1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 * Module Name:
27 * commsup.c
28 *
29 * Abstract: Contain all routines that are required for FSA host/adapter
30 * communication.
31 *
32 */
33
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/sched.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/slab.h>
41 #include <linux/completion.h>
42 #include <linux/blkdev.h>
43 #include <linux/delay.h>
44 #include <linux/kthread.h>
45 #include <linux/interrupt.h>
46 #include <linux/semaphore.h>
47 #include <linux/bcd.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_host.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_cmnd.h>
52
53 #include "aacraid.h"
54
55 /**
56 * fib_map_alloc - allocate the fib objects
57 * @dev: Adapter to allocate for
58 *
59 * Allocate and map the shared PCI space for the FIB blocks used to
60 * talk to the Adaptec firmware.
61 */
62
fib_map_alloc(struct aac_dev * dev)63 static int fib_map_alloc(struct aac_dev *dev)
64 {
65 if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
66 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
67 else
68 dev->max_cmd_size = dev->max_fib_size;
69 if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
70 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
71 } else {
72 dev->max_cmd_size = dev->max_fib_size;
73 }
74
75 dprintk((KERN_INFO
76 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
77 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
78 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
79 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
80 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
81 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
82 &dev->hw_fib_pa, GFP_KERNEL);
83 if (dev->hw_fib_va == NULL)
84 return -ENOMEM;
85 return 0;
86 }
87
88 /**
89 * aac_fib_map_free - free the fib objects
90 * @dev: Adapter to free
91 *
92 * Free the PCI mappings and the memory allocated for FIB blocks
93 * on this adapter.
94 */
95
aac_fib_map_free(struct aac_dev * dev)96 void aac_fib_map_free(struct aac_dev *dev)
97 {
98 size_t alloc_size;
99 size_t fib_size;
100 int num_fibs;
101
102 if(!dev->hw_fib_va || !dev->max_cmd_size)
103 return;
104
105 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
106 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
107 alloc_size = fib_size * num_fibs + ALIGN32 - 1;
108
109 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
110 dev->hw_fib_pa);
111
112 dev->hw_fib_va = NULL;
113 dev->hw_fib_pa = 0;
114 }
115
aac_fib_vector_assign(struct aac_dev * dev)116 void aac_fib_vector_assign(struct aac_dev *dev)
117 {
118 u32 i = 0;
119 u32 vector = 1;
120 struct fib *fibptr = NULL;
121
122 for (i = 0, fibptr = &dev->fibs[i];
123 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
124 i++, fibptr++) {
125 if ((dev->max_msix == 1) ||
126 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
127 - dev->vector_cap))) {
128 fibptr->vector_no = 0;
129 } else {
130 fibptr->vector_no = vector;
131 vector++;
132 if (vector == dev->max_msix)
133 vector = 1;
134 }
135 }
136 }
137
138 /**
139 * aac_fib_setup - setup the fibs
140 * @dev: Adapter to set up
141 *
142 * Allocate the PCI space for the fibs, map it and then initialise the
143 * fib area, the unmapped fib data and also the free list
144 */
145
aac_fib_setup(struct aac_dev * dev)146 int aac_fib_setup(struct aac_dev * dev)
147 {
148 struct fib *fibptr;
149 struct hw_fib *hw_fib;
150 dma_addr_t hw_fib_pa;
151 int i;
152 u32 max_cmds;
153
154 while (((i = fib_map_alloc(dev)) == -ENOMEM)
155 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
156 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
157 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
158 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
159 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
160 }
161 if (i<0)
162 return -ENOMEM;
163
164 memset(dev->hw_fib_va, 0,
165 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
166 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
167
168 /* 32 byte alignment for PMC */
169 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
170 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
171 (hw_fib_pa - dev->hw_fib_pa));
172
173 /* add Xport header */
174 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
175 sizeof(struct aac_fib_xporthdr));
176 hw_fib_pa += sizeof(struct aac_fib_xporthdr);
177
178 /*
179 * Initialise the fibs
180 */
181 for (i = 0, fibptr = &dev->fibs[i];
182 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
183 i++, fibptr++)
184 {
185 fibptr->flags = 0;
186 fibptr->size = sizeof(struct fib);
187 fibptr->dev = dev;
188 fibptr->hw_fib_va = hw_fib;
189 fibptr->data = (void *) fibptr->hw_fib_va->data;
190 fibptr->next = fibptr+1; /* Forward chain the fibs */
191 sema_init(&fibptr->event_wait, 0);
192 spin_lock_init(&fibptr->event_lock);
193 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
194 hw_fib->header.SenderSize =
195 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
196 fibptr->hw_fib_pa = hw_fib_pa;
197 fibptr->hw_sgl_pa = hw_fib_pa +
198 offsetof(struct aac_hba_cmd_req, sge[2]);
199 /*
200 * one element is for the ptr to the separate sg list,
201 * second element for 32 byte alignment
202 */
203 fibptr->hw_error_pa = hw_fib_pa +
204 offsetof(struct aac_native_hba, resp.resp_bytes[0]);
205
206 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
207 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
208 hw_fib_pa = hw_fib_pa +
209 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
210 }
211
212 /*
213 *Assign vector numbers to fibs
214 */
215 aac_fib_vector_assign(dev);
216
217 /*
218 * Add the fib chain to the free list
219 */
220 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
221 /*
222 * Set 8 fibs aside for management tools
223 */
224 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
225 return 0;
226 }
227
228 /**
229 * aac_fib_alloc_tag-allocate a fib using tags
230 * @dev: Adapter to allocate the fib for
231 *
232 * Allocate a fib from the adapter fib pool using tags
233 * from the blk layer.
234 */
235
aac_fib_alloc_tag(struct aac_dev * dev,struct scsi_cmnd * scmd)236 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
237 {
238 struct fib *fibptr;
239
240 fibptr = &dev->fibs[scmd->request->tag];
241 /*
242 * Null out fields that depend on being zero at the start of
243 * each I/O
244 */
245 fibptr->hw_fib_va->header.XferState = 0;
246 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
247 fibptr->callback_data = NULL;
248 fibptr->callback = NULL;
249
250 return fibptr;
251 }
252
253 /**
254 * aac_fib_alloc - allocate a fib
255 * @dev: Adapter to allocate the fib for
256 *
257 * Allocate a fib from the adapter fib pool. If the pool is empty we
258 * return NULL.
259 */
260
aac_fib_alloc(struct aac_dev * dev)261 struct fib *aac_fib_alloc(struct aac_dev *dev)
262 {
263 struct fib * fibptr;
264 unsigned long flags;
265 spin_lock_irqsave(&dev->fib_lock, flags);
266 fibptr = dev->free_fib;
267 if(!fibptr){
268 spin_unlock_irqrestore(&dev->fib_lock, flags);
269 return fibptr;
270 }
271 dev->free_fib = fibptr->next;
272 spin_unlock_irqrestore(&dev->fib_lock, flags);
273 /*
274 * Set the proper node type code and node byte size
275 */
276 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
277 fibptr->size = sizeof(struct fib);
278 /*
279 * Null out fields that depend on being zero at the start of
280 * each I/O
281 */
282 fibptr->hw_fib_va->header.XferState = 0;
283 fibptr->flags = 0;
284 fibptr->callback = NULL;
285 fibptr->callback_data = NULL;
286
287 return fibptr;
288 }
289
290 /**
291 * aac_fib_free - free a fib
292 * @fibptr: fib to free up
293 *
294 * Frees up a fib and places it on the appropriate queue
295 */
296
aac_fib_free(struct fib * fibptr)297 void aac_fib_free(struct fib *fibptr)
298 {
299 unsigned long flags;
300
301 if (fibptr->done == 2)
302 return;
303
304 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
305 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
306 aac_config.fib_timeouts++;
307 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
308 fibptr->hw_fib_va->header.XferState != 0) {
309 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
310 (void*)fibptr,
311 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
312 }
313 fibptr->next = fibptr->dev->free_fib;
314 fibptr->dev->free_fib = fibptr;
315 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
316 }
317
318 /**
319 * aac_fib_init - initialise a fib
320 * @fibptr: The fib to initialize
321 *
322 * Set up the generic fib fields ready for use
323 */
324
aac_fib_init(struct fib * fibptr)325 void aac_fib_init(struct fib *fibptr)
326 {
327 struct hw_fib *hw_fib = fibptr->hw_fib_va;
328
329 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
330 hw_fib->header.StructType = FIB_MAGIC;
331 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
332 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
333 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
334 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
335 }
336
337 /**
338 * fib_deallocate - deallocate a fib
339 * @fibptr: fib to deallocate
340 *
341 * Will deallocate and return to the free pool the FIB pointed to by the
342 * caller.
343 */
344
fib_dealloc(struct fib * fibptr)345 static void fib_dealloc(struct fib * fibptr)
346 {
347 struct hw_fib *hw_fib = fibptr->hw_fib_va;
348 hw_fib->header.XferState = 0;
349 }
350
351 /*
352 * Commuication primitives define and support the queuing method we use to
353 * support host to adapter commuication. All queue accesses happen through
354 * these routines and are the only routines which have a knowledge of the
355 * how these queues are implemented.
356 */
357
358 /**
359 * aac_get_entry - get a queue entry
360 * @dev: Adapter
361 * @qid: Queue Number
362 * @entry: Entry return
363 * @index: Index return
364 * @nonotify: notification control
365 *
366 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
367 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
368 * returned.
369 */
370
aac_get_entry(struct aac_dev * dev,u32 qid,struct aac_entry ** entry,u32 * index,unsigned long * nonotify)371 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
372 {
373 struct aac_queue * q;
374 unsigned long idx;
375
376 /*
377 * All of the queues wrap when they reach the end, so we check
378 * to see if they have reached the end and if they have we just
379 * set the index back to zero. This is a wrap. You could or off
380 * the high bits in all updates but this is a bit faster I think.
