM_HAS_EXEC_FENCE:
389 	case I915_PARAM_HAS_EXEC_CAPTURE:
390 	case I915_PARAM_HAS_EXEC_BATCH_FIRST:
391 	case I915_PARAM_HAS_EXEC_FENCE_ARRAY:
392 		/* For the time being all of these are always true;
393 		 * if some supported hardware does not have one of these
394 		 * features this value needs to be provided from
395 		 * INTEL_INFO(), a feature macro, or similar.
396 		 */
397 		value = 1;
398 		break;
399 	case I915_PARAM_SLICE_MASK:
400 		value = INTEL_INFO(dev_priv)->sseu.slice_mask;
401 		if (!value)
402 			return -ENODEV;
403 		break;
404 	case I915_PARAM_SUBSLICE_MASK:
405 		value = INTEL_INFO(dev_priv)->sseu.subslice_mask;
406 		if (!value)
407 			return -ENODEV;
408 		break;
409 	default:
410 		DRM_DEBUG("Unknown parameter %d\n", param->param);
411 		return -EINVAL;
412 	}
413 
414 	if (put_user(value, param->value))
415 		return -EFAULT;
416 
417 	return 0;
418 }
419 
i915_get_bridge_dev(struct drm_i915_private * dev_priv)420 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
421 {
422 	dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
423 	if (!dev_priv->bridge_dev) {
424 		DRM_ERROR("bridge device not found\n");
425 		return -1;
426 	}
427 	return 0;
428 }
429 
430 /* Allocate space for the MCH regs if needed, return nonzero on error */
431 static int
intel_alloc_mchbar_resource(struct drm_i915_private * dev_priv)432 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
433 {
434 	int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
435 	u32 temp_lo, temp_hi = 0;
436 	u64 mchbar_addr;
437 	int ret;
438 
439 	if (INTEL_GEN(dev_priv) >= 4)
440 		pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
441 	pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
442 	mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
443 
444 	/* If ACPI doesn't have it, assume we need to allocate it ourselves */
445 #ifdef CONFIG_PNP
446 	if (mchbar_addr &&
447 	    pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
448 		return 0;
449 #endif
450 
451 	/* Get some space for it */
452 	dev_priv->mch_res.name = "i915 MCHBAR";
453 	dev_priv->mch_res.flags = IORESOURCE_MEM;
454 	ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
455 				     &dev_priv->mch_res,
456 				     MCHBAR_SIZE, MCHBAR_SIZE,
457 				     PCIBIOS_MIN_MEM,
458 				     0, pcibios_align_resource,
459 				     dev_priv->bridge_dev);
460 	if (ret) {
461 		DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
462 		dev_priv->mch_res.start = 0;
463 		return ret;
464 	}
465 
466 	if (INTEL_GEN(dev_priv) >= 4)
467 		pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
468 				       upper_32_bits(dev_priv->mch_res.start));
469 
470 	pci_write_config_dword(dev_priv->bridge_dev, reg,
471 			       lower_32_bits(dev_priv->mch_res.start));
472 	return 0;
473 }
474 
475 /* Setup MCHBAR if possible, return true if we should disable it again */
476 static void
intel_setup_mchbar(struct drm_i915_private * dev_priv)477 intel_setup_mchbar(struct drm_i915_private *dev_priv)
478 {
479 	int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
480 	u32 temp;
481 	bool enabled;
482 
483 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
484 		return;
485 
486 	dev_priv->mchbar_need_disable = false;
487 
488 	if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
489 		pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
490 		enabled = !!(temp & DEVEN_MCHBAR_EN);
491 	} else {
492 		pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
493 		enabled = temp & 1;
494 	}
495 
496 	/* If it's already enabled, don't have to do anything */
497 	if (enabled)
498 		return;
499 
500 	if (intel_alloc_mchbar_resource(dev_priv))
501 		return;
502 
503 	dev_priv->mchbar_need_disable = true;
504 
505 	/* Space is allocated or reserved, so enable it. */
506 	if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
507 		pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
508 				       temp | DEVEN_MCHBAR_EN);
509 	} else {
510 		pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
511 		pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
512 	}
513 }
514 
515 static void
intel_teardown_mchbar(struct drm_i915_private * dev_priv)516 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
517 {
518 	int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
519 
520 	if (dev_priv->mchbar_need_disable) {
521 		if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
522 			u32 deven_val;
523 
524 			pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
525 					      &deven_val);
526 			deven_val &= ~DEVEN_MCHBAR_EN;
527 			pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
528 					       deven_val);
529 		} else {
530 			u32 mchbar_val;
531 
532 			pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
533 					      &mchbar_val);
534 			mchbar_val &= ~1;
535 			pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
536 					       mchbar_val);
537 		}
538 	}
539 
540 	if (dev_priv->mch_res.start)
541 		release_resource(&dev_priv->mch_res);
542 }
543 
544 /* true = enable decode, false = disable decoder */
i915_vga_set_decode(void * cookie,bool state)545 static unsigned int i915_vga_set_decode(void *cookie, bool state)
546 {
547 	struct drm_i915_private *dev_priv = cookie;
548 
549 	intel_modeset_vga_set_state(dev_priv, state);
550 	if (state)
551 		return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
552 		       VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
553 	else
554 		return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
555 }
556 
557 static int i915_resume_switcheroo(struct drm_device *dev);
558 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
559 
i915_switcheroo_set_state(struct pci_dev * pdev,enum vga_switcheroo_state state)560 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
561 {
562 	struct drm_device *dev = pci_get_drvdata(pdev);
563 	pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
564 
565 	if (state == VGA_SWITCHEROO_ON) {
566 		pr_info("switched on\n");
567 		dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
568 		/* i915 resume handler doesn't set to D0 */
569 		pci_set_power_state(pdev, PCI_D0);
570 		i915_resume_switcheroo(dev);
571 		dev->switch_power_state = DRM_SWITCH_POWER_ON;
572 	} else {
573 		pr_info("switched off\n");
574 		dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
575 		i915_suspend_switcheroo(dev, pmm);
576 		dev->switch_power_state = DRM_SWITCH_POWER_OFF;
577 	}
578 }
579 
i915_switcheroo_can_switch(struct pci_dev * pdev)580 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
581 {
582 	struct drm_device *dev = pci_get_drvdata(pdev);
583 
584 	/*
585 	 * FIXME: open_count is protected by drm_global_mutex but that would lead to
586 	 * locking inversion with the driver load path. And the access here is
587 	 * completely racy anyway. So don't bother with locking for now.
588 	 */
589 	return dev->open_count == 0;
590 }
591 
592 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
593 	.set_gpu_state = i915_switcheroo_set_state,
594 	.reprobe = NULL,
595 	.can_switch = i915_switcheroo_can_switch,
596 };
597 
i915_gem_fini(struct drm_i915_private * dev_priv)598 static void i915_gem_fini(struct drm_i915_private *dev_priv)
599 {
600 	/* Flush any outstanding unpin_work. */
601 	i915_gem_drain_workqueue(dev_priv);
602 
603 	mutex_lock(&dev_priv->drm.struct_mutex);
604 	intel_uc_fini_hw(dev_priv);
605 	i915_gem_cleanup_engines(dev_priv);
606 	i915_gem_contexts_fini(dev_priv);
607 	i915_gem_cleanup_userptr(dev_priv);
608 	mutex_unlock(&dev_priv->drm.struct_mutex);
609 
610 	i915_gem_drain_freed_objects(dev_priv);
611 
612 	WARN_ON(!list_empty(&dev_priv->contexts.list));
613 }
614 
i915_load_modeset_init(struct drm_device * dev)615 static int i915_load_modeset_init(struct drm_device *dev)
616 {
617 	struct drm_i915_private *dev_priv = to_i915(dev);
618 	struct pci_dev *pdev = dev_priv->drm.pdev;
619 	int ret;
620 
621 	if (i915_inject_load_failure())
622 		return -ENODEV;
623 
624 	intel_bios_init(dev_priv);
625 
626 	/* If we have > 1 VGA cards, then we need to arbitrate access
627 	 * to the common VGA resources.
628 	 *
629 	 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
630 	 * then we do not take part in VGA arbitration and the
631 	 * vga_client_register() fails with -ENODEV.
632 	 */
633 	ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
634 	if (ret && ret != -ENODEV)
635 		goto out;
636 
637 	intel_register_dsm_handler();
638 
639 	ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
640 	if (ret)
641 		goto cleanup_vga_client;
642 
643 	/* must happen before intel_power_domains_init_hw() on VLV/CHV */
644 	intel_update_rawclk(dev_priv);
645 
646 	intel_power_domains_init_hw(dev_priv, false);
647 
648 	intel_csr_ucode_init(dev_priv);
649 
650 	ret = intel_irq_install(dev_priv);
651 	if (ret)
652 		goto cleanup_csr;
653 
654 	intel_setup_gmbus(dev_priv);
655 
656 	/* Important: The output setup functions called by modeset_init need
657 	 * working irqs for e.g. gmbus and dp aux transfers. */
658 	ret = intel_modeset_init(dev);
659 	if (ret)
660 		goto cleanup_irq;
661 
662 	intel_uc_init_fw(dev_priv);
663 
664 	ret = i915_gem_init(dev_priv);
665 	if (ret)
666 		goto cleanup_uc;
667 
668 	intel_modeset_gem_init(dev);
669 
670 	if (INTEL_INFO(dev_priv)->num_pipes == 0)
671 		return 0;
672 
673 	ret = intel_fbdev_init(dev);
674 	if (ret)
675 		goto cleanup_gem;
676 
677 	/* Only enable hotplug handling once the fbdev is fully set up. */
678 	intel_hpd_init(dev_priv);
679 
680 	drm_kms_helper_poll_init(dev);
681 
682 	return 0;
683 
684 cleanup_gem:
685 	if (i915_gem_suspend(dev_priv))
686 		DRM_ERROR("failed to idle hardware; continuing to unload!\n");
687 	i915_gem_fini(dev_priv);
688 cleanup_uc:
689 	intel_uc_fini_fw(dev_priv);
690 cleanup_irq:
691 	drm_irq_uninstall(dev);
692 	intel_teardown_gmbus(dev_priv);
693 cleanup_csr:
694 	intel_csr_ucode_fini(dev_priv);
695 	intel_power_domains_fini(dev_priv);
696 	vga_switcheroo_unregister_client(pdev);
697 cleanup_vga_client:
698 	vga_client_register(pdev, NULL, NULL, NULL);
699 out:
700 	return ret;
701 }
702 
i915_kick_out_firmware_fb(struct drm_i915_private * dev_priv)703 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
704 {
705 	struct apertures_struct *ap;
706 	struct pci_dev *pdev = dev_priv->drm.pdev;
707 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
708 	bool primary;
709 	int ret;
710 
711 	ap = alloc_apertures(1);
712 	if (!ap)
713 		return -ENOMEM;
714 
715 	ap->ranges[0].base = ggtt->mappable_base;
716 	ap->ranges[0].size = ggtt->mappable_end;
717 
718 	primary =
719 		pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
720 
721 	ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
722 
723 	kfree(ap);
724 
725 	return ret;
726 }
727 
728 #if !defined(CONFIG_VGA_CONSOLE)
i915_kick_out_vgacon(struct drm_i915_private * dev_priv)729 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
730 {
731 	return 0;
732 }
733 #elif !defined(CONFIG_DUMMY_CONSOLE)
i915_kick_out_vgacon(struct drm_i915_private * dev_priv)734 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
735 {
736 	return -ENODEV;
737 }
738 #else
i915_kick_out_vgacon(struct drm_i915_private * dev_priv)739 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
740 {
741 	int ret = 0;
742 
743 	DRM_INFO("Replacing VGA console driver\n");
744 
745 	console_lock();
746 	if (con_is_bound(&vga_con))
747 		ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
748 	if (ret == 0) {
749 		ret = do_unregister_con_driver(&vga_con);
750 
751 		/* Ignore "already unregistered". */
752 		if (ret == -ENODEV)
753 			ret = 0;
754 	}
755 	console_unlock();
756 
757 	return ret;
758 }
759 #endif
760 
intel_init_dpio(struct drm_i915_private * dev_priv)761 static void intel_init_dpio(struct drm_i915_private *dev_priv)
762 {
763 	/*
764 	 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
765 	 * CHV x1 PHY (DP/HDMI D)
766 	 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
767 	 */
768 	if (IS_CHERRYVIEW(dev_priv)) {
769 		DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
770 		DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
771 	} else if (IS_VALLEYVIEW(dev_priv)) {
772 		DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
773 	}
774 }
775 
i915_workqueues_init(struct drm_i915_private * dev_priv)776 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
777 {
778 	/*
779 	 * The i915 workqueue is primarily used for batched retirement of
780 	 * requests (and thus managing bo) once the task has been completed
781 	 * by the GPU. i915_gem_retire_requests() is called directly when we
782 	 * need high-priority retirement, such as waiting for an explicit
783 	 * bo.
