1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/page_owner.h>
37
38 #include <asm/tlb.h>
39 #include <asm/pgalloc.h>
40 #include "internal.h"
41
42 /*
43 * By default transparent hugepage support is disabled in order that avoid
44 * to risk increase the memory footprint of applications without a guaranteed
45 * benefit. When transparent hugepage support is enabled, is for all mappings,
46 * and khugepaged scans all mappings.
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
49 */
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #endif
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 #endif
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60
61 static struct shrinker deferred_split_shrinker;
62
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65
get_huge_zero_page(void)66 static struct page *get_huge_zero_page(void)
67 {
68 struct page *zero_page;
69 retry:
70 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
71 return READ_ONCE(huge_zero_page);
72
73 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
74 HPAGE_PMD_ORDER);
75 if (!zero_page) {
76 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
77 return NULL;
78 }
79 count_vm_event(THP_ZERO_PAGE_ALLOC);
80 preempt_disable();
81 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
82 preempt_enable();
83 __free_pages(zero_page, compound_order(zero_page));
84 goto retry;
85 }
86
87 /* We take additional reference here. It will be put back by shrinker */
88 atomic_set(&huge_zero_refcount, 2);
89 preempt_enable();
90 return READ_ONCE(huge_zero_page);
91 }
92
put_huge_zero_page(void)93 static void put_huge_zero_page(void)
94 {
95 /*
96 * Counter should never go to zero here. Only shrinker can put
97 * last reference.
98 */
99 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
100 }
101
mm_get_huge_zero_page(struct mm_struct * mm)102 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
103 {
104 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
105 return READ_ONCE(huge_zero_page);
106
107 if (!get_huge_zero_page())
108 return NULL;
109
110 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
111 put_huge_zero_page();
112
113 return READ_ONCE(huge_zero_page);
114 }
115
mm_put_huge_zero_page(struct mm_struct * mm)116 void mm_put_huge_zero_page(struct mm_struct *mm)
117 {
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 put_huge_zero_page();
120 }
121
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)122 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
123 struct shrink_control *sc)
124 {
125 /* we can free zero page only if last reference remains */
126 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
127 }
128
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)129 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
130 struct shrink_control *sc)
131 {
132 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
133 struct page *zero_page = xchg(&huge_zero_page, NULL);
134 BUG_ON(zero_page == NULL);
135 __free_pages(zero_page, compound_order(zero_page));
136 return HPAGE_PMD_NR;
137 }
138
139 return 0;
140 }
141
142 static struct shrinker huge_zero_page_shrinker = {
143 .count_objects = shrink_huge_zero_page_count,
144 .scan_objects = shrink_huge_zero_page_scan,
145 .seeks = DEFAULT_SEEKS,
146 };
147
148 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)149 static ssize_t enabled_show(struct kobject *kobj,
150 struct kobj_attribute *attr, char *buf)
151 {
152 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
153 return sprintf(buf, "[always] madvise never\n");
154 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
155 return sprintf(buf, "always [madvise] never\n");
156 else
157 return sprintf(buf, "always madvise [never]\n");
158 }
159
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)160 static ssize_t enabled_store(struct kobject *kobj,
161 struct kobj_attribute *attr,
162 const char *buf, size_t count)
163 {
164 ssize_t ret = count;
165
166 if (sysfs_streq(buf, "always")) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (sysfs_streq(buf, "madvise")) {
170 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
171 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
172 } else if (sysfs_streq(buf, "never")) {
173 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
174 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
175 } else
176 ret = -EINVAL;
177
178 if (ret > 0) {
179 int err = start_stop_khugepaged();
180 if (err)
181 ret = err;
182 }
183 return ret;
184 }
185 static struct kobj_attribute enabled_attr =
186 __ATTR(enabled, 0644, enabled_show, enabled_store);
187
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)188 ssize_t single_hugepage_flag_show(struct kobject *kobj,
189 struct kobj_attribute *attr, char *buf,
190 enum transparent_hugepage_flag flag)
191 {
192 return sprintf(buf, "%d\n",
193 !!test_bit(flag, &transparent_hugepage_flags));
194 }
195
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)196 ssize_t single_hugepage_flag_store(struct kobject *kobj,
197 struct kobj_attribute *attr,
198 const char *buf, size_t count,
199 enum transparent_hugepage_flag flag)
200 {
201 unsigned long value;
202 int ret;
203
204 ret = kstrtoul(buf, 10, &value);
205 if (ret < 0)
206 return ret;
207 if (value > 1)
208 return -EINVAL;
209
210 if (value)
211 set_bit(flag, &transparent_hugepage_flags);
212 else
213 clear_bit(flag, &transparent_hugepage_flags);
214
215 return count;
216 }
217
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)218 static ssize_t defrag_show(struct kobject *kobj,
219 struct kobj_attribute *attr, char *buf)
220 {
221 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
222 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
224 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
226 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
229 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
230 }
231
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)232 static ssize_t defrag_store(struct kobject *kobj,
233 struct kobj_attribute *attr,
234 const char *buf, size_t count)
235 {
236 if (sysfs_streq(buf, "always")) {
237 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
238 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
239 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
240 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
241 } else if (sysfs_streq(buf, "defer+madvise")) {
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
243 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
244 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
245 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
246 } else if (sysfs_streq(buf, "defer")) {
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
249 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
250 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
251 } else if (sysfs_streq(buf, "madvise")) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
256 } else if (sysfs_streq(buf, "never")) {
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
261 } else
262 return -EINVAL;
263
264 return count;
265 }
266 static struct kobj_attribute defrag_attr =
267 __ATTR(defrag, 0644, defrag_show, defrag_store);
268
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)269 static ssize_t use_zero_page_show(struct kobject *kobj,
270 struct kobj_attribute *attr, char *buf)
271 {
272 return single_hugepage_flag_show(kobj, attr, buf,
273 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
274 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)275 static ssize_t use_zero_page_store(struct kobject *kobj,
276 struct kobj_attribute *attr, const char *buf, size_t count)
277 {
278 return single_hugepage_flag_store(kobj, attr, buf, count,
279 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
280 }
281 static struct kobj_attribute use_zero_page_attr =
282 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
283
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)284 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
285 struct kobj_attribute *attr, char *buf)
286 {
287 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
288 }
289 static struct kobj_attribute hpage_pmd_size_attr =
290 __ATTR_RO(hpage_pmd_size);
291
292 #ifdef CONFIG_DEBUG_VM
debug_cow_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)293 static ssize_t debug_cow_show(struct kobject *kobj,
294 struct kobj_attribute *attr, char *buf)
295 {
296 return single_hugepage_flag_show(kobj, attr, buf,
297 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
298 }
debug_cow_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)299 static ssize_t debug_cow_store(struct kobject *kobj,
300 struct kobj_attribute *attr,
301 const char *buf, size_t count)
302 {
303 return single_hugepage_flag_store(kobj, attr, buf, count,
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static struct kobj_attribute debug_cow_attr =
307 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
308 #endif /* CONFIG_DEBUG_VM */
309
310 static struct attribute *hugepage_attr[] = {
311 &enabled_attr.attr,
312 &defrag_attr.attr,
313 &use_zero_page_attr.attr,
314 &hpage_pmd_size_attr.attr,
315 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
316 &shmem_enabled_attr.attr,
317 #endif
318 #ifdef CONFIG_DEBUG_VM
319 &debug_cow_attr.attr,
320 #endif
321 NULL,
322 };
323
324 static const struct attribute_group hugepage_attr_group = {
325 .attrs = hugepage_attr,
326 };
327
hugepage_init_sysfs(struct kobject ** hugepage_kobj)328 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
329 {
330 int err;
331
332 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
333 if (unlikely(!*hugepage_kobj)) {
334 pr_err("failed to create transparent hugepage kobject\n");
335 return -ENOMEM;
336 }
337
338 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
339 if (err) {
340 pr_err("failed to register transparent hugepage group\n");
341 goto delete_obj;
342 }
343
344 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
345 if (err) {
346 pr_err("failed to register transparent hugepage group\n");
347 goto remove_hp_group;
348 }
349
350 return 0;
351
352 remove_hp_group:
353 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
354 delete_obj:
355 kobject_put(*hugepage_kobj);
356 return err;
357 }
358
hugepage_exit_sysfs(struct kobject * hugepage_kobj)359 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
360 {
361 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
362 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
363 kobject_put(hugepage_kobj);
364 }
365 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)366 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
367 {
368 return 0;
369 }
370
hugepage_exit_sysfs(struct kobject * hugepage_kobj)371 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
372 {
373 }
374 #endif /* CONFIG_SYSFS */
375
hugepage_init(void)376 static int __init hugepage_init(void)
377 {
378 int err;
379 struct kobject *hugepage_kobj;
380
381 if (!has_transparent_hugepage()) {
382 transparent_hugepage_flags = 0;
383 return -EINVAL;
384 }
385
386 /*
387 * hugepages can't be allocated by the buddy allocator
388 */
389 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
390 /*
391 * we use page->mapping and page->index in second tail page
392 * as list_head: assuming THP order >= 2
393 */
394 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
395
396 err = hugepage_init_sysfs(&hugepage_kobj);
397 if (err)
398 goto err_sysfs;
399
400 err = khugepaged_init();
401 if (err)
402 goto err_slab;
403
404 err = register_shrinker(&huge_zero_page_shrinker);
405 if (err)
406 goto err_hzp_shrinker;
407 err = register_shrinker(&deferred_split_shrinker);
408 if (err)
409 goto err_split_shrinker;
410
411 /*
412 * By default disable transparent hugepages on smaller systems,
413 * where the extra memory used could hurt more than TLB overhead
414 * is likely to save. The admin can still enable it through /sys.
415 */
416 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
417 transparent_hugepage_flags = 0;
418 return 0;
419 }
420
421 err = start_stop_khugepaged();
422 if (err)
423 goto err_khugepaged;
424
425 return 0;
426 err_khugepaged:
427 unregister_shrinker(&deferred_split_shrinker);
428 err_split_shrinker:
429 unregister_shrinker(&huge_zero_page_shrinker);
430 err_hzp_shrinker:
431 khugepaged_destroy();
432 err_slab:
433 hugepage_exit_sysfs(hugepage_kobj);
434 err_sysfs:
435 return err;
436 }
437 subsys_initcall(hugepage_init);
438
setup_transparent_hugepage(char * str)439 static int __init setup_transparent_hugepage(char *str)
440 {
441 int ret = 0;
442 if (!str)
443 goto out;
444 if (!strcmp(str, "always")) {
445 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
446 &transparent_hugepage_flags);
447 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
448 &transparent_hugepage_flags);
449 ret = 1;
450 } else if (!strcmp(str, "madvise")) {
451 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
452 &transparent_hugepage_flags);
453 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
454 &transparent_hugepage_flags);
455 ret = 1;
456 } else if (!strcmp(str, "never")) {
457 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
458 &transparent_hugepage_flags);
459 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
460 &transparent_hugepage_flags);
461 ret = 1;
462 }
463 out:
464 if (!ret)
465 pr_warn("transparent_hugepage= cannot parse, ignored\n");
466 return ret;
467 }
468 __setup("transparent_hugepage=", setup_transparent_hugepage);
469
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)470 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
471 {
472 if (likely(vma->vm_flags & VM_WRITE))
473 pmd = pmd_mkwrite(pmd);
474 return pmd;
475 }
476
page_deferred_list(struct page * page)477 static inline struct list_head *page_deferred_list(struct page *page)
478 {
479 /*
480 * ->lru in the tail pages is occupied by compound_head.
