1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 * Module Name:
27 * dpcsup.c
28 *
29 * Abstract: All DPC processing routines for the cyclone board occur here.
30 *
31 *
32 */
33
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/semaphore.h>
42
43 #include "aacraid.h"
44
45 /**
46 * aac_response_normal - Handle command replies
47 * @q: Queue to read from
48 *
49 * This DPC routine will be run when the adapter interrupts us to let us
50 * know there is a response on our normal priority queue. We will pull off
51 * all QE there are and wake up all the waiters before exiting. We will
52 * take a spinlock out on the queue before operating on it.
53 */
54
aac_response_normal(struct aac_queue * q)55 unsigned int aac_response_normal(struct aac_queue * q)
56 {
57 struct aac_dev * dev = q->dev;
58 struct aac_entry *entry;
59 struct hw_fib * hwfib;
60 struct fib * fib;
61 int consumed = 0;
62 unsigned long flags, mflags;
63
64 spin_lock_irqsave(q->lock, flags);
65 /*
66 * Keep pulling response QEs off the response queue and waking
67 * up the waiters until there are no more QEs. We then return
68 * back to the system. If no response was requesed we just
69 * deallocate the Fib here and continue.
70 */
71 while(aac_consumer_get(dev, q, &entry))
72 {
73 int fast;
74 u32 index = le32_to_cpu(entry->addr);
75 fast = index & 0x01;
76 fib = &dev->fibs[index >> 2];
77 hwfib = fib->hw_fib_va;
78
79 aac_consumer_free(dev, q, HostNormRespQueue);
80 /*
81 * Remove this fib from the Outstanding I/O queue.
82 * But only if it has not already been timed out.
83 *
84 * If the fib has been timed out already, then just
85 * continue. The caller has already been notified that
86 * the fib timed out.
87 */
88 atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
89
90 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
91 spin_unlock_irqrestore(q->lock, flags);
92 aac_fib_complete(fib);
93 aac_fib_free(fib);
94 spin_lock_irqsave(q->lock, flags);
95 continue;
96 }
97 spin_unlock_irqrestore(q->lock, flags);
98
99 if (fast) {
100 /*
101 * Doctor the fib
102 */
103 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
104 hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
105 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
106 }
107
108 FIB_COUNTER_INCREMENT(aac_config.FibRecved);
109
110 if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
111 {
112 __le32 *pstatus = (__le32 *)hwfib->data;
113 if (*pstatus & cpu_to_le32(0xffff0000))
114 *pstatus = cpu_to_le32(ST_OK);
115 }
116 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
117 {
118 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
119 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
120 else
121 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
122 /*
123 * NOTE: we cannot touch the fib after this
124 * call, because it may have been deallocated.
125 */
126 fib->callback(fib->callback_data, fib);
127 } else {
128 unsigned long flagv;
129 spin_lock_irqsave(&fib->event_lock, flagv);
130 if (!fib->done) {
131 fib->done = 1;
132 up(&fib->event_wait);
133 }
134 spin_unlock_irqrestore(&fib->event_lock, flagv);
135
136 spin_lock_irqsave(&dev->manage_lock, mflags);
137 dev->management_fib_count--;
138 spin_unlock_irqrestore(&dev->manage_lock, mflags);
139
140 FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
141 if (fib->done == 2) {
142 spin_lock_irqsave(&fib->event_lock, flagv);
143 fib->done = 0;
144 spin_unlock_irqrestore(&fib->event_lock, flagv);
145 aac_fib_complete(fib);
146 aac_fib_free(fib);
147 }
148 }
149 consumed++;
150 spin_lock_irqsave(q->lock, flags);
151 }
152
153 if (consumed > aac_config.peak_fibs)
154 aac_config.peak_fibs = consumed;
155 if (consumed == 0)
156 aac_config.zero_fibs++;
157
158 spin_unlock_irqrestore(q->lock, flags);
159 return 0;
160 }
161
162
163 /**
164 * aac_command_normal - handle commands
165 * @q: queue to process
166 *
167 * This DPC routine will be queued when the adapter interrupts us to
168 * let us know there is a command on our normal priority queue. We will
169 * pull off all QE there are and wake up all the waiters before exiting.
170 * We will take a spinlock out on the queue before operating on it.
171 */
172
aac_command_normal(struct aac_queue * q)173 unsigned int aac_command_normal(struct aac_queue *q)
174 {
175 struct aac_dev * dev = q->dev;
176 struct aac_entry *entry;
177 unsigned long flags;
178
179 spin_lock_irqsave(q->lock, flags);
180
181 /*
182 * Keep pulling response QEs off the response queue and waking
183 * up the waiters until there are no more QEs. We then return
184 * back to the system.
