1 /*
2 * This file contains ioremap and related functions for 64-bit machines.
3 *
4 * Derived from arch/ppc64/mm/init.c
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 *
7 * Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
9 * Copyright (C) 1996 Paul Mackerras
10 *
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 *
14 * Dave Engebretsen <engebret@us.ibm.com>
15 * Rework for PPC64 port.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License
19 * as published by the Free Software Foundation; either version
20 * 2 of the License, or (at your option) any later version.
21 *
22 */
23
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/export.h>
30 #include <linux/types.h>
31 #include <linux/mman.h>
32 #include <linux/mm.h>
33 #include <linux/swap.h>
34 #include <linux/stddef.h>
35 #include <linux/vmalloc.h>
36 #include <linux/memblock.h>
37 #include <linux/slab.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/pgalloc.h>
41 #include <asm/page.h>
42 #include <asm/prom.h>
43 #include <asm/io.h>
44 #include <asm/mmu_context.h>
45 #include <asm/pgtable.h>
46 #include <asm/mmu.h>
47 #include <asm/smp.h>
48 #include <asm/machdep.h>
49 #include <asm/tlb.h>
50 #include <asm/trace.h>
51 #include <asm/processor.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/firmware.h>
55 #include <asm/dma.h>
56 #include <asm/powernv.h>
57
58 #include "mmu_decl.h"
59
60 #ifdef CONFIG_PPC_STD_MMU_64
61 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
62 #error TASK_SIZE_USER64 exceeds user VSID range
63 #endif
64 #endif
65
66 #ifdef CONFIG_PPC_BOOK3S_64
67 /*
68 * partition table and process table for ISA 3.0
69 */
70 struct prtb_entry *process_tb;
71 struct patb_entry *partition_tb;
72 /*
73 * page table size
74 */
75 unsigned long __pte_index_size;
76 EXPORT_SYMBOL(__pte_index_size);
77 unsigned long __pmd_index_size;
78 EXPORT_SYMBOL(__pmd_index_size);
79 unsigned long __pud_index_size;
80 EXPORT_SYMBOL(__pud_index_size);
81 unsigned long __pgd_index_size;
82 EXPORT_SYMBOL(__pgd_index_size);
83 unsigned long __pmd_cache_index;
84 EXPORT_SYMBOL(__pmd_cache_index);
85 unsigned long __pte_table_size;
86 EXPORT_SYMBOL(__pte_table_size);
87 unsigned long __pmd_table_size;
88 EXPORT_SYMBOL(__pmd_table_size);
89 unsigned long __pud_table_size;
90 EXPORT_SYMBOL(__pud_table_size);
91 unsigned long __pgd_table_size;
92 EXPORT_SYMBOL(__pgd_table_size);
93 unsigned long __pmd_val_bits;
94 EXPORT_SYMBOL(__pmd_val_bits);
95 unsigned long __pud_val_bits;
96 EXPORT_SYMBOL(__pud_val_bits);
97 unsigned long __pgd_val_bits;
98 EXPORT_SYMBOL(__pgd_val_bits);
99 unsigned long __kernel_virt_start;
100 EXPORT_SYMBOL(__kernel_virt_start);
101 unsigned long __kernel_virt_size;
102 EXPORT_SYMBOL(__kernel_virt_size);
103 unsigned long __vmalloc_start;
104 EXPORT_SYMBOL(__vmalloc_start);
105 unsigned long __vmalloc_end;
106 EXPORT_SYMBOL(__vmalloc_end);
107 unsigned long __kernel_io_start;
108 EXPORT_SYMBOL(__kernel_io_start);
109 struct page *vmemmap;
110 EXPORT_SYMBOL(vmemmap);
111 unsigned long __pte_frag_nr;
112 EXPORT_SYMBOL(__pte_frag_nr);
113 unsigned long __pte_frag_size_shift;
114 EXPORT_SYMBOL(__pte_frag_size_shift);
115 unsigned long ioremap_bot;
116 #else /* !CONFIG_PPC_BOOK3S_64 */
117 unsigned long ioremap_bot = IOREMAP_BASE;
118 #endif
119
120 /**
121 * __ioremap_at - Low level function to establish the page tables
122 * for an IO mapping
123 */
__ioremap_at(phys_addr_t pa,void * ea,unsigned long size,unsigned long flags)124 void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
125 unsigned long flags)
126 {
127 unsigned long i;
128
129 /* Make sure we have the base flags */
130 if ((flags & _PAGE_PRESENT) == 0)
131 flags |= pgprot_val(PAGE_KERNEL);
132
133 /* We don't support the 4K PFN hack with ioremap */
134 if (flags & H_PAGE_4K_PFN)
135 return NULL;
136
137 WARN_ON(pa & ~PAGE_MASK);
138 WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
139 WARN_ON(size & ~PAGE_MASK);
140
141 for (i = 0; i < size; i += PAGE_SIZE)
142 if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
143 return NULL;
144
145 return (void __iomem *)ea;
146 }
147
148 /**
149 * __iounmap_from - Low level function to tear down the page tables
150 * for an IO mapping. This is used for mappings that
151 * are manipulated manually, like partial unmapping of
152 * PCI IOs or ISA space.