481 * Let's use ->mapping + ->index in the second tail page as list_head.
482 */
483 return (struct list_head *)&page[2].mapping;
484 }
485
prep_transhuge_page(struct page * page)486 void prep_transhuge_page(struct page *page)
487 {
488 /*
489 * we use page->mapping and page->indexlru in second tail page
490 * as list_head: assuming THP order >= 2
491 */
492
493 INIT_LIST_HEAD(page_deferred_list(page));
494 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
495 }
496
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size)497 static unsigned long __thp_get_unmapped_area(struct file *filp,
498 unsigned long addr, unsigned long len,
499 loff_t off, unsigned long flags, unsigned long size)
500 {
501 loff_t off_end = off + len;
502 loff_t off_align = round_up(off, size);
503 unsigned long len_pad, ret;
504
505 if (off_end <= off_align || (off_end - off_align) < size)
506 return 0;
507
508 len_pad = len + size;
509 if (len_pad < len || (off + len_pad) < off)
510 return 0;
511
512 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
513 off >> PAGE_SHIFT, flags);
514
515 /*
516 * The failure might be due to length padding. The caller will retry
517 * without the padding.
518 */
519 if (IS_ERR_VALUE(ret))
520 return 0;
521
522 /*
523 * Do not try to align to THP boundary if allocation at the address
524 * hint succeeds.
525 */
526 if (ret == addr)
527 return addr;
528
529 ret += (off - ret) & (size - 1);
530 return ret;
531 }
532
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)533 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
534 unsigned long len, unsigned long pgoff, unsigned long flags)
535 {
536 unsigned long ret;
537 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
538
539 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
540 goto out;
541
542 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
543 if (ret)
544 return ret;
545 out:
546 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
547 }
548 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
549
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)550 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
551 gfp_t gfp)
552 {
553 struct vm_area_struct *vma = vmf->vma;
554 struct mem_cgroup *memcg;
555 pgtable_t pgtable;
556 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
557 int ret = 0;
558
559 VM_BUG_ON_PAGE(!PageCompound(page), page);
560
561 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp | __GFP_NORETRY, &memcg,
562 true)) {
563 put_page(page);
564 count_vm_event(THP_FAULT_FALLBACK);
565 return VM_FAULT_FALLBACK;
566 }
567
568 pgtable = pte_alloc_one(vma->vm_mm, haddr);
569 if (unlikely(!pgtable)) {
570 ret = VM_FAULT_OOM;
571 goto release;
572 }
573
574 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
575 /*
576 * The memory barrier inside __SetPageUptodate makes sure that
577 * clear_huge_page writes become visible before the set_pmd_at()
578 * write.
579 */
580 __SetPageUptodate(page);
581
582 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
583 if (unlikely(!pmd_none(*vmf->pmd))) {
584 goto unlock_release;
585 } else {
586 pmd_t entry;
587
588 ret = check_stable_address_space(vma->vm_mm);
589 if (ret)
590 goto unlock_release;
591
592 /* Deliver the page fault to userland */
593 if (userfaultfd_missing(vma)) {
594 int ret;
595
596 spin_unlock(vmf->ptl);
597 mem_cgroup_cancel_charge(page, memcg, true);
598 put_page(page);
599 pte_free(vma->vm_mm, pgtable);
600 ret = handle_userfault(vmf, VM_UFFD_MISSING);
601 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
602 return ret;
603 }
604
605 entry = mk_huge_pmd(page, vma->vm_page_prot);
606 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
607 page_add_new_anon_rmap(page, vma, haddr, true);
608 mem_cgroup_commit_charge(page, memcg, false, true);
609 lru_cache_add_active_or_unevictable(page, vma);
610 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
611 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
612 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
613 atomic_long_inc(&vma->vm_mm->nr_ptes);
614 spin_unlock(vmf->ptl);
615 count_vm_event(THP_FAULT_ALLOC);
616 }
617
618 return 0;
619 unlock_release:
620 spin_unlock(vmf->ptl);
621 release:
622 if (pgtable)
623 pte_free(vma->vm_mm, pgtable);
624 mem_cgroup_cancel_charge(page, memcg, true);
625 put_page(page);
626 return ret;
627
628 }
629
630 /*
631 * always: directly stall for all thp allocations
632 * defer: wake kswapd and fail if not immediately available
633 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
634 * fail if not immediately available
635 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
636 * available
637 * never: never stall for any thp allocation
638 */
alloc_hugepage_direct_gfpmask(struct vm_area_struct * vma)639 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
640 {
641 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
642
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
644 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
645 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
646 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
647 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
648 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
649 __GFP_KSWAPD_RECLAIM);
650 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
651 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
652 0);
653 return GFP_TRANSHUGE_LIGHT;
654 }
655
656 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)657 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
658 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
659 struct page *zero_page)
660 {
661 pmd_t entry;
662 if (!pmd_none(*pmd))
663 return false;
664 entry = mk_pmd(zero_page, vma->vm_page_prot);
665 entry = pmd_mkhuge(entry);
666 if (pgtable)
667 pgtable_trans_huge_deposit(mm, pmd, pgtable);
668 set_pmd_at(mm, haddr, pmd, entry);
669 atomic_long_inc(&mm->nr_ptes);
670 return true;
671 }
672
do_huge_pmd_anonymous_page(struct vm_fault * vmf)673 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
674 {
675 struct vm_area_struct *vma = vmf->vma;
676 gfp_t gfp;
677 struct page *page;
678 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
679
680 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
681 return VM_FAULT_FALLBACK;
682 if (unlikely(anon_vma_prepare(vma)))
683 return VM_FAULT_OOM;
684 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
685 return VM_FAULT_OOM;
686 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
687 !mm_forbids_zeropage(vma->vm_mm) &&
688 transparent_hugepage_use_zero_page()) {
689 pgtable_t pgtable;
690 struct page *zero_page;
691 bool set;
692 int ret;
693 pgtable = pte_alloc_one(vma->vm_mm, haddr);
694 if (unlikely(!pgtable))
695 return VM_FAULT_OOM;
696 zero_page = mm_get_huge_zero_page(vma->vm_mm);
697 if (unlikely(!zero_page)) {
698 pte_free(vma->vm_mm, pgtable);
699 count_vm_event(THP_FAULT_FALLBACK);
700 return VM_FAULT_FALLBACK;
701 }
702 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
703 ret = 0;
704 set = false;
705 if (pmd_none(*vmf->pmd)) {
706 ret = check_stable_address_space(vma->vm_mm);
707 if (ret) {
708 spin_unlock(vmf->ptl);
709 } else if (userfaultfd_missing(vma)) {
710 spin_unlock(vmf->ptl);
711 ret = handle_userfault(vmf, VM_UFFD_MISSING);
712 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
713 } else {
714 set_huge_zero_page(pgtable, vma->vm_mm, vma,
715 haddr, vmf->pmd, zero_page);
716 spin_unlock(vmf->ptl);
717 set = true;
718 }
719 } else
720 spin_unlock(vmf->ptl);
721 if (!set)
722 pte_free(vma->vm_mm, pgtable);
723 return ret;
724 }
725 gfp = alloc_hugepage_direct_gfpmask(vma);
726 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
727 if (unlikely(!page)) {
728 count_vm_event(THP_FAULT_FALLBACK);
729 return VM_FAULT_FALLBACK;
730 }
731 prep_transhuge_page(page);
732 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
733 }
734
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)735 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
736 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
737 pgtable_t pgtable)
738 {
739 struct mm_struct *mm = vma->vm_mm;
740 pmd_t entry;
741 spinlock_t *ptl;
742
743 ptl = pmd_lock(mm, pmd);
744 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
745 if (pfn_t_devmap(pfn))
746 entry = pmd_mkdevmap(entry);
747 if (write) {
748 entry = pmd_mkyoung(pmd_mkdirty(entry));
749 entry = maybe_pmd_mkwrite(entry, vma);
750 }
751
752 if (pgtable) {
753 pgtable_trans_huge_deposit(mm, pmd, pgtable);
754 atomic_long_inc(&mm->nr_ptes);
755 }
756
757 set_pmd_at(mm, addr, pmd, entry);
758 update_mmu_cache_pmd(vma, addr, pmd);
759 spin_unlock(ptl);
760 }
761
vmf_insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,bool write)762 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
763 pmd_t *pmd, pfn_t pfn, bool write)
764 {
765 pgprot_t pgprot = vma->vm_page_prot;
766 pgtable_t pgtable = NULL;
767 /*
768 * If we had pmd_special, we could avoid all these restrictions,
769 * but we need to be consistent with PTEs and architectures that
770 * can't support a 'special' bit.
771 */
772 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
773 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
774 (VM_PFNMAP|VM_MIXEDMAP));
775 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
776 BUG_ON(!pfn_t_devmap(pfn));
777
778 if (addr < vma->vm_start || addr >= vma->vm_end)
779 return VM_FAULT_SIGBUS;
780
781 if (arch_needs_pgtable_deposit()) {
782 pgtable = pte_alloc_one(vma->vm_mm, addr);
783 if (!pgtable)
784 return VM_FAULT_OOM;
785 }
786
787 track_pfn_insert(vma, &pgprot, pfn);
788
789 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
790 return VM_FAULT_NOPAGE;
791 }
792 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
793
794 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)795 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
796 {
797 if (likely(vma->vm_flags & VM_WRITE))
798 pud = pud_mkwrite(pud);
799 return pud;
800 }
801
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,pgprot_t prot,bool write)802 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
803 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
804 {
805 struct mm_struct *mm = vma->vm_mm;
806 pud_t entry;
807 spinlock_t *ptl;
808
809 ptl = pud_lock(mm, pud);
810 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
811 if (pfn_t_devmap(pfn))
812 entry = pud_mkdevmap(entry);
813 if (write) {
814 entry = pud_mkyoung(pud_mkdirty(entry));
815 entry = maybe_pud_mkwrite(entry, vma);
816 }
817 set_pud_at(mm, addr, pud, entry);
818 update_mmu_cache_pud(vma, addr, pud);
819 spin_unlock(ptl);
820 }
821
vmf_insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,bool write)822 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
823 pud_t *pud, pfn_t pfn, bool write)
824 {
825 pgprot_t pgprot = vma->vm_page_prot;
826 /*
827 * If we had pud_special, we could avoid all these restrictions,
828 * but we need to be consistent with PTEs and architectures that
829 * can't support a 'special' bit.