185 */
186 while(aac_consumer_get(dev, q, &entry))
187 {
188 struct fib fibctx;
189 struct hw_fib * hw_fib;
190 u32 index;
191 struct fib *fib = &fibctx;
192
193 index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
194 hw_fib = &dev->aif_base_va[index];
195
196 /*
197 * Allocate a FIB at all costs. For non queued stuff
198 * we can just use the stack so we are happy. We need
199 * a fib object in order to manage the linked lists
200 */
201 if (dev->aif_thread)
202 if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
203 fib = &fibctx;
204
205 memset(fib, 0, sizeof(struct fib));
206 INIT_LIST_HEAD(&fib->fiblink);
207 fib->type = FSAFS_NTC_FIB_CONTEXT;
208 fib->size = sizeof(struct fib);
209 fib->hw_fib_va = hw_fib;
210 fib->data = hw_fib->data;
211 fib->dev = dev;
212
213
214 if (dev->aif_thread && fib != &fibctx) {
215 list_add_tail(&fib->fiblink, &q->cmdq);
216 aac_consumer_free(dev, q, HostNormCmdQueue);
217 wake_up_interruptible(&q->cmdready);
218 } else {
219 aac_consumer_free(dev, q, HostNormCmdQueue);
220 spin_unlock_irqrestore(q->lock, flags);
221 /*
222 * Set the status of this FIB
223 */
224 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
225 aac_fib_adapter_complete(fib, sizeof(u32));
226 spin_lock_irqsave(q->lock, flags);
227 }
228 }
229 spin_unlock_irqrestore(q->lock, flags);
230 return 0;
231 }
232
233 /*
234 *
235 * aac_aif_callback
236 * @context: the context set in the fib - here it is scsi cmd
237 * @fibptr: pointer to the fib
238 *
239 * Handles the AIFs - new method (SRC)
240 *
241 */
242
aac_aif_callback(void * context,struct fib * fibptr)243 static void aac_aif_callback(void *context, struct fib * fibptr)
244 {
245 struct fib *fibctx;
246 struct aac_dev *dev;
247 struct aac_aifcmd *cmd;
248 int status;
249
250 fibctx = (struct fib *)context;
251 BUG_ON(fibptr == NULL);
252 dev = fibptr->dev;
253
254 if ((fibptr->hw_fib_va->header.XferState &
255 cpu_to_le32(NoMoreAifDataAvailable)) ||
256 dev->sa_firmware) {
257 aac_fib_complete(fibptr);
258 aac_fib_free(fibptr);
259 return;
260 }
261
262 aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va);
263
264 aac_fib_init(fibctx);
265 cmd = (struct aac_aifcmd *) fib_data(fibctx);
266 cmd->command = cpu_to_le32(AifReqEvent);
267
268 status = aac_fib_send(AifRequest,
269 fibctx,
270 sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
271 FsaNormal,
272 0, 1,
273 (fib_callback)aac_aif_callback, fibctx);
274 }
275
276
277 /**
278 * aac_intr_normal - Handle command replies
279 * @dev: Device
280 * @index: completion reference
281 *
282 * This DPC routine will be run when the adapter interrupts us to let us
283 * know there is a response on our normal priority queue. We will pull off
284 * all QE there are and wake up all the waiters before exiting.
285 */
aac_intr_normal(struct aac_dev * dev,u32 index,int isAif,int isFastResponse,struct hw_fib * aif_fib)286 unsigned int aac_intr_normal(struct aac_dev *dev, u32 index, int isAif,
287 int isFastResponse, struct hw_fib *aif_fib)
288 {
289 unsigned long mflags;
290 dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index));
291 if (isAif == 1) { /* AIF - common */
292 struct hw_fib * hw_fib;
293 struct fib * fib;
294 struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
295 unsigned long flags;
296
297 /*
298 * Allocate a FIB. For non queued stuff we can just use
299 * the stack so we are happy. We need a fib object in order to
300 * manage the linked lists.