784 	 *
785 	 * It is also used for periodic low-priority events, such as
786 	 * idle-timers and recording error state.
787 	 *
788 	 * All tasks on the workqueue are expected to acquire the dev mutex
789 	 * so there is no point in running more than one instance of the
790 	 * workqueue at any time.  Use an ordered one.
791 	 */
792 	dev_priv->wq = alloc_ordered_workqueue("i915", 0);
793 	if (dev_priv->wq == NULL)
794 		goto out_err;
795 
796 	dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
797 	if (dev_priv->hotplug.dp_wq == NULL)
798 		goto out_free_wq;
799 
800 	return 0;
801 
802 out_free_wq:
803 	destroy_workqueue(dev_priv->wq);
804 out_err:
805 	DRM_ERROR("Failed to allocate workqueues.\n");
806 
807 	return -ENOMEM;
808 }
809 
i915_engines_cleanup(struct drm_i915_private * i915)810 static void i915_engines_cleanup(struct drm_i915_private *i915)
811 {
812 	struct intel_engine_cs *engine;
813 	enum intel_engine_id id;
814 
815 	for_each_engine(engine, i915, id)
816 		kfree(engine);
817 }
818 
i915_workqueues_cleanup(struct drm_i915_private * dev_priv)819 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
820 {
821 	destroy_workqueue(dev_priv->hotplug.dp_wq);
822 	destroy_workqueue(dev_priv->wq);
823 }
824 
825 /*
826  * We don't keep the workarounds for pre-production hardware, so we expect our
827  * driver to fail on these machines in one way or another. A little warning on
828  * dmesg may help both the user and the bug triagers.
829  */
intel_detect_preproduction_hw(struct drm_i915_private * dev_priv)830 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
831 {
832 	bool pre = false;
833 
834 	pre |= IS_HSW_EARLY_SDV(dev_priv);
835 	pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
836 	pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
837 
838 	if (pre) {
839 		DRM_ERROR("This is a pre-production stepping. "
840 			  "It may not be fully functional.\n");
841 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
842 	}
843 }
844 
845 /**
846  * i915_driver_init_early - setup state not requiring device access
847  * @dev_priv: device private
848  *
849  * Initialize everything that is a "SW-only" state, that is state not
850  * requiring accessing the device or exposing the driver via kernel internal
851  * or userspace interfaces. Example steps belonging here: lock initialization,
852  * system memory allocation, setting up device specific attributes and
853  * function hooks not requiring accessing the device.
854  */
i915_driver_init_early(struct drm_i915_private * dev_priv,const struct pci_device_id * ent)855 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
856 				  const struct pci_device_id *ent)
857 {
858 	const struct intel_device_info *match_info =
859 		(struct intel_device_info *)ent->driver_data;
860 	struct intel_device_info *device_info;
861 	int ret = 0;
862 
863 	if (i915_inject_load_failure())
864 		return -ENODEV;
865 
866 	/* Setup the write-once "constant" device info */
867 	device_info = mkwrite_device_info(dev_priv);
868 	memcpy(device_info, match_info, sizeof(*device_info));
869 	device_info->device_id = dev_priv->drm.pdev->device;
870 
871 	BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
872 	device_info->gen_mask = BIT(device_info->gen - 1);
873 
874 	spin_lock_init(&dev_priv->irq_lock);
875 	spin_lock_init(&dev_priv->gpu_error.lock);
876 	mutex_init(&dev_priv->backlight_lock);
877 	spin_lock_init(&dev_priv->uncore.lock);
878 
879 	spin_lock_init(&dev_priv->mm.object_stat_lock);
880 	mutex_init(&dev_priv->sb_lock);
881 	mutex_init(&dev_priv->av_mutex);
882 	mutex_init(&dev_priv->wm.wm_mutex);
883 	mutex_init(&dev_priv->pps_mutex);
884 
885 	intel_uc_init_early(dev_priv);
886 	i915_memcpy_init_early(dev_priv);
887 
888 	ret = i915_workqueues_init(dev_priv);
889 	if (ret < 0)
890 		goto err_engines;
891 
892 	/* This must be called before any calls to HAS_PCH_* */
893 	intel_detect_pch(dev_priv);
894 
895 	intel_pm_setup(dev_priv);
896 	intel_init_dpio(dev_priv);
897 	intel_power_domains_init(dev_priv);
898 	intel_irq_init(dev_priv);
899 	intel_hangcheck_init(dev_priv);
900 	intel_init_display_hooks(dev_priv);
901 	intel_init_clock_gating_hooks(dev_priv);
902 	intel_init_audio_hooks(dev_priv);
903 	ret = i915_gem_load_init(dev_priv);
904 	if (ret < 0)
905 		goto err_irq;
906 
907 	intel_display_crc_init(dev_priv);
908 
909 	intel_device_info_dump(dev_priv);
910 
911 	intel_detect_preproduction_hw(dev_priv);
912 
913 	i915_perf_init(dev_priv);
914 
915 	return 0;
916 
917 err_irq:
918 	intel_irq_fini(dev_priv);
919 	i915_workqueues_cleanup(dev_priv);
920 err_engines:
921 	i915_engines_cleanup(dev_priv);
922 	return ret;
923 }
924 
925 /**
926  * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
927  * @dev_priv: device private
928  */
i915_driver_cleanup_early(struct drm_i915_private * dev_priv)929 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
930 {
931 	i915_perf_fini(dev_priv);
932 	i915_gem_load_cleanup(dev_priv);
933 	intel_irq_fini(dev_priv);
934 	i915_workqueues_cleanup(dev_priv);
935 	i915_engines_cleanup(dev_priv);
936 }
937 
i915_mmio_setup(struct drm_i915_private * dev_priv)938 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
939 {
940 	struct pci_dev *pdev = dev_priv->drm.pdev;
941 	int mmio_bar;
942 	int mmio_size;
943 
944 	mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
945 	/*
946 	 * Before gen4, the registers and the GTT are behind different BARs.
947 	 * However, from gen4 onwards, the registers and the GTT are shared
948 	 * in the same BAR, so we want to restrict this ioremap from
949 	 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
950 	 * the register BAR remains the same size for all the earlier
951 	 * generations up to Ironlake.
952 	 */
953 	if (INTEL_GEN(dev_priv) < 5)
954 		mmio_size = 512 * 1024;
955 	else
956 		mmio_size = 2 * 1024 * 1024;
957 	dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
958 	if (dev_priv->regs == NULL) {
959 		DRM_ERROR("failed to map registers\n");
960 
961 		return -EIO;
962 	}
963 
964 	/* Try to make sure MCHBAR is enabled before poking at it */
965 	intel_setup_mchbar(dev_priv);
966 
967 	return 0;
968 }
969 
i915_mmio_cleanup(struct drm_i915_private * dev_priv)970 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
971 {
972 	struct pci_dev *pdev = dev_priv->drm.pdev;
973 
974 	intel_teardown_mchbar(dev_priv);
975 	pci_iounmap(pdev, dev_priv->regs);
976 }
977 
978 /**
979  * i915_driver_init_mmio - setup device MMIO
980  * @dev_priv: device private
981  *
982  * Setup minimal device state necessary for MMIO accesses later in the
983  * initialization sequence. The setup here should avoid any other device-wide
984  * side effects or exposing the driver via kernel internal or user space
985  * interfaces.
986  */
i915_driver_init_mmio(struct drm_i915_private * dev_priv)987 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
988 {
989 	int ret;
990 
991 	if (i915_inject_load_failure())
992 		return -ENODEV;
993 
994 	if (i915_get_bridge_dev(dev_priv))
995 		return -EIO;
996 
997 	ret = i915_mmio_setup(dev_priv);
998 	if (ret < 0)
999 		goto err_bridge;
1000 
1001 	intel_uncore_init(dev_priv);
1002 
1003 	ret = intel_engines_init_mmio(dev_priv);
1004 	if (ret)
1005 		goto err_uncore;
1006 
1007 	i915_gem_init_mmio(dev_priv);
1008 
1009 	return 0;
1010 
1011 err_uncore:
1012 	intel_uncore_fini(dev_priv);
1013 err_bridge:
1014 	pci_dev_put(dev_priv->bridge_dev);
1015 
1016 	return ret;
1017 }
1018 
1019 /**
1020  * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1021  * @dev_priv: device private
1022  */
i915_driver_cleanup_mmio(struct drm_i915_private * dev_priv)1023 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1024 {
1025 	intel_uncore_fini(dev_priv);
1026 	i915_mmio_cleanup(dev_priv);
1027 	pci_dev_put(dev_priv->bridge_dev);
1028 }
1029 
intel_sanitize_options(struct drm_i915_private * dev_priv)1030 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1031 {
1032 	i915.enable_execlists =
1033 		intel_sanitize_enable_execlists(dev_priv,
1034 						i915.enable_execlists);
1035 
1036 	/*
1037 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
1038 	 * user's requested state against the hardware/driver capabilities.  We
1039 	 * do this now so that we can print out any log messages once rather
1040 	 * than every time we check intel_enable_ppgtt().
