• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62 
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64 
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66 
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68 
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70 
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81 
hwpoison_filter_dev(struct page * p)82 static int hwpoison_filter_dev(struct page *p)
83 {
84 	struct address_space *mapping;
85 	dev_t dev;
86 
87 	if (hwpoison_filter_dev_major == ~0U &&
88 	    hwpoison_filter_dev_minor == ~0U)
89 		return 0;
90 
91 	/*
92 	 * page_mapping() does not accept slab pages.
93 	 */
94 	if (PageSlab(p))
95 		return -EINVAL;
96 
97 	mapping = page_mapping(p);
98 	if (mapping == NULL || mapping->host == NULL)
99 		return -EINVAL;
100 
101 	dev = mapping->host->i_sb->s_dev;
102 	if (hwpoison_filter_dev_major != ~0U &&
103 	    hwpoison_filter_dev_major != MAJOR(dev))
104 		return -EINVAL;
105 	if (hwpoison_filter_dev_minor != ~0U &&
106 	    hwpoison_filter_dev_minor != MINOR(dev))
107 		return -EINVAL;
108 
109 	return 0;
110 }
111 
hwpoison_filter_flags(struct page * p)112 static int hwpoison_filter_flags(struct page *p)
113 {
114 	if (!hwpoison_filter_flags_mask)
115 		return 0;
116 
117 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 				    hwpoison_filter_flags_value)
119 		return 0;
120 	else
121 		return -EINVAL;
122 }
123 
124 /*
125  * This allows stress tests to limit test scope to a collection of tasks
126  * by putting them under some memcg. This prevents killing unrelated/important
127  * processes such as /sbin/init. Note that the target task may share clean
128  * pages with init (eg. libc text), which is harmless. If the target task
129  * share _dirty_ pages with another task B, the test scheme must make sure B
130  * is also included in the memcg. At last, due to race conditions this filter
131  * can only guarantee that the page either belongs to the memcg tasks, or is
132  * a freed page.
133  */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)137 static int hwpoison_filter_task(struct page *p)
138 {
139 	if (!hwpoison_filter_memcg)
140 		return 0;
141 
142 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 		return -EINVAL;
144 
145 	return 0;
146 }
147 #else
hwpoison_filter_task(struct page * p)148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150 
hwpoison_filter(struct page * p)151 int hwpoison_filter(struct page *p)
152 {
153 	if (!hwpoison_filter_enable)
154 		return 0;
155 
156 	if (hwpoison_filter_dev(p))
157 		return -EINVAL;
158 
159 	if (hwpoison_filter_flags(p))
160 		return -EINVAL;
161 
162 	if (hwpoison_filter_task(p))
163 		return -EINVAL;
164 
165 	return 0;
166 }
167 #else
hwpoison_filter(struct page * p)168 int hwpoison_filter(struct page *p)
169 {
170 	return 0;
171 }
172 #endif
173 
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175 
176 /*
177  * Send all the processes who have the page mapped a signal.
178  * ``action optional'' if they are not immediately affected by the error
179  * ``action required'' if error happened in current execution context
180  */
kill_proc(struct task_struct * t,unsigned long addr,int trapno,unsigned long pfn,struct page * page,int flags)181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 			unsigned long pfn, struct page *page, int flags)
183 {
184 	struct siginfo si;
185 	int ret;
186 
187 	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 		pfn, t->comm, t->pid);
189 	si.si_signo = SIGBUS;
190 	si.si_errno = 0;
191 	si.si_addr = (void *)addr;
192 #ifdef __ARCH_SI_TRAPNO
193 	si.si_trapno = trapno;
194 #endif
195 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196 
197 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198 		si.si_code = BUS_MCEERR_AR;
199 		ret = force_sig_info(SIGBUS, &si, current);
200 	} else {
201 		/*
202 		 * Don't use force here, it's convenient if the signal
203 		 * can be temporarily blocked.
204 		 * This could cause a loop when the user sets SIGBUS
205 		 * to SIG_IGN, but hopefully no one will do that?
206 		 */
207 		si.si_code = BUS_MCEERR_AO;
208 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
209 	}
210 	if (ret < 0)
211 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
212 			t->comm, t->pid, ret);
213 	return ret;
214 }
215 
216 /*
217  * When a unknown page type is encountered drain as many buffers as possible
218  * in the hope to turn the page into a LRU or free page, which we can handle.
219  */
shake_page(struct page * p,int access)220 void shake_page(struct page *p, int access)
221 {
222 	if (PageHuge(p))
223 		return;
224 
225 	if (!PageSlab(p)) {
226 		lru_add_drain_all();
227 		if (PageLRU(p))
228 			return;
229 		drain_all_pages(page_zone(p));
230 		if (PageLRU(p) || is_free_buddy_page(p))
231 			return;
232 	}
233 
234 	/*
235 	 * Only call shrink_node_slabs here (which would also shrink
236 	 * other caches) if access is not potentially fatal.
237 	 */
238 	if (access)
239 		drop_slab_node(page_to_nid(p));
240 }
241 EXPORT_SYMBOL_GPL(shake_page);
242 
243 /*
244  * Kill all processes that have a poisoned page mapped and then isolate
245  * the page.
246  *
247  * General strategy:
248  * Find all processes having the page mapped and kill them.
249  * But we keep a page reference around so that the page is not
250  * actually freed yet.
251  * Then stash the page away
252  *
253  * There's no convenient way to get back to mapped processes
254  * from the VMAs. So do a brute-force search over all
255  * running processes.
256  *
257  * Remember that machine checks are not common (or rather
258  * if they are common you have other problems), so this shouldn't
259  * be a performance issue.
260  *
261  * Also there are some races possible while we get from the
262  * error detection to actually handle it.
263  */
264 
265 struct to_kill {
266 	struct list_head nd;
267 	struct task_struct *tsk;
268 	unsigned long addr;
269 	char addr_valid;
270 };
271 
272 /*
273  * Failure handling: if we can't find or can't kill a process there's
274  * not much we can do.	We just print a message and ignore otherwise.
275  */
276 
277 /*
278  * Schedule a process for later kill.
279  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
280  * TBD would GFP_NOIO be enough?
281  */
add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,struct to_kill ** tkc)282 static void add_to_kill(struct task_struct *tsk, struct page *p,
283 		       struct vm_area_struct *vma,
284 		       struct list_head *to_kill,
285 		       struct to_kill **tkc)
286 {
287 	struct to_kill *tk;
288 
289 	if (*tkc) {
290 		tk = *tkc;
291 		*tkc = NULL;
292 	} else {
293 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
294 		if (!tk) {
295 			pr_err("Memory failure: Out of memory while machine check handling\n");
296 			return;
297 		}
298 	}
299 	tk->addr = page_address_in_vma(p, vma);
300 	tk->addr_valid = 1;
301 
302 	/*
303 	 * In theory we don't have to kill when the page was
304 	 * munmaped. But it could be also a mremap. Since that's
305 	 * likely very rare kill anyways just out of paranoia, but use
306 	 * a SIGKILL because the error is not contained anymore.