830 */
831 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
832 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
833 (VM_PFNMAP|VM_MIXEDMAP));
834 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
835 BUG_ON(!pfn_t_devmap(pfn));
836
837 if (addr < vma->vm_start || addr >= vma->vm_end)
838 return VM_FAULT_SIGBUS;
839
840 track_pfn_insert(vma, &pgprot, pfn);
841
842 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
843 return VM_FAULT_NOPAGE;
844 }
845 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
846 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
847
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags)848 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
849 pmd_t *pmd, int flags)
850 {
851 pmd_t _pmd;
852
853 _pmd = pmd_mkyoung(*pmd);
854 if (flags & FOLL_WRITE)
855 _pmd = pmd_mkdirty(_pmd);
856 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
857 pmd, _pmd, flags & FOLL_WRITE))
858 update_mmu_cache_pmd(vma, addr, pmd);
859 }
860
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags)861 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
862 pmd_t *pmd, int flags)
863 {
864 unsigned long pfn = pmd_pfn(*pmd);
865 struct mm_struct *mm = vma->vm_mm;
866 struct dev_pagemap *pgmap;
867 struct page *page;
868
869 assert_spin_locked(pmd_lockptr(mm, pmd));
870
871 /*
872 * When we COW a devmap PMD entry, we split it into PTEs, so we should
873 * not be in this function with `flags & FOLL_COW` set.
874 */
875 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
876
877 if (flags & FOLL_WRITE && !pmd_write(*pmd))
878 return NULL;
879
880 if (pmd_present(*pmd) && pmd_devmap(*pmd))
881 /* pass */;
882 else
883 return NULL;
884
885 if (flags & FOLL_TOUCH)
886 touch_pmd(vma, addr, pmd, flags);
887
888 /*
889 * device mapped pages can only be returned if the
890 * caller will manage the page reference count.
891 */
892 if (!(flags & FOLL_GET))
893 return ERR_PTR(-EEXIST);
894
895 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
896 pgmap = get_dev_pagemap(pfn, NULL);
897 if (!pgmap)
898 return ERR_PTR(-EFAULT);
899 page = pfn_to_page(pfn);
900 get_page(page);
901 put_dev_pagemap(pgmap);
902
903 return page;
904 }
905
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * vma)906 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
907 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
908 struct vm_area_struct *vma)
909 {
910 spinlock_t *dst_ptl, *src_ptl;
911 struct page *src_page;
912 pmd_t pmd;
913 pgtable_t pgtable = NULL;
914 int ret = -ENOMEM;
915
916 /* Skip if can be re-fill on fault */
917 if (!vma_is_anonymous(vma))
918 return 0;
919
920 pgtable = pte_alloc_one(dst_mm, addr);
921 if (unlikely(!pgtable))
922 goto out;
923
924 dst_ptl = pmd_lock(dst_mm, dst_pmd);
925 src_ptl = pmd_lockptr(src_mm, src_pmd);
926 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
927
928 ret = -EAGAIN;
929 pmd = *src_pmd;
930
931 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
932 if (unlikely(is_swap_pmd(pmd))) {
933 swp_entry_t entry = pmd_to_swp_entry(pmd);
934
935 VM_BUG_ON(!is_pmd_migration_entry(pmd));
936 if (is_write_migration_entry(entry)) {
937 make_migration_entry_read(&entry);
938 pmd = swp_entry_to_pmd(entry);
939 if (pmd_swp_soft_dirty(*src_pmd))
940 pmd = pmd_swp_mksoft_dirty(pmd);
941 set_pmd_at(src_mm, addr, src_pmd, pmd);
942 }
943 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
944 atomic_long_inc(&dst_mm->nr_ptes);
945 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
946 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
947 ret = 0;
948 goto out_unlock;
949 }
950 #endif
951
952 if (unlikely(!pmd_trans_huge(pmd))) {
953 pte_free(dst_mm, pgtable);
954 goto out_unlock;
955 }
956 /*
957 * When page table lock is held, the huge zero pmd should not be
958 * under splitting since we don't split the page itself, only pmd to
959 * a page table.
960 */
961 if (is_huge_zero_pmd(pmd)) {
962 struct page *zero_page;
963 /*
964 * get_huge_zero_page() will never allocate a new page here,
965 * since we already have a zero page to copy. It just takes a
966 * reference.
967 */
968 zero_page = mm_get_huge_zero_page(dst_mm);
969 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
970 zero_page);
971 ret = 0;
972 goto out_unlock;
973 }
974
975 src_page = pmd_page(pmd);
976 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
977 get_page(src_page);
978 page_dup_rmap(src_page, true);
979 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
980 atomic_long_inc(&dst_mm->nr_ptes);
981 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
982
983 pmdp_set_wrprotect(src_mm, addr, src_pmd);
984 pmd = pmd_mkold(pmd_wrprotect(pmd));
985 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
986
987 ret = 0;
988 out_unlock:
989 spin_unlock(src_ptl);
990 spin_unlock(dst_ptl);
991 out:
992 return ret;
993 }
994
995 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags)996 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
997 pud_t *pud, int flags)
998 {
999 pud_t _pud;
1000
1001 _pud = pud_mkyoung(*pud);
1002 if (flags & FOLL_WRITE)
1003 _pud = pud_mkdirty(_pud);
1004 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1005 pud, _pud, flags & FOLL_WRITE))
1006 update_mmu_cache_pud(vma, addr, pud);
1007 }
1008
follow_devmap_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags)1009 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1010 pud_t *pud, int flags)
1011 {
1012 unsigned long pfn = pud_pfn(*pud);
1013 struct mm_struct *mm = vma->vm_mm;
1014 struct dev_pagemap *pgmap;
1015 struct page *page;
1016
1017 assert_spin_locked(pud_lockptr(mm, pud));
1018
1019 if (flags & FOLL_WRITE && !pud_write(*pud))
1020 return NULL;
1021
1022 if (pud_present(*pud) && pud_devmap(*pud))
1023 /* pass */;
1024 else
1025 return NULL;
1026
1027 if (flags & FOLL_TOUCH)
1028 touch_pud(vma, addr, pud, flags);
1029
1030 /*
1031 * device mapped pages can only be returned if the
1032 * caller will manage the page reference count.
1033 */
1034 if (!(flags & FOLL_GET))
1035 return ERR_PTR(-EEXIST);
1036
1037 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1038 pgmap = get_dev_pagemap(pfn, NULL);
1039 if (!pgmap)
1040 return ERR_PTR(-EFAULT);
1041 page = pfn_to_page(pfn);
1042 get_page(page);
1043 put_dev_pagemap(pgmap);
1044
1045 return page;
1046 }
1047
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1048 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1049 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1050 struct vm_area_struct *vma)
1051 {
1052 spinlock_t *dst_ptl, *src_ptl;
1053 pud_t pud;
1054 int ret;
1055
1056 dst_ptl = pud_lock(dst_mm, dst_pud);
1057 src_ptl = pud_lockptr(src_mm, src_pud);
1058 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1059
1060 ret = -EAGAIN;
1061 pud = *src_pud;
1062 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1063 goto out_unlock;
1064
1065 /*
1066 * When page table lock is held, the huge zero pud should not be
1067 * under splitting since we don't split the page itself, only pud to
1068 * a page table.
1069 */
1070 if (is_huge_zero_pud(pud)) {
1071 /* No huge zero pud yet */
1072 }
1073
1074 pudp_set_wrprotect(src_mm, addr, src_pud);
1075 pud = pud_mkold(pud_wrprotect(pud));
1076 set_pud_at(dst_mm, addr, dst_pud, pud);
1077
1078 ret = 0;
1079 out_unlock:
1080 spin_unlock(src_ptl);
1081 spin_unlock(dst_ptl);
1082 return ret;
1083 }
1084
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1085 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1086 {
1087 pud_t entry;
1088 unsigned long haddr;
1089 bool write = vmf->flags & FAULT_FLAG_WRITE;
1090
1091 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1092 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1093 goto unlock;
1094
1095 entry = pud_mkyoung(orig_pud);
1096 if (write)
1097 entry = pud_mkdirty(entry);
1098 haddr = vmf->address & HPAGE_PUD_MASK;
1099 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1100 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1101
1102 unlock:
1103 spin_unlock(vmf->ptl);
1104 }
1105 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1106
huge_pmd_set_accessed(struct vm_fault * vmf,pmd_t orig_pmd)1107 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1108 {
1109 pmd_t entry;
1110 unsigned long haddr;
1111 bool write = vmf->flags & FAULT_FLAG_WRITE;
1112
1113 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1114 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1115 goto unlock;
1116
1117 entry = pmd_mkyoung(orig_pmd);
1118 if (write)
1119 entry = pmd_mkdirty(entry);
1120 haddr = vmf->address & HPAGE_PMD_MASK;
1121 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1122 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1123
1124 unlock:
1125 spin_unlock(vmf->ptl);
1126 }
1127
do_huge_pmd_wp_page_fallback(struct vm_fault * vmf,pmd_t orig_pmd,struct page * page)1128 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1129 struct page *page)
1130 {
1131 struct vm_area_struct *vma = vmf->vma;
1132 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1133 struct mem_cgroup *memcg;
1134 pgtable_t pgtable;
1135 pmd_t _pmd;
1136 int ret = 0, i;
1137 struct page **pages;
1138 unsigned long mmun_start; /* For mmu_notifiers */
1139 unsigned long mmun_end; /* For mmu_notifiers */
1140
1141 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1142 GFP_KERNEL);
1143 if (unlikely(!pages)) {
1144 ret |= VM_FAULT_OOM;
1145 goto out;
1146 }
1147
1148 for (i = 0; i < HPAGE_PMD_NR; i++) {
1149 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1150 vmf->address, page_to_nid(page));
1151 if (unlikely(!pages[i] ||
1152 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1153 GFP_KERNEL, &memcg, false))) {
1154 if (pages[i])
1155 put_page(pages[i]);
1156 while (--i >= 0) {
1157 memcg = (void *)page_private(pages[i]);
1158 set_page_private(pages[i], 0);
1159 mem_cgroup_cancel_charge(pages[i], memcg,
1160 false);
1161 put_page(pages[i]);
1162 }
1163 kfree(pages);
1164 ret |= VM_FAULT_OOM;
1165 goto out;
1166 }
1167 set_page_private(pages[i], (unsigned long)memcg);
1168 }
1169
1170 for (i = 0; i < HPAGE_PMD_NR; i++) {
1171 copy_user_highpage(pages[i], page + i,
1172 haddr + PAGE_SIZE * i, vma);
1173 __SetPageUptodate(pages[i]);
1174 cond_resched();
1175 }
1176
1177 mmun_start = haddr;
1178 mmun_end = haddr + HPAGE_PMD_SIZE;
1179 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1180
1181 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1182 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1183 goto out_free_pages;
1184 VM_BUG_ON_PAGE(!PageHead(page), page);
1185
1186 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1187 /* leave pmd empty until pte is filled */
1188
1189 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1190 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1191
1192 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1193 pte_t entry;
1194 entry = mk_pte(pages[i], vma->vm_page_prot);
1195 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1196 memcg = (void *)page_private(pages[i]);
1197 set_page_private(pages[i], 0);
1198 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1199 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1200 lru_cache_add_active_or_unevictable(pages[i], vma);
1201 vmf->pte = pte_offset_map(&_pmd, haddr);
1202 VM_BUG_ON(!pte_none(*vmf->pte));
1203 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1204 pte_unmap(vmf->pte);
1205 }
1206 kfree(pages);
1207
1208 smp_wmb(); /* make pte visible before pmd */
1209 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1210 page_remove_rmap(page, true);
1211 spin_unlock(vmf->ptl);
1212
1213 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1214
1215 ret |= VM_FAULT_WRITE;
1216 put_page(page);
1217
1218 out:
1219 return ret;
1220
1221 out_free_pages:
1222 spin_unlock(vmf->ptl);
1223 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1224 for (i = 0; i < HPAGE_PMD_NR; i++) {
1225 memcg = (void *)page_private(pages[i]);
1226 set_page_private(pages[i], 0);
1227 mem_cgroup_cancel_charge(pages[i], memcg, false);
1228 put_page(pages[i]);
1229 }
1230 kfree(pages);
1231 goto out;
1232 }
1233
do_huge_pmd_wp_page(struct vm_fault * vmf,pmd_t orig_pmd)1234 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1235 {
1236 struct vm_area_struct *vma = vmf->vma;
1237 struct page *page = NULL, *new_page;
1238 struct mem_cgroup *memcg;
1239 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1240 unsigned long mmun_start; /* For mmu_notifiers */
1241 unsigned long mmun_end; /* For mmu_notifiers */
1242 gfp_t huge_gfp; /* for allocation and charge */
1243 int ret = 0;
1244
1245 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1246 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1247 if (is_huge_zero_pmd(orig_pmd))
1248 goto alloc;
1249 spin_lock(vmf->ptl);
1250 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1251 goto out_unlock;
1252
1253 page = pmd_page(orig_pmd);
1254 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1255 /*
1256 * We can only reuse the page if nobody else maps the huge page or it's
1257 * part.
