• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
t4_wait_op_done_val(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay,u32 * valp)57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
t4_wait_op_done(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay)75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
t4_set_reg_field(struct adapter * adapter,unsigned int addr,u32 mask,u32 val)92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
t4_read_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,u32 * vals,unsigned int nregs,unsigned int start_idx)113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
t4_write_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,const u32 * vals,unsigned int nregs,unsigned int start_idx)136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
t4_hw_pci_read_cfg4(struct adapter * adap,int reg,u32 * val)152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
t4_report_fw_error(struct adapter * adap)183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F)
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202 
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
get_mbox_rpl(struct adapter * adap,__be64 * rpl,int nflit,u32 mbox_addr)206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 			 u32 mbox_addr)
208 {
209 	for ( ; nflit; nflit--, mbox_addr += 8)
210 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212 
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
fw_asrt(struct adapter * adap,u32 mbox_addr)216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218 	struct fw_debug_cmd asrt;
219 
220 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 	dev_alert(adap->pdev_dev,
222 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226 
227 /**
228  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229  *	@adapter: the adapter
230  *	@cmd: the Firmware Mailbox Command or Reply
231  *	@size: command length in bytes
232  *	@access: the time (ms) needed to access the Firmware Mailbox
233  *	@execute: the time (ms) the command spent being executed
234  */
t4_record_mbox(struct adapter * adapter,const __be64 * cmd,unsigned int size,int access,int execute)235 static void t4_record_mbox(struct adapter *adapter,
236 			   const __be64 *cmd, unsigned int size,
237 			   int access, int execute)
238 {
239 	struct mbox_cmd_log *log = adapter->mbox_log;
240 	struct mbox_cmd *entry;
241 	int i;
242 
243 	entry = mbox_cmd_log_entry(log, log->cursor++);
244 	if (log->cursor == log->size)
245 		log->cursor = 0;
246 
247 	for (i = 0; i < size / 8; i++)
248 		entry->cmd[i] = be64_to_cpu(cmd[i]);
249 	while (i < MBOX_LEN / 8)
250 		entry->cmd[i++] = 0;
251 	entry->timestamp = jiffies;
252 	entry->seqno = log->seqno++;
253 	entry->access = access;
254 	entry->execute = execute;
255 }
256 
257 /**
258  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
259  *	@adap: the adapter
260  *	@mbox: index of the mailbox to use
261  *	@cmd: the command to write
262  *	@size: command length in bytes
263  *	@rpl: where to optionally store the reply
264  *	@sleep_ok: if true we may sleep while awaiting command completion
265  *	@timeout: time to wait for command to finish before timing out
266  *
267  *	Sends the given command to FW through the selected mailbox and waits
268  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
269  *	store the FW's reply to the command.  The command and its optional
270  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
271  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
272  *	the response.  If sleeping is allowed we use progressive backoff
273  *	otherwise we spin.
274  *
275  *	The return value is 0 on success or a negative errno on failure.  A
276  *	failure can happen either because we are not able to execute the
277  *	command or FW executes it but signals an error.  In the latter case
278  *	the return value is the error code indicated by FW (negated).
279  */
t4_wr_mbox_meat_timeout(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok,int timeout)280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281 			    int size, void *rpl, bool sleep_ok, int timeout)
282 {
283 	static const int delay[] = {
284 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285 	};
286 
287 	struct mbox_list entry;
288 	u16 access = 0;
289 	u16 execute = 0;
290 	u32 v;
291 	u64 res;
292 	int i, ms, delay_idx, ret;
293 	const __be64 *p = cmd;
294 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
295 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
296 	__be64 cmd_rpl[MBOX_LEN / 8];
297 	u32 pcie_fw;
298 
299 	if ((size & 15) || size > MBOX_LEN)
300 		return -EINVAL;
301 
302 	/*
303 	 * If the device is off-line, as in EEH, commands will time out.
304 	 * Fail them early so we don't waste time waiting.
305 	 */
306 	if (adap->pdev->error_state != pci_channel_io_normal)
307 		return -EIO;
308 
309 	/* If we have a negative timeout, that implies that we can't sleep. */
310 	if (timeout < 0) {
311 		sleep_ok = false;
312 		timeout = -timeout;
313 	}
314 
315 	/* Queue ourselves onto the mailbox access list.  When our entry is at
316 	 * the front of the list, we have rights to access the mailbox.  So we
317 	 * wait [for a while] till we're at the front [or bail out with an
318 	 * EBUSY] ...
319 	 */
320 	spin_lock(&adap->mbox_lock);
321 	list_add_tail(&entry.list, &adap->mlist.list);
322 	spin_unlock(&adap->mbox_lock);
323 
324 	delay_idx = 0;
325 	ms = delay[0];
326 
327 	for (i = 0; ; i += ms) {
328 		/* If we've waited too long, return a busy indication.  This
329 		 * really ought to be based on our initial position in the
330 		 * mailbox access list but this is a start.  We very rearely
331 		 * contend on access to the mailbox ...
332 		 */
333 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
334 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
335 			spin_lock(&adap->mbox_lock);
336 			list_del(&entry.list);
337 			spin_unlock(&adap->mbox_lock);
338 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
339 			t4_record_mbox(adap, cmd, size, access, ret);
340 			return ret;
341 		}
342 
343 		/* If we're at the head, break out and start the mailbox
344 		 * protocol.
345 		 */
346 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
347 				     list) == &entry)
348 			break;
349 
350 		/* Delay for a bit before checking again ... */
351 		if (sleep_ok) {
352 			ms = delay[delay_idx];  /* last element may repeat */
353 			if (delay_idx < ARRAY_SIZE(delay) - 1)
354 				delay_idx++;
355 			msleep(ms);
356 		} else {
357 			mdelay(ms);
358 		}
359 	}
360 
361 	/* Loop trying to get ownership of the mailbox.  Return an error
362 	 * if we can't gain ownership.
363 	 */
364 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
365 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
366 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	if (v != MBOX_OWNER_DRV) {
368 		spin_lock(&adap->mbox_lock);
369 		list_del(&entry.list);
370 		spin_unlock(&adap->mbox_lock);
371 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
372 		t4_record_mbox(adap, cmd, size, access, ret);
373 		return ret;
374 	}
375 
376 	/* Copy in the new mailbox command and send it on its way ... */
377 	t4_record_mbox(adap, cmd, size, access, 0);
378 	for (i = 0; i < size; i += 8)
379 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
380 
381 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
382 	t4_read_reg(adap, ctl_reg);          /* flush write */
383 
384 	delay_idx = 0;
385 	ms = delay[0];
386 
387 	for (i = 0;
388 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
389 	     i < timeout;
390 	     i += ms) {
391 		if (sleep_ok) {
392 			ms = delay[delay_idx];  /* last element may repeat */
393 			if (delay_idx < ARRAY_SIZE(delay) - 1)
394 				delay_idx++;
395 			msleep(ms);
396 		} else
397 			mdelay(ms);
398 
399 		v = t4_read_reg(adap, ctl_reg);
400 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
401 			if (!(v & MBMSGVALID_F)) {
402 				t4_write_reg(adap, ctl_reg, 0);
403 				continue;
404 			}
405 
406 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
407 			res = be64_to_cpu(cmd_rpl[0]);
408 
409 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
410 				fw_asrt(adap, data_reg);
411 				res = FW_CMD_RETVAL_V(EIO);
412 			} else if (rpl) {
413 				memcpy(rpl, cmd_rpl, size);
414 			}
415 
416 			t4_write_reg(adap, ctl_reg, 0);
417 
418 			execute = i + ms;
419 			t4_record_mbox(adap, cmd_rpl,
420 				       MBOX_LEN, access, execute);
421 			spin_lock(&adap->mbox_lock);
422 			list_del(&entry.list);
423 			spin_unlock(&adap->mbox_lock);
424 			return -FW_CMD_RETVAL_G((int)res);
425 		}
426 	}
427 
428 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
429 	t4_record_mbox(adap, cmd, size, access, ret);
430 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
431 		*(const u8 *)cmd, mbox);
432 	t4_report_fw_error(adap);
433 	spin_lock(&adap->mbox_lock);
434 	list_del(&entry.list);
435 	spin_unlock(&adap->mbox_lock);
436 	t4_fatal_err(adap);
437 	return ret;
438 }
439 
t4_wr_mbox_meat(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok)440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
441 		    void *rpl, bool sleep_ok)
442 {
443 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
444 				       FW_CMD_MAX_TIMEOUT);
445 }
446 
t4_edc_err_read(struct adapter * adap,int idx)447 static int t4_edc_err_read(struct adapter *adap, int idx)
448 {
449 	u32 edc_ecc_err_addr_reg;
450 	u32 rdata_reg;
451 
452 	if (is_t4(adap->params.chip)) {
453 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
454 		return 0;
455 	}
456 	if (idx != 0 && idx != 1) {
457 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
458 		return 0;
459 	}
460 
461 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
462 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
463 
464 	CH_WARN(adap,
465 		"edc%d err addr 0x%x: 0x%x.\n",
466 		idx, edc_ecc_err_addr_reg,
467 		t4_read_reg(adap, edc_ecc_err_addr_reg));
468 	CH_WARN(adap,
469 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
470 		rdata_reg,
471 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
472 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
480 
481 	return 0;
482 }
483 
484 /**
485  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
486  *	@adap: the adapter
487  *	@win: PCI-E Memory Window to use
488  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
489  *	@addr: address within indicated memory type
490  *	@len: amount of memory to transfer
491  *	@hbuf: host memory buffer
492  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
493  *
494  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
495  *	firmware memory address and host buffer must be aligned on 32-bit
496  *	boudaries; the length may be arbitrary.  The memory is transferred as
497  *	a raw byte sequence from/to the firmware's memory.  If this memory
498  *	contains data structures which contain multi-byte integers, it's the
499  *	caller's responsibility to perform appropriate byte order conversions.
500  */
t4_memory_rw(struct adapter * adap,int win,int mtype,u32 addr,u32 len,void * hbuf,int dir)501 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
502 		 u32 len, void *hbuf, int dir)
503 {
504 	u32 pos, offset, resid, memoffset;
505 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
506 	u32 *buf;
507 
508 	/* Argument sanity checks ...
509 	 */
510 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
511 		return -EINVAL;
512 	buf = (u32 *)hbuf;
513 
514 	/* It's convenient to be able to handle lengths which aren't a
515 	 * multiple of 32-bits because we often end up transferring files to
516 	 * the firmware.  So we'll handle that by normalizing the length here
517 	 * and then handling any residual transfer at the end.
518 	 */
519 	resid = len & 0x3;
520 	len -= resid;
521 
522 	/* Offset into the region of memory which is being accessed
523 	 * MEM_EDC0 = 0
524 	 * MEM_EDC1 = 1
525 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
526 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
527 	 */
528 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
529 	if (mtype != MEM_MC1)
530 		memoffset = (mtype * (edc_size * 1024 * 1024));
531 	else {
532 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
533 						      MA_EXT_MEMORY0_BAR_A));
534 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
535 	}
536 
537 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
538 	addr = addr + memoffset;
539 
540 	/* Each PCI-E Memory Window is programmed with a window size -- or
541 	 * "aperture" -- which controls the granularity of its mapping onto
542 	 * adapter memory.  We need to grab that aperture in order to know
543 	 * how to use the specified window.  The window is also programmed
544 	 * with the base address of the Memory Window in BAR0's address
545 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
546 	 * the address is relative to BAR0.
547 	 */
548 	mem_reg = t4_read_reg(adap,
549 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
550 						  win));
551 	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
552 	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
553 	if (is_t4(adap->params.chip))
554 		mem_base -= adap->t4_bar0;
555 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
556 
557 	/* Calculate our initial PCI-E Memory Window Position and Offset into
558 	 * that Window.
559 	 */
560 	pos = addr & ~(mem_aperture-1);
561 	offset = addr - pos;
562 
563 	/* Set up initial PCI-E Memory Window to cover the start of our
564 	 * transfer.  (Read it back to ensure that changes propagate before we
565 	 * attempt to use the new value.)
566 	 */
567 	t4_write_reg(adap,
568 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
569 		     pos | win_pf);
570 	t4_read_reg(adap,
571 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
572 
573 	/* Transfer data to/from the adapter as long as there's an integral
574 	 * number of 32-bit transfers to complete.
575 	 *
576 	 * A note on Endianness issues:
577 	 *
578 	 * The "register" reads and writes below from/to the PCI-E Memory
579 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
580 	 * Little-Endian "swizzel."  As a result, if we have the following
581 	 * data in adapter memory:
582 	 *
583 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
584 	 *     Address:      i+0  i+1  i+2  i+3
585 	 *
586 	 * Then a read of the adapter memory via the PCI-E Memory Window
587 	 * will yield:
588 	 *
589 	 *     x = readl(i)
590 	 *         31                  0
591 	 *         [ b3 | b2 | b1 | b0 ]
592 	 *
593 	 * If this value is stored into local memory on a Little-Endian system
594 	 * it will show up correctly in local memory as:
595 	 *
596 	 *     ( ..., b0, b1, b2, b3, ... )
597 	 *
598 	 * But on a Big-Endian system, the store will show up in memory
599 	 * incorrectly swizzled as:
600 	 *
601 	 *     ( ..., b3, b2, b1, b0, ... )
602 	 *
603 	 * So we need to account for this in the reads and writes to the
604 	 * PCI-E Memory Window below by undoing the register read/write
605 	 * swizzels.
606 	 */
607 	while (len > 0) {
608 		if (dir == T4_MEMORY_READ)
609 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
610 						mem_base + offset));
611 		else
612 			t4_write_reg(adap, mem_base + offset,
613 				     (__force u32)cpu_to_le32(*buf++));
614 		offset += sizeof(__be32);
615 		len -= sizeof(__be32);
616 
617 		/* If we've reached the end of our current window aperture,
618 		 * move the PCI-E Memory Window on to the next.  Note that
619 		 * doing this here after "len" may be 0 allows us to set up
620 		 * the PCI-E Memory Window for a possible final residual
621 		 * transfer below ...
622 		 */
623 		if (offset == mem_aperture) {
624 			pos += mem_aperture;
625 			offset = 0;
626 			t4_write_reg(adap,
627 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
628 						    win), pos | win_pf);
629 			t4_read_reg(adap,
630 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
631 						    win));
632 		}
633 	}
634 
635 	/* If the original transfer had a length which wasn't a multiple of
636 	 * 32-bits, now's where we need to finish off the transfer of the
637 	 * residual amount.  The PCI-E Memory Window has already been moved
638 	 * above (if necessary) to cover this final transfer.
639 	 */
640 	if (resid) {
641 		union {
642 			u32 word;
643 			char byte[4];
644 		} last;
645 		unsigned char *bp;
646 		int i;
647 
648 		if (dir == T4_MEMORY_READ) {
649 			last.word = le32_to_cpu(
650 					(__force __le32)t4_read_reg(adap,
651 						mem_base + offset));
652 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
653 				bp[i] = last.byte[i];
654 		} else {
655 			last.word = *buf;
656 			for (i = resid; i < 4; i++)
657 				last.byte[i] = 0;
658 			t4_write_reg(adap, mem_base + offset,
659 				     (__force u32)cpu_to_le32(last.word));
660 		}
661 	}
662 
663 	return 0;
664 }
665 
666 /* Return the specified PCI-E Configuration Space register from our Physical
667  * Function.  We try first via a Firmware LDST Command since we prefer to let
668  * the firmware own all of these registers, but if that fails we go for it
669  * directly ourselves.
670  */
t4_read_pcie_cfg4(struct adapter * adap,int reg)671 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
672 {
673 	u32 val, ldst_addrspace;
674 
675 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
676 	 * retrieve the specified PCI-E Configuration Space register.
677 	 */
678 	struct fw_ldst_cmd ldst_cmd;
679 	int ret;
680 
681 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
682 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
683 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
684 					       FW_CMD_REQUEST_F |
685 					       FW_CMD_READ_F |
686 					       ldst_addrspace);
687 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
688 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
689 	ldst_cmd.u.pcie.ctrl_to_fn =
690 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
691 	ldst_cmd.u.pcie.r = reg;
692 
693 	/* If the LDST Command succeeds, return the result, otherwise
694 	 * fall through to reading it directly ourselves ...
695 	 */
696 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
697 			 &ldst_cmd);
698 	if (ret == 0)
699 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
700 	else
701 		/* Read the desired Configuration Space register via the PCI-E
702 		 * Backdoor mechanism.
703 		 */
704 		t4_hw_pci_read_cfg4(adap, reg, &val);
705 	return val;
706 }
707 
708 /* Get the window based on base passed to it.
709  * Window aperture is currently unhandled, but there is no use case for it
710  * right now
711  */
t4_get_window(struct adapter * adap,u32 pci_base,u64 pci_mask,u32 memwin_base)712 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
713 			 u32 memwin_base)
714 {
715 	u32 ret;
716 
717 	if (is_t4(adap->params.chip)) {
718 		u32 bar0;
719 
720 		/* Truncation intentional: we only read the bottom 32-bits of
721 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
722 		 * mechanism to read BAR0 instead of using
723 		 * pci_resource_start() because we could be operating from
724 		 * within a Virtual Machine which is trapping our accesses to
725 		 * our Configuration Space and we need to set up the PCI-E
726 		 * Memory Window decoders with the actual addresses which will
727 		 * be coming across the PCI-E link.
728 		 */
729 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
730 		bar0 &= pci_mask;
731 		adap->t4_bar0 = bar0;
732 
733 		ret = bar0 + memwin_base;
734 	} else {
735 		/* For T5, only relative offset inside the PCIe BAR is passed */
736 		ret = memwin_base;
737 	}
738 	return ret;
739 }
740 
741 /* Get the default utility window (win0) used by everyone */
t4_get_util_window(struct adapter * adap)742 u32 t4_get_util_window(struct adapter *adap)
743 {
744 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
745 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
746 }
747 
748 /* Set up memory window for accessing adapter memory ranges.  (Read
749  * back MA register to ensure that changes propagate before we attempt
750  * to use the new values.)
751  */
t4_setup_memwin(struct adapter * adap,u32 memwin_base,u32 window)752 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
753 {
754 	t4_write_reg(adap,
755 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
756 		     memwin_base | BIR_V(0) |
757 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
758 	t4_read_reg(adap,
759 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
760 }
761 
762 /**
763  *	t4_get_regs_len - return the size of the chips register set
764  *	@adapter: the adapter
765  *
766  *	Returns the size of the chip's BAR0 register space.
767  */
t4_get_regs_len(struct adapter * adapter)768 unsigned int t4_get_regs_len(struct adapter *adapter)
769 {
770 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
771 
772 	switch (chip_version) {
773 	case CHELSIO_T4:
774 		return T4_REGMAP_SIZE;
775 
776 	case CHELSIO_T5:
777 	case CHELSIO_T6:
778 		return T5_REGMAP_SIZE;
779 	}
780 
781 	dev_err(adapter->pdev_dev,
782 		"Unsupported chip version %d\n", chip_version);
783 	return 0;
784 }
785 
786 /**
787  *	t4_get_regs - read chip registers into provided buffer
788  *	@adap: the adapter
789  *	@buf: register buffer
790  *	@buf_size: size (in bytes) of register buffer
791  *
792  *	If the provided register buffer isn't large enough for the chip's
793  *	full register range, the register dump will be truncated to the
794  *	register buffer's size.
795  */
t4_get_regs(struct adapter * adap,void * buf,size_t buf_size)796 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
797 {
798 	static const unsigned int t4_reg_ranges[] = {
799 		0x1008, 0x1108,
800 		0x1180, 0x1184,
801 		0x1190, 0x1194,
802 		0x11a0, 0x11a4,
803 		0x11b0, 0x11b4,
804 		0x11fc, 0x123c,
805 		0x1300, 0x173c,
806 		0x1800, 0x18fc,