1041 	 */
1042 	i915.enable_ppgtt =
1043 		intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
1044 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
1045 
1046 	i915.semaphores = intel_sanitize_semaphores(dev_priv, i915.semaphores);
1047 	DRM_DEBUG_DRIVER("use GPU semaphores? %s\n", yesno(i915.semaphores));
1048 
1049 	intel_uc_sanitize_options(dev_priv);
1050 
1051 	intel_gvt_sanitize_options(dev_priv);
1052 }
1053 
1054 /**
1055  * i915_driver_init_hw - setup state requiring device access
1056  * @dev_priv: device private
1057  *
1058  * Setup state that requires accessing the device, but doesn't require
1059  * exposing the driver via kernel internal or userspace interfaces.
1060  */
i915_driver_init_hw(struct drm_i915_private * dev_priv)1061 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1062 {
1063 	struct pci_dev *pdev = dev_priv->drm.pdev;
1064 	int ret;
1065 
1066 	if (i915_inject_load_failure())
1067 		return -ENODEV;
1068 
1069 	intel_device_info_runtime_init(dev_priv);
1070 
1071 	intel_sanitize_options(dev_priv);
1072 
1073 	ret = i915_ggtt_probe_hw(dev_priv);
1074 	if (ret)
1075 		return ret;
1076 
1077 	/* WARNING: Apparently we must kick fbdev drivers before vgacon,
1078 	 * otherwise the vga fbdev driver falls over. */
1079 	ret = i915_kick_out_firmware_fb(dev_priv);
1080 	if (ret) {
1081 		DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1082 		goto out_ggtt;
1083 	}
1084 
1085 	ret = i915_kick_out_vgacon(dev_priv);
1086 	if (ret) {
1087 		DRM_ERROR("failed to remove conflicting VGA console\n");
1088 		goto out_ggtt;
1089 	}
1090 
1091 	ret = i915_ggtt_init_hw(dev_priv);
1092 	if (ret)
1093 		return ret;
1094 
1095 	ret = i915_ggtt_enable_hw(dev_priv);
1096 	if (ret) {
1097 		DRM_ERROR("failed to enable GGTT\n");
1098 		goto out_ggtt;
1099 	}
1100 
1101 	pci_set_master(pdev);
1102 
1103 	/* overlay on gen2 is broken and can't address above 1G */
1104 	if (IS_GEN2(dev_priv)) {
1105 		ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1106 		if (ret) {
1107 			DRM_ERROR("failed to set DMA mask\n");
1108 
1109 			goto out_ggtt;
1110 		}
1111 	}
1112 
1113 	/* 965GM sometimes incorrectly writes to hardware status page (HWS)
1114 	 * using 32bit addressing, overwriting memory if HWS is located
1115 	 * above 4GB.
1116 	 *
1117 	 * The documentation also mentions an issue with undefined
1118 	 * behaviour if any general state is accessed within a page above 4GB,
1119 	 * which also needs to be handled carefully.
1120 	 */
1121 	if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1122 		ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1123 
1124 		if (ret) {
1125 			DRM_ERROR("failed to set DMA mask\n");
1126 
1127 			goto out_ggtt;
1128 		}
1129 	}
1130 
1131 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1132 			   PM_QOS_DEFAULT_VALUE);
1133 
1134 	intel_uncore_sanitize(dev_priv);
1135 
1136 	intel_opregion_setup(dev_priv);
1137 
1138 	i915_gem_load_init_fences(dev_priv);
1139 
1140 	/* On the 945G/GM, the chipset reports the MSI capability on the
1141 	 * integrated graphics even though the support isn't actually there
1142 	 * according to the published specs.  It doesn't appear to function
1143 	 * correctly in testing on 945G.
1144 	 * This may be a side effect of MSI having been made available for PEG
1145 	 * and the registers being closely associated.
1146 	 *
1147 	 * According to chipset errata, on the 965GM, MSI interrupts may
1148 	 * be lost or delayed, and was defeatured. MSI interrupts seem to
1149 	 * get lost on g4x as well, and interrupt delivery seems to stay
1150 	 * properly dead afterwards. So we'll just disable them for all
1151 	 * pre-gen5 chipsets.
1152 	 */
1153 	if (INTEL_GEN(dev_priv) >= 5) {
1154 		if (pci_enable_msi(pdev) < 0)
1155 			DRM_DEBUG_DRIVER("can't enable MSI");
1156 	}
1157 
1158 	ret = intel_gvt_init(dev_priv);
1159 	if (ret)
1160 		goto out_ggtt;
1161 
1162 	return 0;
1163 
1164 out_ggtt:
1165 	i915_ggtt_cleanup_hw(dev_priv);
1166 
1167 	return ret;
1168 }
1169 
1170 /**
1171  * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1172  * @dev_priv: device private
1173  */
i915_driver_cleanup_hw(struct drm_i915_private * dev_priv)1174 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1175 {
1176 	struct pci_dev *pdev = dev_priv->drm.pdev;
1177 
1178 	if (pdev->msi_enabled)
1179 		pci_disable_msi(pdev);
1180 
1181 	pm_qos_remove_request(&dev_priv->pm_qos);
1182 	i915_ggtt_cleanup_hw(dev_priv);
1183 }
1184 
1185 /**
1186  * i915_driver_register - register the driver with the rest of the system
1187  * @dev_priv: device private
1188  *
1189  * Perform any steps necessary to make the driver available via kernel
1190  * internal or userspace interfaces.
1191  */
i915_driver_register(struct drm_i915_private * dev_priv)1192 static void i915_driver_register(struct drm_i915_private *dev_priv)
1193 {
1194 	struct drm_device *dev = &dev_priv->drm;
1195 
1196 	i915_gem_shrinker_init(dev_priv);
1197 
1198 	/*
1199 	 * Notify a valid surface after modesetting,
1200 	 * when running inside a VM.
1201 	 */
1202 	if (intel_vgpu_active(dev_priv))
1203 		I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1204 
1205 	/* Reveal our presence to userspace */
1206 	if (drm_dev_register(dev, 0) == 0) {
1207 		i915_debugfs_register(dev_priv);
1208 		i915_guc_log_register(dev_priv);
1209 		i915_setup_sysfs(dev_priv);
1210 
1211 		/* Depends on sysfs having been initialized */
1212 		i915_perf_register(dev_priv);
1213 	} else
1214 		DRM_ERROR("Failed to register driver for userspace access!\n");
1215 
1216 	if (INTEL_INFO(dev_priv)->num_pipes) {
1217 		/* Must be done after probing outputs */
1218 		intel_opregion_register(dev_priv);
1219 		acpi_video_register();
1220 	}
1221 
1222 	if (IS_GEN5(dev_priv))
1223 		intel_gpu_ips_init(dev_priv);
1224 
1225 	intel_audio_init(dev_priv);
1226 
1227 	/*
1228 	 * Some ports require correctly set-up hpd registers for detection to
1229 	 * work properly (leading to ghost connected connector status), e.g. VGA
1230 	 * on gm45.  Hence we can only set up the initial fbdev config after hpd
1231 	 * irqs are fully enabled. We do it last so that the async config
1232 	 * cannot run before the connectors are registered.
1233 	 */
1234 	intel_fbdev_initial_config_async(dev);
1235 }
1236 
1237 /**
1238  * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1239  * @dev_priv: device private
1240  */
i915_driver_unregister(struct drm_i915_private * dev_priv)1241 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1242 {
1243 	intel_fbdev_unregister(dev_priv);
1244 	intel_audio_deinit(dev_priv);
1245 
1246 	intel_gpu_ips_teardown();
1247 	acpi_video_unregister();
1248 	intel_opregion_unregister(dev_priv);
1249 
1250 	i915_perf_unregister(dev_priv);
1251 
1252 	i915_teardown_sysfs(dev_priv);
1253 	i915_guc_log_unregister(dev_priv);
1254 	drm_dev_unregister(&dev_priv->drm);
1255 
1256 	i915_gem_shrinker_cleanup(dev_priv);
1257 }
1258 
1259 /**
1260  * i915_driver_load - setup chip and create an initial config
1261  * @pdev: PCI device
1262  * @ent: matching PCI ID entry
1263  *
1264  * The driver load routine has to do several things:
1265  *   - drive output discovery via intel_modeset_init()
1266  *   - initialize the memory manager
1267  *   - allocate initial config memory
1268  *   - setup the DRM framebuffer with the allocated memory
1269  */
i915_driver_load(struct pci_dev * pdev,const struct pci_device_id * ent)1270 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1271 {
1272 	const struct intel_device_info *match_info =
1273 		(struct intel_device_info *)ent->driver_data;
1274 	struct drm_i915_private *dev_priv;
1275 	int ret;
1276 
1277 	/* Enable nuclear pageflip on ILK+ */
1278 	if (!i915.nuclear_pageflip && match_info->gen < 5)
1279 		driver.driver_features &= ~DRIVER_ATOMIC;
1280 
1281 	ret = -ENOMEM;
1282 	dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1283 	if (dev_priv)
1284 		ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1285 	if (ret) {
1286 		DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1287 		goto out_free;
1288 	}
1289 
1290 	dev_priv->drm.pdev = pdev;
1291 	dev_priv->drm.dev_private = dev_priv;
1292 
1293 	ret = pci_enable_device(pdev);
1294 	if (ret)
1295 		goto out_fini;
1296 
1297 	pci_set_drvdata(pdev, &dev_priv->drm);
1298 	/*
1299 	 * Disable the system suspend direct complete optimization, which can
1300 	 * leave the device suspended skipping the driver's suspend handlers
1301 	 * if the device was already runtime suspended. This is needed due to
1302 	 * the difference in our runtime and system suspend sequence and
1303 	 * becaue the HDA driver may require us to enable the audio power
1304 	 * domain during system suspend.
1305 	 */
1306 	pdev->dev_flags |= PCI_DEV_FLAGS_NEEDS_RESUME;
1307 
1308 	ret = i915_driver_init_early(dev_priv, ent);
1309 	if (ret < 0)
1310 		goto out_pci_disable;
1311 
1312 	intel_runtime_pm_get(dev_priv);
1313 
1314 	ret = i915_driver_init_mmio(dev_priv);
1315 	if (ret < 0)
1316 		goto out_runtime_pm_put;
1317 
1318 	ret = i915_driver_init_hw(dev_priv);
1319 	if (ret < 0)
1320 		goto out_cleanup_mmio;
1321 
1322 	/*
1323 	 * TODO: move the vblank init and parts of modeset init steps into one
1324 	 * of the i915_driver_init_/i915_driver_register functions according
1325 	 * to the role/effect of the given init step.