307 	 */
308 	if (tk->addr == -EFAULT) {
309 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
310 			page_to_pfn(p), tsk->comm);
311 		tk->addr_valid = 0;
312 	}
313 	get_task_struct(tsk);
314 	tk->tsk = tsk;
315 	list_add_tail(&tk->nd, to_kill);
316 }
317 
318 /*
319  * Kill the processes that have been collected earlier.
320  *
321  * Only do anything when DOIT is set, otherwise just free the list
322  * (this is used for clean pages which do not need killing)
323  * Also when FAIL is set do a force kill because something went
324  * wrong earlier.
325  */
kill_procs(struct list_head * to_kill,int forcekill,int trapno,bool fail,struct page * page,unsigned long pfn,int flags)326 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
327 			  bool fail, struct page *page, unsigned long pfn,
328 			  int flags)
329 {
330 	struct to_kill *tk, *next;
331 
332 	list_for_each_entry_safe (tk, next, to_kill, nd) {
333 		if (forcekill) {
334 			/*
335 			 * In case something went wrong with munmapping
336 			 * make sure the process doesn't catch the
337 			 * signal and then access the memory. Just kill it.
338 			 */
339 			if (fail || tk->addr_valid == 0) {
340 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
341 				       pfn, tk->tsk->comm, tk->tsk->pid);
342 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
343 						 tk->tsk, PIDTYPE_PID);
344 			}
345 
346 			/*
347 			 * In theory the process could have mapped
348 			 * something else on the address in-between. We could
349 			 * check for that, but we need to tell the
350 			 * process anyways.
351 			 */
352 			else if (kill_proc(tk->tsk, tk->addr, trapno,
353 					      pfn, page, flags) < 0)
354 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
355 				       pfn, tk->tsk->comm, tk->tsk->pid);
356 		}
357 		put_task_struct(tk->tsk);
358 		kfree(tk);
359 	}
360 }
361 
362 /*
363  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
364  * on behalf of the thread group. Return task_struct of the (first found)
365  * dedicated thread if found, and return NULL otherwise.
366  *
367  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
368  * have to call rcu_read_lock/unlock() in this function.
369  */
find_early_kill_thread(struct task_struct * tsk)370 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
371 {
372 	struct task_struct *t;
373 
374 	for_each_thread(tsk, t)
375 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
376 			return t;
377 	return NULL;
378 }
379 
380 /*
381  * Determine whether a given process is "early kill" process which expects
382  * to be signaled when some page under the process is hwpoisoned.
383  * Return task_struct of the dedicated thread (main thread unless explicitly
384  * specified) if the process is "early kill," and otherwise returns NULL.
385  */
task_early_kill(struct task_struct * tsk,int force_early)386 static struct task_struct *task_early_kill(struct task_struct *tsk,
387 					   int force_early)
388 {
389 	struct task_struct *t;
390 	if (!tsk->mm)
391 		return NULL;
392 	if (force_early)
393 		return tsk;
394 	t = find_early_kill_thread(tsk);
395 	if (t)
396 		return t;
397 	if (sysctl_memory_failure_early_kill)
398 		return tsk;
399 	return NULL;
400 }
401 
402 /*
403  * Collect processes when the error hit an anonymous page.
404  */
collect_procs_anon(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)405 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
406 			      struct to_kill **tkc, int force_early)
407 {
408 	struct vm_area_struct *vma;
409 	struct task_struct *tsk;
410 	struct anon_vma *av;
411 	pgoff_t pgoff;
412 
413 	av = page_lock_anon_vma_read(page);
414 	if (av == NULL)	/* Not actually mapped anymore */
415 		return;
416 
417 	pgoff = page_to_pgoff(page);
418 	read_lock(&tasklist_lock);
419 	for_each_process (tsk) {
420 		struct anon_vma_chain *vmac;
421 		struct task_struct *t = task_early_kill(tsk, force_early);
422 
423 		if (!t)
424 			continue;
425 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
426 					       pgoff, pgoff) {
427 			vma = vmac->vma;
428 			if (!page_mapped_in_vma(page, vma))
429 				continue;
430 			if (vma->vm_mm == t->mm)
431 				add_to_kill(t, page, vma, to_kill, tkc);
432 		}
433 	}
434 	read_unlock(&tasklist_lock);
435 	page_unlock_anon_vma_read(av);
436 }
437 
438 /*
439  * Collect processes when the error hit a file mapped page.
440  */
collect_procs_file(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)441 static void collect_procs_file(struct page *page, struct list_head *to_kill,
442 			      struct to_kill **tkc, int force_early)
443 {
444 	struct vm_area_struct *vma;
445 	struct task_struct *tsk;
446 	struct address_space *mapping = page->mapping;
447 
448 	i_mmap_lock_read(mapping);
449 	read_lock(&tasklist_lock);
450 	for_each_process(tsk) {
451 		pgoff_t pgoff = page_to_pgoff(page);
452 		struct task_struct *t = task_early_kill(tsk, force_early);
453 
454 		if (!t)
455 			continue;
456 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
457 				      pgoff) {
458 			/*
459 			 * Send early kill signal to tasks where a vma covers
460 			 * the page but the corrupted page is not necessarily
461 			 * mapped it in its pte.
462 			 * Assume applications who requested early kill want
463 			 * to be informed of all such data corruptions.
464 			 */
465 			if (vma->vm_mm == t->mm)
466 				add_to_kill(t, page, vma, to_kill, tkc);
467 		}
468 	}
469 	read_unlock(&tasklist_lock);
470 	i_mmap_unlock_read(mapping);
471 }
472 
473 /*
474  * Collect the processes who have the corrupted page mapped to kill.
475  * This is done in two steps for locking reasons.
476  * First preallocate one tokill structure outside the spin locks,
477  * so that we can kill at least one process reasonably reliable.