1258 */
1259 if (!trylock_page(page)) {
1260 get_page(page);
1261 spin_unlock(vmf->ptl);
1262 lock_page(page);
1263 spin_lock(vmf->ptl);
1264 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1265 unlock_page(page);
1266 put_page(page);
1267 goto out_unlock;
1268 }
1269 put_page(page);
1270 }
1271 if (reuse_swap_page(page, NULL)) {
1272 pmd_t entry;
1273 entry = pmd_mkyoung(orig_pmd);
1274 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1275 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1276 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1277 ret |= VM_FAULT_WRITE;
1278 unlock_page(page);
1279 goto out_unlock;
1280 }
1281 unlock_page(page);
1282 get_page(page);
1283 spin_unlock(vmf->ptl);
1284 alloc:
1285 if (transparent_hugepage_enabled(vma) &&
1286 !transparent_hugepage_debug_cow()) {
1287 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1288 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1289 } else
1290 new_page = NULL;
1291
1292 if (likely(new_page)) {
1293 prep_transhuge_page(new_page);
1294 } else {
1295 if (!page) {
1296 split_huge_pmd(vma, vmf->pmd, vmf->address);
1297 ret |= VM_FAULT_FALLBACK;
1298 } else {
1299 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1300 if (ret & VM_FAULT_OOM) {
1301 split_huge_pmd(vma, vmf->pmd, vmf->address);
1302 ret |= VM_FAULT_FALLBACK;
1303 }
1304 put_page(page);
1305 }
1306 count_vm_event(THP_FAULT_FALLBACK);
1307 goto out;
1308 }
1309
1310 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1311 huge_gfp | __GFP_NORETRY, &memcg, true))) {
1312 put_page(new_page);
1313 split_huge_pmd(vma, vmf->pmd, vmf->address);
1314 if (page)
1315 put_page(page);
1316 ret |= VM_FAULT_FALLBACK;
1317 count_vm_event(THP_FAULT_FALLBACK);
1318 goto out;
1319 }
1320
1321 count_vm_event(THP_FAULT_ALLOC);
1322
1323 if (!page)
1324 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1325 else
1326 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1327 __SetPageUptodate(new_page);
1328
1329 mmun_start = haddr;
1330 mmun_end = haddr + HPAGE_PMD_SIZE;
1331 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1332
1333 spin_lock(vmf->ptl);
1334 if (page)
1335 put_page(page);
1336 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1337 spin_unlock(vmf->ptl);
1338 mem_cgroup_cancel_charge(new_page, memcg, true);
1339 put_page(new_page);
1340 goto out_mn;
1341 } else {
1342 pmd_t entry;
1343 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1344 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1345 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1346 page_add_new_anon_rmap(new_page, vma, haddr, true);
1347 mem_cgroup_commit_charge(new_page, memcg, false, true);
1348 lru_cache_add_active_or_unevictable(new_page, vma);
1349 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1350 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1351 if (!page) {
1352 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1353 } else {
1354 VM_BUG_ON_PAGE(!PageHead(page), page);
1355 page_remove_rmap(page, true);
1356 put_page(page);
1357 }
1358 ret |= VM_FAULT_WRITE;
1359 }
1360 spin_unlock(vmf->ptl);
1361 out_mn:
1362 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1363 out:
1364 return ret;
1365 out_unlock:
1366 spin_unlock(vmf->ptl);
1367 return ret;
1368 }
1369
1370 /*
1371 * FOLL_FORCE can write to even unwritable pmd's, but only
1372 * after we've gone through a COW cycle and they are dirty.
1373 */
can_follow_write_pmd(pmd_t pmd,unsigned int flags)1374 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1375 {
1376 return pmd_write(pmd) ||
1377 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1378 }
1379
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1380 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1381 unsigned long addr,
1382 pmd_t *pmd,
1383 unsigned int flags)
1384 {
1385 struct mm_struct *mm = vma->vm_mm;
1386 struct page *page = NULL;
1387
1388 assert_spin_locked(pmd_lockptr(mm, pmd));
1389
1390 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1391 goto out;
1392
1393 /* Avoid dumping huge zero page */
1394 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1395 return ERR_PTR(-EFAULT);
1396
1397 /* Full NUMA hinting faults to serialise migration in fault paths */
1398 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1399 goto out;
1400
1401 page = pmd_page(*pmd);
1402 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1403 if (flags & FOLL_TOUCH)
1404 touch_pmd(vma, addr, pmd, flags);
1405 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1406 /*
1407 * We don't mlock() pte-mapped THPs. This way we can avoid
1408 * leaking mlocked pages into non-VM_LOCKED VMAs.
1409 *
1410 * For anon THP:
1411 *
1412 * In most cases the pmd is the only mapping of the page as we
1413 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1414 * writable private mappings in populate_vma_page_range().
1415 *
1416 * The only scenario when we have the page shared here is if we
1417 * mlocking read-only mapping shared over fork(). We skip
1418 * mlocking such pages.
1419 *
1420 * For file THP:
1421 *
1422 * We can expect PageDoubleMap() to be stable under page lock:
1423 * for file pages we set it in page_add_file_rmap(), which
1424 * requires page to be locked.
1425 */
1426
1427 if (PageAnon(page) && compound_mapcount(page) != 1)
1428 goto skip_mlock;
1429 if (PageDoubleMap(page) || !page->mapping)
1430 goto skip_mlock;
1431 if (!trylock_page(page))
1432 goto skip_mlock;
1433 lru_add_drain();
1434 if (page->mapping && !PageDoubleMap(page))
1435 mlock_vma_page(page);
1436 unlock_page(page);
1437 }
1438 skip_mlock:
1439 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1440 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1441 if (flags & FOLL_GET)
1442 get_page(page);
1443
1444 out:
1445 return page;
1446 }
1447
1448 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf,pmd_t pmd)1449 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1450 {
1451 struct vm_area_struct *vma = vmf->vma;
1452 struct anon_vma *anon_vma = NULL;
1453 struct page *page;
1454 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1455 int page_nid = -1, this_nid = numa_node_id();
1456 int target_nid, last_cpupid = -1;
1457 bool page_locked;
1458 bool migrated = false;
1459 bool was_writable;
1460 int flags = 0;
1461
1462 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1463 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1464 goto out_unlock;
1465
1466 /*
1467 * If there are potential migrations, wait for completion and retry
1468 * without disrupting NUMA hinting information. Do not relock and
1469 * check_same as the page may no longer be mapped.
1470 */
1471 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1472 page = pmd_page(*vmf->pmd);
1473 if (!get_page_unless_zero(page))
1474 goto out_unlock;
1475 spin_unlock(vmf->ptl);
1476 wait_on_page_locked(page);
1477 put_page(page);
1478 goto out;
1479 }
1480
1481 page = pmd_page(pmd);
1482 BUG_ON(is_huge_zero_page(page));
1483 page_nid = page_to_nid(page);
1484 last_cpupid = page_cpupid_last(page);
1485 count_vm_numa_event(NUMA_HINT_FAULTS);
1486 if (page_nid == this_nid) {
1487 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1488 flags |= TNF_FAULT_LOCAL;
1489 }
1490
1491 /* See similar comment in do_numa_page for explanation */
1492 if (!pmd_savedwrite(pmd))
1493 flags |= TNF_NO_GROUP;
1494
1495 /*
1496 * Acquire the page lock to serialise THP migrations but avoid dropping
1497 * page_table_lock if at all possible
1498 */
1499 page_locked = trylock_page(page);
1500 target_nid = mpol_misplaced(page, vma, haddr);
1501 if (target_nid == -1) {
1502 /* If the page was locked, there are no parallel migrations */
1503 if (page_locked)
1504 goto clear_pmdnuma;
1505 }
1506
1507 /* Migration could have started since the pmd_trans_migrating check */
1508 if (!page_locked) {
1509 page_nid = -1;
1510 if (!get_page_unless_zero(page))
1511 goto out_unlock;
1512 spin_unlock(vmf->ptl);
1513 wait_on_page_locked(page);
1514 put_page(page);
1515 goto out;
1516 }
1517
1518 /*
1519 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1520 * to serialises splits
1521 */
1522 get_page(page);
1523 spin_unlock(vmf->ptl);
1524 anon_vma = page_lock_anon_vma_read(page);
1525
1526 /* Confirm the PMD did not change while page_table_lock was released */
1527 spin_lock(vmf->ptl);
1528 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1529 unlock_page(page);
1530 put_page(page);
1531 page_nid = -1;
1532 goto out_unlock;
1533 }
1534
1535 /* Bail if we fail to protect against THP splits for any reason */
1536 if (unlikely(!anon_vma)) {
1537 put_page(page);
1538 page_nid = -1;
1539 goto clear_pmdnuma;
1540 }
1541
1542 /*
1543 * Since we took the NUMA fault, we must have observed the !accessible
1544 * bit. Make sure all other CPUs agree with that, to avoid them
1545 * modifying the page we're about to migrate.
