• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/highmem.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/spinlock.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/io.h>
27 #include <linux/vmalloc.h>
28 #include <linux/smp.h>
29 
30 #include <asm/pgtable.h>
31 #include <asm/pgalloc.h>
32 #include <asm/fixmap.h>
33 #include <asm/tlb.h>
34 #include <asm/tlbflush.h>
35 #include <asm/homecache.h>
36 
37 #define K(x) ((x) << (PAGE_SHIFT-10))
38 
39 /**
40  * shatter_huge_page() - ensure a given address is mapped by a small page.
41  *
42  * This function converts a huge PTE mapping kernel LOWMEM into a bunch
43  * of small PTEs with the same caching.  No cache flush required, but we
44  * must do a global TLB flush.
45  *
46  * Any caller that wishes to modify a kernel mapping that might
47  * have been made with a huge page should call this function,
48  * since doing so properly avoids race conditions with installing the
49  * newly-shattered page and then flushing all the TLB entries.
50  *
51  * @addr: Address at which to shatter any existing huge page.
52  */
shatter_huge_page(unsigned long addr)53 void shatter_huge_page(unsigned long addr)
54 {
55 	pgd_t *pgd;
56 	pud_t *pud;
57 	pmd_t *pmd;
58 	unsigned long flags = 0;  /* happy compiler */
59 #ifdef __PAGETABLE_PMD_FOLDED
60 	struct list_head *pos;
61 #endif
62 
63 	/* Get a pointer to the pmd entry that we need to change. */
64 	addr &= HPAGE_MASK;
65 	BUG_ON(pgd_addr_invalid(addr));
66 	BUG_ON(addr < PAGE_OFFSET);  /* only for kernel LOWMEM */
67 	pgd = swapper_pg_dir + pgd_index(addr);
68 	pud = pud_offset(pgd, addr);
69 	BUG_ON(!pud_present(*pud));
70 	pmd = pmd_offset(pud, addr);
71 	BUG_ON(!pmd_present(*pmd));
72 	if (!pmd_huge_page(*pmd))
73 		return;
74 
75 	spin_lock_irqsave(&init_mm.page_table_lock, flags);
76 	if (!pmd_huge_page(*pmd)) {
77 		/* Lost the race to convert the huge page. */
78 		spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
79 		return;
80 	}
81 
82 	/* Shatter the huge page into the preallocated L2 page table. */
83 	pmd_populate_kernel(&init_mm, pmd, get_prealloc_pte(pmd_pfn(*pmd)));
84 
85 #ifdef __PAGETABLE_PMD_FOLDED
86 	/* Walk every pgd on the system and update the pmd there. */
87 	spin_lock(&pgd_lock);
88 	list_for_each(pos, &pgd_list) {
89 		pmd_t *copy_pmd;
90 		pgd = list_to_pgd(pos) + pgd_index(addr);
91 		pud = pud_offset(pgd, addr);
92 		copy_pmd = pmd_offset(pud, addr);
93 		__set_pmd(copy_pmd, *pmd);
94 	}
95 	spin_unlock(&pgd_lock);
96 #endif
97 
98 	/* Tell every cpu to notice the change. */
99 	flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
100 		     cpu_possible_mask, NULL, 0);
101 
102 	/* Hold the lock until the TLB flush is finished to avoid races. */
103 	spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
104 }
105 
106 /*
107  * List of all pgd's needed so it can invalidate entries in both cached
108  * and uncached pgd's. This is essentially codepath-based locking
109  * against pageattr.c; it is the unique case in which a valid change
110  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
111  * vmalloc faults work because attached pagetables are never freed.
112  *
113  * The lock is always taken with interrupts disabled, unlike on x86
114  * and other platforms, because we need to take the lock in
115  * shatter_huge_page(), which may be called from an interrupt context.
116  * We are not at risk from the tlbflush IPI deadlock that was seen on
117  * x86, since we use the flush_remote() API to have the hypervisor do
118  * the TLB flushes regardless of irq disabling.
