• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  commsup.c
28  *
29  * Abstract: Contain all routines that are required for FSA host/adapter
30  *    communication.
31  *
32  */
33 
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/sched.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/slab.h>
41 #include <linux/completion.h>
42 #include <linux/blkdev.h>
43 #include <linux/delay.h>
44 #include <linux/kthread.h>
45 #include <linux/interrupt.h>
46 #include <linux/semaphore.h>
47 #include <linux/bcd.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_host.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_cmnd.h>
52 
53 #include "aacraid.h"
54 
55 /**
56  *	fib_map_alloc		-	allocate the fib objects
57  *	@dev: Adapter to allocate for
58  *
59  *	Allocate and map the shared PCI space for the FIB blocks used to
60  *	talk to the Adaptec firmware.
61  */
62 
fib_map_alloc(struct aac_dev * dev)63 static int fib_map_alloc(struct aac_dev *dev)
64 {
65 	if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
66 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
67 	else
68 		dev->max_cmd_size = dev->max_fib_size;
69 	if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
70 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
71 	} else {
72 		dev->max_cmd_size = dev->max_fib_size;
73 	}
74 
75 	dprintk((KERN_INFO
76 	  "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
77 	  &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
78 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
79 	dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
80 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
81 		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
82 		&dev->hw_fib_pa, GFP_KERNEL);
83 	if (dev->hw_fib_va == NULL)
84 		return -ENOMEM;
85 	return 0;
86 }
87 
88 /**
89  *	aac_fib_map_free		-	free the fib objects
90  *	@dev: Adapter to free
91  *
92  *	Free the PCI mappings and the memory allocated for FIB blocks
93  *	on this adapter.
94  */
95 
aac_fib_map_free(struct aac_dev * dev)96 void aac_fib_map_free(struct aac_dev *dev)
97 {
98 	size_t alloc_size;
99 	size_t fib_size;
100 	int num_fibs;
101 
102 	if(!dev->hw_fib_va || !dev->max_cmd_size)
103 		return;
104 
105 	num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
106 	fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
107 	alloc_size = fib_size * num_fibs + ALIGN32 - 1;
108 
109 	dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
110 			  dev->hw_fib_pa);
111 
112 	dev->hw_fib_va = NULL;
113 	dev->hw_fib_pa = 0;
114 }
115 
aac_fib_vector_assign(struct aac_dev * dev)116 void aac_fib_vector_assign(struct aac_dev *dev)
117 {
118 	u32 i = 0;
119 	u32 vector = 1;
120 	struct fib *fibptr = NULL;
121 
122 	for (i = 0, fibptr = &dev->fibs[i];
123 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
124 		i++, fibptr++) {
125 		if ((dev->max_msix == 1) ||
126 		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
127 			- dev->vector_cap))) {
128 			fibptr->vector_no = 0;
129 		} else {
130 			fibptr->vector_no = vector;
131 			vector++;
132 			if (vector == dev->max_msix)
133 				vector = 1;
134 		}
135 	}
136 }
137 
138 /**
139  *	aac_fib_setup	-	setup the fibs
140  *	@dev: Adapter to set up
141  *
142  *	Allocate the PCI space for the fibs, map it and then initialise the
143  *	fib area, the unmapped fib data and also the free list
144  */
145 
aac_fib_setup(struct aac_dev * dev)146 int aac_fib_setup(struct aac_dev * dev)
147 {
148 	struct fib *fibptr;
149 	struct hw_fib *hw_fib;
150 	dma_addr_t hw_fib_pa;
151 	int i;
152 	u32 max_cmds;
153 
154 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
155 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
156 		max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
157 		dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
158 		if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
159 			dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
160 	}
161 	if (i<0)
162 		return -ENOMEM;
163 
164 	memset(dev->hw_fib_va, 0,
165 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
166 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
167 
168 	/* 32 byte alignment for PMC */
169 	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
170 	hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
171 					(hw_fib_pa - dev->hw_fib_pa));
172 
173 	/* add Xport header */
174 	hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
175 		sizeof(struct aac_fib_xporthdr));
176 	hw_fib_pa += sizeof(struct aac_fib_xporthdr);
177 
178 	/*
179 	 *	Initialise the fibs
180 	 */
181 	for (i = 0, fibptr = &dev->fibs[i];
182 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
183 		i++, fibptr++)
184 	{
185 		fibptr->flags = 0;
186 		fibptr->size = sizeof(struct fib);
187 		fibptr->dev = dev;
188 		fibptr->hw_fib_va = hw_fib;
189 		fibptr->data = (void *) fibptr->hw_fib_va->data;
190 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
191 		sema_init(&fibptr->event_wait, 0);
192 		spin_lock_init(&fibptr->event_lock);
193 		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
194 		hw_fib->header.SenderSize =
195 			cpu_to_le16(dev->max_fib_size);	/* ?? max_cmd_size */
196 		fibptr->hw_fib_pa = hw_fib_pa;
197 		fibptr->hw_sgl_pa = hw_fib_pa +
198 			offsetof(struct aac_hba_cmd_req, sge[2]);
199 		/*
200 		 * one element is for the ptr to the separate sg list,
201 		 * second element for 32 byte alignment
202 		 */
203 		fibptr->hw_error_pa = hw_fib_pa +
204 			offsetof(struct aac_native_hba, resp.resp_bytes[0]);
205 
206 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
207 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
208 		hw_fib_pa = hw_fib_pa +
209 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
210 	}
211 
212 	/*
213 	 *Assign vector numbers to fibs
214 	 */
215 	aac_fib_vector_assign(dev);
216 
217 	/*
218 	 *	Add the fib chain to the free list
219 	 */
220 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
221 	/*
222 	*	Set 8 fibs aside for management tools
223 	*/
224 	dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
225 	return 0;
226 }
227 
228 /**
229  *	aac_fib_alloc_tag-allocate a fib using tags
230  *	@dev: Adapter to allocate the fib for
231  *
232  *	Allocate a fib from the adapter fib pool using tags
233  *	from the blk layer.
234  */
235 
aac_fib_alloc_tag(struct aac_dev * dev,struct scsi_cmnd * scmd)236 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
237 {
238 	struct fib *fibptr;
239 
240 	fibptr = &dev->fibs[scmd->request->tag];
241 	/*
242 	 *	Null out fields that depend on being zero at the start of
243 	 *	each I/O
244 	 */
245 	fibptr->hw_fib_va->header.XferState = 0;
246 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
247 	fibptr->callback_data = NULL;
248 	fibptr->callback = NULL;
249 
250 	return fibptr;
251 }
252 
253 /**
254  *	aac_fib_alloc	-	allocate a fib
255  *	@dev: Adapter to allocate the fib for
256  *
257  *	Allocate a fib from the adapter fib pool. If the pool is empty we
258  *	return NULL.
259  */
260 
aac_fib_alloc(struct aac_dev * dev)261 struct fib *aac_fib_alloc(struct aac_dev *dev)
262 {
263 	struct fib * fibptr;
264 	unsigned long flags;
265 	spin_lock_irqsave(&dev->fib_lock, flags);
266 	fibptr = dev->free_fib;
267 	if(!fibptr){
268 		spin_unlock_irqrestore(&dev->fib_lock, flags);
269 		return fibptr;
270 	}
271 	dev->free_fib = fibptr->next;
272 	spin_unlock_irqrestore(&dev->fib_lock, flags);
273 	/*
274 	 *	Set the proper node type code and node byte size
275 	 */
276 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
277 	fibptr->size = sizeof(struct fib);
278 	/*
279 	 *	Null out fields that depend on being zero at the start of
280 	 *	each I/O
281 	 */
282 	fibptr->hw_fib_va->header.XferState = 0;
283 	fibptr->flags = 0;
284 	fibptr->callback = NULL;
285 	fibptr->callback_data = NULL;
286 
287 	return fibptr;
288 }
289 
290 /**
291  *	aac_fib_free	-	free a fib
292  *	@fibptr: fib to free up
293  *
294  *	Frees up a fib and places it on the appropriate queue
295  */
296 
aac_fib_free(struct fib * fibptr)297 void aac_fib_free(struct fib *fibptr)
298 {
299 	unsigned long flags;
300 
301 	if (fibptr->done == 2)
302 		return;
303 
304 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
305 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
306 		aac_config.fib_timeouts++;
307 	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
308 		fibptr->hw_fib_va->header.XferState != 0) {
309 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
310 			 (void*)fibptr,
311 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
312 	}
313 	fibptr->next = fibptr->dev->free_fib;
314 	fibptr->dev->free_fib = fibptr;
315 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
316 }
317 
318 /**
319  *	aac_fib_init	-	initialise a fib
320  *	@fibptr: The fib to initialize
321  *
322  *	Set up the generic fib fields ready for use
323  */
324 
aac_fib_init(struct fib * fibptr)325 void aac_fib_init(struct fib *fibptr)
326 {
327 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
328 
329 	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
330 	hw_fib->header.StructType = FIB_MAGIC;
331 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
332 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
333 	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
334 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
335 }
336 
337 /**
338  *	fib_deallocate		-	deallocate a fib
339  *	@fibptr: fib to deallocate
340  *
341  *	Will deallocate and return to the free pool the FIB pointed to by the
342  *	caller.
343  */
344 
fib_dealloc(struct fib * fibptr)345 static void fib_dealloc(struct fib * fibptr)
346 {
347 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
348 	hw_fib->header.XferState = 0;
349 }
350 
351 /*
352  *	Commuication primitives define and support the queuing method we use to
353  *	support host to adapter commuication. All queue accesses happen through
354  *	these routines and are the only routines which have a knowledge of the
355  *	 how these queues are implemented.
356  */
357 
358 /**
359  *	aac_get_entry		-	get a queue entry
360  *	@dev: Adapter
361  *	@qid: Queue Number
362  *	@entry: Entry return
363  *	@index: Index return
364  *	@nonotify: notification control
365  *
366  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
367  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
368  *	returned.
369  */
370 
aac_get_entry(struct aac_dev * dev,u32 qid,struct aac_entry ** entry,u32 * index,unsigned long * nonotify)371 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
372 {
373 	struct aac_queue * q;
374 	unsigned long idx;
375 
376 	/*
377 	 *	All of the queues wrap when they reach the end, so we check
378 	 *	to see if they have reached the end and if they have we just
379 	 *	set the index back to zero. This is a wrap. You could or off
380 	 *	the high bits in all updates but this is a bit faster I think.
