1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "acpica/accommon.h"
49 #include "acpica/acnamesp.h"
50 #include "internal.h"
51
52 #define _COMPONENT ACPI_OS_SERVICES
53 ACPI_MODULE_NAME("osl");
54
55 struct acpi_os_dpc {
56 acpi_osd_exec_callback function;
57 void *context;
58 struct work_struct work;
59 };
60
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67 #endif /*ENABLE_DEBUGGER */
68
69 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
70 u32 pm1b_ctrl);
71 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
72 u32 val_b);
73
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77 static struct workqueue_struct *kacpi_notify_wq;
78 static struct workqueue_struct *kacpi_hotplug_wq;
79 static bool acpi_os_initialized;
80 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
81 bool acpi_permanent_mmap = false;
82
83 /*
84 * This list of permanent mappings is for memory that may be accessed from
85 * interrupt context, where we can't do the ioremap().
86 */
87 struct acpi_ioremap {
88 struct list_head list;
89 void __iomem *virt;
90 acpi_physical_address phys;
91 acpi_size size;
92 unsigned long refcount;
93 };
94
95 static LIST_HEAD(acpi_ioremaps);
96 static DEFINE_MUTEX(acpi_ioremap_lock);
97
acpi_request_region(struct acpi_generic_address * gas,unsigned int length,char * desc)98 static void __init acpi_request_region (struct acpi_generic_address *gas,
99 unsigned int length, char *desc)
100 {
101 u64 addr;
102
103 /* Handle possible alignment issues */
104 memcpy(&addr, &gas->address, sizeof(addr));
105 if (!addr || !length)
106 return;
107
108 /* Resources are never freed */
109 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
110 request_region(addr, length, desc);
111 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
112 request_mem_region(addr, length, desc);
113 }
114
acpi_reserve_resources(void)115 static int __init acpi_reserve_resources(void)
116 {
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
118 "ACPI PM1a_EVT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
121 "ACPI PM1b_EVT_BLK");
122
123 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
124 "ACPI PM1a_CNT_BLK");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
127 "ACPI PM1b_CNT_BLK");
128
129 if (acpi_gbl_FADT.pm_timer_length == 4)
130 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
131
132 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
133 "ACPI PM2_CNT_BLK");
134
135 /* Length of GPE blocks must be a non-negative multiple of 2 */
136
137 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
138 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
139 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
140
141 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
142 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
143 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
144
145 return 0;
146 }
147 fs_initcall_sync(acpi_reserve_resources);
148
acpi_os_printf(const char * fmt,...)149 void acpi_os_printf(const char *fmt, ...)
150 {
151 va_list args;
152 va_start(args, fmt);
153 acpi_os_vprintf(fmt, args);
154 va_end(args);
155 }
156 EXPORT_SYMBOL(acpi_os_printf);
157
acpi_os_vprintf(const char * fmt,va_list args)158 void acpi_os_vprintf(const char *fmt, va_list args)
159 {
160 static char buffer[512];
161
162 vsprintf(buffer, fmt, args);
163
164 #ifdef ENABLE_DEBUGGER
165 if (acpi_in_debugger) {
166 kdb_printf("%s", buffer);
167 } else {
168 if (printk_get_level(buffer))
169 printk("%s", buffer);
170 else
171 printk(KERN_CONT "%s", buffer);
172 }
173 #else
174 if (acpi_debugger_write_log(buffer) < 0) {
175 if (printk_get_level(buffer))
176 printk("%s", buffer);
177 else
178 printk(KERN_CONT "%s", buffer);
179 }
180 #endif
181 }
182
183 #ifdef CONFIG_KEXEC
184 static unsigned long acpi_rsdp;
setup_acpi_rsdp(char * arg)185 static int __init setup_acpi_rsdp(char *arg)
186 {
187 return kstrtoul(arg, 16, &acpi_rsdp);
188 }
189 early_param("acpi_rsdp", setup_acpi_rsdp);
190 #endif
191
acpi_os_get_root_pointer(void)192 acpi_physical_address __init acpi_os_get_root_pointer(void)
193 {
194 acpi_physical_address pa = 0;
195
196 #ifdef CONFIG_KEXEC
197 if (acpi_rsdp)
198 return acpi_rsdp;
199 #endif
200
201 if (efi_enabled(EFI_CONFIG_TABLES)) {
202 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
203 return efi.acpi20;
204 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
205 return efi.acpi;
206 pr_err(PREFIX "System description tables not found\n");
207 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
208 acpi_find_root_pointer(&pa);
209 }
210
211 return pa;
212 }
213
214 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
215 static struct acpi_ioremap *
acpi_map_lookup(acpi_physical_address phys,acpi_size size)216 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
217 {
218 struct acpi_ioremap *map;
219
220 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
221 if (map->phys <= phys &&
222 phys + size <= map->phys + map->size)
223 return map;
224
225 return NULL;
226 }
227
228 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
229 static void __iomem *
acpi_map_vaddr_lookup(acpi_physical_address phys,unsigned int size)230 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
231 {
232 struct acpi_ioremap *map;
233
234 map = acpi_map_lookup(phys, size);
235 if (map)
236 return map->virt + (phys - map->phys);
237
238 return NULL;
239 }
240
acpi_os_get_iomem(acpi_physical_address phys,unsigned int size)241 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
242 {
243 struct acpi_ioremap *map;
244 void __iomem *virt = NULL;
245
246 mutex_lock(&acpi_ioremap_lock);
247 map = acpi_map_lookup(phys, size);
248 if (map) {
249 virt = map->virt + (phys - map->phys);
250 map->refcount++;
251 }
252 mutex_unlock(&acpi_ioremap_lock);
253 return virt;
254 }
255 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
256
257 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
258 static struct acpi_ioremap *
acpi_map_lookup_virt(void __iomem * virt,acpi_size size)259 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
260 {
261 struct acpi_ioremap *map;
262
263 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
264 if (map->virt <= virt &&
265 virt + size <= map->virt + map->size)
266 return map;
267
268 return NULL;
269 }
270
271 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
272 /* ioremap will take care of cache attributes */
273 #define should_use_kmap(pfn) 0
274 #else
275 #define should_use_kmap(pfn) page_is_ram(pfn)
276 #endif
277
acpi_map(acpi_physical_address pg_off,unsigned long pg_sz)278 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
279 {
280 unsigned long pfn;
281
282 pfn = pg_off >> PAGE_SHIFT;
283 if (should_use_kmap(pfn)) {
284 if (pg_sz > PAGE_SIZE)
285 return NULL;
286 return (void __iomem __force *)kmap(pfn_to_page(pfn));
287 } else
288 return acpi_os_ioremap(pg_off, pg_sz);
289 }
290
acpi_unmap(acpi_physical_address pg_off,void __iomem * vaddr)291 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
292 {
293 unsigned long pfn;
294
295 pfn = pg_off >> PAGE_SHIFT;
296 if (should_use_kmap(pfn))
297 kunmap(pfn_to_page(pfn));
298 else
299 iounmap(vaddr);
300 }
301
302 /**
303 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
304 * @phys: Start of the physical address range to map.