119  */
120 DEFINE_SPINLOCK(pgd_lock);
121 LIST_HEAD(pgd_list);
122 
pgd_list_add(pgd_t * pgd)123 static inline void pgd_list_add(pgd_t *pgd)
124 {
125 	list_add(pgd_to_list(pgd), &pgd_list);
126 }
127 
pgd_list_del(pgd_t * pgd)128 static inline void pgd_list_del(pgd_t *pgd)
129 {
130 	list_del(pgd_to_list(pgd));
131 }
132 
133 #define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
134 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
135 
pgd_ctor(pgd_t * pgd)136 static void pgd_ctor(pgd_t *pgd)
137 {
138 	unsigned long flags;
139 
140 	memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
141 	spin_lock_irqsave(&pgd_lock, flags);
142 
143 #ifndef __tilegx__
144 	/*
145 	 * Check that the user interrupt vector has no L2.
146 	 * It never should for the swapper, and new page tables
147 	 * should always start with an empty user interrupt vector.
148 	 */
149 	BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
150 #endif
151 
152 	memcpy(pgd + KERNEL_PGD_INDEX_START,
153 	       swapper_pg_dir + KERNEL_PGD_INDEX_START,
154 	       KERNEL_PGD_PTRS * sizeof(pgd_t));
155 
156 	pgd_list_add(pgd);
157 	spin_unlock_irqrestore(&pgd_lock, flags);
158 }
159 
pgd_dtor(pgd_t * pgd)160 static void pgd_dtor(pgd_t *pgd)
161 {
162 	unsigned long flags; /* can be called from interrupt context */
163 
164 	spin_lock_irqsave(&pgd_lock, flags);
165 	pgd_list_del(pgd);
166 	spin_unlock_irqrestore(&pgd_lock, flags);
167 }
168 
pgd_alloc(struct mm_struct * mm)169 pgd_t *pgd_alloc(struct mm_struct *mm)
170 {
171 	pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
172 	if (pgd)
173 		pgd_ctor(pgd);
174 	return pgd;
175 }
176 
pgd_free(struct mm_struct * mm,pgd_t * pgd)177 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
178 {
179 	pgd_dtor(pgd);
180 	kmem_cache_free(pgd_cache, pgd);
181 }
182 
183 
184 #define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
185 
pgtable_alloc_one(struct mm_struct * mm,unsigned long address,int order)186 struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address,
187 			       int order)
188 {
189 	gfp_t flags = GFP_KERNEL|__GFP_ZERO;
190 	struct page *p;
191 	int i;
192 
193 	p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
194 	if (p == NULL)
195 		return NULL;
196 
197 	if (!pgtable_page_ctor(p)) {
198 		__free_pages(p, L2_USER_PGTABLE_ORDER);
199 		return NULL;
200 	}
201 
202 	/*
203 	 * Make every page have a page_count() of one, not just the first.
204 	 * We don't use __GFP_COMP since it doesn't look like it works
205 	 * correctly with tlb_remove_page().
206 	 */
207 	for (i = 1; i < order; ++i) {
208 		init_page_count(p+i);
209 		inc_zone_page_state(p+i, NR_PAGETABLE);
210 	}
211 
212 	return p;
213 }
214 
215 /*
216  * Free page immediately (used in __pte_alloc if we raced with another
217  * process).  We have to correct whatever pte_alloc_one() did before
218  * returning the pages to the allocator.