1546 *
1547 * Must be done under PTL such that we'll observe the relevant
1548 * inc_tlb_flush_pending().
1549 *
1550 * We are not sure a pending tlb flush here is for a huge page
1551 * mapping or not. Hence use the tlb range variant
1552 */
1553 if (mm_tlb_flush_pending(vma->vm_mm))
1554 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1555
1556 /*
1557 * Migrate the THP to the requested node, returns with page unlocked
1558 * and access rights restored.
1559 */
1560 spin_unlock(vmf->ptl);
1561
1562 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1563 vmf->pmd, pmd, vmf->address, page, target_nid);
1564 if (migrated) {
1565 flags |= TNF_MIGRATED;
1566 page_nid = target_nid;
1567 } else
1568 flags |= TNF_MIGRATE_FAIL;
1569
1570 goto out;
1571 clear_pmdnuma:
1572 BUG_ON(!PageLocked(page));
1573 was_writable = pmd_savedwrite(pmd);
1574 pmd = pmd_modify(pmd, vma->vm_page_prot);
1575 pmd = pmd_mkyoung(pmd);
1576 if (was_writable)
1577 pmd = pmd_mkwrite(pmd);
1578 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1579 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1580 unlock_page(page);
1581 out_unlock:
1582 spin_unlock(vmf->ptl);
1583
1584 out:
1585 if (anon_vma)
1586 page_unlock_anon_vma_read(anon_vma);
1587
1588 if (page_nid != -1)
1589 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1590 flags);
1591
1592 return 0;
1593 }
1594
1595 /*
1596 * Return true if we do MADV_FREE successfully on entire pmd page.
1597 * Otherwise, return false.
1598 */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1599 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1600 pmd_t *pmd, unsigned long addr, unsigned long next)
1601 {
1602 spinlock_t *ptl;
1603 pmd_t orig_pmd;
1604 struct page *page;
1605 struct mm_struct *mm = tlb->mm;
1606 bool ret = false;
1607
1608 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1609
1610 ptl = pmd_trans_huge_lock(pmd, vma);
1611 if (!ptl)
1612 goto out_unlocked;
1613
1614 orig_pmd = *pmd;
1615 if (is_huge_zero_pmd(orig_pmd))
1616 goto out;
1617
1618 if (unlikely(!pmd_present(orig_pmd))) {
1619 VM_BUG_ON(thp_migration_supported() &&
1620 !is_pmd_migration_entry(orig_pmd));
1621 goto out;
1622 }
1623
1624 page = pmd_page(orig_pmd);
1625 /*
1626 * If other processes are mapping this page, we couldn't discard
1627 * the page unless they all do MADV_FREE so let's skip the page.
1628 */
1629 if (page_mapcount(page) != 1)
1630 goto out;
1631
1632 if (!trylock_page(page))
1633 goto out;
1634
1635 /*
1636 * If user want to discard part-pages of THP, split it so MADV_FREE
1637 * will deactivate only them.
1638 */
1639 if (next - addr != HPAGE_PMD_SIZE) {
1640 get_page(page);
1641 spin_unlock(ptl);
1642 split_huge_page(page);
1643 unlock_page(page);
1644 put_page(page);
1645 goto out_unlocked;
1646 }
1647
1648 if (PageDirty(page))
1649 ClearPageDirty(page);
1650 unlock_page(page);
1651
1652 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1653 pmdp_invalidate(vma, addr, pmd);
1654 orig_pmd = pmd_mkold(orig_pmd);
1655 orig_pmd = pmd_mkclean(orig_pmd);
1656
1657 set_pmd_at(mm, addr, pmd, orig_pmd);
1658 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1659 }
1660
1661 mark_page_lazyfree(page);
1662 ret = true;
1663 out:
1664 spin_unlock(ptl);
1665 out_unlocked:
1666 return ret;
1667 }
1668
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)1669 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1670 {
1671 pgtable_t pgtable;
1672
1673 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1674 pte_free(mm, pgtable);
1675 atomic_long_dec(&mm->nr_ptes);
1676 }
1677
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1678 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1679 pmd_t *pmd, unsigned long addr)
1680 {
1681 pmd_t orig_pmd;
1682 spinlock_t *ptl;
1683
1684 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1685
1686 ptl = __pmd_trans_huge_lock(pmd, vma);
1687 if (!ptl)
1688 return 0;
1689 /*
1690 * For architectures like ppc64 we look at deposited pgtable
1691 * when calling pmdp_huge_get_and_clear. So do the
1692 * pgtable_trans_huge_withdraw after finishing pmdp related
1693 * operations.
1694 */
1695 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1696 tlb->fullmm);
1697 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1698 if (vma_is_dax(vma)) {
1699 if (arch_needs_pgtable_deposit())
1700 zap_deposited_table(tlb->mm, pmd);
1701 spin_unlock(ptl);
1702 if (is_huge_zero_pmd(orig_pmd))
1703 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1704 } else if (is_huge_zero_pmd(orig_pmd)) {
1705 zap_deposited_table(tlb->mm, pmd);
1706 spin_unlock(ptl);
1707 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1708 } else {
1709 struct page *page = NULL;
1710 int flush_needed = 1;
1711
1712 if (pmd_present(orig_pmd)) {
1713 page = pmd_page(orig_pmd);
1714 page_remove_rmap(page, true);
1715 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1716 VM_BUG_ON_PAGE(!PageHead(page), page);
1717 } else if (thp_migration_supported()) {
1718 swp_entry_t entry;
1719
1720 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1721 entry = pmd_to_swp_entry(orig_pmd);
1722 page = pfn_to_page(swp_offset(entry));
1723 flush_needed = 0;
1724 } else
1725 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1726
1727 if (PageAnon(page)) {
1728 zap_deposited_table(tlb->mm, pmd);
1729 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1730 } else {
1731 if (arch_needs_pgtable_deposit())
1732 zap_deposited_table(tlb->mm, pmd);
1733 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1734 }
1735
1736 spin_unlock(ptl);
1737 if (flush_needed)
1738 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1739 }
1740 return 1;
1741 }
1742
1743 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)1744 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1745 spinlock_t *old_pmd_ptl,
1746 struct vm_area_struct *vma)
1747 {
1748 /*
1749 * With split pmd lock we also need to move preallocated
1750 * PTE page table if new_pmd is on different PMD page table.
1751 *
1752 * We also don't deposit and withdraw tables for file pages.
1753 */
1754 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1755 }
1756 #endif
1757
move_soft_dirty_pmd(pmd_t pmd)1758 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1759 {
1760 #ifdef CONFIG_MEM_SOFT_DIRTY
1761 if (unlikely(is_pmd_migration_entry(pmd)))
1762 pmd = pmd_swp_mksoft_dirty(pmd);
1763 else if (pmd_present(pmd))
1764 pmd = pmd_mksoft_dirty(pmd);
1765 #endif
1766 return pmd;
1767 }
1768
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,unsigned long old_end,pmd_t * old_pmd,pmd_t * new_pmd)1769 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1770 unsigned long new_addr, unsigned long old_end,
1771 pmd_t *old_pmd, pmd_t *new_pmd)
1772 {
1773 spinlock_t *old_ptl, *new_ptl;
1774 pmd_t pmd;
1775 struct mm_struct *mm = vma->vm_mm;
1776 bool force_flush = false;
1777
1778 if ((old_addr & ~HPAGE_PMD_MASK) ||
1779 (new_addr & ~HPAGE_PMD_MASK) ||
1780 old_end - old_addr < HPAGE_PMD_SIZE)
1781 return false;
1782
1783 /*
1784 * The destination pmd shouldn't be established, free_pgtables()
1785 * should have release it.
1786 */
1787 if (WARN_ON(!pmd_none(*new_pmd))) {
1788 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1789 return false;
1790 }
1791
1792 /*
1793 * We don't have to worry about the ordering of src and dst
1794 * ptlocks because exclusive mmap_sem prevents deadlock.
1795 */
1796 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1797 if (old_ptl) {
1798 new_ptl = pmd_lockptr(mm, new_pmd);
1799 if (new_ptl != old_ptl)
1800 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1801 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1802 if (pmd_present(pmd))
1803 force_flush = true;
1804 VM_BUG_ON(!pmd_none(*new_pmd));
1805
1806 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1807 pgtable_t pgtable;
1808 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1809 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1810 }
1811 pmd = move_soft_dirty_pmd(pmd);
1812 set_pmd_at(mm, new_addr, new_pmd, pmd);
1813 if (force_flush)
1814 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1815 if (new_ptl != old_ptl)
1816 spin_unlock(new_ptl);
1817 spin_unlock(old_ptl);
1818 return true;
1819 }
1820 return false;
1821 }
1822
1823 /*
1824 * Returns
1825 * - 0 if PMD could not be locked
1826 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1827 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1828 */
change_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,int prot_numa)1829 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1830 unsigned long addr, pgprot_t newprot, int prot_numa)
1831 {
1832 struct mm_struct *mm = vma->vm_mm;
1833 spinlock_t *ptl;
1834 pmd_t entry;
1835 bool preserve_write;
1836 int ret;
1837
1838 ptl = __pmd_trans_huge_lock(pmd, vma);
1839 if (!ptl)
1840 return 0;
1841
1842 preserve_write = prot_numa && pmd_write(*pmd);
1843 ret = 1;
1844
1845 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1846 if (is_swap_pmd(*pmd)) {
1847 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1848
1849 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1850 if (is_write_migration_entry(entry)) {
1851 pmd_t newpmd;
1852 /*
1853 * A protection check is difficult so
1854 * just be safe and disable write
1855 */
1856 make_migration_entry_read(&entry);
1857 newpmd = swp_entry_to_pmd(entry);
1858 if (pmd_swp_soft_dirty(*pmd))
1859 newpmd = pmd_swp_mksoft_dirty(newpmd);
1860 set_pmd_at(mm, addr, pmd, newpmd);
1861 }
1862 goto unlock;
1863 }
1864 #endif
1865
1866 /*
1867 * Avoid trapping faults against the zero page. The read-only
1868 * data is likely to be read-cached on the local CPU and
1869 * local/remote hits to the zero page are not interesting.
1870 */
1871 if (prot_numa && is_huge_zero_pmd(*pmd))
1872 goto unlock;
1873
1874 if (prot_numa && pmd_protnone(*pmd))
1875 goto unlock;
1876
1877 /*
1878 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1879 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1880 * which is also under down_read(mmap_sem):
1881 *
1882 * CPU0: CPU1:
1883 * change_huge_pmd(prot_numa=1)
1884 * pmdp_huge_get_and_clear_notify()
1885 * madvise_dontneed()
1886 * zap_pmd_range()
1887 * pmd_trans_huge(*pmd) == 0 (without ptl)
1888 * // skip the pmd
1889 * set_pmd_at();
1890 * // pmd is re-established
1891 *
1892 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1893 * which may break userspace.