381 	 */
382 
383 	q = &dev->queues->queue[qid];
384 
385 	idx = *index = le32_to_cpu(*(q->headers.producer));
386 	/* Interrupt Moderation, only interrupt for first two entries */
387 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
388 		if (--idx == 0) {
389 			if (qid == AdapNormCmdQueue)
390 				idx = ADAP_NORM_CMD_ENTRIES;
391 			else
392 				idx = ADAP_NORM_RESP_ENTRIES;
393 		}
394 		if (idx != le32_to_cpu(*(q->headers.consumer)))
395 			*nonotify = 1;
396 	}
397 
398 	if (qid == AdapNormCmdQueue) {
399 		if (*index >= ADAP_NORM_CMD_ENTRIES)
400 			*index = 0; /* Wrap to front of the Producer Queue. */
401 	} else {
402 		if (*index >= ADAP_NORM_RESP_ENTRIES)
403 			*index = 0; /* Wrap to front of the Producer Queue. */
404 	}
405 
406 	/* Queue is full */
407 	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
408 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
409 				qid, atomic_read(&q->numpending));
410 		return 0;
411 	} else {
412 		*entry = q->base + *index;
413 		return 1;
414 	}
415 }
416 
417 /**
418  *	aac_queue_get		-	get the next free QE
419  *	@dev: Adapter
420  *	@index: Returned index
421  *	@priority: Priority of fib
422  *	@fib: Fib to associate with the queue entry
423  *	@wait: Wait if queue full
424  *	@fibptr: Driver fib object to go with fib
425  *	@nonotify: Don't notify the adapter
426  *
427  *	Gets the next free QE off the requested priorty adapter command
428  *	queue and associates the Fib with the QE. The QE represented by
429  *	index is ready to insert on the queue when this routine returns
430  *	success.
431  */
432 
aac_queue_get(struct aac_dev * dev,u32 * index,u32 qid,struct hw_fib * hw_fib,int wait,struct fib * fibptr,unsigned long * nonotify)433 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
434 {
435 	struct aac_entry * entry = NULL;
436 	int map = 0;
437 
438 	if (qid == AdapNormCmdQueue) {
439 		/*  if no entries wait for some if caller wants to */
440 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
441 			printk(KERN_ERR "GetEntries failed\n");
442 		}
443 		/*
444 		 *	Setup queue entry with a command, status and fib mapped
445 		 */
446 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
447 		map = 1;
448 	} else {
449 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
450 			/* if no entries wait for some if caller wants to */
451 		}
452 		/*
453 		 *	Setup queue entry with command, status and fib mapped
454 		 */
455 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
456 		entry->addr = hw_fib->header.SenderFibAddress;
457 			/* Restore adapters pointer to the FIB */
458 		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
459 		map = 0;
460 	}
461 	/*
462 	 *	If MapFib is true than we need to map the Fib and put pointers
463 	 *	in the queue entry.
464 	 */
465 	if (map)
466 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
467 	return 0;
468 }
469 
470 #ifdef CONFIG_EEH
aac_check_eeh_failure(struct aac_dev * dev)471 static inline int aac_check_eeh_failure(struct aac_dev *dev)
472 {
473 	/* Check for an EEH failure for the given
474 	 * device node. Function eeh_dev_check_failure()
475 	 * returns 0 if there has not been an EEH error
476 	 * otherwise returns a non-zero value.
477 	 *
478 	 * Need to be called before any PCI operation,
479 	 * i.e.,before aac_adapter_check_health()
480 	 */
481 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev->pdev);
482 
483 	if (eeh_dev_check_failure(edev)) {
484 		/* The EEH mechanisms will handle this
485 		 * error and reset the device if
486 		 * necessary.
487 		 */
488 		return 1;
489 	}
490 	return 0;
491 }
492 #else
aac_check_eeh_failure(struct aac_dev * dev)493 static inline int aac_check_eeh_failure(struct aac_dev *dev)
494 {
495 	return 0;
496 }
497 #endif
498 
499 /*
500  *	Define the highest level of host to adapter communication routines.
501  *	These routines will support host to adapter FS commuication. These
502  *	routines have no knowledge of the commuication method used. This level
503  *	sends and receives FIBs. This level has no knowledge of how these FIBs
504  *	get passed back and forth.
505  */
506 
507 /**
508  *	aac_fib_send	-	send a fib to the adapter
509  *	@command: Command to send
510  *	@fibptr: The fib
511  *	@size: Size of fib data area
512  *	@priority: Priority of Fib
513  *	@wait: Async/sync select
514  *	@reply: True if a reply is wanted
515  *	@callback: Called with reply
516  *	@callback_data: Passed to callback
517  *
518  *	Sends the requested FIB to the adapter and optionally will wait for a
519  *	response FIB. If the caller does not wish to wait for a response than
520  *	an event to wait on must be supplied. This event will be set when a
521  *	response FIB is received from the adapter.
522  */
523 
aac_fib_send(u16 command,struct fib * fibptr,unsigned long size,int priority,int wait,int reply,fib_callback callback,void * callback_data)524 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
525 		int priority, int wait, int reply, fib_callback callback,
526 		void *callback_data)
527 {
528 	struct aac_dev * dev = fibptr->dev;
529 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
530 	unsigned long flags = 0;
531 	unsigned long mflags = 0;
532 	unsigned long sflags = 0;
533 
534 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
535 		return -EBUSY;
536 
537 	if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
538 		return -EINVAL;
539 
540 	/*
541 	 *	There are 5 cases with the wait and response requested flags.
542 	 *	The only invalid cases are if the caller requests to wait and
543 	 *	does not request a response and if the caller does not want a
544 	 *	response and the Fib is not allocated from pool. If a response
545 	 *	is not requesed the Fib will just be deallocaed by the DPC
546 	 *	routine when the response comes back from the adapter. No
547 	 *	further processing will be done besides deleting the Fib. We
548 	 *	will have a debug mode where the adapter can notify the host
549 	 *	it had a problem and the host can log that fact.
550 	 */
551 	fibptr->flags = 0;
552 	if (wait && !reply) {
553 		return -EINVAL;
554 	} else if (!wait && reply) {
555 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
556 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
557 	} else if (!wait && !reply) {
558 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
559 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
560 	} else if (wait && reply) {
561 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
562 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
563 	}
564 	/*
565 	 *	Map the fib into 32bits by using the fib number
566 	 */
567 
568 	hw_fib->header.SenderFibAddress =
569 		cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
570 
571 	/* use the same shifted value for handle to be compatible
572 	 * with the new native hba command handle
573 	 */
574 	hw_fib->header.Handle =
575 		cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
576 
577 	/*
578 	 *	Set FIB state to indicate where it came from and if we want a
579 	 *	response from the adapter. Also load the command from the
580 	 *	caller.
581 	 *
582 	 *	Map the hw fib pointer as a 32bit value
583 	 */
584 	hw_fib->header.Command = cpu_to_le16(command);
585 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
586 	/*
587 	 *	Set the size of the Fib we want to send to the adapter
588 	 */
589 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
590 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
591 		return -EMSGSIZE;
592 	}
593 	/*
594 	 *	Get a queue entry connect the FIB to it and send an notify
595 	 *	the adapter a command is ready.
596 	 */
597 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
598 
599 	/*
600 	 *	Fill in the Callback and CallbackContext if we are not
601 	 *	going to wait.
602 	 */
603 	if (!wait) {
604 		fibptr->callback = callback;
605 		fibptr->callback_data = callback_data;
606 		fibptr->flags = FIB_CONTEXT_FLAG;
607 	}
608 
609 	fibptr->done = 0;
610 
611 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
612 
613 	dprintk((KERN_DEBUG "Fib contents:.\n"));
614 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
615 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
616 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
617 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
618 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
619 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
620 
621 	if (!dev->queues)
622 		return -EBUSY;
623 
624 	if (wait) {
625 
626 		spin_lock_irqsave(&dev->manage_lock, mflags);
627 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
628 			printk(KERN_INFO "No management Fibs Available:%d\n",
629 						dev->management_fib_count);
630 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
631 			return -EBUSY;
632 		}
633 		dev->management_fib_count++;
634 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
635 		spin_lock_irqsave(&fibptr->event_lock, flags);
636 	}
637 
638 	if (dev->sync_mode) {
639 		if (wait)
640 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
641 		spin_lock_irqsave(&dev->sync_lock, sflags);
642 		if (dev->sync_fib) {
643 			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
644 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
645 		} else {
646 			dev->sync_fib = fibptr;
647 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
648 			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
649 				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
650 				NULL, NULL, NULL, NULL, NULL);
651 		}
652 		if (wait) {
653 			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
654 			if (down_interruptible(&fibptr->event_wait)) {
655 				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
656 				return -EFAULT;
657 			}
658 			return 0;
659 		}
660 		return -EINPROGRESS;
661 	}
662 
663 	if (aac_adapter_deliver(fibptr) != 0) {
664 		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
665 		if (wait) {
666 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
667 			spin_lock_irqsave(&dev->manage_lock, mflags);
668 			dev->management_fib_count--;
669 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
670 		}
671 		return -EBUSY;
672 	}
673 
674 
675 	/*
676 	 *	If the caller wanted us to wait for response wait now.
677 	 */
678 
679 	if (wait) {
680 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
681 		/* Only set for first known interruptable command */
682 		if (wait < 0) {
683 			/*
684 			 * *VERY* Dangerous to time out a command, the
685 			 * assumption is made that we have no hope of
686 			 * functioning because an interrupt routing or other
687 			 * hardware failure has occurred.