807 		0x3000, 0x30d8,
808 		0x30e0, 0x30e4,
809 		0x30ec, 0x5910,
810 		0x5920, 0x5924,
811 		0x5960, 0x5960,
812 		0x5968, 0x5968,
813 		0x5970, 0x5970,
814 		0x5978, 0x5978,
815 		0x5980, 0x5980,
816 		0x5988, 0x5988,
817 		0x5990, 0x5990,
818 		0x5998, 0x5998,
819 		0x59a0, 0x59d4,
820 		0x5a00, 0x5ae0,
821 		0x5ae8, 0x5ae8,
822 		0x5af0, 0x5af0,
823 		0x5af8, 0x5af8,
824 		0x6000, 0x6098,
825 		0x6100, 0x6150,
826 		0x6200, 0x6208,
827 		0x6240, 0x6248,
828 		0x6280, 0x62b0,
829 		0x62c0, 0x6338,
830 		0x6370, 0x638c,
831 		0x6400, 0x643c,
832 		0x6500, 0x6524,
833 		0x6a00, 0x6a04,
834 		0x6a14, 0x6a38,
835 		0x6a60, 0x6a70,
836 		0x6a78, 0x6a78,
837 		0x6b00, 0x6b0c,
838 		0x6b1c, 0x6b84,
839 		0x6bf0, 0x6bf8,
840 		0x6c00, 0x6c0c,
841 		0x6c1c, 0x6c84,
842 		0x6cf0, 0x6cf8,
843 		0x6d00, 0x6d0c,
844 		0x6d1c, 0x6d84,
845 		0x6df0, 0x6df8,
846 		0x6e00, 0x6e0c,
847 		0x6e1c, 0x6e84,
848 		0x6ef0, 0x6ef8,
849 		0x6f00, 0x6f0c,
850 		0x6f1c, 0x6f84,
851 		0x6ff0, 0x6ff8,
852 		0x7000, 0x700c,
853 		0x701c, 0x7084,
854 		0x70f0, 0x70f8,
855 		0x7100, 0x710c,
856 		0x711c, 0x7184,
857 		0x71f0, 0x71f8,
858 		0x7200, 0x720c,
859 		0x721c, 0x7284,
860 		0x72f0, 0x72f8,
861 		0x7300, 0x730c,
862 		0x731c, 0x7384,
863 		0x73f0, 0x73f8,
864 		0x7400, 0x7450,
865 		0x7500, 0x7530,
866 		0x7600, 0x760c,
867 		0x7614, 0x761c,
868 		0x7680, 0x76cc,
869 		0x7700, 0x7798,
870 		0x77c0, 0x77fc,
871 		0x7900, 0x79fc,
872 		0x7b00, 0x7b58,
873 		0x7b60, 0x7b84,
874 		0x7b8c, 0x7c38,
875 		0x7d00, 0x7d38,
876 		0x7d40, 0x7d80,
877 		0x7d8c, 0x7ddc,
878 		0x7de4, 0x7e04,
879 		0x7e10, 0x7e1c,
880 		0x7e24, 0x7e38,
881 		0x7e40, 0x7e44,
882 		0x7e4c, 0x7e78,
883 		0x7e80, 0x7ea4,
884 		0x7eac, 0x7edc,
885 		0x7ee8, 0x7efc,
886 		0x8dc0, 0x8e04,
887 		0x8e10, 0x8e1c,
888 		0x8e30, 0x8e78,
889 		0x8ea0, 0x8eb8,
890 		0x8ec0, 0x8f6c,
891 		0x8fc0, 0x9008,
892 		0x9010, 0x9058,
893 		0x9060, 0x9060,
894 		0x9068, 0x9074,
895 		0x90fc, 0x90fc,
896 		0x9400, 0x9408,
897 		0x9410, 0x9458,
898 		0x9600, 0x9600,
899 		0x9608, 0x9638,
900 		0x9640, 0x96bc,
901 		0x9800, 0x9808,
902 		0x9820, 0x983c,
903 		0x9850, 0x9864,
904 		0x9c00, 0x9c6c,
905 		0x9c80, 0x9cec,
906 		0x9d00, 0x9d6c,
907 		0x9d80, 0x9dec,
908 		0x9e00, 0x9e6c,
909 		0x9e80, 0x9eec,
910 		0x9f00, 0x9f6c,
911 		0x9f80, 0x9fec,
912 		0xd004, 0xd004,
913 		0xd010, 0xd03c,
914 		0xdfc0, 0xdfe0,
915 		0xe000, 0xea7c,
916 		0xf000, 0x11110,
917 		0x11118, 0x11190,
918 		0x19040, 0x1906c,
919 		0x19078, 0x19080,
920 		0x1908c, 0x190e4,
921 		0x190f0, 0x190f8,
922 		0x19100, 0x19110,
923 		0x19120, 0x19124,
924 		0x19150, 0x19194,
925 		0x1919c, 0x191b0,
926 		0x191d0, 0x191e8,
927 		0x19238, 0x1924c,
928 		0x193f8, 0x1943c,
929 		0x1944c, 0x19474,
930 		0x19490, 0x194e0,
931 		0x194f0, 0x194f8,
932 		0x19800, 0x19c08,
933 		0x19c10, 0x19c90,
934 		0x19ca0, 0x19ce4,
935 		0x19cf0, 0x19d40,
936 		0x19d50, 0x19d94,
937 		0x19da0, 0x19de8,
938 		0x19df0, 0x19e40,
939 		0x19e50, 0x19e90,
940 		0x19ea0, 0x19f4c,
941 		0x1a000, 0x1a004,
942 		0x1a010, 0x1a06c,
943 		0x1a0b0, 0x1a0e4,
944 		0x1a0ec, 0x1a0f4,
945 		0x1a100, 0x1a108,
946 		0x1a114, 0x1a120,
947 		0x1a128, 0x1a130,
948 		0x1a138, 0x1a138,
949 		0x1a190, 0x1a1c4,
950 		0x1a1fc, 0x1a1fc,
951 		0x1e040, 0x1e04c,
952 		0x1e284, 0x1e28c,
953 		0x1e2c0, 0x1e2c0,
954 		0x1e2e0, 0x1e2e0,
955 		0x1e300, 0x1e384,
956 		0x1e3c0, 0x1e3c8,
957 		0x1e440, 0x1e44c,
958 		0x1e684, 0x1e68c,
959 		0x1e6c0, 0x1e6c0,
960 		0x1e6e0, 0x1e6e0,
961 		0x1e700, 0x1e784,
962 		0x1e7c0, 0x1e7c8,
963 		0x1e840, 0x1e84c,
964 		0x1ea84, 0x1ea8c,
965 		0x1eac0, 0x1eac0,
966 		0x1eae0, 0x1eae0,
967 		0x1eb00, 0x1eb84,
968 		0x1ebc0, 0x1ebc8,
969 		0x1ec40, 0x1ec4c,
970 		0x1ee84, 0x1ee8c,
971 		0x1eec0, 0x1eec0,
972 		0x1eee0, 0x1eee0,
973 		0x1ef00, 0x1ef84,
974 		0x1efc0, 0x1efc8,
975 		0x1f040, 0x1f04c,
976 		0x1f284, 0x1f28c,
977 		0x1f2c0, 0x1f2c0,
978 		0x1f2e0, 0x1f2e0,
979 		0x1f300, 0x1f384,
980 		0x1f3c0, 0x1f3c8,
981 		0x1f440, 0x1f44c,
982 		0x1f684, 0x1f68c,
983 		0x1f6c0, 0x1f6c0,
984 		0x1f6e0, 0x1f6e0,
985 		0x1f700, 0x1f784,
986 		0x1f7c0, 0x1f7c8,
987 		0x1f840, 0x1f84c,
988 		0x1fa84, 0x1fa8c,
989 		0x1fac0, 0x1fac0,
990 		0x1fae0, 0x1fae0,
991 		0x1fb00, 0x1fb84,
992 		0x1fbc0, 0x1fbc8,
993 		0x1fc40, 0x1fc4c,
994 		0x1fe84, 0x1fe8c,
995 		0x1fec0, 0x1fec0,
996 		0x1fee0, 0x1fee0,
997 		0x1ff00, 0x1ff84,
998 		0x1ffc0, 0x1ffc8,
999 		0x20000, 0x2002c,
1000 		0x20100, 0x2013c,
1001 		0x20190, 0x201a0,
1002 		0x201a8, 0x201b8,
1003 		0x201c4, 0x201c8,
1004 		0x20200, 0x20318,
1005 		0x20400, 0x204b4,
1006 		0x204c0, 0x20528,
1007 		0x20540, 0x20614,
1008 		0x21000, 0x21040,
1009 		0x2104c, 0x21060,
1010 		0x210c0, 0x210ec,
1011 		0x21200, 0x21268,
1012 		0x21270, 0x21284,
1013 		0x212fc, 0x21388,
1014 		0x21400, 0x21404,
1015 		0x21500, 0x21500,
1016 		0x21510, 0x21518,
1017 		0x2152c, 0x21530,
1018 		0x2153c, 0x2153c,
1019 		0x21550, 0x21554,
1020 		0x21600, 0x21600,
1021 		0x21608, 0x2161c,
1022 		0x21624, 0x21628,
1023 		0x21630, 0x21634,
1024 		0x2163c, 0x2163c,
1025 		0x21700, 0x2171c,
1026 		0x21780, 0x2178c,
1027 		0x21800, 0x21818,
1028 		0x21820, 0x21828,
1029 		0x21830, 0x21848,
1030 		0x21850, 0x21854,
1031 		0x21860, 0x21868,
1032 		0x21870, 0x21870,
1033 		0x21878, 0x21898,
1034 		0x218a0, 0x218a8,
1035 		0x218b0, 0x218c8,
1036 		0x218d0, 0x218d4,
1037 		0x218e0, 0x218e8,
1038 		0x218f0, 0x218f0,
1039 		0x218f8, 0x21a18,
1040 		0x21a20, 0x21a28,
1041 		0x21a30, 0x21a48,
1042 		0x21a50, 0x21a54,
1043 		0x21a60, 0x21a68,
1044 		0x21a70, 0x21a70,
1045 		0x21a78, 0x21a98,
1046 		0x21aa0, 0x21aa8,
1047 		0x21ab0, 0x21ac8,
1048 		0x21ad0, 0x21ad4,
1049 		0x21ae0, 0x21ae8,
1050 		0x21af0, 0x21af0,
1051 		0x21af8, 0x21c18,
1052 		0x21c20, 0x21c20,
1053 		0x21c28, 0x21c30,
1054 		0x21c38, 0x21c38,
1055 		0x21c80, 0x21c98,
1056 		0x21ca0, 0x21ca8,
1057 		0x21cb0, 0x21cc8,
1058 		0x21cd0, 0x21cd4,
1059 		0x21ce0, 0x21ce8,
1060 		0x21cf0, 0x21cf0,
1061 		0x21cf8, 0x21d7c,
1062 		0x21e00, 0x21e04,
1063 		0x22000, 0x2202c,
1064 		0x22100, 0x2213c,
1065 		0x22190, 0x221a0,
1066 		0x221a8, 0x221b8,
1067 		0x221c4, 0x221c8,
1068 		0x22200, 0x22318,
1069 		0x22400, 0x224b4,
1070 		0x224c0, 0x22528,
1071 		0x22540, 0x22614,
1072 		0x23000, 0x23040,
1073 		0x2304c, 0x23060,
1074 		0x230c0, 0x230ec,
1075 		0x23200, 0x23268,
1076 		0x23270, 0x23284,
1077 		0x232fc, 0x23388,
1078 		0x23400, 0x23404,
1079 		0x23500, 0x23500,
1080 		0x23510, 0x23518,
1081 		0x2352c, 0x23530,
1082 		0x2353c, 0x2353c,
1083 		0x23550, 0x23554,
1084 		0x23600, 0x23600,
1085 		0x23608, 0x2361c,
1086 		0x23624, 0x23628,
1087 		0x23630, 0x23634,
1088 		0x2363c, 0x2363c,
1089 		0x23700, 0x2371c,
1090 		0x23780, 0x2378c,
1091 		0x23800, 0x23818,
1092 		0x23820, 0x23828,
1093 		0x23830, 0x23848,
1094 		0x23850, 0x23854,
1095 		0x23860, 0x23868,
1096 		0x23870, 0x23870,
1097 		0x23878, 0x23898,
1098 		0x238a0, 0x238a8,
1099 		0x238b0, 0x238c8,
1100 		0x238d0, 0x238d4,
1101 		0x238e0, 0x238e8,
1102 		0x238f0, 0x238f0,
1103 		0x238f8, 0x23a18,
1104 		0x23a20, 0x23a28,
1105 		0x23a30, 0x23a48,
1106 		0x23a50, 0x23a54,
1107 		0x23a60, 0x23a68,
1108 		0x23a70, 0x23a70,
1109 		0x23a78, 0x23a98,
1110 		0x23aa0, 0x23aa8,
1111 		0x23ab0, 0x23ac8,
1112 		0x23ad0, 0x23ad4,
1113 		0x23ae0, 0x23ae8,
1114 		0x23af0, 0x23af0,
1115 		0x23af8, 0x23c18,
1116 		0x23c20, 0x23c20,
1117 		0x23c28, 0x23c30,
1118 		0x23c38, 0x23c38,
1119 		0x23c80, 0x23c98,
1120 		0x23ca0, 0x23ca8,
1121 		0x23cb0, 0x23cc8,
1122 		0x23cd0, 0x23cd4,
1123 		0x23ce0, 0x23ce8,
1124 		0x23cf0, 0x23cf0,
1125 		0x23cf8, 0x23d7c,
1126 		0x23e00, 0x23e04,
1127 		0x24000, 0x2402c,
1128 		0x24100, 0x2413c,
1129 		0x24190, 0x241a0,
1130 		0x241a8, 0x241b8,
1131 		0x241c4, 0x241c8,
1132 		0x24200, 0x24318,
1133 		0x24400, 0x244b4,
1134 		0x244c0, 0x24528,
1135 		0x24540, 0x24614,
1136 		0x25000, 0x25040,
1137 		0x2504c, 0x25060,
1138 		0x250c0, 0x250ec,
1139 		0x25200, 0x25268,
1140 		0x25270, 0x25284,
1141 		0x252fc, 0x25388,
1142 		0x25400, 0x25404,
1143 		0x25500, 0x25500,
1144 		0x25510, 0x25518,
1145 		0x2552c, 0x25530,
1146 		0x2553c, 0x2553c,
1147 		0x25550, 0x25554,
1148 		0x25600, 0x25600,
1149 		0x25608, 0x2561c,
1150 		0x25624, 0x25628,
1151 		0x25630, 0x25634,
1152 		0x2563c, 0x2563c,
1153 		0x25700, 0x2571c,
1154 		0x25780, 0x2578c,
1155 		0x25800, 0x25818,
1156 		0x25820, 0x25828,
1157 		0x25830, 0x25848,
1158 		0x25850, 0x25854,
1159 		0x25860, 0x25868,
1160 		0x25870, 0x25870,
1161 		0x25878, 0x25898,
1162 		0x258a0, 0x258a8,
1163 		0x258b0, 0x258c8,
1164 		0x258d0, 0x258d4,
1165 		0x258e0, 0x258e8,
1166 		0x258f0, 0x258f0,
1167 		0x258f8, 0x25a18,
1168 		0x25a20, 0x25a28,
1169 		0x25a30, 0x25a48,
1170 		0x25a50, 0x25a54,
1171 		0x25a60, 0x25a68,
1172 		0x25a70, 0x25a70,
1173 		0x25a78, 0x25a98,
1174 		0x25aa0, 0x25aa8,
1175 		0x25ab0, 0x25ac8,
1176 		0x25ad0, 0x25ad4,
1177 		0x25ae0, 0x25ae8,
1178 		0x25af0, 0x25af0,
1179 		0x25af8, 0x25c18,
1180 		0x25c20, 0x25c20,
1181 		0x25c28, 0x25c30,
1182 		0x25c38, 0x25c38,
1183 		0x25c80, 0x25c98,
1184 		0x25ca0, 0x25ca8,
1185 		0x25cb0, 0x25cc8,
1186 		0x25cd0, 0x25cd4,
1187 		0x25ce0, 0x25ce8,
1188 		0x25cf0, 0x25cf0,
1189 		0x25cf8, 0x25d7c,
1190 		0x25e00, 0x25e04,
1191 		0x26000, 0x2602c,
1192 		0x26100, 0x2613c,
1193 		0x26190, 0x261a0,
1194 		0x261a8, 0x261b8,
1195 		0x261c4, 0x261c8,
1196 		0x26200, 0x26318,
1197 		0x26400, 0x264b4,
1198 		0x264c0, 0x26528,
1199 		0x26540, 0x26614,
1200 		0x27000, 0x27040,
1201 		0x2704c, 0x27060,
1202 		0x270c0, 0x270ec,
1203 		0x27200, 0x27268,
1204 		0x27270, 0x27284,
1205 		0x272fc, 0x27388,
1206 		0x27400, 0x27404,
1207 		0x27500, 0x27500,
1208 		0x27510, 0x27518,
1209 		0x2752c, 0x27530,
1210 		0x2753c, 0x2753c,
1211 		0x27550, 0x27554,
1212 		0x27600, 0x27600,
1213 		0x27608, 0x2761c,
1214 		0x27624, 0x27628,
1215 		0x27630, 0x27634,
1216 		0x2763c, 0x2763c,
1217 		0x27700, 0x2771c,
1218 		0x27780, 0x2778c,
1219 		0x27800, 0x27818,
1220 		0x27820, 0x27828,
1221 		0x27830, 0x27848,
1222 		0x27850, 0x27854,
1223 		0x27860, 0x27868,
1224 		0x27870, 0x27870,
1225 		0x27878, 0x27898,
1226 		0x278a0, 0x278a8,
1227 		0x278b0, 0x278c8,
1228 		0x278d0, 0x278d4,
1229 		0x278e0, 0x278e8,
1230 		0x278f0, 0x278f0,
1231 		0x278f8, 0x27a18,
1232 		0x27a20, 0x27a28,
1233 		0x27a30, 0x27a48,
1234 		0x27a50, 0x27a54,
1235 		0x27a60, 0x27a68,
1236 		0x27a70, 0x27a70,
1237 		0x27a78, 0x27a98,
1238 		0x27aa0, 0x27aa8,
1239 		0x27ab0, 0x27ac8,
1240 		0x27ad0, 0x27ad4,
1241 		0x27ae0, 0x27ae8,
1242 		0x27af0, 0x27af0,
1243 		0x27af8, 0x27c18,
1244 		0x27c20, 0x27c20,
1245 		0x27c28, 0x27c30,
1246 		0x27c38, 0x27c38,
1247 		0x27c80, 0x27c98,
1248 		0x27ca0, 0x27ca8,
1249 		0x27cb0, 0x27cc8,
1250 		0x27cd0, 0x27cd4,
1251 		0x27ce0, 0x27ce8,
1252 		0x27cf0, 0x27cf0,
1253 		0x27cf8, 0x27d7c,
1254 		0x27e00, 0x27e04,
1255 	};
1256 
1257 	static const unsigned int t5_reg_ranges[] = {
1258 		0x1008, 0x10c0,
1259 		0x10cc, 0x10f8,
1260 		0x1100, 0x1100,
1261 		0x110c, 0x1148,
1262 		0x1180, 0x1184,
1263 		0x1190, 0x1194,
1264 		0x11a0, 0x11a4,
1265 		0x11b0, 0x11b4,
1266 		0x11fc, 0x123c,
1267 		0x1280, 0x173c,
1268 		0x1800, 0x18fc,
1269 		0x3000, 0x3028,
1270 		0x3060, 0x30b0,
1271 		0x30b8, 0x30d8,
1272 		0x30e0, 0x30fc,
1273 		0x3140, 0x357c,
1274 		0x35a8, 0x35cc,
1275 		0x35ec, 0x35ec,
1276 		0x3600, 0x5624,
1277 		0x56cc, 0x56ec,
1278 		0x56f4, 0x5720,
1279 		0x5728, 0x575c,
1280 		0x580c, 0x5814,
1281 		0x5890, 0x589c,
1282 		0x58a4, 0x58ac,
1283 		0x58b8, 0x58bc,
1284 		0x5940, 0x59c8,
1285 		0x59d0, 0x59dc,
1286 		0x59fc, 0x5a18,
1287 		0x5a60, 0x5a70,
1288 		0x5a80, 0x5a9c,
1289 		0x5b94, 0x5bfc,
1290 		0x6000, 0x6020,
1291 		0x6028, 0x6040,
1292 		0x6058, 0x609c,
1293 		0x60a8, 0x614c,
1294 		0x7700, 0x7798,
1295 		0x77c0, 0x78fc,
1296 		0x7b00, 0x7b58,
1297 		0x7b60, 0x7b84,
1298 		0x7b8c, 0x7c54,
1299 		0x7d00, 0x7d38,
1300 		0x7d40, 0x7d80,
1301 		0x7d8c, 0x7ddc,
1302 		0x7de4, 0x7e04,
1303 		0x7e10, 0x7e1c,
1304 		0x7e24, 0x7e38,
1305 		0x7e40, 0x7e44,
1306 		0x7e4c, 0x7e78,
1307 		0x7e80, 0x7edc,
1308 		0x7ee8, 0x7efc,
1309 		0x8dc0, 0x8de0,
1310 		0x8df8, 0x8e04,
1311 		0x8e10, 0x8e84,
1312 		0x8ea0, 0x8f84,
1313 		0x8fc0, 0x9058,
1314 		0x9060, 0x9060,
1315 		0x9068, 0x90f8,
1316 		0x9400, 0x9408,
1317 		0x9410, 0x9470,
1318 		0x9600, 0x9600,
1319 		0x9608, 0x9638,
1320 		0x9640, 0x96f4,
1321 		0x9800, 0x9808,
1322 		0x9820, 0x983c,
1323 		0x9850, 0x9864,
1324 		0x9c00, 0x9c6c,
1325 		0x9c80, 0x9cec,
1326 		0x9d00, 0x9d6c,
1327 		0x9d80, 0x9dec,
1328 		0x9e00, 0x9e6c,
1329 		0x9e80, 0x9eec,
1330 		0x9f00, 0x9f6c,
1331 		0x9f80, 0xa020,
1332 		0xd004, 0xd004,
1333 		0xd010, 0xd03c,
1334 		0xdfc0, 0xdfe0,
1335 		0xe000, 0x1106c,
1336 		0x11074, 0x11088,
1337 		0x1109c, 0x1117c,
1338 		0x11190, 0x11204,
1339 		0x19040, 0x1906c,
1340 		0x19078, 0x19080,
1341 		0x1908c, 0x190e8,
1342 		0x190f0, 0x190f8,
1343 		0x19100, 0x19110,
1344 		0x19120, 0x19124,
1345 		0x19150, 0x19194,
1346 		0x1919c, 0x191b0,
1347 		0x191d0, 0x191e8,
1348 		0x19238, 0x19290,
1349 		0x193f8, 0x19428,
1350 		0x19430, 0x19444,
1351 		0x1944c, 0x1946c,
1352 		0x19474, 0x19474,
1353 		0x19490, 0x194cc,
1354 		0x194f0, 0x194f8,
1355 		0x19c00, 0x19c08,
1356 		0x19c10, 0x19c60,
1357 		0x19c94, 0x19ce4,
1358 		0x19cf0, 0x19d40,
1359 		0x19d50, 0x19d94,
1360 		0x19da0, 0x19de8,
1361 		0x19df0, 0x19e10,
1362 		0x19e50, 0x19e90,
1363 		0x19ea0, 0x19f24,
1364 		0x19f34, 0x19f34,
1365 		0x19f40, 0x19f50,
1366 		0x19f90, 0x19fb4,
1367 		0x19fc4, 0x19fe4,
1368 		0x1a000, 0x1a004,
1369 		0x1a010, 0x1a06c,
1370 		0x1a0b0, 0x1a0e4,
1371 		0x1a0ec, 0x1a0f8,
1372 		0x1a100, 0x1a108,
1373 		0x1a114, 0x1a120,
1374 		0x1a128, 0x1a130,
1375 		0x1a138, 0x1a138,
1376 		0x1a190, 0x1a1c4,
1377 		0x1a1fc, 0x1a1fc,
1378 		0x1e008, 0x1e00c,
1379 		0x1e040, 0x1e044,
1380 		0x1e04c, 0x1e04c,
1381 		0x1e284, 0x1e290,
1382 		0x1e2c0, 0x1e2c0,
1383 		0x1e2e0, 0x1e2e0,
1384 		0x1e300, 0x1e384,
1385 		0x1e3c0, 0x1e3c8,
1386 		0x1e408, 0x1e40c,
1387 		0x1e440, 0x1e444,
1388 		0x1e44c, 0x1e44c,
1389 		0x1e684, 0x1e690,
1390 		0x1e6c0, 0x1e6c0,
1391 		0x1e6e0, 0x1e6e0,
1392 		0x1e700, 0x1e784,
1393 		0x1e7c0, 0x1e7c8,
1394 		0x1e808, 0x1e80c,
1395 		0x1e840, 0x1e844,
1396 		0x1e84c, 0x1e84c,
1397 		0x1ea84, 0x1ea90,
1398 		0x1eac0, 0x1eac0,
1399 		0x1eae0, 0x1eae0,
1400 		0x1eb00, 0x1eb84,
1401 		0x1ebc0, 0x1ebc8,
1402 		0x1ec08, 0x1ec0c,
1403 		0x1ec40, 0x1ec44,
1404 		0x1ec4c, 0x1ec4c,
1405 		0x1ee84, 0x1ee90,
1406 		0x1eec0, 0x1eec0,
1407 		0x1eee0, 0x1eee0,
1408 		0x1ef00, 0x1ef84,
1409 		0x1efc0, 0x1efc8,
1410 		0x1f008, 0x1f00c,
1411 		0x1f040, 0x1f044,
1412 		0x1f04c, 0x1f04c,
1413 		0x1f284, 0x1f290,
1414 		0x1f2c0, 0x1f2c0,
1415 		0x1f2e0, 0x1f2e0,
1416 		0x1f300, 0x1f384,
1417 		0x1f3c0, 0x1f3c8,
1418 		0x1f408, 0x1f40c,
1419 		0x1f440, 0x1f444,
1420 		0x1f44c, 0x1f44c,
1421 		0x1f684, 0x1f690,
1422 		0x1f6c0, 0x1f6c0,
1423 		0x1f6e0, 0x1f6e0,
1424 		0x1f700, 0x1f784,
1425 		0x1f7c0, 0x1f7c8,
1426 		0x1f808, 0x1f80c,
1427 		0x1f840, 0x1f844,
1428 		0x1f84c, 0x1f84c,
1429 		0x1fa84, 0x1fa90,
1430 		0x1fac0, 0x1fac0,
1431 		0x1fae0, 0x1fae0,
1432 		0x1fb00, 0x1fb84,
1433 		0x1fbc0, 0x1fbc8,
1434 		0x1fc08, 0x1fc0c,
1435 		0x1fc40, 0x1fc44,
1436 		0x1fc4c, 0x1fc4c,
1437 		0x1fe84, 0x1fe90,
1438 		0x1fec0, 0x1fec0,
1439 		0x1fee0, 0x1fee0,
1440 		0x1ff00, 0x1ff84,
1441 		0x1ffc0, 0x1ffc8,
1442 		0x30000, 0x30030,
1443 		0x30100, 0x30144,
1444 		0x30190, 0x301a0,
1445 		0x301a8, 0x301b8,
1446 		0x301c4, 0x301c8,
1447 		0x301d0, 0x301d0,
1448 		0x30200, 0x30318,
1449 		0x30400, 0x304b4,
1450 		0x304c0, 0x3052c,
1451 		0x30540, 0x3061c,
1452 		0x30800, 0x30828,
1453 		0x30834, 0x30834,
1454 		0x308c0, 0x30908,
1455 		0x30910, 0x309ac,
1456 		0x30a00, 0x30a14,
1457 		0x30a1c, 0x30a2c,
1458 		0x30a44, 0x30a50,
1459 		0x30a74, 0x30a74,
1460 		0x30a7c, 0x30afc,
1461 		0x30b08, 0x30c24,
1462 		0x30d00, 0x30d00,
1463 		0x30d08, 0x30d14,
1464 		0x30d1c, 0x30d20,
1465 		0x30d3c, 0x30d3c,
1466 		0x30d48, 0x30d50,
1467 		0x31200, 0x3120c,
1468 		0x31220, 0x31220,
1469 		0x31240, 0x31240,
1470 		0x31600, 0x3160c,
1471 		0x31a00, 0x31a1c,
1472 		0x31e00, 0x31e20,
1473 		0x31e38, 0x31e3c,
1474 		0x31e80, 0x31e80,
1475 		0x31e88, 0x31ea8,
1476 		0x31eb0, 0x31eb4,
1477 		0x31ec8, 0x31ed4,
1478 		0x31fb8, 0x32004,
1479 		0x32200, 0x32200,
1480 		0x32208, 0x32240,
1481 		0x32248, 0x32280,
1482 		0x32288, 0x322c0,
1483 		0x322c8, 0x322fc,
1484 		0x32600, 0x32630,
1485 		0x32a00, 0x32abc,
1486 		0x32b00, 0x32b10,
1487 		0x32b20, 0x32b30,
1488 		0x32b40, 0x32b50,
1489 		0x32b60, 0x32b70,
1490 		0x33000, 0x33028,
1491 		0x33030, 0x33048,
1492 		0x33060, 0x33068,
1493 		0x33070, 0x3309c,
1494 		0x330f0, 0x33128,
1495 		0x33130, 0x33148,
1496 		0x33160, 0x33168,
1497 		0x33170, 0x3319c,
1498 		0x331f0, 0x33238,
1499 		0x33240, 0x33240,
1500 		0x33248, 0x33250,
1501 		0x3325c, 0x33264,
1502 		0x33270, 0x332b8,
1503 		0x332c0, 0x332e4,
1504 		0x332f8, 0x33338,
1505 		0x33340, 0x33340,
1506 		0x33348, 0x33350,
1507 		0x3335c, 0x33364,
1508 		0x33370, 0x333b8,
1509 		0x333c0, 0x333e4,
1510 		0x333f8, 0x33428,
1511 		0x33430, 0x33448,
1512 		0x33460, 0x33468,
1513 		0x33470, 0x3349c,
1514 		0x334f0, 0x33528,
1515 		0x33530, 0x33548,
1516 		0x33560, 0x33568,
1517 		0x33570, 0x3359c,
1518 		0x335f0, 0x33638,
1519 		0x33640, 0x33640,
1520 		0x33648, 0x33650,
1521 		0x3365c, 0x33664,
1522 		0x33670, 0x336b8,
1523 		0x336c0, 0x336e4,
1524 		0x336f8, 0x33738,
1525 		0x33740, 0x33740,
1526 		0x33748, 0x33750,
1527 		0x3375c, 0x33764,
1528 		0x33770, 0x337b8,
1529 		0x337c0, 0x337e4,
1530 		0x337f8, 0x337fc,
1531 		0x33814, 0x33814,
1532 		0x3382c, 0x3382c,
1533 		0x33880, 0x3388c,
1534 		0x338e8, 0x338ec,
1535 		0x33900, 0x33928,
1536 		0x33930, 0x33948,
1537 		0x33960, 0x33968,
1538 		0x33970, 0x3399c,
1539 		0x339f0, 0x33a38,
1540 		0x33a40, 0x33a40,
1541 		0x33a48, 0x33a50,
1542 		0x33a5c, 0x33a64,
1543 		0x33a70, 0x33ab8,
1544 		0x33ac0, 0x33ae4,
1545 		0x33af8, 0x33b10,
1546 		0x33b28, 0x33b28,
1547 		0x33b3c, 0x33b50,
1548 		0x33bf0, 0x33c10,
1549 		0x33c28, 0x33c28,
1550 		0x33c3c, 0x33c50,
1551 		0x33cf0, 0x33cfc,
1552 		0x34000, 0x34030,
1553 		0x34100, 0x34144,
1554 		0x34190, 0x341a0,
1555 		0x341a8, 0x341b8,
1556 		0x341c4, 0x341c8,
1557 		0x341d0, 0x341d0,
1558 		0x34200, 0x34318,
1559 		0x34400, 0x344b4,
1560 		0x344c0, 0x3452c,
1561 		0x34540, 0x3461c,
1562 		0x34800, 0x34828,
1563 		0x34834, 0x34834,
1564 		0x348c0, 0x34908,
1565 		0x34910, 0x349ac,
1566 		0x34a00, 0x34a14,
1567 		0x34a1c, 0x34a2c,
1568 		0x34a44, 0x34a50,
1569 		0x34a74, 0x34a74,
1570 		0x34a7c, 0x34afc,
1571 		0x34b08, 0x34c24,
1572 		0x34d00, 0x34d00,
1573 		0x34d08, 0x34d14,
1574 		0x34d1c, 0x34d20,
1575 		0x34d3c, 0x34d3c,
1576 		0x34d48, 0x34d50,
1577 		0x35200, 0x3520c,
1578 		0x35220, 0x35220,
1579 		0x35240, 0x35240,
1580 		0x35600, 0x3560c,
1581 		0x35a00, 0x35a1c,
1582 		0x35e00, 0x35e20,
1583 		0x35e38, 0x35e3c,
1584 		0x35e80, 0x35e80,
1585 		0x35e88, 0x35ea8,
1586 		0x35eb0, 0x35eb4,
1587 		0x35ec8, 0x35ed4,
1588 		0x35fb8, 0x36004,
1589 		0x36200, 0x36200,
1590 		0x36208, 0x36240,
1591 		0x36248, 0x36280,
1592 		0x36288, 0x362c0,
1593 		0x362c8, 0x362fc,
1594 		0x36600, 0x36630,
1595 		0x36a00, 0x36abc,
1596 		0x36b00, 0x36b10,
1597 		0x36b20, 0x36b30,
1598 		0x36b40, 0x36b50,
1599 		0x36b60, 0x36b70,
1600 		0x37000, 0x37028,
1601 		0x37030, 0x37048,
1602 		0x37060, 0x37068,
1603 		0x37070, 0x3709c,
1604 		0x370f0, 0x37128,
1605 		0x37130, 0x37148,
1606 		0x37160, 0x37168,
1607 		0x37170, 0x3719c,
1608 		0x371f0, 0x37238,
1609 		0x37240, 0x37240,
1610 		0x37248, 0x37250,
1611 		0x3725c, 0x37264,
1612 		0x37270, 0x372b8,
1613 		0x372c0, 0x372e4,
1614 		0x372f8, 0x37338,
1615 		0x37340, 0x37340,
1616 		0x37348, 0x37350,
1617 		0x3735c, 0x37364,
1618 		0x37370, 0x373b8,
1619 		0x373c0, 0x373e4,
1620 		0x373f8, 0x37428,
1621 		0x37430, 0x37448,
1622 		0x37460, 0x37468,
1623 		0x37470, 0x3749c,
1624 		0x374f0, 0x37528,
1625 		0x37530, 0x37548,
1626 		0x37560, 0x37568,
1627 		0x37570, 0x3759c,
1628 		0x375f0, 0x37638,
1629 		0x37640, 0x37640,
1630 		0x37648, 0x37650,
1631 		0x3765c, 0x37664,
1632 		0x37670, 0x376b8,
1633 		0x376c0, 0x376e4,
1634 		0x376f8, 0x37738,
1635 		0x37740, 0x37740,
1636 		0x37748, 0x37750,
1637 		0x3775c, 0x37764,
1638 		0x37770, 0x377b8,
1639 		0x377c0, 0x377e4,
1640 		0x377f8, 0x377fc,
1641 		0x37814, 0x37814,
1642 		0x3782c, 0x3782c,
1643 		0x37880, 0x3788c,
1644 		0x378e8, 0x378ec,
1645 		0x37900, 0x37928,
1646 		0x37930, 0x37948,
1647 		0x37960, 0x37968,
1648 		0x37970, 0x3799c,
1649 		0x379f0, 0x37a38,
1650 		0x37a40, 0x37a40,
1651 		0x37a48, 0x37a50,
1652 		0x37a5c, 0x37a64,
1653 		0x37a70, 0x37ab8,
1654 		0x37ac0, 0x37ae4,
1655 		0x37af8, 0x37b10,
1656 		0x37b28, 0x37b28,
1657 		0x37b3c, 0x37b50,
1658 		0x37bf0, 0x37c10,
1659 		0x37c28, 0x37c28,
1660 		0x37c3c, 0x37c50,
1661 		0x37cf0, 0x37cfc,
1662 		0x38000, 0x38030,
1663 		0x38100, 0x38144,
1664 		0x38190, 0x381a0,
1665 		0x381a8, 0x381b8,
1666 		0x381c4, 0x381c8,
1667 		0x381d0, 0x381d0,
1668 		0x38200, 0x38318,
1669 		0x38400, 0x384b4,
1670 		0x384c0, 0x3852c,
1671 		0x38540, 0x3861c,
1672 		0x38800, 0x38828,
1673 		0x38834, 0x38834,
1674 		0x388c0, 0x38908,
1675 		0x38910, 0x389ac,
1676 		0x38a00, 0x38a14,
1677 		0x38a1c, 0x38a2c,
1678 		0x38a44, 0x38a50,
1679 		0x38a74, 0x38a74,
1680 		0x38a7c, 0x38afc,
1681 		0x38b08, 0x38c24,
1682 		0x38d00, 0x38d00,
1683 		0x38d08, 0x38d14,
1684 		0x38d1c, 0x38d20,
1685 		0x38d3c, 0x38d3c,
1686 		0x38d48, 0x38d50,
1687 		0x39200, 0x3920c,
1688 		0x39220, 0x39220,
1689 		0x39240, 0x39240,
1690 		0x39600, 0x3960c,
1691 		0x39a00, 0x39a1c,
1692 		0x39e00, 0x39e20,
1693 		0x39e38, 0x39e3c,
1694 		0x39e80, 0x39e80,
1695 		0x39e88, 0x39ea8,
1696 		0x39eb0, 0x39eb4,
1697 		0x39ec8, 0x39ed4,
1698 		0x39fb8, 0x3a004,
1699 		0x3a200, 0x3a200,
1700 		0x3a208, 0x3a240,
1701 		0x3a248, 0x3a280,
1702 		0x3a288, 0x3a2c0,
1703 		0x3a2c8, 0x3a2fc,
1704 		0x3a600, 0x3a630,
1705 		0x3aa00, 0x3aabc,
1706 		0x3ab00, 0x3ab10,
1707 		0x3ab20, 0x3ab30,