305 * @size: Size of the physical address range to map.
306 *
307 * Look up the given physical address range in the list of existing ACPI memory
308 * mappings. If found, get a reference to it and return a pointer to it (its
309 * virtual address). If not found, map it, add it to that list and return a
310 * pointer to it.
311 *
312 * During early init (when acpi_permanent_mmap has not been set yet) this
313 * routine simply calls __acpi_map_table() to get the job done.
314 */
315 void __iomem *__ref
acpi_os_map_iomem(acpi_physical_address phys,acpi_size size)316 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
317 {
318 struct acpi_ioremap *map;
319 void __iomem *virt;
320 acpi_physical_address pg_off;
321 acpi_size pg_sz;
322
323 if (phys > ULONG_MAX) {
324 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
325 return NULL;
326 }
327
328 if (!acpi_permanent_mmap)
329 return __acpi_map_table((unsigned long)phys, size);
330
331 mutex_lock(&acpi_ioremap_lock);
332 /* Check if there's a suitable mapping already. */
333 map = acpi_map_lookup(phys, size);
334 if (map) {
335 map->refcount++;
336 goto out;
337 }
338
339 map = kzalloc(sizeof(*map), GFP_KERNEL);
340 if (!map) {
341 mutex_unlock(&acpi_ioremap_lock);
342 return NULL;
343 }
344
345 pg_off = round_down(phys, PAGE_SIZE);
346 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
347 virt = acpi_map(pg_off, pg_sz);
348 if (!virt) {
349 mutex_unlock(&acpi_ioremap_lock);
350 kfree(map);
351 return NULL;
352 }
353
354 INIT_LIST_HEAD(&map->list);
355 map->virt = virt;
356 map->phys = pg_off;
357 map->size = pg_sz;
358 map->refcount = 1;
359
360 list_add_tail_rcu(&map->list, &acpi_ioremaps);
361
362 out:
363 mutex_unlock(&acpi_ioremap_lock);
364 return map->virt + (phys - map->phys);
365 }
366 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
367
acpi_os_map_memory(acpi_physical_address phys,acpi_size size)368 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
369 {
370 return (void *)acpi_os_map_iomem(phys, size);
371 }
372 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
373
374 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
acpi_os_drop_map_ref(struct acpi_ioremap * map)375 static unsigned long acpi_os_drop_map_ref(struct acpi_ioremap *map)
376 {
377 unsigned long refcount = --map->refcount;
378
379 if (!refcount)
380 list_del_rcu(&map->list);
381 return refcount;
382 }
383
acpi_os_map_cleanup(struct acpi_ioremap * map)384 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
385 {
386 synchronize_rcu_expedited();
387 acpi_unmap(map->phys, map->virt);
388 kfree(map);
389 }
390
391 /**
392 * acpi_os_unmap_iomem - Drop a memory mapping reference.
393 * @virt: Start of the address range to drop a reference to.
394 * @size: Size of the address range to drop a reference to.
395 *
396 * Look up the given virtual address range in the list of existing ACPI memory
397 * mappings, drop a reference to it and unmap it if there are no more active
398 * references to it.
399 *
400 * During early init (when acpi_permanent_mmap has not been set yet) this
401 * routine simply calls __acpi_unmap_table() to get the job done. Since
402 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
403 * here.
404 */
acpi_os_unmap_iomem(void __iomem * virt,acpi_size size)405 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
406 {
407 struct acpi_ioremap *map;
408 unsigned long refcount;
409
410 if (!acpi_permanent_mmap) {
411 __acpi_unmap_table(virt, size);
412 return;
413 }
414
415 mutex_lock(&acpi_ioremap_lock);
416 map = acpi_map_lookup_virt(virt, size);
417 if (!map) {
418 mutex_unlock(&acpi_ioremap_lock);
419 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420 return;
421 }
422 refcount = acpi_os_drop_map_ref(map);
423 mutex_unlock(&acpi_ioremap_lock);
424
425 if (!refcount)
426 acpi_os_map_cleanup(map);
427 }
428 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
429
acpi_os_unmap_memory(void * virt,acpi_size size)430 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
431 {
432 return acpi_os_unmap_iomem((void __iomem *)virt, size);
433 }
434 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
435
acpi_os_map_generic_address(struct acpi_generic_address * gas)436 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
437 {
438 u64 addr;
439 void __iomem *virt;
440
441 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
442 return 0;
443
444 /* Handle possible alignment issues */
445 memcpy(&addr, &gas->address, sizeof(addr));
446 if (!addr || !gas->bit_width)
447 return -EINVAL;
448
449 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
450 if (!virt)
451 return -EIO;
452
453 return 0;
454 }
455 EXPORT_SYMBOL(acpi_os_map_generic_address);
456
acpi_os_unmap_generic_address(struct acpi_generic_address * gas)457 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
458 {
459 u64 addr;
460 struct acpi_ioremap *map;
461 unsigned long refcount;
462
463 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
464 return;
465
466 /* Handle possible alignment issues */
467 memcpy(&addr, &gas->address, sizeof(addr));
468 if (!addr || !gas->bit_width)
469 return;
470
471 mutex_lock(&acpi_ioremap_lock);
472 map = acpi_map_lookup(addr, gas->bit_width / 8);
473 if (!map) {
474 mutex_unlock(&acpi_ioremap_lock);
475 return;
476 }
477 refcount = acpi_os_drop_map_ref(map);
478 mutex_unlock(&acpi_ioremap_lock);
479
480 if (!refcount)
481 acpi_os_map_cleanup(map);
482 }
483 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
484
485 #ifdef ACPI_FUTURE_USAGE
486 acpi_status
acpi_os_get_physical_address(void * virt,acpi_physical_address * phys)487 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
488 {
489 if (!phys || !virt)
490 return AE_BAD_PARAMETER;
491
492 *phys = virt_to_phys(virt);
493
494 return AE_OK;
495 }
496 #endif
497
498 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
499 static bool acpi_rev_override;
500
acpi_rev_override_setup(char * str)501 int __init acpi_rev_override_setup(char *str)
502 {
503 acpi_rev_override = true;
504 return 1;
505 }
506 __setup("acpi_rev_override", acpi_rev_override_setup);
507 #else
508 #define acpi_rev_override false
509 #endif
510
511 #define ACPI_MAX_OVERRIDE_LEN 100
512
513 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
514
515 acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names * init_val,acpi_string * new_val)516 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
517 acpi_string *new_val)
518 {
519 if (!init_val || !new_val)
520 return AE_BAD_PARAMETER;
521
522 *new_val = NULL;
523 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
524 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
525 acpi_os_name);
526 *new_val = acpi_os_name;
527 }
528
529 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
530 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
531 *new_val = (char *)5;
532 }
533
534 return AE_OK;
535 }
536
acpi_irq(int irq,void * dev_id)537 static irqreturn_t acpi_irq(int irq, void *dev_id)
538 {
539 u32 handled;
540
541 handled = (*acpi_irq_handler) (acpi_irq_context);
542
543 if (handled) {
544 acpi_irq_handled++;
545 return IRQ_HANDLED;
546 } else {
547 acpi_irq_not_handled++;
548 return IRQ_NONE;
549 }
550 }
551
552 acpi_status
acpi_os_install_interrupt_handler(u32 gsi,acpi_osd_handler handler,void * context)553 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
554 void *context)
555 {
556 unsigned int irq;
557
558 acpi_irq_stats_init();
559
560 /*
561 * ACPI interrupts different from the SCI in our copy of the FADT are
562 * not supported.