153 */
__iounmap_at(void * ea,unsigned long size)154 void __iounmap_at(void *ea, unsigned long size)
155 {
156 WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
157 WARN_ON(size & ~PAGE_MASK);
158
159 unmap_kernel_range((unsigned long)ea, size);
160 }
161
__ioremap_caller(phys_addr_t addr,unsigned long size,unsigned long flags,void * caller)162 void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
163 unsigned long flags, void *caller)
164 {
165 phys_addr_t paligned;
166 void __iomem *ret;
167
168 /*
169 * Choose an address to map it to.
170 * Once the imalloc system is running, we use it.
171 * Before that, we map using addresses going
172 * up from ioremap_bot. imalloc will use
173 * the addresses from ioremap_bot through
174 * IMALLOC_END
175 *
176 */
177 paligned = addr & PAGE_MASK;
178 size = PAGE_ALIGN(addr + size) - paligned;
179
180 if ((size == 0) || (paligned == 0))
181 return NULL;
182
183 if (slab_is_available()) {
184 struct vm_struct *area;
185
186 area = __get_vm_area_caller(size, VM_IOREMAP,
187 ioremap_bot, IOREMAP_END,
188 caller);
189 if (area == NULL)
190 return NULL;
191
192 area->phys_addr = paligned;
193 ret = __ioremap_at(paligned, area->addr, size, flags);
194 if (!ret)
195 vunmap(area->addr);
196 } else {
197 ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
198 if (ret)
199 ioremap_bot += size;
200 }
201
202 if (ret)
203 ret += addr & ~PAGE_MASK;
204 return ret;
205 }
206
__ioremap(phys_addr_t addr,unsigned long size,unsigned long flags)207 void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
208 unsigned long flags)
209 {
210 return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
211 }
212
ioremap(phys_addr_t addr,unsigned long size)213 void __iomem * ioremap(phys_addr_t addr, unsigned long size)
214 {
215 unsigned long flags = pgprot_val(pgprot_noncached(__pgprot(0)));
216 void *caller = __builtin_return_address(0);
217
218 if (ppc_md.ioremap)
219 return ppc_md.ioremap(addr, size, flags, caller);
220 return __ioremap_caller(addr, size, flags, caller);
221 }
222
ioremap_wc(phys_addr_t addr,unsigned long size)223 void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
224 {
225 unsigned long flags = pgprot_val(pgprot_noncached_wc(__pgprot(0)));
226 void *caller = __builtin_return_address(0);
227
228 if (ppc_md.ioremap)
229 return ppc_md.ioremap(addr, size, flags, caller);
230 return __ioremap_caller(addr, size, flags, caller);
231 }
232
ioremap_prot(phys_addr_t addr,unsigned long size,unsigned long flags)233 void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
234 unsigned long flags)
235 {
236 void *caller = __builtin_return_address(0);
237
238 /* writeable implies dirty for kernel addresses */
239 if (flags & _PAGE_WRITE)
240 flags |= _PAGE_DIRTY;
241
242 /* we don't want to let _PAGE_EXEC leak out */
243 flags &= ~_PAGE_EXEC;
244 /*
245 * Force kernel mapping.