1708 		0x3ab40, 0x3ab50,
1709 		0x3ab60, 0x3ab70,
1710 		0x3b000, 0x3b028,
1711 		0x3b030, 0x3b048,
1712 		0x3b060, 0x3b068,
1713 		0x3b070, 0x3b09c,
1714 		0x3b0f0, 0x3b128,
1715 		0x3b130, 0x3b148,
1716 		0x3b160, 0x3b168,
1717 		0x3b170, 0x3b19c,
1718 		0x3b1f0, 0x3b238,
1719 		0x3b240, 0x3b240,
1720 		0x3b248, 0x3b250,
1721 		0x3b25c, 0x3b264,
1722 		0x3b270, 0x3b2b8,
1723 		0x3b2c0, 0x3b2e4,
1724 		0x3b2f8, 0x3b338,
1725 		0x3b340, 0x3b340,
1726 		0x3b348, 0x3b350,
1727 		0x3b35c, 0x3b364,
1728 		0x3b370, 0x3b3b8,
1729 		0x3b3c0, 0x3b3e4,
1730 		0x3b3f8, 0x3b428,
1731 		0x3b430, 0x3b448,
1732 		0x3b460, 0x3b468,
1733 		0x3b470, 0x3b49c,
1734 		0x3b4f0, 0x3b528,
1735 		0x3b530, 0x3b548,
1736 		0x3b560, 0x3b568,
1737 		0x3b570, 0x3b59c,
1738 		0x3b5f0, 0x3b638,
1739 		0x3b640, 0x3b640,
1740 		0x3b648, 0x3b650,
1741 		0x3b65c, 0x3b664,
1742 		0x3b670, 0x3b6b8,
1743 		0x3b6c0, 0x3b6e4,
1744 		0x3b6f8, 0x3b738,
1745 		0x3b740, 0x3b740,
1746 		0x3b748, 0x3b750,
1747 		0x3b75c, 0x3b764,
1748 		0x3b770, 0x3b7b8,
1749 		0x3b7c0, 0x3b7e4,
1750 		0x3b7f8, 0x3b7fc,
1751 		0x3b814, 0x3b814,
1752 		0x3b82c, 0x3b82c,
1753 		0x3b880, 0x3b88c,
1754 		0x3b8e8, 0x3b8ec,
1755 		0x3b900, 0x3b928,
1756 		0x3b930, 0x3b948,
1757 		0x3b960, 0x3b968,
1758 		0x3b970, 0x3b99c,
1759 		0x3b9f0, 0x3ba38,
1760 		0x3ba40, 0x3ba40,
1761 		0x3ba48, 0x3ba50,
1762 		0x3ba5c, 0x3ba64,
1763 		0x3ba70, 0x3bab8,
1764 		0x3bac0, 0x3bae4,
1765 		0x3baf8, 0x3bb10,
1766 		0x3bb28, 0x3bb28,
1767 		0x3bb3c, 0x3bb50,
1768 		0x3bbf0, 0x3bc10,
1769 		0x3bc28, 0x3bc28,
1770 		0x3bc3c, 0x3bc50,
1771 		0x3bcf0, 0x3bcfc,
1772 		0x3c000, 0x3c030,
1773 		0x3c100, 0x3c144,
1774 		0x3c190, 0x3c1a0,
1775 		0x3c1a8, 0x3c1b8,
1776 		0x3c1c4, 0x3c1c8,
1777 		0x3c1d0, 0x3c1d0,
1778 		0x3c200, 0x3c318,
1779 		0x3c400, 0x3c4b4,
1780 		0x3c4c0, 0x3c52c,
1781 		0x3c540, 0x3c61c,
1782 		0x3c800, 0x3c828,
1783 		0x3c834, 0x3c834,
1784 		0x3c8c0, 0x3c908,
1785 		0x3c910, 0x3c9ac,
1786 		0x3ca00, 0x3ca14,
1787 		0x3ca1c, 0x3ca2c,
1788 		0x3ca44, 0x3ca50,
1789 		0x3ca74, 0x3ca74,
1790 		0x3ca7c, 0x3cafc,
1791 		0x3cb08, 0x3cc24,
1792 		0x3cd00, 0x3cd00,
1793 		0x3cd08, 0x3cd14,
1794 		0x3cd1c, 0x3cd20,
1795 		0x3cd3c, 0x3cd3c,
1796 		0x3cd48, 0x3cd50,
1797 		0x3d200, 0x3d20c,
1798 		0x3d220, 0x3d220,
1799 		0x3d240, 0x3d240,
1800 		0x3d600, 0x3d60c,
1801 		0x3da00, 0x3da1c,
1802 		0x3de00, 0x3de20,
1803 		0x3de38, 0x3de3c,
1804 		0x3de80, 0x3de80,
1805 		0x3de88, 0x3dea8,
1806 		0x3deb0, 0x3deb4,
1807 		0x3dec8, 0x3ded4,
1808 		0x3dfb8, 0x3e004,
1809 		0x3e200, 0x3e200,
1810 		0x3e208, 0x3e240,
1811 		0x3e248, 0x3e280,
1812 		0x3e288, 0x3e2c0,
1813 		0x3e2c8, 0x3e2fc,
1814 		0x3e600, 0x3e630,
1815 		0x3ea00, 0x3eabc,
1816 		0x3eb00, 0x3eb10,
1817 		0x3eb20, 0x3eb30,
1818 		0x3eb40, 0x3eb50,
1819 		0x3eb60, 0x3eb70,
1820 		0x3f000, 0x3f028,
1821 		0x3f030, 0x3f048,
1822 		0x3f060, 0x3f068,
1823 		0x3f070, 0x3f09c,
1824 		0x3f0f0, 0x3f128,
1825 		0x3f130, 0x3f148,
1826 		0x3f160, 0x3f168,
1827 		0x3f170, 0x3f19c,
1828 		0x3f1f0, 0x3f238,
1829 		0x3f240, 0x3f240,
1830 		0x3f248, 0x3f250,
1831 		0x3f25c, 0x3f264,
1832 		0x3f270, 0x3f2b8,
1833 		0x3f2c0, 0x3f2e4,
1834 		0x3f2f8, 0x3f338,
1835 		0x3f340, 0x3f340,
1836 		0x3f348, 0x3f350,
1837 		0x3f35c, 0x3f364,
1838 		0x3f370, 0x3f3b8,
1839 		0x3f3c0, 0x3f3e4,
1840 		0x3f3f8, 0x3f428,
1841 		0x3f430, 0x3f448,
1842 		0x3f460, 0x3f468,
1843 		0x3f470, 0x3f49c,
1844 		0x3f4f0, 0x3f528,
1845 		0x3f530, 0x3f548,
1846 		0x3f560, 0x3f568,
1847 		0x3f570, 0x3f59c,
1848 		0x3f5f0, 0x3f638,
1849 		0x3f640, 0x3f640,
1850 		0x3f648, 0x3f650,
1851 		0x3f65c, 0x3f664,
1852 		0x3f670, 0x3f6b8,
1853 		0x3f6c0, 0x3f6e4,
1854 		0x3f6f8, 0x3f738,
1855 		0x3f740, 0x3f740,
1856 		0x3f748, 0x3f750,
1857 		0x3f75c, 0x3f764,
1858 		0x3f770, 0x3f7b8,
1859 		0x3f7c0, 0x3f7e4,
1860 		0x3f7f8, 0x3f7fc,
1861 		0x3f814, 0x3f814,
1862 		0x3f82c, 0x3f82c,
1863 		0x3f880, 0x3f88c,
1864 		0x3f8e8, 0x3f8ec,
1865 		0x3f900, 0x3f928,
1866 		0x3f930, 0x3f948,
1867 		0x3f960, 0x3f968,
1868 		0x3f970, 0x3f99c,
1869 		0x3f9f0, 0x3fa38,
1870 		0x3fa40, 0x3fa40,
1871 		0x3fa48, 0x3fa50,
1872 		0x3fa5c, 0x3fa64,
1873 		0x3fa70, 0x3fab8,
1874 		0x3fac0, 0x3fae4,
1875 		0x3faf8, 0x3fb10,
1876 		0x3fb28, 0x3fb28,
1877 		0x3fb3c, 0x3fb50,
1878 		0x3fbf0, 0x3fc10,
1879 		0x3fc28, 0x3fc28,
1880 		0x3fc3c, 0x3fc50,
1881 		0x3fcf0, 0x3fcfc,
1882 		0x40000, 0x4000c,
1883 		0x40040, 0x40050,
1884 		0x40060, 0x40068,
1885 		0x4007c, 0x4008c,
1886 		0x40094, 0x400b0,
1887 		0x400c0, 0x40144,
1888 		0x40180, 0x4018c,
1889 		0x40200, 0x40254,
1890 		0x40260, 0x40264,
1891 		0x40270, 0x40288,
1892 		0x40290, 0x40298,
1893 		0x402ac, 0x402c8,
1894 		0x402d0, 0x402e0,
1895 		0x402f0, 0x402f0,
1896 		0x40300, 0x4033c,
1897 		0x403f8, 0x403fc,
1898 		0x41304, 0x413c4,
1899 		0x41400, 0x4140c,
1900 		0x41414, 0x4141c,
1901 		0x41480, 0x414d0,
1902 		0x44000, 0x44054,
1903 		0x4405c, 0x44078,
1904 		0x440c0, 0x44174,
1905 		0x44180, 0x441ac,
1906 		0x441b4, 0x441b8,
1907 		0x441c0, 0x44254,
1908 		0x4425c, 0x44278,
1909 		0x442c0, 0x44374,
1910 		0x44380, 0x443ac,
1911 		0x443b4, 0x443b8,
1912 		0x443c0, 0x44454,
1913 		0x4445c, 0x44478,
1914 		0x444c0, 0x44574,
1915 		0x44580, 0x445ac,
1916 		0x445b4, 0x445b8,
1917 		0x445c0, 0x44654,
1918 		0x4465c, 0x44678,
1919 		0x446c0, 0x44774,
1920 		0x44780, 0x447ac,
1921 		0x447b4, 0x447b8,
1922 		0x447c0, 0x44854,
1923 		0x4485c, 0x44878,
1924 		0x448c0, 0x44974,
1925 		0x44980, 0x449ac,
1926 		0x449b4, 0x449b8,
1927 		0x449c0, 0x449fc,
1928 		0x45000, 0x45004,
1929 		0x45010, 0x45030,
1930 		0x45040, 0x45060,
1931 		0x45068, 0x45068,
1932 		0x45080, 0x45084,
1933 		0x450a0, 0x450b0,
1934 		0x45200, 0x45204,
1935 		0x45210, 0x45230,
1936 		0x45240, 0x45260,
1937 		0x45268, 0x45268,
1938 		0x45280, 0x45284,
1939 		0x452a0, 0x452b0,
1940 		0x460c0, 0x460e4,
1941 		0x47000, 0x4703c,
1942 		0x47044, 0x4708c,
1943 		0x47200, 0x47250,
1944 		0x47400, 0x47408,
1945 		0x47414, 0x47420,
1946 		0x47600, 0x47618,
1947 		0x47800, 0x47814,
1948 		0x48000, 0x4800c,
1949 		0x48040, 0x48050,
1950 		0x48060, 0x48068,
1951 		0x4807c, 0x4808c,
1952 		0x48094, 0x480b0,
1953 		0x480c0, 0x48144,
1954 		0x48180, 0x4818c,
1955 		0x48200, 0x48254,
1956 		0x48260, 0x48264,
1957 		0x48270, 0x48288,
1958 		0x48290, 0x48298,
1959 		0x482ac, 0x482c8,
1960 		0x482d0, 0x482e0,
1961 		0x482f0, 0x482f0,
1962 		0x48300, 0x4833c,
1963 		0x483f8, 0x483fc,
1964 		0x49304, 0x493c4,
1965 		0x49400, 0x4940c,
1966 		0x49414, 0x4941c,
1967 		0x49480, 0x494d0,
1968 		0x4c000, 0x4c054,
1969 		0x4c05c, 0x4c078,
1970 		0x4c0c0, 0x4c174,
1971 		0x4c180, 0x4c1ac,
1972 		0x4c1b4, 0x4c1b8,
1973 		0x4c1c0, 0x4c254,
1974 		0x4c25c, 0x4c278,
1975 		0x4c2c0, 0x4c374,
1976 		0x4c380, 0x4c3ac,
1977 		0x4c3b4, 0x4c3b8,
1978 		0x4c3c0, 0x4c454,
1979 		0x4c45c, 0x4c478,
1980 		0x4c4c0, 0x4c574,
1981 		0x4c580, 0x4c5ac,
1982 		0x4c5b4, 0x4c5b8,
1983 		0x4c5c0, 0x4c654,
1984 		0x4c65c, 0x4c678,
1985 		0x4c6c0, 0x4c774,
1986 		0x4c780, 0x4c7ac,
1987 		0x4c7b4, 0x4c7b8,
1988 		0x4c7c0, 0x4c854,
1989 		0x4c85c, 0x4c878,
1990 		0x4c8c0, 0x4c974,
1991 		0x4c980, 0x4c9ac,
1992 		0x4c9b4, 0x4c9b8,
1993 		0x4c9c0, 0x4c9fc,
1994 		0x4d000, 0x4d004,
1995 		0x4d010, 0x4d030,
1996 		0x4d040, 0x4d060,
1997 		0x4d068, 0x4d068,
1998 		0x4d080, 0x4d084,
1999 		0x4d0a0, 0x4d0b0,
2000 		0x4d200, 0x4d204,
2001 		0x4d210, 0x4d230,
2002 		0x4d240, 0x4d260,
2003 		0x4d268, 0x4d268,
2004 		0x4d280, 0x4d284,
2005 		0x4d2a0, 0x4d2b0,
2006 		0x4e0c0, 0x4e0e4,
2007 		0x4f000, 0x4f03c,
2008 		0x4f044, 0x4f08c,
2009 		0x4f200, 0x4f250,
2010 		0x4f400, 0x4f408,
2011 		0x4f414, 0x4f420,
2012 		0x4f600, 0x4f618,
2013 		0x4f800, 0x4f814,
2014 		0x50000, 0x50084,
2015 		0x50090, 0x500cc,
2016 		0x50400, 0x50400,
2017 		0x50800, 0x50884,
2018 		0x50890, 0x508cc,
2019 		0x50c00, 0x50c00,
2020 		0x51000, 0x5101c,
2021 		0x51300, 0x51308,
2022 	};
2023 
2024 	static const unsigned int t6_reg_ranges[] = {
2025 		0x1008, 0x101c,
2026 		0x1024, 0x10a8,
2027 		0x10b4, 0x10f8,
2028 		0x1100, 0x1114,
2029 		0x111c, 0x112c,
2030 		0x1138, 0x113c,
2031 		0x1144, 0x114c,
2032 		0x1180, 0x1184,
2033 		0x1190, 0x1194,
2034 		0x11a0, 0x11a4,
2035 		0x11b0, 0x11b4,
2036 		0x11fc, 0x1274,
2037 		0x1280, 0x133c,
2038 		0x1800, 0x18fc,
2039 		0x3000, 0x302c,
2040 		0x3060, 0x30b0,
2041 		0x30b8, 0x30d8,
2042 		0x30e0, 0x30fc,
2043 		0x3140, 0x357c,
2044 		0x35a8, 0x35cc,
2045 		0x35ec, 0x35ec,
2046 		0x3600, 0x5624,
2047 		0x56cc, 0x56ec,
2048 		0x56f4, 0x5720,
2049 		0x5728, 0x575c,
2050 		0x580c, 0x5814,
2051 		0x5890, 0x589c,
2052 		0x58a4, 0x58ac,
2053 		0x58b8, 0x58bc,
2054 		0x5940, 0x595c,
2055 		0x5980, 0x598c,
2056 		0x59b0, 0x59c8,
2057 		0x59d0, 0x59dc,
2058 		0x59fc, 0x5a18,
2059 		0x5a60, 0x5a6c,
2060 		0x5a80, 0x5a8c,
2061 		0x5a94, 0x5a9c,
2062 		0x5b94, 0x5bfc,
2063 		0x5c10, 0x5e48,
2064 		0x5e50, 0x5e94,
2065 		0x5ea0, 0x5eb0,
2066 		0x5ec0, 0x5ec0,
2067 		0x5ec8, 0x5ed0,
2068 		0x5ee0, 0x5ee0,
2069 		0x5ef0, 0x5ef0,
2070 		0x5f00, 0x5f00,
2071 		0x6000, 0x6020,
2072 		0x6028, 0x6040,
2073 		0x6058, 0x609c,
2074 		0x60a8, 0x619c,
2075 		0x7700, 0x7798,
2076 		0x77c0, 0x7880,
2077 		0x78cc, 0x78fc,
2078 		0x7b00, 0x7b58,
2079 		0x7b60, 0x7b84,
2080 		0x7b8c, 0x7c54,
2081 		0x7d00, 0x7d38,
2082 		0x7d40, 0x7d84,
2083 		0x7d8c, 0x7ddc,
2084 		0x7de4, 0x7e04,
2085 		0x7e10, 0x7e1c,
2086 		0x7e24, 0x7e38,
2087 		0x7e40, 0x7e44,
2088 		0x7e4c, 0x7e78,
2089 		0x7e80, 0x7edc,
2090 		0x7ee8, 0x7efc,
2091 		0x8dc0, 0x8de4,
2092 		0x8df8, 0x8e04,
2093 		0x8e10, 0x8e84,
2094 		0x8ea0, 0x8f88,
2095 		0x8fb8, 0x9058,
2096 		0x9060, 0x9060,
2097 		0x9068, 0x90f8,
2098 		0x9100, 0x9124,
2099 		0x9400, 0x9470,
2100 		0x9600, 0x9600,
2101 		0x9608, 0x9638,
2102 		0x9640, 0x9704,
2103 		0x9710, 0x971c,
2104 		0x9800, 0x9808,
2105 		0x9820, 0x983c,
2106 		0x9850, 0x9864,
2107 		0x9c00, 0x9c6c,
2108 		0x9c80, 0x9cec,
2109 		0x9d00, 0x9d6c,
2110 		0x9d80, 0x9dec,
2111 		0x9e00, 0x9e6c,
2112 		0x9e80, 0x9eec,
2113 		0x9f00, 0x9f6c,
2114 		0x9f80, 0xa020,
2115 		0xd004, 0xd03c,
2116 		0xd100, 0xd118,
2117 		0xd200, 0xd214,
2118 		0xd220, 0xd234,
2119 		0xd240, 0xd254,
2120 		0xd260, 0xd274,
2121 		0xd280, 0xd294,
2122 		0xd2a0, 0xd2b4,
2123 		0xd2c0, 0xd2d4,
2124 		0xd2e0, 0xd2f4,
2125 		0xd300, 0xd31c,
2126 		0xdfc0, 0xdfe0,
2127 		0xe000, 0xf008,
2128 		0xf010, 0xf018,
2129 		0xf020, 0xf028,
2130 		0x11000, 0x11014,
2131 		0x11048, 0x1106c,
2132 		0x11074, 0x11088,
2133 		0x11098, 0x11120,
2134 		0x1112c, 0x1117c,
2135 		0x11190, 0x112e0,
2136 		0x11300, 0x1130c,
2137 		0x12000, 0x1206c,
2138 		0x19040, 0x1906c,
2139 		0x19078, 0x19080,
2140 		0x1908c, 0x190e8,
2141 		0x190f0, 0x190f8,
2142 		0x19100, 0x19110,
2143 		0x19120, 0x19124,
2144 		0x19150, 0x19194,
2145 		0x1919c, 0x191b0,
2146 		0x191d0, 0x191e8,
2147 		0x19238, 0x19290,
2148 		0x192a4, 0x192b0,
2149 		0x192bc, 0x192bc,
2150 		0x19348, 0x1934c,
2151 		0x193f8, 0x19418,
2152 		0x19420, 0x19428,
2153 		0x19430, 0x19444,
2154 		0x1944c, 0x1946c,
2155 		0x19474, 0x19474,
2156 		0x19490, 0x194cc,
2157 		0x194f0, 0x194f8,
2158 		0x19c00, 0x19c48,
2159 		0x19c50, 0x19c80,
2160 		0x19c94, 0x19c98,
2161 		0x19ca0, 0x19cbc,
2162 		0x19ce4, 0x19ce4,
2163 		0x19cf0, 0x19cf8,
2164 		0x19d00, 0x19d28,
2165 		0x19d50, 0x19d78,
2166 		0x19d94, 0x19d98,
2167 		0x19da0, 0x19dc8,
2168 		0x19df0, 0x19e10,
2169 		0x19e50, 0x19e6c,
2170 		0x19ea0, 0x19ebc,
2171 		0x19ec4, 0x19ef4,
2172 		0x19f04, 0x19f2c,
2173 		0x19f34, 0x19f34,
2174 		0x19f40, 0x19f50,
2175 		0x19f90, 0x19fac,
2176 		0x19fc4, 0x19fc8,
2177 		0x19fd0, 0x19fe4,
2178 		0x1a000, 0x1a004,
2179 		0x1a010, 0x1a06c,
2180 		0x1a0b0, 0x1a0e4,
2181 		0x1a0ec, 0x1a0f8,
2182 		0x1a100, 0x1a108,
2183 		0x1a114, 0x1a120,
2184 		0x1a128, 0x1a130,
2185 		0x1a138, 0x1a138,
2186 		0x1a190, 0x1a1c4,
2187 		0x1a1fc, 0x1a1fc,
2188 		0x1e008, 0x1e00c,
2189 		0x1e040, 0x1e044,
2190 		0x1e04c, 0x1e04c,
2191 		0x1e284, 0x1e290,
2192 		0x1e2c0, 0x1e2c0,
2193 		0x1e2e0, 0x1e2e0,
2194 		0x1e300, 0x1e384,
2195 		0x1e3c0, 0x1e3c8,
2196 		0x1e408, 0x1e40c,
2197 		0x1e440, 0x1e444,
2198 		0x1e44c, 0x1e44c,
2199 		0x1e684, 0x1e690,
2200 		0x1e6c0, 0x1e6c0,
2201 		0x1e6e0, 0x1e6e0,
2202 		0x1e700, 0x1e784,
2203 		0x1e7c0, 0x1e7c8,
2204 		0x1e808, 0x1e80c,
2205 		0x1e840, 0x1e844,
2206 		0x1e84c, 0x1e84c,
2207 		0x1ea84, 0x1ea90,
2208 		0x1eac0, 0x1eac0,
2209 		0x1eae0, 0x1eae0,
2210 		0x1eb00, 0x1eb84,
2211 		0x1ebc0, 0x1ebc8,
2212 		0x1ec08, 0x1ec0c,
2213 		0x1ec40, 0x1ec44,
2214 		0x1ec4c, 0x1ec4c,
2215 		0x1ee84, 0x1ee90,
2216 		0x1eec0, 0x1eec0,
2217 		0x1eee0, 0x1eee0,
2218 		0x1ef00, 0x1ef84,
2219 		0x1efc0, 0x1efc8,
2220 		0x1f008, 0x1f00c,
2221 		0x1f040, 0x1f044,
2222 		0x1f04c, 0x1f04c,
2223 		0x1f284, 0x1f290,
2224 		0x1f2c0, 0x1f2c0,
2225 		0x1f2e0, 0x1f2e0,
2226 		0x1f300, 0x1f384,
2227 		0x1f3c0, 0x1f3c8,
2228 		0x1f408, 0x1f40c,
2229 		0x1f440, 0x1f444,
2230 		0x1f44c, 0x1f44c,
2231 		0x1f684, 0x1f690,
2232 		0x1f6c0, 0x1f6c0,
2233 		0x1f6e0, 0x1f6e0,
2234 		0x1f700, 0x1f784,
2235 		0x1f7c0, 0x1f7c8,
2236 		0x1f808, 0x1f80c,
2237 		0x1f840, 0x1f844,
2238 		0x1f84c, 0x1f84c,
2239 		0x1fa84, 0x1fa90,
2240 		0x1fac0, 0x1fac0,
2241 		0x1fae0, 0x1fae0,
2242 		0x1fb00, 0x1fb84,
2243 		0x1fbc0, 0x1fbc8,
2244 		0x1fc08, 0x1fc0c,
2245 		0x1fc40, 0x1fc44,
2246 		0x1fc4c, 0x1fc4c,
2247 		0x1fe84, 0x1fe90,
2248 		0x1fec0, 0x1fec0,
2249 		0x1fee0, 0x1fee0,
2250 		0x1ff00, 0x1ff84,
2251 		0x1ffc0, 0x1ffc8,
2252 		0x30000, 0x30030,
2253 		0x30100, 0x30168,
2254 		0x30190, 0x301a0,
2255 		0x301a8, 0x301b8,
2256 		0x301c4, 0x301c8,
2257 		0x301d0, 0x301d0,
2258 		0x30200, 0x30320,
2259 		0x30400, 0x304b4,
2260 		0x304c0, 0x3052c,
2261 		0x30540, 0x3061c,
2262 		0x30800, 0x308a0,
2263 		0x308c0, 0x30908,
2264 		0x30910, 0x309b8,
2265 		0x30a00, 0x30a04,
2266 		0x30a0c, 0x30a14,
2267 		0x30a1c, 0x30a2c,
2268 		0x30a44, 0x30a50,
2269 		0x30a74, 0x30a74,
2270 		0x30a7c, 0x30afc,
2271 		0x30b08, 0x30c24,
2272 		0x30d00, 0x30d14,
2273 		0x30d1c, 0x30d3c,
2274 		0x30d44, 0x30d4c,
2275 		0x30d54, 0x30d74,
2276 		0x30d7c, 0x30d7c,
2277 		0x30de0, 0x30de0,
2278 		0x30e00, 0x30ed4,
2279 		0x30f00, 0x30fa4,
2280 		0x30fc0, 0x30fc4,
2281 		0x31000, 0x31004,
2282 		0x31080, 0x310fc,
2283 		0x31208, 0x31220,
2284 		0x3123c, 0x31254,
2285 		0x31300, 0x31300,
2286 		0x31308, 0x3131c,
2287 		0x31338, 0x3133c,
2288 		0x31380, 0x31380,
2289 		0x31388, 0x313a8,
2290 		0x313b4, 0x313b4,
2291 		0x31400, 0x31420,
2292 		0x31438, 0x3143c,
2293 		0x31480, 0x31480,
2294 		0x314a8, 0x314a8,
2295 		0x314b0, 0x314b4,
2296 		0x314c8, 0x314d4,
2297 		0x31a40, 0x31a4c,
2298 		0x31af0, 0x31b20,
2299 		0x31b38, 0x31b3c,
2300 		0x31b80, 0x31b80,
2301 		0x31ba8, 0x31ba8,
2302 		0x31bb0, 0x31bb4,
2303 		0x31bc8, 0x31bd4,
2304 		0x32140, 0x3218c,
2305 		0x321f0, 0x321f4,
2306 		0x32200, 0x32200,
2307 		0x32218, 0x32218,
2308 		0x32400, 0x32400,
2309 		0x32408, 0x3241c,
2310 		0x32618, 0x32620,
2311 		0x32664, 0x32664,
2312 		0x326a8, 0x326a8,
2313 		0x326ec, 0x326ec,
2314 		0x32a00, 0x32abc,
2315 		0x32b00, 0x32b18,
2316 		0x32b20, 0x32b38,
2317 		0x32b40, 0x32b58,
2318 		0x32b60, 0x32b78,
2319 		0x32c00, 0x32c00,
2320 		0x32c08, 0x32c3c,
2321 		0x33000, 0x3302c,
2322 		0x33034, 0x33050,
2323 		0x33058, 0x33058,
2324 		0x33060, 0x3308c,
2325 		0x3309c, 0x330ac,
2326 		0x330c0, 0x330c0,
2327 		0x330c8, 0x330d0,
2328 		0x330d8, 0x330e0,
2329 		0x330ec, 0x3312c,
2330 		0x33134, 0x33150,
2331 		0x33158, 0x33158,
2332 		0x33160, 0x3318c,
2333 		0x3319c, 0x331ac,
2334 		0x331c0, 0x331c0,
2335 		0x331c8, 0x331d0,
2336 		0x331d8, 0x331e0,
2337 		0x331ec, 0x33290,
2338 		0x33298, 0x332c4,
2339 		0x332e4, 0x33390,
2340 		0x33398, 0x333c4,
2341 		0x333e4, 0x3342c,
2342 		0x33434, 0x33450,
2343 		0x33458, 0x33458,
2344 		0x33460, 0x3348c,
2345 		0x3349c, 0x334ac,
2346 		0x334c0, 0x334c0,
2347 		0x334c8, 0x334d0,
2348 		0x334d8, 0x334e0,
2349 		0x334ec, 0x3352c,
2350 		0x33534, 0x33550,
2351 		0x33558, 0x33558,
2352 		0x33560, 0x3358c,
2353 		0x3359c, 0x335ac,
2354 		0x335c0, 0x335c0,
2355 		0x335c8, 0x335d0,
2356 		0x335d8, 0x335e0,
2357 		0x335ec, 0x33690,
2358 		0x33698, 0x336c4,
2359 		0x336e4, 0x33790,
2360 		0x33798, 0x337c4,
2361 		0x337e4, 0x337fc,
2362 		0x33814, 0x33814,
2363 		0x33854, 0x33868,
2364 		0x33880, 0x3388c,
2365 		0x338c0, 0x338d0,
2366 		0x338e8, 0x338ec,
2367 		0x33900, 0x3392c,
2368 		0x33934, 0x33950,
2369 		0x33958, 0x33958,
2370 		0x33960, 0x3398c,
2371 		0x3399c, 0x339ac,
2372 		0x339c0, 0x339c0,
2373 		0x339c8, 0x339d0,
2374 		0x339d8, 0x339e0,
2375 		0x339ec, 0x33a90,
2376 		0x33a98, 0x33ac4,
2377 		0x33ae4, 0x33b10,
2378 		0x33b24, 0x33b28,
2379 		0x33b38, 0x33b50,
2380 		0x33bf0, 0x33c10,
2381 		0x33c24, 0x33c28,
2382 		0x33c38, 0x33c50,
2383 		0x33cf0, 0x33cfc,
2384 		0x34000, 0x34030,
2385 		0x34100, 0x34168,
2386 		0x34190, 0x341a0,
2387 		0x341a8, 0x341b8,
2388 		0x341c4, 0x341c8,
2389 		0x341d0, 0x341d0,
2390 		0x34200, 0x34320,
2391 		0x34400, 0x344b4,
2392 		0x344c0, 0x3452c,
2393 		0x34540, 0x3461c,
2394 		0x34800, 0x348a0,
2395 		0x348c0, 0x34908,
2396 		0x34910, 0x349b8,
2397 		0x34a00, 0x34a04,
2398 		0x34a0c, 0x34a14,
2399 		0x34a1c, 0x34a2c,
2400 		0x34a44, 0x34a50,
2401 		0x34a74, 0x34a74,
2402 		0x34a7c, 0x34afc,
2403 		0x34b08, 0x34c24,
2404 		0x34d00, 0x34d14,
2405 		0x34d1c, 0x34d3c,
2406 		0x34d44, 0x34d4c,
2407 		0x34d54, 0x34d74,
2408 		0x34d7c, 0x34d7c,
2409 		0x34de0, 0x34de0,
2410 		0x34e00, 0x34ed4,
2411 		0x34f00, 0x34fa4,
2412 		0x34fc0, 0x34fc4,
2413 		0x35000, 0x35004,
2414 		0x35080, 0x350fc,
2415 		0x35208, 0x35220,
2416 		0x3523c, 0x35254,
2417 		0x35300, 0x35300,
2418 		0x35308, 0x3531c,
2419 		0x35338, 0x3533c,
2420 		0x35380, 0x35380,
2421 		0x35388, 0x353a8,
2422 		0x353b4, 0x353b4,
2423 		0x35400, 0x35420,
2424 		0x35438, 0x3543c,
2425 		0x35480, 0x35480,
2426 		0x354a8, 0x354a8,
2427 		0x354b0, 0x354b4,
2428 		0x354c8, 0x354d4,
2429 		0x35a40, 0x35a4c,
2430 		0x35af0, 0x35b20,
2431 		0x35b38, 0x35b3c,
2432 		0x35b80, 0x35b80,
2433 		0x35ba8, 0x35ba8,
2434 		0x35bb0, 0x35bb4,
2435 		0x35bc8, 0x35bd4,
2436 		0x36140, 0x3618c,
2437 		0x361f0, 0x361f4,
2438 		0x36200, 0x36200,
2439 		0x36218, 0x36218,
2440 		0x36400, 0x36400,
2441 		0x36408, 0x3641c,
2442 		0x36618, 0x36620,
2443 		0x36664, 0x36664,
2444 		0x366a8, 0x366a8,
2445 		0x366ec, 0x366ec,
2446 		0x36a00, 0x36abc,
2447 		0x36b00, 0x36b18,
2448 		0x36b20, 0x36b38,
2449 		0x36b40, 0x36b58,
2450 		0x36b60, 0x36b78,
2451 		0x36c00, 0x36c00,
2452 		0x36c08, 0x36c3c,
2453 		0x37000, 0x3702c,
2454 		0x37034, 0x37050,
2455 		0x37058, 0x37058,
2456 		0x37060, 0x3708c,
2457 		0x3709c, 0x370ac,
2458 		0x370c0, 0x370c0,
2459 		0x370c8, 0x370d0,
2460 		0x370d8, 0x370e0,
2461 		0x370ec, 0x3712c,
2462 		0x37134, 0x37150,
2463 		0x37158, 0x37158,
2464 		0x37160, 0x3718c,
2465 		0x3719c, 0x371ac,
2466 		0x371c0, 0x371c0,
2467 		0x371c8, 0x371d0,
2468 		0x371d8, 0x371e0,
2469 		0x371ec, 0x37290,
2470 		0x37298, 0x372c4,
2471 		0x372e4, 0x37390,
2472 		0x37398, 0x373c4,
2473 		0x373e4, 0x3742c,
2474 		0x37434, 0x37450,
2475 		0x37458, 0x37458,
2476 		0x37460, 0x3748c,
2477 		0x3749c, 0x374ac,
2478 		0x374c0, 0x374c0,
2479 		0x374c8, 0x374d0,
2480 		0x374d8, 0x374e0,
2481 		0x374ec, 0x3752c,
2482 		0x37534, 0x37550,
2483 		0x37558, 0x37558,
2484 		0x37560, 0x3758c,
2485 		0x3759c, 0x375ac,
2486 		0x375c0, 0x375c0,
2487 		0x375c8, 0x375d0,
2488 		0x375d8, 0x375e0,
2489 		0x375ec, 0x37690,
2490 		0x37698, 0x376c4,
2491 		0x376e4, 0x37790,
2492 		0x37798, 0x377c4,
2493 		0x377e4, 0x377fc,
2494 		0x37814, 0x37814,
2495 		0x37854, 0x37868,
2496 		0x37880, 0x3788c,
2497 		0x378c0, 0x378d0,
2498 		0x378e8, 0x378ec,
2499 		0x37900, 0x3792c,
2500 		0x37934, 0x37950,
2501 		0x37958, 0x37958,
2502 		0x37960, 0x3798c,
2503 		0x3799c, 0x379ac,
2504 		0x379c0, 0x379c0,
2505 		0x379c8, 0x379d0,
2506 		0x379d8, 0x379e0,
2507 		0x379ec, 0x37a90,
2508 		0x37a98, 0x37ac4,
2509 		0x37ae4, 0x37b10,
2510 		0x37b24, 0x37b28,
2511 		0x37b38, 0x37b50,
2512 		0x37bf0, 0x37c10,
2513 		0x37c24, 0x37c28,
2514 		0x37c38, 0x37c50,
2515 		0x37cf0, 0x37cfc,
2516 		0x40040, 0x40040,
2517 		0x40080, 0x40084,
2518 		0x40100, 0x40100,
2519 		0x40140, 0x401bc,
2520 		0x40200, 0x40214,
2521 		0x40228, 0x40228,
2522 		0x40240, 0x40258,
2523 		0x40280, 0x40280,
2524 		0x40304, 0x40304,
2525 		0x40330, 0x4033c,
2526 		0x41304, 0x413c8,
2527 		0x413d0, 0x413dc,
2528 		0x413f0, 0x413f0,
2529 		0x41400, 0x4140c,
2530 		0x41414, 0x4141c,
2531 		0x41480, 0x414d0,
2532 		0x44000, 0x4407c,
2533 		0x440c0, 0x441ac,
2534 		0x441b4, 0x4427c,
2535 		0x442c0, 0x443ac,
2536 		0x443b4, 0x4447c,
2537 		0x444c0, 0x445ac,
2538 		0x445b4, 0x4467c,
2539 		0x446c0, 0x447ac,
2540 		0x447b4, 0x4487c,
2541 		0x448c0, 0x449ac,
2542 		0x449b4, 0x44a7c,
2543 		0x44ac0, 0x44bac,
2544 		0x44bb4, 0x44c7c,
2545 		0x44cc0, 0x44dac,
2546 		0x44db4, 0x44e7c,
2547 		0x44ec0, 0x44fac,
2548 		0x44fb4, 0x4507c,
2549 		0x450c0, 0x451ac,
2550 		0x451b4, 0x451fc,
2551 		0x45800, 0x45804,
2552 		0x45810, 0x45830,
2553 		0x45840, 0x45860,
2554 		0x45868, 0x45868,
2555 		0x45880, 0x45884,
2556 		0x458a0, 0x458b0,
2557 		0x45a00, 0x45a04,
2558 		0x45a10, 0x45a30,
2559 		0x45a40, 0x45a60,
2560 		0x45a68, 0x45a68,
2561 		0x45a80, 0x45a84,
2562 		0x45aa0, 0x45ab0,
2563 		0x460c0, 0x460e4,
2564 		0x47000, 0x4703c,
2565 		0x47044, 0x4708c,
2566 		0x47200, 0x47250,
2567 		0x47400, 0x47408,
2568 		0x47414, 0x47420,
2569 		0x47600, 0x47618,
2570 		0x47800, 0x47814,
2571 		0x47820, 0x4782c,
2572 		0x50000, 0x50084,
2573 		0x50090, 0x500cc,
2574 		0x50300, 0x50384,
2575 		0x50400, 0x50400,
2576 		0x50800, 0x50884,
2577 		0x50890, 0x508cc,
2578 		0x50b00, 0x50b84,
2579 		0x50c00, 0x50c00,
2580 		0x51000, 0x51020,
2581 		0x51028, 0x510b0,
2582 		0x51300, 0x51324,
2583 	};
2584 
2585 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2586 	const unsigned int *reg_ranges;
2587 	int reg_ranges_size, range;
2588 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2589 
2590 	/* Select the right set of register ranges to dump depending on the
2591 	 * adapter chip type.