563 */
564 if (gsi != acpi_gbl_FADT.sci_interrupt)
565 return AE_BAD_PARAMETER;
566
567 if (acpi_irq_handler)
568 return AE_ALREADY_ACQUIRED;
569
570 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
571 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
572 gsi);
573 return AE_OK;
574 }
575
576 acpi_irq_handler = handler;
577 acpi_irq_context = context;
578 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
579 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
580 acpi_irq_handler = NULL;
581 return AE_NOT_ACQUIRED;
582 }
583 acpi_sci_irq = irq;
584
585 return AE_OK;
586 }
587
acpi_os_remove_interrupt_handler(u32 gsi,acpi_osd_handler handler)588 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
589 {
590 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
591 return AE_BAD_PARAMETER;
592
593 free_irq(acpi_sci_irq, acpi_irq);
594 acpi_irq_handler = NULL;
595 acpi_sci_irq = INVALID_ACPI_IRQ;
596
597 return AE_OK;
598 }
599
600 /*
601 * Running in interpreter thread context, safe to sleep
602 */
603
acpi_os_sleep(u64 ms)604 void acpi_os_sleep(u64 ms)
605 {
606 msleep(ms);
607 }
608
acpi_os_stall(u32 us)609 void acpi_os_stall(u32 us)
610 {
611 while (us) {
612 u32 delay = 1000;
613
614 if (delay > us)
615 delay = us;
616 udelay(delay);
617 touch_nmi_watchdog();
618 us -= delay;
619 }
620 }
621
622 /*
623 * Support ACPI 3.0 AML Timer operand
624 * Returns 64-bit free-running, monotonically increasing timer
625 * with 100ns granularity
626 */
acpi_os_get_timer(void)627 u64 acpi_os_get_timer(void)
628 {
629 u64 time_ns = ktime_to_ns(ktime_get());
630 do_div(time_ns, 100);
631 return time_ns;
632 }
633
acpi_os_read_port(acpi_io_address port,u32 * value,u32 width)634 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
635 {
636 u32 dummy;
637
638 if (!value)
639 value = &dummy;
640
641 *value = 0;
642 if (width <= 8) {
643 *(u8 *) value = inb(port);
644 } else if (width <= 16) {
645 *(u16 *) value = inw(port);
646 } else if (width <= 32) {
647 *(u32 *) value = inl(port);
648 } else {
649 BUG();
650 }
651
652 return AE_OK;
653 }
654
655 EXPORT_SYMBOL(acpi_os_read_port);
656
acpi_os_write_port(acpi_io_address port,u32 value,u32 width)657 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
658 {
659 if (width <= 8) {
660 outb(value, port);
661 } else if (width <= 16) {
662 outw(value, port);
663 } else if (width <= 32) {
664 outl(value, port);
665 } else {
666 BUG();
667 }
668
669 return AE_OK;
670 }
671
672 EXPORT_SYMBOL(acpi_os_write_port);
673
674 acpi_status
acpi_os_read_memory(acpi_physical_address phys_addr,u64 * value,u32 width)675 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
676 {
677 void __iomem *virt_addr;
678 unsigned int size = width / 8;
679 bool unmap = false;
680 u64 dummy;
681
682 rcu_read_lock();
683 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
684 if (!virt_addr) {
685 rcu_read_unlock();
686 virt_addr = acpi_os_ioremap(phys_addr, size);
687 if (!virt_addr)
688 return AE_BAD_ADDRESS;
689 unmap = true;
690 }
691
692 if (!value)
693 value = &dummy;
694
695 switch (width) {
696 case 8:
697 *(u8 *) value = readb(virt_addr);
698 break;
699 case 16:
700 *(u16 *) value = readw(virt_addr);
701 break;
702 case 32:
703 *(u32 *) value = readl(virt_addr);
704 break;
705 case 64:
706 *(u64 *) value = readq(virt_addr);
707 break;
708 default:
709 BUG();
710 }
711
712 if (unmap)
713 iounmap(virt_addr);
714 else
715 rcu_read_unlock();
716
717 return AE_OK;
718 }
719
720 acpi_status
acpi_os_write_memory(acpi_physical_address phys_addr,u64 value,u32 width)721 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
722 {
723 void __iomem *virt_addr;
724 unsigned int size = width / 8;
725 bool unmap = false;
726
727 rcu_read_lock();
728 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
729 if (!virt_addr) {
730 rcu_read_unlock();
731 virt_addr = acpi_os_ioremap(phys_addr, size);
732 if (!virt_addr)
733 return AE_BAD_ADDRESS;
734 unmap = true;
735 }
736
737 switch (width) {
738 case 8:
739 writeb(value, virt_addr);
740 break;
741 case 16:
742 writew(value, virt_addr);
743 break;
744 case 32:
745 writel(value, virt_addr);
746 break;
747 case 64:
748 writeq(value, virt_addr);
749 break;
750 default:
751 BUG();
752 }
753
754 if (unmap)
755 iounmap(virt_addr);
756 else
757 rcu_read_unlock();
758
759 return AE_OK;
760 }
761
762 acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 * value,u32 width)763 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
764 u64 *value, u32 width)
765 {
766 int result, size;
767 u32 value32;
768
769 if (!value)
770 return AE_BAD_PARAMETER;
771
772 switch (width) {
773 case 8:
774 size = 1;
775 break;
776 case 16:
777 size = 2;
778 break;
779 case 32:
780 size = 4;
781 break;
782 default:
783 return AE_ERROR;
784 }
785
786 result = raw_pci_read(pci_id->segment, pci_id->bus,
787 PCI_DEVFN(pci_id->device, pci_id->function),
788 reg, size, &value32);
789 *value = value32;
790
791 return (result ? AE_ERROR : AE_OK);
792 }
793
794 acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 value,u32 width)795 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
796 u64 value, u32 width)