688 			 */
689 			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
690 			while (down_trylock(&fibptr->event_wait)) {
691 				int blink;
692 				if (time_is_before_eq_jiffies(timeout)) {
693 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
694 					atomic_dec(&q->numpending);
695 					if (wait == -1) {
696 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
697 						  "Usually a result of a PCI interrupt routing problem;\n"
698 						  "update mother board BIOS or consider utilizing one of\n"
699 						  "the SAFE mode kernel options (acpi, apic etc)\n");
700 					}
701 					return -ETIMEDOUT;
702 				}
703 
704 				if (aac_check_eeh_failure(dev))
705 					return -EFAULT;
706 
707 				if ((blink = aac_adapter_check_health(dev)) > 0) {
708 					if (wait == -1) {
709 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
710 						  "Usually a result of a serious unrecoverable hardware problem\n",
711 						  blink);
712 					}
713 					return -EFAULT;
714 				}
715 				/*
716 				 * Allow other processes / CPUS to use core
717 				 */
718 				schedule();
719 			}
720 		} else if (down_interruptible(&fibptr->event_wait)) {
721 			/* Do nothing ... satisfy
722 			 * down_interruptible must_check */
723 		}
724 
725 		spin_lock_irqsave(&fibptr->event_lock, flags);
726 		if (fibptr->done == 0) {
727 			fibptr->done = 2; /* Tell interrupt we aborted */
728 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
729 			return -ERESTARTSYS;
730 		}
731 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
732 		BUG_ON(fibptr->done == 0);
733 
734 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
735 			return -ETIMEDOUT;
736 		return 0;
737 	}
738 	/*
739 	 *	If the user does not want a response than return success otherwise
740 	 *	return pending
741 	 */
742 	if (reply)
743 		return -EINPROGRESS;
744 	else
745 		return 0;
746 }
747 
aac_hba_send(u8 command,struct fib * fibptr,fib_callback callback,void * callback_data)748 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
749 		void *callback_data)
750 {
751 	struct aac_dev *dev = fibptr->dev;
752 	int wait;
753 	unsigned long flags = 0;
754 	unsigned long mflags = 0;
755 	struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
756 			fibptr->hw_fib_va;
757 
758 	fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
759 	if (callback) {
760 		wait = 0;
761 		fibptr->callback = callback;
762 		fibptr->callback_data = callback_data;
763 	} else
764 		wait = 1;
765 
766 
767 	hbacmd->iu_type = command;
768 
769 	if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
770 		/* bit1 of request_id must be 0 */
771 		hbacmd->request_id =
772 			cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
773 		fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
774 	} else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
775 		return -EINVAL;
776 
777 
778 	if (wait) {
779 		spin_lock_irqsave(&dev->manage_lock, mflags);
780 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
781 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
782 			return -EBUSY;
783 		}
784 		dev->management_fib_count++;
785 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
786 		spin_lock_irqsave(&fibptr->event_lock, flags);
787 	}
788 
789 	if (aac_adapter_deliver(fibptr) != 0) {
790 		if (wait) {
791 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
792 			spin_lock_irqsave(&dev->manage_lock, mflags);
793 			dev->management_fib_count--;
794 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
795 		}
796 		return -EBUSY;
797 	}
798 	FIB_COUNTER_INCREMENT(aac_config.NativeSent);
799 
800 	if (wait) {
801 
802 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
803 
804 		if (aac_check_eeh_failure(dev))
805 			return -EFAULT;
806 
807 		fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
808 		if (down_interruptible(&fibptr->event_wait))
809 			fibptr->done = 2;
810 		fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
811 
812 		spin_lock_irqsave(&fibptr->event_lock, flags);
813 		if ((fibptr->done == 0) || (fibptr->done == 2)) {
814 			fibptr->done = 2; /* Tell interrupt we aborted */
815 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
816 			return -ERESTARTSYS;
817 		}
818 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
819 		WARN_ON(fibptr->done == 0);
820 
821 		if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
822 			return -ETIMEDOUT;
823 
824 		return 0;
825 	}
826 
827 	return -EINPROGRESS;
828 }
829 
830 /**
831  *	aac_consumer_get	-	get the top of the queue
832  *	@dev: Adapter
833  *	@q: Queue
834  *	@entry: Return entry
835  *
836  *	Will return a pointer to the entry on the top of the queue requested that
837  *	we are a consumer of, and return the address of the queue entry. It does
838  *	not change the state of the queue.
839  */
840 
aac_consumer_get(struct aac_dev * dev,struct aac_queue * q,struct aac_entry ** entry)841 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
842 {
843 	u32 index;
844 	int status;
845 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
846 		status = 0;
847 	} else {
848 		/*
849 		 *	The consumer index must be wrapped if we have reached
850 		 *	the end of the queue, else we just use the entry
851 		 *	pointed to by the header index
852 		 */
853 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
854 			index = 0;
855 		else
856 			index = le32_to_cpu(*q->headers.consumer);
857 		*entry = q->base + index;
858 		status = 1;
859 	}
860 	return(status);
861 }
862 
863 /**
864  *	aac_consumer_free	-	free consumer entry
865  *	@dev: Adapter
866  *	@q: Queue
867  *	@qid: Queue ident
868  *
869  *	Frees up the current top of the queue we are a consumer of. If the
870  *	queue was full notify the producer that the queue is no longer full.
871  */
872 
aac_consumer_free(struct aac_dev * dev,struct aac_queue * q,u32 qid)873 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
874 {
875 	int wasfull = 0;
876 	u32 notify;
877 
878 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
879 		wasfull = 1;
880 
881 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
882 		*q->headers.consumer = cpu_to_le32(1);
883 	else
884 		le32_add_cpu(q->headers.consumer, 1);
885 
886 	if (wasfull) {
887 		switch (qid) {
888 
889 		case HostNormCmdQueue:
890 			notify = HostNormCmdNotFull;
891 			break;
892 		case HostNormRespQueue:
893 			notify = HostNormRespNotFull;
894 			break;
895 		default:
896 			BUG();
897 			return;
898 		}
899 		aac_adapter_notify(dev, notify);
900 	}
901 }
902 
903 /**
904  *	aac_fib_adapter_complete	-	complete adapter issued fib
905  *	@fibptr: fib to complete
906  *	@size: size of fib
907  *
908  *	Will do all necessary work to complete a FIB that was sent from
909  *	the adapter.
910  */
911 
aac_fib_adapter_complete(struct fib * fibptr,unsigned short size)912 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
913 {
914 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
915 	struct aac_dev * dev = fibptr->dev;
916 	struct aac_queue * q;
917 	unsigned long nointr = 0;
918 	unsigned long qflags;
919 
920 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
921 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
922 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
923 		kfree(hw_fib);
924 		return 0;
925 	}
926 
927 	if (hw_fib->header.XferState == 0) {
928 		if (dev->comm_interface == AAC_COMM_MESSAGE)
929 			kfree(hw_fib);
930 		return 0;
931 	}
932 	/*
933 	 *	If we plan to do anything check the structure type first.
934 	 */
935 	if (hw_fib->header.StructType != FIB_MAGIC &&
936 	    hw_fib->header.StructType != FIB_MAGIC2 &&
937 	    hw_fib->header.StructType != FIB_MAGIC2_64) {
938 		if (dev->comm_interface == AAC_COMM_MESSAGE)
939 			kfree(hw_fib);
940 		return -EINVAL;
941 	}
942 	/*
943 	 *	This block handles the case where the adapter had sent us a
944 	 *	command and we have finished processing the command. We
945 	 *	call completeFib when we are done processing the command
946 	 *	and want to send a response back to the adapter. This will
947 	 *	send the completed cdb to the adapter.
948 	 */
949 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
950 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
951 			kfree (hw_fib);
952 		} else {
953 			u32 index;
954 			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
955 			if (size) {
956 				size += sizeof(struct aac_fibhdr);
957 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
958 					return -EMSGSIZE;
959 				hw_fib->header.Size = cpu_to_le16(size);
960 			}
961 			q = &dev->queues->queue[AdapNormRespQueue];
962 			spin_lock_irqsave(q->lock, qflags);
963 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
964 			*(q->headers.producer) = cpu_to_le32(index + 1);
965 			spin_unlock_irqrestore(q->lock, qflags);
966 			if (!(nointr & (int)aac_config.irq_mod))
967 				aac_adapter_notify(dev, AdapNormRespQueue);
968 		}
969 	} else {
970 		printk(KERN_WARNING "aac_fib_adapter_complete: "
971 			"Unknown xferstate detected.\n");
972 		BUG();
973 	}
974 	return 0;
975 }
976 
977 /**
978  *	aac_fib_complete	-	fib completion handler
979  *	@fib: FIB to complete
980  *
981  *	Will do all necessary work to complete a FIB.
982  */
983 
aac_fib_complete(struct fib * fibptr)984 int aac_fib_complete(struct fib *fibptr)
985 {
986 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
987 
988 	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
989 		fib_dealloc(fibptr);
990 		return 0;
991 	}
992 
993 	/*
994 	 *	Check for a fib which has already been completed or with a
995 	 *	status wait timeout
996 	 */
997 
998 	if (hw_fib->header.XferState == 0 || fibptr->done == 2)
999 		return 0;
1000 	/*
1001 	 *	If we plan to do anything check the structure type first.
1002 	 */
1003 
1004 	if (hw_fib->header.StructType != FIB_MAGIC &&
1005 	    hw_fib->header.StructType != FIB_MAGIC2 &&
1006 	    hw_fib->header.StructType != FIB_MAGIC2_64)
1007 		return -EINVAL;
1008 	/*
1009 	 *	This block completes a cdb which orginated on the host and we
1010 	 *	just need to deallocate the cdb or reinit it. At this point the
1011 	 *	command is complete that we had sent to the adapter and this
1012 	 *	cdb could be reused.
1013 	 */
1014 
1015 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
1016 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
1017 	{
1018 		fib_dealloc(fibptr);
1019 	}
1020 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
1021 	{
1022 		/*
1023 		 *	This handles the case when the host has aborted the I/O
1024 		 *	to the adapter because the adapter is not responding
1025 		 */
1026 		fib_dealloc(fibptr);
1027 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
1028 		fib_dealloc(fibptr);
1029 	} else {
1030 		BUG();
1031 	}
1032 	return 0;
1033 }
1034 
1035 /**
1036  *	aac_printf	-	handle printf from firmware
1037  *	@dev: Adapter
1038  *	@val: Message info
1039  *
1040  *	Print a message passed to us by the controller firmware on the
1041  *	Adaptec board
1042  */
1043 
aac_printf(struct aac_dev * dev,u32 val)1044 void aac_printf(struct aac_dev *dev, u32 val)
1045 {
1046 	char *cp = dev->printfbuf;
1047 	if (dev->printf_enabled)
1048 	{
1049 		int length = val & 0xffff;
1050 		int level = (val >> 16) & 0xffff;
1051 
1052 		/*
1053 		 *	The size of the printfbuf is set in port.c
1054 		 *	There is no variable or define for it
1055 		 */
1056 		if (length > 255)
1057 			length = 255;
1058 		if (cp[length] != 0)
1059 			cp[length] = 0;
1060 		if (level == LOG_AAC_HIGH_ERROR)
1061 			printk(KERN_WARNING "%s:%s", dev->name, cp);
1062 		else
1063 			printk(KERN_INFO "%s:%s", dev->name, cp);
1064 	}
1065 	memset(cp, 0, 256);
1066 }
1067 
aac_aif_data(struct aac_aifcmd * aifcmd,uint32_t index)1068 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1069 {
1070 	return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1071 }
1072 
1073 
aac_handle_aif_bu(struct aac_dev * dev,struct aac_aifcmd * aifcmd)1074 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1075 {
1076 	switch (aac_aif_data(aifcmd, 1)) {
1077 	case AifBuCacheDataLoss:
1078 		if (aac_aif_data(aifcmd, 2))
1079 			dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1080 			aac_aif_data(aifcmd, 2));
1081 		else
1082 			dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1083 		break;
1084 	case AifBuCacheDataRecover:
1085 		if (aac_aif_data(aifcmd, 2))
1086 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1087 			aac_aif_data(aifcmd, 2));
1088 		else
1089 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1090 		break;
1091 	}
1092 }
1093 
1094 /**
1095  *	aac_handle_aif		-	Handle a message from the firmware
1096  *	@dev: Which adapter this fib is from
1097  *	@fibptr: Pointer to fibptr from adapter
1098  *
1099  *	This routine handles a driver notify fib from the adapter and
1100  *	dispatches it to the appropriate routine for handling.