2592 	 */
2593 	switch (chip_version) {
2594 	case CHELSIO_T4:
2595 		reg_ranges = t4_reg_ranges;
2596 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2597 		break;
2598 
2599 	case CHELSIO_T5:
2600 		reg_ranges = t5_reg_ranges;
2601 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2602 		break;
2603 
2604 	case CHELSIO_T6:
2605 		reg_ranges = t6_reg_ranges;
2606 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2607 		break;
2608 
2609 	default:
2610 		dev_err(adap->pdev_dev,
2611 			"Unsupported chip version %d\n", chip_version);
2612 		return;
2613 	}
2614 
2615 	/* Clear the register buffer and insert the appropriate register
2616 	 * values selected by the above register ranges.
2617 	 */
2618 	memset(buf, 0, buf_size);
2619 	for (range = 0; range < reg_ranges_size; range += 2) {
2620 		unsigned int reg = reg_ranges[range];
2621 		unsigned int last_reg = reg_ranges[range + 1];
2622 		u32 *bufp = (u32 *)((char *)buf + reg);
2623 
2624 		/* Iterate across the register range filling in the register
2625 		 * buffer but don't write past the end of the register buffer.
2626 		 */
2627 		while (reg <= last_reg && bufp < buf_end) {
2628 			*bufp++ = t4_read_reg(adap, reg);
2629 			reg += sizeof(u32);
2630 		}
2631 	}
2632 }
2633 
2634 #define EEPROM_STAT_ADDR   0x7bfc
2635 #define VPD_BASE           0x400
2636 #define VPD_BASE_OLD       0
2637 #define VPD_LEN            1024
2638 #define CHELSIO_VPD_UNIQUE_ID 0x82
2639 
2640 /**
2641  *	t4_seeprom_wp - enable/disable EEPROM write protection
2642  *	@adapter: the adapter
2643  *	@enable: whether to enable or disable write protection
2644  *
2645  *	Enables or disables write protection on the serial EEPROM.
2646  */
t4_seeprom_wp(struct adapter * adapter,bool enable)2647 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2648 {
2649 	unsigned int v = enable ? 0xc : 0;
2650 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2651 	return ret < 0 ? ret : 0;
2652 }
2653 
2654 /**
2655  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2656  *	@adapter: adapter to read
2657  *	@p: where to store the parameters
2658  *
2659  *	Reads card parameters stored in VPD EEPROM.
2660  */
t4_get_raw_vpd_params(struct adapter * adapter,struct vpd_params * p)2661 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2662 {
2663 	int i, ret = 0, addr;
2664 	int ec, sn, pn, na;
2665 	u8 *vpd, csum;
2666 	unsigned int vpdr_len, kw_offset, id_len;
2667 
2668 	vpd = vmalloc(VPD_LEN);
2669 	if (!vpd)
2670 		return -ENOMEM;
2671 
2672 	/* Card information normally starts at VPD_BASE but early cards had
2673 	 * it at 0.
2674 	 */
2675 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2676 	if (ret < 0)
2677 		goto out;
2678 
2679 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2680 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2681 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2682 	 * is expected to automatically put this entry at the
2683 	 * beginning of the VPD.
2684 	 */
2685 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2686 
2687 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2688 	if (ret < 0)
2689 		goto out;
2690 
2691 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2692 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2693 		ret = -EINVAL;
2694 		goto out;
2695 	}
2696 
2697 	id_len = pci_vpd_lrdt_size(vpd);
2698 	if (id_len > ID_LEN)
2699 		id_len = ID_LEN;
2700 
2701 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2702 	if (i < 0) {
2703 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2704 		ret = -EINVAL;
2705 		goto out;
2706 	}
2707 
2708 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2709 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2710 	if (vpdr_len + kw_offset > VPD_LEN) {
2711 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2712 		ret = -EINVAL;
2713 		goto out;
2714 	}
2715 
2716 #define FIND_VPD_KW(var, name) do { \
2717 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2718 	if (var < 0) { \
2719 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2720 		ret = -EINVAL; \
2721 		goto out; \
2722 	} \
2723 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2724 } while (0)
2725 
2726 	FIND_VPD_KW(i, "RV");
2727 	for (csum = 0; i >= 0; i--)
2728 		csum += vpd[i];
2729 
2730 	if (csum) {
2731 		dev_err(adapter->pdev_dev,
2732 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2733 		ret = -EINVAL;
2734 		goto out;
2735 	}
2736 
2737 	FIND_VPD_KW(ec, "EC");
2738 	FIND_VPD_KW(sn, "SN");
2739 	FIND_VPD_KW(pn, "PN");
2740 	FIND_VPD_KW(na, "NA");
2741 #undef FIND_VPD_KW
2742 
2743 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2744 	strim(p->id);
2745 	memcpy(p->ec, vpd + ec, EC_LEN);
2746 	strim(p->ec);
2747 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2748 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2749 	strim(p->sn);
2750 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2751 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2752 	strim(p->pn);
2753 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2754 	strim((char *)p->na);
2755 
2756 out:
2757 	vfree(vpd);
2758 	return ret < 0 ? ret : 0;
2759 }
2760 
2761 /**
2762  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2763  *	@adapter: adapter to read
2764  *	@p: where to store the parameters
2765  *
2766  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2767  *	Clock.  This can only be called after a connection to the firmware
2768  *	is established.
2769  */
t4_get_vpd_params(struct adapter * adapter,struct vpd_params * p)2770 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2771 {
2772 	u32 cclk_param, cclk_val;
2773 	int ret;
2774 
2775 	/* Grab the raw VPD parameters.
2776 	 */
2777 	ret = t4_get_raw_vpd_params(adapter, p);
2778 	if (ret)
2779 		return ret;
2780 
2781 	/* Ask firmware for the Core Clock since it knows how to translate the
2782 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2783 	 */
2784 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2785 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2786 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2787 			      1, &cclk_param, &cclk_val);
2788 
2789 	if (ret)
2790 		return ret;
2791 	p->cclk = cclk_val;
2792 
2793 	return 0;
2794 }
2795 
2796 /* serial flash and firmware constants */
2797 enum {
2798 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2799 
2800 	/* flash command opcodes */
2801 	SF_PROG_PAGE    = 2,          /* program page */
2802 	SF_WR_DISABLE   = 4,          /* disable writes */
2803 	SF_RD_STATUS    = 5,          /* read status register */
2804 	SF_WR_ENABLE    = 6,          /* enable writes */
2805 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2806 	SF_RD_ID        = 0x9f,       /* read ID */
2807 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2808 
2809 	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2810 };
2811 
2812 /**
2813  *	sf1_read - read data from the serial flash
2814  *	@adapter: the adapter
2815  *	@byte_cnt: number of bytes to read
2816  *	@cont: whether another operation will be chained
2817  *	@lock: whether to lock SF for PL access only
2818  *	@valp: where to store the read data
2819  *
2820  *	Reads up to 4 bytes of data from the serial flash.  The location of
2821  *	the read needs to be specified prior to calling this by issuing the
2822  *	appropriate commands to the serial flash.
2823  */
sf1_read(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 * valp)2824 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2825 		    int lock, u32 *valp)
2826 {
2827 	int ret;
2828 
2829 	if (!byte_cnt || byte_cnt > 4)
2830 		return -EINVAL;
2831 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2832 		return -EBUSY;
2833 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2834 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2835 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2836 	if (!ret)
2837 		*valp = t4_read_reg(adapter, SF_DATA_A);
2838 	return ret;
2839 }
2840 
2841 /**
2842  *	sf1_write - write data to the serial flash
2843  *	@adapter: the adapter
2844  *	@byte_cnt: number of bytes to write
2845  *	@cont: whether another operation will be chained
2846  *	@lock: whether to lock SF for PL access only
2847  *	@val: value to write
2848  *
2849  *	Writes up to 4 bytes of data to the serial flash.  The location of
2850  *	the write needs to be specified prior to calling this by issuing the
2851  *	appropriate commands to the serial flash.
2852  */
sf1_write(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 val)2853 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2854 		     int lock, u32 val)
2855 {
2856 	if (!byte_cnt || byte_cnt > 4)
2857 		return -EINVAL;
2858 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2859 		return -EBUSY;
2860 	t4_write_reg(adapter, SF_DATA_A, val);
2861 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2862 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2863 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2864 }
2865 
2866 /**
2867  *	flash_wait_op - wait for a flash operation to complete
2868  *	@adapter: the adapter
2869  *	@attempts: max number of polls of the status register
2870  *	@delay: delay between polls in ms
2871  *
2872  *	Wait for a flash operation to complete by polling the status register.
2873  */
flash_wait_op(struct adapter * adapter,int attempts,int delay)2874 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2875 {
2876 	int ret;
2877 	u32 status;
2878 
2879 	while (1) {
2880 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2881 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2882 			return ret;
2883 		if (!(status & 1))
2884 			return 0;
2885 		if (--attempts == 0)
2886 			return -EAGAIN;
2887 		if (delay)
2888 			msleep(delay);
2889 	}
2890 }
2891 
2892 /**
2893  *	t4_read_flash - read words from serial flash
2894  *	@adapter: the adapter
2895  *	@addr: the start address for the read
2896  *	@nwords: how many 32-bit words to read
2897  *	@data: where to store the read data
2898  *	@byte_oriented: whether to store data as bytes or as words
2899  *
2900  *	Read the specified number of 32-bit words from the serial flash.
2901  *	If @byte_oriented is set the read data is stored as a byte array
2902  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2903  *	natural endianness.
2904  */
t4_read_flash(struct adapter * adapter,unsigned int addr,unsigned int nwords,u32 * data,int byte_oriented)2905 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2906 		  unsigned int nwords, u32 *data, int byte_oriented)
2907 {
2908 	int ret;
2909 
2910 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2911 		return -EINVAL;
2912 
2913 	addr = swab32(addr) | SF_RD_DATA_FAST;
2914 
2915 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2916 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2917 		return ret;
2918 
2919 	for ( ; nwords; nwords--, data++) {
2920 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2921 		if (nwords == 1)
2922 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2923 		if (ret)
2924 			return ret;
2925 		if (byte_oriented)
2926 			*data = (__force __u32)(cpu_to_be32(*data));
2927 	}
2928 	return 0;
2929 }
2930 
2931 /**
2932  *	t4_write_flash - write up to a page of data to the serial flash
2933  *	@adapter: the adapter
2934  *	@addr: the start address to write
2935  *	@n: length of data to write in bytes
2936  *	@data: the data to write
2937  *
2938  *	Writes up to a page of data (256 bytes) to the serial flash starting
2939  *	at the given address.  All the data must be written to the same page.
2940  */
t4_write_flash(struct adapter * adapter,unsigned int addr,unsigned int n,const u8 * data)2941 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2942 			  unsigned int n, const u8 *data)
2943 {
2944 	int ret;
2945 	u32 buf[64];
2946 	unsigned int i, c, left, val, offset = addr & 0xff;
2947 
2948 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2949 		return -EINVAL;
2950 
2951 	val = swab32(addr) | SF_PROG_PAGE;
2952 
2953 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2954 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2955 		goto unlock;
2956 
2957 	for (left = n; left; left -= c) {
2958 		c = min(left, 4U);
2959 		for (val = 0, i = 0; i < c; ++i)
2960 			val = (val << 8) + *data++;
2961 
2962 		ret = sf1_write(adapter, c, c != left, 1, val);
2963 		if (ret)
2964 			goto unlock;
2965 	}
2966 	ret = flash_wait_op(adapter, 8, 1);
2967 	if (ret)
2968 		goto unlock;
2969 
2970 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2971 
2972 	/* Read the page to verify the write succeeded */
2973 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2974 	if (ret)
2975 		return ret;
2976 
2977 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
2978 		dev_err(adapter->pdev_dev,
2979 			"failed to correctly write the flash page at %#x\n",
2980 			addr);
2981 		return -EIO;
2982 	}
2983 	return 0;
2984 
2985 unlock:
2986 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2987 	return ret;
2988 }
2989 
2990 /**
2991  *	t4_get_fw_version - read the firmware version
2992  *	@adapter: the adapter
2993  *	@vers: where to place the version
2994  *
2995  *	Reads the FW version from flash.
2996  */
t4_get_fw_version(struct adapter * adapter,u32 * vers)2997 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2998 {
2999 	return t4_read_flash(adapter, FLASH_FW_START +
3000 			     offsetof(struct fw_hdr, fw_ver), 1,
3001 			     vers, 0);
3002 }
3003 
3004 /**
3005  *	t4_get_bs_version - read the firmware bootstrap version
3006  *	@adapter: the adapter
3007  *	@vers: where to place the version
3008  *
3009  *	Reads the FW Bootstrap version from flash.
3010  */
t4_get_bs_version(struct adapter * adapter,u32 * vers)3011 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3012 {
3013 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3014 			     offsetof(struct fw_hdr, fw_ver), 1,
3015 			     vers, 0);
3016 }
3017 
3018 /**
3019  *	t4_get_tp_version - read the TP microcode version
3020  *	@adapter: the adapter
3021  *	@vers: where to place the version
3022  *
3023  *	Reads the TP microcode version from flash.
3024  */
t4_get_tp_version(struct adapter * adapter,u32 * vers)3025 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3026 {
3027 	return t4_read_flash(adapter, FLASH_FW_START +
3028 			     offsetof(struct fw_hdr, tp_microcode_ver),
3029 			     1, vers, 0);
3030 }
3031 
3032 /**
3033  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3034  *	@adapter: the adapter
3035  *	@vers: where to place the version
3036  *
3037  *	Reads the Expansion ROM header from FLASH and returns the version
3038  *	number (if present) through the @vers return value pointer.  We return
3039  *	this in the Firmware Version Format since it's convenient.  Return
3040  *	0 on success, -ENOENT if no Expansion ROM is present.
3041  */
t4_get_exprom_version(struct adapter * adap,u32 * vers)3042 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3043 {
3044 	struct exprom_header {
3045 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3046 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3047 	} *hdr;
3048 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3049 					   sizeof(u32))];
3050 	int ret;
3051 
3052 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3053 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3054 			    0);
3055 	if (ret)
3056 		return ret;
3057 
3058 	hdr = (struct exprom_header *)exprom_header_buf;
3059 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3060 		return -ENOENT;
3061 
3062 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3063 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3064 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3065 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3066 	return 0;
3067 }
3068 
3069 /**
3070  *      t4_get_vpd_version - return the VPD version
3071  *      @adapter: the adapter
3072  *      @vers: where to place the version
3073  *
3074  *      Reads the VPD via the Firmware interface (thus this can only be called
3075  *      once we're ready to issue Firmware commands).  The format of the
3076  *      VPD version is adapter specific.  Returns 0 on success, an error on
3077  *      failure.
3078  *
3079  *      Note that early versions of the Firmware didn't include the ability
3080  *      to retrieve the VPD version, so we zero-out the return-value parameter
3081  *      in that case to avoid leaving it with garbage in it.
3082  *
3083  *      Also note that the Firmware will return its cached copy of the VPD
3084  *      Revision ID, not the actual Revision ID as written in the Serial
3085  *      EEPROM.  This is only an issue if a new VPD has been written and the
3086  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3087  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3088  *      if the Host Driver will be performing a full adapter initialization.
3089  */
t4_get_vpd_version(struct adapter * adapter,u32 * vers)3090 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3091 {
3092 	u32 vpdrev_param;
3093 	int ret;
3094 
3095 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3096 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3097 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3098 			      1, &vpdrev_param, vers);
3099 	if (ret)
3100 		*vers = 0;
3101 	return ret;
3102 }
3103 
3104 /**
3105  *      t4_get_scfg_version - return the Serial Configuration version
3106  *      @adapter: the adapter
3107  *      @vers: where to place the version
3108  *
3109  *      Reads the Serial Configuration Version via the Firmware interface
3110  *      (thus this can only be called once we're ready to issue Firmware
3111  *      commands).  The format of the Serial Configuration version is
3112  *      adapter specific.  Returns 0 on success, an error on failure.
3113  *
3114  *      Note that early versions of the Firmware didn't include the ability
3115  *      to retrieve the Serial Configuration version, so we zero-out the
3116  *      return-value parameter in that case to avoid leaving it with
3117  *      garbage in it.
3118  *
3119  *      Also note that the Firmware will return its cached copy of the Serial
3120  *      Initialization Revision ID, not the actual Revision ID as written in
3121  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3122  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3123  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3124  *      been issued if the Host Driver will be performing a full adapter
3125  *      initialization.
3126  */
t4_get_scfg_version(struct adapter * adapter,u32 * vers)3127 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3128 {
3129 	u32 scfgrev_param;
3130 	int ret;
3131 
3132 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3133 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3134 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3135 			      1, &scfgrev_param, vers);
3136 	if (ret)
3137 		*vers = 0;
3138 	return ret;
3139 }
3140 
3141 /**
3142  *      t4_get_version_info - extract various chip/firmware version information
3143  *      @adapter: the adapter
3144  *
3145  *      Reads various chip/firmware version numbers and stores them into the
3146  *      adapter Adapter Parameters structure.  If any of the efforts fails
3147  *      the first failure will be returned, but all of the version numbers
3148  *      will be read.
3149  */
t4_get_version_info(struct adapter * adapter)3150 int t4_get_version_info(struct adapter *adapter)
3151 {
3152 	int ret = 0;
3153 
3154 	#define FIRST_RET(__getvinfo) \
3155 	do { \
3156 		int __ret = __getvinfo; \
3157 		if (__ret && !ret) \
3158 			ret = __ret; \
3159 	} while (0)
3160 
3161 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3162 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3163 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3164 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3165 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3166 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3167 
3168 	#undef FIRST_RET
3169 	return ret;
3170 }
3171 
3172 /**
3173  *      t4_dump_version_info - dump all of the adapter configuration IDs
3174  *      @adapter: the adapter
3175  *
3176  *      Dumps all of the various bits of adapter configuration version/revision
3177  *      IDs information.  This is typically called at some point after
3178  *      t4_get_version_info() has been called.
3179  */
t4_dump_version_info(struct adapter * adapter)3180 void t4_dump_version_info(struct adapter *adapter)
3181 {
3182 	/* Device information */
3183 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3184 		 adapter->params.vpd.id,
3185 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3186 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3187 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3188 
3189 	/* Firmware Version */
3190 	if (!adapter->params.fw_vers)
3191 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3192 	else
3193 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3194 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3195 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3196 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3197 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3198 
3199 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3200 	 * Firmware, so dev_info() is more appropriate here.)
3201 	 */
3202 	if (!adapter->params.bs_vers)
3203 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3204 	else
3205 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3206 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3207 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3208 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3209 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3210 
3211 	/* TP Microcode Version */
3212 	if (!adapter->params.tp_vers)
3213 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3214 	else
3215 		dev_info(adapter->pdev_dev,
3216 			 "TP Microcode version: %u.%u.%u.%u\n",
3217 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3218 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3219 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3220 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3221 
3222 	/* Expansion ROM version */
3223 	if (!adapter->params.er_vers)
3224 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3225 	else
3226 		dev_info(adapter->pdev_dev,
3227 			 "Expansion ROM version: %u.%u.%u.%u\n",
3228 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3229 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3230 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3231 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3232 
3233 	/* Serial Configuration version */
3234 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3235 		 adapter->params.scfg_vers);
3236 
3237 	/* VPD Version */
3238 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3239 		 adapter->params.vpd_vers);
3240 }
3241 
3242 /**
3243  *	t4_check_fw_version - check if the FW is supported with this driver
3244  *	@adap: the adapter
3245  *
3246  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3247  *	if there's exact match, a negative error if the version could not be
3248  *	read or there's a major version mismatch
3249  */
t4_check_fw_version(struct adapter * adap)3250 int t4_check_fw_version(struct adapter *adap)
3251 {
3252 	int i, ret, major, minor, micro;
3253 	int exp_major, exp_minor, exp_micro;
3254 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3255 
3256 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3257 	/* Try multiple times before returning error */
3258 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3259 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3260 
3261 	if (ret)
3262 		return ret;
3263 
3264 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3265 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3266 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3267 
3268 	switch (chip_version) {
3269 	case CHELSIO_T4:
3270 		exp_major = T4FW_MIN_VERSION_MAJOR;
3271 		exp_minor = T4FW_MIN_VERSION_MINOR;
3272 		exp_micro = T4FW_MIN_VERSION_MICRO;
3273 		break;
3274 	case CHELSIO_T5:
3275 		exp_major = T5FW_MIN_VERSION_MAJOR;
3276 		exp_minor = T5FW_MIN_VERSION_MINOR;
3277 		exp_micro = T5FW_MIN_VERSION_MICRO;
3278 		break;
3279 	case CHELSIO_T6:
3280 		exp_major = T6FW_MIN_VERSION_MAJOR;
3281 		exp_minor = T6FW_MIN_VERSION_MINOR;
3282 		exp_micro = T6FW_MIN_VERSION_MICRO;
3283 		break;
3284 	default:
3285 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3286 			adap->chip);
3287 		return -EINVAL;
3288 	}
3289 
3290 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3291 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3292 		dev_err(adap->pdev_dev,
3293 			"Card has firmware version %u.%u.%u, minimum "
3294 			"supported firmware is %u.%u.%u.\n", major, minor,
3295 			micro, exp_major, exp_minor, exp_micro);
3296 		return -EFAULT;
3297 	}
3298 	return 0;
3299 }
3300 
3301 /* Is the given firmware API compatible with the one the driver was compiled
3302  * with?
3303  */
fw_compatible(const struct fw_hdr * hdr1,const struct fw_hdr * hdr2)3304 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3305 {
3306 
3307 	/* short circuit if it's the exact same firmware version */
3308 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3309 		return 1;
3310 
3311 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3312 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3313 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3314 		return 1;
3315 #undef SAME_INTF
3316 
3317 	return 0;
3318 }
3319 
3320 /* The firmware in the filesystem is usable, but should it be installed?