1326 	 */
1327 	if (INTEL_INFO(dev_priv)->num_pipes) {
1328 		ret = drm_vblank_init(&dev_priv->drm,
1329 				      INTEL_INFO(dev_priv)->num_pipes);
1330 		if (ret)
1331 			goto out_cleanup_hw;
1332 	}
1333 
1334 	ret = i915_load_modeset_init(&dev_priv->drm);
1335 	if (ret < 0)
1336 		goto out_cleanup_hw;
1337 
1338 	i915_driver_register(dev_priv);
1339 
1340 	intel_runtime_pm_enable(dev_priv);
1341 
1342 	dev_priv->ipc_enabled = false;
1343 
1344 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1345 		DRM_INFO("DRM_I915_DEBUG enabled\n");
1346 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1347 		DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1348 
1349 	intel_runtime_pm_put(dev_priv);
1350 
1351 	return 0;
1352 
1353 out_cleanup_hw:
1354 	i915_driver_cleanup_hw(dev_priv);
1355 out_cleanup_mmio:
1356 	i915_driver_cleanup_mmio(dev_priv);
1357 out_runtime_pm_put:
1358 	intel_runtime_pm_put(dev_priv);
1359 	i915_driver_cleanup_early(dev_priv);
1360 out_pci_disable:
1361 	pci_disable_device(pdev);
1362 out_fini:
1363 	i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1364 	drm_dev_fini(&dev_priv->drm);
1365 out_free:
1366 	kfree(dev_priv);
1367 	return ret;
1368 }
1369 
i915_driver_unload(struct drm_device * dev)1370 void i915_driver_unload(struct drm_device *dev)
1371 {
1372 	struct drm_i915_private *dev_priv = to_i915(dev);
1373 	struct pci_dev *pdev = dev_priv->drm.pdev;
1374 
1375 	i915_driver_unregister(dev_priv);
1376 
1377 	if (i915_gem_suspend(dev_priv))
1378 		DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1379 
1380 	intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1381 
1382 	drm_atomic_helper_shutdown(dev);
1383 
1384 	intel_gvt_cleanup(dev_priv);
1385 
1386 	intel_modeset_cleanup(dev);
1387 
1388 	/*
1389 	 * free the memory space allocated for the child device
1390 	 * config parsed from VBT
1391 	 */
1392 	if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1393 		kfree(dev_priv->vbt.child_dev);
1394 		dev_priv->vbt.child_dev = NULL;
1395 		dev_priv->vbt.child_dev_num = 0;
1396 	}
1397 	kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1398 	dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1399 	kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1400 	dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1401 
1402 	vga_switcheroo_unregister_client(pdev);
1403 	vga_client_register(pdev, NULL, NULL, NULL);
1404 
1405 	intel_csr_ucode_fini(dev_priv);
1406 
1407 	/* Free error state after interrupts are fully disabled. */
1408 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1409 	i915_reset_error_state(dev_priv);
1410 
1411 	i915_gem_fini(dev_priv);
1412 	intel_uc_fini_fw(dev_priv);
1413 	intel_fbc_cleanup_cfb(dev_priv);
1414 
1415 	intel_power_domains_fini(dev_priv);
1416 
1417 	i915_driver_cleanup_hw(dev_priv);
1418 	i915_driver_cleanup_mmio(dev_priv);
1419 
1420 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1421 }
1422 
i915_driver_release(struct drm_device * dev)1423 static void i915_driver_release(struct drm_device *dev)
1424 {
1425 	struct drm_i915_private *dev_priv = to_i915(dev);
1426 
1427 	i915_driver_cleanup_early(dev_priv);
1428 	drm_dev_fini(&dev_priv->drm);
1429 
1430 	kfree(dev_priv);
1431 }
1432 
i915_driver_open(struct drm_device * dev,struct drm_file * file)1433 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1434 {
1435 	struct drm_i915_private *i915 = to_i915(dev);
1436 	int ret;
1437 
1438 	ret = i915_gem_open(i915, file);
1439 	if (ret)
1440 		return ret;
1441 
1442 	return 0;
1443 }
1444 
1445 /**
1446  * i915_driver_lastclose - clean up after all DRM clients have exited
1447  * @dev: DRM device
1448  *
1449  * Take care of cleaning up after all DRM clients have exited.  In the
1450  * mode setting case, we want to restore the kernel's initial mode (just
1451  * in case the last client left us in a bad state).
1452  *
1453  * Additionally, in the non-mode setting case, we'll tear down the GTT
1454  * and DMA structures, since the kernel won't be using them, and clea
1455  * up any GEM state.
1456  */
i915_driver_lastclose(struct drm_device * dev)1457 static void i915_driver_lastclose(struct drm_device *dev)
1458 {
1459 	intel_fbdev_restore_mode(dev);
1460 	vga_switcheroo_process_delayed_switch();
1461 }
1462 
i915_driver_postclose(struct drm_device * dev,struct drm_file * file)1463 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1464 {
1465 	struct drm_i915_file_private *file_priv = file->driver_priv;
1466 
1467 	mutex_lock(&dev->struct_mutex);
1468 	i915_gem_context_close(file);
1469 	i915_gem_release(dev, file);
1470 	mutex_unlock(&dev->struct_mutex);
1471 
1472 	kfree(file_priv);
1473 }
1474 
intel_suspend_encoders(struct drm_i915_private * dev_priv)1475 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1476 {
1477 	struct drm_device *dev = &dev_priv->drm;
1478 	struct intel_encoder *encoder;
1479 
1480 	drm_modeset_lock_all(dev);
1481 	for_each_intel_encoder(dev, encoder)
1482 		if (encoder->suspend)
1483 			encoder->suspend(encoder);
1484 	drm_modeset_unlock_all(dev);
1485 }
1486 
1487 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1488 			      bool rpm_resume);
1489 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1490 
suspend_to_idle(struct drm_i915_private * dev_priv)1491 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1492 {
1493 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1494 	if (acpi_target_system_state() < ACPI_STATE_S3)
1495 		return true;
1496 #endif
1497 	return false;
1498 }
1499 
i915_drm_suspend(struct drm_device * dev)1500 static int i915_drm_suspend(struct drm_device *dev)
1501 {
1502 	struct drm_i915_private *dev_priv = to_i915(dev);
1503 	struct pci_dev *pdev = dev_priv->drm.pdev;
1504 	pci_power_t opregion_target_state;
1505 	int error;
1506 
1507 	disable_rpm_wakeref_asserts(dev_priv);
1508 
1509 	/* We do a lot of poking in a lot of registers, make sure they work
1510 	 * properly. */
1511 	intel_display_set_init_power(dev_priv, true);
1512 
1513 	drm_kms_helper_poll_disable(dev);
1514 
1515 	pci_save_state(pdev);
1516 
1517 	error = i915_gem_suspend(dev_priv);
1518 	if (error) {
1519 		dev_err(&pdev->dev,
1520 			"GEM idle failed, resume might fail\n");
1521 		goto out;
1522 	}
1523 
1524 	intel_display_suspend(dev);
1525 
1526 	intel_dp_mst_suspend(dev);
1527 
1528 	intel_runtime_pm_disable_interrupts(dev_priv);
1529 	intel_hpd_cancel_work(dev_priv);
1530 
1531 	intel_suspend_encoders(dev_priv);
1532 
1533 	intel_suspend_hw(dev_priv);
1534 
1535 	i915_gem_suspend_gtt_mappings(dev_priv);
1536 
1537 	i915_save_state(dev_priv);
1538 
1539 	opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1540 	intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1541 
1542 	intel_uncore_suspend(dev_priv);
1543 	intel_opregion_unregister(dev_priv);
1544 
1545 	intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1546 
1547 	dev_priv->suspend_count++;
1548 
1549 	intel_csr_ucode_suspend(dev_priv);
1550 
1551 out:
1552 	enable_rpm_wakeref_asserts(dev_priv);
1553 
1554 	return error;
1555 }
1556 
i915_drm_suspend_late(struct drm_device * dev,bool hibernation)1557 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1558 {
1559 	struct drm_i915_private *dev_priv = to_i915(dev);
1560 	struct pci_dev *pdev = dev_priv->drm.pdev;
1561 	bool fw_csr;
1562 	int ret;
1563 
1564 	disable_rpm_wakeref_asserts(dev_priv);
1565 
1566 	intel_display_set_init_power(dev_priv, false);
1567 	i915_rc6_ctx_wa_suspend(dev_priv);
1568 
1569 	fw_csr = !IS_GEN9_LP(dev_priv) &&
1570 		suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1571 	/*
1572 	 * In case of firmware assisted context save/restore don't manually
1573 	 * deinit the power domains. This also means the CSR/DMC firmware will
1574 	 * stay active, it will power down any HW resources as required and
1575 	 * also enable deeper system power states that would be blocked if the
1576 	 * firmware was inactive.
1577 	 */
1578 	if (!fw_csr)
1579 		intel_power_domains_suspend(dev_priv);
1580 
1581 	ret = 0;
1582 	if (IS_GEN9_LP(dev_priv))
1583 		bxt_enable_dc9(dev_priv);
1584 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1585 		hsw_enable_pc8(dev_priv);
1586 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1587 		ret = vlv_suspend_complete(dev_priv);
1588 
1589 	if (ret) {
1590 		DRM_ERROR("Suspend complete failed: %d\n", ret);
1591 		if (!fw_csr)
1592 			intel_power_domains_init_hw(dev_priv, true);
1593 
1594 		goto out;
1595 	}
1596 
1597 	pci_disable_device(pdev);
1598 	/*
1599 	 * During hibernation on some platforms the BIOS may try to access
1600 	 * the device even though it's already in D3 and hang the machine. So
1601 	 * leave the device in D0 on those platforms and hope the BIOS will
1602 	 * power down the device properly. The issue was seen on multiple old
1603 	 * GENs with different BIOS vendors, so having an explicit blacklist
1604 	 * is inpractical; apply the workaround on everything pre GEN6. The
1605 	 * platforms where the issue was seen:
1606 	 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1607 	 * Fujitsu FSC S7110
1608 	 * Acer Aspire 1830T
1609 	 */
1610 	if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1611 		pci_set_power_state(pdev, PCI_D3hot);
1612 
1613 	dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1614 
1615 out:
1616 	enable_rpm_wakeref_asserts(dev_priv);
1617 
1618 	return ret;
1619 }
1620 
i915_suspend_switcheroo(struct drm_device * dev,pm_message_t state)1621 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1622 {
1623 	int error;
1624 
1625 	if (!dev) {
1626 		DRM_ERROR("dev: %p\n", dev);
1627 		DRM_ERROR("DRM not initialized, aborting suspend.\n");
1628 		return -ENODEV;
1629 	}
1630 
1631 	if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1632 			 state.event != PM_EVENT_FREEZE))
1633 		return -EINVAL;
1634 
1635 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1636 		return 0;
1637 
1638 	error = i915_drm_suspend(dev);
1639 	if (error)
1640 		return error;
1641 
1642 	return i915_drm_suspend_late(dev, false);
1643 }
1644 
i915_drm_resume(struct drm_device * dev)1645 static int i915_drm_resume(struct drm_device *dev)
1646 {
1647 	struct drm_i915_private *dev_priv = to_i915(dev);
1648 	int ret;
1649 
1650 	disable_rpm_wakeref_asserts(dev_priv);
1651 	intel_sanitize_gt_powersave(dev_priv);
1652 
1653 	ret = i915_ggtt_enable_hw(dev_priv);
1654 	if (ret)
1655 		DRM_ERROR("failed to re-enable GGTT\n");
1656 
1657 	intel_csr_ucode_resume(dev_priv);
1658 
1659 	i915_gem_resume(dev_priv);
1660 
1661 	i915_restore_state(dev_priv);
1662 	intel_pps_unlock_regs_wa(dev_priv);
1663 	intel_opregion_setup(dev_priv);
1664 
1665 	intel_init_pch_refclk(dev_priv);
1666 
1667 	/*
1668 	 * Interrupts have to be enabled before any batches are run. If not the
1669 	 * GPU will hang. i915_gem_init_hw() will initiate batches to
1670 	 * update/restore the context.