478  */
collect_procs(struct page * page,struct list_head * tokill,int force_early)479 static void collect_procs(struct page *page, struct list_head *tokill,
480 				int force_early)
481 {
482 	struct to_kill *tk;
483 
484 	if (!page->mapping)
485 		return;
486 
487 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
488 	if (!tk)
489 		return;
490 	if (PageAnon(page))
491 		collect_procs_anon(page, tokill, &tk, force_early);
492 	else
493 		collect_procs_file(page, tokill, &tk, force_early);
494 	kfree(tk);
495 }
496 
497 static const char *action_name[] = {
498 	[MF_IGNORED] = "Ignored",
499 	[MF_FAILED] = "Failed",
500 	[MF_DELAYED] = "Delayed",
501 	[MF_RECOVERED] = "Recovered",
502 };
503 
504 static const char * const action_page_types[] = {
505 	[MF_MSG_KERNEL]			= "reserved kernel page",
506 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
507 	[MF_MSG_SLAB]			= "kernel slab page",
508 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
509 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
510 	[MF_MSG_HUGE]			= "huge page",
511 	[MF_MSG_FREE_HUGE]		= "free huge page",
512 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
513 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
514 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
515 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
516 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
517 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
518 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
519 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
520 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
521 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
522 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
523 	[MF_MSG_BUDDY]			= "free buddy page",
524 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
525 	[MF_MSG_UNKNOWN]		= "unknown page",
526 };
527 
528 /*
529  * XXX: It is possible that a page is isolated from LRU cache,
530  * and then kept in swap cache or failed to remove from page cache.
531  * The page count will stop it from being freed by unpoison.
532  * Stress tests should be aware of this memory leak problem.
533  */
delete_from_lru_cache(struct page * p)534 static int delete_from_lru_cache(struct page *p)
535 {
536 	if (!isolate_lru_page(p)) {
537 		/*
538 		 * Clear sensible page flags, so that the buddy system won't
539 		 * complain when the page is unpoison-and-freed.
540 		 */
541 		ClearPageActive(p);
542 		ClearPageUnevictable(p);
543 
544 		/*
545 		 * Poisoned page might never drop its ref count to 0 so we have
546 		 * to uncharge it manually from its memcg.
547 		 */
548 		mem_cgroup_uncharge(p);
549 
550 		/*
551 		 * drop the page count elevated by isolate_lru_page()
552 		 */
553 		put_page(p);
554 		return 0;
555 	}
556 	return -EIO;
557 }
558 
truncate_error_page(struct page * p,unsigned long pfn,struct address_space * mapping)559 static int truncate_error_page(struct page *p, unsigned long pfn,
560 				struct address_space *mapping)
561 {
562 	int ret = MF_FAILED;
563 
564 	if (mapping->a_ops->error_remove_page) {
565 		int err = mapping->a_ops->error_remove_page(mapping, p);
566 
567 		if (err != 0) {
568 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
569 				pfn, err);
570 		} else if (page_has_private(p) &&
571 			   !try_to_release_page(p, GFP_NOIO)) {
572 			pr_info("Memory failure: %#lx: failed to release buffers\n",
573 				pfn);
574 		} else {
575 			ret = MF_RECOVERED;
576 		}
577 	} else {
578 		/*
579 		 * If the file system doesn't support it just invalidate
580 		 * This fails on dirty or anything with private pages
581 		 */
582 		if (invalidate_inode_page(p))
583 			ret = MF_RECOVERED;
584 		else
585 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
586 				pfn);
587 	}
588 
589 	return ret;
590 }
591 
592 /*
593  * Error hit kernel page.
594  * Do nothing, try to be lucky and not touch this instead. For a few cases we
595  * could be more sophisticated.
596  */
me_kernel(struct page * p,unsigned long pfn)597 static int me_kernel(struct page *p, unsigned long pfn)
598 {
599 	return MF_IGNORED;
600 }
601 
602 /*
603  * Page in unknown state. Do nothing.
604  */
me_unknown(struct page * p,unsigned long pfn)605 static int me_unknown(struct page *p, unsigned long pfn)
606 {
607 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
608 	return MF_FAILED;
609 }
610 
611 /*
612  * Clean (or cleaned) page cache page.
613  */
me_pagecache_clean(struct page * p,unsigned long pfn)614 static int me_pagecache_clean(struct page *p, unsigned long pfn)
615 {
616 	struct address_space *mapping;
617 
618 	delete_from_lru_cache(p);
619 
620 	/*
621 	 * For anonymous pages we're done the only reference left
622 	 * should be the one m_f() holds.
623 	 */
624 	if (PageAnon(p))
625 		return MF_RECOVERED;
626 
627 	/*
628 	 * Now truncate the page in the page cache. This is really
629 	 * more like a "temporary hole punch"
630 	 * Don't do this for block devices when someone else
631 	 * has a reference, because it could be file system metadata
632 	 * and that's not safe to truncate.
633 	 */
634 	mapping = page_mapping(p);
635 	if (!mapping) {
636 		/*
637 		 * Page has been teared down in the meanwhile
638 		 */
639 		return MF_FAILED;
640 	}
641 
642 	/*
643 	 * Truncation is a bit tricky. Enable it per file system for now.
644 	 *
645 	 * Open: to take i_mutex or not for this? Right now we don't.
646 	 */
647 	return truncate_error_page(p, pfn, mapping);
648 }
649 
650 /*
651  * Dirty pagecache page
652  * Issues: when the error hit a hole page the error is not properly
653  * propagated.
654  */
me_pagecache_dirty(struct page * p,unsigned long pfn)655 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
656 {
657 	struct address_space *mapping = page_mapping(p);
658 
659 	SetPageError(p);
660 	/* TBD: print more information about the file. */
661 	if (mapping) {
662 		/*
663 		 * IO error will be reported by write(), fsync(), etc.
664 		 * who check the mapping.
665 		 * This way the application knows that something went
666 		 * wrong with its dirty file data.
667 		 *
668 		 * There's one open issue:
669 		 *
670 		 * The EIO will be only reported on the next IO
671 		 * operation and then cleared through the IO map.
672 		 * Normally Linux has two mechanisms to pass IO error
673 		 * first through the AS_EIO flag in the address space
674 		 * and then through the PageError flag in the page.
675 		 * Since we drop pages on memory failure handling the
676 		 * only mechanism open to use is through AS_AIO.
677 		 *
678 		 * This has the disadvantage that it gets cleared on
679 		 * the first operation that returns an error, while
680 		 * the PageError bit is more sticky and only cleared
681 		 * when the page is reread or dropped.  If an
682 		 * application assumes it will always get error on
683 		 * fsync, but does other operations on the fd before
684 		 * and the page is dropped between then the error
685 		 * will not be properly reported.
686 		 *
687 		 * This can already happen even without hwpoisoned
688 		 * pages: first on metadata IO errors (which only
689 		 * report through AS_EIO) or when the page is dropped
690 		 * at the wrong time.
691 		 *
692 		 * So right now we assume that the application DTRT on
693 		 * the first EIO, but we're not worse than other parts
694 		 * of the kernel.
695 		 */
696 		mapping_set_error(mapping, -EIO);
697 	}
698 
699 	return me_pagecache_clean(p, pfn);
700 }
701 
702 /*
703  * Clean and dirty swap cache.