3321  * This routine explains itself in detail if it indicates the filesystem
3322  * firmware should be installed.
3323  */
should_install_fs_fw(struct adapter * adap,int card_fw_usable,int k,int c)3324 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3325 				int k, int c)
3326 {
3327 	const char *reason;
3328 
3329 	if (!card_fw_usable) {
3330 		reason = "incompatible or unusable";
3331 		goto install;
3332 	}
3333 
3334 	if (k > c) {
3335 		reason = "older than the version supported with this driver";
3336 		goto install;
3337 	}
3338 
3339 	return 0;
3340 
3341 install:
3342 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3343 		"installing firmware %u.%u.%u.%u on card.\n",
3344 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3345 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3346 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3347 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3348 
3349 	return 1;
3350 }
3351 
t4_prep_fw(struct adapter * adap,struct fw_info * fw_info,const u8 * fw_data,unsigned int fw_size,struct fw_hdr * card_fw,enum dev_state state,int * reset)3352 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3353 	       const u8 *fw_data, unsigned int fw_size,
3354 	       struct fw_hdr *card_fw, enum dev_state state,
3355 	       int *reset)
3356 {
3357 	int ret, card_fw_usable, fs_fw_usable;
3358 	const struct fw_hdr *fs_fw;
3359 	const struct fw_hdr *drv_fw;
3360 
3361 	drv_fw = &fw_info->fw_hdr;
3362 
3363 	/* Read the header of the firmware on the card */
3364 	ret = -t4_read_flash(adap, FLASH_FW_START,
3365 			    sizeof(*card_fw) / sizeof(uint32_t),
3366 			    (uint32_t *)card_fw, 1);
3367 	if (ret == 0) {
3368 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3369 	} else {
3370 		dev_err(adap->pdev_dev,
3371 			"Unable to read card's firmware header: %d\n", ret);
3372 		card_fw_usable = 0;
3373 	}
3374 
3375 	if (fw_data != NULL) {
3376 		fs_fw = (const void *)fw_data;
3377 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3378 	} else {
3379 		fs_fw = NULL;
3380 		fs_fw_usable = 0;
3381 	}
3382 
3383 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3384 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3385 		/* Common case: the firmware on the card is an exact match and
3386 		 * the filesystem one is an exact match too, or the filesystem
3387 		 * one is absent/incompatible.
3388 		 */
3389 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3390 		   should_install_fs_fw(adap, card_fw_usable,
3391 					be32_to_cpu(fs_fw->fw_ver),
3392 					be32_to_cpu(card_fw->fw_ver))) {
3393 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3394 				     fw_size, 0);
3395 		if (ret != 0) {
3396 			dev_err(adap->pdev_dev,
3397 				"failed to install firmware: %d\n", ret);
3398 			goto bye;
3399 		}
3400 
3401 		/* Installed successfully, update the cached header too. */
3402 		*card_fw = *fs_fw;
3403 		card_fw_usable = 1;
3404 		*reset = 0;	/* already reset as part of load_fw */
3405 	}
3406 
3407 	if (!card_fw_usable) {
3408 		uint32_t d, c, k;
3409 
3410 		d = be32_to_cpu(drv_fw->fw_ver);
3411 		c = be32_to_cpu(card_fw->fw_ver);
3412 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3413 
3414 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3415 			"chip state %d, "
3416 			"driver compiled with %d.%d.%d.%d, "
3417 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3418 			state,
3419 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3420 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3421 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3422 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3423 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3424 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3425 		ret = EINVAL;
3426 		goto bye;
3427 	}
3428 
3429 	/* We're using whatever's on the card and it's known to be good. */
3430 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3431 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3432 
3433 bye:
3434 	return ret;
3435 }
3436 
3437 /**
3438  *	t4_flash_erase_sectors - erase a range of flash sectors
3439  *	@adapter: the adapter
3440  *	@start: the first sector to erase
3441  *	@end: the last sector to erase
3442  *
3443  *	Erases the sectors in the given inclusive range.
3444  */
t4_flash_erase_sectors(struct adapter * adapter,int start,int end)3445 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3446 {
3447 	int ret = 0;
3448 
3449 	if (end >= adapter->params.sf_nsec)
3450 		return -EINVAL;
3451 
3452 	while (start <= end) {
3453 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3454 		    (ret = sf1_write(adapter, 4, 0, 1,
3455 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3456 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3457 			dev_err(adapter->pdev_dev,
3458 				"erase of flash sector %d failed, error %d\n",
3459 				start, ret);
3460 			break;
3461 		}
3462 		start++;
3463 	}
3464 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3465 	return ret;
3466 }
3467 
3468 /**
3469  *	t4_flash_cfg_addr - return the address of the flash configuration file
3470  *	@adapter: the adapter
3471  *
3472  *	Return the address within the flash where the Firmware Configuration
3473  *	File is stored.
3474  */
t4_flash_cfg_addr(struct adapter * adapter)3475 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3476 {
3477 	if (adapter->params.sf_size == 0x100000)
3478 		return FLASH_FPGA_CFG_START;
3479 	else
3480 		return FLASH_CFG_START;
3481 }
3482 
3483 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3484  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3485  * and emit an error message for mismatched firmware to save our caller the
3486  * effort ...
3487  */
t4_fw_matches_chip(const struct adapter * adap,const struct fw_hdr * hdr)3488 static bool t4_fw_matches_chip(const struct adapter *adap,
3489 			       const struct fw_hdr *hdr)
3490 {
3491 	/* The expression below will return FALSE for any unsupported adapter
3492 	 * which will keep us "honest" in the future ...
3493 	 */
3494 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3495 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3496 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3497 		return true;
3498 
3499 	dev_err(adap->pdev_dev,
3500 		"FW image (%d) is not suitable for this adapter (%d)\n",
3501 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3502 	return false;
3503 }
3504 
3505 /**
3506  *	t4_load_fw - download firmware
3507  *	@adap: the adapter
3508  *	@fw_data: the firmware image to write
3509  *	@size: image size
3510  *
3511  *	Write the supplied firmware image to the card's serial flash.
3512  */
t4_load_fw(struct adapter * adap,const u8 * fw_data,unsigned int size)3513 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3514 {
3515 	u32 csum;
3516 	int ret, addr;
3517 	unsigned int i;
3518 	u8 first_page[SF_PAGE_SIZE];
3519 	const __be32 *p = (const __be32 *)fw_data;
3520 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3521 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3522 	unsigned int fw_img_start = adap->params.sf_fw_start;
3523 	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3524 
3525 	if (!size) {
3526 		dev_err(adap->pdev_dev, "FW image has no data\n");
3527 		return -EINVAL;
3528 	}
3529 	if (size & 511) {
3530 		dev_err(adap->pdev_dev,
3531 			"FW image size not multiple of 512 bytes\n");
3532 		return -EINVAL;
3533 	}
3534 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3535 		dev_err(adap->pdev_dev,
3536 			"FW image size differs from size in FW header\n");
3537 		return -EINVAL;
3538 	}
3539 	if (size > FW_MAX_SIZE) {
3540 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3541 			FW_MAX_SIZE);
3542 		return -EFBIG;
3543 	}
3544 	if (!t4_fw_matches_chip(adap, hdr))
3545 		return -EINVAL;
3546 
3547 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3548 		csum += be32_to_cpu(p[i]);
3549 
3550 	if (csum != 0xffffffff) {
3551 		dev_err(adap->pdev_dev,
3552 			"corrupted firmware image, checksum %#x\n", csum);
3553 		return -EINVAL;
3554 	}
3555 
3556 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3557 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3558 	if (ret)
3559 		goto out;
3560 
3561 	/*
3562 	 * We write the correct version at the end so the driver can see a bad
3563 	 * version if the FW write fails.  Start by writing a copy of the
3564 	 * first page with a bad version.
3565 	 */
3566 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3567 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3568 	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3569 	if (ret)
3570 		goto out;
3571 
3572 	addr = fw_img_start;
3573 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3574 		addr += SF_PAGE_SIZE;
3575 		fw_data += SF_PAGE_SIZE;
3576 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3577 		if (ret)
3578 			goto out;
3579 	}
3580 
3581 	ret = t4_write_flash(adap,
3582 			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
3583 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3584 out:
3585 	if (ret)
3586 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3587 			ret);
3588 	else
3589 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3590 	return ret;
3591 }
3592 
3593 /**
3594  *	t4_phy_fw_ver - return current PHY firmware version
3595  *	@adap: the adapter
3596  *	@phy_fw_ver: return value buffer for PHY firmware version
3597  *
3598  *	Returns the current version of external PHY firmware on the
3599  *	adapter.
3600  */
t4_phy_fw_ver(struct adapter * adap,int * phy_fw_ver)3601 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3602 {
3603 	u32 param, val;
3604 	int ret;
3605 
3606 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3607 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3608 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3609 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3610 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3611 			      &param, &val);
3612 	if (ret < 0)
3613 		return ret;
3614 	*phy_fw_ver = val;
3615 	return 0;
3616 }
3617 
3618 /**
3619  *	t4_load_phy_fw - download port PHY firmware
3620  *	@adap: the adapter
3621  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3622  *	@win_lock: the lock to use to guard the memory copy
3623  *	@phy_fw_version: function to check PHY firmware versions
3624  *	@phy_fw_data: the PHY firmware image to write
3625  *	@phy_fw_size: image size
3626  *
3627  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3628  *	@phy_fw_version is supplied, then it will be used to determine if
3629  *	it's necessary to perform the transfer by comparing the version
3630  *	of any existing adapter PHY firmware with that of the passed in
3631  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3632  *	around the call to t4_memory_rw() which transfers the PHY firmware
3633  *	to the adapter.
3634  *
3635  *	A negative error number will be returned if an error occurs.  If
3636  *	version number support is available and there's no need to upgrade
3637  *	the firmware, 0 will be returned.  If firmware is successfully
3638  *	transferred to the adapter, 1 will be retured.
3639  *
3640  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3641  *	a result, a RESET of the adapter would cause that RAM to lose its
3642  *	contents.  Thus, loading PHY firmware on such adapters must happen
3643  *	after any FW_RESET_CMDs ...
3644  */
t4_load_phy_fw(struct adapter * adap,int win,spinlock_t * win_lock,int (* phy_fw_version)(const u8 *,size_t),const u8 * phy_fw_data,size_t phy_fw_size)3645 int t4_load_phy_fw(struct adapter *adap,
3646 		   int win, spinlock_t *win_lock,
3647 		   int (*phy_fw_version)(const u8 *, size_t),
3648 		   const u8 *phy_fw_data, size_t phy_fw_size)
3649 {
3650 	unsigned long mtype = 0, maddr = 0;
3651 	u32 param, val;
3652 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3653 	int ret;
3654 
3655 	/* If we have version number support, then check to see if the adapter
3656 	 * already has up-to-date PHY firmware loaded.
3657 	 */
3658 	 if (phy_fw_version) {
3659 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3660 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3661 		if (ret < 0)
3662 			return ret;
3663 
3664 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3665 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3666 				"version %#x\n", cur_phy_fw_ver);
3667 			return 0;
3668 		}
3669 	}
3670 
3671 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3672 	 * The size of the file requires a special version of the READ coommand
3673 	 * which will pass the file size via the values field in PARAMS_CMD and
3674 	 * retrieve the return value from firmware and place it in the same
3675 	 * buffer values
3676 	 */
3677 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3678 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3679 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3680 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3681 	val = phy_fw_size;
3682 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3683 				 &param, &val, 1, true);
3684 	if (ret < 0)
3685 		return ret;
3686 	mtype = val >> 8;
3687 	maddr = (val & 0xff) << 16;
3688 
3689 	/* Copy the supplied PHY Firmware image to the adapter memory location
3690 	 * allocated by the adapter firmware.
3691 	 */
3692 	if (win_lock)
3693 		spin_lock_bh(win_lock);
3694 	ret = t4_memory_rw(adap, win, mtype, maddr,
3695 			   phy_fw_size, (__be32 *)phy_fw_data,
3696 			   T4_MEMORY_WRITE);
3697 	if (win_lock)
3698 		spin_unlock_bh(win_lock);
3699 	if (ret)
3700 		return ret;
3701 
3702 	/* Tell the firmware that the PHY firmware image has been written to
3703 	 * RAM and it can now start copying it over to the PHYs.  The chip
3704 	 * firmware will RESET the affected PHYs as part of this operation
3705 	 * leaving them running the new PHY firmware image.
3706 	 */
3707 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3708 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3709 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3710 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3711 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3712 				    &param, &val, 30000);
3713 
3714 	/* If we have version number support, then check to see that the new
3715 	 * firmware got loaded properly.
3716 	 */
3717 	if (phy_fw_version) {
3718 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3719 		if (ret < 0)
3720 			return ret;
3721 
3722 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3723 			CH_WARN(adap, "PHY Firmware did not update: "
3724 				"version on adapter %#x, "
3725 				"version flashed %#x\n",
3726 				cur_phy_fw_ver, new_phy_fw_vers);
3727 			return -ENXIO;
3728 		}
3729 	}
3730 
3731 	return 1;
3732 }
3733 
3734 /**
3735  *	t4_fwcache - firmware cache operation
3736  *	@adap: the adapter
3737  *	@op  : the operation (flush or flush and invalidate)
3738  */
t4_fwcache(struct adapter * adap,enum fw_params_param_dev_fwcache op)3739 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3740 {
3741 	struct fw_params_cmd c;
3742 
3743 	memset(&c, 0, sizeof(c));
3744 	c.op_to_vfn =
3745 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3746 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3747 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3748 			    FW_PARAMS_CMD_VFN_V(0));
3749 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3750 	c.param[0].mnem =
3751 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3752 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3753 	c.param[0].val = cpu_to_be32(op);
3754 
3755 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3756 }
3757 
t4_cim_read_pif_la(struct adapter * adap,u32 * pif_req,u32 * pif_rsp,unsigned int * pif_req_wrptr,unsigned int * pif_rsp_wrptr)3758 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3759 			unsigned int *pif_req_wrptr,
3760 			unsigned int *pif_rsp_wrptr)
3761 {
3762 	int i, j;
3763 	u32 cfg, val, req, rsp;
3764 
3765 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3766 	if (cfg & LADBGEN_F)
3767 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3768 
3769 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3770 	req = POLADBGWRPTR_G(val);
3771 	rsp = PILADBGWRPTR_G(val);
3772 	if (pif_req_wrptr)
3773 		*pif_req_wrptr = req;
3774 	if (pif_rsp_wrptr)
3775 		*pif_rsp_wrptr = rsp;
3776 
3777 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3778 		for (j = 0; j < 6; j++) {
3779 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3780 				     PILADBGRDPTR_V(rsp));
3781 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3782 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3783 			req++;
3784 			rsp++;
3785 		}
3786 		req = (req + 2) & POLADBGRDPTR_M;
3787 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3788 	}
3789 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3790 }
3791 
t4_cim_read_ma_la(struct adapter * adap,u32 * ma_req,u32 * ma_rsp)3792 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3793 {
3794 	u32 cfg;
3795 	int i, j, idx;
3796 
3797 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3798 	if (cfg & LADBGEN_F)
3799 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3800 
3801 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3802 		for (j = 0; j < 5; j++) {
3803 			idx = 8 * i + j;
3804 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3805 				     PILADBGRDPTR_V(idx));
3806 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3807 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3808 		}
3809 	}
3810 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3811 }
3812 
t4_ulprx_read_la(struct adapter * adap,u32 * la_buf)3813 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3814 {
3815 	unsigned int i, j;
3816 
3817 	for (i = 0; i < 8; i++) {
3818 		u32 *p = la_buf + i;
3819 
3820 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3821 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3822 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3823 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3824 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3825 	}
3826 }
3827 
3828 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3829 		     FW_PORT_CAP32_ANEG)
3830 
3831 /**
3832  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3833  *	@caps16: a 16-bit Port Capabilities value
3834  *
3835  *	Returns the equivalent 32-bit Port Capabilities value.
3836  */
fwcaps16_to_caps32(fw_port_cap16_t caps16)3837 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3838 {
3839 	fw_port_cap32_t caps32 = 0;
3840 
3841 	#define CAP16_TO_CAP32(__cap) \
3842 		do { \
3843 			if (caps16 & FW_PORT_CAP_##__cap) \
3844 				caps32 |= FW_PORT_CAP32_##__cap; \
3845 		} while (0)
3846 
3847 	CAP16_TO_CAP32(SPEED_100M);
3848 	CAP16_TO_CAP32(SPEED_1G);
3849 	CAP16_TO_CAP32(SPEED_25G);
3850 	CAP16_TO_CAP32(SPEED_10G);
3851 	CAP16_TO_CAP32(SPEED_40G);
3852 	CAP16_TO_CAP32(SPEED_100G);
3853 	CAP16_TO_CAP32(FC_RX);
3854 	CAP16_TO_CAP32(FC_TX);
3855 	CAP16_TO_CAP32(ANEG);
3856 	CAP16_TO_CAP32(MDIX);
3857 	CAP16_TO_CAP32(MDIAUTO);
3858 	CAP16_TO_CAP32(FEC_RS);
3859 	CAP16_TO_CAP32(FEC_BASER_RS);
3860 	CAP16_TO_CAP32(802_3_PAUSE);
3861 	CAP16_TO_CAP32(802_3_ASM_DIR);
3862 
3863 	#undef CAP16_TO_CAP32
3864 
3865 	return caps32;
3866 }
3867 
3868 /**
3869  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3870  *	@caps32: a 32-bit Port Capabilities value
3871  *
3872  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3873  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3874  *	Port Capabilities and some fields/values may not make it.
3875  */
fwcaps32_to_caps16(fw_port_cap32_t caps32)3876 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3877 {
3878 	fw_port_cap16_t caps16 = 0;
3879 
3880 	#define CAP32_TO_CAP16(__cap) \
3881 		do { \
3882 			if (caps32 & FW_PORT_CAP32_##__cap) \
3883 				caps16 |= FW_PORT_CAP_##__cap; \
3884 		} while (0)
3885 
3886 	CAP32_TO_CAP16(SPEED_100M);
3887 	CAP32_TO_CAP16(SPEED_1G);
3888 	CAP32_TO_CAP16(SPEED_10G);
3889 	CAP32_TO_CAP16(SPEED_25G);
3890 	CAP32_TO_CAP16(SPEED_40G);
3891 	CAP32_TO_CAP16(SPEED_100G);
3892 	CAP32_TO_CAP16(FC_RX);
3893 	CAP32_TO_CAP16(FC_TX);
3894 	CAP32_TO_CAP16(802_3_PAUSE);
3895 	CAP32_TO_CAP16(802_3_ASM_DIR);
3896 	CAP32_TO_CAP16(ANEG);
3897 	CAP32_TO_CAP16(MDIX);
3898 	CAP32_TO_CAP16(MDIAUTO);
3899 	CAP32_TO_CAP16(FEC_RS);
3900 	CAP32_TO_CAP16(FEC_BASER_RS);
3901 
3902 	#undef CAP32_TO_CAP16
3903 
3904 	return caps16;
3905 }
3906 
3907 /* Translate Firmware Port Capabilities Pause specification to Common Code */
fwcap_to_cc_pause(fw_port_cap32_t fw_pause)3908 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
3909 {
3910 	enum cc_pause cc_pause = 0;
3911 
3912 	if (fw_pause & FW_PORT_CAP32_FC_RX)
3913 		cc_pause |= PAUSE_RX;
3914 	if (fw_pause & FW_PORT_CAP32_FC_TX)
3915 		cc_pause |= PAUSE_TX;
3916 
3917 	return cc_pause;
3918 }
3919 
3920 /* Translate Common Code Pause specification into Firmware Port Capabilities */
cc_to_fwcap_pause(enum cc_pause cc_pause)3921 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
3922 {
3923 	fw_port_cap32_t fw_pause = 0;
3924 
3925 	if (cc_pause & PAUSE_RX)
3926 		fw_pause |= FW_PORT_CAP32_FC_RX;
3927 	if (cc_pause & PAUSE_TX)
3928 		fw_pause |= FW_PORT_CAP32_FC_TX;
3929 
3930 	return fw_pause;
3931 }
3932 
3933 /* Translate Firmware Forward Error Correction specification to Common Code */
fwcap_to_cc_fec(fw_port_cap32_t fw_fec)3934 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
3935 {
3936 	enum cc_fec cc_fec = 0;
3937 
3938 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
3939 		cc_fec |= FEC_RS;
3940 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
3941 		cc_fec |= FEC_BASER_RS;
3942 
3943 	return cc_fec;
3944 }
3945 
3946 /* Translate Common Code Forward Error Correction specification to Firmware */
cc_to_fwcap_fec(enum cc_fec cc_fec)3947 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
3948 {
3949 	fw_port_cap32_t fw_fec = 0;
3950 
3951 	if (cc_fec & FEC_RS)
3952 		fw_fec |= FW_PORT_CAP32_FEC_RS;
3953 	if (cc_fec & FEC_BASER_RS)
3954 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
3955 
3956 	return fw_fec;
3957 }
3958 
3959 /**
3960  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3961  *	@adapter: the adapter
3962  *	@mbox: the Firmware Mailbox to use
3963  *	@port: the Port ID
3964  *	@lc: the Port's Link Configuration
3965  *
3966  *	Set up a port's MAC and PHY according to a desired link configuration.
3967  *	- If the PHY can auto-negotiate first decide what to advertise, then
3968  *	  enable/disable auto-negotiation as desired, and reset.
3969  *	- If the PHY does not auto-negotiate just reset it.
3970  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3971  *	  otherwise do it later based on the outcome of auto-negotiation.
3972  */
t4_link_l1cfg(struct adapter * adapter,unsigned int mbox,unsigned int port,struct link_config * lc)3973 int t4_link_l1cfg(struct adapter *adapter, unsigned int mbox,
3974 		  unsigned int port, struct link_config *lc)
3975 {
3976 	unsigned int fw_caps = adapter->params.fw_caps_support;
3977 	struct fw_port_cmd cmd;
3978 	unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
3979 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
3980 
3981 	lc->link_ok = 0;
3982 
3983 	/* Convert driver coding of Pause Frame Flow Control settings into the
3984 	 * Firmware's API.
3985 	 */
3986 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
3987 
3988 	/* Convert Common Code Forward Error Control settings into the
3989 	 * Firmware's API.  If the current Requested FEC has "Automatic"
3990 	 * (IEEE 802.3) specified, then we use whatever the Firmware
3991 	 * sent us as part of it's IEEE 802.3-based interpratation of
3992 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
3993 	 * use whatever is in the current Requested FEC settings.
3994 	 */
3995 	if (lc->requested_fec & FEC_AUTO)
3996 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
3997 	else
3998 		cc_fec = lc->requested_fec;
3999 	fw_fec = cc_to_fwcap_fec(cc_fec);
4000 
4001 	/* Figure out what our Requested Port Capabilities are going to be.
4002 	 */
4003 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4004 		rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
4005 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4006 		lc->fec = cc_fec;
4007 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4008 		rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4009 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4010 		lc->fec = cc_fec;
4011 	} else {
4012 		rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4013 	}
4014 
4015 	/* And send that on to the Firmware ...
4016 	 */
4017 	memset(&cmd, 0, sizeof(cmd));
4018 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4019 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4020 				       FW_PORT_CMD_PORTID_V(port));
4021 	cmd.action_to_len16 =
4022 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4023 						 ? FW_PORT_ACTION_L1_CFG
4024 						 : FW_PORT_ACTION_L1_CFG32) |
4025 			    FW_LEN16(cmd));
4026 	if (fw_caps == FW_CAPS16)
4027 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4028 	else
4029 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4030 	return t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4031 }
4032 
4033 /**
4034  *	t4_restart_aneg - restart autonegotiation
4035  *	@adap: the adapter
4036  *	@mbox: mbox to use for the FW command
4037  *	@port: the port id
4038  *
4039  *	Restarts autonegotiation for the selected port.
4040  */
t4_restart_aneg(struct adapter * adap,unsigned int mbox,unsigned int port)4041 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4042 {
4043 	struct fw_port_cmd c;
4044 
4045 	memset(&c, 0, sizeof(c));
4046 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4047 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4048 				     FW_PORT_CMD_PORTID_V(port));
4049 	c.action_to_len16 =
4050 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
4051 			    FW_LEN16(c));
4052 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP32_ANEG);
4053 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4054 }
4055 
4056 typedef void (*int_handler_t)(struct adapter *adap);
4057 
4058 struct intr_info {
4059 	unsigned int mask;       /* bits to check in interrupt status */
4060 	const char *msg;         /* message to print or NULL */
4061 	short stat_idx;          /* stat counter to increment or -1 */
4062 	unsigned short fatal;    /* whether the condition reported is fatal */
4063 	int_handler_t int_handler; /* platform-specific int handler */
4064 };
4065 
4066 /**
4067  *	t4_handle_intr_status - table driven interrupt handler
4068  *	@adapter: the adapter that generated the interrupt
4069  *	@reg: the interrupt status register to process
4070  *	@acts: table of interrupt actions
4071  *
4072  *	A table driven interrupt handler that applies a set of masks to an
4073  *	interrupt status word and performs the corresponding actions if the
4074  *	interrupts described by the mask have occurred.  The actions include
4075  *	optionally emitting a warning or alert message.  The table is terminated
4076  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4077  *	conditions.
4078  */
t4_handle_intr_status(struct adapter * adapter,unsigned int reg,const struct intr_info * acts)4079 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4080 				 const struct intr_info *acts)
4081 {
4082 	int fatal = 0;
4083 	unsigned int mask = 0;
4084 	unsigned int status = t4_read_reg(adapter, reg);
4085 
4086 	for ( ; acts->mask; ++acts) {
4087 		if (!(status & acts->mask))
4088 			continue;
4089 		if (acts->fatal) {
4090 			fatal++;
4091 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4092 				  status & acts->mask);
4093 		} else if (acts->msg && printk_ratelimit())
4094 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4095 				 status & acts->mask);
4096 		if (acts->int_handler)
4097 			acts->int_handler(adapter);
4098 		mask |= acts->mask;
4099 	}
4100 	status &= mask;
4101 	if (status)                           /* clear processed interrupts */
4102 		t4_write_reg(adapter, reg, status);
4103 	return fatal;
4104 }
4105 
4106 /*
4107  * Interrupt handler for the PCIE module.
4108  */
pcie_intr_handler(struct adapter * adapter)4109 static void pcie_intr_handler(struct adapter *adapter)
4110 {
4111 	static const struct intr_info sysbus_intr_info[] = {
4112 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4113 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4114 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4115 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4116 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4117 		{ 0 }
4118 	};
4119 	static const struct intr_info pcie_port_intr_info[] = {
4120 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4121 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4122 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4123 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4124 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4125 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4126 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4127 		{ RDPE_F, "Rx data parity error", -1, 1 },
4128 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4129 		{ 0 }
4130 	};
4131 	static const struct intr_info pcie_intr_info[] = {
4132 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4133 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4134 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4135 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4136 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4137 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4138 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4139 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4140 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4141 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4142 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4143 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4144 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4145 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4146 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4147 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4148 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4149 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4150 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4151 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4152 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4153 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4154 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4155 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4156 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4157 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4158 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4159 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4160 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4161 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4162 		  -1, 0 },
4163 		{ 0 }
4164 	};
4165 
4166 	static struct intr_info t5_pcie_intr_info[] = {
4167 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4168 		  -1, 1 },
4169 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4170 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4171 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4172 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4173 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4174 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4175 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4176 		  -1, 1 },
4177 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4178 		  -1, 1 },
4179 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4180 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4181 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4182 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4183 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4184 		  -1, 1 },
4185 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4186 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4187 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4188 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4189 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4190 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4191 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4192 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4193 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4194 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4195 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4196 		  -1, 1 },
4197 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4198 		  -1, 1 },
4199 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4200 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4201 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4202 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4203 		{ 0 }
4204 	};
4205 
4206 	int fat;
4207 
4208 	if (is_t4(adapter->params.chip))
4209 		fat = t4_handle_intr_status(adapter,
4210 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4211 				sysbus_intr_info) +
4212 			t4_handle_intr_status(adapter,
4213 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4214 					pcie_port_intr_info) +
4215 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4216 					      pcie_intr_info);
4217 	else
4218 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4219 					    t5_pcie_intr_info);
4220 
4221 	if (fat)
4222 		t4_fatal_err(adapter);
4223 }
4224 
4225 /*
4226  * TP interrupt handler.
4227  */
tp_intr_handler(struct adapter * adapter)4228 static void tp_intr_handler(struct adapter *adapter)
4229 {
4230 	static const struct intr_info tp_intr_info[] = {
4231 		{ 0x3fffffff, "TP parity error", -1, 1 },
4232 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4233 		{ 0 }
4234 	};
4235 
4236 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4237 		t4_fatal_err(adapter);
4238 }
4239 
4240 /*
4241  * SGE interrupt handler.