1671 	 *
1672 	 * drm_mode_config_reset() needs AUX interrupts.
1673 	 *
1674 	 * Modeset enabling in intel_modeset_init_hw() also needs working
1675 	 * interrupts.
1676 	 */
1677 	intel_runtime_pm_enable_interrupts(dev_priv);
1678 
1679 	drm_mode_config_reset(dev);
1680 
1681 	mutex_lock(&dev->struct_mutex);
1682 	if (i915_gem_init_hw(dev_priv)) {
1683 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1684 		i915_gem_set_wedged(dev_priv);
1685 	}
1686 	mutex_unlock(&dev->struct_mutex);
1687 
1688 	intel_guc_resume(dev_priv);
1689 
1690 	intel_modeset_init_hw(dev);
1691 	intel_init_clock_gating(dev_priv);
1692 
1693 	spin_lock_irq(&dev_priv->irq_lock);
1694 	if (dev_priv->display.hpd_irq_setup)
1695 		dev_priv->display.hpd_irq_setup(dev_priv);
1696 	spin_unlock_irq(&dev_priv->irq_lock);
1697 
1698 	intel_dp_mst_resume(dev);
1699 
1700 	intel_display_resume(dev);
1701 
1702 	drm_kms_helper_poll_enable(dev);
1703 
1704 	/*
1705 	 * ... but also need to make sure that hotplug processing
1706 	 * doesn't cause havoc. Like in the driver load code we don't
1707 	 * bother with the tiny race here where we might loose hotplug
1708 	 * notifications.
1709 	 * */
1710 	intel_hpd_init(dev_priv);
1711 
1712 	intel_opregion_register(dev_priv);
1713 
1714 	intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1715 
1716 	intel_opregion_notify_adapter(dev_priv, PCI_D0);
1717 
1718 	intel_autoenable_gt_powersave(dev_priv);
1719 
1720 	enable_rpm_wakeref_asserts(dev_priv);
1721 
1722 	return 0;
1723 }
1724 
i915_drm_resume_early(struct drm_device * dev)1725 static int i915_drm_resume_early(struct drm_device *dev)
1726 {
1727 	struct drm_i915_private *dev_priv = to_i915(dev);
1728 	struct pci_dev *pdev = dev_priv->drm.pdev;
1729 	int ret;
1730 
1731 	/*
1732 	 * We have a resume ordering issue with the snd-hda driver also
1733 	 * requiring our device to be power up. Due to the lack of a
1734 	 * parent/child relationship we currently solve this with an early
1735 	 * resume hook.
1736 	 *
1737 	 * FIXME: This should be solved with a special hdmi sink device or
1738 	 * similar so that power domains can be employed.
1739 	 */
1740 
1741 	/*
1742 	 * Note that we need to set the power state explicitly, since we
1743 	 * powered off the device during freeze and the PCI core won't power
1744 	 * it back up for us during thaw. Powering off the device during
1745 	 * freeze is not a hard requirement though, and during the
1746 	 * suspend/resume phases the PCI core makes sure we get here with the
1747 	 * device powered on. So in case we change our freeze logic and keep
1748 	 * the device powered we can also remove the following set power state
1749 	 * call.
1750 	 */
1751 	ret = pci_set_power_state(pdev, PCI_D0);
1752 	if (ret) {
1753 		DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1754 		goto out;
1755 	}
1756 
1757 	/*
1758 	 * Note that pci_enable_device() first enables any parent bridge
1759 	 * device and only then sets the power state for this device. The
1760 	 * bridge enabling is a nop though, since bridge devices are resumed
1761 	 * first. The order of enabling power and enabling the device is
1762 	 * imposed by the PCI core as described above, so here we preserve the
1763 	 * same order for the freeze/thaw phases.
1764 	 *
1765 	 * TODO: eventually we should remove pci_disable_device() /
1766 	 * pci_enable_enable_device() from suspend/resume. Due to how they
1767 	 * depend on the device enable refcount we can't anyway depend on them
1768 	 * disabling/enabling the device.
1769 	 */
1770 	if (pci_enable_device(pdev)) {
1771 		ret = -EIO;
1772 		goto out;
1773 	}
1774 
1775 	pci_set_master(pdev);
1776 
1777 	disable_rpm_wakeref_asserts(dev_priv);
1778 
1779 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1780 		ret = vlv_resume_prepare(dev_priv, false);
1781 	if (ret)
1782 		DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1783 			  ret);
1784 
1785 	intel_uncore_resume_early(dev_priv);
1786 
1787 	if (IS_GEN9_LP(dev_priv)) {
1788 		if (!dev_priv->suspended_to_idle)
1789 			gen9_sanitize_dc_state(dev_priv);
1790 		bxt_disable_dc9(dev_priv);
1791 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1792 		hsw_disable_pc8(dev_priv);
1793 	}
1794 
1795 	intel_uncore_sanitize(dev_priv);
1796 
1797 	if (IS_GEN9_LP(dev_priv) ||
1798 	    !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1799 		intel_power_domains_init_hw(dev_priv, true);
1800 	else
1801 		intel_display_set_init_power(dev_priv, true);
1802 
1803 	i915_gem_sanitize(dev_priv);
1804 	i915_rc6_ctx_wa_resume(dev_priv);
1805 
1806 	enable_rpm_wakeref_asserts(dev_priv);
1807 
1808 out:
1809 	dev_priv->suspended_to_idle = false;
1810 
1811 	return ret;
1812 }
1813 
i915_resume_switcheroo(struct drm_device * dev)1814 static int i915_resume_switcheroo(struct drm_device *dev)
1815 {
1816 	int ret;
1817 
1818 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1819 		return 0;
1820 
1821 	ret = i915_drm_resume_early(dev);
1822 	if (ret)
1823 		return ret;
1824 
1825 	return i915_drm_resume(dev);
1826 }
1827 
1828 /**
1829  * i915_reset - reset chip after a hang
1830  * @i915: #drm_i915_private to reset
1831  * @flags: Instructions
1832  *
1833  * Reset the chip.  Useful if a hang is detected. Marks the device as wedged
1834  * on failure.
1835  *
1836  * Caller must hold the struct_mutex.
1837  *
1838  * Procedure is fairly simple:
1839  *   - reset the chip using the reset reg
1840  *   - re-init context state
1841  *   - re-init hardware status page
1842  *   - re-init ring buffer
1843  *   - re-init interrupt state
1844  *   - re-init display
1845  */
i915_reset(struct drm_i915_private * i915,unsigned int flags)1846 void i915_reset(struct drm_i915_private *i915, unsigned int flags)
1847 {
1848 	struct i915_gpu_error *error = &i915->gpu_error;
1849 	int ret;
1850 
1851 	lockdep_assert_held(&i915->drm.struct_mutex);
1852 	GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1853 
1854 	if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1855 		return;
1856 
1857 	/* Clear any previous failed attempts at recovery. Time to try again. */
1858 	if (!i915_gem_unset_wedged(i915))
1859 		goto wakeup;
1860 
1861 	if (!(flags & I915_RESET_QUIET))
1862 		dev_notice(i915->drm.dev, "Resetting chip after gpu hang\n");
1863 	error->reset_count++;
1864 
1865 	disable_irq(i915->drm.irq);
1866 	ret = i915_gem_reset_prepare(i915);
1867 	if (ret) {
1868 		DRM_ERROR("GPU recovery failed\n");
1869 		intel_gpu_reset(i915, ALL_ENGINES);
1870 		goto error;
1871 	}
1872 
1873 	ret = intel_gpu_reset(i915, ALL_ENGINES);
1874 	if (ret) {
1875 		if (ret != -ENODEV)
1876 			DRM_ERROR("Failed to reset chip: %i\n", ret);
1877 		else
1878 			DRM_DEBUG_DRIVER("GPU reset disabled\n");
1879 		goto error;
1880 	}
1881 
1882 	i915_gem_reset(i915);
1883 	intel_overlay_reset(i915);
1884 
1885 	/* Ok, now get things going again... */
1886 
1887 	/*
1888 	 * Everything depends on having the GTT running, so we need to start
1889 	 * there.
1890 	 */
1891 	ret = i915_ggtt_enable_hw(i915);
1892 	if (ret) {
1893 		DRM_ERROR("Failed to re-enable GGTT following reset %d\n", ret);
1894 		goto error;
1895 	}
1896 
1897 	/*
1898 	 * Next we need to restore the context, but we don't use those
1899 	 * yet either...
1900 	 *
1901 	 * Ring buffer needs to be re-initialized in the KMS case, or if X
1902 	 * was running at the time of the reset (i.e. we weren't VT
1903 	 * switched away).
1904 	 */
1905 	ret = i915_gem_init_hw(i915);
1906 	if (ret) {
1907 		DRM_ERROR("Failed hw init on reset %d\n", ret);
1908 		goto error;
1909 	}
1910 
1911 	i915_queue_hangcheck(i915);
1912 
1913 finish:
1914 	i915_gem_reset_finish(i915);
1915 	enable_irq(i915->drm.irq);
1916 
1917 wakeup:
1918 	clear_bit(I915_RESET_HANDOFF, &error->flags);
1919 	wake_up_bit(&error->flags, I915_RESET_HANDOFF);
1920 	return;
1921 
1922 error:
1923 	i915_gem_set_wedged(i915);
1924 	i915_gem_retire_requests(i915);
1925 	goto finish;
1926 }
1927 
1928 /**
1929  * i915_reset_engine - reset GPU engine to recover from a hang
1930  * @engine: engine to reset
1931  * @flags: options
1932  *
1933  * Reset a specific GPU engine. Useful if a hang is detected.
1934  * Returns zero on successful reset or otherwise an error code.