797 {
798 int result, size;
799
800 switch (width) {
801 case 8:
802 size = 1;
803 break;
804 case 16:
805 size = 2;
806 break;
807 case 32:
808 size = 4;
809 break;
810 default:
811 return AE_ERROR;
812 }
813
814 result = raw_pci_write(pci_id->segment, pci_id->bus,
815 PCI_DEVFN(pci_id->device, pci_id->function),
816 reg, size, value);
817
818 return (result ? AE_ERROR : AE_OK);
819 }
820
acpi_os_execute_deferred(struct work_struct * work)821 static void acpi_os_execute_deferred(struct work_struct *work)
822 {
823 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
824
825 dpc->function(dpc->context);
826 kfree(dpc);
827 }
828
829 #ifdef CONFIG_ACPI_DEBUGGER
830 static struct acpi_debugger acpi_debugger;
831 static bool acpi_debugger_initialized;
832
acpi_register_debugger(struct module * owner,const struct acpi_debugger_ops * ops)833 int acpi_register_debugger(struct module *owner,
834 const struct acpi_debugger_ops *ops)
835 {
836 int ret = 0;
837
838 mutex_lock(&acpi_debugger.lock);
839 if (acpi_debugger.ops) {
840 ret = -EBUSY;
841 goto err_lock;
842 }
843
844 acpi_debugger.owner = owner;
845 acpi_debugger.ops = ops;
846
847 err_lock:
848 mutex_unlock(&acpi_debugger.lock);
849 return ret;
850 }
851 EXPORT_SYMBOL(acpi_register_debugger);
852
acpi_unregister_debugger(const struct acpi_debugger_ops * ops)853 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
854 {
855 mutex_lock(&acpi_debugger.lock);
856 if (ops == acpi_debugger.ops) {
857 acpi_debugger.ops = NULL;
858 acpi_debugger.owner = NULL;
859 }
860 mutex_unlock(&acpi_debugger.lock);
861 }
862 EXPORT_SYMBOL(acpi_unregister_debugger);
863
acpi_debugger_create_thread(acpi_osd_exec_callback function,void * context)864 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
865 {
866 int ret;
867 int (*func)(acpi_osd_exec_callback, void *);
868 struct module *owner;
869
870 if (!acpi_debugger_initialized)
871 return -ENODEV;
872 mutex_lock(&acpi_debugger.lock);
873 if (!acpi_debugger.ops) {
874 ret = -ENODEV;
875 goto err_lock;
876 }
877 if (!try_module_get(acpi_debugger.owner)) {
878 ret = -ENODEV;
879 goto err_lock;
880 }
881 func = acpi_debugger.ops->create_thread;
882 owner = acpi_debugger.owner;
883 mutex_unlock(&acpi_debugger.lock);
884
885 ret = func(function, context);
886
887 mutex_lock(&acpi_debugger.lock);
888 module_put(owner);
889 err_lock:
890 mutex_unlock(&acpi_debugger.lock);
891 return ret;
892 }
893
acpi_debugger_write_log(const char * msg)894 ssize_t acpi_debugger_write_log(const char *msg)
895 {
896 ssize_t ret;
897 ssize_t (*func)(const char *);
898 struct module *owner;
899
900 if (!acpi_debugger_initialized)
901 return -ENODEV;
902 mutex_lock(&acpi_debugger.lock);
903 if (!acpi_debugger.ops) {
904 ret = -ENODEV;
905 goto err_lock;
906 }
907 if (!try_module_get(acpi_debugger.owner)) {
908 ret = -ENODEV;
909 goto err_lock;
910 }
911 func = acpi_debugger.ops->write_log;
912 owner = acpi_debugger.owner;
913 mutex_unlock(&acpi_debugger.lock);
914
915 ret = func(msg);
916
917 mutex_lock(&acpi_debugger.lock);
918 module_put(owner);
919 err_lock:
920 mutex_unlock(&acpi_debugger.lock);
921 return ret;
922 }
923
acpi_debugger_read_cmd(char * buffer,size_t buffer_length)924 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
925 {
926 ssize_t ret;
927 ssize_t (*func)(char *, size_t);
928 struct module *owner;
929
930 if (!acpi_debugger_initialized)
931 return -ENODEV;
932 mutex_lock(&acpi_debugger.lock);
933 if (!acpi_debugger.ops) {
934 ret = -ENODEV;
935 goto err_lock;
936 }
937 if (!try_module_get(acpi_debugger.owner)) {
938 ret = -ENODEV;
939 goto err_lock;
940 }
941 func = acpi_debugger.ops->read_cmd;
942 owner = acpi_debugger.owner;
943 mutex_unlock(&acpi_debugger.lock);
944
945 ret = func(buffer, buffer_length);
946
947 mutex_lock(&acpi_debugger.lock);
948 module_put(owner);
949 err_lock:
950 mutex_unlock(&acpi_debugger.lock);
951 return ret;
952 }
953
acpi_debugger_wait_command_ready(void)954 int acpi_debugger_wait_command_ready(void)
955 {
956 int ret;
957 int (*func)(bool, char *, size_t);
958 struct module *owner;
959
960 if (!acpi_debugger_initialized)
961 return -ENODEV;
962 mutex_lock(&acpi_debugger.lock);
963 if (!acpi_debugger.ops) {
964 ret = -ENODEV;
965 goto err_lock;
966 }
967 if (!try_module_get(acpi_debugger.owner)) {
968 ret = -ENODEV;
969 goto err_lock;
970 }
971 func = acpi_debugger.ops->wait_command_ready;
972 owner = acpi_debugger.owner;
973 mutex_unlock(&acpi_debugger.lock);
974
975 ret = func(acpi_gbl_method_executing,
976 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
977
978 mutex_lock(&acpi_debugger.lock);
979 module_put(owner);
980 err_lock:
981 mutex_unlock(&acpi_debugger.lock);
982 return ret;
983 }
984
acpi_debugger_notify_command_complete(void)985 int acpi_debugger_notify_command_complete(void)
986 {
987 int ret;
988 int (*func)(void);
989 struct module *owner;
990
991 if (!acpi_debugger_initialized)
992 return -ENODEV;
993 mutex_lock(&acpi_debugger.lock);
994 if (!acpi_debugger.ops) {
995 ret = -ENODEV;
996 goto err_lock;
997 }
998 if (!try_module_get(acpi_debugger.owner)) {
999 ret = -ENODEV;
1000 goto err_lock;