704  *
705  * Dirty swap cache page is tricky to handle. The page could live both in page
706  * cache and swap cache(ie. page is freshly swapped in). So it could be
707  * referenced concurrently by 2 types of PTEs:
708  * normal PTEs and swap PTEs. We try to handle them consistently by calling
709  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
710  * and then
711  *      - clear dirty bit to prevent IO
712  *      - remove from LRU
713  *      - but keep in the swap cache, so that when we return to it on
714  *        a later page fault, we know the application is accessing
715  *        corrupted data and shall be killed (we installed simple
716  *        interception code in do_swap_page to catch it).
717  *
718  * Clean swap cache pages can be directly isolated. A later page fault will
719  * bring in the known good data from disk.
720  */
me_swapcache_dirty(struct page * p,unsigned long pfn)721 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
722 {
723 	ClearPageDirty(p);
724 	/* Trigger EIO in shmem: */
725 	ClearPageUptodate(p);
726 
727 	if (!delete_from_lru_cache(p))
728 		return MF_DELAYED;
729 	else
730 		return MF_FAILED;
731 }
732 
me_swapcache_clean(struct page * p,unsigned long pfn)733 static int me_swapcache_clean(struct page *p, unsigned long pfn)
734 {
735 	delete_from_swap_cache(p);
736 
737 	if (!delete_from_lru_cache(p))
738 		return MF_RECOVERED;
739 	else
740 		return MF_FAILED;
741 }
742 
743 /*
744  * Huge pages. Needs work.
745  * Issues:
746  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
747  *   To narrow down kill region to one page, we need to break up pmd.
748  */
me_huge_page(struct page * p,unsigned long pfn)749 static int me_huge_page(struct page *p, unsigned long pfn)
750 {
751 	int res = 0;
752 	struct page *hpage = compound_head(p);
753 	struct address_space *mapping;
754 
755 	if (!PageHuge(hpage))
756 		return MF_DELAYED;
757 
758 	mapping = page_mapping(hpage);
759 	if (mapping) {
760 		res = truncate_error_page(hpage, pfn, mapping);
761 	} else {
762 		unlock_page(hpage);
763 		/*
764 		 * migration entry prevents later access on error anonymous
765 		 * hugepage, so we can free and dissolve it into buddy to
766 		 * save healthy subpages.
767 		 */
768 		if (PageAnon(hpage))
769 			put_page(hpage);
770 		dissolve_free_huge_page(p);
771 		res = MF_RECOVERED;
772 		lock_page(hpage);
773 	}
774 
775 	return res;
776 }
777 
778 /*
779  * Various page states we can handle.
780  *
781  * A page state is defined by its current page->flags bits.
782  * The table matches them in order and calls the right handler.
783  *
784  * This is quite tricky because we can access page at any time
785  * in its live cycle, so all accesses have to be extremely careful.
786  *
787  * This is not complete. More states could be added.
788  * For any missing state don't attempt recovery.
789  */
790 
791 #define dirty		(1UL << PG_dirty)
792 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
793 #define unevict		(1UL << PG_unevictable)
794 #define mlock		(1UL << PG_mlocked)
795 #define writeback	(1UL << PG_writeback)
796 #define lru		(1UL << PG_lru)
797 #define head		(1UL << PG_head)
798 #define slab		(1UL << PG_slab)
799 #define reserved	(1UL << PG_reserved)
800 
801 static struct page_state {
802 	unsigned long mask;
803 	unsigned long res;
804 	enum mf_action_page_type type;
805 	int (*action)(struct page *p, unsigned long pfn);
806 } error_states[] = {
807 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
808 	/*
809 	 * free pages are specially detected outside this table:
810 	 * PG_buddy pages only make a small fraction of all free pages.
811 	 */
812 
813 	/*
814 	 * Could in theory check if slab page is free or if we can drop
815 	 * currently unused objects without touching them. But just
816 	 * treat it as standard kernel for now.
817 	 */
818 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
819 
820 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
821 
822 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
823 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
824 
825 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
826 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
827 
828 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
829 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
830 
831 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
832 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
833 
834 	/*
835 	 * Catchall entry: must be at end.
836 	 */
837 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
838 };
839 
840 #undef dirty
841 #undef sc
842 #undef unevict
843 #undef mlock
844 #undef writeback
845 #undef lru
846 #undef head
847 #undef slab
848 #undef reserved
849 
850 /*
851  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
852  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
853  */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)854 static void action_result(unsigned long pfn, enum mf_action_page_type type,
855 			  enum mf_result result)
856 {
857 	trace_memory_failure_event(pfn, type, result);
858 
859 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
860 		pfn, action_page_types[type], action_name[result]);
861 }
862 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)863 static int page_action(struct page_state *ps, struct page *p,
864 			unsigned long pfn)
865 {
866 	int result;
867 	int count;
868 
869 	result = ps->action(p, pfn);
870 
871 	count = page_count(p) - 1;
872 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
873 		count--;
874 	if (count > 0) {
875 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
876 		       pfn, action_page_types[ps->type], count);
877 		result = MF_FAILED;
878 	}
879 	action_result(pfn, ps->type, result);
880 
881 	/* Could do more checks here if page looks ok */
882 	/*
883 	 * Could adjust zone counters here to correct for the missing page.
884 	 */
885 
886 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
887 }
888 
889 /**
890  * get_hwpoison_page() - Get refcount for memory error handling:
891  * @page:	raw error page (hit by memory error)
892  *
893  * Return: return 0 if failed to grab the refcount, otherwise true (some
894  * non-zero value.)
895  */
get_hwpoison_page(struct page * page)896 int get_hwpoison_page(struct page *page)
897 {
898 	struct page *head = compound_head(page);
899 
900 	if (!PageHuge(head) && PageTransHuge(head)) {
901 		/*
902 		 * Non anonymous thp exists only in allocation/free time. We
903 		 * can't handle such a case correctly, so let's give it up.
904 		 * This should be better than triggering BUG_ON when kernel
905 		 * tries to touch the "partially handled" page.
906 		 */
907 		if (!PageAnon(head)) {
908 			pr_err("Memory failure: %#lx: non anonymous thp\n",
909 				page_to_pfn(page));
910 			return 0;
911 		}
912 	}
913 
914 	if (get_page_unless_zero(head)) {
915 		if (head == compound_head(page))
916 			return 1;
917 
918 		pr_info("Memory failure: %#lx cannot catch tail\n",
919 			page_to_pfn(page));
920 		put_page(head);
921 	}
922 
923 	return 0;
924 }
925 EXPORT_SYMBOL_GPL(get_hwpoison_page);
926 
927 /*
928  * Do all that is necessary to remove user space mappings. Unmap
929  * the pages and send SIGBUS to the processes if the data was dirty.