381 */
382
383 q = &dev->queues->queue[qid];
384
385 idx = *index = le32_to_cpu(*(q->headers.producer));
386 /* Interrupt Moderation, only interrupt for first two entries */
387 if (idx != le32_to_cpu(*(q->headers.consumer))) {
388 if (--idx == 0) {
389 if (qid == AdapNormCmdQueue)
390 idx = ADAP_NORM_CMD_ENTRIES;
391 else
392 idx = ADAP_NORM_RESP_ENTRIES;
393 }
394 if (idx != le32_to_cpu(*(q->headers.consumer)))
395 *nonotify = 1;
396 }
397
398 if (qid == AdapNormCmdQueue) {
399 if (*index >= ADAP_NORM_CMD_ENTRIES)
400 *index = 0; /* Wrap to front of the Producer Queue. */
401 } else {
402 if (*index >= ADAP_NORM_RESP_ENTRIES)
403 *index = 0; /* Wrap to front of the Producer Queue. */
404 }
405
406 /* Queue is full */
407 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
408 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
409 qid, atomic_read(&q->numpending));
410 return 0;
411 } else {
412 *entry = q->base + *index;
413 return 1;
414 }
415 }
416
417 /**
418 * aac_queue_get - get the next free QE
419 * @dev: Adapter
420 * @index: Returned index
421 * @priority: Priority of fib
422 * @fib: Fib to associate with the queue entry
423 * @wait: Wait if queue full
424 * @fibptr: Driver fib object to go with fib
425 * @nonotify: Don't notify the adapter
426 *
427 * Gets the next free QE off the requested priorty adapter command
428 * queue and associates the Fib with the QE. The QE represented by
429 * index is ready to insert on the queue when this routine returns
430 * success.
431 */
432
aac_queue_get(struct aac_dev * dev,u32 * index,u32 qid,struct hw_fib * hw_fib,int wait,struct fib * fibptr,unsigned long * nonotify)433 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
434 {
435 struct aac_entry * entry = NULL;
436 int map = 0;
437
438 if (qid == AdapNormCmdQueue) {
439 /* if no entries wait for some if caller wants to */
440 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
441 printk(KERN_ERR "GetEntries failed\n");
442 }
443 /*
444 * Setup queue entry with a command, status and fib mapped
445 */
446 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
447 map = 1;
448 } else {
449 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
450 /* if no entries wait for some if caller wants to */
451 }
452 /*
453 * Setup queue entry with command, status and fib mapped
454 */
455 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
456 entry->addr = hw_fib->header.SenderFibAddress;
457 /* Restore adapters pointer to the FIB */
458 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
459 map = 0;
460 }
461 /*
462 * If MapFib is true than we need to map the Fib and put pointers
463 * in the queue entry.
464 */
465 if (map)
466 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
467 return 0;
468 }
469
470 #ifdef CONFIG_EEH
aac_check_eeh_failure(struct aac_dev * dev)471 static inline int aac_check_eeh_failure(struct aac_dev *dev)
472 {
473 /* Check for an EEH failure for the given
474 * device node. Function eeh_dev_check_failure()
475 * returns 0 if there has not been an EEH error
476 * otherwise returns a non-zero value.
477 *
478 * Need to be called before any PCI operation,
479 * i.e.,before aac_adapter_check_health()
480 */
481 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev->pdev);
482
483 if (eeh_dev_check_failure(edev)) {
484 /* The EEH mechanisms will handle this
485 * error and reset the device if
486 * necessary.
487 */
488 return 1;
489 }
490 return 0;
491 }
492 #else
aac_check_eeh_failure(struct aac_dev * dev)493 static inline int aac_check_eeh_failure(struct aac_dev *dev)
494 {
495 return 0;
496 }
497 #endif
498
499 /*
500 * Define the highest level of host to adapter communication routines.
501 * These routines will support host to adapter FS commuication. These
502 * routines have no knowledge of the commuication method used. This level
503 * sends and receives FIBs. This level has no knowledge of how these FIBs
504 * get passed back and forth.
505 */
506
507 /**
508 * aac_fib_send - send a fib to the adapter
509 * @command: Command to send
510 * @fibptr: The fib
511 * @size: Size of fib data area
512 * @priority: Priority of Fib
513 * @wait: Async/sync select
514 * @reply: True if a reply is wanted
515 * @callback: Called with reply
516 * @callback_data: Passed to callback
517 *
518 * Sends the requested FIB to the adapter and optionally will wait for a
519 * response FIB. If the caller does not wish to wait for a response than
520 * an event to wait on must be supplied. This event will be set when a
521 * response FIB is received from the adapter.
522 */
523
aac_fib_send(u16 command,struct fib * fibptr,unsigned long size,int priority,int wait,int reply,fib_callback callback,void * callback_data)524 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
525 int priority, int wait, int reply, fib_callback callback,
526 void *callback_data)
527 {
528 struct aac_dev * dev = fibptr->dev;
529 struct hw_fib * hw_fib = fibptr->hw_fib_va;
530 unsigned long flags = 0;
531 unsigned long mflags = 0;
532 unsigned long sflags = 0;
533
534 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
535 return -EBUSY;
536
537 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
538 return -EINVAL;
539
540 /*
541 * There are 5 cases with the wait and response requested flags.
542 * The only invalid cases are if the caller requests to wait and
543 * does not request a response and if the caller does not want a
544 * response and the Fib is not allocated from pool. If a response
545 * is not requesed the Fib will just be deallocaed by the DPC
546 * routine when the response comes back from the adapter. No
547 * further processing will be done besides deleting the Fib. We
548 * will have a debug mode where the adapter can notify the host
549 * it had a problem and the host can log that fact.
550 */
551 fibptr->flags = 0;
552 if (wait && !reply) {
553 return -EINVAL;
554 } else if (!wait && reply) {
555 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
556 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
557 } else if (!wait && !reply) {
558 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
559 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
560 } else if (wait && reply) {
561 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
562 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
563 }
564 /*
565 * Map the fib into 32bits by using the fib number
566 */
567
568 hw_fib->header.SenderFibAddress =
569 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
570
571 /* use the same shifted value for handle to be compatible
572 * with the new native hba command handle
573 */
574 hw_fib->header.Handle =
575 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
576
577 /*
578 * Set FIB state to indicate where it came from and if we want a
579 * response from the adapter. Also load the command from the
580 * caller.
581 *
582 * Map the hw fib pointer as a 32bit value
583 */
584 hw_fib->header.Command = cpu_to_le16(command);
585 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
586 /*
587 * Set the size of the Fib we want to send to the adapter
588 */
589 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
590 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
591 return -EMSGSIZE;
592 }
593 /*
594 * Get a queue entry connect the FIB to it and send an notify
595 * the adapter a command is ready.
596 */
597 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
598
599 /*
600 * Fill in the Callback and CallbackContext if we are not
601 * going to wait.
602 */
603 if (!wait) {
604 fibptr->callback = callback;
605 fibptr->callback_data = callback_data;
606 fibptr->flags = FIB_CONTEXT_FLAG;
607 }
608
609 fibptr->done = 0;
610
611 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
612
613 dprintk((KERN_DEBUG "Fib contents:.\n"));
614 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
615 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
616 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
617 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
618 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
619 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
620
621 if (!dev->queues)
622 return -EBUSY;
623
624 if (wait) {
625
626 spin_lock_irqsave(&dev->manage_lock, mflags);
627 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
628 printk(KERN_INFO "No management Fibs Available:%d\n",
629 dev->management_fib_count);
630 spin_unlock_irqrestore(&dev->manage_lock, mflags);
631 return -EBUSY;
632 }
633 dev->management_fib_count++;
634 spin_unlock_irqrestore(&dev->manage_lock, mflags);
635 spin_lock_irqsave(&fibptr->event_lock, flags);
636 }
637
638 if (dev->sync_mode) {
639 if (wait)
640 spin_unlock_irqrestore(&fibptr->event_lock, flags);
641 spin_lock_irqsave(&dev->sync_lock, sflags);
642 if (dev->sync_fib) {
643 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
644 spin_unlock_irqrestore(&dev->sync_lock, sflags);
645 } else {
646 dev->sync_fib = fibptr;
647 spin_unlock_irqrestore(&dev->sync_lock, sflags);
648 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
649 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
650 NULL, NULL, NULL, NULL, NULL);
651 }
652 if (wait) {
653 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
654 if (down_interruptible(&fibptr->event_wait)) {
655 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
656 return -EFAULT;
657 }
658 return 0;
659 }
660 return -EINPROGRESS;
661 }
662
663 if (aac_adapter_deliver(fibptr) != 0) {
664 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
665 if (wait) {
666 spin_unlock_irqrestore(&fibptr->event_lock, flags);
667 spin_lock_irqsave(&dev->manage_lock, mflags);
668 dev->management_fib_count--;
669 spin_unlock_irqrestore(&dev->manage_lock, mflags);
670 }
671 return -EBUSY;
672 }
673
674
675 /*
676 * If the caller wanted us to wait for response wait now.
677 */
678
679 if (wait) {
680 spin_unlock_irqrestore(&fibptr->event_lock, flags);
681 /* Only set for first known interruptable command */
682 if (wait < 0) {
683 /*
684 * *VERY* Dangerous to time out a command, the
685 * assumption is made that we have no hope of
686 * functioning because an interrupt routing or other
687 * hardware failure has occurred.