1001 }
1002 func = acpi_debugger.ops->notify_command_complete;
1003 owner = acpi_debugger.owner;
1004 mutex_unlock(&acpi_debugger.lock);
1005
1006 ret = func();
1007
1008 mutex_lock(&acpi_debugger.lock);
1009 module_put(owner);
1010 err_lock:
1011 mutex_unlock(&acpi_debugger.lock);
1012 return ret;
1013 }
1014
acpi_debugger_init(void)1015 int __init acpi_debugger_init(void)
1016 {
1017 mutex_init(&acpi_debugger.lock);
1018 acpi_debugger_initialized = true;
1019 return 0;
1020 }
1021 #endif
1022
1023 /*******************************************************************************
1024 *
1025 * FUNCTION: acpi_os_execute
1026 *
1027 * PARAMETERS: Type - Type of the callback
1028 * Function - Function to be executed
1029 * Context - Function parameters
1030 *
1031 * RETURN: Status
1032 *
1033 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1034 * immediately executes function on a separate thread.
1035 *
1036 ******************************************************************************/
1037
acpi_os_execute(acpi_execute_type type,acpi_osd_exec_callback function,void * context)1038 acpi_status acpi_os_execute(acpi_execute_type type,
1039 acpi_osd_exec_callback function, void *context)
1040 {
1041 acpi_status status = AE_OK;
1042 struct acpi_os_dpc *dpc;
1043 struct workqueue_struct *queue;
1044 int ret;
1045 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1046 "Scheduling function [%p(%p)] for deferred execution.\n",
1047 function, context));
1048
1049 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1050 ret = acpi_debugger_create_thread(function, context);
1051 if (ret) {
1052 pr_err("Call to kthread_create() failed.\n");
1053 status = AE_ERROR;
1054 }
1055 goto out_thread;
1056 }
1057
1058 /*
1059 * Allocate/initialize DPC structure. Note that this memory will be
1060 * freed by the callee. The kernel handles the work_struct list in a
1061 * way that allows us to also free its memory inside the callee.
1062 * Because we may want to schedule several tasks with different
1063 * parameters we can't use the approach some kernel code uses of
1064 * having a static work_struct.
1065 */
1066
1067 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1068 if (!dpc)
1069 return AE_NO_MEMORY;
1070
1071 dpc->function = function;
1072 dpc->context = context;
1073
1074 /*
1075 * To prevent lockdep from complaining unnecessarily, make sure that
1076 * there is a different static lockdep key for each workqueue by using
1077 * INIT_WORK() for each of them separately.
1078 */
1079 if (type == OSL_NOTIFY_HANDLER) {
1080 queue = kacpi_notify_wq;
1081 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1082 } else if (type == OSL_GPE_HANDLER) {
1083 queue = kacpid_wq;
1084 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1085 } else {
1086 pr_err("Unsupported os_execute type %d.\n", type);
1087 status = AE_ERROR;
1088 }
1089
1090 if (ACPI_FAILURE(status))
1091 goto err_workqueue;
1092
1093 /*
1094 * On some machines, a software-initiated SMI causes corruption unless
1095 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1096 * typically it's done in GPE-related methods that are run via
1097 * workqueues, so we can avoid the known corruption cases by always
1098 * queueing on CPU 0.
1099 */
1100 ret = queue_work_on(0, queue, &dpc->work);
1101 if (!ret) {
1102 printk(KERN_ERR PREFIX
1103 "Call to queue_work() failed.\n");
1104 status = AE_ERROR;
1105 }
1106 err_workqueue:
1107 if (ACPI_FAILURE(status))
1108 kfree(dpc);
1109 out_thread:
1110 return status;
1111 }
1112 EXPORT_SYMBOL(acpi_os_execute);
1113
acpi_os_wait_events_complete(void)1114 void acpi_os_wait_events_complete(void)
1115 {
1116 /*
1117 * Make sure the GPE handler or the fixed event handler is not used
1118 * on another CPU after removal.
1119 */
1120 if (acpi_sci_irq_valid())
1121 synchronize_hardirq(acpi_sci_irq);
1122 flush_workqueue(kacpid_wq);
1123 flush_workqueue(kacpi_notify_wq);
1124 }
1125 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1126
1127 struct acpi_hp_work {
1128 struct work_struct work;
1129 struct acpi_device *adev;
1130 u32 src;
1131 };
1132
acpi_hotplug_work_fn(struct work_struct * work)1133 static void acpi_hotplug_work_fn(struct work_struct *work)
1134 {
1135 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1136
1137 acpi_os_wait_events_complete();
1138 acpi_device_hotplug(hpw->adev, hpw->src);
1139 kfree(hpw);
1140 }
1141
acpi_hotplug_schedule(struct acpi_device * adev,u32 src)1142 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1143 {
1144 struct acpi_hp_work *hpw;
1145
1146 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1147 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1148 adev, src));
1149
1150 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1151 if (!hpw)
1152 return AE_NO_MEMORY;
1153
1154 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1155 hpw->adev = adev;
1156 hpw->src = src;
1157 /*
1158 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1159 * the hotplug code may call driver .remove() functions, which may
1160 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1161 * these workqueues.