1894 *
1895 * pmdp_invalidate() is required to make sure we don't miss
1896 * dirty/young flags set by hardware.
1897 */
1898 entry = *pmd;
1899 pmdp_invalidate(vma, addr, pmd);
1900
1901 /*
1902 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1903 * corrupt them.
1904 */
1905 if (pmd_dirty(*pmd))
1906 entry = pmd_mkdirty(entry);
1907 if (pmd_young(*pmd))
1908 entry = pmd_mkyoung(entry);
1909
1910 entry = pmd_modify(entry, newprot);
1911 if (preserve_write)
1912 entry = pmd_mk_savedwrite(entry);
1913 ret = HPAGE_PMD_NR;
1914 set_pmd_at(mm, addr, pmd, entry);
1915 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1916 unlock:
1917 spin_unlock(ptl);
1918 return ret;
1919 }
1920
1921 /*
1922 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1923 *
1924 * Note that if it returns page table lock pointer, this routine returns without
1925 * unlocking page table lock. So callers must unlock it.
1926 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)1927 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1928 {
1929 spinlock_t *ptl;
1930 ptl = pmd_lock(vma->vm_mm, pmd);
1931 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1932 pmd_devmap(*pmd)))
1933 return ptl;
1934 spin_unlock(ptl);
1935 return NULL;
1936 }
1937
1938 /*
1939 * Returns true if a given pud maps a thp, false otherwise.
1940 *
1941 * Note that if it returns true, this routine returns without unlocking page
1942 * table lock. So callers must unlock it.
1943 */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)1944 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1945 {
1946 spinlock_t *ptl;
1947
1948 ptl = pud_lock(vma->vm_mm, pud);
1949 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1950 return ptl;
1951 spin_unlock(ptl);
1952 return NULL;
1953 }
1954
1955 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)1956 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1957 pud_t *pud, unsigned long addr)
1958 {
1959 pud_t orig_pud;
1960 spinlock_t *ptl;
1961
1962 ptl = __pud_trans_huge_lock(pud, vma);
1963 if (!ptl)
1964 return 0;
1965 /*
1966 * For architectures like ppc64 we look at deposited pgtable
1967 * when calling pudp_huge_get_and_clear. So do the
1968 * pgtable_trans_huge_withdraw after finishing pudp related
1969 * operations.
1970 */
1971 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1972 tlb->fullmm);
1973 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1974 if (vma_is_dax(vma)) {
1975 spin_unlock(ptl);
1976 /* No zero page support yet */
1977 } else {
1978 /* No support for anonymous PUD pages yet */
1979 BUG();
1980 }
1981 return 1;
1982 }
1983
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)1984 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1985 unsigned long haddr)
1986 {
1987 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1988 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1989 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1990 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1991
1992 count_vm_event(THP_SPLIT_PUD);
1993
1994 pudp_huge_clear_flush_notify(vma, haddr, pud);
1995 }
1996
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)1997 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1998 unsigned long address)
1999 {
2000 spinlock_t *ptl;
2001 struct mm_struct *mm = vma->vm_mm;
2002 unsigned long haddr = address & HPAGE_PUD_MASK;
2003
2004 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2005 ptl = pud_lock(mm, pud);
2006 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2007 goto out;
2008 __split_huge_pud_locked(vma, pud, haddr);
2009
2010 out:
2011 spin_unlock(ptl);
2012 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
2013 }
2014 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2015
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2016 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2017 unsigned long haddr, pmd_t *pmd)
2018 {
2019 struct mm_struct *mm = vma->vm_mm;
2020 pgtable_t pgtable;
2021 pmd_t _pmd;
2022 int i;
2023
2024 /* leave pmd empty until pte is filled */
2025 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2026
2027 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2028 pmd_populate(mm, &_pmd, pgtable);
2029
2030 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2031 pte_t *pte, entry;
2032 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2033 entry = pte_mkspecial(entry);
2034 pte = pte_offset_map(&_pmd, haddr);
2035 VM_BUG_ON(!pte_none(*pte));
2036 set_pte_at(mm, haddr, pte, entry);
2037 pte_unmap(pte);
2038 }
2039 smp_wmb(); /* make pte visible before pmd */
2040 pmd_populate(mm, pmd, pgtable);
2041 }
2042
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2043 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2044 unsigned long haddr, bool freeze)
2045 {
2046 struct mm_struct *mm = vma->vm_mm;
2047 struct page *page;
2048 pgtable_t pgtable;
2049 pmd_t _pmd;
2050 bool young, write, dirty, soft_dirty, pmd_migration = false;
2051 unsigned long addr;
2052 int i;
2053
2054 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2055 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2056 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2057 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2058 && !pmd_devmap(*pmd));
2059
2060 count_vm_event(THP_SPLIT_PMD);
2061
2062 if (!vma_is_anonymous(vma)) {
2063 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2064 /*
2065 * We are going to unmap this huge page. So
2066 * just go ahead and zap it
2067 */
2068 if (arch_needs_pgtable_deposit())
2069 zap_deposited_table(mm, pmd);
2070 if (vma_is_dax(vma))
2071 return;
2072 page = pmd_page(_pmd);
2073 if (!PageDirty(page) && pmd_dirty(_pmd))
2074 set_page_dirty(page);
2075 if (!PageReferenced(page) && pmd_young(_pmd))
2076 SetPageReferenced(page);
2077 page_remove_rmap(page, true);
2078 put_page(page);
2079 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2080 return;
2081 } else if (is_huge_zero_pmd(*pmd)) {
2082 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2083 }
2084
2085 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2086 pmd_migration = is_pmd_migration_entry(*pmd);
2087 if (pmd_migration) {
2088 swp_entry_t entry;
2089
2090 entry = pmd_to_swp_entry(*pmd);
2091 page = pfn_to_page(swp_offset(entry));
2092 } else
2093 #endif
2094 page = pmd_page(*pmd);
2095 VM_BUG_ON_PAGE(!page_count(page), page);
2096 page_ref_add(page, HPAGE_PMD_NR - 1);
2097 write = pmd_write(*pmd);
2098 young = pmd_young(*pmd);
2099 dirty = pmd_dirty(*pmd);
2100 soft_dirty = pmd_soft_dirty(*pmd);
2101
2102 pmdp_huge_split_prepare(vma, haddr, pmd);
2103 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2104 pmd_populate(mm, &_pmd, pgtable);
2105
2106 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2107 pte_t entry, *pte;
2108 /*
2109 * Note that NUMA hinting access restrictions are not
2110 * transferred to avoid any possibility of altering
2111 * permissions across VMAs.
2112 */
2113 if (freeze || pmd_migration) {
2114 swp_entry_t swp_entry;
2115 swp_entry = make_migration_entry(page + i, write);
2116 entry = swp_entry_to_pte(swp_entry);
2117 if (soft_dirty)
2118 entry = pte_swp_mksoft_dirty(entry);
2119 } else {
2120 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2121 entry = maybe_mkwrite(entry, vma);
2122 if (!write)
2123 entry = pte_wrprotect(entry);
2124 if (!young)
2125 entry = pte_mkold(entry);
2126 if (soft_dirty)
2127 entry = pte_mksoft_dirty(entry);
2128 }
2129 if (dirty)
2130 SetPageDirty(page + i);
2131 pte = pte_offset_map(&_pmd, addr);
2132 BUG_ON(!pte_none(*pte));
2133 set_pte_at(mm, addr, pte, entry);
2134 atomic_inc(&page[i]._mapcount);
2135 pte_unmap(pte);
2136 }
2137
2138 /*
2139 * Set PG_double_map before dropping compound_mapcount to avoid
2140 * false-negative page_mapped().
2141 */
2142 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2143 for (i = 0; i < HPAGE_PMD_NR; i++)
2144 atomic_inc(&page[i]._mapcount);
2145 }
2146
2147 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2148 /* Last compound_mapcount is gone. */
2149 __dec_node_page_state(page, NR_ANON_THPS);
2150 if (TestClearPageDoubleMap(page)) {
2151 /* No need in mapcount reference anymore */
2152 for (i = 0; i < HPAGE_PMD_NR; i++)
2153 atomic_dec(&page[i]._mapcount);
2154 }
2155 }
2156
2157 smp_wmb(); /* make pte visible before pmd */
2158 /*
2159 * Up to this point the pmd is present and huge and userland has the
2160 * whole access to the hugepage during the split (which happens in
2161 * place). If we overwrite the pmd with the not-huge version pointing
2162 * to the pte here (which of course we could if all CPUs were bug
2163 * free), userland could trigger a small page size TLB miss on the
2164 * small sized TLB while the hugepage TLB entry is still established in
2165 * the huge TLB. Some CPU doesn't like that.
2166 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2167 * 383 on page 93. Intel should be safe but is also warns that it's
2168 * only safe if the permission and cache attributes of the two entries
2169 * loaded in the two TLB is identical (which should be the case here).
2170 * But it is generally safer to never allow small and huge TLB entries
2171 * for the same virtual address to be loaded simultaneously. So instead
2172 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2173 * current pmd notpresent (atomically because here the pmd_trans_huge
2174 * and pmd_trans_splitting must remain set at all times on the pmd
2175 * until the split is complete for this pmd), then we flush the SMP TLB
2176 * and finally we write the non-huge version of the pmd entry with
2177 * pmd_populate.
2178 */
2179 pmdp_invalidate(vma, haddr, pmd);
2180 pmd_populate(mm, pmd, pgtable);
2181
2182 if (freeze) {
2183 for (i = 0; i < HPAGE_PMD_NR; i++) {
2184 page_remove_rmap(page + i, false);
2185 put_page(page + i);
2186 }
2187 }
2188 }
2189
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct page * page)2190 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2191 unsigned long address, bool freeze, struct page *page)
2192 {
2193 spinlock_t *ptl;
2194 struct mm_struct *mm = vma->vm_mm;
2195 unsigned long haddr = address & HPAGE_PMD_MASK;
2196
2197 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2198 ptl = pmd_lock(mm, pmd);
2199
2200 /*
2201 * If caller asks to setup a migration entries, we need a page to check
2202 * pmd against. Otherwise we can end up replacing wrong page.