930  */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int trapno,int flags,struct page ** hpagep)931 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
932 				  int trapno, int flags, struct page **hpagep)
933 {
934 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
935 	struct address_space *mapping;
936 	LIST_HEAD(tokill);
937 	bool unmap_success;
938 	int kill = 1, forcekill;
939 	struct page *hpage = *hpagep;
940 	bool mlocked = PageMlocked(hpage);
941 
942 	/*
943 	 * Here we are interested only in user-mapped pages, so skip any
944 	 * other types of pages.
945 	 */
946 	if (PageReserved(p) || PageSlab(p))
947 		return true;
948 	if (!(PageLRU(hpage) || PageHuge(p)))
949 		return true;
950 
951 	/*
952 	 * This check implies we don't kill processes if their pages
953 	 * are in the swap cache early. Those are always late kills.
954 	 */
955 	if (!page_mapped(hpage))
956 		return true;
957 
958 	if (PageKsm(p)) {
959 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
960 		return false;
961 	}
962 
963 	if (PageSwapCache(p)) {
964 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
965 			pfn);
966 		ttu |= TTU_IGNORE_HWPOISON;
967 	}
968 
969 	/*
970 	 * Propagate the dirty bit from PTEs to struct page first, because we
971 	 * need this to decide if we should kill or just drop the page.
972 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
973 	 * be called inside page lock (it's recommended but not enforced).
974 	 */
975 	mapping = page_mapping(hpage);
976 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
977 	    mapping_cap_writeback_dirty(mapping)) {
978 		if (page_mkclean(hpage)) {
979 			SetPageDirty(hpage);
980 		} else {
981 			kill = 0;
982 			ttu |= TTU_IGNORE_HWPOISON;
983 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
984 				pfn);
985 		}
986 	}
987 
988 	/*
989 	 * First collect all the processes that have the page
990 	 * mapped in dirty form.  This has to be done before try_to_unmap,
991 	 * because ttu takes the rmap data structures down.
992 	 *
993 	 * Error handling: We ignore errors here because
994 	 * there's nothing that can be done.
995 	 */
996 	if (kill)
997 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
998 
999 	unmap_success = try_to_unmap(hpage, ttu);
1000 	if (!unmap_success)
1001 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1002 		       pfn, page_mapcount(hpage));
1003 
1004 	/*
1005 	 * try_to_unmap() might put mlocked page in lru cache, so call
1006 	 * shake_page() again to ensure that it's flushed.
1007 	 */
1008 	if (mlocked)
1009 		shake_page(hpage, 0);
1010 
1011 	/*
1012 	 * Now that the dirty bit has been propagated to the
1013 	 * struct page and all unmaps done we can decide if
1014 	 * killing is needed or not.  Only kill when the page
1015 	 * was dirty or the process is not restartable,
1016 	 * otherwise the tokill list is merely
1017 	 * freed.  When there was a problem unmapping earlier
1018 	 * use a more force-full uncatchable kill to prevent
1019 	 * any accesses to the poisoned memory.
1020 	 */
1021 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1022 	kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
1023 
1024 	return unmap_success;
1025 }
1026 
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1027 static int identify_page_state(unsigned long pfn, struct page *p,
1028 				unsigned long page_flags)
1029 {
1030 	struct page_state *ps;
1031 
1032 	/*
1033 	 * The first check uses the current page flags which may not have any
1034 	 * relevant information. The second check with the saved page flags is
1035 	 * carried out only if the first check can't determine the page status.
1036 	 */
1037 	for (ps = error_states;; ps++)
1038 		if ((p->flags & ps->mask) == ps->res)
1039 			break;
1040 
1041 	page_flags |= (p->flags & (1UL << PG_dirty));
1042 
1043 	if (!ps->mask)
1044 		for (ps = error_states;; ps++)
1045 			if ((page_flags & ps->mask) == ps->res)
1046 				break;
1047 	return page_action(ps, p, pfn);
1048 }
1049 
memory_failure_hugetlb(unsigned long pfn,int trapno,int flags)1050 static int memory_failure_hugetlb(unsigned long pfn, int trapno, int flags)
1051 {
1052 	struct page *p = pfn_to_page(pfn);
1053 	struct page *head = compound_head(p);
1054 	int res;
1055 	unsigned long page_flags;
1056 
1057 	if (TestSetPageHWPoison(head)) {
1058 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1059 		       pfn);
1060 		return 0;
1061 	}
1062 
1063 	num_poisoned_pages_inc();
1064 
1065 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1066 		/*
1067 		 * Check "filter hit" and "race with other subpage."
1068 		 */
1069 		lock_page(head);
1070 		if (PageHWPoison(head)) {
1071 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1072 			    || (p != head && TestSetPageHWPoison(head))) {
1073 				num_poisoned_pages_dec();
1074 				unlock_page(head);
1075 				return 0;
1076 			}
1077 		}
1078 		unlock_page(head);
1079 		dissolve_free_huge_page(p);
1080 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1081 		return 0;
1082 	}
1083 
1084 	lock_page(head);
1085 	page_flags = head->flags;
1086 
1087 	if (!PageHWPoison(head)) {
1088 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1089 		num_poisoned_pages_dec();
1090 		unlock_page(head);
1091 		put_hwpoison_page(head);
1092 		return 0;
1093 	}
1094 
1095 	/*
1096 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1097 	 * simply disable it. In order to make it work properly, we need
1098 	 * make sure that:
1099 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1100 	 *    entry properly works, and
1101 	 *  - other mm code walking over page table is aware of pud-aligned
1102 	 *    hwpoison entries.
1103 	 */
1104 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1105 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1106 		res = -EBUSY;
1107 		goto out;
1108 	}
1109 
1110 	if (!hwpoison_user_mappings(p, pfn, trapno, flags, &head)) {
1111 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1112 		res = -EBUSY;
1113 		goto out;
1114 	}
1115 
1116 	res = identify_page_state(pfn, p, page_flags);
1117 out:
1118 	unlock_page(head);
1119 	return res;
1120 }
1121 
1122 /**
1123  * memory_failure - Handle memory failure of a page.
1124  * @pfn: Page Number of the corrupted page
1125  * @trapno: Trap number reported in the signal to user space.
1126  * @flags: fine tune action taken
1127  *
1128  * This function is called by the low level machine check code
1129  * of an architecture when it detects hardware memory corruption
1130  * of a page. It tries its best to recover, which includes
1131  * dropping pages, killing processes etc.
1132  *
1133  * The function is primarily of use for corruptions that
1134  * happen outside the current execution context (e.g. when
1135  * detected by a background scrubber)
1136  *
1137  * Must run in process context (e.g. a work queue) with interrupts
1138  * enabled and no spinlocks hold.