219  */
pgtable_free(struct mm_struct * mm,struct page * p,int order)220 void pgtable_free(struct mm_struct *mm, struct page *p, int order)
221 {
222 	int i;
223 
224 	pgtable_page_dtor(p);
225 	__free_page(p);
226 
227 	for (i = 1; i < order; ++i) {
228 		__free_page(p+i);
229 		dec_zone_page_state(p+i, NR_PAGETABLE);
230 	}
231 }
232 
__pgtable_free_tlb(struct mmu_gather * tlb,struct page * pte,unsigned long address,int order)233 void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte,
234 			unsigned long address, int order)
235 {
236 	int i;
237 
238 	pgtable_page_dtor(pte);
239 	tlb_remove_page(tlb, pte);
240 
241 	for (i = 1; i < order; ++i) {
242 		tlb_remove_page(tlb, pte + i);
243 		dec_zone_page_state(pte + i, NR_PAGETABLE);
244 	}
245 }
246 
247 #ifndef __tilegx__
248 
249 /*
250  * FIXME: needs to be atomic vs hypervisor writes.  For now we make the
251  * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
252  */
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)253 int ptep_test_and_clear_young(struct vm_area_struct *vma,
254 			      unsigned long addr, pte_t *ptep)
255 {
256 #if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
257 # error Code assumes HV_PTE "accessed" bit in second byte
258 #endif
259 	u8 *tmp = (u8 *)ptep;
260 	u8 second_byte = tmp[1];
261 	if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
262 		return 0;
263 	tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
264 	return 1;
265 }
266 
267 /*
268  * This implementation is atomic vs hypervisor writes, since the hypervisor
269  * always writes the low word (where "accessed" and "dirty" are) and this
270  * routine only writes the high word.
271  */
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)272 void ptep_set_wrprotect(struct mm_struct *mm,
273 			unsigned long addr, pte_t *ptep)
274 {
275 #if HV_PTE_INDEX_WRITABLE < 32
276 # error Code assumes HV_PTE "writable" bit in high word
277 #endif
278 	u32 *tmp = (u32 *)ptep;
279 	tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
280 }
281 
282 #endif
283 
284 /*
285  * Return a pointer to the PTE that corresponds to the given
286  * address in the given page table.  A NULL page table just uses
287  * the standard kernel page table; the preferred API in this case
288  * is virt_to_kpte().
289  *
290  * The returned pointer can point to a huge page in other levels
291  * of the page table than the bottom, if the huge page is present
292  * in the page table.  For bottom-level PTEs, the returned pointer
293  * can point to a PTE that is either present or not.
294  */
virt_to_pte(struct mm_struct * mm,unsigned long addr)295 pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
296 {
297 	pgd_t *pgd;
298 	pud_t *pud;
299 	pmd_t *pmd;
300 
301 	if (pgd_addr_invalid(addr))
302 		return NULL;
303 
304 	pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
305 	pud = pud_offset(pgd, addr);
306 	if (!pud_present(*pud))
307 		return NULL;
308 	if (pud_huge_page(*pud))
309 		return (pte_t *)pud;
310 	pmd = pmd_offset(pud, addr);
311 	if (!pmd_present(*pmd))
312 		return NULL;
313 	if (pmd_huge_page(*pmd))
314 		return (pte_t *)pmd;
315 	return pte_offset_kernel(pmd, addr);
316 }
317 EXPORT_SYMBOL(virt_to_pte);
318 
virt_to_kpte(unsigned long kaddr)319 pte_t *virt_to_kpte(unsigned long kaddr)
320 {
321 	BUG_ON(kaddr < PAGE_OFFSET);
322 	return virt_to_pte(NULL, kaddr);
323 }
324 EXPORT_SYMBOL(virt_to_kpte);
325 
set_remote_cache_cpu(pgprot_t prot,int cpu)326 pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
327 {
328 	unsigned int width = smp_width;
329 	int x = cpu % width;
330 	int y = cpu / width;
331 	BUG_ON(y >= smp_height);
332 	BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
333 	BUG_ON(cpu < 0 || cpu >= NR_CPUS);
334 	BUG_ON(!cpu_is_valid_lotar(cpu));
335 	return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
336 }
337 
get_remote_cache_cpu(pgprot_t prot)338 int get_remote_cache_cpu(pgprot_t prot)
339 {
340 	HV_LOTAR lotar = hv_pte_get_lotar(prot);
341 	int x = HV_LOTAR_X(lotar);
342 	int y = HV_LOTAR_Y(lotar);
343 	BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
344 	return x + y * smp_width;
345 }
346 
347 /*
348  * Convert a kernel VA to a PA and homing information.