1101  */
1102 
1103 #define AIF_SNIFF_TIMEOUT	(500*HZ)
aac_handle_aif(struct aac_dev * dev,struct fib * fibptr)1104 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1105 {
1106 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
1107 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1108 	u32 channel, id, lun, container;
1109 	struct scsi_device *device;
1110 	enum {
1111 		NOTHING,
1112 		DELETE,
1113 		ADD,
1114 		CHANGE
1115 	} device_config_needed = NOTHING;
1116 
1117 	/* Sniff for container changes */
1118 
1119 	if (!dev || !dev->fsa_dev)
1120 		return;
1121 	container = channel = id = lun = (u32)-1;
1122 
1123 	/*
1124 	 *	We have set this up to try and minimize the number of
1125 	 * re-configures that take place. As a result of this when
1126 	 * certain AIF's come in we will set a flag waiting for another
1127 	 * type of AIF before setting the re-config flag.
1128 	 */
1129 	switch (le32_to_cpu(aifcmd->command)) {
1130 	case AifCmdDriverNotify:
1131 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1132 		case AifRawDeviceRemove:
1133 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1134 			if ((container >> 28)) {
1135 				container = (u32)-1;
1136 				break;
1137 			}
1138 			channel = (container >> 24) & 0xF;
1139 			if (channel >= dev->maximum_num_channels) {
1140 				container = (u32)-1;
1141 				break;
1142 			}
1143 			id = container & 0xFFFF;
1144 			if (id >= dev->maximum_num_physicals) {
1145 				container = (u32)-1;
1146 				break;
1147 			}
1148 			lun = (container >> 16) & 0xFF;
1149 			container = (u32)-1;
1150 			channel = aac_phys_to_logical(channel);
1151 			device_config_needed = DELETE;
1152 			break;
1153 
1154 		/*
1155 		 *	Morph or Expand complete
1156 		 */
1157 		case AifDenMorphComplete:
1158 		case AifDenVolumeExtendComplete:
1159 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1160 			if (container >= dev->maximum_num_containers)
1161 				break;
1162 
1163 			/*
1164 			 *	Find the scsi_device associated with the SCSI
1165 			 * address. Make sure we have the right array, and if
1166 			 * so set the flag to initiate a new re-config once we
1167 			 * see an AifEnConfigChange AIF come through.
1168 			 */
1169 
1170 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1171 				device = scsi_device_lookup(dev->scsi_host_ptr,
1172 					CONTAINER_TO_CHANNEL(container),
1173 					CONTAINER_TO_ID(container),
1174 					CONTAINER_TO_LUN(container));
1175 				if (device) {
1176 					dev->fsa_dev[container].config_needed = CHANGE;
1177 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1178 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
1179 					scsi_device_put(device);
1180 				}
1181 			}
1182 		}
1183 
1184 		/*
1185 		 *	If we are waiting on something and this happens to be
1186 		 * that thing then set the re-configure flag.
1187 		 */
1188 		if (container != (u32)-1) {
1189 			if (container >= dev->maximum_num_containers)
1190 				break;
1191 			if ((dev->fsa_dev[container].config_waiting_on ==
1192 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1193 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1194 				dev->fsa_dev[container].config_waiting_on = 0;
1195 		} else for (container = 0;
1196 		    container < dev->maximum_num_containers; ++container) {
1197 			if ((dev->fsa_dev[container].config_waiting_on ==
1198 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1199 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1200 				dev->fsa_dev[container].config_waiting_on = 0;
1201 		}
1202 		break;
1203 
1204 	case AifCmdEventNotify:
1205 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1206 		case AifEnBatteryEvent:
1207 			dev->cache_protected =
1208 				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1209 			break;
1210 		/*
1211 		 *	Add an Array.
1212 		 */
1213 		case AifEnAddContainer:
1214 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1215 			if (container >= dev->maximum_num_containers)
1216 				break;
1217 			dev->fsa_dev[container].config_needed = ADD;
1218 			dev->fsa_dev[container].config_waiting_on =
1219 				AifEnConfigChange;
1220 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1221 			break;
1222 
1223 		/*
1224 		 *	Delete an Array.
1225 		 */
1226 		case AifEnDeleteContainer:
1227 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1228 			if (container >= dev->maximum_num_containers)
1229 				break;
1230 			dev->fsa_dev[container].config_needed = DELETE;
1231 			dev->fsa_dev[container].config_waiting_on =
1232 				AifEnConfigChange;
1233 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1234 			break;
1235 
1236 		/*
1237 		 *	Container change detected. If we currently are not
1238 		 * waiting on something else, setup to wait on a Config Change.
1239 		 */
1240 		case AifEnContainerChange:
1241 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1242 			if (container >= dev->maximum_num_containers)
1243 				break;
1244 			if (dev->fsa_dev[container].config_waiting_on &&
1245 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1246 				break;
1247 			dev->fsa_dev[container].config_needed = CHANGE;
1248 			dev->fsa_dev[container].config_waiting_on =
1249 				AifEnConfigChange;
1250 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1251 			break;
1252 
1253 		case AifEnConfigChange:
1254 			break;
1255 
1256 		case AifEnAddJBOD:
1257 		case AifEnDeleteJBOD:
1258 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1259 			if ((container >> 28)) {
1260 				container = (u32)-1;
1261 				break;
1262 			}
1263 			channel = (container >> 24) & 0xF;
1264 			if (channel >= dev->maximum_num_channels) {
1265 				container = (u32)-1;
1266 				break;
1267 			}
1268 			id = container & 0xFFFF;
1269 			if (id >= dev->maximum_num_physicals) {
1270 				container = (u32)-1;
1271 				break;
1272 			}
1273 			lun = (container >> 16) & 0xFF;
1274 			container = (u32)-1;
1275 			channel = aac_phys_to_logical(channel);
1276 			device_config_needed =
1277 			  (((__le32 *)aifcmd->data)[0] ==
1278 			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1279 			if (device_config_needed == ADD) {
1280 				device = scsi_device_lookup(dev->scsi_host_ptr,
1281 					channel,
1282 					id,
1283 					lun);
1284 				if (device) {
1285 					scsi_remove_device(device);
1286 					scsi_device_put(device);
1287 				}
1288 			}
1289 			break;
1290 
1291 		case AifEnEnclosureManagement:
1292 			/*
1293 			 * If in JBOD mode, automatic exposure of new
1294 			 * physical target to be suppressed until configured.
1295 			 */
1296 			if (dev->jbod)
1297 				break;
1298 			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1299 			case EM_DRIVE_INSERTION:
1300 			case EM_DRIVE_REMOVAL:
1301 			case EM_SES_DRIVE_INSERTION:
1302 			case EM_SES_DRIVE_REMOVAL:
1303 				container = le32_to_cpu(
1304 					((__le32 *)aifcmd->data)[2]);
1305 				if ((container >> 28)) {
1306 					container = (u32)-1;
1307 					break;
1308 				}
1309 				channel = (container >> 24) & 0xF;
1310 				if (channel >= dev->maximum_num_channels) {
1311 					container = (u32)-1;
1312 					break;
1313 				}
1314 				id = container & 0xFFFF;
1315 				lun = (container >> 16) & 0xFF;
1316 				container = (u32)-1;
1317 				if (id >= dev->maximum_num_physicals) {
1318 					/* legacy dev_t ? */
1319 					if ((0x2000 <= id) || lun || channel ||
1320 					  ((channel = (id >> 7) & 0x3F) >=
1321 					  dev->maximum_num_channels))
1322 						break;
1323 					lun = (id >> 4) & 7;
1324 					id &= 0xF;
1325 				}
1326 				channel = aac_phys_to_logical(channel);
1327 				device_config_needed =
1328 				  ((((__le32 *)aifcmd->data)[3]
1329 				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1330 				    (((__le32 *)aifcmd->data)[3]
1331 				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1332 				  ADD : DELETE;
1333 				break;
1334 			}
1335 			break;
1336 		case AifBuManagerEvent:
1337 			aac_handle_aif_bu(dev, aifcmd);
1338 			break;
1339 		}
1340 
1341 		/*
1342 		 *	If we are waiting on something and this happens to be
1343 		 * that thing then set the re-configure flag.
1344 		 */
1345 		if (container != (u32)-1) {
1346 			if (container >= dev->maximum_num_containers)
1347 				break;
1348 			if ((dev->fsa_dev[container].config_waiting_on ==
1349 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1350 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1351 				dev->fsa_dev[container].config_waiting_on = 0;
1352 		} else for (container = 0;
1353 		    container < dev->maximum_num_containers; ++container) {
1354 			if ((dev->fsa_dev[container].config_waiting_on ==
1355 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1356 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1357 				dev->fsa_dev[container].config_waiting_on = 0;
1358 		}
1359 		break;
1360 
1361 	case AifCmdJobProgress:
1362 		/*
1363 		 *	These are job progress AIF's. When a Clear is being
1364 		 * done on a container it is initially created then hidden from
1365 		 * the OS. When the clear completes we don't get a config
1366 		 * change so we monitor the job status complete on a clear then
1367 		 * wait for a container change.
1368 		 */
1369 
1370 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1371 		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1372 		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1373 			for (container = 0;
1374 			    container < dev->maximum_num_containers;
1375 			    ++container) {
1376 				/*
1377 				 * Stomp on all config sequencing for all
1378 				 * containers?