1139  */
memory_failure(unsigned long pfn,int trapno,int flags)1140 int memory_failure(unsigned long pfn, int trapno, int flags)
1141 {
1142 	struct page *p;
1143 	struct page *hpage;
1144 	struct page *orig_head;
1145 	int res;
1146 	unsigned long page_flags;
1147 
1148 	if (!sysctl_memory_failure_recovery)
1149 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1150 
1151 	if (!pfn_valid(pfn)) {
1152 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1153 			pfn);
1154 		return -ENXIO;
1155 	}
1156 
1157 	p = pfn_to_page(pfn);
1158 	if (PageHuge(p))
1159 		return memory_failure_hugetlb(pfn, trapno, flags);
1160 	if (TestSetPageHWPoison(p)) {
1161 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1162 			pfn);
1163 		return 0;
1164 	}
1165 
1166 	orig_head = hpage = compound_head(p);
1167 	num_poisoned_pages_inc();
1168 
1169 	/*
1170 	 * We need/can do nothing about count=0 pages.
1171 	 * 1) it's a free page, and therefore in safe hand:
1172 	 *    prep_new_page() will be the gate keeper.
1173 	 * 2) it's part of a non-compound high order page.
1174 	 *    Implies some kernel user: cannot stop them from
1175 	 *    R/W the page; let's pray that the page has been
1176 	 *    used and will be freed some time later.
1177 	 * In fact it's dangerous to directly bump up page count from 0,
1178 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1179 	 */
1180 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1181 		if (is_free_buddy_page(p)) {
1182 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1183 			return 0;
1184 		} else {
1185 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1186 			return -EBUSY;
1187 		}
1188 	}
1189 
1190 	if (PageTransHuge(hpage)) {
1191 		lock_page(p);
1192 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1193 			unlock_page(p);
1194 			if (!PageAnon(p))
1195 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1196 					pfn);
1197 			else
1198 				pr_err("Memory failure: %#lx: thp split failed\n",
1199 					pfn);
1200 			if (TestClearPageHWPoison(p))
1201 				num_poisoned_pages_dec();
1202 			put_hwpoison_page(p);
1203 			return -EBUSY;
1204 		}
1205 		unlock_page(p);
1206 		VM_BUG_ON_PAGE(!page_count(p), p);
1207 		hpage = compound_head(p);
1208 	}
1209 
1210 	/*
1211 	 * We ignore non-LRU pages for good reasons.
1212 	 * - PG_locked is only well defined for LRU pages and a few others
1213 	 * - to avoid races with __SetPageLocked()
1214 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1215 	 * The check (unnecessarily) ignores LRU pages being isolated and
1216 	 * walked by the page reclaim code, however that's not a big loss.
1217 	 */
1218 	shake_page(p, 0);
1219 	/* shake_page could have turned it free. */
1220 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1221 		if (flags & MF_COUNT_INCREASED)
1222 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1223 		else
1224 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1225 		return 0;
1226 	}
1227 
1228 	lock_page(p);
1229 
1230 	/*
1231 	 * The page could have changed compound pages during the locking.
1232 	 * If this happens just bail out.
1233 	 */
1234 	if (PageCompound(p) && compound_head(p) != orig_head) {
1235 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1236 		res = -EBUSY;
1237 		goto out;
1238 	}
1239 
1240 	/*
1241 	 * We use page flags to determine what action should be taken, but
1242 	 * the flags can be modified by the error containment action.  One
1243 	 * example is an mlocked page, where PG_mlocked is cleared by
1244 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1245 	 * correctly, we save a copy of the page flags at this time.
1246 	 */
1247 	if (PageHuge(p))
1248 		page_flags = hpage->flags;
1249 	else
1250 		page_flags = p->flags;
1251 
1252 	/*
1253 	 * unpoison always clear PG_hwpoison inside page lock
1254 	 */
1255 	if (!PageHWPoison(p)) {
1256 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1257 		num_poisoned_pages_dec();
1258 		unlock_page(p);
1259 		put_hwpoison_page(p);
1260 		return 0;
1261 	}
1262 	if (hwpoison_filter(p)) {
1263 		if (TestClearPageHWPoison(p))
1264 			num_poisoned_pages_dec();
1265 		unlock_page(p);
1266 		put_hwpoison_page(p);
1267 		return 0;
1268 	}
1269 
1270 	if (!PageTransTail(p) && !PageLRU(p))
1271 		goto identify_page_state;
1272 
1273 	/*
1274 	 * It's very difficult to mess with pages currently under IO
1275 	 * and in many cases impossible, so we just avoid it here.
1276 	 */
1277 	wait_on_page_writeback(p);
1278 
1279 	/*
1280 	 * Now take care of user space mappings.
1281 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1282 	 *
1283 	 * When the raw error page is thp tail page, hpage points to the raw
1284 	 * page after thp split.
1285 	 */
1286 	if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
1287 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1288 		res = -EBUSY;
1289 		goto out;
1290 	}
1291 
1292 	/*
1293 	 * Torn down by someone else?
1294 	 */
1295 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1296 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1297 		res = -EBUSY;
1298 		goto out;
1299 	}
1300 
1301 identify_page_state:
1302 	res = identify_page_state(pfn, p, page_flags);
1303 out:
1304 	unlock_page(p);
1305 	return res;
1306 }
1307 EXPORT_SYMBOL_GPL(memory_failure);
1308 
1309 #define MEMORY_FAILURE_FIFO_ORDER	4
1310 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1311 
1312 struct memory_failure_entry {
1313 	unsigned long pfn;
1314 	int trapno;
1315 	int flags;
1316 };
1317 
1318 struct memory_failure_cpu {
1319 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1320 		      MEMORY_FAILURE_FIFO_SIZE);
1321 	spinlock_t lock;
1322 	struct work_struct work;
1323 };
1324 
1325 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1326 
1327 /**
1328  * memory_failure_queue - Schedule handling memory failure of a page.
1329  * @pfn: Page Number of the corrupted page
1330  * @trapno: Trap number reported in the signal to user space.
1331  * @flags: Flags for memory failure handling
1332  *
1333  * This function is called by the low level hardware error handler
1334  * when it detects hardware memory corruption of a page. It schedules
1335  * the recovering of error page, including dropping pages, killing
1336  * processes etc.
1337  *
1338  * The function is primarily of use for corruptions that
1339  * happen outside the current execution context (e.g. when
1340  * detected by a background scrubber)
1341  *
1342  * Can run in IRQ context.