688 */
689 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
690 while (down_trylock(&fibptr->event_wait)) {
691 int blink;
692 if (time_is_before_eq_jiffies(timeout)) {
693 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
694 atomic_dec(&q->numpending);
695 if (wait == -1) {
696 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
697 "Usually a result of a PCI interrupt routing problem;\n"
698 "update mother board BIOS or consider utilizing one of\n"
699 "the SAFE mode kernel options (acpi, apic etc)\n");
700 }
701 return -ETIMEDOUT;
702 }
703
704 if (aac_check_eeh_failure(dev))
705 return -EFAULT;
706
707 if ((blink = aac_adapter_check_health(dev)) > 0) {
708 if (wait == -1) {
709 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
710 "Usually a result of a serious unrecoverable hardware problem\n",
711 blink);
712 }
713 return -EFAULT;
714 }
715 /*
716 * Allow other processes / CPUS to use core
717 */
718 schedule();
719 }
720 } else if (down_interruptible(&fibptr->event_wait)) {
721 /* Do nothing ... satisfy
722 * down_interruptible must_check */
723 }
724
725 spin_lock_irqsave(&fibptr->event_lock, flags);
726 if (fibptr->done == 0) {
727 fibptr->done = 2; /* Tell interrupt we aborted */
728 spin_unlock_irqrestore(&fibptr->event_lock, flags);
729 return -ERESTARTSYS;
730 }
731 spin_unlock_irqrestore(&fibptr->event_lock, flags);
732 BUG_ON(fibptr->done == 0);
733
734 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
735 return -ETIMEDOUT;
736 return 0;
737 }
738 /*
739 * If the user does not want a response than return success otherwise
740 * return pending
741 */
742 if (reply)
743 return -EINPROGRESS;
744 else
745 return 0;
746 }
747
aac_hba_send(u8 command,struct fib * fibptr,fib_callback callback,void * callback_data)748 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
749 void *callback_data)
750 {
751 struct aac_dev *dev = fibptr->dev;
752 int wait;
753 unsigned long flags = 0;
754 unsigned long mflags = 0;
755 struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
756 fibptr->hw_fib_va;
757
758 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
759 if (callback) {
760 wait = 0;
761 fibptr->callback = callback;
762 fibptr->callback_data = callback_data;
763 } else
764 wait = 1;
765
766
767 hbacmd->iu_type = command;
768
769 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
770 /* bit1 of request_id must be 0 */
771 hbacmd->request_id =
772 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
773 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
774 } else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
775 return -EINVAL;
776
777
778 if (wait) {
779 spin_lock_irqsave(&dev->manage_lock, mflags);
780 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
781 spin_unlock_irqrestore(&dev->manage_lock, mflags);
782 return -EBUSY;
783 }
784 dev->management_fib_count++;
785 spin_unlock_irqrestore(&dev->manage_lock, mflags);
786 spin_lock_irqsave(&fibptr->event_lock, flags);
787 }
788
789 if (aac_adapter_deliver(fibptr) != 0) {
790 if (wait) {
791 spin_unlock_irqrestore(&fibptr->event_lock, flags);
792 spin_lock_irqsave(&dev->manage_lock, mflags);
793 dev->management_fib_count--;
794 spin_unlock_irqrestore(&dev->manage_lock, mflags);
795 }
796 return -EBUSY;
797 }
798 FIB_COUNTER_INCREMENT(aac_config.NativeSent);
799
800 if (wait) {
801
802 spin_unlock_irqrestore(&fibptr->event_lock, flags);
803
804 if (aac_check_eeh_failure(dev))
805 return -EFAULT;
806
807 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
808 if (down_interruptible(&fibptr->event_wait))
809 fibptr->done = 2;
810 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
811
812 spin_lock_irqsave(&fibptr->event_lock, flags);
813 if ((fibptr->done == 0) || (fibptr->done == 2)) {
814 fibptr->done = 2; /* Tell interrupt we aborted */
815 spin_unlock_irqrestore(&fibptr->event_lock, flags);
816 return -ERESTARTSYS;
817 }
818 spin_unlock_irqrestore(&fibptr->event_lock, flags);
819 WARN_ON(fibptr->done == 0);
820
821 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
822 return -ETIMEDOUT;
823
824 return 0;
825 }
826
827 return -EINPROGRESS;
828 }
829
830 /**
831 * aac_consumer_get - get the top of the queue
832 * @dev: Adapter
833 * @q: Queue
834 * @entry: Return entry
835 *
836 * Will return a pointer to the entry on the top of the queue requested that
837 * we are a consumer of, and return the address of the queue entry. It does
838 * not change the state of the queue.
839 */
840
aac_consumer_get(struct aac_dev * dev,struct aac_queue * q,struct aac_entry ** entry)841 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
842 {
843 u32 index;
844 int status;
845 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
846 status = 0;
847 } else {
848 /*
849 * The consumer index must be wrapped if we have reached
850 * the end of the queue, else we just use the entry
851 * pointed to by the header index
852 */
853 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
854 index = 0;
855 else
856 index = le32_to_cpu(*q->headers.consumer);
857 *entry = q->base + index;
858 status = 1;
859 }
860 return(status);
861 }
862
863 /**
864 * aac_consumer_free - free consumer entry
865 * @dev: Adapter
866 * @q: Queue
867 * @qid: Queue ident
868 *
869 * Frees up the current top of the queue we are a consumer of. If the
870 * queue was full notify the producer that the queue is no longer full.
871 */
872
aac_consumer_free(struct aac_dev * dev,struct aac_queue * q,u32 qid)873 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
874 {
875 int wasfull = 0;
876 u32 notify;
877
878 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
879 wasfull = 1;
880
881 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
882 *q->headers.consumer = cpu_to_le32(1);
883 else
884 le32_add_cpu(q->headers.consumer, 1);
885
886 if (wasfull) {
887 switch (qid) {
888
889 case HostNormCmdQueue:
890 notify = HostNormCmdNotFull;
891 break;
892 case HostNormRespQueue:
893 notify = HostNormRespNotFull;
894 break;
895 default:
896 BUG();
897 return;
898 }
899 aac_adapter_notify(dev, notify);
900 }
901 }
902
903 /**
904 * aac_fib_adapter_complete - complete adapter issued fib
905 * @fibptr: fib to complete
906 * @size: size of fib
907 *
908 * Will do all necessary work to complete a FIB that was sent from
909 * the adapter.
910 */
911
aac_fib_adapter_complete(struct fib * fibptr,unsigned short size)912 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
913 {
914 struct hw_fib * hw_fib = fibptr->hw_fib_va;
915 struct aac_dev * dev = fibptr->dev;
916 struct aac_queue * q;
917 unsigned long nointr = 0;
918 unsigned long qflags;
919
920 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
921 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
922 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
923 kfree(hw_fib);
924 return 0;
925 }
926
927 if (hw_fib->header.XferState == 0) {
928 if (dev->comm_interface == AAC_COMM_MESSAGE)
929 kfree(hw_fib);
930 return 0;
931 }
932 /*
933 * If we plan to do anything check the structure type first.
934 */
935 if (hw_fib->header.StructType != FIB_MAGIC &&
936 hw_fib->header.StructType != FIB_MAGIC2 &&
937 hw_fib->header.StructType != FIB_MAGIC2_64) {
938 if (dev->comm_interface == AAC_COMM_MESSAGE)
939 kfree(hw_fib);
940 return -EINVAL;
941 }
942 /*
943 * This block handles the case where the adapter had sent us a
944 * command and we have finished processing the command. We
945 * call completeFib when we are done processing the command
946 * and want to send a response back to the adapter. This will
947 * send the completed cdb to the adapter.
948 */
949 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
950 if (dev->comm_interface == AAC_COMM_MESSAGE) {
951 kfree (hw_fib);
952 } else {
953 u32 index;
954 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
955 if (size) {
956 size += sizeof(struct aac_fibhdr);
957 if (size > le16_to_cpu(hw_fib->header.SenderSize))
958 return -EMSGSIZE;
959 hw_fib->header.Size = cpu_to_le16(size);
960 }
961 q = &dev->queues->queue[AdapNormRespQueue];
962 spin_lock_irqsave(q->lock, qflags);
963 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
964 *(q->headers.producer) = cpu_to_le32(index + 1);
965 spin_unlock_irqrestore(q->lock, qflags);
966 if (!(nointr & (int)aac_config.irq_mod))
967 aac_adapter_notify(dev, AdapNormRespQueue);
968 }
969 } else {
970 printk(KERN_WARNING "aac_fib_adapter_complete: "
971 "Unknown xferstate detected.\n");
972 BUG();
973 }
974 return 0;
975 }
976
977 /**
978 * aac_fib_complete - fib completion handler
979 * @fib: FIB to complete
980 *
981 * Will do all necessary work to complete a FIB.
982 */
983
aac_fib_complete(struct fib * fibptr)984 int aac_fib_complete(struct fib *fibptr)
985 {
986 struct hw_fib * hw_fib = fibptr->hw_fib_va;
987
988 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
989 fib_dealloc(fibptr);
990 return 0;
991 }
992
993 /*
994 * Check for a fib which has already been completed or with a
995 * status wait timeout
996 */
997
998 if (hw_fib->header.XferState == 0 || fibptr->done == 2)
999 return 0;
1000 /*
1001 * If we plan to do anything check the structure type first.
1002 */
1003
1004 if (hw_fib->header.StructType != FIB_MAGIC &&
1005 hw_fib->header.StructType != FIB_MAGIC2 &&
1006 hw_fib->header.StructType != FIB_MAGIC2_64)
1007 return -EINVAL;
1008 /*
1009 * This block completes a cdb which orginated on the host and we
1010 * just need to deallocate the cdb or reinit it. At this point the
1011 * command is complete that we had sent to the adapter and this
1012 * cdb could be reused.