301 */
302 if ((!dev->aif_thread)
303 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC))))
304 return 1;
305 if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
306 kfree (fib);
307 return 1;
308 }
309 if (dev->sa_firmware) {
310 fib->hbacmd_size = index; /* store event type */
311 } else if (aif_fib != NULL) {
312 memcpy(hw_fib, aif_fib, sizeof(struct hw_fib));
313 } else {
314 memcpy(hw_fib, (struct hw_fib *)
315 (((uintptr_t)(dev->regs.sa)) + index),
316 sizeof(struct hw_fib));
317 }
318 INIT_LIST_HEAD(&fib->fiblink);
319 fib->type = FSAFS_NTC_FIB_CONTEXT;
320 fib->size = sizeof(struct fib);
321 fib->hw_fib_va = hw_fib;
322 fib->data = hw_fib->data;
323 fib->dev = dev;
324
325 spin_lock_irqsave(q->lock, flags);
326 list_add_tail(&fib->fiblink, &q->cmdq);
327 wake_up_interruptible(&q->cmdready);
328 spin_unlock_irqrestore(q->lock, flags);
329 return 1;
330 } else if (isAif == 2) { /* AIF - new (SRC) */
331 struct fib *fibctx;
332 struct aac_aifcmd *cmd;
333
334 fibctx = aac_fib_alloc(dev);
335 if (!fibctx)
336 return 1;
337 aac_fib_init(fibctx);
338
339 cmd = (struct aac_aifcmd *) fib_data(fibctx);
340 cmd->command = cpu_to_le32(AifReqEvent);
341
342 return aac_fib_send(AifRequest,
343 fibctx,
344 sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
345 FsaNormal,
346 0, 1,
347 (fib_callback)aac_aif_callback, fibctx);
348 } else {
349 struct fib *fib = &dev->fibs[index];
350 int start_callback = 0;
351
352 /*
353 * Remove this fib from the Outstanding I/O queue.
354 * But only if it has not already been timed out.
355 *
356 * If the fib has been timed out already, then just
357 * continue. The caller has already been notified that
358 * the fib timed out.
359 */
360 atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
361
362 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
363 aac_fib_complete(fib);
364 aac_fib_free(fib);
365 return 0;
366 }
367
368 FIB_COUNTER_INCREMENT(aac_config.FibRecved);
369
370 if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
371
372 if (isFastResponse)
373 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
374
375 if (fib->callback) {
376 start_callback = 1;
377 } else {
378 unsigned long flagv;
379 int complete = 0;
380
381 dprintk((KERN_INFO "event_wait up\n"));
382 spin_lock_irqsave(&fib->event_lock, flagv);
383 if (fib->done == 2) {
384 fib->done = 1;
385 complete = 1;
386 } else {
387 fib->done = 1;
388 up(&fib->event_wait);
389 }
390 spin_unlock_irqrestore(&fib->event_lock, flagv);
391
392 spin_lock_irqsave(&dev->manage_lock, mflags);
393 dev->management_fib_count--;
394 spin_unlock_irqrestore(&dev->manage_lock,
395 mflags);
396
397 FIB_COUNTER_INCREMENT(aac_config.NativeRecved);
398 if (complete)
399 aac_fib_complete(fib);
400 }
401 } else {
402 struct hw_fib *hwfib = fib->hw_fib_va;
403
404 if (isFastResponse) {
405 /* Doctor the fib */
406 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
407 hwfib->header.XferState |=
408 cpu_to_le32(AdapterProcessed);
409 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
410 }
411
412 if (hwfib->header.Command ==
413 cpu_to_le16(NuFileSystem)) {
414 __le32 *pstatus = (__le32 *)hwfib->data;
415
416 if (*pstatus & cpu_to_le32(0xffff0000))
417 *pstatus = cpu_to_le32(ST_OK);
418 }
419 if (hwfib->header.XferState &
420 cpu_to_le32(NoResponseExpected | Async)) {
421 if (hwfib->header.XferState & cpu_to_le32(
422 NoResponseExpected))
423 FIB_COUNTER_INCREMENT(
424 aac_config.NoResponseRecved);
425 else
426 FIB_COUNTER_INCREMENT(
427 aac_config.AsyncRecved);
428 start_callback = 1;
429 } else {
430 unsigned long flagv;
431 int complete = 0;
432
433 dprintk((KERN_INFO "event_wait up\n"));
434 spin_lock_irqsave(&fib->event_lock, flagv);
435 if (fib->done == 2) {
436 fib->done = 1;
437 complete = 1;
438 } else {
439 fib->done = 1;
440 up(&fib->event_wait);
441 }
442 spin_unlock_irqrestore(&fib->event_lock, flagv);
443
444 spin_lock_irqsave(&dev->manage_lock, mflags);
445 dev->management_fib_count--;
446 spin_unlock_irqrestore(&dev->manage_lock,
447 mflags);
448
449 FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
450 if (complete)
451 aac_fib_complete(fib);
452 }
453 }
454
455
456 if (start_callback) {
457 /*
458 * NOTE: we cannot touch the fib after this
459 * call, because it may have been deallocated.
460 */
461 if (likely(fib->callback && fib->callback_data)) {
462 fib->callback(fib->callback_data, fib);
463 } else {
464 aac_fib_complete(fib);
465 aac_fib_free(fib);
466 }
467
468 }
469 return 0;
470 }
471 }
472