246 */
247 #if defined(CONFIG_PPC_BOOK3S_64)
248 flags |= _PAGE_PRIVILEGED;
249 #else
250 flags &= ~_PAGE_USER;
251 #endif
252
253
254 #ifdef _PAGE_BAP_SR
255 /* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
256 * which means that we just cleared supervisor access... oops ;-) This
257 * restores it
258 */
259 flags |= _PAGE_BAP_SR;
260 #endif
261
262 if (ppc_md.ioremap)
263 return ppc_md.ioremap(addr, size, flags, caller);
264 return __ioremap_caller(addr, size, flags, caller);
265 }
266
267
268 /*
269 * Unmap an IO region and remove it from imalloc'd list.
270 * Access to IO memory should be serialized by driver.
271 */
__iounmap(volatile void __iomem * token)272 void __iounmap(volatile void __iomem *token)
273 {
274 void *addr;
275
276 if (!slab_is_available())
277 return;
278
279 addr = (void *) ((unsigned long __force)
280 PCI_FIX_ADDR(token) & PAGE_MASK);
281 if ((unsigned long)addr < ioremap_bot) {
282 printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
283 " at 0x%p\n", addr);
284 return;
285 }
286 vunmap(addr);
287 }
288
iounmap(volatile void __iomem * token)289 void iounmap(volatile void __iomem *token)
290 {
291 if (ppc_md.iounmap)
292 ppc_md.iounmap(token);
293 else
294 __iounmap(token);
295 }
296
297 EXPORT_SYMBOL(ioremap);
298 EXPORT_SYMBOL(ioremap_wc);
299 EXPORT_SYMBOL(ioremap_prot);
300 EXPORT_SYMBOL(__ioremap);
301 EXPORT_SYMBOL(__ioremap_at);
302 EXPORT_SYMBOL(iounmap);
303 EXPORT_SYMBOL(__iounmap);
304 EXPORT_SYMBOL(__iounmap_at);
305
306 #ifndef __PAGETABLE_PUD_FOLDED
307 /* 4 level page table */
pgd_page(pgd_t pgd)308 struct page *pgd_page(pgd_t pgd)
309 {
310 if (pgd_huge(pgd))
311 return pte_page(pgd_pte(pgd));
312 return virt_to_page(pgd_page_vaddr(pgd));
313 }
314 #endif
315
pud_page(pud_t pud)316 struct page *pud_page(pud_t pud)
317 {
318 if (pud_huge(pud))
319 return pte_page(pud_pte(pud));
320 return virt_to_page(pud_page_vaddr(pud));
321 }
322
323 /*
324 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
325 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
326 */
pmd_page(pmd_t pmd)327 struct page *pmd_page(pmd_t pmd)
328 {
329 if (pmd_trans_huge(pmd) || pmd_huge(pmd) || pmd_devmap(pmd))
330 return pte_page(pmd_pte(pmd));
331 return virt_to_page(pmd_page_vaddr(pmd));
332 }
333
334 #ifdef CONFIG_PPC_64K_PAGES
get_from_cache(struct mm_struct * mm)335 static pte_t *get_from_cache(struct mm_struct *mm)
336 {
337 void *pte_frag, *ret;
338
339 spin_lock(&mm->page_table_lock);
340 ret = mm->context.pte_frag;
341 if (ret) {
342 pte_frag = ret + PTE_FRAG_SIZE;
343 /*
344 * If we have taken up all the fragments mark PTE page NULL
345 */
346 if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
347 pte_frag = NULL;
348 mm->context.pte_frag = pte_frag;
349 }
350 spin_unlock(&mm->page_table_lock);
351 return (pte_t *)ret;
352 }
353
__alloc_for_cache(struct mm_struct * mm,int kernel)354 static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
355 {
356 void *ret = NULL;
357 struct page *page;
358
359 if (!kernel) {
360 page = alloc_page(PGALLOC_GFP | __GFP_ACCOUNT);
361 if (!page)
362 return NULL;
363 if (!pgtable_page_ctor(page)) {
364 __free_page(page);
365 return NULL;
366 }
367 } else {
368 page = alloc_page(PGALLOC_GFP);
369 if (!page)
370 return NULL;
371 }
372
373 ret = page_address(page);
374 spin_lock(&mm->page_table_lock);
375 /*
376 * If we find pgtable_page set, we return
377 * the allocated page with single fragement
378 * count.