1379 				 */
1380 				dev->fsa_dev[container].config_waiting_on =
1381 					AifEnContainerChange;
1382 				dev->fsa_dev[container].config_needed = ADD;
1383 				dev->fsa_dev[container].config_waiting_stamp =
1384 					jiffies;
1385 			}
1386 		}
1387 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1388 		    ((__le32 *)aifcmd->data)[6] == 0 &&
1389 		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1390 			for (container = 0;
1391 			    container < dev->maximum_num_containers;
1392 			    ++container) {
1393 				/*
1394 				 * Stomp on all config sequencing for all
1395 				 * containers?
1396 				 */
1397 				dev->fsa_dev[container].config_waiting_on =
1398 					AifEnContainerChange;
1399 				dev->fsa_dev[container].config_needed = DELETE;
1400 				dev->fsa_dev[container].config_waiting_stamp =
1401 					jiffies;
1402 			}
1403 		}
1404 		break;
1405 	}
1406 
1407 	container = 0;
1408 retry_next:
1409 	if (device_config_needed == NOTHING)
1410 	for (; container < dev->maximum_num_containers; ++container) {
1411 		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1412 			(dev->fsa_dev[container].config_needed != NOTHING) &&
1413 			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1414 			device_config_needed =
1415 				dev->fsa_dev[container].config_needed;
1416 			dev->fsa_dev[container].config_needed = NOTHING;
1417 			channel = CONTAINER_TO_CHANNEL(container);
1418 			id = CONTAINER_TO_ID(container);
1419 			lun = CONTAINER_TO_LUN(container);
1420 			break;
1421 		}
1422 	}
1423 	if (device_config_needed == NOTHING)
1424 		return;
1425 
1426 	/*
1427 	 *	If we decided that a re-configuration needs to be done,
1428 	 * schedule it here on the way out the door, please close the door
1429 	 * behind you.
1430 	 */
1431 
1432 	/*
1433 	 *	Find the scsi_device associated with the SCSI address,
1434 	 * and mark it as changed, invalidating the cache. This deals
1435 	 * with changes to existing device IDs.
1436 	 */
1437 
1438 	if (!dev || !dev->scsi_host_ptr)
1439 		return;
1440 	/*
1441 	 * force reload of disk info via aac_probe_container
1442 	 */
1443 	if ((channel == CONTAINER_CHANNEL) &&
1444 	  (device_config_needed != NOTHING)) {
1445 		if (dev->fsa_dev[container].valid == 1)
1446 			dev->fsa_dev[container].valid = 2;
1447 		aac_probe_container(dev, container);
1448 	}
1449 	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1450 	if (device) {
1451 		switch (device_config_needed) {
1452 		case DELETE:
1453 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1454 			scsi_remove_device(device);
1455 #else
1456 			if (scsi_device_online(device)) {
1457 				scsi_device_set_state(device, SDEV_OFFLINE);
1458 				sdev_printk(KERN_INFO, device,
1459 					"Device offlined - %s\n",
1460 					(channel == CONTAINER_CHANNEL) ?
1461 						"array deleted" :
1462 						"enclosure services event");
1463 			}
1464 #endif
1465 			break;
1466 		case ADD:
1467 			if (!scsi_device_online(device)) {
1468 				sdev_printk(KERN_INFO, device,
1469 					"Device online - %s\n",
1470 					(channel == CONTAINER_CHANNEL) ?
1471 						"array created" :
1472 						"enclosure services event");
1473 				scsi_device_set_state(device, SDEV_RUNNING);
1474 			}
1475 			/* FALLTHRU */
1476 		case CHANGE:
1477 			if ((channel == CONTAINER_CHANNEL)
1478 			 && (!dev->fsa_dev[container].valid)) {
1479 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1480 				scsi_remove_device(device);
1481 #else
1482 				if (!scsi_device_online(device))
1483 					break;
1484 				scsi_device_set_state(device, SDEV_OFFLINE);
1485 				sdev_printk(KERN_INFO, device,
1486 					"Device offlined - %s\n",
1487 					"array failed");
1488 #endif
1489 				break;
1490 			}
1491 			scsi_rescan_device(&device->sdev_gendev);
1492 
1493 		default:
1494 			break;
1495 		}
1496 		scsi_device_put(device);
1497 		device_config_needed = NOTHING;
1498 	}
1499 	if (device_config_needed == ADD)
1500 		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1501 	if (channel == CONTAINER_CHANNEL) {
1502 		container++;
1503 		device_config_needed = NOTHING;
1504 		goto retry_next;
1505 	}
1506 }
1507 
_aac_reset_adapter(struct aac_dev * aac,int forced,u8 reset_type)1508 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1509 {
1510 	int index, quirks;
1511 	int retval;
1512 	struct Scsi_Host *host;
1513 	struct scsi_device *dev;
1514 	struct scsi_cmnd *command;
1515 	struct scsi_cmnd *command_list;
1516 	int jafo = 0;
1517 	int bled;
1518 	u64 dmamask;
1519 	int num_of_fibs = 0;
1520 
1521 	/*
1522 	 * Assumptions:
1523 	 *	- host is locked, unless called by the aacraid thread.
1524 	 *	  (a matter of convenience, due to legacy issues surrounding
1525 	 *	  eh_host_adapter_reset).
1526 	 *	- in_reset is asserted, so no new i/o is getting to the
1527 	 *	  card.
1528 	 *	- The card is dead, or will be very shortly ;-/ so no new
1529 	 *	  commands are completing in the interrupt service.
1530 	 */
1531 	host = aac->scsi_host_ptr;
1532 	scsi_block_requests(host);
1533 	aac_adapter_disable_int(aac);
1534 	if (aac->thread && aac->thread->pid != current->pid) {
1535 		spin_unlock_irq(host->host_lock);
1536 		kthread_stop(aac->thread);
1537 		aac->thread = NULL;
1538 		jafo = 1;
1539 	}
1540 
1541 	/*
1542 	 *	If a positive health, means in a known DEAD PANIC
1543 	 * state and the adapter could be reset to `try again'.
1544 	 */
1545 	bled = forced ? 0 : aac_adapter_check_health(aac);
1546 	retval = aac_adapter_restart(aac, bled, reset_type);
1547 
1548 	if (retval)
1549 		goto out;
1550 
1551 	/*
1552 	 *	Loop through the fibs, close the synchronous FIBS
1553 	 */
1554 	retval = 1;
1555 	num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1556 	for (index = 0; index <  num_of_fibs; index++) {
1557 
1558 		struct fib *fib = &aac->fibs[index];
1559 		__le32 XferState = fib->hw_fib_va->header.XferState;
1560 		bool is_response_expected = false;
1561 
1562 		if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1563 		   (XferState & cpu_to_le32(ResponseExpected)))
1564 			is_response_expected = true;
1565 
1566 		if (is_response_expected
1567 		  || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1568 			unsigned long flagv;
1569 			spin_lock_irqsave(&fib->event_lock, flagv);
1570 			up(&fib->event_wait);
1571 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1572 			schedule();
1573 			retval = 0;
1574 		}
1575 	}
1576 	/* Give some extra time for ioctls to complete. */
1577 	if (retval == 0)
1578 		ssleep(2);
1579 	index = aac->cardtype;
1580 
1581 	/*
1582 	 * Re-initialize the adapter, first free resources, then carefully
1583 	 * apply the initialization sequence to come back again. Only risk
1584 	 * is a change in Firmware dropping cache, it is assumed the caller
1585 	 * will ensure that i/o is queisced and the card is flushed in that
1586 	 * case.
1587 	 */
1588 	aac_free_irq(aac);
1589 	aac_fib_map_free(aac);
1590 	dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1591 			  aac->comm_phys);
1592 	aac->comm_addr = NULL;
1593 	aac->comm_phys = 0;
1594 	kfree(aac->queues);
1595 	aac->queues = NULL;
1596 	kfree(aac->fsa_dev);
1597 	aac->fsa_dev = NULL;
1598 
1599 	dmamask = DMA_BIT_MASK(32);
1600 	quirks = aac_get_driver_ident(index)->quirks;
1601 	if (quirks & AAC_QUIRK_31BIT)
1602 		retval = pci_set_dma_mask(aac->pdev, dmamask);
1603 	else if (!(quirks & AAC_QUIRK_SRC))
1604 		retval = pci_set_dma_mask(aac->pdev, dmamask);
1605 	else
1606 		retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1607 
1608 	if (quirks & AAC_QUIRK_31BIT && !retval) {
1609 		dmamask = DMA_BIT_MASK(31);
1610 		retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1611 	}
1612 
1613 	if (retval)
1614 		goto out;
1615 
1616 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1617 		goto out;
1618 
1619 	if (jafo) {
1620 		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1621 					  aac->name);
1622 		if (IS_ERR(aac->thread)) {
1623 			retval = PTR_ERR(aac->thread);
1624 			aac->thread = NULL;
1625 			goto out;
1626 		}
1627 	}
1628 	(void)aac_get_adapter_info(aac);
1629 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1630 		host->sg_tablesize = 34;
1631 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1632 	}
1633 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1634 		host->sg_tablesize = 17;
1635 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1636 	}
1637 	aac_get_config_status(aac, 1);
1638 	aac_get_containers(aac);
1639 	/*
1640 	 * This is where the assumption that the Adapter is quiesced
1641 	 * is important.
1642 	 */
1643 	command_list = NULL;
1644 	__shost_for_each_device(dev, host) {
1645 		unsigned long flags;
1646 		spin_lock_irqsave(&dev->list_lock, flags);
1647 		list_for_each_entry(command, &dev->cmd_list, list)
1648 			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1649 				command->SCp.buffer = (struct scatterlist *)command_list;
1650 				command_list = command;
1651 			}
1652 		spin_unlock_irqrestore(&dev->list_lock, flags);
1653 	}
1654 	while ((command = command_list)) {
1655 		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1656 		command->SCp.buffer = NULL;
1657 		command->result = DID_OK << 16
1658 		  | COMMAND_COMPLETE << 8
1659 		  | SAM_STAT_TASK_SET_FULL;
1660 		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1661 		command->scsi_done(command);
1662 	}
1663 	/*
1664 	 * Any Device that was already marked offline needs to be cleaned up
1665 	 */
1666 	__shost_for_each_device(dev, host) {
1667 		if (!scsi_device_online(dev)) {
1668 			sdev_printk(KERN_INFO, dev, "Removing offline device\n");
1669 			scsi_remove_device(dev);
1670 			scsi_device_put(dev);
1671 		}
1672 	}
1673 	retval = 0;
1674 
1675 out:
1676 	aac->in_reset = 0;
1677 	scsi_unblock_requests(host);
1678 
1679 	if (jafo) {
1680 		spin_lock_irq(host->host_lock);
1681 	}
1682 	return retval;
1683 }
1684 
aac_reset_adapter(struct aac_dev * aac,int forced,u8 reset_type)1685 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1686 {
1687 	unsigned long flagv = 0;
1688 	int retval;
1689 	struct Scsi_Host * host;
1690 	int bled;
1691 
1692 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1693 		return -EBUSY;
1694 
1695 	if (aac->in_reset) {
1696 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1697 		return -EBUSY;
1698 	}
1699 	aac->in_reset = 1;
1700 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1701 
1702 	/*
1703 	 * Wait for all commands to complete to this specific
1704 	 * target (block maximum 60 seconds). Although not necessary,
1705 	 * it does make us a good storage citizen.