1013 */
1014
1015 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
1016 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
1017 {
1018 fib_dealloc(fibptr);
1019 }
1020 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
1021 {
1022 /*
1023 * This handles the case when the host has aborted the I/O
1024 * to the adapter because the adapter is not responding
1025 */
1026 fib_dealloc(fibptr);
1027 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
1028 fib_dealloc(fibptr);
1029 } else {
1030 BUG();
1031 }
1032 return 0;
1033 }
1034
1035 /**
1036 * aac_printf - handle printf from firmware
1037 * @dev: Adapter
1038 * @val: Message info
1039 *
1040 * Print a message passed to us by the controller firmware on the
1041 * Adaptec board
1042 */
1043
aac_printf(struct aac_dev * dev,u32 val)1044 void aac_printf(struct aac_dev *dev, u32 val)
1045 {
1046 char *cp = dev->printfbuf;
1047 if (dev->printf_enabled)
1048 {
1049 int length = val & 0xffff;
1050 int level = (val >> 16) & 0xffff;
1051
1052 /*
1053 * The size of the printfbuf is set in port.c
1054 * There is no variable or define for it
1055 */
1056 if (length > 255)
1057 length = 255;
1058 if (cp[length] != 0)
1059 cp[length] = 0;
1060 if (level == LOG_AAC_HIGH_ERROR)
1061 printk(KERN_WARNING "%s:%s", dev->name, cp);
1062 else
1063 printk(KERN_INFO "%s:%s", dev->name, cp);
1064 }
1065 memset(cp, 0, 256);
1066 }
1067
aac_aif_data(struct aac_aifcmd * aifcmd,uint32_t index)1068 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1069 {
1070 return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1071 }
1072
1073
aac_handle_aif_bu(struct aac_dev * dev,struct aac_aifcmd * aifcmd)1074 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1075 {
1076 switch (aac_aif_data(aifcmd, 1)) {
1077 case AifBuCacheDataLoss:
1078 if (aac_aif_data(aifcmd, 2))
1079 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1080 aac_aif_data(aifcmd, 2));
1081 else
1082 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1083 break;
1084 case AifBuCacheDataRecover:
1085 if (aac_aif_data(aifcmd, 2))
1086 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1087 aac_aif_data(aifcmd, 2));
1088 else
1089 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1090 break;
1091 }
1092 }
1093
1094 /**
1095 * aac_handle_aif - Handle a message from the firmware
1096 * @dev: Which adapter this fib is from
1097 * @fibptr: Pointer to fibptr from adapter
1098 *
1099 * This routine handles a driver notify fib from the adapter and
1100 * dispatches it to the appropriate routine for handling.
1101 */
1102
1103 #define AIF_SNIFF_TIMEOUT (500*HZ)
aac_handle_aif(struct aac_dev * dev,struct fib * fibptr)1104 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1105 {
1106 struct hw_fib * hw_fib = fibptr->hw_fib_va;
1107 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1108 u32 channel, id, lun, container;
1109 struct scsi_device *device;
1110 enum {
1111 NOTHING,
1112 DELETE,
1113 ADD,
1114 CHANGE
1115 } device_config_needed = NOTHING;
1116
1117 /* Sniff for container changes */
1118
1119 if (!dev || !dev->fsa_dev)
1120 return;
1121 container = channel = id = lun = (u32)-1;
1122
1123 /*
1124 * We have set this up to try and minimize the number of
1125 * re-configures that take place. As a result of this when
1126 * certain AIF's come in we will set a flag waiting for another
1127 * type of AIF before setting the re-config flag.
1128 */
1129 switch (le32_to_cpu(aifcmd->command)) {
1130 case AifCmdDriverNotify:
1131 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1132 case AifRawDeviceRemove:
1133 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1134 if ((container >> 28)) {
1135 container = (u32)-1;
1136 break;
1137 }
1138 channel = (container >> 24) & 0xF;
1139 if (channel >= dev->maximum_num_channels) {
1140 container = (u32)-1;
1141 break;
1142 }
1143 id = container & 0xFFFF;
1144 if (id >= dev->maximum_num_physicals) {
1145 container = (u32)-1;
1146 break;
1147 }
1148 lun = (container >> 16) & 0xFF;
1149 container = (u32)-1;
1150 channel = aac_phys_to_logical(channel);
1151 device_config_needed = DELETE;
1152 break;
1153
1154 /*
1155 * Morph or Expand complete
1156 */
1157 case AifDenMorphComplete:
1158 case AifDenVolumeExtendComplete:
1159 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1160 if (container >= dev->maximum_num_containers)
1161 break;
1162
1163 /*
1164 * Find the scsi_device associated with the SCSI
1165 * address. Make sure we have the right array, and if
1166 * so set the flag to initiate a new re-config once we
1167 * see an AifEnConfigChange AIF come through.
1168 */
1169
1170 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1171 device = scsi_device_lookup(dev->scsi_host_ptr,
1172 CONTAINER_TO_CHANNEL(container),
1173 CONTAINER_TO_ID(container),
1174 CONTAINER_TO_LUN(container));
1175 if (device) {
1176 dev->fsa_dev[container].config_needed = CHANGE;
1177 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1178 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1179 scsi_device_put(device);
1180 }
1181 }
1182 }
1183
1184 /*
1185 * If we are waiting on something and this happens to be
1186 * that thing then set the re-configure flag.
1187 */
1188 if (container != (u32)-1) {
1189 if (container >= dev->maximum_num_containers)
1190 break;
1191 if ((dev->fsa_dev[container].config_waiting_on ==
1192 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1193 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1194 dev->fsa_dev[container].config_waiting_on = 0;
1195 } else for (container = 0;
1196 container < dev->maximum_num_containers; ++container) {
1197 if ((dev->fsa_dev[container].config_waiting_on ==
1198 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1199 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1200 dev->fsa_dev[container].config_waiting_on = 0;
1201 }
1202 break;
1203
1204 case AifCmdEventNotify:
1205 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1206 case AifEnBatteryEvent:
1207 dev->cache_protected =
1208 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1209 break;
1210 /*
1211 * Add an Array.
1212 */
1213 case AifEnAddContainer:
1214 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1215 if (container >= dev->maximum_num_containers)
1216 break;
1217 dev->fsa_dev[container].config_needed = ADD;
1218 dev->fsa_dev[container].config_waiting_on =
1219 AifEnConfigChange;
1220 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1221 break;
1222
1223 /*
1224 * Delete an Array.
1225 */
1226 case AifEnDeleteContainer:
1227 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1228 if (container >= dev->maximum_num_containers)
1229 break;
1230 dev->fsa_dev[container].config_needed = DELETE;
1231 dev->fsa_dev[container].config_waiting_on =
1232 AifEnConfigChange;
1233 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1234 break;
1235
1236 /*
1237 * Container change detected. If we currently are not
1238 * waiting on something else, setup to wait on a Config Change.
1239 */
1240 case AifEnContainerChange:
1241 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1242 if (container >= dev->maximum_num_containers)
1243 break;
1244 if (dev->fsa_dev[container].config_waiting_on &&
1245 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1246 break;
1247 dev->fsa_dev[container].config_needed = CHANGE;
1248 dev->fsa_dev[container].config_waiting_on =
1249 AifEnConfigChange;
1250 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1251 break;
1252
1253 case AifEnConfigChange:
1254 break;
1255
1256 case AifEnAddJBOD:
1257 case AifEnDeleteJBOD:
1258 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1259 if ((container >> 28)) {
1260 container = (u32)-1;
1261 break;
1262 }
1263 channel = (container >> 24) & 0xF;
1264 if (channel >= dev->maximum_num_channels) {
1265 container = (u32)-1;
1266 break;
1267 }
1268 id = container & 0xFFFF;
1269 if (id >= dev->maximum_num_physicals) {
1270 container = (u32)-1;
1271 break;
1272 }
1273 lun = (container >> 16) & 0xFF;
1274 container = (u32)-1;
1275 channel = aac_phys_to_logical(channel);
1276 device_config_needed =
1277 (((__le32 *)aifcmd->data)[0] ==
1278 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1279 if (device_config_needed == ADD) {
1280 device = scsi_device_lookup(dev->scsi_host_ptr,
1281 channel,
1282 id,
1283 lun);
1284 if (device) {
1285 scsi_remove_device(device);
1286 scsi_device_put(device);
1287 }
1288 }
1289 break;
1290
1291 case AifEnEnclosureManagement:
1292 /*
1293 * If in JBOD mode, automatic exposure of new
1294 * physical target to be suppressed until configured.
1295 */
1296 if (dev->jbod)
1297 break;
1298 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1299 case EM_DRIVE_INSERTION:
1300 case EM_DRIVE_REMOVAL:
1301 case EM_SES_DRIVE_INSERTION:
1302 case EM_SES_DRIVE_REMOVAL:
1303 container = le32_to_cpu(
1304 ((__le32 *)aifcmd->data)[2]);
1305 if ((container >> 28)) {
1306 container = (u32)-1;
1307 break;
1308 }
1309 channel = (container >> 24) & 0xF;
1310 if (channel >= dev->maximum_num_channels) {
1311 container = (u32)-1;
1312 break;
1313 }
1314 id = container & 0xFFFF;
1315 lun = (container >> 16) & 0xFF;
1316 container = (u32)-1;
1317 if (id >= dev->maximum_num_physicals) {
1318 /* legacy dev_t ? */
1319 if ((0x2000 <= id) || lun || channel ||
1320 ((channel = (id >> 7) & 0x3F) >=
1321 dev->maximum_num_channels))
1322 break;
1323 lun = (id >> 4) & 7;
1324 id &= 0xF;
1325 }
1326 channel = aac_phys_to_logical(channel);
1327 device_config_needed =
1328 ((((__le32 *)aifcmd->data)[3]
1329 == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1330 (((__le32 *)aifcmd->data)[3]
1331 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1332 ADD : DELETE;
1333 break;
1334 }
1335 break;
1336 case AifBuManagerEvent:
1337 aac_handle_aif_bu(dev, aifcmd);
1338 break;
1339 }
1340
1341 /*
1342 * If we are waiting on something and this happens to be
1343 * that thing then set the re-configure flag.
1344 */
1345 if (container != (u32)-1) {
1346 if (container >= dev->maximum_num_containers)
1347 break;
1348 if ((dev->fsa_dev[container].config_waiting_on ==
1349 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1350 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1351 dev->fsa_dev[container].config_waiting_on = 0;
1352 } else for (container = 0;
1353 container < dev->maximum_num_containers; ++container) {
1354 if ((dev->fsa_dev[container].config_waiting_on ==
1355 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1356 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1357 dev->fsa_dev[container].config_waiting_on = 0;
1358 }
1359 break;
1360
1361 case AifCmdJobProgress:
1362 /*
1363 * These are job progress AIF's. When a Clear is being
1364 * done on a container it is initially created then hidden from
1365 * the OS. When the clear completes we don't get a config
1366 * change so we monitor the job status complete on a clear then
1367 * wait for a container change.