379 */
380 if (likely(!mm->context.pte_frag)) {
381 set_page_count(page, PTE_FRAG_NR);
382 mm->context.pte_frag = ret + PTE_FRAG_SIZE;
383 }
384 spin_unlock(&mm->page_table_lock);
385
386 return (pte_t *)ret;
387 }
388
pte_fragment_alloc(struct mm_struct * mm,unsigned long vmaddr,int kernel)389 pte_t *pte_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
390 {
391 pte_t *pte;
392
393 pte = get_from_cache(mm);
394 if (pte)
395 return pte;
396
397 return __alloc_for_cache(mm, kernel);
398 }
399 #endif /* CONFIG_PPC_64K_PAGES */
400
pte_fragment_free(unsigned long * table,int kernel)401 void pte_fragment_free(unsigned long *table, int kernel)
402 {
403 struct page *page = virt_to_page(table);
404 if (put_page_testzero(page)) {
405 if (!kernel)
406 pgtable_page_dtor(page);
407 free_hot_cold_page(page, 0);
408 }
409 }
410
411 #ifdef CONFIG_SMP
pgtable_free_tlb(struct mmu_gather * tlb,void * table,int shift)412 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
413 {
414 unsigned long pgf = (unsigned long)table;
415
416 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
417 pgf |= shift;
418 tlb_remove_table(tlb, (void *)pgf);
419 }
420
__tlb_remove_table(void * _table)421 void __tlb_remove_table(void *_table)
422 {
423 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
424 unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
425
426 if (!shift)
427 /* PTE page needs special handling */
428 pte_fragment_free(table, 0);
429 else {
430 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
431 kmem_cache_free(PGT_CACHE(shift), table);
432 }
433 }
434 #else
pgtable_free_tlb(struct mmu_gather * tlb,void * table,int shift)435 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
436 {
437 if (!shift) {
438 /* PTE page needs special handling */
439 pte_fragment_free(table, 0);
440 } else {
441 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
442 kmem_cache_free(PGT_CACHE(shift), table);
443 }
444 }
445 #endif
446
447 #ifdef CONFIG_PPC_BOOK3S_64
mmu_partition_table_init(void)448 void __init mmu_partition_table_init(void)
449 {
450 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
451 unsigned long ptcr;
452
453 BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
454 partition_tb = __va(memblock_alloc_base(patb_size, patb_size,
455 MEMBLOCK_ALLOC_ANYWHERE));
456
457 /* Initialize the Partition Table with no entries */
458 memset((void *)partition_tb, 0, patb_size);
459
460 /*
461 * update partition table control register,
462 * 64 K size.
463 */
464 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
465 mtspr(SPRN_PTCR, ptcr);
466 powernv_set_nmmu_ptcr(ptcr);
467 }
468
mmu_partition_table_set_entry(unsigned int lpid,unsigned long dw0,unsigned long dw1)469 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
470 unsigned long dw1)
471 {
472 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
473
474 partition_tb[lpid].patb0 = cpu_to_be64(dw0);
475 partition_tb[lpid].patb1 = cpu_to_be64(dw1);
476
477 /*
478 * Global flush of TLBs and partition table caches for this lpid.
479 * The type of flush (hash or radix) depends on what the previous
480 * use of this partition ID was, not the new use.
481 */
482 asm volatile("ptesync" : : : "memory");
483 if (old & PATB_HR) {
484 asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
485 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
486 asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
487 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
488 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1);
489 } else {
490 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
491 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
492 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
493 }
494 /* do we need fixup here ?*/
495 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
496 }
497 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
498 #endif /* CONFIG_PPC_BOOK3S_64 */
499
500 #ifdef CONFIG_STRICT_KERNEL_RWX
mark_rodata_ro(void)501 void mark_rodata_ro(void)
502 {
503 if (!mmu_has_feature(MMU_FTR_KERNEL_RO)) {
504 pr_warn("Warning: Unable to mark rodata read only on this CPU.\n");
505 return;
506 }
507
508 if (radix_enabled())
509 radix__mark_rodata_ro();
510 else
511 hash__mark_rodata_ro();
512 }
513
mark_initmem_nx(void)514 void mark_initmem_nx(void)
515 {
516 if (radix_enabled())
517 radix__mark_initmem_nx();
518 else
519 hash__mark_initmem_nx();
520 }
521 #endif
522