2203 */
2204 VM_BUG_ON(freeze && !page);
2205 if (page && page != pmd_page(*pmd))
2206 goto out;
2207
2208 if (pmd_trans_huge(*pmd)) {
2209 page = pmd_page(*pmd);
2210 if (PageMlocked(page))
2211 clear_page_mlock(page);
2212 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2213 goto out;
2214 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2215 out:
2216 spin_unlock(ptl);
2217 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2218 }
2219
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct page * page)2220 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2221 bool freeze, struct page *page)
2222 {
2223 pgd_t *pgd;
2224 p4d_t *p4d;
2225 pud_t *pud;
2226 pmd_t *pmd;
2227
2228 pgd = pgd_offset(vma->vm_mm, address);
2229 if (!pgd_present(*pgd))
2230 return;
2231
2232 p4d = p4d_offset(pgd, address);
2233 if (!p4d_present(*p4d))
2234 return;
2235
2236 pud = pud_offset(p4d, address);
2237 if (!pud_present(*pud))
2238 return;
2239
2240 pmd = pmd_offset(pud, address);
2241
2242 __split_huge_pmd(vma, pmd, address, freeze, page);
2243 }
2244
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2245 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2246 unsigned long start,
2247 unsigned long end,
2248 long adjust_next)
2249 {
2250 /*
2251 * If the new start address isn't hpage aligned and it could
2252 * previously contain an hugepage: check if we need to split
2253 * an huge pmd.
2254 */
2255 if (start & ~HPAGE_PMD_MASK &&
2256 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2257 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2258 split_huge_pmd_address(vma, start, false, NULL);
2259
2260 /*
2261 * If the new end address isn't hpage aligned and it could
2262 * previously contain an hugepage: check if we need to split
2263 * an huge pmd.
2264 */
2265 if (end & ~HPAGE_PMD_MASK &&
2266 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2267 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2268 split_huge_pmd_address(vma, end, false, NULL);
2269
2270 /*
2271 * If we're also updating the vma->vm_next->vm_start, if the new
2272 * vm_next->vm_start isn't page aligned and it could previously
2273 * contain an hugepage: check if we need to split an huge pmd.
2274 */
2275 if (adjust_next > 0) {
2276 struct vm_area_struct *next = vma->vm_next;
2277 unsigned long nstart = next->vm_start;
2278 nstart += adjust_next << PAGE_SHIFT;
2279 if (nstart & ~HPAGE_PMD_MASK &&
2280 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2281 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2282 split_huge_pmd_address(next, nstart, false, NULL);
2283 }
2284 }
2285
unmap_page(struct page * page)2286 static void unmap_page(struct page *page)
2287 {
2288 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2289 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2290 bool unmap_success;
2291
2292 VM_BUG_ON_PAGE(!PageHead(page), page);
2293
2294 if (PageAnon(page))
2295 ttu_flags |= TTU_SPLIT_FREEZE;
2296
2297 unmap_success = try_to_unmap(page, ttu_flags);
2298 VM_BUG_ON_PAGE(!unmap_success, page);
2299 }
2300
remap_page(struct page * page)2301 static void remap_page(struct page *page)
2302 {
2303 int i;
2304 if (PageTransHuge(page)) {
2305 remove_migration_ptes(page, page, true);
2306 } else {
2307 for (i = 0; i < HPAGE_PMD_NR; i++)
2308 remove_migration_ptes(page + i, page + i, true);
2309 }
2310 }
2311
__split_huge_page_tail(struct page * head,int tail,struct lruvec * lruvec,struct list_head * list)2312 static void __split_huge_page_tail(struct page *head, int tail,
2313 struct lruvec *lruvec, struct list_head *list)
2314 {
2315 struct page *page_tail = head + tail;
2316
2317 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2318
2319 /*
2320 * Clone page flags before unfreezing refcount.
2321 *
2322 * After successful get_page_unless_zero() might follow flags change,
2323 * for exmaple lock_page() which set PG_waiters.
2324 */
2325 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2326 page_tail->flags |= (head->flags &
2327 ((1L << PG_referenced) |
2328 (1L << PG_swapbacked) |
2329 (1L << PG_swapcache) |
2330 (1L << PG_mlocked) |
2331 (1L << PG_uptodate) |
2332 (1L << PG_active) |
2333 (1L << PG_workingset) |
2334 (1L << PG_locked) |
2335 (1L << PG_unevictable) |
2336 (1L << PG_dirty)));
2337
2338 /* ->mapping in first tail page is compound_mapcount */
2339 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2340 page_tail);
2341 page_tail->mapping = head->mapping;
2342 page_tail->index = head->index + tail;
2343
2344 /* Page flags must be visible before we make the page non-compound. */
2345 smp_wmb();
2346
2347 /*
2348 * Clear PageTail before unfreezing page refcount.
2349 *
2350 * After successful get_page_unless_zero() might follow put_page()
2351 * which needs correct compound_head().
2352 */
2353 clear_compound_head(page_tail);
2354
2355 /* Finally unfreeze refcount. Additional reference from page cache. */
2356 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2357 PageSwapCache(head)));
2358
2359 if (page_is_young(head))
2360 set_page_young(page_tail);
2361 if (page_is_idle(head))
2362 set_page_idle(page_tail);
2363
2364 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2365 lru_add_page_tail(head, page_tail, lruvec, list);
2366 }
2367
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end,unsigned long flags)2368 static void __split_huge_page(struct page *page, struct list_head *list,
2369 pgoff_t end, unsigned long flags)
2370 {
2371 struct page *head = compound_head(page);
2372 struct zone *zone = page_zone(head);
2373 struct lruvec *lruvec;
2374 int i;
2375
2376 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2377
2378 /* complete memcg works before add pages to LRU */
2379 mem_cgroup_split_huge_fixup(head);
2380
2381 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2382 __split_huge_page_tail(head, i, lruvec, list);
2383 /* Some pages can be beyond i_size: drop them from page cache */
2384 if (head[i].index >= end) {
2385 ClearPageDirty(head + i);
2386 __delete_from_page_cache(head + i, NULL);
2387 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2388 shmem_uncharge(head->mapping->host, 1);
2389 put_page(head + i);
2390 }
2391 }
2392
2393 ClearPageCompound(head);
2394
2395 split_page_owner(head, HPAGE_PMD_ORDER);
2396
2397 /* See comment in __split_huge_page_tail() */
2398 if (PageAnon(head)) {
2399 /* Additional pin to radix tree of swap cache */
2400 if (PageSwapCache(head))
2401 page_ref_add(head, 2);
2402 else
2403 page_ref_inc(head);
2404 } else {
2405 /* Additional pin to radix tree */
2406 page_ref_add(head, 2);
2407 spin_unlock(&head->mapping->tree_lock);
2408 }
2409
2410 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2411
2412 remap_page(head);
2413
2414 for (i = 0; i < HPAGE_PMD_NR; i++) {
2415 struct page *subpage = head + i;
2416 if (subpage == page)
2417 continue;
2418 unlock_page(subpage);
2419
2420 /*
2421 * Subpages may be freed if there wasn't any mapping
2422 * like if add_to_swap() is running on a lru page that
2423 * had its mapping zapped. And freeing these pages
2424 * requires taking the lru_lock so we do the put_page
2425 * of the tail pages after the split is complete.
2426 */
2427 put_page(subpage);
2428 }
2429 }
2430
total_mapcount(struct page * page)2431 int total_mapcount(struct page *page)
2432 {
2433 int i, compound, ret;
2434
2435 VM_BUG_ON_PAGE(PageTail(page), page);
2436
2437 if (likely(!PageCompound(page)))
2438 return atomic_read(&page->_mapcount) + 1;
2439
2440 compound = compound_mapcount(page);
2441 if (PageHuge(page))
2442 return compound;
2443 ret = compound;
2444 for (i = 0; i < HPAGE_PMD_NR; i++)
2445 ret += atomic_read(&page[i]._mapcount) + 1;
2446 /* File pages has compound_mapcount included in _mapcount */
2447 if (!PageAnon(page))
2448 return ret - compound * HPAGE_PMD_NR;
2449 if (PageDoubleMap(page))
2450 ret -= HPAGE_PMD_NR;
2451 return ret;
2452 }
2453
2454 /*
2455 * This calculates accurately how many mappings a transparent hugepage
2456 * has (unlike page_mapcount() which isn't fully accurate). This full
2457 * accuracy is primarily needed to know if copy-on-write faults can
2458 * reuse the page and change the mapping to read-write instead of
2459 * copying them. At the same time this returns the total_mapcount too.
2460 *
2461 * The function returns the highest mapcount any one of the subpages
2462 * has. If the return value is one, even if different processes are
2463 * mapping different subpages of the transparent hugepage, they can
2464 * all reuse it, because each process is reusing a different subpage.
2465 *
2466 * The total_mapcount is instead counting all virtual mappings of the
2467 * subpages. If the total_mapcount is equal to "one", it tells the
2468 * caller all mappings belong to the same "mm" and in turn the
2469 * anon_vma of the transparent hugepage can become the vma->anon_vma
2470 * local one as no other process may be mapping any of the subpages.
2471 *
2472 * It would be more accurate to replace page_mapcount() with
2473 * page_trans_huge_mapcount(), however we only use
2474 * page_trans_huge_mapcount() in the copy-on-write faults where we
2475 * need full accuracy to avoid breaking page pinning, because
2476 * page_trans_huge_mapcount() is slower than page_mapcount().
2477 */
page_trans_huge_mapcount(struct page * page,int * total_mapcount)2478 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2479 {
2480 int i, ret, _total_mapcount, mapcount;
2481
2482 /* hugetlbfs shouldn't call it */
2483 VM_BUG_ON_PAGE(PageHuge(page), page);
2484
2485 if (likely(!PageTransCompound(page))) {
2486 mapcount = atomic_read(&page->_mapcount) + 1;
2487 if (total_mapcount)
2488 *total_mapcount = mapcount;
2489 return mapcount;
2490 }
2491
2492 page = compound_head(page);
2493
2494 _total_mapcount = ret = 0;
2495 for (i = 0; i < HPAGE_PMD_NR; i++) {
2496 mapcount = atomic_read(&page[i]._mapcount) + 1;
2497 ret = max(ret, mapcount);
2498 _total_mapcount += mapcount;
2499 }
2500 if (PageDoubleMap(page)) {
2501 ret -= 1;
2502 _total_mapcount -= HPAGE_PMD_NR;
2503 }
2504 mapcount = compound_mapcount(page);
2505 ret += mapcount;
2506 _total_mapcount += mapcount;
2507 if (total_mapcount)
2508 *total_mapcount = _total_mapcount;
2509 return ret;
2510 }
2511
2512 /* Racy check whether the huge page can be split */
can_split_huge_page(struct page * page,int * pextra_pins)2513 bool can_split_huge_page(struct page *page, int *pextra_pins)
2514 {
2515 int extra_pins;
2516
2517 /* Additional pins from radix tree */
2518 if (PageAnon(page))
2519 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2520 else
2521 extra_pins = HPAGE_PMD_NR;
2522 if (pextra_pins)
2523 *pextra_pins = extra_pins;
2524 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2525 }
2526
2527 /*
2528 * This function splits huge page into normal pages. @page can point to any
2529 * subpage of huge page to split. Split doesn't change the position of @page.
2530 *
2531 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2532 * The huge page must be locked.