1368 */
1369
1370 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1371 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1372 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1373 for (container = 0;
1374 container < dev->maximum_num_containers;
1375 ++container) {
1376 /*
1377 * Stomp on all config sequencing for all
1378 * containers?
1379 */
1380 dev->fsa_dev[container].config_waiting_on =
1381 AifEnContainerChange;
1382 dev->fsa_dev[container].config_needed = ADD;
1383 dev->fsa_dev[container].config_waiting_stamp =
1384 jiffies;
1385 }
1386 }
1387 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1388 ((__le32 *)aifcmd->data)[6] == 0 &&
1389 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1390 for (container = 0;
1391 container < dev->maximum_num_containers;
1392 ++container) {
1393 /*
1394 * Stomp on all config sequencing for all
1395 * containers?
1396 */
1397 dev->fsa_dev[container].config_waiting_on =
1398 AifEnContainerChange;
1399 dev->fsa_dev[container].config_needed = DELETE;
1400 dev->fsa_dev[container].config_waiting_stamp =
1401 jiffies;
1402 }
1403 }
1404 break;
1405 }
1406
1407 container = 0;
1408 retry_next:
1409 if (device_config_needed == NOTHING)
1410 for (; container < dev->maximum_num_containers; ++container) {
1411 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1412 (dev->fsa_dev[container].config_needed != NOTHING) &&
1413 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1414 device_config_needed =
1415 dev->fsa_dev[container].config_needed;
1416 dev->fsa_dev[container].config_needed = NOTHING;
1417 channel = CONTAINER_TO_CHANNEL(container);
1418 id = CONTAINER_TO_ID(container);
1419 lun = CONTAINER_TO_LUN(container);
1420 break;
1421 }
1422 }
1423 if (device_config_needed == NOTHING)
1424 return;
1425
1426 /*
1427 * If we decided that a re-configuration needs to be done,
1428 * schedule it here on the way out the door, please close the door
1429 * behind you.
1430 */
1431
1432 /*
1433 * Find the scsi_device associated with the SCSI address,
1434 * and mark it as changed, invalidating the cache. This deals
1435 * with changes to existing device IDs.
1436 */
1437
1438 if (!dev || !dev->scsi_host_ptr)
1439 return;
1440 /*
1441 * force reload of disk info via aac_probe_container
1442 */
1443 if ((channel == CONTAINER_CHANNEL) &&
1444 (device_config_needed != NOTHING)) {
1445 if (dev->fsa_dev[container].valid == 1)
1446 dev->fsa_dev[container].valid = 2;
1447 aac_probe_container(dev, container);
1448 }
1449 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1450 if (device) {
1451 switch (device_config_needed) {
1452 case DELETE:
1453 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1454 scsi_remove_device(device);
1455 #else
1456 if (scsi_device_online(device)) {
1457 scsi_device_set_state(device, SDEV_OFFLINE);
1458 sdev_printk(KERN_INFO, device,
1459 "Device offlined - %s\n",
1460 (channel == CONTAINER_CHANNEL) ?
1461 "array deleted" :
1462 "enclosure services event");
1463 }
1464 #endif
1465 break;
1466 case ADD:
1467 if (!scsi_device_online(device)) {
1468 sdev_printk(KERN_INFO, device,
1469 "Device online - %s\n",
1470 (channel == CONTAINER_CHANNEL) ?
1471 "array created" :
1472 "enclosure services event");
1473 scsi_device_set_state(device, SDEV_RUNNING);
1474 }
1475 /* FALLTHRU */
1476 case CHANGE:
1477 if ((channel == CONTAINER_CHANNEL)
1478 && (!dev->fsa_dev[container].valid)) {
1479 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1480 scsi_remove_device(device);
1481 #else
1482 if (!scsi_device_online(device))
1483 break;
1484 scsi_device_set_state(device, SDEV_OFFLINE);
1485 sdev_printk(KERN_INFO, device,
1486 "Device offlined - %s\n",
1487 "array failed");
1488 #endif
1489 break;
1490 }
1491 scsi_rescan_device(&device->sdev_gendev);
1492
1493 default:
1494 break;
1495 }
1496 scsi_device_put(device);
1497 device_config_needed = NOTHING;
1498 }
1499 if (device_config_needed == ADD)
1500 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1501 if (channel == CONTAINER_CHANNEL) {
1502 container++;
1503 device_config_needed = NOTHING;
1504 goto retry_next;
1505 }
1506 }
1507
_aac_reset_adapter(struct aac_dev * aac,int forced,u8 reset_type)1508 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1509 {
1510 int index, quirks;
1511 int retval;
1512 struct Scsi_Host *host;
1513 struct scsi_device *dev;
1514 struct scsi_cmnd *command;
1515 struct scsi_cmnd *command_list;
1516 int jafo = 0;
1517 int bled;
1518 u64 dmamask;
1519 int num_of_fibs = 0;
1520
1521 /*
1522 * Assumptions:
1523 * - host is locked, unless called by the aacraid thread.
1524 * (a matter of convenience, due to legacy issues surrounding
1525 * eh_host_adapter_reset).
1526 * - in_reset is asserted, so no new i/o is getting to the
1527 * card.
1528 * - The card is dead, or will be very shortly ;-/ so no new
1529 * commands are completing in the interrupt service.
1530 */
1531 host = aac->scsi_host_ptr;
1532 scsi_block_requests(host);
1533 aac_adapter_disable_int(aac);
1534 if (aac->thread && aac->thread->pid != current->pid) {
1535 spin_unlock_irq(host->host_lock);
1536 kthread_stop(aac->thread);
1537 aac->thread = NULL;
1538 jafo = 1;
1539 }
1540
1541 /*
1542 * If a positive health, means in a known DEAD PANIC
1543 * state and the adapter could be reset to `try again'.
1544 */
1545 bled = forced ? 0 : aac_adapter_check_health(aac);
1546 retval = aac_adapter_restart(aac, bled, reset_type);
1547
1548 if (retval)
1549 goto out;
1550
1551 /*
1552 * Loop through the fibs, close the synchronous FIBS
1553 */
1554 retval = 1;
1555 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1556 for (index = 0; index < num_of_fibs; index++) {
1557
1558 struct fib *fib = &aac->fibs[index];
1559 __le32 XferState = fib->hw_fib_va->header.XferState;
1560 bool is_response_expected = false;
1561
1562 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1563 (XferState & cpu_to_le32(ResponseExpected)))
1564 is_response_expected = true;
1565
1566 if (is_response_expected
1567 || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1568 unsigned long flagv;
1569 spin_lock_irqsave(&fib->event_lock, flagv);
1570 up(&fib->event_wait);
1571 spin_unlock_irqrestore(&fib->event_lock, flagv);
1572 schedule();
1573 retval = 0;
1574 }
1575 }
1576 /* Give some extra time for ioctls to complete. */
1577 if (retval == 0)
1578 ssleep(2);
1579 index = aac->cardtype;
1580
1581 /*
1582 * Re-initialize the adapter, first free resources, then carefully
1583 * apply the initialization sequence to come back again. Only risk
1584 * is a change in Firmware dropping cache, it is assumed the caller
1585 * will ensure that i/o is queisced and the card is flushed in that
1586 * case.
1587 */
1588 aac_free_irq(aac);
1589 aac_fib_map_free(aac);
1590 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1591 aac->comm_phys);
1592 aac->comm_addr = NULL;
1593 aac->comm_phys = 0;
1594 kfree(aac->queues);
1595 aac->queues = NULL;
1596 kfree(aac->fsa_dev);
1597 aac->fsa_dev = NULL;
1598
1599 dmamask = DMA_BIT_MASK(32);
1600 quirks = aac_get_driver_ident(index)->quirks;
1601 if (quirks & AAC_QUIRK_31BIT)
1602 retval = pci_set_dma_mask(aac->pdev, dmamask);
1603 else if (!(quirks & AAC_QUIRK_SRC))
1604 retval = pci_set_dma_mask(aac->pdev, dmamask);
1605 else
1606 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1607
1608 if (quirks & AAC_QUIRK_31BIT && !retval) {
1609 dmamask = DMA_BIT_MASK(31);
1610 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1611 }
1612
1613 if (retval)
1614 goto out;
1615
1616 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1617 goto out;
1618
1619 if (jafo) {
1620 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1621 aac->name);
1622 if (IS_ERR(aac->thread)) {
1623 retval = PTR_ERR(aac->thread);
1624 aac->thread = NULL;
1625 goto out;
1626 }
1627 }
1628 (void)aac_get_adapter_info(aac);
1629 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1630 host->sg_tablesize = 34;
1631 host->max_sectors = (host->sg_tablesize * 8) + 112;
1632 }
1633 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1634 host->sg_tablesize = 17;
1635 host->max_sectors = (host->sg_tablesize * 8) + 112;
1636 }
1637 aac_get_config_status(aac, 1);
1638 aac_get_containers(aac);
1639 /*
1640 * This is where the assumption that the Adapter is quiesced
1641 * is important.