4242  */
sge_intr_handler(struct adapter * adapter)4243 static void sge_intr_handler(struct adapter *adapter)
4244 {
4245 	u64 v;
4246 	u32 err;
4247 
4248 	static const struct intr_info sge_intr_info[] = {
4249 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4250 		  "SGE received CPL exceeding IQE size", -1, 1 },
4251 		{ ERR_INVALID_CIDX_INC_F,
4252 		  "SGE GTS CIDX increment too large", -1, 0 },
4253 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4254 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4255 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4256 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4257 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4258 		  0 },
4259 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4260 		  0 },
4261 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4262 		  0 },
4263 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4264 		  0 },
4265 		{ ERR_ING_CTXT_PRIO_F,
4266 		  "SGE too many priority ingress contexts", -1, 0 },
4267 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4268 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4269 		{ 0 }
4270 	};
4271 
4272 	static struct intr_info t4t5_sge_intr_info[] = {
4273 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4274 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4275 		{ ERR_EGR_CTXT_PRIO_F,
4276 		  "SGE too many priority egress contexts", -1, 0 },
4277 		{ 0 }
4278 	};
4279 
4280 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4281 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4282 	if (v) {
4283 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4284 				(unsigned long long)v);
4285 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4286 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4287 	}
4288 
4289 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4290 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4291 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4292 					   t4t5_sge_intr_info);
4293 
4294 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4295 	if (err & ERROR_QID_VALID_F) {
4296 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4297 			ERROR_QID_G(err));
4298 		if (err & UNCAPTURED_ERROR_F)
4299 			dev_err(adapter->pdev_dev,
4300 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4301 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4302 			     UNCAPTURED_ERROR_F);
4303 	}
4304 
4305 	if (v != 0)
4306 		t4_fatal_err(adapter);
4307 }
4308 
4309 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4310 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4311 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4312 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4313 
4314 /*
4315  * CIM interrupt handler.
4316  */
cim_intr_handler(struct adapter * adapter)4317 static void cim_intr_handler(struct adapter *adapter)
4318 {
4319 	static const struct intr_info cim_intr_info[] = {
4320 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4321 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4322 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4323 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4324 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4325 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4326 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4327 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4328 		{ 0 }
4329 	};
4330 	static const struct intr_info cim_upintr_info[] = {
4331 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4332 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4333 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4334 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4335 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4336 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4337 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4338 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4339 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4340 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4341 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4342 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4343 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4344 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4345 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4346 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4347 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4348 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4349 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4350 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4351 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4352 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4353 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4354 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4355 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4356 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4357 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4358 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4359 		{ 0 }
4360 	};
4361 
4362 	u32 val, fw_err;
4363 	int fat;
4364 
4365 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4366 	if (fw_err & PCIE_FW_ERR_F)
4367 		t4_report_fw_error(adapter);
4368 
4369 	/* When the Firmware detects an internal error which normally
4370 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4371 	 * in order to make sure the Host sees the Firmware Crash.  So
4372 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4373 	 * ignore the Timer0 interrupt.
4374 	 */
4375 
4376 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4377 	if (val & TIMER0INT_F)
4378 		if (!(fw_err & PCIE_FW_ERR_F) ||
4379 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4380 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4381 				     TIMER0INT_F);
4382 
4383 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4384 				    cim_intr_info) +
4385 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4386 				    cim_upintr_info);
4387 	if (fat)
4388 		t4_fatal_err(adapter);
4389 }
4390 
4391 /*
4392  * ULP RX interrupt handler.
4393  */
ulprx_intr_handler(struct adapter * adapter)4394 static void ulprx_intr_handler(struct adapter *adapter)
4395 {
4396 	static const struct intr_info ulprx_intr_info[] = {
4397 		{ 0x1800000, "ULPRX context error", -1, 1 },
4398 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4399 		{ 0 }
4400 	};
4401 
4402 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4403 		t4_fatal_err(adapter);
4404 }
4405 
4406 /*
4407  * ULP TX interrupt handler.
4408  */
ulptx_intr_handler(struct adapter * adapter)4409 static void ulptx_intr_handler(struct adapter *adapter)
4410 {
4411 	static const struct intr_info ulptx_intr_info[] = {
4412 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4413 		  0 },
4414 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4415 		  0 },
4416 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4417 		  0 },
4418 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4419 		  0 },
4420 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4421 		{ 0 }
4422 	};
4423 
4424 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4425 		t4_fatal_err(adapter);
4426 }
4427 
4428 /*
4429  * PM TX interrupt handler.
4430  */
pmtx_intr_handler(struct adapter * adapter)4431 static void pmtx_intr_handler(struct adapter *adapter)
4432 {
4433 	static const struct intr_info pmtx_intr_info[] = {
4434 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4435 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4436 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4437 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4438 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4439 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4440 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4441 		  -1, 1 },
4442 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4443 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4444 		{ 0 }
4445 	};
4446 
4447 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4448 		t4_fatal_err(adapter);
4449 }
4450 
4451 /*
4452  * PM RX interrupt handler.
4453  */
pmrx_intr_handler(struct adapter * adapter)4454 static void pmrx_intr_handler(struct adapter *adapter)
4455 {
4456 	static const struct intr_info pmrx_intr_info[] = {
4457 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4458 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4459 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4460 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4461 		  -1, 1 },
4462 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4463 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4464 		{ 0 }
4465 	};
4466 
4467 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4468 		t4_fatal_err(adapter);
4469 }
4470 
4471 /*
4472  * CPL switch interrupt handler.
4473  */
cplsw_intr_handler(struct adapter * adapter)4474 static void cplsw_intr_handler(struct adapter *adapter)
4475 {
4476 	static const struct intr_info cplsw_intr_info[] = {
4477 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4478 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4479 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4480 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4481 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4482 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4483 		{ 0 }
4484 	};
4485 
4486 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4487 		t4_fatal_err(adapter);
4488 }
4489 
4490 /*
4491  * LE interrupt handler.
4492  */
le_intr_handler(struct adapter * adap)4493 static void le_intr_handler(struct adapter *adap)
4494 {
4495 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4496 	static const struct intr_info le_intr_info[] = {
4497 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4498 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4499 		{ PARITYERR_F, "LE parity error", -1, 1 },
4500 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4501 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4502 		{ 0 }
4503 	};
4504 
4505 	static struct intr_info t6_le_intr_info[] = {
4506 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4507 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4508 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4509 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4510 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4511 		{ 0 }
4512 	};
4513 
4514 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4515 				  (chip <= CHELSIO_T5) ?
4516 				  le_intr_info : t6_le_intr_info))
4517 		t4_fatal_err(adap);
4518 }
4519 
4520 /*
4521  * MPS interrupt handler.
4522  */
mps_intr_handler(struct adapter * adapter)4523 static void mps_intr_handler(struct adapter *adapter)
4524 {
4525 	static const struct intr_info mps_rx_intr_info[] = {
4526 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4527 		{ 0 }
4528 	};
4529 	static const struct intr_info mps_tx_intr_info[] = {
4530 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4531 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4532 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4533 		  -1, 1 },
4534 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4535 		  -1, 1 },
4536 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4537 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4538 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4539 		{ 0 }
4540 	};
4541 	static const struct intr_info t6_mps_tx_intr_info[] = {
4542 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4543 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4544 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4545 		  -1, 1 },
4546 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4547 		  -1, 1 },
4548 		/* MPS Tx Bubble is normal for T6 */
4549 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4550 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4551 		{ 0 }
4552 	};
4553 	static const struct intr_info mps_trc_intr_info[] = {
4554 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4555 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4556 		  -1, 1 },
4557 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4558 		{ 0 }
4559 	};
4560 	static const struct intr_info mps_stat_sram_intr_info[] = {
4561 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4562 		{ 0 }
4563 	};
4564 	static const struct intr_info mps_stat_tx_intr_info[] = {
4565 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4566 		{ 0 }
4567 	};
4568 	static const struct intr_info mps_stat_rx_intr_info[] = {
4569 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4570 		{ 0 }
4571 	};
4572 	static const struct intr_info mps_cls_intr_info[] = {
4573 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4574 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4575 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4576 		{ 0 }
4577 	};
4578 
4579 	int fat;
4580 
4581 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4582 				    mps_rx_intr_info) +
4583 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4584 				    is_t6(adapter->params.chip)
4585 				    ? t6_mps_tx_intr_info
4586 				    : mps_tx_intr_info) +
4587 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4588 				    mps_trc_intr_info) +
4589 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4590 				    mps_stat_sram_intr_info) +
4591 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4592 				    mps_stat_tx_intr_info) +
4593 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4594 				    mps_stat_rx_intr_info) +
4595 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4596 				    mps_cls_intr_info);
4597 
4598 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4599 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4600 	if (fat)
4601 		t4_fatal_err(adapter);
4602 }
4603 
4604 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4605 		      ECC_UE_INT_CAUSE_F)
4606 
4607 /*
4608  * EDC/MC interrupt handler.
4609  */
mem_intr_handler(struct adapter * adapter,int idx)4610 static void mem_intr_handler(struct adapter *adapter, int idx)
4611 {
4612 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4613 
4614 	unsigned int addr, cnt_addr, v;
4615 
4616 	if (idx <= MEM_EDC1) {
4617 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4618 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4619 	} else if (idx == MEM_MC) {
4620 		if (is_t4(adapter->params.chip)) {
4621 			addr = MC_INT_CAUSE_A;
4622 			cnt_addr = MC_ECC_STATUS_A;
4623 		} else {
4624 			addr = MC_P_INT_CAUSE_A;
4625 			cnt_addr = MC_P_ECC_STATUS_A;
4626 		}
4627 	} else {
4628 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4629 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4630 	}
4631 
4632 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4633 	if (v & PERR_INT_CAUSE_F)
4634 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4635 			  name[idx]);
4636 	if (v & ECC_CE_INT_CAUSE_F) {
4637 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4638 
4639 		t4_edc_err_read(adapter, idx);
4640 
4641 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4642 		if (printk_ratelimit())
4643 			dev_warn(adapter->pdev_dev,
4644 				 "%u %s correctable ECC data error%s\n",
4645 				 cnt, name[idx], cnt > 1 ? "s" : "");
4646 	}
4647 	if (v & ECC_UE_INT_CAUSE_F)
4648 		dev_alert(adapter->pdev_dev,
4649 			  "%s uncorrectable ECC data error\n", name[idx]);
4650 
4651 	t4_write_reg(adapter, addr, v);
4652 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4653 		t4_fatal_err(adapter);
4654 }
4655 
4656 /*
4657  * MA interrupt handler.
4658  */
ma_intr_handler(struct adapter * adap)4659 static void ma_intr_handler(struct adapter *adap)
4660 {
4661 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4662 
4663 	if (status & MEM_PERR_INT_CAUSE_F) {
4664 		dev_alert(adap->pdev_dev,
4665 			  "MA parity error, parity status %#x\n",
4666 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4667 		if (is_t5(adap->params.chip))
4668 			dev_alert(adap->pdev_dev,
4669 				  "MA parity error, parity status %#x\n",
4670 				  t4_read_reg(adap,
4671 					      MA_PARITY_ERROR_STATUS2_A));
4672 	}
4673 	if (status & MEM_WRAP_INT_CAUSE_F) {
4674 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4675 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4676 			  "client %u to address %#x\n",
4677 			  MEM_WRAP_CLIENT_NUM_G(v),
4678 			  MEM_WRAP_ADDRESS_G(v) << 4);
4679 	}
4680 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4681 	t4_fatal_err(adap);
4682 }
4683 
4684 /*
4685  * SMB interrupt handler.
4686  */
smb_intr_handler(struct adapter * adap)4687 static void smb_intr_handler(struct adapter *adap)
4688 {
4689 	static const struct intr_info smb_intr_info[] = {
4690 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4691 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4692 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4693 		{ 0 }
4694 	};
4695 
4696 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4697 		t4_fatal_err(adap);
4698 }
4699 
4700 /*
4701  * NC-SI interrupt handler.
4702  */
ncsi_intr_handler(struct adapter * adap)4703 static void ncsi_intr_handler(struct adapter *adap)
4704 {
4705 	static const struct intr_info ncsi_intr_info[] = {
4706 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4707 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4708 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4709 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4710 		{ 0 }
4711 	};
4712 
4713 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4714 		t4_fatal_err(adap);
4715 }
4716 
4717 /*
4718  * XGMAC interrupt handler.
4719  */
xgmac_intr_handler(struct adapter * adap,int port)4720 static void xgmac_intr_handler(struct adapter *adap, int port)
4721 {
4722 	u32 v, int_cause_reg;
4723 
4724 	if (is_t4(adap->params.chip))
4725 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4726 	else
4727 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4728 
4729 	v = t4_read_reg(adap, int_cause_reg);
4730 
4731 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4732 	if (!v)
4733 		return;
4734 
4735 	if (v & TXFIFO_PRTY_ERR_F)
4736 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4737 			  port);
4738 	if (v & RXFIFO_PRTY_ERR_F)
4739 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4740 			  port);
4741 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4742 	t4_fatal_err(adap);
4743 }
4744 
4745 /*
4746  * PL interrupt handler.
4747  */
pl_intr_handler(struct adapter * adap)4748 static void pl_intr_handler(struct adapter *adap)
4749 {
4750 	static const struct intr_info pl_intr_info[] = {
4751 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4752 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4753 		{ 0 }
4754 	};
4755 
4756 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4757 		t4_fatal_err(adap);
4758 }
4759 
4760 #define PF_INTR_MASK (PFSW_F)
4761 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4762 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4763 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4764 
4765 /**
4766  *	t4_slow_intr_handler - control path interrupt handler
4767  *	@adapter: the adapter
4768  *
4769  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4770  *	The designation 'slow' is because it involves register reads, while
4771  *	data interrupts typically don't involve any MMIOs.
4772  */
t4_slow_intr_handler(struct adapter * adapter)4773 int t4_slow_intr_handler(struct adapter *adapter)
4774 {
4775 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4776 
4777 	if (!(cause & GLBL_INTR_MASK))
4778 		return 0;
4779 	if (cause & CIM_F)
4780 		cim_intr_handler(adapter);
4781 	if (cause & MPS_F)
4782 		mps_intr_handler(adapter);
4783 	if (cause & NCSI_F)
4784 		ncsi_intr_handler(adapter);
4785 	if (cause & PL_F)
4786 		pl_intr_handler(adapter);
4787 	if (cause & SMB_F)
4788 		smb_intr_handler(adapter);
4789 	if (cause & XGMAC0_F)
4790 		xgmac_intr_handler(adapter, 0);
4791 	if (cause & XGMAC1_F)
4792 		xgmac_intr_handler(adapter, 1);
4793 	if (cause & XGMAC_KR0_F)
4794 		xgmac_intr_handler(adapter, 2);
4795 	if (cause & XGMAC_KR1_F)
4796 		xgmac_intr_handler(adapter, 3);
4797 	if (cause & PCIE_F)
4798 		pcie_intr_handler(adapter);
4799 	if (cause & MC_F)
4800 		mem_intr_handler(adapter, MEM_MC);
4801 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4802 		mem_intr_handler(adapter, MEM_MC1);
4803 	if (cause & EDC0_F)
4804 		mem_intr_handler(adapter, MEM_EDC0);
4805 	if (cause & EDC1_F)
4806 		mem_intr_handler(adapter, MEM_EDC1);
4807 	if (cause & LE_F)
4808 		le_intr_handler(adapter);
4809 	if (cause & TP_F)
4810 		tp_intr_handler(adapter);
4811 	if (cause & MA_F)
4812 		ma_intr_handler(adapter);
4813 	if (cause & PM_TX_F)
4814 		pmtx_intr_handler(adapter);
4815 	if (cause & PM_RX_F)
4816 		pmrx_intr_handler(adapter);
4817 	if (cause & ULP_RX_F)
4818 		ulprx_intr_handler(adapter);
4819 	if (cause & CPL_SWITCH_F)
4820 		cplsw_intr_handler(adapter);
4821 	if (cause & SGE_F)
4822 		sge_intr_handler(adapter);
4823 	if (cause & ULP_TX_F)
4824 		ulptx_intr_handler(adapter);
4825 
4826 	/* Clear the interrupts just processed for which we are the master. */
4827 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4828 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4829 	return 1;
4830 }
4831 
4832 /**
4833  *	t4_intr_enable - enable interrupts
4834  *	@adapter: the adapter whose interrupts should be enabled
4835  *
4836  *	Enable PF-specific interrupts for the calling function and the top-level
4837  *	interrupt concentrator for global interrupts.  Interrupts are already
4838  *	enabled at each module,	here we just enable the roots of the interrupt
4839  *	hierarchies.
4840  *
4841  *	Note: this function should be called only when the driver manages
4842  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4843  *	function at a time should be doing this.
4844  */
t4_intr_enable(struct adapter * adapter)4845 void t4_intr_enable(struct adapter *adapter)
4846 {
4847 	u32 val = 0;
4848 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4849 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4850 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4851 
4852 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4853 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4854 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4855 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4856 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4857 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4858 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4859 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4860 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4861 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4862 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4863 }
4864 
4865 /**
4866  *	t4_intr_disable - disable interrupts
4867  *	@adapter: the adapter whose interrupts should be disabled
4868  *
4869  *	Disable interrupts.  We only disable the top-level interrupt
4870  *	concentrators.  The caller must be a PCI function managing global
4871  *	interrupts.
4872  */
t4_intr_disable(struct adapter * adapter)4873 void t4_intr_disable(struct adapter *adapter)
4874 {
4875 	u32 whoami, pf;
4876 
4877 	if (pci_channel_offline(adapter->pdev))
4878 		return;
4879 
4880 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4881 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4882 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4883 
4884 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4885 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4886 }
4887 
4888 /**
4889  *	t4_config_rss_range - configure a portion of the RSS mapping table
4890  *	@adapter: the adapter
4891  *	@mbox: mbox to use for the FW command
4892  *	@viid: virtual interface whose RSS subtable is to be written
4893  *	@start: start entry in the table to write
4894  *	@n: how many table entries to write
4895  *	@rspq: values for the response queue lookup table
4896  *	@nrspq: number of values in @rspq
4897  *
4898  *	Programs the selected part of the VI's RSS mapping table with the
4899  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4900  *	until the full table range is populated.
4901  *
4902  *	The caller must ensure the values in @rspq are in the range allowed for
4903  *	@viid.
4904  */
t4_config_rss_range(struct adapter * adapter,int mbox,unsigned int viid,int start,int n,const u16 * rspq,unsigned int nrspq)4905 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4906 			int start, int n, const u16 *rspq, unsigned int nrspq)
4907 {
4908 	int ret;
4909 	const u16 *rsp = rspq;
4910 	const u16 *rsp_end = rspq + nrspq;
4911 	struct fw_rss_ind_tbl_cmd cmd;
4912 
4913 	memset(&cmd, 0, sizeof(cmd));
4914 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4915 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4916 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
4917 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4918 
4919 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4920 	while (n > 0) {
4921 		int nq = min(n, 32);
4922 		__be32 *qp = &cmd.iq0_to_iq2;
4923 
4924 		cmd.niqid = cpu_to_be16(nq);
4925 		cmd.startidx = cpu_to_be16(start);
4926 
4927 		start += nq;
4928 		n -= nq;
4929 
4930 		while (nq > 0) {
4931 			unsigned int v;
4932 
4933 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4934 			if (++rsp >= rsp_end)
4935 				rsp = rspq;
4936 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4937 			if (++rsp >= rsp_end)
4938 				rsp = rspq;
4939 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4940 			if (++rsp >= rsp_end)
4941 				rsp = rspq;
4942 
4943 			*qp++ = cpu_to_be32(v);
4944 			nq -= 3;
4945 		}
4946 
4947 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4948 		if (ret)
4949 			return ret;
4950 	}
4951 	return 0;
4952 }
4953 
4954 /**
4955  *	t4_config_glbl_rss - configure the global RSS mode
4956  *	@adapter: the adapter
4957  *	@mbox: mbox to use for the FW command
4958  *	@mode: global RSS mode
4959  *	@flags: mode-specific flags
4960  *
4961  *	Sets the global RSS mode.
4962  */
t4_config_glbl_rss(struct adapter * adapter,int mbox,unsigned int mode,unsigned int flags)4963 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4964 		       unsigned int flags)
4965 {
4966 	struct fw_rss_glb_config_cmd c;
4967 
4968 	memset(&c, 0, sizeof(c));
4969 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4970 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4971 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4972 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4973 		c.u.manual.mode_pkd =
4974 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4975 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4976 		c.u.basicvirtual.mode_pkd =
4977 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4978 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4979 	} else
4980 		return -EINVAL;
4981 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4982 }
4983 
4984 /**
4985  *	t4_config_vi_rss - configure per VI RSS settings
4986  *	@adapter: the adapter
4987  *	@mbox: mbox to use for the FW command
4988  *	@viid: the VI id
4989  *	@flags: RSS flags
4990  *	@defq: id of the default RSS queue for the VI.
4991  *
4992  *	Configures VI-specific RSS properties.
4993  */
t4_config_vi_rss(struct adapter * adapter,int mbox,unsigned int viid,unsigned int flags,unsigned int defq)4994 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4995 		     unsigned int flags, unsigned int defq)
4996 {
4997 	struct fw_rss_vi_config_cmd c;
4998 
4999 	memset(&c, 0, sizeof(c));
5000 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5001 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5002 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5003 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5004 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5005 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5006 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5007 }
5008 
5009 /* Read an RSS table row */
rd_rss_row(struct adapter * adap,int row,u32 * val)5010 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5011 {
5012 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5013 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5014 				   5, 0, val);
5015 }
5016 
5017 /**
5018  *	t4_read_rss - read the contents of the RSS mapping table
5019  *	@adapter: the adapter
5020  *	@map: holds the contents of the RSS mapping table
5021  *
5022  *	Reads the contents of the RSS hash->queue mapping table.
5023  */
t4_read_rss(struct adapter * adapter,u16 * map)5024 int t4_read_rss(struct adapter *adapter, u16 *map)
5025 {
5026 	u32 val;
5027 	int i, ret;
5028 
5029 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5030 		ret = rd_rss_row(adapter, i, &val);
5031 		if (ret)
5032 			return ret;
5033 		*map++ = LKPTBLQUEUE0_G(val);
5034 		*map++ = LKPTBLQUEUE1_G(val);
5035 	}
5036 	return 0;
5037 }
5038 
t4_use_ldst(struct adapter * adap)5039 static unsigned int t4_use_ldst(struct adapter *adap)
5040 {
5041 	return (adap->flags & FW_OK) || !adap->use_bd;
5042 }
5043 
5044 /**
5045  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
5046  *	@adap: the adapter
5047  *	@vals: where the indirect register values are stored/written
5048  *	@nregs: how many indirect registers to read/write
5049  *	@start_idx: index of first indirect register to read/write
5050  *	@rw: Read (1) or Write (0)
5051  *
5052  *	Access TP PIO registers through LDST
5053  */
t4_fw_tp_pio_rw(struct adapter * adap,u32 * vals,unsigned int nregs,unsigned int start_index,unsigned int rw)5054 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
5055 			    unsigned int start_index, unsigned int rw)
5056 {
5057 	int ret, i;
5058 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
5059 	struct fw_ldst_cmd c;
5060 
5061 	for (i = 0 ; i < nregs; i++) {
5062 		memset(&c, 0, sizeof(c));
5063 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5064 						FW_CMD_REQUEST_F |
5065 						(rw ? FW_CMD_READ_F :
5066 						      FW_CMD_WRITE_F) |
5067 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5068 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5069 
5070 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5071 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5072 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
5073 		if (!ret && rw)
5074 			vals[i] = be32_to_cpu(c.u.addrval.val);
5075 	}
5076 }
5077 
5078 /**
5079  *	t4_read_rss_key - read the global RSS key
5080  *	@adap: the adapter
5081  *	@key: 10-entry array holding the 320-bit RSS key
5082  *
5083  *	Reads the global 320-bit RSS key.
5084  */
t4_read_rss_key(struct adapter * adap,u32 * key)5085 void t4_read_rss_key(struct adapter *adap, u32 *key)
5086 {
5087 	if (t4_use_ldst(adap))
5088 		t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
5089 	else
5090 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
5091 				 TP_RSS_SECRET_KEY0_A);
5092 }
5093 
5094 /**
5095  *	t4_write_rss_key - program one of the RSS keys
5096  *	@adap: the adapter
5097  *	@key: 10-entry array holding the 320-bit RSS key
5098  *	@idx: which RSS key to write
5099  *
5100  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5101  *	0..15 the corresponding entry in the RSS key table is written,
5102  *	otherwise the global RSS key is written.
5103  */
t4_write_rss_key(struct adapter * adap,const u32 * key,int idx)5104 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
5105 {
5106 	u8 rss_key_addr_cnt = 16;
5107 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5108 
5109 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5110 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5111 	 * as index[5:4](upper 2) into key table
5112 	 */
5113 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5114 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5115 		rss_key_addr_cnt = 32;
5116 
5117 	if (t4_use_ldst(adap))
5118 		t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
5119 	else
5120 		t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
5121 				  TP_RSS_SECRET_KEY0_A);
5122 
5123 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5124 		if (rss_key_addr_cnt > 16)
5125 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5126 				     KEYWRADDRX_V(idx >> 4) |
5127 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5128 		else
5129 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5130 				     KEYWRADDR_V(idx) | KEYWREN_F);
5131 	}
5132 }
5133 
5134 /**
5135  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5136  *	@adapter: the adapter
5137  *	@index: the entry in the PF RSS table to read
5138  *	@valp: where to store the returned value
5139  *
5140  *	Reads the PF RSS Configuration Table at the specified index and returns
5141  *	the value found there.
5142  */
t4_read_rss_pf_config(struct adapter * adapter,unsigned int index,u32 * valp)5143 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5144 			   u32 *valp)
5145 {
5146 	if (t4_use_ldst(adapter))
5147 		t4_fw_tp_pio_rw(adapter, valp, 1,
5148 				TP_RSS_PF0_CONFIG_A + index, 1);
5149 	else
5150 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5151 				 valp, 1, TP_RSS_PF0_CONFIG_A + index);
5152 }
5153 
5154 /**
5155  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5156  *	@adapter: the adapter
5157  *	@index: the entry in the VF RSS table to read
5158  *	@vfl: where to store the returned VFL
5159  *	@vfh: where to store the returned VFH
5160  *
5161  *	Reads the VF RSS Configuration Table at the specified index and returns
5162  *	the (VFL, VFH) values found there.
5163  */
t4_read_rss_vf_config(struct adapter * adapter,unsigned int index,u32 * vfl,u32 * vfh)5164 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5165 			   u32 *vfl, u32 *vfh)
5166 {
5167 	u32 vrt, mask, data;
5168 
5169 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5170 		mask = VFWRADDR_V(VFWRADDR_M);
5171 		data = VFWRADDR_V(index);
5172 	} else {
5173 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5174 		 data = T6_VFWRADDR_V(index);
5175 	}
5176 
5177 	/* Request that the index'th VF Table values be read into VFL/VFH.
5178 	 */
5179 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5180 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5181 	vrt |= data | VFRDEN_F;
5182 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5183 
5184 	/* Grab the VFL/VFH values ...
5185 	 */
5186 	if (t4_use_ldst(adapter)) {
5187 		t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
5188 		t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
5189 	} else {
5190 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5191 				 vfl, 1, TP_RSS_VFL_CONFIG_A);
5192 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5193 				 vfh, 1, TP_RSS_VFH_CONFIG_A);
5194 	}
5195 }
5196 
5197 /**
5198  *	t4_read_rss_pf_map - read PF RSS Map
5199  *	@adapter: the adapter
5200  *
5201  *	Reads the PF RSS Map register and returns its value.
5202  */
t4_read_rss_pf_map(struct adapter * adapter)5203 u32 t4_read_rss_pf_map(struct adapter *adapter)
5204 {
5205 	u32 pfmap;
5206 
5207 	if (t4_use_ldst(adapter))
5208 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
5209 	else
5210 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5211 				 &pfmap, 1, TP_RSS_PF_MAP_A);
5212 	return pfmap;
5213 }
5214 
5215 /**
5216  *	t4_read_rss_pf_mask - read PF RSS Mask
5217  *	@adapter: the adapter
5218  *
5219  *	Reads the PF RSS Mask register and returns its value.
5220  */
t4_read_rss_pf_mask(struct adapter * adapter)5221 u32 t4_read_rss_pf_mask(struct adapter *adapter)
5222 {
5223 	u32 pfmask;
5224 
5225 	if (t4_use_ldst(adapter))
5226 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
5227 	else
5228 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
5229 				 &pfmask, 1, TP_RSS_PF_MSK_A);
5230 	return pfmask;
5231 }
5232 
5233 /**
5234  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5235  *	@adap: the adapter
5236  *	@v4: holds the TCP/IP counter values
5237  *	@v6: holds the TCP/IPv6 counter values
5238  *
5239  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5240  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5241  */
t4_tp_get_tcp_stats(struct adapter * adap,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)5242 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5243 			 struct tp_tcp_stats *v6)
5244 {
5245 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5246 
5247 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5248 #define STAT(x)     val[STAT_IDX(x)]
5249 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5250 
5251 	if (v4) {
5252 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
5253 				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
5254 		v4->tcp_out_rsts = STAT(OUT_RST);
5255 		v4->tcp_in_segs  = STAT64(IN_SEG);
5256 		v4->tcp_out_segs = STAT64(OUT_SEG);
5257 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5258 	}
5259 	if (v6) {
5260 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
5261 				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
5262 		v6->tcp_out_rsts = STAT(OUT_RST);
5263 		v6->tcp_in_segs  = STAT64(IN_SEG);
5264 		v6->tcp_out_segs = STAT64(OUT_SEG);
5265 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5266 	}
5267 #undef STAT64
5268 #undef STAT
5269 #undef STAT_IDX
5270 }
5271 
5272 /**
5273  *	t4_tp_get_err_stats - read TP's error MIB counters
5274  *	@adap: the adapter
5275  *	@st: holds the counter values
5276  *
5277  *	Returns the values of TP's error counters.
5278  */
t4_tp_get_err_stats(struct adapter * adap,struct tp_err_stats * st)5279 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
5280 {
5281 	int nchan = adap->params.arch.nchan;
5282 
5283 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5284 			 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
5285 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5286 			 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
5287 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5288 			 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
5289 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5290 			 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
5291 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5292 			 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
5293 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5294 			 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
5295 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5296 			 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
5297 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5298 			 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
5299 
5300 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
5301 			 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
5302 }
5303 
5304 /**
5305  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5306  *	@adap: the adapter
5307  *	@st: holds the counter values
5308  *
5309  *	Returns the values of TP's CPL counters.