1935  *
1936  * Procedure is:
1937  *  - identifies the request that caused the hang and it is dropped
1938  *  - reset engine (which will force the engine to idle)
1939  *  - re-init/configure engine
1940  */
i915_reset_engine(struct intel_engine_cs * engine,unsigned int flags)1941 int i915_reset_engine(struct intel_engine_cs *engine, unsigned int flags)
1942 {
1943 	struct i915_gpu_error *error = &engine->i915->gpu_error;
1944 	struct drm_i915_gem_request *active_request;
1945 	int ret;
1946 
1947 	GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
1948 
1949 	if (!(flags & I915_RESET_QUIET)) {
1950 		dev_notice(engine->i915->drm.dev,
1951 			   "Resetting %s after gpu hang\n", engine->name);
1952 	}
1953 	error->reset_engine_count[engine->id]++;
1954 
1955 	active_request = i915_gem_reset_prepare_engine(engine);
1956 	if (IS_ERR(active_request)) {
1957 		DRM_DEBUG_DRIVER("Previous reset failed, promote to full reset\n");
1958 		ret = PTR_ERR(active_request);
1959 		goto out;
1960 	}
1961 
1962 	ret = intel_gpu_reset(engine->i915, intel_engine_flag(engine));
1963 	if (ret) {
1964 		/* If we fail here, we expect to fallback to a global reset */
1965 		DRM_DEBUG_DRIVER("Failed to reset %s, ret=%d\n",
1966 				 engine->name, ret);
1967 		goto out;
1968 	}
1969 
1970 	/*
1971 	 * The request that caused the hang is stuck on elsp, we know the
1972 	 * active request and can drop it, adjust head to skip the offending
1973 	 * request to resume executing remaining requests in the queue.
1974 	 */
1975 	i915_gem_reset_engine(engine, active_request);
1976 
1977 	/*
1978 	 * The engine and its registers (and workarounds in case of render)
1979 	 * have been reset to their default values. Follow the init_ring
1980 	 * process to program RING_MODE, HWSP and re-enable submission.
1981 	 */
1982 	ret = engine->init_hw(engine);
1983 	if (ret)
1984 		goto out;
1985 
1986 out:
1987 	i915_gem_reset_finish_engine(engine);
1988 	return ret;
1989 }
1990 
i915_pm_suspend(struct device * kdev)1991 static int i915_pm_suspend(struct device *kdev)
1992 {
1993 	struct pci_dev *pdev = to_pci_dev(kdev);
1994 	struct drm_device *dev = pci_get_drvdata(pdev);
1995 
1996 	if (!dev) {
1997 		dev_err(kdev, "DRM not initialized, aborting suspend.\n");
1998 		return -ENODEV;
1999 	}
2000 
2001 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2002 		return 0;
2003 
2004 	return i915_drm_suspend(dev);
2005 }
2006 
i915_pm_suspend_late(struct device * kdev)2007 static int i915_pm_suspend_late(struct device *kdev)
2008 {
2009 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2010 
2011 	/*
2012 	 * We have a suspend ordering issue with the snd-hda driver also
2013 	 * requiring our device to be power up. Due to the lack of a
2014 	 * parent/child relationship we currently solve this with an late
2015 	 * suspend hook.
2016 	 *
2017 	 * FIXME: This should be solved with a special hdmi sink device or
2018 	 * similar so that power domains can be employed.
2019 	 */
2020 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2021 		return 0;
2022 
2023 	return i915_drm_suspend_late(dev, false);
2024 }
2025 
i915_pm_poweroff_late(struct device * kdev)2026 static int i915_pm_poweroff_late(struct device *kdev)
2027 {
2028 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2029 
2030 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2031 		return 0;
2032 
2033 	return i915_drm_suspend_late(dev, true);
2034 }
2035 
i915_pm_resume_early(struct device * kdev)2036 static int i915_pm_resume_early(struct device *kdev)
2037 {
2038 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2039 
2040 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2041 		return 0;
2042 
2043 	return i915_drm_resume_early(dev);
2044 }
2045 
i915_pm_resume(struct device * kdev)2046 static int i915_pm_resume(struct device *kdev)
2047 {
2048 	struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2049 
2050 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2051 		return 0;
2052 
2053 	return i915_drm_resume(dev);
2054 }
2055 
2056 /* freeze: before creating the hibernation_image */
i915_pm_freeze(struct device * kdev)2057 static int i915_pm_freeze(struct device *kdev)
2058 {
2059 	int ret;
2060 
2061 	ret = i915_pm_suspend(kdev);
2062 	if (ret)
2063 		return ret;
2064 
2065 	ret = i915_gem_freeze(kdev_to_i915(kdev));
2066 	if (ret)
2067 		return ret;
2068 
2069 	return 0;
2070 }
2071 
i915_pm_freeze_late(struct device * kdev)2072 static int i915_pm_freeze_late(struct device *kdev)
2073 {
2074 	int ret;
2075 
2076 	ret = i915_pm_suspend_late(kdev);
2077 	if (ret)
2078 		return ret;
2079 
2080 	ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2081 	if (ret)
2082 		return ret;
2083 
2084 	return 0;
2085 }
2086 
2087 /* thaw: called after creating the hibernation image, but before turning off. */
i915_pm_thaw_early(struct device * kdev)2088 static int i915_pm_thaw_early(struct device *kdev)
2089 {
2090 	return i915_pm_resume_early(kdev);
2091 }
2092 
i915_pm_thaw(struct device * kdev)2093 static int i915_pm_thaw(struct device *kdev)
2094 {
2095 	return i915_pm_resume(kdev);
2096 }
2097 
2098 /* restore: called after loading the hibernation image. */
i915_pm_restore_early(struct device * kdev)2099 static int i915_pm_restore_early(struct device *kdev)
2100 {
2101 	return i915_pm_resume_early(kdev);
2102 }
2103 
i915_pm_restore(struct device * kdev)2104 static int i915_pm_restore(struct device *kdev)
2105 {
2106 	return i915_pm_resume(kdev);
2107 }
2108 
2109 /*
2110  * Save all Gunit registers that may be lost after a D3 and a subsequent
2111  * S0i[R123] transition. The list of registers needing a save/restore is
2112  * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2113  * registers in the following way:
2114  * - Driver: saved/restored by the driver
2115  * - Punit : saved/restored by the Punit firmware
2116  * - No, w/o marking: no need to save/restore, since the register is R/O or
2117  *                    used internally by the HW in a way that doesn't depend
2118  *                    keeping the content across a suspend/resume.
2119  * - Debug : used for debugging
2120  *
2121  * We save/restore all registers marked with 'Driver', with the following
2122  * exceptions:
2123  * - Registers out of use, including also registers marked with 'Debug'.
2124  *   These have no effect on the driver's operation, so we don't save/restore
2125  *   them to reduce the overhead.
2126  * - Registers that are fully setup by an initialization function called from
2127  *   the resume path. For example many clock gating and RPS/RC6 registers.
2128  * - Registers that provide the right functionality with their reset defaults.
2129  *
2130  * TODO: Except for registers that based on the above 3 criteria can be safely
2131  * ignored, we save/restore all others, practically treating the HW context as
2132  * a black-box for the driver. Further investigation is needed to reduce the
2133  * saved/restored registers even further, by following the same 3 criteria.
2134  */
vlv_save_gunit_s0ix_state(struct drm_i915_private * dev_priv)2135 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2136 {
2137 	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2138 	int i;
2139 
2140 	/* GAM 0x4000-0x4770 */
2141 	s->wr_watermark		= I915_READ(GEN7_WR_WATERMARK);
2142 	s->gfx_prio_ctrl	= I915_READ(GEN7_GFX_PRIO_CTRL);
2143 	s->arb_mode		= I915_READ(ARB_MODE);
2144 	s->gfx_pend_tlb0	= I915_READ(GEN7_GFX_PEND_TLB0);
2145 	s->gfx_pend_tlb1	= I915_READ(GEN7_GFX_PEND_TLB1);
2146 
2147 	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2148 		s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2149 
2150 	s->media_max_req_count	= I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2151 	s->gfx_max_req_count	= I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2152 
2153 	s->render_hwsp		= I915_READ(RENDER_HWS_PGA_GEN7);
2154 	s->ecochk		= I915_READ(GAM_ECOCHK);
2155 	s->bsd_hwsp		= I915_READ(BSD_HWS_PGA_GEN7);
2156 	s->blt_hwsp		= I915_READ(BLT_HWS_PGA_GEN7);
2157 
2158 	s->tlb_rd_addr		= I915_READ(GEN7_TLB_RD_ADDR);
2159 
2160 	/* MBC 0x9024-0x91D0, 0x8500 */
2161 	s->g3dctl		= I915_READ(VLV_G3DCTL);
2162 	s->gsckgctl		= I915_READ(VLV_GSCKGCTL);
2163 	s->mbctl		= I915_READ(GEN6_MBCTL);
2164 
2165 	/* GCP 0x9400-0x9424, 0x8100-0x810C */
2166 	s->ucgctl1		= I915_READ(GEN6_UCGCTL1);
2167 	s->ucgctl3		= I915_READ(GEN6_UCGCTL3);
2168 	s->rcgctl1		= I915_READ(GEN6_RCGCTL1);
2169 	s->rcgctl2		= I915_READ(GEN6_RCGCTL2);
2170 	s->rstctl		= I915_READ(GEN6_RSTCTL);
2171 	s->misccpctl		= I915_READ(GEN7_MISCCPCTL);
2172 
2173 	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2174 	s->gfxpause		= I915_READ(GEN6_GFXPAUSE);
2175 	s->rpdeuhwtc		= I915_READ(GEN6_RPDEUHWTC);
2176 	s->rpdeuc		= I915_READ(GEN6_RPDEUC);
2177 	s->ecobus		= I915_READ(ECOBUS);
2178 	s->pwrdwnupctl		= I915_READ(VLV_PWRDWNUPCTL);
2179 	s->rp_down_timeout	= I915_READ(GEN6_RP_DOWN_TIMEOUT);
2180 	s->rp_deucsw		= I915_READ(GEN6_RPDEUCSW);
2181 	s->rcubmabdtmr		= I915_READ(GEN6_RCUBMABDTMR);
2182 	s->rcedata		= I915_READ(VLV_RCEDATA);
2183 	s->spare2gh		= I915_READ(VLV_SPAREG2H);