1706 	 */
1707 	host = aac->scsi_host_ptr;
1708 	scsi_block_requests(host);
1709 	if (forced < 2) for (retval = 60; retval; --retval) {
1710 		struct scsi_device * dev;
1711 		struct scsi_cmnd * command;
1712 		int active = 0;
1713 
1714 		__shost_for_each_device(dev, host) {
1715 			spin_lock_irqsave(&dev->list_lock, flagv);
1716 			list_for_each_entry(command, &dev->cmd_list, list) {
1717 				if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1718 					active++;
1719 					break;
1720 				}
1721 			}
1722 			spin_unlock_irqrestore(&dev->list_lock, flagv);
1723 			if (active)
1724 				break;
1725 
1726 		}
1727 		/*
1728 		 * We can exit If all the commands are complete
1729 		 */
1730 		if (active == 0)
1731 			break;
1732 		ssleep(1);
1733 	}
1734 
1735 	/* Quiesce build, flush cache, write through mode */
1736 	if (forced < 2)
1737 		aac_send_shutdown(aac);
1738 	spin_lock_irqsave(host->host_lock, flagv);
1739 	bled = forced ? forced :
1740 			(aac_check_reset != 0 && aac_check_reset != 1);
1741 	retval = _aac_reset_adapter(aac, bled, reset_type);
1742 	spin_unlock_irqrestore(host->host_lock, flagv);
1743 
1744 	if ((forced < 2) && (retval == -ENODEV)) {
1745 		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1746 		struct fib * fibctx = aac_fib_alloc(aac);
1747 		if (fibctx) {
1748 			struct aac_pause *cmd;
1749 			int status;
1750 
1751 			aac_fib_init(fibctx);
1752 
1753 			cmd = (struct aac_pause *) fib_data(fibctx);
1754 
1755 			cmd->command = cpu_to_le32(VM_ContainerConfig);
1756 			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1757 			cmd->timeout = cpu_to_le32(1);
1758 			cmd->min = cpu_to_le32(1);
1759 			cmd->noRescan = cpu_to_le32(1);
1760 			cmd->count = cpu_to_le32(0);
1761 
1762 			status = aac_fib_send(ContainerCommand,
1763 			  fibctx,
1764 			  sizeof(struct aac_pause),
1765 			  FsaNormal,
1766 			  -2 /* Timeout silently */, 1,
1767 			  NULL, NULL);
1768 
1769 			if (status >= 0)
1770 				aac_fib_complete(fibctx);
1771 			/* FIB should be freed only after getting
1772 			 * the response from the F/W */
1773 			if (status != -ERESTARTSYS)
1774 				aac_fib_free(fibctx);
1775 		}
1776 	}
1777 
1778 	return retval;
1779 }
1780 
aac_check_health(struct aac_dev * aac)1781 int aac_check_health(struct aac_dev * aac)
1782 {
1783 	int BlinkLED;
1784 	unsigned long time_now, flagv = 0;
1785 	struct list_head * entry;
1786 
1787 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1788 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1789 		return 0;
1790 
1791 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1792 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1793 		return 0; /* OK */
1794 	}
1795 
1796 	aac->in_reset = 1;
1797 
1798 	/* Fake up an AIF:
1799 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1800 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1801 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1802 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1803 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1804 	 *	aac.aifcmd.data[3] = BlinkLED
1805 	 */
1806 
1807 	time_now = jiffies/HZ;
1808 	entry = aac->fib_list.next;
1809 
1810 	/*
1811 	 * For each Context that is on the
1812 	 * fibctxList, make a copy of the
1813 	 * fib, and then set the event to wake up the
1814 	 * thread that is waiting for it.
1815 	 */
1816 	while (entry != &aac->fib_list) {
1817 		/*
1818 		 * Extract the fibctx
1819 		 */
1820 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1821 		struct hw_fib * hw_fib;
1822 		struct fib * fib;
1823 		/*
1824 		 * Check if the queue is getting
1825 		 * backlogged
1826 		 */
1827 		if (fibctx->count > 20) {
1828 			/*
1829 			 * It's *not* jiffies folks,
1830 			 * but jiffies / HZ, so do not
1831 			 * panic ...
1832 			 */
1833 			u32 time_last = fibctx->jiffies;
1834 			/*
1835 			 * Has it been > 2 minutes
1836 			 * since the last read off
1837 			 * the queue?
1838 			 */
1839 			if ((time_now - time_last) > aif_timeout) {
1840 				entry = entry->next;
1841 				aac_close_fib_context(aac, fibctx);
1842 				continue;
1843 			}
1844 		}
1845 		/*
1846 		 * Warning: no sleep allowed while
1847 		 * holding spinlock
1848 		 */
1849 		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1850 		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1851 		if (fib && hw_fib) {
1852 			struct aac_aifcmd * aif;
1853 
1854 			fib->hw_fib_va = hw_fib;
1855 			fib->dev = aac;
1856 			aac_fib_init(fib);
1857 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1858 			fib->size = sizeof (struct fib);
1859 			fib->data = hw_fib->data;
1860 			aif = (struct aac_aifcmd *)hw_fib->data;
1861 			aif->command = cpu_to_le32(AifCmdEventNotify);
1862 			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1863 			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1864 			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1865 			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1866 			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1867 
1868 			/*
1869 			 * Put the FIB onto the
1870 			 * fibctx's fibs
1871 			 */
1872 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1873 			fibctx->count++;
1874 			/*
1875 			 * Set the event to wake up the
1876 			 * thread that will waiting.
1877 			 */
1878 			up(&fibctx->wait_sem);
1879 		} else {
1880 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1881 			kfree(fib);
1882 			kfree(hw_fib);
1883 		}
1884 		entry = entry->next;
1885 	}
1886 
1887 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1888 
1889 	if (BlinkLED < 0) {
1890 		printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1891 				aac->name, BlinkLED);
1892 		goto out;
1893 	}
1894 
1895 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1896 
1897 out:
1898 	aac->in_reset = 0;
1899 	return BlinkLED;
1900 }
1901 
1902 
aac_resolve_luns(struct aac_dev * dev)1903 static void aac_resolve_luns(struct aac_dev *dev)
1904 {
1905 	int bus, target, channel;
1906 	struct scsi_device *sdev;
1907 	u8 devtype;
1908 	u8 new_devtype;
1909 
1910 	for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
1911 		for (target = 0; target < AAC_MAX_TARGETS; target++) {
1912 
1913 			if (bus == CONTAINER_CHANNEL)
1914 				channel = CONTAINER_CHANNEL;
1915 			else
1916 				channel = aac_phys_to_logical(bus);
1917 
1918 			devtype = dev->hba_map[bus][target].devtype;
1919 			new_devtype = dev->hba_map[bus][target].new_devtype;
1920 
1921 			sdev = scsi_device_lookup(dev->scsi_host_ptr, channel,
1922 					target, 0);
1923 
1924 			if (!sdev && new_devtype)
1925 				scsi_add_device(dev->scsi_host_ptr, channel,
1926 						target, 0);
1927 			else if (sdev && new_devtype != devtype)
1928 				scsi_remove_device(sdev);
1929 			else if (sdev && new_devtype == devtype)
1930 				scsi_rescan_device(&sdev->sdev_gendev);
1931 
1932 			if (sdev)
1933 				scsi_device_put(sdev);
1934 
1935 			dev->hba_map[bus][target].devtype = new_devtype;
1936 		}
1937 	}
1938 }
1939 
1940 /**
1941  *	aac_handle_sa_aif	Handle a message from the firmware
1942  *	@dev: Which adapter this fib is from
1943  *	@fibptr: Pointer to fibptr from adapter
1944  *
1945  *	This routine handles a driver notify fib from the adapter and
1946  *	dispatches it to the appropriate routine for handling.
1947  */
aac_handle_sa_aif(struct aac_dev * dev,struct fib * fibptr)1948 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1949 {
1950 	int i, bus, target, container, rcode = 0;
1951 	u32 events = 0;
1952 	struct fib *fib;
1953 	struct scsi_device *sdev;
1954 
1955 	if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1956 		events = SA_AIF_HOTPLUG;
1957 	else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1958 		events = SA_AIF_HARDWARE;
1959 	else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1960 		events = SA_AIF_PDEV_CHANGE;
1961 	else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1962 		events = SA_AIF_LDEV_CHANGE;
1963 	else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1964 		events = SA_AIF_BPSTAT_CHANGE;
1965 	else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1966 		events = SA_AIF_BPCFG_CHANGE;
1967 
1968 	switch (events) {
1969 	case SA_AIF_HOTPLUG:
1970 	case SA_AIF_HARDWARE:
1971 	case SA_AIF_PDEV_CHANGE:
1972 	case SA_AIF_LDEV_CHANGE:
1973 	case SA_AIF_BPCFG_CHANGE:
1974 
1975 		fib = aac_fib_alloc(dev);
1976 		if (!fib) {
1977 			pr_err("aac_handle_sa_aif: out of memory\n");
1978 			return;
1979 		}
1980 		for (bus = 0; bus < AAC_MAX_BUSES; bus++)
1981 			for (target = 0; target < AAC_MAX_TARGETS; target++)
1982 				dev->hba_map[bus][target].new_devtype = 0;
1983 
1984 		rcode = aac_report_phys_luns(dev, fib, AAC_RESCAN);
1985 
1986 		if (rcode != -ERESTARTSYS)
1987 			aac_fib_free(fib);
1988 
1989 		aac_resolve_luns(dev);
1990 
1991 		if (events == SA_AIF_LDEV_CHANGE ||
1992 		    events == SA_AIF_BPCFG_CHANGE) {
1993 			aac_get_containers(dev);
1994 			for (container = 0; container <
1995 			dev->maximum_num_containers; ++container) {
1996 				sdev = scsi_device_lookup(dev->scsi_host_ptr,
1997 						CONTAINER_CHANNEL,
1998 						container, 0);
1999 				if (dev->fsa_dev[container].valid && !sdev) {
2000 					scsi_add_device(dev->scsi_host_ptr,
2001 						CONTAINER_CHANNEL,
2002 						container, 0);
2003 				} else if (!dev->fsa_dev[container].valid &&
2004 					sdev) {
2005 					scsi_remove_device(sdev);
2006 					scsi_device_put(sdev);
2007 				} else if (sdev) {
2008 					scsi_rescan_device(&sdev->sdev_gendev);
2009 					scsi_device_put(sdev);
2010 				}
2011 			}
2012 		}
2013 		break;
2014 
2015 	case SA_AIF_BPSTAT_CHANGE:
2016 		/* currently do nothing */
2017 		break;
2018 	}
2019 
2020 	for (i = 1; i <= 10; ++i) {
2021 		events = src_readl(dev, MUnit.IDR);
2022 		if (events & (1<<23)) {
2023 			pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2024 				i, 10);
2025 			ssleep(1);
2026 		}
2027 	}
2028 }
2029 
get_fib_count(struct aac_dev * dev)2030 static int get_fib_count(struct aac_dev *dev)
2031 {
2032 	unsigned int num = 0;
2033 	struct list_head *entry;
2034 	unsigned long flagv;
2035 
2036 	/*
2037 	 * Warning: no sleep allowed while
2038 	 * holding spinlock. We take the estimate
2039 	 * and pre-allocate a set of fibs outside the
2040 	 * lock.