1642 */
1643 command_list = NULL;
1644 __shost_for_each_device(dev, host) {
1645 unsigned long flags;
1646 spin_lock_irqsave(&dev->list_lock, flags);
1647 list_for_each_entry(command, &dev->cmd_list, list)
1648 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1649 command->SCp.buffer = (struct scatterlist *)command_list;
1650 command_list = command;
1651 }
1652 spin_unlock_irqrestore(&dev->list_lock, flags);
1653 }
1654 while ((command = command_list)) {
1655 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1656 command->SCp.buffer = NULL;
1657 command->result = DID_OK << 16
1658 | COMMAND_COMPLETE << 8
1659 | SAM_STAT_TASK_SET_FULL;
1660 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1661 command->scsi_done(command);
1662 }
1663 /*
1664 * Any Device that was already marked offline needs to be cleaned up
1665 */
1666 __shost_for_each_device(dev, host) {
1667 if (!scsi_device_online(dev)) {
1668 sdev_printk(KERN_INFO, dev, "Removing offline device\n");
1669 scsi_remove_device(dev);
1670 scsi_device_put(dev);
1671 }
1672 }
1673 retval = 0;
1674
1675 out:
1676 aac->in_reset = 0;
1677 scsi_unblock_requests(host);
1678
1679 if (jafo) {
1680 spin_lock_irq(host->host_lock);
1681 }
1682 return retval;
1683 }
1684
aac_reset_adapter(struct aac_dev * aac,int forced,u8 reset_type)1685 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1686 {
1687 unsigned long flagv = 0;
1688 int retval;
1689 struct Scsi_Host * host;
1690 int bled;
1691
1692 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1693 return -EBUSY;
1694
1695 if (aac->in_reset) {
1696 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1697 return -EBUSY;
1698 }
1699 aac->in_reset = 1;
1700 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1701
1702 /*
1703 * Wait for all commands to complete to this specific
1704 * target (block maximum 60 seconds). Although not necessary,
1705 * it does make us a good storage citizen.
1706 */
1707 host = aac->scsi_host_ptr;
1708 scsi_block_requests(host);
1709 if (forced < 2) for (retval = 60; retval; --retval) {
1710 struct scsi_device * dev;
1711 struct scsi_cmnd * command;
1712 int active = 0;
1713
1714 __shost_for_each_device(dev, host) {
1715 spin_lock_irqsave(&dev->list_lock, flagv);
1716 list_for_each_entry(command, &dev->cmd_list, list) {
1717 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1718 active++;
1719 break;
1720 }
1721 }
1722 spin_unlock_irqrestore(&dev->list_lock, flagv);
1723 if (active)
1724 break;
1725
1726 }
1727 /*
1728 * We can exit If all the commands are complete
1729 */
1730 if (active == 0)
1731 break;
1732 ssleep(1);
1733 }
1734
1735 /* Quiesce build, flush cache, write through mode */
1736 if (forced < 2)
1737 aac_send_shutdown(aac);
1738 spin_lock_irqsave(host->host_lock, flagv);
1739 bled = forced ? forced :
1740 (aac_check_reset != 0 && aac_check_reset != 1);
1741 retval = _aac_reset_adapter(aac, bled, reset_type);
1742 spin_unlock_irqrestore(host->host_lock, flagv);
1743
1744 if ((forced < 2) && (retval == -ENODEV)) {
1745 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1746 struct fib * fibctx = aac_fib_alloc(aac);
1747 if (fibctx) {
1748 struct aac_pause *cmd;
1749 int status;
1750
1751 aac_fib_init(fibctx);
1752
1753 cmd = (struct aac_pause *) fib_data(fibctx);
1754
1755 cmd->command = cpu_to_le32(VM_ContainerConfig);
1756 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1757 cmd->timeout = cpu_to_le32(1);
1758 cmd->min = cpu_to_le32(1);
1759 cmd->noRescan = cpu_to_le32(1);
1760 cmd->count = cpu_to_le32(0);
1761
1762 status = aac_fib_send(ContainerCommand,
1763 fibctx,
1764 sizeof(struct aac_pause),
1765 FsaNormal,
1766 -2 /* Timeout silently */, 1,
1767 NULL, NULL);
1768
1769 if (status >= 0)
1770 aac_fib_complete(fibctx);
1771 /* FIB should be freed only after getting
1772 * the response from the F/W */
1773 if (status != -ERESTARTSYS)
1774 aac_fib_free(fibctx);
1775 }
1776 }
1777
1778 return retval;
1779 }
1780
aac_check_health(struct aac_dev * aac)1781 int aac_check_health(struct aac_dev * aac)
1782 {
1783 int BlinkLED;
1784 unsigned long time_now, flagv = 0;
1785 struct list_head * entry;
1786
1787 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1788 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1789 return 0;
1790
1791 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1792 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1793 return 0; /* OK */
1794 }
1795
1796 aac->in_reset = 1;
1797
1798 /* Fake up an AIF:
1799 * aac_aifcmd.command = AifCmdEventNotify = 1
1800 * aac_aifcmd.seqnum = 0xFFFFFFFF
1801 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1802 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1803 * aac.aifcmd.data[2] = AifHighPriority = 3
1804 * aac.aifcmd.data[3] = BlinkLED
1805 */
1806
1807 time_now = jiffies/HZ;
1808 entry = aac->fib_list.next;
1809
1810 /*
1811 * For each Context that is on the
1812 * fibctxList, make a copy of the
1813 * fib, and then set the event to wake up the
1814 * thread that is waiting for it.
1815 */
1816 while (entry != &aac->fib_list) {
1817 /*
1818 * Extract the fibctx
1819 */
1820 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1821 struct hw_fib * hw_fib;
1822 struct fib * fib;
1823 /*
1824 * Check if the queue is getting
1825 * backlogged
1826 */
1827 if (fibctx->count > 20) {
1828 /*
1829 * It's *not* jiffies folks,
1830 * but jiffies / HZ, so do not
1831 * panic ...
1832 */
1833 u32 time_last = fibctx->jiffies;
1834 /*
1835 * Has it been > 2 minutes
1836 * since the last read off
1837 * the queue?
1838 */
1839 if ((time_now - time_last) > aif_timeout) {
1840 entry = entry->next;
1841 aac_close_fib_context(aac, fibctx);
1842 continue;
1843 }
1844 }
1845 /*
1846 * Warning: no sleep allowed while
1847 * holding spinlock
1848 */
1849 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1850 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1851 if (fib && hw_fib) {
1852 struct aac_aifcmd * aif;
1853
1854 fib->hw_fib_va = hw_fib;
1855 fib->dev = aac;
1856 aac_fib_init(fib);
1857 fib->type = FSAFS_NTC_FIB_CONTEXT;
1858 fib->size = sizeof (struct fib);
1859 fib->data = hw_fib->data;
1860 aif = (struct aac_aifcmd *)hw_fib->data;
1861 aif->command = cpu_to_le32(AifCmdEventNotify);
1862 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1863 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1864 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1865 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1866 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1867
1868 /*
1869 * Put the FIB onto the
1870 * fibctx's fibs
1871 */
1872 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1873 fibctx->count++;
1874 /*
1875 * Set the event to wake up the
1876 * thread that will waiting.
1877 */
1878 up(&fibctx->wait_sem);
1879 } else {
1880 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1881 kfree(fib);
1882 kfree(hw_fib);
1883 }
1884 entry = entry->next;
1885 }
1886
1887 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1888
1889 if (BlinkLED < 0) {
1890 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1891 aac->name, BlinkLED);
1892 goto out;
1893 }
1894
1895 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1896
1897 out:
1898 aac->in_reset = 0;
1899 return BlinkLED;
1900 }
1901
1902
aac_resolve_luns(struct aac_dev * dev)1903 static void aac_resolve_luns(struct aac_dev *dev)
1904 {
1905 int bus, target, channel;
1906 struct scsi_device *sdev;
1907 u8 devtype;
1908 u8 new_devtype;
1909
1910 for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
1911 for (target = 0; target < AAC_MAX_TARGETS; target++) {
1912
1913 if (bus == CONTAINER_CHANNEL)
1914 channel = CONTAINER_CHANNEL;
1915 else
1916 channel = aac_phys_to_logical(bus);
1917
1918 devtype = dev->hba_map[bus][target].devtype;
1919 new_devtype = dev->hba_map[bus][target].new_devtype;
1920
1921 sdev = scsi_device_lookup(dev->scsi_host_ptr, channel,
1922 target, 0);
1923
1924 if (!sdev && new_devtype)
1925 scsi_add_device(dev->scsi_host_ptr, channel,
1926 target, 0);
1927 else if (sdev && new_devtype != devtype)
1928 scsi_remove_device(sdev);
1929 else if (sdev && new_devtype == devtype)
1930 scsi_rescan_device(&sdev->sdev_gendev);
1931
1932 if (sdev)
1933 scsi_device_put(sdev);
1934
1935 dev->hba_map[bus][target].devtype = new_devtype;
1936 }
1937 }
1938 }
1939
1940 /**
1941 * aac_handle_sa_aif Handle a message from the firmware
1942 * @dev: Which adapter this fib is from
1943 * @fibptr: Pointer to fibptr from adapter
1944 *
1945 * This routine handles a driver notify fib from the adapter and
1946 * dispatches it to the appropriate routine for handling.