2184 
2185 	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2186 	s->gt_imr		= I915_READ(GTIMR);
2187 	s->gt_ier		= I915_READ(GTIER);
2188 	s->pm_imr		= I915_READ(GEN6_PMIMR);
2189 	s->pm_ier		= I915_READ(GEN6_PMIER);
2190 
2191 	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2192 		s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2193 
2194 	/* GT SA CZ domain, 0x100000-0x138124 */
2195 	s->tilectl		= I915_READ(TILECTL);
2196 	s->gt_fifoctl		= I915_READ(GTFIFOCTL);
2197 	s->gtlc_wake_ctrl	= I915_READ(VLV_GTLC_WAKE_CTRL);
2198 	s->gtlc_survive		= I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2199 	s->pmwgicz		= I915_READ(VLV_PMWGICZ);
2200 
2201 	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
2202 	s->gu_ctl0		= I915_READ(VLV_GU_CTL0);
2203 	s->gu_ctl1		= I915_READ(VLV_GU_CTL1);
2204 	s->pcbr			= I915_READ(VLV_PCBR);
2205 	s->clock_gate_dis2	= I915_READ(VLV_GUNIT_CLOCK_GATE2);
2206 
2207 	/*
2208 	 * Not saving any of:
2209 	 * DFT,		0x9800-0x9EC0
2210 	 * SARB,	0xB000-0xB1FC
2211 	 * GAC,		0x5208-0x524C, 0x14000-0x14C000
2212 	 * PCI CFG
2213 	 */
2214 }
2215 
vlv_restore_gunit_s0ix_state(struct drm_i915_private * dev_priv)2216 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2217 {
2218 	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2219 	u32 val;
2220 	int i;
2221 
2222 	/* GAM 0x4000-0x4770 */
2223 	I915_WRITE(GEN7_WR_WATERMARK,	s->wr_watermark);
2224 	I915_WRITE(GEN7_GFX_PRIO_CTRL,	s->gfx_prio_ctrl);
2225 	I915_WRITE(ARB_MODE,		s->arb_mode | (0xffff << 16));
2226 	I915_WRITE(GEN7_GFX_PEND_TLB0,	s->gfx_pend_tlb0);
2227 	I915_WRITE(GEN7_GFX_PEND_TLB1,	s->gfx_pend_tlb1);
2228 
2229 	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2230 		I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2231 
2232 	I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2233 	I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2234 
2235 	I915_WRITE(RENDER_HWS_PGA_GEN7,	s->render_hwsp);
2236 	I915_WRITE(GAM_ECOCHK,		s->ecochk);
2237 	I915_WRITE(BSD_HWS_PGA_GEN7,	s->bsd_hwsp);
2238 	I915_WRITE(BLT_HWS_PGA_GEN7,	s->blt_hwsp);
2239 
2240 	I915_WRITE(GEN7_TLB_RD_ADDR,	s->tlb_rd_addr);
2241 
2242 	/* MBC 0x9024-0x91D0, 0x8500 */
2243 	I915_WRITE(VLV_G3DCTL,		s->g3dctl);
2244 	I915_WRITE(VLV_GSCKGCTL,	s->gsckgctl);
2245 	I915_WRITE(GEN6_MBCTL,		s->mbctl);
2246 
2247 	/* GCP 0x9400-0x9424, 0x8100-0x810C */
2248 	I915_WRITE(GEN6_UCGCTL1,	s->ucgctl1);
2249 	I915_WRITE(GEN6_UCGCTL3,	s->ucgctl3);
2250 	I915_WRITE(GEN6_RCGCTL1,	s->rcgctl1);
2251 	I915_WRITE(GEN6_RCGCTL2,	s->rcgctl2);
2252 	I915_WRITE(GEN6_RSTCTL,		s->rstctl);
2253 	I915_WRITE(GEN7_MISCCPCTL,	s->misccpctl);
2254 
2255 	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2256 	I915_WRITE(GEN6_GFXPAUSE,	s->gfxpause);
2257 	I915_WRITE(GEN6_RPDEUHWTC,	s->rpdeuhwtc);
2258 	I915_WRITE(GEN6_RPDEUC,		s->rpdeuc);
2259 	I915_WRITE(ECOBUS,		s->ecobus);
2260 	I915_WRITE(VLV_PWRDWNUPCTL,	s->pwrdwnupctl);
2261 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2262 	I915_WRITE(GEN6_RPDEUCSW,	s->rp_deucsw);
2263 	I915_WRITE(GEN6_RCUBMABDTMR,	s->rcubmabdtmr);
2264 	I915_WRITE(VLV_RCEDATA,		s->rcedata);
2265 	I915_WRITE(VLV_SPAREG2H,	s->spare2gh);
2266 
2267 	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2268 	I915_WRITE(GTIMR,		s->gt_imr);
2269 	I915_WRITE(GTIER,		s->gt_ier);
2270 	I915_WRITE(GEN6_PMIMR,		s->pm_imr);
2271 	I915_WRITE(GEN6_PMIER,		s->pm_ier);
2272 
2273 	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2274 		I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2275 
2276 	/* GT SA CZ domain, 0x100000-0x138124 */
2277 	I915_WRITE(TILECTL,			s->tilectl);
2278 	I915_WRITE(GTFIFOCTL,			s->gt_fifoctl);
2279 	/*
2280 	 * Preserve the GT allow wake and GFX force clock bit, they are not
2281 	 * be restored, as they are used to control the s0ix suspend/resume
2282 	 * sequence by the caller.
2283 	 */
2284 	val = I915_READ(VLV_GTLC_WAKE_CTRL);
2285 	val &= VLV_GTLC_ALLOWWAKEREQ;
2286 	val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2287 	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2288 
2289 	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2290 	val &= VLV_GFX_CLK_FORCE_ON_BIT;
2291 	val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2292 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2293 
2294 	I915_WRITE(VLV_PMWGICZ,			s->pmwgicz);
2295 
2296 	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
2297 	I915_WRITE(VLV_GU_CTL0,			s->gu_ctl0);
2298 	I915_WRITE(VLV_GU_CTL1,			s->gu_ctl1);
2299 	I915_WRITE(VLV_PCBR,			s->pcbr);
2300 	I915_WRITE(VLV_GUNIT_CLOCK_GATE2,	s->clock_gate_dis2);
2301 }
2302 
vlv_wait_for_pw_status(struct drm_i915_private * dev_priv,u32 mask,u32 val)2303 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2304 				  u32 mask, u32 val)
2305 {
2306 	/* The HW does not like us polling for PW_STATUS frequently, so
2307 	 * use the sleeping loop rather than risk the busy spin within
2308 	 * intel_wait_for_register().
2309 	 *
2310 	 * Transitioning between RC6 states should be at most 2ms (see
2311 	 * valleyview_enable_rps) so use a 3ms timeout.
2312 	 */
2313 	return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2314 			3);
2315 }
2316 
vlv_force_gfx_clock(struct drm_i915_private * dev_priv,bool force_on)2317 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2318 {
2319 	u32 val;
2320 	int err;
2321 
2322 	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2323 	val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2324 	if (force_on)
2325 		val |= VLV_GFX_CLK_FORCE_ON_BIT;
2326 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2327 
2328 	if (!force_on)
2329 		return 0;
2330 
2331 	err = intel_wait_for_register(dev_priv,
2332 				      VLV_GTLC_SURVIVABILITY_REG,
2333 				      VLV_GFX_CLK_STATUS_BIT,
2334 				      VLV_GFX_CLK_STATUS_BIT,
2335 				      20);
2336 	if (err)
2337 		DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2338 			  I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2339 
2340 	return err;
2341 }
2342 
vlv_allow_gt_wake(struct drm_i915_private * dev_priv,bool allow)2343 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2344 {
2345 	u32 mask;
2346 	u32 val;
2347 	int err;
2348 
2349 	val = I915_READ(VLV_GTLC_WAKE_CTRL);
2350 	val &= ~VLV_GTLC_ALLOWWAKEREQ;
2351 	if (allow)
2352 		val |= VLV_GTLC_ALLOWWAKEREQ;
2353 	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2354 	POSTING_READ(VLV_GTLC_WAKE_CTRL);
2355 
2356 	mask = VLV_GTLC_ALLOWWAKEACK;
2357 	val = allow ? mask : 0;
2358 
2359 	err = vlv_wait_for_pw_status(dev_priv, mask, val);
2360 	if (err)
2361 		DRM_ERROR("timeout disabling GT waking\n");
2362 
2363 	return err;
2364 }
2365 
vlv_wait_for_gt_wells(struct drm_i915_private * dev_priv,bool wait_for_on)2366 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2367 				  bool wait_for_on)
2368 {
2369 	u32 mask;
2370 	u32 val;
2371 
2372 	mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2373 	val = wait_for_on ? mask : 0;
2374 
2375 	/*
2376 	 * RC6 transitioning can be delayed up to 2 msec (see
2377 	 * valleyview_enable_rps), use 3 msec for safety.
2378 	 */
2379 	if (vlv_wait_for_pw_status(dev_priv, mask, val))
2380 		DRM_ERROR("timeout waiting for GT wells to go %s\n",
2381 			  onoff(wait_for_on));
2382 }
2383 
vlv_check_no_gt_access(struct drm_i915_private * dev_priv)2384 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2385 {
2386 	if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2387 		return;
2388 
2389 	DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2390 	I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2391 }
2392 
vlv_suspend_complete(struct drm_i915_private * dev_priv)2393 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2394 {
2395 	u32 mask;
2396 	int err;
2397 
2398 	/*
2399 	 * Bspec defines the following GT well on flags as debug only, so
2400 	 * don't treat them as hard failures.
2401 	 */
2402 	vlv_wait_for_gt_wells(dev_priv, false);
2403 
2404 	mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2405 	WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2406 
2407 	vlv_check_no_gt_access(dev_priv);
2408 
2409 	err = vlv_force_gfx_clock(dev_priv, true);
2410 	if (err)
2411 		goto err1;
2412 
2413 	err = vlv_allow_gt_wake(dev_priv, false);
2414 	if (err)
2415 		goto err2;
2416 
2417 	if (!IS_CHERRYVIEW(dev_priv))
2418 		vlv_save_gunit_s0ix_state(dev_priv);
2419 
2420 	err = vlv_force_gfx_clock(dev_priv, false);
2421 	if (err)
2422 		goto err2;
2423 
2424 	return 0;
2425 
2426 err2:
2427 	/* For safety always re-enable waking and disable gfx clock forcing */
2428 	vlv_allow_gt_wake(dev_priv, true);
2429 err1:
2430 	vlv_force_gfx_clock(dev_priv, false);
2431 
2432 	return err;
2433 }
2434 
vlv_resume_prepare(struct drm_i915_private * dev_priv,bool rpm_resume)2435 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2436 				bool rpm_resume)
2437 {
2438 	int err;
2439 	int ret;
2440 
2441 	/*
2442 	 * If any of the steps fail just try to continue, that's the best we
2443 	 * can do at this point. Return the first error code (which will also
2444 	 * leave RPM permanently disabled).