1343  */
memory_failure_queue(unsigned long pfn,int trapno,int flags)1344 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1345 {
1346 	struct memory_failure_cpu *mf_cpu;
1347 	unsigned long proc_flags;
1348 	struct memory_failure_entry entry = {
1349 		.pfn =		pfn,
1350 		.trapno =	trapno,
1351 		.flags =	flags,
1352 	};
1353 
1354 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1355 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1356 	if (kfifo_put(&mf_cpu->fifo, entry))
1357 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1358 	else
1359 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1360 		       pfn);
1361 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1362 	put_cpu_var(memory_failure_cpu);
1363 }
1364 EXPORT_SYMBOL_GPL(memory_failure_queue);
1365 
memory_failure_work_func(struct work_struct * work)1366 static void memory_failure_work_func(struct work_struct *work)
1367 {
1368 	struct memory_failure_cpu *mf_cpu;
1369 	struct memory_failure_entry entry = { 0, };
1370 	unsigned long proc_flags;
1371 	int gotten;
1372 
1373 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1374 	for (;;) {
1375 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1376 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1377 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1378 		if (!gotten)
1379 			break;
1380 		if (entry.flags & MF_SOFT_OFFLINE)
1381 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1382 		else
1383 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1384 	}
1385 }
1386 
memory_failure_init(void)1387 static int __init memory_failure_init(void)
1388 {
1389 	struct memory_failure_cpu *mf_cpu;
1390 	int cpu;
1391 
1392 	for_each_possible_cpu(cpu) {
1393 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1394 		spin_lock_init(&mf_cpu->lock);
1395 		INIT_KFIFO(mf_cpu->fifo);
1396 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1397 	}
1398 
1399 	return 0;
1400 }
1401 core_initcall(memory_failure_init);
1402 
1403 #define unpoison_pr_info(fmt, pfn, rs)			\
1404 ({							\
1405 	if (__ratelimit(rs))				\
1406 		pr_info(fmt, pfn);			\
1407 })
1408 
1409 /**
1410  * unpoison_memory - Unpoison a previously poisoned page
1411  * @pfn: Page number of the to be unpoisoned page
1412  *
1413  * Software-unpoison a page that has been poisoned by
1414  * memory_failure() earlier.
1415  *
1416  * This is only done on the software-level, so it only works
1417  * for linux injected failures, not real hardware failures
1418  *
1419  * Returns 0 for success, otherwise -errno.
1420  */
unpoison_memory(unsigned long pfn)1421 int unpoison_memory(unsigned long pfn)
1422 {
1423 	struct page *page;
1424 	struct page *p;
1425 	int freeit = 0;
1426 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1427 					DEFAULT_RATELIMIT_BURST);
1428 
1429 	if (!pfn_valid(pfn))
1430 		return -ENXIO;
1431 
1432 	p = pfn_to_page(pfn);
1433 	page = compound_head(p);
1434 
1435 	if (!PageHWPoison(p)) {
1436 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1437 				 pfn, &unpoison_rs);
1438 		return 0;
1439 	}
1440 
1441 	if (page_count(page) > 1) {
1442 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1443 				 pfn, &unpoison_rs);
1444 		return 0;
1445 	}
1446 
1447 	if (page_mapped(page)) {
1448 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1449 				 pfn, &unpoison_rs);
1450 		return 0;
1451 	}
1452 
1453 	if (page_mapping(page)) {
1454 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1455 				 pfn, &unpoison_rs);
1456 		return 0;
1457 	}
1458 
1459 	/*
1460 	 * unpoison_memory() can encounter thp only when the thp is being
1461 	 * worked by memory_failure() and the page lock is not held yet.
1462 	 * In such case, we yield to memory_failure() and make unpoison fail.
1463 	 */
1464 	if (!PageHuge(page) && PageTransHuge(page)) {
1465 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1466 				 pfn, &unpoison_rs);
1467 		return 0;
1468 	}
1469 
1470 	if (!get_hwpoison_page(p)) {
1471 		if (TestClearPageHWPoison(p))
1472 			num_poisoned_pages_dec();
1473 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1474 				 pfn, &unpoison_rs);
1475 		return 0;
1476 	}
1477 
1478 	lock_page(page);
1479 	/*
1480 	 * This test is racy because PG_hwpoison is set outside of page lock.
1481 	 * That's acceptable because that won't trigger kernel panic. Instead,
1482 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1483 	 * the free buddy page pool.
1484 	 */
1485 	if (TestClearPageHWPoison(page)) {
1486 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1487 				 pfn, &unpoison_rs);
1488 		num_poisoned_pages_dec();
1489 		freeit = 1;
1490 	}
1491 	unlock_page(page);
1492 
1493 	put_hwpoison_page(page);
1494 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1495 		put_hwpoison_page(page);
1496 
1497 	return 0;
1498 }
1499 EXPORT_SYMBOL(unpoison_memory);
1500 
new_page(struct page * p,unsigned long private,int ** x)1501 static struct page *new_page(struct page *p, unsigned long private, int **x)
1502 {
1503 	int nid = page_to_nid(p);
1504 
1505 	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1506 }
1507 
1508 /*
1509  * Safely get reference count of an arbitrary page.
1510  * Returns 0 for a free page, -EIO for a zero refcount page
1511  * that is not free, and 1 for any other page type.
1512  * For 1 the page is returned with increased page count, otherwise not.
1513  */
__get_any_page(struct page * p,unsigned long pfn,int flags)1514 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1515 {
1516 	int ret;
1517 
1518 	if (flags & MF_COUNT_INCREASED)
1519 		return 1;
1520 
1521 	/*
1522 	 * When the target page is a free hugepage, just remove it
1523 	 * from free hugepage list.
1524 	 */
1525 	if (!get_hwpoison_page(p)) {
1526 		if (PageHuge(p)) {
1527 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1528 			ret = 0;
1529 		} else if (is_free_buddy_page(p)) {
1530 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1531 			ret = 0;
1532 		} else {
1533 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1534 				__func__, pfn, p->flags);
1535 			ret = -EIO;
1536 		}
1537 	} else {
1538 		/* Not a free page */
1539 		ret = 1;
1540 	}
1541 	return ret;
1542 }
1543 
get_any_page(struct page * page,unsigned long pfn,int flags)1544 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1545 {
1546 	int ret = __get_any_page(page, pfn, flags);
1547 
1548 	if (ret == 1 && !PageHuge(page) &&
1549 	    !PageLRU(page) && !__PageMovable(page)) {
1550 		/*
1551 		 * Try to free it.
1552 		 */
1553 		put_hwpoison_page(page);
1554 		shake_page(page, 1);
1555 
1556 		/*
1557 		 * Did it turn free?
1558 		 */
1559 		ret = __get_any_page(page, pfn, 0);
1560 		if (ret == 1 && !PageLRU(page)) {
1561 			/* Drop page reference which is from __get_any_page() */
1562 			put_hwpoison_page(page);
1563 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1564 				pfn, page->flags, &page->flags);
1565 			return -EIO;
1566 		}
1567 	}
1568 	return ret;
1569 }
1570 
soft_offline_huge_page(struct page * page,int flags)1571 static int soft_offline_huge_page(struct page *page, int flags)
1572 {
1573 	int ret;
1574 	unsigned long pfn = page_to_pfn(page);
1575 	struct page *hpage = compound_head(page);
1576 	LIST_HEAD(pagelist);
1577 
1578 	/*
1579 	 * This double-check of PageHWPoison is to avoid the race with
1580 	 * memory_failure(). See also comment in __soft_offline_page().