349  */
va_to_cpa_and_pte(void * va,unsigned long long * cpa,pte_t * pte)350 int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
351 {
352 	struct page *page = virt_to_page(va);
353 	pte_t null_pte = { 0 };
354 
355 	*cpa = __pa(va);
356 
357 	/* Note that this is not writing a page table, just returning a pte. */
358 	*pte = pte_set_home(null_pte, page_home(page));
359 
360 	return 0; /* return non-zero if not hfh? */
361 }
362 EXPORT_SYMBOL(va_to_cpa_and_pte);
363 
__set_pte(pte_t * ptep,pte_t pte)364 void __set_pte(pte_t *ptep, pte_t pte)
365 {
366 #ifdef __tilegx__
367 	*ptep = pte;
368 #else
369 # if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
370 #  error Must write the present and migrating bits last
371 # endif
372 	if (pte_present(pte)) {
373 		((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
374 		barrier();
375 		((u32 *)ptep)[0] = (u32)(pte_val(pte));
376 	} else {
377 		((u32 *)ptep)[0] = (u32)(pte_val(pte));
378 		barrier();
379 		((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
380 	}
381 #endif /* __tilegx__ */
382 }
383 
set_pte(pte_t * ptep,pte_t pte)384 void set_pte(pte_t *ptep, pte_t pte)
385 {
386 	if (pte_present(pte) &&
387 	    (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) {
388 		/* The PTE actually references physical memory. */
389 		unsigned long pfn = pte_pfn(pte);
390 		if (pfn_valid(pfn)) {
391 			/* Update the home of the PTE from the struct page. */
392 			pte = pte_set_home(pte, page_home(pfn_to_page(pfn)));
393 		} else if (hv_pte_get_mode(pte) == 0) {
394 			/* remap_pfn_range(), etc, must supply PTE mode. */
395 			panic("set_pte(): out-of-range PFN and mode 0\n");
396 		}
397 	}
398 
399 	__set_pte(ptep, pte);
400 }
401 
402 /* Can this mm load a PTE with cached_priority set? */
mm_is_priority_cached(struct mm_struct * mm)403 static inline int mm_is_priority_cached(struct mm_struct *mm)
404 {
405 	return mm->context.priority_cached != 0;
406 }
407 
408 /*
409  * Add a priority mapping to an mm_context and
410  * notify the hypervisor if this is the first one.
411  */
start_mm_caching(struct mm_struct * mm)412 void start_mm_caching(struct mm_struct *mm)
413 {
414 	if (!mm_is_priority_cached(mm)) {
415 		mm->context.priority_cached = -1UL;
416 		hv_set_caching(-1UL);
417 	}
418 }
419 
420 /*
421  * Validate and return the priority_cached flag.  We know if it's zero
422  * that we don't need to scan, since we immediately set it non-zero
423  * when we first consider a MAP_CACHE_PRIORITY mapping.
424  *
425  * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
426  * since we're in an interrupt context (servicing switch_mm) we don't
427  * worry about it and don't unset the "priority_cached" field.
428  * Presumably we'll come back later and have more luck and clear
429  * the value then; for now we'll just keep the cache marked for priority.