2041 	 */
2042 	num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2043 			/ sizeof(struct hw_fib); /* some extra */
2044 	spin_lock_irqsave(&dev->fib_lock, flagv);
2045 	entry = dev->fib_list.next;
2046 	while (entry != &dev->fib_list) {
2047 		entry = entry->next;
2048 		++num;
2049 	}
2050 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2051 
2052 	return num;
2053 }
2054 
fillup_pools(struct aac_dev * dev,struct hw_fib ** hw_fib_pool,struct fib ** fib_pool,unsigned int num)2055 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2056 						struct fib **fib_pool,
2057 						unsigned int num)
2058 {
2059 	struct hw_fib **hw_fib_p;
2060 	struct fib **fib_p;
2061 
2062 	hw_fib_p = hw_fib_pool;
2063 	fib_p = fib_pool;
2064 	while (hw_fib_p < &hw_fib_pool[num]) {
2065 		*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2066 		if (!(*(hw_fib_p++))) {
2067 			--hw_fib_p;
2068 			break;
2069 		}
2070 
2071 		*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2072 		if (!(*(fib_p++))) {
2073 			kfree(*(--hw_fib_p));
2074 			break;
2075 		}
2076 	}
2077 
2078 	/*
2079 	 * Get the actual number of allocated fibs
2080 	 */
2081 	num = hw_fib_p - hw_fib_pool;
2082 	return num;
2083 }
2084 
wakeup_fibctx_threads(struct aac_dev * dev,struct hw_fib ** hw_fib_pool,struct fib ** fib_pool,struct fib * fib,struct hw_fib * hw_fib,unsigned int num)2085 static void wakeup_fibctx_threads(struct aac_dev *dev,
2086 						struct hw_fib **hw_fib_pool,
2087 						struct fib **fib_pool,
2088 						struct fib *fib,
2089 						struct hw_fib *hw_fib,
2090 						unsigned int num)
2091 {
2092 	unsigned long flagv;
2093 	struct list_head *entry;
2094 	struct hw_fib **hw_fib_p;
2095 	struct fib **fib_p;
2096 	u32 time_now, time_last;
2097 	struct hw_fib *hw_newfib;
2098 	struct fib *newfib;
2099 	struct aac_fib_context *fibctx;
2100 
2101 	time_now = jiffies/HZ;
2102 	spin_lock_irqsave(&dev->fib_lock, flagv);
2103 	entry = dev->fib_list.next;
2104 	/*
2105 	 * For each Context that is on the
2106 	 * fibctxList, make a copy of the
2107 	 * fib, and then set the event to wake up the
2108 	 * thread that is waiting for it.
2109 	 */
2110 
2111 	hw_fib_p = hw_fib_pool;
2112 	fib_p = fib_pool;
2113 	while (entry != &dev->fib_list) {
2114 		/*
2115 		 * Extract the fibctx
2116 		 */
2117 		fibctx = list_entry(entry, struct aac_fib_context,
2118 				next);
2119 		/*
2120 		 * Check if the queue is getting
2121 		 * backlogged
2122 		 */
2123 		if (fibctx->count > 20) {
2124 			/*
2125 			 * It's *not* jiffies folks,
2126 			 * but jiffies / HZ so do not
2127 			 * panic ...
2128 			 */
2129 			time_last = fibctx->jiffies;
2130 			/*
2131 			 * Has it been > 2 minutes
2132 			 * since the last read off
2133 			 * the queue?
2134 			 */
2135 			if ((time_now - time_last) > aif_timeout) {
2136 				entry = entry->next;
2137 				aac_close_fib_context(dev, fibctx);
2138 				continue;
2139 			}
2140 		}
2141 		/*
2142 		 * Warning: no sleep allowed while
2143 		 * holding spinlock
2144 		 */
2145 		if (hw_fib_p >= &hw_fib_pool[num]) {
2146 			pr_warn("aifd: didn't allocate NewFib\n");
2147 			entry = entry->next;
2148 			continue;
2149 		}
2150 
2151 		hw_newfib = *hw_fib_p;
2152 		*(hw_fib_p++) = NULL;
2153 		newfib = *fib_p;
2154 		*(fib_p++) = NULL;
2155 		/*
2156 		 * Make the copy of the FIB
2157 		 */
2158 		memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2159 		memcpy(newfib, fib, sizeof(struct fib));
2160 		newfib->hw_fib_va = hw_newfib;
2161 		/*
2162 		 * Put the FIB onto the
2163 		 * fibctx's fibs
2164 		 */
2165 		list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2166 		fibctx->count++;
2167 		/*
2168 		 * Set the event to wake up the
2169 		 * thread that is waiting.
2170 		 */
2171 		up(&fibctx->wait_sem);
2172 
2173 		entry = entry->next;
2174 	}
2175 	/*
2176 	 *	Set the status of this FIB
2177 	 */
2178 	*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2179 	aac_fib_adapter_complete(fib, sizeof(u32));
2180 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2181 
2182 }
2183 
aac_process_events(struct aac_dev * dev)2184 static void aac_process_events(struct aac_dev *dev)
2185 {
2186 	struct hw_fib *hw_fib;
2187 	struct fib *fib;
2188 	unsigned long flags;
2189 	spinlock_t *t_lock;
2190 
2191 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2192 	spin_lock_irqsave(t_lock, flags);
2193 
2194 	while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2195 		struct list_head *entry;
2196 		struct aac_aifcmd *aifcmd;
2197 		unsigned int  num;
2198 		struct hw_fib **hw_fib_pool, **hw_fib_p;
2199 		struct fib **fib_pool, **fib_p;
2200 
2201 		set_current_state(TASK_RUNNING);
2202 
2203 		entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2204 		list_del(entry);
2205 
2206 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2207 		spin_unlock_irqrestore(t_lock, flags);
2208 
2209 		fib = list_entry(entry, struct fib, fiblink);
2210 		hw_fib = fib->hw_fib_va;
2211 		if (dev->sa_firmware) {
2212 			/* Thor AIF */
2213 			aac_handle_sa_aif(dev, fib);
2214 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2215 			goto free_fib;
2216 		}
2217 		/*
2218 		 *	We will process the FIB here or pass it to a
2219 		 *	worker thread that is TBD. We Really can't
2220 		 *	do anything at this point since we don't have
2221 		 *	anything defined for this thread to do.
2222 		 */
2223 		memset(fib, 0, sizeof(struct fib));
2224 		fib->type = FSAFS_NTC_FIB_CONTEXT;
2225 		fib->size = sizeof(struct fib);
2226 		fib->hw_fib_va = hw_fib;
2227 		fib->data = hw_fib->data;
2228 		fib->dev = dev;
2229 		/*
2230 		 *	We only handle AifRequest fibs from the adapter.