1581 	 */
1582 	lock_page(hpage);
1583 	if (PageHWPoison(hpage)) {
1584 		unlock_page(hpage);
1585 		put_hwpoison_page(hpage);
1586 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1587 		return -EBUSY;
1588 	}
1589 	unlock_page(hpage);
1590 
1591 	ret = isolate_huge_page(hpage, &pagelist);
1592 	/*
1593 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1594 	 * so need to drop one here.
1595 	 */
1596 	put_hwpoison_page(hpage);
1597 	if (!ret) {
1598 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1599 		return -EBUSY;
1600 	}
1601 
1602 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1603 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1604 	if (ret) {
1605 		pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1606 			pfn, ret, page->flags, &page->flags);
1607 		if (!list_empty(&pagelist))
1608 			putback_movable_pages(&pagelist);
1609 		if (ret > 0)
1610 			ret = -EIO;
1611 	} else {
1612 		if (PageHuge(page))
1613 			dissolve_free_huge_page(page);
1614 	}
1615 	return ret;
1616 }
1617 
__soft_offline_page(struct page * page,int flags)1618 static int __soft_offline_page(struct page *page, int flags)
1619 {
1620 	int ret;
1621 	unsigned long pfn = page_to_pfn(page);
1622 
1623 	/*
1624 	 * Check PageHWPoison again inside page lock because PageHWPoison
1625 	 * is set by memory_failure() outside page lock. Note that
1626 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1627 	 * so there's no race between soft_offline_page() and memory_failure().
1628 	 */
1629 	lock_page(page);
1630 	wait_on_page_writeback(page);
1631 	if (PageHWPoison(page)) {
1632 		unlock_page(page);
1633 		put_hwpoison_page(page);
1634 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1635 		return -EBUSY;
1636 	}
1637 	/*
1638 	 * Try to invalidate first. This should work for
1639 	 * non dirty unmapped page cache pages.
1640 	 */
1641 	ret = invalidate_inode_page(page);
1642 	unlock_page(page);
1643 	/*
1644 	 * RED-PEN would be better to keep it isolated here, but we
1645 	 * would need to fix isolation locking first.
1646 	 */
1647 	if (ret == 1) {
1648 		put_hwpoison_page(page);
1649 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1650 		SetPageHWPoison(page);
1651 		num_poisoned_pages_inc();
1652 		return 0;
1653 	}
1654 
1655 	/*
1656 	 * Simple invalidation didn't work.
1657 	 * Try to migrate to a new page instead. migrate.c
1658 	 * handles a large number of cases for us.
1659 	 */
1660 	if (PageLRU(page))
1661 		ret = isolate_lru_page(page);
1662 	else
1663 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1664 	/*
1665 	 * Drop page reference which is came from get_any_page()
1666 	 * successful isolate_lru_page() already took another one.
1667 	 */
1668 	put_hwpoison_page(page);
1669 	if (!ret) {
1670 		LIST_HEAD(pagelist);
1671 		/*
1672 		 * After isolated lru page, the PageLRU will be cleared,
1673 		 * so use !__PageMovable instead for LRU page's mapping
1674 		 * cannot have PAGE_MAPPING_MOVABLE.
1675 		 */
1676 		if (!__PageMovable(page))
1677 			inc_node_page_state(page, NR_ISOLATED_ANON +
1678 						page_is_file_cache(page));
1679 		list_add(&page->lru, &pagelist);
1680 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1681 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1682 		if (ret) {
1683 			if (!list_empty(&pagelist))
1684 				putback_movable_pages(&pagelist);
1685 
1686 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1687 				pfn, ret, page->flags, &page->flags);
1688 			if (ret > 0)
1689 				ret = -EIO;
1690 		}
1691 	} else {
1692 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1693 			pfn, ret, page_count(page), page->flags, &page->flags);
1694 	}
1695 	return ret;
1696 }
1697 
soft_offline_in_use_page(struct page * page,int flags)1698 static int soft_offline_in_use_page(struct page *page, int flags)
1699 {
1700 	int ret;
1701 	struct page *hpage = compound_head(page);
1702 
1703 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1704 		lock_page(page);
1705 		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1706 			unlock_page(page);
1707 			if (!PageAnon(page))
1708 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1709 			else
1710 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1711 			put_hwpoison_page(page);
1712 			return -EBUSY;
1713 		}
1714 		unlock_page(page);
1715 	}
1716 
1717 	if (PageHuge(page))
1718 		ret = soft_offline_huge_page(page, flags);
1719 	else
1720 		ret = __soft_offline_page(page, flags);
1721 
1722 	return ret;
1723 }
1724 
soft_offline_free_page(struct page * page)1725 static void soft_offline_free_page(struct page *page)
1726 {
1727 	struct page *head = compound_head(page);
1728 
1729 	if (!TestSetPageHWPoison(head)) {
1730 		num_poisoned_pages_inc();
1731 		if (PageHuge(head))
1732 			dissolve_free_huge_page(page);
1733 	}
1734 }
1735 
1736 /**
1737  * soft_offline_page - Soft offline a page.
1738  * @page: page to offline
1739  * @flags: flags. Same as memory_failure().
1740  *
1741  * Returns 0 on success, otherwise negated errno.
1742  *
1743  * Soft offline a page, by migration or invalidation,
1744  * without killing anything. This is for the case when
1745  * a page is not corrupted yet (so it's still valid to access),
1746  * but has had a number of corrected errors and is better taken
1747  * out.
1748  *
1749  * The actual policy on when to do that is maintained by
1750  * user space.
1751  *
1752  * This should never impact any application or cause data loss,
1753  * however it might take some time.
1754  *
1755  * This is not a 100% solution for all memory, but tries to be
1756  * ``good enough'' for the majority of memory.
1757  */
soft_offline_page(struct page * page,int flags)1758 int soft_offline_page(struct page *page, int flags)
1759 {
1760 	int ret;
1761 	unsigned long pfn = page_to_pfn(page);
1762 
1763 	if (PageHWPoison(page)) {
1764 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1765 		if (flags & MF_COUNT_INCREASED)
1766 			put_hwpoison_page(page);
1767 		return -EBUSY;
1768 	}
1769 
1770 	get_online_mems();
1771 	ret = get_any_page(page, pfn, flags);
1772 	put_online_mems();
1773 
1774 	if (ret > 0)
1775 		ret = soft_offline_in_use_page(page, flags);
1776 	else if (ret == 0)
1777 		soft_offline_free_page(page);
1778 
1779 	return ret;
1780 }
1781