5310  */
t4_tp_get_cpl_stats(struct adapter * adap,struct tp_cpl_stats * st)5311 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
5312 {
5313 	int nchan = adap->params.arch.nchan;
5314 
5315 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
5316 			 nchan, TP_MIB_CPL_IN_REQ_0_A);
5317 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
5318 			 nchan, TP_MIB_CPL_OUT_RSP_0_A);
5319 
5320 }
5321 
5322 /**
5323  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5324  *	@adap: the adapter
5325  *	@st: holds the counter values
5326  *
5327  *	Returns the values of TP's RDMA counters.
5328  */
t4_tp_get_rdma_stats(struct adapter * adap,struct tp_rdma_stats * st)5329 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5330 {
5331 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
5332 			 2, TP_MIB_RQE_DFR_PKT_A);
5333 }
5334 
5335 /**
5336  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5337  *	@adap: the adapter
5338  *	@idx: the port index
5339  *	@st: holds the counter values
5340  *
5341  *	Returns the values of TP's FCoE counters for the selected port.
5342  */
t4_get_fcoe_stats(struct adapter * adap,unsigned int idx,struct tp_fcoe_stats * st)5343 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5344 		       struct tp_fcoe_stats *st)
5345 {
5346 	u32 val[2];
5347 
5348 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
5349 			 1, TP_MIB_FCOE_DDP_0_A + idx);
5350 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
5351 			 1, TP_MIB_FCOE_DROP_0_A + idx);
5352 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
5353 			 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
5354 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5355 }
5356 
5357 /**
5358  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5359  *	@adap: the adapter
5360  *	@st: holds the counter values
5361  *
5362  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5363  */
t4_get_usm_stats(struct adapter * adap,struct tp_usm_stats * st)5364 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5365 {
5366 	u32 val[4];
5367 
5368 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
5369 			 TP_MIB_USM_PKTS_A);
5370 	st->frames = val[0];
5371 	st->drops = val[1];
5372 	st->octets = ((u64)val[2] << 32) | val[3];
5373 }
5374 
5375 /**
5376  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5377  *	@adap: the adapter
5378  *	@mtus: where to store the MTU values
5379  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5380  *
5381  *	Reads the HW path MTU table.
5382  */
t4_read_mtu_tbl(struct adapter * adap,u16 * mtus,u8 * mtu_log)5383 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5384 {
5385 	u32 v;
5386 	int i;
5387 
5388 	for (i = 0; i < NMTUS; ++i) {
5389 		t4_write_reg(adap, TP_MTU_TABLE_A,
5390 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5391 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5392 		mtus[i] = MTUVALUE_G(v);
5393 		if (mtu_log)
5394 			mtu_log[i] = MTUWIDTH_G(v);
5395 	}
5396 }
5397 
5398 /**
5399  *	t4_read_cong_tbl - reads the congestion control table
5400  *	@adap: the adapter
5401  *	@incr: where to store the alpha values
5402  *
5403  *	Reads the additive increments programmed into the HW congestion
5404  *	control table.
5405  */
t4_read_cong_tbl(struct adapter * adap,u16 incr[NMTUS][NCCTRL_WIN])5406 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5407 {
5408 	unsigned int mtu, w;
5409 
5410 	for (mtu = 0; mtu < NMTUS; ++mtu)
5411 		for (w = 0; w < NCCTRL_WIN; ++w) {
5412 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5413 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5414 			incr[mtu][w] = (u16)t4_read_reg(adap,
5415 						TP_CCTRL_TABLE_A) & 0x1fff;
5416 		}
5417 }
5418 
5419 /**
5420  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5421  *	@adap: the adapter
5422  *	@addr: the indirect TP register address
5423  *	@mask: specifies the field within the register to modify
5424  *	@val: new value for the field
5425  *
5426  *	Sets a field of an indirect TP register to the given value.
5427  */
t4_tp_wr_bits_indirect(struct adapter * adap,unsigned int addr,unsigned int mask,unsigned int val)5428 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5429 			    unsigned int mask, unsigned int val)
5430 {
5431 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5432 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5433 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5434 }
5435 
5436 /**
5437  *	init_cong_ctrl - initialize congestion control parameters
5438  *	@a: the alpha values for congestion control
5439  *	@b: the beta values for congestion control
5440  *
5441  *	Initialize the congestion control parameters.
5442  */
init_cong_ctrl(unsigned short * a,unsigned short * b)5443 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5444 {
5445 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5446 	a[9] = 2;
5447 	a[10] = 3;
5448 	a[11] = 4;
5449 	a[12] = 5;
5450 	a[13] = 6;
5451 	a[14] = 7;
5452 	a[15] = 8;
5453 	a[16] = 9;
5454 	a[17] = 10;
5455 	a[18] = 14;
5456 	a[19] = 17;
5457 	a[20] = 21;
5458 	a[21] = 25;
5459 	a[22] = 30;
5460 	a[23] = 35;
5461 	a[24] = 45;
5462 	a[25] = 60;
5463 	a[26] = 80;
5464 	a[27] = 100;
5465 	a[28] = 200;
5466 	a[29] = 300;
5467 	a[30] = 400;
5468 	a[31] = 500;
5469 
5470 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5471 	b[9] = b[10] = 1;
5472 	b[11] = b[12] = 2;
5473 	b[13] = b[14] = b[15] = b[16] = 3;
5474 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5475 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5476 	b[28] = b[29] = 6;
5477 	b[30] = b[31] = 7;
5478 }
5479 
5480 /* The minimum additive increment value for the congestion control table */
5481 #define CC_MIN_INCR 2U
5482 
5483 /**
5484  *	t4_load_mtus - write the MTU and congestion control HW tables
5485  *	@adap: the adapter
5486  *	@mtus: the values for the MTU table
5487  *	@alpha: the values for the congestion control alpha parameter
5488  *	@beta: the values for the congestion control beta parameter
5489  *
5490  *	Write the HW MTU table with the supplied MTUs and the high-speed
5491  *	congestion control table with the supplied alpha, beta, and MTUs.
5492  *	We write the two tables together because the additive increments
5493  *	depend on the MTUs.
5494  */
t4_load_mtus(struct adapter * adap,const unsigned short * mtus,const unsigned short * alpha,const unsigned short * beta)5495 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5496 		  const unsigned short *alpha, const unsigned short *beta)
5497 {
5498 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5499 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5500 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5501 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5502 	};
5503 
5504 	unsigned int i, w;
5505 
5506 	for (i = 0; i < NMTUS; ++i) {
5507 		unsigned int mtu = mtus[i];
5508 		unsigned int log2 = fls(mtu);
5509 
5510 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5511 			log2--;
5512 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5513 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5514 
5515 		for (w = 0; w < NCCTRL_WIN; ++w) {
5516 			unsigned int inc;
5517 
5518 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5519 				  CC_MIN_INCR);
5520 
5521 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5522 				     (w << 16) | (beta[w] << 13) | inc);
5523 		}
5524 	}
5525 }
5526 
5527 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5528  * clocks.  The formula is
5529  *
5530  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5531  *
5532  * which is equivalent to
5533  *
5534  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5535  */
chan_rate(struct adapter * adap,unsigned int bytes256)5536 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5537 {
5538 	u64 v = bytes256 * adap->params.vpd.cclk;
5539 
5540 	return v * 62 + v / 2;
5541 }
5542 
5543 /**
5544  *	t4_get_chan_txrate - get the current per channel Tx rates
5545  *	@adap: the adapter
5546  *	@nic_rate: rates for NIC traffic
5547  *	@ofld_rate: rates for offloaded traffic
5548  *
5549  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5550  *	for each channel.
5551  */
t4_get_chan_txrate(struct adapter * adap,u64 * nic_rate,u64 * ofld_rate)5552 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5553 {
5554 	u32 v;
5555 
5556 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5557 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5558 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5559 	if (adap->params.arch.nchan == NCHAN) {
5560 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5561 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5562 	}
5563 
5564 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5565 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5566 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5567 	if (adap->params.arch.nchan == NCHAN) {
5568 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5569 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5570 	}
5571 }
5572 
5573 /**
5574  *	t4_set_trace_filter - configure one of the tracing filters
5575  *	@adap: the adapter
5576  *	@tp: the desired trace filter parameters
5577  *	@idx: which filter to configure
5578  *	@enable: whether to enable or disable the filter
5579  *
5580  *	Configures one of the tracing filters available in HW.  If @enable is
5581  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5582  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5583  */
t4_set_trace_filter(struct adapter * adap,const struct trace_params * tp,int idx,int enable)5584 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5585 			int idx, int enable)
5586 {
5587 	int i, ofst = idx * 4;
5588 	u32 data_reg, mask_reg, cfg;
5589 	u32 multitrc = TRCMULTIFILTER_F;
5590 
5591 	if (!enable) {
5592 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5593 		return 0;
5594 	}
5595 
5596 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5597 	if (cfg & TRCMULTIFILTER_F) {
5598 		/* If multiple tracers are enabled, then maximum
5599 		 * capture size is 2.5KB (FIFO size of a single channel)
5600 		 * minus 2 flits for CPL_TRACE_PKT header.
5601 		 */
5602 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5603 			return -EINVAL;
5604 	} else {
5605 		/* If multiple tracers are disabled, to avoid deadlocks
5606 		 * maximum packet capture size of 9600 bytes is recommended.
5607 		 * Also in this mode, only trace0 can be enabled and running.
5608 		 */
5609 		multitrc = 0;
5610 		if (tp->snap_len > 9600 || idx)
5611 			return -EINVAL;
5612 	}
5613 
5614 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5615 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5616 	    tp->min_len > TFMINPKTSIZE_M)
5617 		return -EINVAL;
5618 
5619 	/* stop the tracer we'll be changing */
5620 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5621 
5622 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5623 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5624 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5625 
5626 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5627 		t4_write_reg(adap, data_reg, tp->data[i]);
5628 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5629 	}
5630 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5631 		     TFCAPTUREMAX_V(tp->snap_len) |
5632 		     TFMINPKTSIZE_V(tp->min_len));
5633 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5634 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5635 		     (is_t4(adap->params.chip) ?
5636 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5637 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5638 		     T5_TFINVERTMATCH_V(tp->invert)));
5639 
5640 	return 0;
5641 }
5642 
5643 /**
5644  *	t4_get_trace_filter - query one of the tracing filters
5645  *	@adap: the adapter
5646  *	@tp: the current trace filter parameters
5647  *	@idx: which trace filter to query
5648  *	@enabled: non-zero if the filter is enabled
5649  *
5650  *	Returns the current settings of one of the HW tracing filters.
5651  */
t4_get_trace_filter(struct adapter * adap,struct trace_params * tp,int idx,int * enabled)5652 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5653 			 int *enabled)
5654 {
5655 	u32 ctla, ctlb;
5656 	int i, ofst = idx * 4;
5657 	u32 data_reg, mask_reg;
5658 
5659 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5660 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5661 
5662 	if (is_t4(adap->params.chip)) {
5663 		*enabled = !!(ctla & TFEN_F);
5664 		tp->port =  TFPORT_G(ctla);
5665 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5666 	} else {
5667 		*enabled = !!(ctla & T5_TFEN_F);
5668 		tp->port = T5_TFPORT_G(ctla);
5669 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5670 	}
5671 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5672 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5673 	tp->skip_ofst = TFOFFSET_G(ctla);
5674 	tp->skip_len = TFLENGTH_G(ctla);
5675 
5676 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5677 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5678 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5679 
5680 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5681 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5682 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5683 	}
5684 }
5685 
5686 /**
5687  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5688  *	@adap: the adapter
5689  *	@cnt: where to store the count statistics
5690  *	@cycles: where to store the cycle statistics
5691  *
5692  *	Returns performance statistics from PMTX.
5693  */
t4_pmtx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])5694 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5695 {
5696 	int i;
5697 	u32 data[2];
5698 
5699 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5700 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5701 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5702 		if (is_t4(adap->params.chip)) {
5703 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5704 		} else {
5705 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5706 					 PM_TX_DBG_DATA_A, data, 2,
5707 					 PM_TX_DBG_STAT_MSB_A);
5708 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5709 		}
5710 	}
5711 }
5712 
5713 /**
5714  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5715  *	@adap: the adapter
5716  *	@cnt: where to store the count statistics
5717  *	@cycles: where to store the cycle statistics
5718  *
5719  *	Returns performance statistics from PMRX.
5720  */
t4_pmrx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])5721 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5722 {
5723 	int i;
5724 	u32 data[2];
5725 
5726 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5727 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5728 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5729 		if (is_t4(adap->params.chip)) {
5730 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5731 		} else {
5732 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5733 					 PM_RX_DBG_DATA_A, data, 2,
5734 					 PM_RX_DBG_STAT_MSB_A);
5735 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5736 		}
5737 	}
5738 }
5739 
5740 /**
5741  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
5742  *	@adap: the adapter
5743  *	@pidx: the port index
5744  *
5745  *	Computes and returns a bitmap indicating which MPS buffer groups are
5746  *	associated with the given Port.  Bit i is set if buffer group i is
5747  *	used by the Port.
5748  */
compute_mps_bg_map(struct adapter * adapter,int pidx)5749 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
5750 					      int pidx)
5751 {
5752 	unsigned int chip_version, nports;
5753 
5754 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5755 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5756 
5757 	switch (chip_version) {
5758 	case CHELSIO_T4:
5759 	case CHELSIO_T5:
5760 		switch (nports) {
5761 		case 1: return 0xf;
5762 		case 2: return 3 << (2 * pidx);
5763 		case 4: return 1 << pidx;
5764 		}
5765 		break;
5766 
5767 	case CHELSIO_T6:
5768 		switch (nports) {
5769 		case 2: return 1 << (2 * pidx);
5770 		}
5771 		break;
5772 	}
5773 
5774 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
5775 		chip_version, nports);
5776 
5777 	return 0;
5778 }
5779 
5780 /**
5781  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5782  *	@adapter: the adapter
5783  *	@pidx: the port index
5784  *
5785  *	Returns a bitmap indicating which MPS buffer groups are associated
5786  *	with the given Port.  Bit i is set if buffer group i is used by the
5787  *	Port.
5788  */
t4_get_mps_bg_map(struct adapter * adapter,int pidx)5789 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
5790 {
5791 	u8 *mps_bg_map;
5792 	unsigned int nports;
5793 
5794 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
5795 	if (pidx >= nports) {
5796 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
5797 			pidx, nports);
5798 		return 0;
5799 	}
5800 
5801 	/* If we've already retrieved/computed this, just return the result.
5802 	 */
5803 	mps_bg_map = adapter->params.mps_bg_map;
5804 	if (mps_bg_map[pidx])
5805 		return mps_bg_map[pidx];
5806 
5807 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
5808 	 * If we're talking to such Firmware, let it tell us.  If the new
5809 	 * API isn't supported, revert back to old hardcoded way.  The value
5810 	 * obtained from Firmware is encoded in below format:
5811 	 *
5812 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
5813 	 *        ( MPSBGMAP[Port 2] << 16 ) |
5814 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
5815 	 *        ( MPSBGMAP[Port 0] <<  0 ))
5816 	 */
5817 	if (adapter->flags & FW_OK) {
5818 		u32 param, val;
5819 		int ret;
5820 
5821 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5822 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
5823 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
5824 					 0, 1, &param, &val);
5825 		if (!ret) {
5826 			int p;
5827 
5828 			/* Store the BG Map for all of the Ports in order to
5829 			 * avoid more calls to the Firmware in the future.
5830 			 */
5831 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
5832 				mps_bg_map[p] = val & 0xff;
5833 
5834 			return mps_bg_map[pidx];
5835 		}
5836 	}
5837 
5838 	/* Either we're not talking to the Firmware or we're dealing with
5839 	 * older Firmware which doesn't support the new API to get the MPS
5840 	 * Buffer Group Map.  Fall back to computing it ourselves.
5841 	 */
5842 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
5843 	return mps_bg_map[pidx];
5844 }
5845 
5846 /**
5847  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
5848  *	@adapter: the adapter
5849  *	@pidx: the port index
5850  *
5851  *	Returns a bitmap indicating which TP Ingress Channels are associated
5852  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
5853  *	the Port.
5854  */
t4_get_tp_ch_map(struct adapter * adap,int pidx)5855 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
5856 {
5857 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
5858 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5859 
5860 	if (pidx >= nports) {
5861 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
5862 			 pidx, nports);
5863 		return 0;
5864 	}
5865 
5866 	switch (chip_version) {
5867 	case CHELSIO_T4:
5868 	case CHELSIO_T5:
5869 		/* Note that this happens to be the same values as the MPS
5870 		 * Buffer Group Map for these Chips.  But we replicate the code
5871 		 * here because they're really separate concepts.
5872 		 */
5873 		switch (nports) {
5874 		case 1: return 0xf;
5875 		case 2: return 3 << (2 * pidx);
5876 		case 4: return 1 << pidx;
5877 		}
5878 		break;
5879 
5880 	case CHELSIO_T6:
5881 		switch (nports) {
5882 		case 2: return 1 << pidx;
5883 		}
5884 		break;
5885 	}
5886 
5887 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
5888 		chip_version, nports);
5889 	return 0;
5890 }
5891 
5892 /**
5893  *      t4_get_port_type_description - return Port Type string description
5894  *      @port_type: firmware Port Type enumeration
5895  */
t4_get_port_type_description(enum fw_port_type port_type)5896 const char *t4_get_port_type_description(enum fw_port_type port_type)
5897 {
5898 	static const char *const port_type_description[] = {
5899 		"Fiber_XFI",
5900 		"Fiber_XAUI",
5901 		"BT_SGMII",
5902 		"BT_XFI",
5903 		"BT_XAUI",
5904 		"KX4",
5905 		"CX4",
5906 		"KX",
5907 		"KR",
5908 		"SFP",
5909 		"BP_AP",
5910 		"BP4_AP",
5911 		"QSFP_10G",
5912 		"QSA",
5913 		"QSFP",
5914 		"BP40_BA",
5915 		"KR4_100G",
5916 		"CR4_QSFP",
5917 		"CR_QSFP",
5918 		"CR2_QSFP",
5919 		"SFP28",
5920 		"KR_SFP28",
5921 	};
5922 
5923 	if (port_type < ARRAY_SIZE(port_type_description))
5924 		return port_type_description[port_type];
5925 	return "UNKNOWN";
5926 }
5927 
5928 /**
5929  *      t4_get_port_stats_offset - collect port stats relative to a previous
5930  *                                 snapshot
5931  *      @adap: The adapter
5932  *      @idx: The port
5933  *      @stats: Current stats to fill
5934  *      @offset: Previous stats snapshot
5935  */
t4_get_port_stats_offset(struct adapter * adap,int idx,struct port_stats * stats,struct port_stats * offset)5936 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5937 			      struct port_stats *stats,
5938 			      struct port_stats *offset)
5939 {
5940 	u64 *s, *o;
5941 	int i;
5942 
5943 	t4_get_port_stats(adap, idx, stats);
5944 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5945 			i < (sizeof(struct port_stats) / sizeof(u64));
5946 			i++, s++, o++)
5947 		*s -= *o;
5948 }
5949 
5950 /**
5951  *	t4_get_port_stats - collect port statistics
5952  *	@adap: the adapter
5953  *	@idx: the port index
5954  *	@p: the stats structure to fill
5955  *
5956  *	Collect statistics related to the given port from HW.
5957  */
t4_get_port_stats(struct adapter * adap,int idx,struct port_stats * p)5958 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5959 {
5960 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5961 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
5962 
5963 #define GET_STAT(name) \
5964 	t4_read_reg64(adap, \
5965 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5966 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5967 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5968 
5969 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5970 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5971 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5972 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5973 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5974 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5975 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5976 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5977 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5978 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5979 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5980 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5981 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5982 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
5983 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5984 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5985 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5986 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5987 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5988 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5989 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5990 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5991 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5992 
5993 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
5994 		if (stat_ctl & COUNTPAUSESTATTX_F)
5995 			p->tx_frames_64 -= p->tx_pause;
5996 		if (stat_ctl & COUNTPAUSEMCTX_F)
5997 			p->tx_mcast_frames -= p->tx_pause;
5998 	}
5999 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6000 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6001 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6002 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6003 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6004 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6005 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6006 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6007 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6008 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6009 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6010 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6011 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6012 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6013 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6014 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6015 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6016 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6017 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6018 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6019 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6020 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6021 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6022 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6023 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6024 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6025 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6026 
6027 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6028 		if (stat_ctl & COUNTPAUSESTATRX_F)
6029 			p->rx_frames_64 -= p->rx_pause;
6030 		if (stat_ctl & COUNTPAUSEMCRX_F)
6031 			p->rx_mcast_frames -= p->rx_pause;
6032 	}
6033 
6034 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6035 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6036 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6037 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6038 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6039 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6040 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6041 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6042 
6043 #undef GET_STAT
6044 #undef GET_STAT_COM
6045 }
6046 
6047 /**
6048  *	t4_get_lb_stats - collect loopback port statistics
6049  *	@adap: the adapter
6050  *	@idx: the loopback port index
6051  *	@p: the stats structure to fill
6052  *
6053  *	Return HW statistics for the given loopback port.
6054  */
t4_get_lb_stats(struct adapter * adap,int idx,struct lb_port_stats * p)6055 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6056 {
6057 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6058 
6059 #define GET_STAT(name) \
6060 	t4_read_reg64(adap, \
6061 	(is_t4(adap->params.chip) ? \
6062 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6063 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6064 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6065 
6066 	p->octets           = GET_STAT(BYTES);
6067 	p->frames           = GET_STAT(FRAMES);
6068 	p->bcast_frames     = GET_STAT(BCAST);
6069 	p->mcast_frames     = GET_STAT(MCAST);
6070 	p->ucast_frames     = GET_STAT(UCAST);
6071 	p->error_frames     = GET_STAT(ERROR);
6072 
6073 	p->frames_64        = GET_STAT(64B);
6074 	p->frames_65_127    = GET_STAT(65B_127B);
6075 	p->frames_128_255   = GET_STAT(128B_255B);
6076 	p->frames_256_511   = GET_STAT(256B_511B);
6077 	p->frames_512_1023  = GET_STAT(512B_1023B);
6078 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6079 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6080 	p->drop             = GET_STAT(DROP_FRAMES);
6081 
6082 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6083 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6084 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6085 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6086 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6087 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6088 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6089 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6090 
6091 #undef GET_STAT
6092 #undef GET_STAT_COM
6093 }
6094 
6095 /*     t4_mk_filtdelwr - create a delete filter WR
6096  *     @ftid: the filter ID
6097  *     @wr: the filter work request to populate
6098  *     @qid: ingress queue to receive the delete notification
6099  *
6100  *     Creates a filter work request to delete the supplied filter.  If @qid is
6101  *     negative the delete notification is suppressed.
6102  */
t4_mk_filtdelwr(unsigned int ftid,struct fw_filter_wr * wr,int qid)6103 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6104 {
6105 	memset(wr, 0, sizeof(*wr));
6106 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6107 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6108 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6109 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6110 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6111 	if (qid >= 0)
6112 		wr->rx_chan_rx_rpl_iq =
6113 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6114 }
6115 
6116 #define INIT_CMD(var, cmd, rd_wr) do { \
6117 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6118 					FW_CMD_REQUEST_F | \
6119 					FW_CMD_##rd_wr##_F); \
6120 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6121 } while (0)
6122 
t4_fwaddrspace_write(struct adapter * adap,unsigned int mbox,u32 addr,u32 val)6123 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6124 			  u32 addr, u32 val)
6125 {
6126 	u32 ldst_addrspace;
6127 	struct fw_ldst_cmd c;
6128 
6129 	memset(&c, 0, sizeof(c));
6130 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6131 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6132 					FW_CMD_REQUEST_F |
6133 					FW_CMD_WRITE_F |
6134 					ldst_addrspace);
6135 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6136 	c.u.addrval.addr = cpu_to_be32(addr);
6137 	c.u.addrval.val = cpu_to_be32(val);
6138 
6139 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6140 }
6141 
6142 /**
6143  *	t4_mdio_rd - read a PHY register through MDIO
6144  *	@adap: the adapter
6145  *	@mbox: mailbox to use for the FW command
6146  *	@phy_addr: the PHY address
6147  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6148  *	@reg: the register to read
6149  *	@valp: where to store the value
6150  *
6151  *	Issues a FW command through the given mailbox to read a PHY register.
6152  */
t4_mdio_rd(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,u16 * valp)6153 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6154 	       unsigned int mmd, unsigned int reg, u16 *valp)
6155 {
6156 	int ret;
6157 	u32 ldst_addrspace;
6158 	struct fw_ldst_cmd c;
6159 
6160 	memset(&c, 0, sizeof(c));
6161 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6162 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6163 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6164 					ldst_addrspace);
6165 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6166 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6167 					 FW_LDST_CMD_MMD_V(mmd));
6168 	c.u.mdio.raddr = cpu_to_be16(reg);
6169 
6170 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6171 	if (ret == 0)
6172 		*valp = be16_to_cpu(c.u.mdio.rval);
6173 	return ret;
6174 }
6175 
6176 /**
6177  *	t4_mdio_wr - write a PHY register through MDIO
6178  *	@adap: the adapter
6179  *	@mbox: mailbox to use for the FW command
6180  *	@phy_addr: the PHY address
6181  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6182  *	@reg: the register to write
6183  *	@valp: value to write
6184  *
6185  *	Issues a FW command through the given mailbox to write a PHY register.
6186  */
t4_mdio_wr(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,u16 val)6187 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6188 	       unsigned int mmd, unsigned int reg, u16 val)
6189 {
6190 	u32 ldst_addrspace;
6191 	struct fw_ldst_cmd c;
6192 
6193 	memset(&c, 0, sizeof(c));
6194 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6195 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6196 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6197 					ldst_addrspace);
6198 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6199 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6200 					 FW_LDST_CMD_MMD_V(mmd));
6201 	c.u.mdio.raddr = cpu_to_be16(reg);
6202 	c.u.mdio.rval = cpu_to_be16(val);
6203 
6204 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6205 }
6206 
6207 /**
6208  *	t4_sge_decode_idma_state - decode the idma state
6209  *	@adap: the adapter
6210  *	@state: the state idma is stuck in
6211  */
t4_sge_decode_idma_state(struct adapter * adapter,int state)6212 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6213 {
6214 	static const char * const t4_decode[] = {
6215 		"IDMA_IDLE",
6216 		"IDMA_PUSH_MORE_CPL_FIFO",
6217 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6218 		"Not used",
6219 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6220 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6221 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6222 		"IDMA_SEND_FIFO_TO_IMSG",
6223 		"IDMA_FL_REQ_DATA_FL_PREP",
6224 		"IDMA_FL_REQ_DATA_FL",
6225 		"IDMA_FL_DROP",
6226 		"IDMA_FL_H_REQ_HEADER_FL",
6227 		"IDMA_FL_H_SEND_PCIEHDR",
6228 		"IDMA_FL_H_PUSH_CPL_FIFO",
6229 		"IDMA_FL_H_SEND_CPL",
6230 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6231 		"IDMA_FL_H_SEND_IP_HDR",
6232 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6233 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6234 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6235 		"IDMA_FL_D_SEND_PCIEHDR",
6236 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6237 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6238 		"IDMA_FL_SEND_PCIEHDR",
6239 		"IDMA_FL_PUSH_CPL_FIFO",
6240 		"IDMA_FL_SEND_CPL",
6241 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6242 		"IDMA_FL_SEND_PAYLOAD",
6243 		"IDMA_FL_REQ_NEXT_DATA_FL",
6244 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6245 		"IDMA_FL_SEND_PADDING",
6246 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6247 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6248 		"IDMA_FL_REQ_DATAFL_DONE",
6249 		"IDMA_FL_REQ_HEADERFL_DONE",
6250 	};
6251 	static const char * const t5_decode[] = {
6252 		"IDMA_IDLE",
6253 		"IDMA_ALMOST_IDLE",
6254 		"IDMA_PUSH_MORE_CPL_FIFO",
6255 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6256 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6257 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6258 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6259 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6260 		"IDMA_SEND_FIFO_TO_IMSG",
6261 		"IDMA_FL_REQ_DATA_FL",
6262 		"IDMA_FL_DROP",
6263 		"IDMA_FL_DROP_SEND_INC",
6264 		"IDMA_FL_H_REQ_HEADER_FL",
6265 		"IDMA_FL_H_SEND_PCIEHDR",
6266 		"IDMA_FL_H_PUSH_CPL_FIFO",
6267 		"IDMA_FL_H_SEND_CPL",
6268 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6269 		"IDMA_FL_H_SEND_IP_HDR",
6270 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6271 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6272 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6273 		"IDMA_FL_D_SEND_PCIEHDR",
6274 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6275 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6276 		"IDMA_FL_SEND_PCIEHDR",
6277 		"IDMA_FL_PUSH_CPL_FIFO",
6278 		"IDMA_FL_SEND_CPL",
6279 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6280 		"IDMA_FL_SEND_PAYLOAD",
6281 		"IDMA_FL_REQ_NEXT_DATA_FL",
6282 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6283 		"IDMA_FL_SEND_PADDING",
6284 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6285 	};
6286 	static const char * const t6_decode[] = {
6287 		"IDMA_IDLE",
6288 		"IDMA_PUSH_MORE_CPL_FIFO",
6289 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6290 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6291 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6292 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6293 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6294 		"IDMA_FL_REQ_DATA_FL",
6295 		"IDMA_FL_DROP",
6296 		"IDMA_FL_DROP_SEND_INC",
6297 		"IDMA_FL_H_REQ_HEADER_FL",
6298 		"IDMA_FL_H_SEND_PCIEHDR",
6299 		"IDMA_FL_H_PUSH_CPL_FIFO",
6300 		"IDMA_FL_H_SEND_CPL",
6301 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6302 		"IDMA_FL_H_SEND_IP_HDR",
6303 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6304 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6305 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6306 		"IDMA_FL_D_SEND_PCIEHDR",
6307 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6308 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6309 		"IDMA_FL_SEND_PCIEHDR",
6310 		"IDMA_FL_PUSH_CPL_FIFO",
6311 		"IDMA_FL_SEND_CPL",
6312 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6313 		"IDMA_FL_SEND_PAYLOAD",
6314 		"IDMA_FL_REQ_NEXT_DATA_FL",
6315 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6316 		"IDMA_FL_SEND_PADDING",
6317 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6318 	};
6319 	static const u32 sge_regs[] = {
6320 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6321 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6322 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6323 	};
6324 	const char **sge_idma_decode;
6325 	int sge_idma_decode_nstates;
6326 	int i;
6327 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6328 
6329 	/* Select the right set of decode strings to dump depending on the
6330 	 * adapter chip type.