1162 */
1163 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1164 kfree(hpw);
1165 return AE_ERROR;
1166 }
1167 return AE_OK;
1168 }
1169
acpi_queue_hotplug_work(struct work_struct * work)1170 bool acpi_queue_hotplug_work(struct work_struct *work)
1171 {
1172 return queue_work(kacpi_hotplug_wq, work);
1173 }
1174
1175 acpi_status
acpi_os_create_semaphore(u32 max_units,u32 initial_units,acpi_handle * handle)1176 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1177 {
1178 struct semaphore *sem = NULL;
1179
1180 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1181 if (!sem)
1182 return AE_NO_MEMORY;
1183
1184 sema_init(sem, initial_units);
1185
1186 *handle = (acpi_handle *) sem;
1187
1188 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1189 *handle, initial_units));
1190
1191 return AE_OK;
1192 }
1193
1194 /*
1195 * TODO: A better way to delete semaphores? Linux doesn't have a
1196 * 'delete_semaphore()' function -- may result in an invalid
1197 * pointer dereference for non-synchronized consumers. Should
1198 * we at least check for blocked threads and signal/cancel them?
1199 */
1200
acpi_os_delete_semaphore(acpi_handle handle)1201 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1202 {
1203 struct semaphore *sem = (struct semaphore *)handle;
1204
1205 if (!sem)
1206 return AE_BAD_PARAMETER;
1207
1208 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1209
1210 BUG_ON(!list_empty(&sem->wait_list));
1211 kfree(sem);
1212 sem = NULL;
1213
1214 return AE_OK;
1215 }
1216
1217 /*
1218 * TODO: Support for units > 1?
1219 */
acpi_os_wait_semaphore(acpi_handle handle,u32 units,u16 timeout)1220 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1221 {
1222 acpi_status status = AE_OK;
1223 struct semaphore *sem = (struct semaphore *)handle;
1224 long jiffies;
1225 int ret = 0;
1226
1227 if (!acpi_os_initialized)
1228 return AE_OK;
1229
1230 if (!sem || (units < 1))
1231 return AE_BAD_PARAMETER;
1232
1233 if (units > 1)
1234 return AE_SUPPORT;
1235
1236 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1237 handle, units, timeout));
1238
1239 if (timeout == ACPI_WAIT_FOREVER)
1240 jiffies = MAX_SCHEDULE_TIMEOUT;
1241 else
1242 jiffies = msecs_to_jiffies(timeout);
1243
1244 ret = down_timeout(sem, jiffies);
1245 if (ret)
1246 status = AE_TIME;
1247
1248 if (ACPI_FAILURE(status)) {
1249 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1250 "Failed to acquire semaphore[%p|%d|%d], %s",
1251 handle, units, timeout,
1252 acpi_format_exception(status)));
1253 } else {
1254 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1255 "Acquired semaphore[%p|%d|%d]", handle,
1256 units, timeout));
1257 }
1258
1259 return status;
1260 }
1261
1262 /*
1263 * TODO: Support for units > 1?
1264 */
acpi_os_signal_semaphore(acpi_handle handle,u32 units)1265 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1266 {
1267 struct semaphore *sem = (struct semaphore *)handle;
1268
1269 if (!acpi_os_initialized)
1270 return AE_OK;
1271
1272 if (!sem || (units < 1))
1273 return AE_BAD_PARAMETER;
1274
1275 if (units > 1)
1276 return AE_SUPPORT;
1277
1278 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1279 units));
1280
1281 up(sem);
1282
1283 return AE_OK;
1284 }
1285
acpi_os_get_line(char * buffer,u32 buffer_length,u32 * bytes_read)1286 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1287 {
1288 #ifdef ENABLE_DEBUGGER
1289 if (acpi_in_debugger) {
1290 u32 chars;
1291
1292 kdb_read(buffer, buffer_length);
1293
1294 /* remove the CR kdb includes */
1295 chars = strlen(buffer) - 1;
1296 buffer[chars] = '\0';
1297 }
1298 #else
1299 int ret;
1300
1301 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1302 if (ret < 0)
1303 return AE_ERROR;
1304 if (bytes_read)
1305 *bytes_read = ret;
1306 #endif
1307
1308 return AE_OK;
1309 }
1310 EXPORT_SYMBOL(acpi_os_get_line);
1311
acpi_os_wait_command_ready(void)1312 acpi_status acpi_os_wait_command_ready(void)
1313 {
1314 int ret;
1315
1316 ret = acpi_debugger_wait_command_ready();
1317 if (ret < 0)
1318 return AE_ERROR;
1319 return AE_OK;
1320 }
1321
acpi_os_notify_command_complete(void)1322 acpi_status acpi_os_notify_command_complete(void)
1323 {
1324 int ret;
1325
1326 ret = acpi_debugger_notify_command_complete();
1327 if (ret < 0)
1328 return AE_ERROR;
1329 return AE_OK;
1330 }
1331
acpi_os_signal(u32 function,void * info)1332 acpi_status acpi_os_signal(u32 function, void *info)
1333 {
1334 switch (function) {
1335 case ACPI_SIGNAL_FATAL:
1336 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1337 break;
1338 case ACPI_SIGNAL_BREAKPOINT:
1339 /*
1340 * AML Breakpoint
1341 * ACPI spec. says to treat it as a NOP unless
1342 * you are debugging. So if/when we integrate
1343 * AML debugger into the kernel debugger its
1344 * hook will go here. But until then it is
1345 * not useful to print anything on breakpoints.
1346 */
1347 break;
1348 default:
1349 break;
1350 }
1351
1352 return AE_OK;
1353 }
1354
acpi_os_name_setup(char * str)1355 static int __init acpi_os_name_setup(char *str)
1356 {
1357 char *p = acpi_os_name;
1358 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1359
1360 if (!str || !*str)
1361 return 0;
1362
1363 for (; count-- && *str; str++) {
1364 if (isalnum(*str) || *str == ' ' || *str == ':')
1365 *p++ = *str;
1366 else if (*str == '\'' || *str == '"')
1367 continue;
1368 else
1369 break;
1370 }
1371 *p = 0;
1372
1373 return 1;
1374
1375 }
1376
1377 __setup("acpi_os_name=", acpi_os_name_setup);
1378
1379 /*
1380 * Disable the auto-serialization of named objects creation methods.
1381 *
1382 * This feature is enabled by default. It marks the AML control methods
1383 * that contain the opcodes to create named objects as "Serialized".
1384 */
acpi_no_auto_serialize_setup(char * str)1385 static int __init acpi_no_auto_serialize_setup(char *str)
1386 {
1387 acpi_gbl_auto_serialize_methods = FALSE;
1388 pr_info("ACPI: auto-serialization disabled\n");
1389
1390 return 1;
1391 }
1392
1393 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1394
1395 /* Check of resource interference between native drivers and ACPI
1396 * OperationRegions (SystemIO and System Memory only).