2231 		 */
2232 
2233 		aifcmd = (struct aac_aifcmd *) hw_fib->data;
2234 		if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2235 			/* Handle Driver Notify Events */
2236 			aac_handle_aif(dev, fib);
2237 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2238 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2239 			goto free_fib;
2240 		}
2241 		/*
2242 		 * The u32 here is important and intended. We are using
2243 		 * 32bit wrapping time to fit the adapter field
2244 		 */
2245 
2246 		/* Sniff events */
2247 		if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2248 		 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2249 			aac_handle_aif(dev, fib);
2250 		}
2251 
2252 		/*
2253 		 * get number of fibs to process
2254 		 */
2255 		num = get_fib_count(dev);
2256 		if (!num)
2257 			goto free_fib;
2258 
2259 		hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2260 						GFP_KERNEL);
2261 		if (!hw_fib_pool)
2262 			goto free_fib;
2263 
2264 		fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2265 		if (!fib_pool)
2266 			goto free_hw_fib_pool;
2267 
2268 		/*
2269 		 * Fill up fib pointer pools with actual fibs
2270 		 * and hw_fibs
2271 		 */
2272 		num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2273 		if (!num)
2274 			goto free_mem;
2275 
2276 		/*
2277 		 * wakeup the thread that is waiting for
2278 		 * the response from fw (ioctl)
2279 		 */
2280 		wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2281 							    fib, hw_fib, num);
2282 
2283 free_mem:
2284 		/* Free up the remaining resources */
2285 		hw_fib_p = hw_fib_pool;
2286 		fib_p = fib_pool;
2287 		while (hw_fib_p < &hw_fib_pool[num]) {
2288 			kfree(*hw_fib_p);
2289 			kfree(*fib_p);
2290 			++fib_p;
2291 			++hw_fib_p;
2292 		}
2293 		kfree(fib_pool);
2294 free_hw_fib_pool:
2295 		kfree(hw_fib_pool);
2296 free_fib:
2297 		kfree(fib);
2298 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2299 		spin_lock_irqsave(t_lock, flags);
2300 	}
2301 	/*
2302 	 *	There are no more AIF's
2303 	 */
2304 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2305 	spin_unlock_irqrestore(t_lock, flags);
2306 }
2307 
aac_send_wellness_command(struct aac_dev * dev,char * wellness_str,u32 datasize)2308 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2309 							u32 datasize)
2310 {
2311 	struct aac_srb *srbcmd;
2312 	struct sgmap64 *sg64;
2313 	dma_addr_t addr;
2314 	char *dma_buf;
2315 	struct fib *fibptr;
2316 	int ret = -ENOMEM;
2317 	u32 vbus, vid;
2318 
2319 	fibptr = aac_fib_alloc(dev);
2320 	if (!fibptr)
2321 		goto out;
2322 
2323 	dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2324 				     GFP_KERNEL);
2325 	if (!dma_buf)
2326 		goto fib_free_out;
2327 
2328 	aac_fib_init(fibptr);
2329 
2330 	vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2331 	vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2332 
2333 	srbcmd = (struct aac_srb *)fib_data(fibptr);
2334 
2335 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2336 	srbcmd->channel = cpu_to_le32(vbus);
2337 	srbcmd->id = cpu_to_le32(vid);
2338 	srbcmd->lun = 0;
2339 	srbcmd->flags = cpu_to_le32(SRB_DataOut);
2340 	srbcmd->timeout = cpu_to_le32(10);
2341 	srbcmd->retry_limit = 0;
2342 	srbcmd->cdb_size = cpu_to_le32(12);
2343 	srbcmd->count = cpu_to_le32(datasize);
2344 
2345 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2346 	srbcmd->cdb[0] = BMIC_OUT;
2347 	srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2348 	memcpy(dma_buf, (char *)wellness_str, datasize);
2349 
2350 	sg64 = (struct sgmap64 *)&srbcmd->sg;
2351 	sg64->count = cpu_to_le32(1);
2352 	sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2353 	sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2354 	sg64->sg[0].count = cpu_to_le32(datasize);
2355 
2356 	ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2357 				FsaNormal, 1, 1, NULL, NULL);
2358 
2359 	dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2360 
2361 	/*
2362 	 * Do not set XferState to zero unless
2363 	 * receives a response from F/W
2364 	 */
2365 	if (ret >= 0)
2366 		aac_fib_complete(fibptr);
2367 
2368 	/*
2369 	 * FIB should be freed only after
2370 	 * getting the response from the F/W
2371 	 */
2372 	if (ret != -ERESTARTSYS)
2373 		goto fib_free_out;
2374 
2375 out:
2376 	return ret;
2377 fib_free_out:
2378 	aac_fib_free(fibptr);
2379 	goto out;
2380 }
2381 
aac_send_safw_hostttime(struct aac_dev * dev,struct timespec64 * now)2382 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2383 {
2384 	struct tm cur_tm;
2385 	char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2386 	u32 datasize = sizeof(wellness_str);
2387 	time64_t local_time;
2388 	int ret = -ENODEV;
2389 
2390 	if (!dev->sa_firmware)
2391 		goto out;
2392 
2393 	local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2394 	time64_to_tm(local_time, 0, &cur_tm);
2395 	cur_tm.tm_mon += 1;
2396 	cur_tm.tm_year += 1900;
2397 	wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2398 	wellness_str[9] = bin2bcd(cur_tm.tm_min);
2399 	wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2400 	wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2401 	wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2402 	wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2403 	wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2404 
2405 	ret = aac_send_wellness_command(dev, wellness_str, datasize);
2406 
2407 out:
2408 	return ret;
2409 }
2410 
aac_send_hosttime(struct aac_dev * dev,struct timespec64 * now)2411 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2412 {
2413 	int ret = -ENOMEM;
2414 	struct fib *fibptr;
2415 	__le32 *info;
2416 
2417 	fibptr = aac_fib_alloc(dev);
2418 	if (!fibptr)
2419 		goto out;
2420 
2421 	aac_fib_init(fibptr);
2422 	info = (__le32 *)fib_data(fibptr);
2423 	*info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2424 	ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2425 					1, 1, NULL, NULL);
2426 
2427 	/*
2428 	 * Do not set XferState to zero unless
2429 	 * receives a response from F/W
2430 	 */
2431 	if (ret >= 0)
2432 		aac_fib_complete(fibptr);
2433 
2434 	/*
2435 	 * FIB should be freed only after
2436 	 * getting the response from the F/W
2437 	 */
2438 	if (ret != -ERESTARTSYS)
2439 		aac_fib_free(fibptr);
2440 
2441 out:
2442 	return ret;
2443 }
2444 
2445 /**
2446  *	aac_command_thread	-	command processing thread
2447  *	@dev: Adapter to monitor
2448  *
2449  *	Waits on the commandready event in it's queue. When the event gets set
2450  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
2451  *	until the queue is empty. When the queue is empty it will wait for
2452  *	more FIBs.
2453  */
2454 
aac_command_thread(void * data)2455 int aac_command_thread(void *data)
2456 {
2457 	struct aac_dev *dev = data;
2458 	DECLARE_WAITQUEUE(wait, current);
2459 	unsigned long next_jiffies = jiffies + HZ;
2460 	unsigned long next_check_jiffies = next_jiffies;
2461 	long difference = HZ;
2462 
2463 	/*
2464 	 *	We can only have one thread per adapter for AIF's.
2465 	 */
2466 	if (dev->aif_thread)
2467 		return -EINVAL;
2468 
2469 	/*
2470 	 *	Let the DPC know it has a place to send the AIF's to.
2471 	 */
2472 	dev->aif_thread = 1;
2473 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2474 	set_current_state(TASK_INTERRUPTIBLE);
2475 	dprintk ((KERN_INFO "aac_command_thread start\n"));
2476 	while (1) {
2477 
2478 		aac_process_events(dev);
2479 
2480 		/*
2481 		 *	Background activity
2482 		 */
2483 		if ((time_before(next_check_jiffies,next_jiffies))
2484 		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2485 			next_check_jiffies = next_jiffies;
2486 			if (aac_adapter_check_health(dev) == 0) {
2487 				difference = ((long)(unsigned)check_interval)
2488 					   * HZ;
2489 				next_check_jiffies = jiffies + difference;
2490 			} else if (!dev->queues)
2491 				break;
2492 		}
2493 		if (!time_before(next_check_jiffies,next_jiffies)
2494 		 && ((difference = next_jiffies - jiffies) <= 0)) {
2495 			struct timespec64 now;
2496 			int ret;
2497 
2498 			/* Don't even try to talk to adapter if its sick */
2499 			ret = aac_adapter_check_health(dev);
2500 			if (ret || !dev->queues)
2501 				break;
2502 			next_check_jiffies = jiffies
2503 					   + ((long)(unsigned)check_interval)
2504 					   * HZ;
2505 			ktime_get_real_ts64(&now);
2506 
2507 			/* Synchronize our watches */
2508 			if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2509 			 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2510 				difference = HZ + HZ / 2 -
2511 					     now.tv_nsec / (NSEC_PER_SEC / HZ);
2512 			else {
2513 				if (now.tv_nsec > NSEC_PER_SEC / 2)
2514 					++now.tv_sec;
2515 
2516 				if (dev->sa_firmware)
2517 					ret =
2518 					aac_send_safw_hostttime(dev, &now);
2519 				else
2520 					ret = aac_send_hosttime(dev, &now);
2521 
2522 				difference = (long)(unsigned)update_interval*HZ;
2523 			}
2524 			next_jiffies = jiffies + difference;
2525 			if (time_before(next_check_jiffies,next_jiffies))
2526 				difference = next_check_jiffies - jiffies;
2527 		}
2528 		if (difference <= 0)
2529 			difference = 1;
2530 		set_current_state(TASK_INTERRUPTIBLE);
2531 
2532 		if (kthread_should_stop())
2533 			break;
2534 
2535 		/*
2536 		 * we probably want usleep_range() here instead of the
2537 		 * jiffies computation
2538 		 */
2539 		schedule_timeout(difference);
2540 
2541 		if (kthread_should_stop())
2542 			break;
2543 	}
2544 	if (dev->queues)
2545 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2546 	dev->aif_thread = 0;
2547 	return 0;
2548 }
2549 
aac_acquire_irq(struct aac_dev * dev)2550 int aac_acquire_irq(struct aac_dev *dev)
2551 {
2552 	int i;
2553 	int j;
2554 	int ret = 0;
2555 
2556 	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2557 		for (i = 0; i < dev->max_msix; i++) {
2558 			dev->aac_msix[i].vector_no = i;
2559 			dev->aac_msix[i].dev = dev;
2560 			if (request_irq(pci_irq_vector(dev->pdev, i),
2561 					dev->a_ops.adapter_intr,
2562 					0, "aacraid", &(dev->aac_msix[i]))) {
2563 				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2564 						dev->name, dev->id, i);
2565 				for (j = 0 ; j < i ; j++)
2566 					free_irq(pci_irq_vector(dev->pdev, j),
2567 						 &(dev->aac_msix[j]));
2568 				pci_disable_msix(dev->pdev);
2569 				ret = -1;
2570 			}
2571 		}
2572 	} else {
2573 		dev->aac_msix[0].vector_no = 0;
2574 		dev->aac_msix[0].dev = dev;
2575 
2576 		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2577 			IRQF_SHARED, "aacraid",
2578 			&(dev->aac_msix[0])) < 0) {
2579 			if (dev->msi)
2580 				pci_disable_msi(dev->pdev);
2581 			printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2582 					dev->name, dev->id);
2583 			ret = -1;
2584 		}
2585 	}
2586 	return ret;
2587 }
2588 
aac_free_irq(struct aac_dev * dev)2589 void aac_free_irq(struct aac_dev *dev)
2590 {
2591 	int i;
2592 	int cpu;
2593 
2594 	cpu = cpumask_first(cpu_online_mask);
2595 	if (aac_is_src(dev)) {
2596 		if (dev->max_msix > 1) {
2597 			for (i = 0; i < dev->max_msix; i++)
2598 				free_irq(pci_irq_vector(dev->pdev, i),
2599 					 &(dev->aac_msix[i]));
2600 		} else {
2601 			free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2602 		}
2603 	} else {
2604 		free_irq(dev->pdev->irq, dev);
2605 	}
2606 	if (dev->msi)
2607 		pci_disable_msi(dev->pdev);
2608 	else if (dev->max_msix > 1)
2609 		pci_disable_msix(dev->pdev);
2610 }
2611