1947 */
aac_handle_sa_aif(struct aac_dev * dev,struct fib * fibptr)1948 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1949 {
1950 int i, bus, target, container, rcode = 0;
1951 u32 events = 0;
1952 struct fib *fib;
1953 struct scsi_device *sdev;
1954
1955 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1956 events = SA_AIF_HOTPLUG;
1957 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1958 events = SA_AIF_HARDWARE;
1959 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1960 events = SA_AIF_PDEV_CHANGE;
1961 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1962 events = SA_AIF_LDEV_CHANGE;
1963 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1964 events = SA_AIF_BPSTAT_CHANGE;
1965 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1966 events = SA_AIF_BPCFG_CHANGE;
1967
1968 switch (events) {
1969 case SA_AIF_HOTPLUG:
1970 case SA_AIF_HARDWARE:
1971 case SA_AIF_PDEV_CHANGE:
1972 case SA_AIF_LDEV_CHANGE:
1973 case SA_AIF_BPCFG_CHANGE:
1974
1975 fib = aac_fib_alloc(dev);
1976 if (!fib) {
1977 pr_err("aac_handle_sa_aif: out of memory\n");
1978 return;
1979 }
1980 for (bus = 0; bus < AAC_MAX_BUSES; bus++)
1981 for (target = 0; target < AAC_MAX_TARGETS; target++)
1982 dev->hba_map[bus][target].new_devtype = 0;
1983
1984 rcode = aac_report_phys_luns(dev, fib, AAC_RESCAN);
1985
1986 if (rcode != -ERESTARTSYS)
1987 aac_fib_free(fib);
1988
1989 aac_resolve_luns(dev);
1990
1991 if (events == SA_AIF_LDEV_CHANGE ||
1992 events == SA_AIF_BPCFG_CHANGE) {
1993 aac_get_containers(dev);
1994 for (container = 0; container <
1995 dev->maximum_num_containers; ++container) {
1996 sdev = scsi_device_lookup(dev->scsi_host_ptr,
1997 CONTAINER_CHANNEL,
1998 container, 0);
1999 if (dev->fsa_dev[container].valid && !sdev) {
2000 scsi_add_device(dev->scsi_host_ptr,
2001 CONTAINER_CHANNEL,
2002 container, 0);
2003 } else if (!dev->fsa_dev[container].valid &&
2004 sdev) {
2005 scsi_remove_device(sdev);
2006 scsi_device_put(sdev);
2007 } else if (sdev) {
2008 scsi_rescan_device(&sdev->sdev_gendev);
2009 scsi_device_put(sdev);
2010 }
2011 }
2012 }
2013 break;
2014
2015 case SA_AIF_BPSTAT_CHANGE:
2016 /* currently do nothing */
2017 break;
2018 }
2019
2020 for (i = 1; i <= 10; ++i) {
2021 events = src_readl(dev, MUnit.IDR);
2022 if (events & (1<<23)) {
2023 pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2024 i, 10);
2025 ssleep(1);
2026 }
2027 }
2028 }
2029
get_fib_count(struct aac_dev * dev)2030 static int get_fib_count(struct aac_dev *dev)
2031 {
2032 unsigned int num = 0;
2033 struct list_head *entry;
2034 unsigned long flagv;
2035
2036 /*
2037 * Warning: no sleep allowed while
2038 * holding spinlock. We take the estimate
2039 * and pre-allocate a set of fibs outside the
2040 * lock.
2041 */
2042 num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2043 / sizeof(struct hw_fib); /* some extra */
2044 spin_lock_irqsave(&dev->fib_lock, flagv);
2045 entry = dev->fib_list.next;
2046 while (entry != &dev->fib_list) {
2047 entry = entry->next;
2048 ++num;
2049 }
2050 spin_unlock_irqrestore(&dev->fib_lock, flagv);
2051
2052 return num;
2053 }
2054
fillup_pools(struct aac_dev * dev,struct hw_fib ** hw_fib_pool,struct fib ** fib_pool,unsigned int num)2055 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2056 struct fib **fib_pool,
2057 unsigned int num)
2058 {
2059 struct hw_fib **hw_fib_p;
2060 struct fib **fib_p;
2061
2062 hw_fib_p = hw_fib_pool;
2063 fib_p = fib_pool;
2064 while (hw_fib_p < &hw_fib_pool[num]) {
2065 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2066 if (!(*(hw_fib_p++))) {
2067 --hw_fib_p;
2068 break;
2069 }
2070
2071 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2072 if (!(*(fib_p++))) {
2073 kfree(*(--hw_fib_p));
2074 break;
2075 }
2076 }
2077
2078 /*
2079 * Get the actual number of allocated fibs
2080 */
2081 num = hw_fib_p - hw_fib_pool;
2082 return num;
2083 }
2084
wakeup_fibctx_threads(struct aac_dev * dev,struct hw_fib ** hw_fib_pool,struct fib ** fib_pool,struct fib * fib,struct hw_fib * hw_fib,unsigned int num)2085 static void wakeup_fibctx_threads(struct aac_dev *dev,
2086 struct hw_fib **hw_fib_pool,
2087 struct fib **fib_pool,
2088 struct fib *fib,
2089 struct hw_fib *hw_fib,
2090 unsigned int num)
2091 {
2092 unsigned long flagv;
2093 struct list_head *entry;
2094 struct hw_fib **hw_fib_p;
2095 struct fib **fib_p;
2096 u32 time_now, time_last;
2097 struct hw_fib *hw_newfib;
2098 struct fib *newfib;
2099 struct aac_fib_context *fibctx;
2100
2101 time_now = jiffies/HZ;
2102 spin_lock_irqsave(&dev->fib_lock, flagv);
2103 entry = dev->fib_list.next;
2104 /*
2105 * For each Context that is on the
2106 * fibctxList, make a copy of the
2107 * fib, and then set the event to wake up the
2108 * thread that is waiting for it.
2109 */
2110
2111 hw_fib_p = hw_fib_pool;
2112 fib_p = fib_pool;
2113 while (entry != &dev->fib_list) {
2114 /*
2115 * Extract the fibctx
2116 */
2117 fibctx = list_entry(entry, struct aac_fib_context,
2118 next);
2119 /*
2120 * Check if the queue is getting
2121 * backlogged
2122 */
2123 if (fibctx->count > 20) {
2124 /*
2125 * It's *not* jiffies folks,
2126 * but jiffies / HZ so do not
2127 * panic ...
2128 */
2129 time_last = fibctx->jiffies;
2130 /*
2131 * Has it been > 2 minutes
2132 * since the last read off
2133 * the queue?
2134 */
2135 if ((time_now - time_last) > aif_timeout) {
2136 entry = entry->next;
2137 aac_close_fib_context(dev, fibctx);
2138 continue;
2139 }
2140 }
2141 /*
2142 * Warning: no sleep allowed while
2143 * holding spinlock
2144 */
2145 if (hw_fib_p >= &hw_fib_pool[num]) {
2146 pr_warn("aifd: didn't allocate NewFib\n");
2147 entry = entry->next;
2148 continue;
2149 }
2150
2151 hw_newfib = *hw_fib_p;
2152 *(hw_fib_p++) = NULL;
2153 newfib = *fib_p;
2154 *(fib_p++) = NULL;
2155 /*
2156 * Make the copy of the FIB
2157 */
2158 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2159 memcpy(newfib, fib, sizeof(struct fib));
2160 newfib->hw_fib_va = hw_newfib;
2161 /*
2162 * Put the FIB onto the
2163 * fibctx's fibs
2164 */
2165 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2166 fibctx->count++;
2167 /*
2168 * Set the event to wake up the
2169 * thread that is waiting.
2170 */
2171 up(&fibctx->wait_sem);
2172
2173 entry = entry->next;
2174 }
2175 /*
2176 * Set the status of this FIB
2177 */
2178 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2179 aac_fib_adapter_complete(fib, sizeof(u32));
2180 spin_unlock_irqrestore(&dev->fib_lock, flagv);
2181
2182 }
2183
aac_process_events(struct aac_dev * dev)2184 static void aac_process_events(struct aac_dev *dev)
2185 {
2186 struct hw_fib *hw_fib;
2187 struct fib *fib;
2188 unsigned long flags;
2189 spinlock_t *t_lock;
2190
2191 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2192 spin_lock_irqsave(t_lock, flags);
2193
2194 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2195 struct list_head *entry;
2196 struct aac_aifcmd *aifcmd;
2197 unsigned int num;
2198 struct hw_fib **hw_fib_pool, **hw_fib_p;
2199 struct fib **fib_pool, **fib_p;
2200
2201 set_current_state(TASK_RUNNING);
2202
2203 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2204 list_del(entry);
2205
2206 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2207 spin_unlock_irqrestore(t_lock, flags);
2208
2209 fib = list_entry(entry, struct fib, fiblink);
2210 hw_fib = fib->hw_fib_va;
2211 if (dev->sa_firmware) {
2212 /* Thor AIF */
2213 aac_handle_sa_aif(dev, fib);
2214 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2215 goto free_fib;
2216 }
2217 /*
2218 * We will process the FIB here or pass it to a
2219 * worker thread that is TBD. We Really can't
2220 * do anything at this point since we don't have
2221 * anything defined for this thread to do.
2222 */
2223 memset(fib, 0, sizeof(struct fib));
2224 fib->type = FSAFS_NTC_FIB_CONTEXT;
2225 fib->size = sizeof(struct fib);
2226 fib->hw_fib_va = hw_fib;
2227 fib->data = hw_fib->data;
2228 fib->dev = dev;
2229 /*
2230 * We only handle AifRequest fibs from the adapter.