1397 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1398 * in arbitrary AML code and can interfere with legacy drivers.
1399 * acpi_enforce_resources= can be set to:
1400 *
1401 * - strict (default) (2)
1402 * -> further driver trying to access the resources will not load
1403 * - lax (1)
1404 * -> further driver trying to access the resources will load, but you
1405 * get a system message that something might go wrong...
1406 *
1407 * - no (0)
1408 * -> ACPI Operation Region resources will not be registered
1409 *
1410 */
1411 #define ENFORCE_RESOURCES_STRICT 2
1412 #define ENFORCE_RESOURCES_LAX 1
1413 #define ENFORCE_RESOURCES_NO 0
1414
1415 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1416
acpi_enforce_resources_setup(char * str)1417 static int __init acpi_enforce_resources_setup(char *str)
1418 {
1419 if (str == NULL || *str == '\0')
1420 return 0;
1421
1422 if (!strcmp("strict", str))
1423 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1424 else if (!strcmp("lax", str))
1425 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1426 else if (!strcmp("no", str))
1427 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1428
1429 return 1;
1430 }
1431
1432 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1433
1434 /* Check for resource conflicts between ACPI OperationRegions and native
1435 * drivers */
acpi_check_resource_conflict(const struct resource * res)1436 int acpi_check_resource_conflict(const struct resource *res)
1437 {
1438 acpi_adr_space_type space_id;
1439 acpi_size length;
1440 u8 warn = 0;
1441 int clash = 0;
1442
1443 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1444 return 0;
1445 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1446 return 0;
1447
1448 if (res->flags & IORESOURCE_IO)
1449 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1450 else
1451 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1452
1453 length = resource_size(res);
1454 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1455 warn = 1;
1456 clash = acpi_check_address_range(space_id, res->start, length, warn);
1457
1458 if (clash) {
1459 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1460 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1461 printk(KERN_NOTICE "ACPI: This conflict may"
1462 " cause random problems and system"
1463 " instability\n");
1464 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1465 " for this device, you should use it instead of"
1466 " the native driver\n");
1467 }
1468 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1469 return -EBUSY;
1470 }
1471 return 0;
1472 }
1473 EXPORT_SYMBOL(acpi_check_resource_conflict);
1474
acpi_check_region(resource_size_t start,resource_size_t n,const char * name)1475 int acpi_check_region(resource_size_t start, resource_size_t n,
1476 const char *name)
1477 {
1478 struct resource res = {
1479 .start = start,
1480 .end = start + n - 1,
1481 .name = name,
1482 .flags = IORESOURCE_IO,
1483 };
1484
1485 return acpi_check_resource_conflict(&res);
1486 }
1487 EXPORT_SYMBOL(acpi_check_region);
1488
acpi_deactivate_mem_region(acpi_handle handle,u32 level,void * _res,void ** return_value)1489 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1490 void *_res, void **return_value)
1491 {
1492 struct acpi_mem_space_context **mem_ctx;
1493 union acpi_operand_object *handler_obj;
1494 union acpi_operand_object *region_obj2;
1495 union acpi_operand_object *region_obj;
1496 struct resource *res = _res;
1497 acpi_status status;
1498
1499 region_obj = acpi_ns_get_attached_object(handle);
1500 if (!region_obj)
1501 return AE_OK;
1502
1503 handler_obj = region_obj->region.handler;
1504 if (!handler_obj)
1505 return AE_OK;
1506
1507 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1508 return AE_OK;
1509
1510 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1511 return AE_OK;
1512
1513 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1514 if (!region_obj2)
1515 return AE_OK;
1516
1517 mem_ctx = (void *)®ion_obj2->extra.region_context;
1518
1519 if (!(mem_ctx[0]->address >= res->start &&
1520 mem_ctx[0]->address < res->end))
1521 return AE_OK;
1522
1523 status = handler_obj->address_space.setup(region_obj,
1524 ACPI_REGION_DEACTIVATE,
1525 NULL, (void **)mem_ctx);
1526 if (ACPI_SUCCESS(status))
1527 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1528
1529 return status;
1530 }
1531
1532 /**
1533 * acpi_release_memory - Release any mappings done to a memory region
1534 * @handle: Handle to namespace node
1535 * @res: Memory resource
1536 * @level: A level that terminates the search
1537 *
1538 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1539 * overlap with @res and that have already been activated (mapped).
1540 *
1541 * This is a helper that allows drivers to place special requirements on memory
1542 * region that may overlap with operation regions, primarily allowing them to
1543 * safely map the region as non-cached memory.
1544 *
1545 * The unmapped Operation Regions will be automatically remapped next time they
1546 * are called, so the drivers do not need to do anything else.
1547 */
acpi_release_memory(acpi_handle handle,struct resource * res,u32 level)1548 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1549 u32 level)
1550 {
1551 if (!(res->flags & IORESOURCE_MEM))
1552 return AE_TYPE;
1553
1554 return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1555 acpi_deactivate_mem_region, NULL, res, NULL);
1556 }
1557 EXPORT_SYMBOL_GPL(acpi_release_memory);
1558
1559 /*
1560 * Let drivers know whether the resource checks are effective
1561 */
acpi_resources_are_enforced(void)1562 int acpi_resources_are_enforced(void)
1563 {
1564 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1565 }
1566 EXPORT_SYMBOL(acpi_resources_are_enforced);
1567
1568 /*
1569 * Deallocate the memory for a spinlock.
1570 */
acpi_os_delete_lock(acpi_spinlock handle)1571 void acpi_os_delete_lock(acpi_spinlock handle)
1572 {
1573 ACPI_FREE(handle);
1574 }
1575
1576 /*
1577 * Acquire a spinlock.
1578 *
1579 * handle is a pointer to the spinlock_t.
1580 */
1581
acpi_os_acquire_lock(acpi_spinlock lockp)1582 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1583 {
1584 acpi_cpu_flags flags;
1585 spin_lock_irqsave(lockp, flags);
1586 return flags;
1587 }
1588
1589 /*
1590 * Release a spinlock. See above.