2533 *
2534 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2535 *
2536 * Both head page and tail pages will inherit mapping, flags, and so on from
2537 * the hugepage.
2538 *
2539 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2540 * they are not mapped.
2541 *
2542 * Returns 0 if the hugepage is split successfully.
2543 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2544 * us.
2545 */
split_huge_page_to_list(struct page * page,struct list_head * list)2546 int split_huge_page_to_list(struct page *page, struct list_head *list)
2547 {
2548 struct page *head = compound_head(page);
2549 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2550 struct anon_vma *anon_vma = NULL;
2551 struct address_space *mapping = NULL;
2552 int count, mapcount, extra_pins, ret;
2553 bool mlocked;
2554 unsigned long flags;
2555 pgoff_t end;
2556
2557 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2558 VM_BUG_ON_PAGE(!PageLocked(page), page);
2559 VM_BUG_ON_PAGE(!PageCompound(page), page);
2560
2561 if (PageWriteback(page))
2562 return -EBUSY;
2563
2564 if (PageAnon(head)) {
2565 /*
2566 * The caller does not necessarily hold an mmap_sem that would
2567 * prevent the anon_vma disappearing so we first we take a
2568 * reference to it and then lock the anon_vma for write. This
2569 * is similar to page_lock_anon_vma_read except the write lock
2570 * is taken to serialise against parallel split or collapse
2571 * operations.
2572 */
2573 anon_vma = page_get_anon_vma(head);
2574 if (!anon_vma) {
2575 ret = -EBUSY;
2576 goto out;
2577 }
2578 end = -1;
2579 mapping = NULL;
2580 anon_vma_lock_write(anon_vma);
2581 } else {
2582 mapping = head->mapping;
2583
2584 /* Truncated ? */
2585 if (!mapping) {
2586 ret = -EBUSY;
2587 goto out;
2588 }
2589
2590 anon_vma = NULL;
2591 i_mmap_lock_read(mapping);
2592
2593 /*
2594 *__split_huge_page() may need to trim off pages beyond EOF:
2595 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2596 * which cannot be nested inside the page tree lock. So note
2597 * end now: i_size itself may be changed at any moment, but
2598 * head page lock is good enough to serialize the trimming.
2599 */
2600 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2601 }
2602
2603 /*
2604 * Racy check if we can split the page, before unmap_page() will
2605 * split PMDs
2606 */
2607 if (!can_split_huge_page(head, &extra_pins)) {
2608 ret = -EBUSY;
2609 goto out_unlock;
2610 }
2611
2612 mlocked = PageMlocked(page);
2613 unmap_page(head);
2614 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2615
2616 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2617 if (mlocked)
2618 lru_add_drain();
2619
2620 /* prevent PageLRU to go away from under us, and freeze lru stats */
2621 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2622
2623 if (mapping) {
2624 void **pslot;
2625
2626 spin_lock(&mapping->tree_lock);
2627 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2628 page_index(head));
2629 /*
2630 * Check if the head page is present in radix tree.
2631 * We assume all tail are present too, if head is there.
2632 */
2633 if (radix_tree_deref_slot_protected(pslot,
2634 &mapping->tree_lock) != head)
2635 goto fail;
2636 }
2637
2638 /* Prevent deferred_split_scan() touching ->_refcount */
2639 spin_lock(&pgdata->split_queue_lock);
2640 count = page_count(head);
2641 mapcount = total_mapcount(head);
2642 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2643 if (!list_empty(page_deferred_list(head))) {
2644 pgdata->split_queue_len--;
2645 list_del(page_deferred_list(head));
2646 }
2647 if (mapping)
2648 __dec_node_page_state(page, NR_SHMEM_THPS);
2649 spin_unlock(&pgdata->split_queue_lock);
2650 __split_huge_page(page, list, end, flags);
2651 if (PageSwapCache(head)) {
2652 swp_entry_t entry = { .val = page_private(head) };
2653
2654 ret = split_swap_cluster(entry);
2655 } else
2656 ret = 0;
2657 } else {
2658 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2659 pr_alert("total_mapcount: %u, page_count(): %u\n",
2660 mapcount, count);
2661 if (PageTail(page))
2662 dump_page(head, NULL);
2663 dump_page(page, "total_mapcount(head) > 0");
2664 BUG();
2665 }
2666 spin_unlock(&pgdata->split_queue_lock);
2667 fail: if (mapping)
2668 spin_unlock(&mapping->tree_lock);
2669 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2670 remap_page(head);
2671 ret = -EBUSY;
2672 }
2673
2674 out_unlock:
2675 if (anon_vma) {
2676 anon_vma_unlock_write(anon_vma);
2677 put_anon_vma(anon_vma);
2678 }
2679 if (mapping)
2680 i_mmap_unlock_read(mapping);
2681 out:
2682 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2683 return ret;
2684 }
2685
free_transhuge_page(struct page * page)2686 void free_transhuge_page(struct page *page)
2687 {
2688 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2689 unsigned long flags;
2690
2691 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2692 if (!list_empty(page_deferred_list(page))) {
2693 pgdata->split_queue_len--;
2694 list_del(page_deferred_list(page));
2695 }
2696 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2697 free_compound_page(page);
2698 }
2699
deferred_split_huge_page(struct page * page)2700 void deferred_split_huge_page(struct page *page)
2701 {
2702 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2703 unsigned long flags;
2704
2705 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2706
2707 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2708 if (list_empty(page_deferred_list(page))) {
2709 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2710 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2711 pgdata->split_queue_len++;
2712 }
2713 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2714 }
2715
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)2716 static unsigned long deferred_split_count(struct shrinker *shrink,
2717 struct shrink_control *sc)
2718 {
2719 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2720 return ACCESS_ONCE(pgdata->split_queue_len);
2721 }
2722
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)2723 static unsigned long deferred_split_scan(struct shrinker *shrink,
2724 struct shrink_control *sc)
2725 {
2726 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2727 unsigned long flags;
2728 LIST_HEAD(list), *pos, *next;
2729 struct page *page;
2730 int split = 0;
2731
2732 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2733 /* Take pin on all head pages to avoid freeing them under us */
2734 list_for_each_safe(pos, next, &pgdata->split_queue) {
2735 page = list_entry((void *)pos, struct page, mapping);
2736 page = compound_head(page);
2737 if (get_page_unless_zero(page)) {
2738 list_move(page_deferred_list(page), &list);
2739 } else {
2740 /* We lost race with put_compound_page() */
2741 list_del_init(page_deferred_list(page));
2742 pgdata->split_queue_len--;
2743 }
2744 if (!--sc->nr_to_scan)
2745 break;
2746 }
2747 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2748
2749 list_for_each_safe(pos, next, &list) {
2750 page = list_entry((void *)pos, struct page, mapping);
2751 if (!trylock_page(page))
2752 goto next;
2753 /* split_huge_page() removes page from list on success */
2754 if (!split_huge_page(page))
2755 split++;
2756 unlock_page(page);
2757 next:
2758 put_page(page);
2759 }
2760
2761 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2762 list_splice_tail(&list, &pgdata->split_queue);
2763 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2764
2765 /*
2766 * Stop shrinker if we didn't split any page, but the queue is empty.
2767 * This can happen if pages were freed under us.
2768 */
2769 if (!split && list_empty(&pgdata->split_queue))
2770 return SHRINK_STOP;
2771 return split;
2772 }
2773
2774 static struct shrinker deferred_split_shrinker = {
2775 .count_objects = deferred_split_count,
2776 .scan_objects = deferred_split_scan,
2777 .seeks = DEFAULT_SEEKS,
2778 .flags = SHRINKER_NUMA_AWARE,
2779 };
2780
2781 #ifdef CONFIG_DEBUG_FS
split_huge_pages_set(void * data,u64 val)2782 static int split_huge_pages_set(void *data, u64 val)
2783 {
2784 struct zone *zone;
2785 struct page *page;
2786 unsigned long pfn, max_zone_pfn;
2787 unsigned long total = 0, split = 0;
2788
2789 if (val != 1)
2790 return -EINVAL;
2791
2792 for_each_populated_zone(zone) {
2793 max_zone_pfn = zone_end_pfn(zone);
2794 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2795 if (!pfn_valid(pfn))
2796 continue;
2797
2798 page = pfn_to_page(pfn);
2799 if (!get_page_unless_zero(page))
2800 continue;
2801
2802 if (zone != page_zone(page))
2803 goto next;
2804
2805 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2806 goto next;
2807
2808 total++;
2809 lock_page(page);
2810 if (!split_huge_page(page))
2811 split++;
2812 unlock_page(page);
2813 next:
2814 put_page(page);
2815 }
2816 }
2817
2818 pr_info("%lu of %lu THP split\n", split, total);
2819
2820 return 0;
2821 }
2822 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2823 "%llu\n");
2824
split_huge_pages_debugfs(void)2825 static int __init split_huge_pages_debugfs(void)
2826 {
2827 void *ret;
2828
2829 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2830 &split_huge_pages_fops);
2831 if (!ret)
2832 pr_warn("Failed to create split_huge_pages in debugfs");
2833 return 0;
2834 }
2835 late_initcall(split_huge_pages_debugfs);
2836 #endif
2837
2838 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)2839 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2840 struct page *page)
2841 {
2842 struct vm_area_struct *vma = pvmw->vma;
2843 struct mm_struct *mm = vma->vm_mm;
2844 unsigned long address = pvmw->address;
2845 pmd_t pmdval;
2846 swp_entry_t entry;
2847 pmd_t pmdswp;
2848
2849 if (!(pvmw->pmd && !pvmw->pte))
2850 return;
2851
2852 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2853 pmdval = *pvmw->pmd;
2854 pmdp_invalidate(vma, address, pvmw->pmd);
2855 if (pmd_dirty(pmdval))
2856 set_page_dirty(page);
2857 entry = make_migration_entry(page, pmd_write(pmdval));
2858 pmdswp = swp_entry_to_pmd(entry);
2859 if (pmd_soft_dirty(pmdval))
2860 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2861 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2862 page_remove_rmap(page, true);
2863 put_page(page);
2864 }
2865
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)2866 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2867 {
2868 struct vm_area_struct *vma = pvmw->vma;
2869 struct mm_struct *mm = vma->vm_mm;
2870 unsigned long address = pvmw->address;
2871 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2872 pmd_t pmde;
2873 swp_entry_t entry;
2874
2875 if (!(pvmw->pmd && !pvmw->pte))
2876 return;
2877
2878 entry = pmd_to_swp_entry(*pvmw->pmd);
2879 get_page(new);
2880 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2881 if (pmd_swp_soft_dirty(*pvmw->pmd))
2882 pmde = pmd_mksoft_dirty(pmde);
2883 if (is_write_migration_entry(entry))
2884 pmde = maybe_pmd_mkwrite(pmde, vma);
2885
2886 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2887 page_add_anon_rmap(new, vma, mmun_start, true);
2888 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2889 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2890 mlock_vma_page(new);
2891 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2892 }
2893 #endif
2894