2445 	 */
2446 	ret = vlv_force_gfx_clock(dev_priv, true);
2447 
2448 	if (!IS_CHERRYVIEW(dev_priv))
2449 		vlv_restore_gunit_s0ix_state(dev_priv);
2450 
2451 	err = vlv_allow_gt_wake(dev_priv, true);
2452 	if (!ret)
2453 		ret = err;
2454 
2455 	err = vlv_force_gfx_clock(dev_priv, false);
2456 	if (!ret)
2457 		ret = err;
2458 
2459 	vlv_check_no_gt_access(dev_priv);
2460 
2461 	if (rpm_resume)
2462 		intel_init_clock_gating(dev_priv);
2463 
2464 	return ret;
2465 }
2466 
intel_runtime_suspend(struct device * kdev)2467 static int intel_runtime_suspend(struct device *kdev)
2468 {
2469 	struct pci_dev *pdev = to_pci_dev(kdev);
2470 	struct drm_device *dev = pci_get_drvdata(pdev);
2471 	struct drm_i915_private *dev_priv = to_i915(dev);
2472 	int ret;
2473 
2474 	if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2475 		return -ENODEV;
2476 
2477 	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2478 		return -ENODEV;
2479 
2480 	DRM_DEBUG_KMS("Suspending device\n");
2481 
2482 	disable_rpm_wakeref_asserts(dev_priv);
2483 
2484 	/*
2485 	 * We are safe here against re-faults, since the fault handler takes
2486 	 * an RPM reference.
2487 	 */
2488 	i915_gem_runtime_suspend(dev_priv);
2489 
2490 	intel_guc_suspend(dev_priv);
2491 
2492 	intel_runtime_pm_disable_interrupts(dev_priv);
2493 
2494 	ret = 0;
2495 	if (IS_GEN9_LP(dev_priv)) {
2496 		bxt_display_core_uninit(dev_priv);
2497 		bxt_enable_dc9(dev_priv);
2498 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2499 		hsw_enable_pc8(dev_priv);
2500 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2501 		ret = vlv_suspend_complete(dev_priv);
2502 	}
2503 
2504 	if (ret) {
2505 		DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2506 		intel_runtime_pm_enable_interrupts(dev_priv);
2507 
2508 		enable_rpm_wakeref_asserts(dev_priv);
2509 
2510 		return ret;
2511 	}
2512 
2513 	intel_uncore_suspend(dev_priv);
2514 
2515 	enable_rpm_wakeref_asserts(dev_priv);
2516 	WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2517 
2518 	if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2519 		DRM_ERROR("Unclaimed access detected prior to suspending\n");
2520 
2521 	dev_priv->pm.suspended = true;
2522 
2523 	/*
2524 	 * FIXME: We really should find a document that references the arguments
2525 	 * used below!
2526 	 */
2527 	if (IS_BROADWELL(dev_priv)) {
2528 		/*
2529 		 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2530 		 * being detected, and the call we do at intel_runtime_resume()
2531 		 * won't be able to restore them. Since PCI_D3hot matches the
2532 		 * actual specification and appears to be working, use it.
2533 		 */
2534 		intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2535 	} else {
2536 		/*
2537 		 * current versions of firmware which depend on this opregion
2538 		 * notification have repurposed the D1 definition to mean
2539 		 * "runtime suspended" vs. what you would normally expect (D3)
2540 		 * to distinguish it from notifications that might be sent via
2541 		 * the suspend path.
2542 		 */
2543 		intel_opregion_notify_adapter(dev_priv, PCI_D1);
2544 	}
2545 
2546 	assert_forcewakes_inactive(dev_priv);
2547 
2548 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2549 		intel_hpd_poll_init(dev_priv);
2550 
2551 	DRM_DEBUG_KMS("Device suspended\n");
2552 	return 0;
2553 }
2554 
intel_runtime_resume(struct device * kdev)2555 static int intel_runtime_resume(struct device *kdev)
2556 {
2557 	struct pci_dev *pdev = to_pci_dev(kdev);
2558 	struct drm_device *dev = pci_get_drvdata(pdev);
2559 	struct drm_i915_private *dev_priv = to_i915(dev);
2560 	int ret = 0;
2561 
2562 	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2563 		return -ENODEV;
2564 
2565 	DRM_DEBUG_KMS("Resuming device\n");
2566 
2567 	WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2568 	disable_rpm_wakeref_asserts(dev_priv);
2569 
2570 	intel_opregion_notify_adapter(dev_priv, PCI_D0);
2571 	dev_priv->pm.suspended = false;
2572 	if (intel_uncore_unclaimed_mmio(dev_priv))
2573 		DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2574 
2575 	intel_guc_resume(dev_priv);
2576 
2577 	if (IS_GEN9_LP(dev_priv)) {
2578 		bxt_disable_dc9(dev_priv);
2579 		bxt_display_core_init(dev_priv, true);
2580 		if (dev_priv->csr.dmc_payload &&
2581 		    (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2582 			gen9_enable_dc5(dev_priv);
2583 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2584 		hsw_disable_pc8(dev_priv);
2585 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2586 		ret = vlv_resume_prepare(dev_priv, true);
2587 	}
2588 
2589 	intel_uncore_runtime_resume(dev_priv);
2590 
2591 	/*
2592 	 * No point of rolling back things in case of an error, as the best
2593 	 * we can do is to hope that things will still work (and disable RPM).
2594 	 */
2595 	i915_gem_init_swizzling(dev_priv);
2596 	i915_gem_restore_fences(dev_priv);
2597 
2598 	intel_runtime_pm_enable_interrupts(dev_priv);
2599 
2600 	/*
2601 	 * On VLV/CHV display interrupts are part of the display
2602 	 * power well, so hpd is reinitialized from there. For
2603 	 * everyone else do it here.
2604 	 */
2605 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2606 		intel_hpd_init(dev_priv);
2607 
2608 	enable_rpm_wakeref_asserts(dev_priv);
2609 
2610 	if (ret)
2611 		DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2612 	else
2613 		DRM_DEBUG_KMS("Device resumed\n");
2614 
2615 	return ret;
2616 }
2617 
2618 const struct dev_pm_ops i915_pm_ops = {
2619 	/*
2620 	 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2621 	 * PMSG_RESUME]
2622 	 */
2623 	.suspend = i915_pm_suspend,
2624 	.suspend_late = i915_pm_suspend_late,
2625 	.resume_early = i915_pm_resume_early,
2626 	.resume = i915_pm_resume,
2627 
2628 	/*
2629 	 * S4 event handlers
2630 	 * @freeze, @freeze_late    : called (1) before creating the
2631 	 *                            hibernation image [PMSG_FREEZE] and
2632 	 *                            (2) after rebooting, before restoring
2633 	 *                            the image [PMSG_QUIESCE]
2634 	 * @thaw, @thaw_early       : called (1) after creating the hibernation
2635 	 *                            image, before writing it [PMSG_THAW]
2636 	 *                            and (2) after failing to create or
2637 	 *                            restore the image [PMSG_RECOVER]
2638 	 * @poweroff, @poweroff_late: called after writing the hibernation
2639 	 *                            image, before rebooting [PMSG_HIBERNATE]
2640 	 * @restore, @restore_early : called after rebooting and restoring the
2641 	 *                            hibernation image [PMSG_RESTORE]
2642 	 */
2643 	.freeze = i915_pm_freeze,
2644 	.freeze_late = i915_pm_freeze_late,
2645 	.thaw_early = i915_pm_thaw_early,
2646 	.thaw = i915_pm_thaw,
2647 	.poweroff = i915_pm_suspend,
2648 	.poweroff_late = i915_pm_poweroff_late,
2649 	.restore_early = i915_pm_restore_early,
2650 	.restore = i915_pm_restore,
2651 
2652 	/* S0ix (via runtime suspend) event handlers */
2653 	.runtime_suspend = intel_runtime_suspend,
2654 	.runtime_resume = intel_runtime_resume,
2655 };
2656 
2657 static const struct vm_operations_struct i915_gem_vm_ops = {
2658 	.fault = i915_gem_fault,
2659 	.open = drm_gem_vm_open,
2660 	.close = drm_gem_vm_close,
2661 };
2662 
2663 static const struct file_operations i915_driver_fops = {
2664 	.owner = THIS_MODULE,
2665 	.open = drm_open,
2666 	.release = drm_release,
2667 	.unlocked_ioctl = drm_ioctl,
2668 	.mmap = drm_gem_mmap,
2669 	.poll = drm_poll,
2670 	.read = drm_read,
2671 	.compat_ioctl = i915_compat_ioctl,
2672 	.llseek = noop_llseek,
2673 };
2674 
2675 static int
i915_gem_reject_pin_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2676 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2677 			  struct drm_file *file)
2678 {
2679 	return -ENODEV;
2680 }
2681 
2682 static const struct drm_ioctl_desc i915_ioctls[] = {
2683 	DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2684 	DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2685 	DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2686 	DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2687 	DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2688 	DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2689 	DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2690 	DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2691 	DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2692 	DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2693 	DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2694 	DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2695 	DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2696 	DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2697 	DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE,  drm_noop, DRM_AUTH),
2698 	DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2699 	DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2700 	DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2701 	DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2702 	DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2703 	DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2704 	DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2705 	DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2706 	DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2707 	DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2708 	DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2709 	DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2710 	DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2711 	DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2712 	DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2713 	DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2714 	DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2715 	DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2716 	DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2717 	DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2718 	DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2719 	DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2720 	DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2721 	DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2722 	DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2723 	DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2724 	DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2725 	DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2726 	DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2727 	DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2728 	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2729 	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2730 	DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2731 	DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2732 	DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2733 	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2734 	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2735 	DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2736 	DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2737 	DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2738 };
2739 
2740 static struct drm_driver driver = {
2741 	/* Don't use MTRRs here; the Xserver or userspace app should
2742 	 * deal with them for Intel hardware.
2743 	 */
2744 	.driver_features =
2745 	    DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2746 	    DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2747 	.release = i915_driver_release,
2748 	.open = i915_driver_open,
2749 	.lastclose = i915_driver_lastclose,
2750 	.postclose = i915_driver_postclose,
2751 
2752 	.gem_close_object = i915_gem_close_object,
2753 	.gem_free_object_unlocked = i915_gem_free_object,
2754 	.gem_vm_ops = &i915_gem_vm_ops,
2755 
2756 	.prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2757 	.prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2758 	.gem_prime_export = i915_gem_prime_export,
2759 	.gem_prime_import = i915_gem_prime_import,
2760 
2761 	.dumb_create = i915_gem_dumb_create,
2762 	.dumb_map_offset = i915_gem_mmap_gtt,
2763 	.ioctls = i915_ioctls,
2764 	.num_ioctls = ARRAY_SIZE(i915_ioctls),
2765 	.fops = &i915_driver_fops,
2766 	.name = DRIVER_NAME,
2767 	.desc = DRIVER_DESC,
2768 	.date = DRIVER_DATE,
2769 	.major = DRIVER_MAJOR,
2770 	.minor = DRIVER_MINOR,
2771 	.patchlevel = DRIVER_PATCHLEVEL,
2772 };
2773 
2774 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2775 #include "selftests/mock_drm.c"
2776 #endif
2777