1591 */
1592
acpi_os_release_lock(acpi_spinlock lockp,acpi_cpu_flags flags)1593 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1594 {
1595 spin_unlock_irqrestore(lockp, flags);
1596 }
1597
1598 #ifndef ACPI_USE_LOCAL_CACHE
1599
1600 /*******************************************************************************
1601 *
1602 * FUNCTION: acpi_os_create_cache
1603 *
1604 * PARAMETERS: name - Ascii name for the cache
1605 * size - Size of each cached object
1606 * depth - Maximum depth of the cache (in objects) <ignored>
1607 * cache - Where the new cache object is returned
1608 *
1609 * RETURN: status
1610 *
1611 * DESCRIPTION: Create a cache object
1612 *
1613 ******************************************************************************/
1614
1615 acpi_status
acpi_os_create_cache(char * name,u16 size,u16 depth,acpi_cache_t ** cache)1616 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1617 {
1618 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1619 if (*cache == NULL)
1620 return AE_ERROR;
1621 else
1622 return AE_OK;
1623 }
1624
1625 /*******************************************************************************
1626 *
1627 * FUNCTION: acpi_os_purge_cache
1628 *
1629 * PARAMETERS: Cache - Handle to cache object
1630 *
1631 * RETURN: Status
1632 *
1633 * DESCRIPTION: Free all objects within the requested cache.
1634 *
1635 ******************************************************************************/
1636
acpi_os_purge_cache(acpi_cache_t * cache)1637 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1638 {
1639 kmem_cache_shrink(cache);
1640 return (AE_OK);
1641 }
1642
1643 /*******************************************************************************
1644 *
1645 * FUNCTION: acpi_os_delete_cache
1646 *
1647 * PARAMETERS: Cache - Handle to cache object
1648 *
1649 * RETURN: Status
1650 *
1651 * DESCRIPTION: Free all objects within the requested cache and delete the
1652 * cache object.
1653 *
1654 ******************************************************************************/
1655
acpi_os_delete_cache(acpi_cache_t * cache)1656 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1657 {
1658 kmem_cache_destroy(cache);
1659 return (AE_OK);
1660 }
1661
1662 /*******************************************************************************
1663 *
1664 * FUNCTION: acpi_os_release_object
1665 *
1666 * PARAMETERS: Cache - Handle to cache object
1667 * Object - The object to be released
1668 *
1669 * RETURN: None
1670 *
1671 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1672 * the object is deleted.
1673 *
1674 ******************************************************************************/
1675
acpi_os_release_object(acpi_cache_t * cache,void * object)1676 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1677 {
1678 kmem_cache_free(cache, object);
1679 return (AE_OK);
1680 }
1681 #endif
1682
acpi_no_static_ssdt_setup(char * s)1683 static int __init acpi_no_static_ssdt_setup(char *s)
1684 {
1685 acpi_gbl_disable_ssdt_table_install = TRUE;
1686 pr_info("ACPI: static SSDT installation disabled\n");
1687
1688 return 0;
1689 }
1690
1691 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1692
acpi_disable_return_repair(char * s)1693 static int __init acpi_disable_return_repair(char *s)
1694 {
1695 printk(KERN_NOTICE PREFIX
1696 "ACPI: Predefined validation mechanism disabled\n");
1697 acpi_gbl_disable_auto_repair = TRUE;
1698
1699 return 1;
1700 }
1701
1702 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1703
acpi_os_initialize(void)1704 acpi_status __init acpi_os_initialize(void)
1705 {
1706 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1707 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1708 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1709 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1710 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1711 /*
1712 * Use acpi_os_map_generic_address to pre-map the reset
1713 * register if it's in system memory.
1714 */
1715 int rv;
1716
1717 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1718 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1719 }
1720 acpi_os_initialized = true;
1721
1722 return AE_OK;
1723 }
1724
acpi_os_initialize1(void)1725 acpi_status __init acpi_os_initialize1(void)
1726 {
1727 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1728 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1729 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1730 BUG_ON(!kacpid_wq);
1731 BUG_ON(!kacpi_notify_wq);
1732 BUG_ON(!kacpi_hotplug_wq);
1733 acpi_osi_init();
1734 return AE_OK;
1735 }
1736
acpi_os_terminate(void)1737 acpi_status acpi_os_terminate(void)
1738 {
1739 if (acpi_irq_handler) {
1740 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1741 acpi_irq_handler);
1742 }
1743
1744 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1745 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1746 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1747 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1748 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1749 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1750
1751 destroy_workqueue(kacpid_wq);
1752 destroy_workqueue(kacpi_notify_wq);
1753 destroy_workqueue(kacpi_hotplug_wq);
1754
1755 return AE_OK;
1756 }
1757
acpi_os_prepare_sleep(u8 sleep_state,u32 pm1a_control,u32 pm1b_control)1758 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1759 u32 pm1b_control)
1760 {
1761 int rc = 0;
1762 if (__acpi_os_prepare_sleep)
1763 rc = __acpi_os_prepare_sleep(sleep_state,
1764 pm1a_control, pm1b_control);
1765 if (rc < 0)
1766 return AE_ERROR;
1767 else if (rc > 0)
1768 return AE_CTRL_TERMINATE;
1769
1770 return AE_OK;
1771 }
1772
acpi_os_set_prepare_sleep(int (* func)(u8 sleep_state,u32 pm1a_ctrl,u32 pm1b_ctrl))1773 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1774 u32 pm1a_ctrl, u32 pm1b_ctrl))
1775 {
1776 __acpi_os_prepare_sleep = func;
1777 }
1778
1779 #if (ACPI_REDUCED_HARDWARE)
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1780 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1781 u32 val_b)
1782 {
1783 int rc = 0;
1784 if (__acpi_os_prepare_extended_sleep)
1785 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1786 val_a, val_b);
1787 if (rc < 0)
1788 return AE_ERROR;
1789 else if (rc > 0)
1790 return AE_CTRL_TERMINATE;
1791
1792 return AE_OK;
1793 }
1794 #else
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1795 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1796 u32 val_b)
1797 {
1798 return AE_OK;
1799 }
1800 #endif
1801
acpi_os_set_prepare_extended_sleep(int (* func)(u8 sleep_state,u32 val_a,u32 val_b))1802 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1803 u32 val_a, u32 val_b))
1804 {
1805 __acpi_os_prepare_extended_sleep = func;
1806 }
1807
acpi_os_enter_sleep(u8 sleep_state,u32 reg_a_value,u32 reg_b_value)1808 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1809 u32 reg_a_value, u32 reg_b_value)
1810 {
1811 acpi_status status;
1812
1813 if (acpi_gbl_reduced_hardware)
1814 status = acpi_os_prepare_extended_sleep(sleep_state,
1815 reg_a_value,
1816 reg_b_value);
1817 else
1818 status = acpi_os_prepare_sleep(sleep_state,
1819 reg_a_value, reg_b_value);
1820 return status;
1821 }
1822