2231 */
2232
2233 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2234 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2235 /* Handle Driver Notify Events */
2236 aac_handle_aif(dev, fib);
2237 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2238 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2239 goto free_fib;
2240 }
2241 /*
2242 * The u32 here is important and intended. We are using
2243 * 32bit wrapping time to fit the adapter field
2244 */
2245
2246 /* Sniff events */
2247 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2248 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2249 aac_handle_aif(dev, fib);
2250 }
2251
2252 /*
2253 * get number of fibs to process
2254 */
2255 num = get_fib_count(dev);
2256 if (!num)
2257 goto free_fib;
2258
2259 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2260 GFP_KERNEL);
2261 if (!hw_fib_pool)
2262 goto free_fib;
2263
2264 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2265 if (!fib_pool)
2266 goto free_hw_fib_pool;
2267
2268 /*
2269 * Fill up fib pointer pools with actual fibs
2270 * and hw_fibs
2271 */
2272 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2273 if (!num)
2274 goto free_mem;
2275
2276 /*
2277 * wakeup the thread that is waiting for
2278 * the response from fw (ioctl)
2279 */
2280 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2281 fib, hw_fib, num);
2282
2283 free_mem:
2284 /* Free up the remaining resources */
2285 hw_fib_p = hw_fib_pool;
2286 fib_p = fib_pool;
2287 while (hw_fib_p < &hw_fib_pool[num]) {
2288 kfree(*hw_fib_p);
2289 kfree(*fib_p);
2290 ++fib_p;
2291 ++hw_fib_p;
2292 }
2293 kfree(fib_pool);
2294 free_hw_fib_pool:
2295 kfree(hw_fib_pool);
2296 free_fib:
2297 kfree(fib);
2298 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2299 spin_lock_irqsave(t_lock, flags);
2300 }
2301 /*
2302 * There are no more AIF's
2303 */
2304 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2305 spin_unlock_irqrestore(t_lock, flags);
2306 }
2307
aac_send_wellness_command(struct aac_dev * dev,char * wellness_str,u32 datasize)2308 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2309 u32 datasize)
2310 {
2311 struct aac_srb *srbcmd;
2312 struct sgmap64 *sg64;
2313 dma_addr_t addr;
2314 char *dma_buf;
2315 struct fib *fibptr;
2316 int ret = -ENOMEM;
2317 u32 vbus, vid;
2318
2319 fibptr = aac_fib_alloc(dev);
2320 if (!fibptr)
2321 goto out;
2322
2323 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2324 GFP_KERNEL);
2325 if (!dma_buf)
2326 goto fib_free_out;
2327
2328 aac_fib_init(fibptr);
2329
2330 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2331 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2332
2333 srbcmd = (struct aac_srb *)fib_data(fibptr);
2334
2335 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2336 srbcmd->channel = cpu_to_le32(vbus);
2337 srbcmd->id = cpu_to_le32(vid);
2338 srbcmd->lun = 0;
2339 srbcmd->flags = cpu_to_le32(SRB_DataOut);
2340 srbcmd->timeout = cpu_to_le32(10);
2341 srbcmd->retry_limit = 0;
2342 srbcmd->cdb_size = cpu_to_le32(12);
2343 srbcmd->count = cpu_to_le32(datasize);
2344
2345 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2346 srbcmd->cdb[0] = BMIC_OUT;
2347 srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2348 memcpy(dma_buf, (char *)wellness_str, datasize);
2349
2350 sg64 = (struct sgmap64 *)&srbcmd->sg;
2351 sg64->count = cpu_to_le32(1);
2352 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2353 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2354 sg64->sg[0].count = cpu_to_le32(datasize);
2355
2356 ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2357 FsaNormal, 1, 1, NULL, NULL);
2358
2359 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2360
2361 /*
2362 * Do not set XferState to zero unless
2363 * receives a response from F/W
2364 */
2365 if (ret >= 0)
2366 aac_fib_complete(fibptr);
2367
2368 /*
2369 * FIB should be freed only after
2370 * getting the response from the F/W
2371 */
2372 if (ret != -ERESTARTSYS)
2373 goto fib_free_out;
2374
2375 out:
2376 return ret;
2377 fib_free_out:
2378 aac_fib_free(fibptr);
2379 goto out;
2380 }
2381
aac_send_safw_hostttime(struct aac_dev * dev,struct timespec64 * now)2382 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2383 {
2384 struct tm cur_tm;
2385 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2386 u32 datasize = sizeof(wellness_str);
2387 time64_t local_time;
2388 int ret = -ENODEV;
2389
2390 if (!dev->sa_firmware)
2391 goto out;
2392
2393 local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2394 time64_to_tm(local_time, 0, &cur_tm);
2395 cur_tm.tm_mon += 1;
2396 cur_tm.tm_year += 1900;
2397 wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2398 wellness_str[9] = bin2bcd(cur_tm.tm_min);
2399 wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2400 wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2401 wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2402 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2403 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2404
2405 ret = aac_send_wellness_command(dev, wellness_str, datasize);
2406
2407 out:
2408 return ret;
2409 }
2410
aac_send_hosttime(struct aac_dev * dev,struct timespec64 * now)2411 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2412 {
2413 int ret = -ENOMEM;
2414 struct fib *fibptr;
2415 __le32 *info;
2416
2417 fibptr = aac_fib_alloc(dev);
2418 if (!fibptr)
2419 goto out;
2420
2421 aac_fib_init(fibptr);
2422 info = (__le32 *)fib_data(fibptr);
2423 *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2424 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2425 1, 1, NULL, NULL);
2426
2427 /*
2428 * Do not set XferState to zero unless
2429 * receives a response from F/W
2430 */
2431 if (ret >= 0)
2432 aac_fib_complete(fibptr);
2433
2434 /*
2435 * FIB should be freed only after
2436 * getting the response from the F/W
2437 */
2438 if (ret != -ERESTARTSYS)
2439 aac_fib_free(fibptr);
2440
2441 out:
2442 return ret;
2443 }
2444
2445 /**
2446 * aac_command_thread - command processing thread
2447 * @dev: Adapter to monitor
2448 *
2449 * Waits on the commandready event in it's queue. When the event gets set
2450 * it will pull FIBs off it's queue. It will continue to pull FIBs off
2451 * until the queue is empty. When the queue is empty it will wait for
2452 * more FIBs.
2453 */
2454
aac_command_thread(void * data)2455 int aac_command_thread(void *data)
2456 {
2457 struct aac_dev *dev = data;
2458 DECLARE_WAITQUEUE(wait, current);
2459 unsigned long next_jiffies = jiffies + HZ;
2460 unsigned long next_check_jiffies = next_jiffies;
2461 long difference = HZ;
2462
2463 /*
2464 * We can only have one thread per adapter for AIF's.
2465 */
2466 if (dev->aif_thread)
2467 return -EINVAL;
2468
2469 /*
2470 * Let the DPC know it has a place to send the AIF's to.
2471 */
2472 dev->aif_thread = 1;
2473 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2474 set_current_state(TASK_INTERRUPTIBLE);
2475 dprintk ((KERN_INFO "aac_command_thread start\n"));
2476 while (1) {
2477
2478 aac_process_events(dev);
2479
2480 /*
2481 * Background activity
2482 */
2483 if ((time_before(next_check_jiffies,next_jiffies))
2484 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2485 next_check_jiffies = next_jiffies;
2486 if (aac_adapter_check_health(dev) == 0) {
2487 difference = ((long)(unsigned)check_interval)
2488 * HZ;
2489 next_check_jiffies = jiffies + difference;
2490 } else if (!dev->queues)
2491 break;
2492 }
2493 if (!time_before(next_check_jiffies,next_jiffies)
2494 && ((difference = next_jiffies - jiffies) <= 0)) {
2495 struct timespec64 now;
2496 int ret;
2497
2498 /* Don't even try to talk to adapter if its sick */
2499 ret = aac_adapter_check_health(dev);
2500 if (ret || !dev->queues)
2501 break;
2502 next_check_jiffies = jiffies
2503 + ((long)(unsigned)check_interval)
2504 * HZ;
2505 ktime_get_real_ts64(&now);
2506
2507 /* Synchronize our watches */
2508 if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2509 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2510 difference = HZ + HZ / 2 -
2511 now.tv_nsec / (NSEC_PER_SEC / HZ);
2512 else {
2513 if (now.tv_nsec > NSEC_PER_SEC / 2)
2514 ++now.tv_sec;
2515
2516 if (dev->sa_firmware)
2517 ret =
2518 aac_send_safw_hostttime(dev, &now);
2519 else
2520 ret = aac_send_hosttime(dev, &now);
2521
2522 difference = (long)(unsigned)update_interval*HZ;
2523 }
2524 next_jiffies = jiffies + difference;
2525 if (time_before(next_check_jiffies,next_jiffies))
2526 difference = next_check_jiffies - jiffies;
2527 }
2528 if (difference <= 0)
2529 difference = 1;
2530 set_current_state(TASK_INTERRUPTIBLE);
2531
2532 if (kthread_should_stop())
2533 break;
2534
2535 /*
2536 * we probably want usleep_range() here instead of the
2537 * jiffies computation
2538 */
2539 schedule_timeout(difference);
2540
2541 if (kthread_should_stop())
2542 break;
2543 }
2544 if (dev->queues)
2545 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2546 dev->aif_thread = 0;
2547 return 0;
2548 }
2549
aac_acquire_irq(struct aac_dev * dev)2550 int aac_acquire_irq(struct aac_dev *dev)
2551 {
2552 int i;
2553 int j;
2554 int ret = 0;
2555
2556 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2557 for (i = 0; i < dev->max_msix; i++) {
2558 dev->aac_msix[i].vector_no = i;
2559 dev->aac_msix[i].dev = dev;
2560 if (request_irq(pci_irq_vector(dev->pdev, i),
2561 dev->a_ops.adapter_intr,
2562 0, "aacraid", &(dev->aac_msix[i]))) {
2563 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2564 dev->name, dev->id, i);
2565 for (j = 0 ; j < i ; j++)
2566 free_irq(pci_irq_vector(dev->pdev, j),
2567 &(dev->aac_msix[j]));
2568 pci_disable_msix(dev->pdev);
2569 ret = -1;
2570 }
2571 }
2572 } else {
2573 dev->aac_msix[0].vector_no = 0;
2574 dev->aac_msix[0].dev = dev;
2575
2576 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2577 IRQF_SHARED, "aacraid",
2578 &(dev->aac_msix[0])) < 0) {
2579 if (dev->msi)
2580 pci_disable_msi(dev->pdev);
2581 printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2582 dev->name, dev->id);
2583 ret = -1;
2584 }
2585 }
2586 return ret;
2587 }
2588
aac_free_irq(struct aac_dev * dev)2589 void aac_free_irq(struct aac_dev *dev)
2590 {
2591 int i;
2592 int cpu;
2593
2594 cpu = cpumask_first(cpu_online_mask);
2595 if (aac_is_src(dev)) {
2596 if (dev->max_msix > 1) {
2597 for (i = 0; i < dev->max_msix; i++)
2598 free_irq(pci_irq_vector(dev->pdev, i),
2599 &(dev->aac_msix[i]));
2600 } else {
2601 free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2602 }
2603 } else {
2604 free_irq(dev->pdev->irq, dev);
2605 }
2606 if (dev->msi)
2607 pci_disable_msi(dev->pdev);
2608 else if (dev->max_msix > 1)
2609 pci_disable_msix(dev->pdev);
2610 }
2611