430  */
update_priority_cached(struct mm_struct * mm)431 static unsigned long update_priority_cached(struct mm_struct *mm)
432 {
433 	if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
434 		struct vm_area_struct *vm;
435 		for (vm = mm->mmap; vm; vm = vm->vm_next) {
436 			if (hv_pte_get_cached_priority(vm->vm_page_prot))
437 				break;
438 		}
439 		if (vm == NULL)
440 			mm->context.priority_cached = 0;
441 		up_write(&mm->mmap_sem);
442 	}
443 	return mm->context.priority_cached;
444 }
445 
446 /* Set caching correctly for an mm that we are switching to. */
check_mm_caching(struct mm_struct * prev,struct mm_struct * next)447 void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
448 {
449 	if (!mm_is_priority_cached(next)) {
450 		/*
451 		 * If the new mm doesn't use priority caching, just see if we
452 		 * need the hv_set_caching(), or can assume it's already zero.
453 		 */
454 		if (mm_is_priority_cached(prev))
455 			hv_set_caching(0);
456 	} else {
457 		hv_set_caching(update_priority_cached(next));
458 	}
459 }
460 
461 #if CHIP_HAS_MMIO()
462 
463 /* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
ioremap_prot(resource_size_t phys_addr,unsigned long size,pgprot_t home)464 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
465 			   pgprot_t home)
466 {
467 	void *addr;
468 	struct vm_struct *area;
469 	unsigned long offset, last_addr;
470 	pgprot_t pgprot;
471 
472 	/* Don't allow wraparound or zero size */
473 	last_addr = phys_addr + size - 1;
474 	if (!size || last_addr < phys_addr)
475 		return NULL;
476 
477 	/* Create a read/write, MMIO VA mapping homed at the requested shim. */
478 	pgprot = PAGE_KERNEL;
479 	pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
480 	pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
481 
482 	/*
483 	 * Mappings have to be page-aligned
484 	 */
485 	offset = phys_addr & ~PAGE_MASK;
486 	phys_addr &= PAGE_MASK;
487 	size = PAGE_ALIGN(last_addr+1) - phys_addr;
488 
489 	/*
490 	 * Ok, go for it..
491 	 */
492 	area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
493 	if (!area)
494 		return NULL;
495 	area->phys_addr = phys_addr;
496 	addr = area->addr;
497 	if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
498 			       phys_addr, pgprot)) {
499 		free_vm_area(area);
500 		return NULL;
501 	}
502 	return (__force void __iomem *) (offset + (char *)addr);
503 }
504 EXPORT_SYMBOL(ioremap_prot);
505 
506 #if !defined(CONFIG_PCI) || !defined(CONFIG_TILEGX)
507 /* ioremap is conditionally declared in pci_gx.c */
508 
ioremap(resource_size_t phys_addr,unsigned long size)509 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
510 {
511 	return NULL;
512 }
513 EXPORT_SYMBOL(ioremap);
514 
515 #endif
516 
517 /* Unmap an MMIO VA mapping. */
iounmap(volatile void __iomem * addr_in)518 void iounmap(volatile void __iomem *addr_in)
519 {
520 	volatile void __iomem *addr = (volatile void __iomem *)
521 		(PAGE_MASK & (unsigned long __force)addr_in);
522 #if 1
523 	vunmap((void * __force)addr);
524 #else
525 	/* x86 uses this complicated flow instead of vunmap().  Is
526 	 * there any particular reason we should do the same? */
527 	struct vm_struct *p, *o;
528 
529 	/* Use the vm area unlocked, assuming the caller
530 	   ensures there isn't another iounmap for the same address
531 	   in parallel. Reuse of the virtual address is prevented by
532 	   leaving it in the global lists until we're done with it.
533 	   cpa takes care of the direct mappings. */
534 	p = find_vm_area((void *)addr);
535 
536 	if (!p) {
537 		pr_err("iounmap: bad address %p\n", addr);
538 		dump_stack();
539 		return;
540 	}
541 
542 	/* Finally remove it */
543 	o = remove_vm_area((void *)addr);
544 	BUG_ON(p != o || o == NULL);
545 	kfree(p);
546 #endif
547 }
548 EXPORT_SYMBOL(iounmap);
549 
550 #endif /* CHIP_HAS_MMIO() */
551