6331 	 */
6332 	switch (chip_version) {
6333 	case CHELSIO_T4:
6334 		sge_idma_decode = (const char **)t4_decode;
6335 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6336 		break;
6337 
6338 	case CHELSIO_T5:
6339 		sge_idma_decode = (const char **)t5_decode;
6340 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6341 		break;
6342 
6343 	case CHELSIO_T6:
6344 		sge_idma_decode = (const char **)t6_decode;
6345 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6346 		break;
6347 
6348 	default:
6349 		dev_err(adapter->pdev_dev,
6350 			"Unsupported chip version %d\n", chip_version);
6351 		return;
6352 	}
6353 
6354 	if (is_t4(adapter->params.chip)) {
6355 		sge_idma_decode = (const char **)t4_decode;
6356 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6357 	} else {
6358 		sge_idma_decode = (const char **)t5_decode;
6359 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6360 	}
6361 
6362 	if (state < sge_idma_decode_nstates)
6363 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6364 	else
6365 		CH_WARN(adapter, "idma state %d unknown\n", state);
6366 
6367 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6368 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6369 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6370 }
6371 
6372 /**
6373  *      t4_sge_ctxt_flush - flush the SGE context cache
6374  *      @adap: the adapter
6375  *      @mbox: mailbox to use for the FW command
6376  *
6377  *      Issues a FW command through the given mailbox to flush the
6378  *      SGE context cache.
6379  */
t4_sge_ctxt_flush(struct adapter * adap,unsigned int mbox)6380 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6381 {
6382 	int ret;
6383 	u32 ldst_addrspace;
6384 	struct fw_ldst_cmd c;
6385 
6386 	memset(&c, 0, sizeof(c));
6387 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
6388 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6389 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6390 					ldst_addrspace);
6391 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6392 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6393 
6394 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6395 	return ret;
6396 }
6397 
6398 /**
6399  *      t4_fw_hello - establish communication with FW
6400  *      @adap: the adapter
6401  *      @mbox: mailbox to use for the FW command
6402  *      @evt_mbox: mailbox to receive async FW events
6403  *      @master: specifies the caller's willingness to be the device master
6404  *	@state: returns the current device state (if non-NULL)
6405  *
6406  *	Issues a command to establish communication with FW.  Returns either
6407  *	an error (negative integer) or the mailbox of the Master PF.
6408  */
t4_fw_hello(struct adapter * adap,unsigned int mbox,unsigned int evt_mbox,enum dev_master master,enum dev_state * state)6409 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6410 		enum dev_master master, enum dev_state *state)
6411 {
6412 	int ret;
6413 	struct fw_hello_cmd c;
6414 	u32 v;
6415 	unsigned int master_mbox;
6416 	int retries = FW_CMD_HELLO_RETRIES;
6417 
6418 retry:
6419 	memset(&c, 0, sizeof(c));
6420 	INIT_CMD(c, HELLO, WRITE);
6421 	c.err_to_clearinit = cpu_to_be32(
6422 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6423 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6424 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6425 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6426 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6427 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6428 		FW_HELLO_CMD_CLEARINIT_F);
6429 
6430 	/*
6431 	 * Issue the HELLO command to the firmware.  If it's not successful
6432 	 * but indicates that we got a "busy" or "timeout" condition, retry
6433 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6434 	 * retry limit, check to see if the firmware left us any error
6435 	 * information and report that if so.
6436 	 */
6437 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6438 	if (ret < 0) {
6439 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6440 			goto retry;
6441 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6442 			t4_report_fw_error(adap);
6443 		return ret;
6444 	}
6445 
6446 	v = be32_to_cpu(c.err_to_clearinit);
6447 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6448 	if (state) {
6449 		if (v & FW_HELLO_CMD_ERR_F)
6450 			*state = DEV_STATE_ERR;
6451 		else if (v & FW_HELLO_CMD_INIT_F)
6452 			*state = DEV_STATE_INIT;
6453 		else
6454 			*state = DEV_STATE_UNINIT;
6455 	}
6456 
6457 	/*
6458 	 * If we're not the Master PF then we need to wait around for the
6459 	 * Master PF Driver to finish setting up the adapter.
6460 	 *
6461 	 * Note that we also do this wait if we're a non-Master-capable PF and
6462 	 * there is no current Master PF; a Master PF may show up momentarily
6463 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6464 	 * OS loads lots of different drivers rapidly at the same time).  In
6465 	 * this case, the Master PF returned by the firmware will be
6466 	 * PCIE_FW_MASTER_M so the test below will work ...
6467 	 */
6468 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6469 	    master_mbox != mbox) {
6470 		int waiting = FW_CMD_HELLO_TIMEOUT;
6471 
6472 		/*
6473 		 * Wait for the firmware to either indicate an error or
6474 		 * initialized state.  If we see either of these we bail out
6475 		 * and report the issue to the caller.  If we exhaust the
6476 		 * "hello timeout" and we haven't exhausted our retries, try
6477 		 * again.  Otherwise bail with a timeout error.
6478 		 */
6479 		for (;;) {
6480 			u32 pcie_fw;
6481 
6482 			msleep(50);
6483 			waiting -= 50;
6484 
6485 			/*
6486 			 * If neither Error nor Initialialized are indicated
6487 			 * by the firmware keep waiting till we exaust our
6488 			 * timeout ... and then retry if we haven't exhausted
6489 			 * our retries ...
6490 			 */
6491 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6492 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6493 				if (waiting <= 0) {
6494 					if (retries-- > 0)
6495 						goto retry;
6496 
6497 					return -ETIMEDOUT;
6498 				}
6499 				continue;
6500 			}
6501 
6502 			/*
6503 			 * We either have an Error or Initialized condition
6504 			 * report errors preferentially.
6505 			 */
6506 			if (state) {
6507 				if (pcie_fw & PCIE_FW_ERR_F)
6508 					*state = DEV_STATE_ERR;
6509 				else if (pcie_fw & PCIE_FW_INIT_F)
6510 					*state = DEV_STATE_INIT;
6511 			}
6512 
6513 			/*
6514 			 * If we arrived before a Master PF was selected and
6515 			 * there's not a valid Master PF, grab its identity
6516 			 * for our caller.
6517 			 */
6518 			if (master_mbox == PCIE_FW_MASTER_M &&
6519 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6520 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6521 			break;
6522 		}
6523 	}
6524 
6525 	return master_mbox;
6526 }
6527 
6528 /**
6529  *	t4_fw_bye - end communication with FW
6530  *	@adap: the adapter
6531  *	@mbox: mailbox to use for the FW command
6532  *
6533  *	Issues a command to terminate communication with FW.
6534  */
t4_fw_bye(struct adapter * adap,unsigned int mbox)6535 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6536 {
6537 	struct fw_bye_cmd c;
6538 
6539 	memset(&c, 0, sizeof(c));
6540 	INIT_CMD(c, BYE, WRITE);
6541 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6542 }
6543 
6544 /**
6545  *	t4_init_cmd - ask FW to initialize the device
6546  *	@adap: the adapter
6547  *	@mbox: mailbox to use for the FW command
6548  *
6549  *	Issues a command to FW to partially initialize the device.  This
6550  *	performs initialization that generally doesn't depend on user input.
6551  */
t4_early_init(struct adapter * adap,unsigned int mbox)6552 int t4_early_init(struct adapter *adap, unsigned int mbox)
6553 {
6554 	struct fw_initialize_cmd c;
6555 
6556 	memset(&c, 0, sizeof(c));
6557 	INIT_CMD(c, INITIALIZE, WRITE);
6558 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6559 }
6560 
6561 /**
6562  *	t4_fw_reset - issue a reset to FW
6563  *	@adap: the adapter
6564  *	@mbox: mailbox to use for the FW command
6565  *	@reset: specifies the type of reset to perform
6566  *
6567  *	Issues a reset command of the specified type to FW.
6568  */
t4_fw_reset(struct adapter * adap,unsigned int mbox,int reset)6569 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6570 {
6571 	struct fw_reset_cmd c;
6572 
6573 	memset(&c, 0, sizeof(c));
6574 	INIT_CMD(c, RESET, WRITE);
6575 	c.val = cpu_to_be32(reset);
6576 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6577 }
6578 
6579 /**
6580  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6581  *	@adap: the adapter
6582  *	@mbox: mailbox to use for the FW RESET command (if desired)
6583  *	@force: force uP into RESET even if FW RESET command fails
6584  *
6585  *	Issues a RESET command to firmware (if desired) with a HALT indication
6586  *	and then puts the microprocessor into RESET state.  The RESET command
6587  *	will only be issued if a legitimate mailbox is provided (mbox <=
6588  *	PCIE_FW_MASTER_M).
6589  *
6590  *	This is generally used in order for the host to safely manipulate the
6591  *	adapter without fear of conflicting with whatever the firmware might
6592  *	be doing.  The only way out of this state is to RESTART the firmware
6593  *	...
6594  */
t4_fw_halt(struct adapter * adap,unsigned int mbox,int force)6595 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6596 {
6597 	int ret = 0;
6598 
6599 	/*
6600 	 * If a legitimate mailbox is provided, issue a RESET command
6601 	 * with a HALT indication.
6602 	 */
6603 	if (mbox <= PCIE_FW_MASTER_M) {
6604 		struct fw_reset_cmd c;
6605 
6606 		memset(&c, 0, sizeof(c));
6607 		INIT_CMD(c, RESET, WRITE);
6608 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6609 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6610 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6611 	}
6612 
6613 	/*
6614 	 * Normally we won't complete the operation if the firmware RESET
6615 	 * command fails but if our caller insists we'll go ahead and put the
6616 	 * uP into RESET.  This can be useful if the firmware is hung or even
6617 	 * missing ...  We'll have to take the risk of putting the uP into
6618 	 * RESET without the cooperation of firmware in that case.
6619 	 *
6620 	 * We also force the firmware's HALT flag to be on in case we bypassed
6621 	 * the firmware RESET command above or we're dealing with old firmware
6622 	 * which doesn't have the HALT capability.  This will serve as a flag
6623 	 * for the incoming firmware to know that it's coming out of a HALT
6624 	 * rather than a RESET ... if it's new enough to understand that ...
6625 	 */
6626 	if (ret == 0 || force) {
6627 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6628 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6629 				 PCIE_FW_HALT_F);
6630 	}
6631 
6632 	/*
6633 	 * And we always return the result of the firmware RESET command
6634 	 * even when we force the uP into RESET ...
6635 	 */
6636 	return ret;
6637 }
6638 
6639 /**
6640  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6641  *	@adap: the adapter
6642  *	@reset: if we want to do a RESET to restart things
6643  *
6644  *	Restart firmware previously halted by t4_fw_halt().  On successful
6645  *	return the previous PF Master remains as the new PF Master and there
6646  *	is no need to issue a new HELLO command, etc.
6647  *
6648  *	We do this in two ways:
6649  *
6650  *	 1. If we're dealing with newer firmware we'll simply want to take
6651  *	    the chip's microprocessor out of RESET.  This will cause the
6652  *	    firmware to start up from its start vector.  And then we'll loop
6653  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6654  *	    reset to 0) or we timeout.
6655  *
6656  *	 2. If we're dealing with older firmware then we'll need to RESET
6657  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6658  *	    flag and automatically RESET itself on startup.
6659  */
t4_fw_restart(struct adapter * adap,unsigned int mbox,int reset)6660 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6661 {
6662 	if (reset) {
6663 		/*
6664 		 * Since we're directing the RESET instead of the firmware
6665 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6666 		 * bit.
6667 		 */
6668 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6669 
6670 		/*
6671 		 * If we've been given a valid mailbox, first try to get the
6672 		 * firmware to do the RESET.  If that works, great and we can
6673 		 * return success.  Otherwise, if we haven't been given a
6674 		 * valid mailbox or the RESET command failed, fall back to
6675 		 * hitting the chip with a hammer.
6676 		 */
6677 		if (mbox <= PCIE_FW_MASTER_M) {
6678 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6679 			msleep(100);
6680 			if (t4_fw_reset(adap, mbox,
6681 					PIORST_F | PIORSTMODE_F) == 0)
6682 				return 0;
6683 		}
6684 
6685 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6686 		msleep(2000);
6687 	} else {
6688 		int ms;
6689 
6690 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6691 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6692 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6693 				return 0;
6694 			msleep(100);
6695 			ms += 100;
6696 		}
6697 		return -ETIMEDOUT;
6698 	}
6699 	return 0;
6700 }
6701 
6702 /**
6703  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6704  *	@adap: the adapter
6705  *	@mbox: mailbox to use for the FW RESET command (if desired)
6706  *	@fw_data: the firmware image to write
6707  *	@size: image size
6708  *	@force: force upgrade even if firmware doesn't cooperate
6709  *
6710  *	Perform all of the steps necessary for upgrading an adapter's
6711  *	firmware image.  Normally this requires the cooperation of the
6712  *	existing firmware in order to halt all existing activities
6713  *	but if an invalid mailbox token is passed in we skip that step
6714  *	(though we'll still put the adapter microprocessor into RESET in
6715  *	that case).
6716  *
6717  *	On successful return the new firmware will have been loaded and
6718  *	the adapter will have been fully RESET losing all previous setup
6719  *	state.  On unsuccessful return the adapter may be completely hosed ...
6720  *	positive errno indicates that the adapter is ~probably~ intact, a
6721  *	negative errno indicates that things are looking bad ...
6722  */
t4_fw_upgrade(struct adapter * adap,unsigned int mbox,const u8 * fw_data,unsigned int size,int force)6723 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6724 		  const u8 *fw_data, unsigned int size, int force)
6725 {
6726 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6727 	int reset, ret;
6728 
6729 	if (!t4_fw_matches_chip(adap, fw_hdr))
6730 		return -EINVAL;
6731 
6732 	/* Disable FW_OK flag so that mbox commands with FW_OK flag set
6733 	 * wont be sent when we are flashing FW.
6734 	 */
6735 	adap->flags &= ~FW_OK;
6736 
6737 	ret = t4_fw_halt(adap, mbox, force);
6738 	if (ret < 0 && !force)
6739 		goto out;
6740 
6741 	ret = t4_load_fw(adap, fw_data, size);
6742 	if (ret < 0)
6743 		goto out;
6744 
6745 	/*
6746 	 * If there was a Firmware Configuration File stored in FLASH,
6747 	 * there's a good chance that it won't be compatible with the new
6748 	 * Firmware.  In order to prevent difficult to diagnose adapter
6749 	 * initialization issues, we clear out the Firmware Configuration File
6750 	 * portion of the FLASH .  The user will need to re-FLASH a new
6751 	 * Firmware Configuration File which is compatible with the new
6752 	 * Firmware if that's desired.
6753 	 */
6754 	(void)t4_load_cfg(adap, NULL, 0);
6755 
6756 	/*
6757 	 * Older versions of the firmware don't understand the new
6758 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6759 	 * restart.  So for newly loaded older firmware we'll have to do the
6760 	 * RESET for it so it starts up on a clean slate.  We can tell if
6761 	 * the newly loaded firmware will handle this right by checking
6762 	 * its header flags to see if it advertises the capability.
6763 	 */
6764 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6765 	ret = t4_fw_restart(adap, mbox, reset);
6766 
6767 	/* Grab potentially new Firmware Device Log parameters so we can see
6768 	 * how healthy the new Firmware is.  It's okay to contact the new
6769 	 * Firmware for these parameters even though, as far as it's
6770 	 * concerned, we've never said "HELLO" to it ...
6771 	 */
6772 	(void)t4_init_devlog_params(adap);
6773 out:
6774 	adap->flags |= FW_OK;
6775 	return ret;
6776 }
6777 
6778 /**
6779  *	t4_fl_pkt_align - return the fl packet alignment
6780  *	@adap: the adapter
6781  *
6782  *	T4 has a single field to specify the packing and padding boundary.
6783  *	T5 onwards has separate fields for this and hence the alignment for
6784  *	next packet offset is maximum of these two.
6785  *
6786  */
t4_fl_pkt_align(struct adapter * adap)6787 int t4_fl_pkt_align(struct adapter *adap)
6788 {
6789 	u32 sge_control, sge_control2;
6790 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6791 
6792 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6793 
6794 	/* T4 uses a single control field to specify both the PCIe Padding and
6795 	 * Packing Boundary.  T5 introduced the ability to specify these
6796 	 * separately.  The actual Ingress Packet Data alignment boundary
6797 	 * within Packed Buffer Mode is the maximum of these two
6798 	 * specifications.  (Note that it makes no real practical sense to
6799 	 * have the Pading Boudary be larger than the Packing Boundary but you
6800 	 * could set the chip up that way and, in fact, legacy T4 code would
6801 	 * end doing this because it would initialize the Padding Boundary and
6802 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
6803 	 * Padding Boundary values in T6 starts from 8B,
6804 	 * where as it is 32B for T4 and T5.
6805 	 */
6806 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6807 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6808 	else
6809 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6810 
6811 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6812 
6813 	fl_align = ingpadboundary;
6814 	if (!is_t4(adap->params.chip)) {
6815 		/* T5 has a weird interpretation of one of the PCIe Packing
6816 		 * Boundary values.  No idea why ...
6817 		 */
6818 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6819 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6820 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6821 			ingpackboundary = 16;
6822 		else
6823 			ingpackboundary = 1 << (ingpackboundary +
6824 						INGPACKBOUNDARY_SHIFT_X);
6825 
6826 		fl_align = max(ingpadboundary, ingpackboundary);
6827 	}
6828 	return fl_align;
6829 }
6830 
6831 /**
6832  *	t4_fixup_host_params - fix up host-dependent parameters
6833  *	@adap: the adapter
6834  *	@page_size: the host's Base Page Size
6835  *	@cache_line_size: the host's Cache Line Size
6836  *
6837  *	Various registers in T4 contain values which are dependent on the
6838  *	host's Base Page and Cache Line Sizes.  This function will fix all of
6839  *	those registers with the appropriate values as passed in ...
6840  */
t4_fixup_host_params(struct adapter * adap,unsigned int page_size,unsigned int cache_line_size)6841 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6842 			 unsigned int cache_line_size)
6843 {
6844 	unsigned int page_shift = fls(page_size) - 1;
6845 	unsigned int sge_hps = page_shift - 10;
6846 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6847 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6848 	unsigned int fl_align_log = fls(fl_align) - 1;
6849 
6850 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6851 		     HOSTPAGESIZEPF0_V(sge_hps) |
6852 		     HOSTPAGESIZEPF1_V(sge_hps) |
6853 		     HOSTPAGESIZEPF2_V(sge_hps) |
6854 		     HOSTPAGESIZEPF3_V(sge_hps) |
6855 		     HOSTPAGESIZEPF4_V(sge_hps) |
6856 		     HOSTPAGESIZEPF5_V(sge_hps) |
6857 		     HOSTPAGESIZEPF6_V(sge_hps) |
6858 		     HOSTPAGESIZEPF7_V(sge_hps));
6859 
6860 	if (is_t4(adap->params.chip)) {
6861 		t4_set_reg_field(adap, SGE_CONTROL_A,
6862 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6863 				 EGRSTATUSPAGESIZE_F,
6864 				 INGPADBOUNDARY_V(fl_align_log -
6865 						  INGPADBOUNDARY_SHIFT_X) |
6866 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6867 	} else {
6868 		unsigned int pack_align;
6869 		unsigned int ingpad, ingpack;
6870 		unsigned int pcie_cap;
6871 
6872 		/* T5 introduced the separation of the Free List Padding and
6873 		 * Packing Boundaries.  Thus, we can select a smaller Padding
6874 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6875 		 * Bandwidth, and use a Packing Boundary which is large enough
6876 		 * to avoid false sharing between CPUs, etc.
6877 		 *
6878 		 * For the PCI Link, the smaller the Padding Boundary the
6879 		 * better.  For the Memory Controller, a smaller Padding
6880 		 * Boundary is better until we cross under the Memory Line
6881 		 * Size (the minimum unit of transfer to/from Memory).  If we
6882 		 * have a Padding Boundary which is smaller than the Memory
6883 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
6884 		 * Memory Controller which is never good.
6885 		 */
6886 
6887 		/* We want the Packing Boundary to be based on the Cache Line
6888 		 * Size in order to help avoid False Sharing performance
6889 		 * issues between CPUs, etc.  We also want the Packing
6890 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
6891 		 * get best performance when the Packing Boundary is a
6892 		 * multiple of the Maximum Payload Size.
6893 		 */
6894 		pack_align = fl_align;
6895 		pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
6896 		if (pcie_cap) {
6897 			unsigned int mps, mps_log;
6898 			u16 devctl;
6899 
6900 			/* The PCIe Device Control Maximum Payload Size field
6901 			 * [bits 7:5] encodes sizes as powers of 2 starting at
6902 			 * 128 bytes.
6903 			 */
6904 			pci_read_config_word(adap->pdev,
6905 					     pcie_cap + PCI_EXP_DEVCTL,
6906 					     &devctl);
6907 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
6908 			mps = 1 << mps_log;
6909 			if (mps > pack_align)
6910 				pack_align = mps;
6911 		}
6912 
6913 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
6914 		 * value for the Packing Boundary.  This corresponds to 16
6915 		 * bytes instead of the expected 32 bytes.  So if we want 32
6916 		 * bytes, the best we can really do is 64 bytes ...
6917 		 */
6918 		if (pack_align <= 16) {
6919 			ingpack = INGPACKBOUNDARY_16B_X;
6920 			fl_align = 16;
6921 		} else if (pack_align == 32) {
6922 			ingpack = INGPACKBOUNDARY_64B_X;
6923 			fl_align = 64;
6924 		} else {
6925 			unsigned int pack_align_log = fls(pack_align) - 1;
6926 
6927 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
6928 			fl_align = pack_align;
6929 		}
6930 
6931 		/* Use the smallest Ingress Padding which isn't smaller than
6932 		 * the Memory Controller Read/Write Size.  We'll take that as
6933 		 * being 8 bytes since we don't know of any system with a
6934 		 * wider Memory Controller Bus Width.
6935 		 */
6936 		if (is_t5(adap->params.chip))
6937 			ingpad = INGPADBOUNDARY_32B_X;
6938 		else
6939 			ingpad = T6_INGPADBOUNDARY_8B_X;
6940 
6941 		t4_set_reg_field(adap, SGE_CONTROL_A,
6942 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6943 				 EGRSTATUSPAGESIZE_F,
6944 				 INGPADBOUNDARY_V(ingpad) |
6945 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6946 		t4_set_reg_field(adap, SGE_CONTROL2_A,
6947 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6948 				 INGPACKBOUNDARY_V(ingpack));
6949 	}
6950 	/*
6951 	 * Adjust various SGE Free List Host Buffer Sizes.
6952 	 *
6953 	 * This is something of a crock since we're using fixed indices into
6954 	 * the array which are also known by the sge.c code and the T4
6955 	 * Firmware Configuration File.  We need to come up with a much better
6956 	 * approach to managing this array.  For now, the first four entries
6957 	 * are:
6958 	 *
6959 	 *   0: Host Page Size
6960 	 *   1: 64KB
6961 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6962 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6963 	 *
6964 	 * For the single-MTU buffers in unpacked mode we need to include
6965 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6966 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6967 	 * Padding boundary.  All of these are accommodated in the Factory
6968 	 * Default Firmware Configuration File but we need to adjust it for
6969 	 * this host's cache line size.
6970 	 */
6971 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6972 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6973 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6974 		     & ~(fl_align-1));
6975 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6976 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6977 		     & ~(fl_align-1));
6978 
6979 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6980 
6981 	return 0;
6982 }
6983 
6984 /**
6985  *	t4_fw_initialize - ask FW to initialize the device
6986  *	@adap: the adapter
6987  *	@mbox: mailbox to use for the FW command
6988  *
6989  *	Issues a command to FW to partially initialize the device.  This
6990  *	performs initialization that generally doesn't depend on user input.
6991  */
t4_fw_initialize(struct adapter * adap,unsigned int mbox)6992 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6993 {
6994 	struct fw_initialize_cmd c;
6995 
6996 	memset(&c, 0, sizeof(c));
6997 	INIT_CMD(c, INITIALIZE, WRITE);
6998 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6999 }
7000 
7001 /**
7002  *	t4_query_params_rw - query FW or device parameters
7003  *	@adap: the adapter
7004  *	@mbox: mailbox to use for the FW command
7005  *	@pf: the PF
7006  *	@vf: the VF
7007  *	@nparams: the number of parameters
7008  *	@params: the parameter names
7009  *	@val: the parameter values
7010  *	@rw: Write and read flag
7011  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7012  *
7013  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7014  *	queried at once.
7015  */
t4_query_params_rw(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val,int rw,bool sleep_ok)7016 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7017 		       unsigned int vf, unsigned int nparams, const u32 *params,
7018 		       u32 *val, int rw, bool sleep_ok)
7019 {
7020 	int i, ret;
7021 	struct fw_params_cmd c;
7022 	__be32 *p = &c.param[0].mnem;
7023 
7024 	if (nparams > 7)
7025 		return -EINVAL;
7026 
7027 	memset(&c, 0, sizeof(c));
7028 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7029 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7030 				  FW_PARAMS_CMD_PFN_V(pf) |
7031 				  FW_PARAMS_CMD_VFN_V(vf));
7032 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7033 
7034 	for (i = 0; i < nparams; i++) {
7035 		*p++ = cpu_to_be32(*params++);
7036 		if (rw)
7037 			*p = cpu_to_be32(*(val + i));
7038 		p++;
7039 	}
7040 
7041 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7042 	if (ret == 0)
7043 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7044 			*val++ = be32_to_cpu(*p);
7045 	return ret;
7046 }
7047 
t4_query_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val)7048 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7049 		    unsigned int vf, unsigned int nparams, const u32 *params,
7050 		    u32 *val)
7051 {
7052 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7053 				  true);
7054 }
7055 
t4_query_params_ns(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val)7056 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7057 		       unsigned int vf, unsigned int nparams, const u32 *params,
7058 		       u32 *val)
7059 {
7060 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7061 				  false);
7062 }
7063 
7064 /**
7065  *      t4_set_params_timeout - sets FW or device parameters
7066  *      @adap: the adapter
7067  *      @mbox: mailbox to use for the FW command
7068  *      @pf: the PF
7069  *      @vf: the VF
7070  *      @nparams: the number of parameters
7071  *      @params: the parameter names
7072  *      @val: the parameter values
7073  *      @timeout: the timeout time
7074  *
7075  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7076  *      specified at once.
7077  */
t4_set_params_timeout(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val,int timeout)7078 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7079 			  unsigned int pf, unsigned int vf,
7080 			  unsigned int nparams, const u32 *params,
7081 			  const u32 *val, int timeout)
7082 {
7083 	struct fw_params_cmd c;
7084 	__be32 *p = &c.param[0].mnem;
7085 
7086 	if (nparams > 7)
7087 		return -EINVAL;
7088 
7089 	memset(&c, 0, sizeof(c));
7090 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7091 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7092 				  FW_PARAMS_CMD_PFN_V(pf) |
7093 				  FW_PARAMS_CMD_VFN_V(vf));
7094 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7095 
7096 	while (nparams--) {
7097 		*p++ = cpu_to_be32(*params++);
7098 		*p++ = cpu_to_be32(*val++);
7099 	}
7100 
7101 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7102 }
7103 
7104 /**
7105  *	t4_set_params - sets FW or device parameters
7106  *	@adap: the adapter
7107  *	@mbox: mailbox to use for the FW command
7108  *	@pf: the PF
7109  *	@vf: the VF
7110  *	@nparams: the number of parameters
7111  *	@params: the parameter names
7112  *	@val: the parameter values
7113  *
7114  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7115  *	specified at once.
7116  */
t4_set_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val)7117 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7118 		  unsigned int vf, unsigned int nparams, const u32 *params,
7119 		  const u32 *val)
7120 {
7121 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7122 				     FW_CMD_MAX_TIMEOUT);
7123 }
7124 
7125 /**
7126  *	t4_cfg_pfvf - configure PF/VF resource limits
7127  *	@adap: the adapter
7128  *	@mbox: mailbox to use for the FW command
7129  *	@pf: the PF being configured
7130  *	@vf: the VF being configured
7131  *	@txq: the max number of egress queues
7132  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7133  *	@rxqi: the max number of interrupt-capable ingress queues
7134  *	@rxq: the max number of interruptless ingress queues
7135  *	@tc: the PCI traffic class
7136  *	@vi: the max number of virtual interfaces
7137  *	@cmask: the channel access rights mask for the PF/VF
7138  *	@pmask: the port access rights mask for the PF/VF
7139  *	@nexact: the maximum number of exact MPS filters
7140  *	@rcaps: read capabilities
7141  *	@wxcaps: write/execute capabilities
7142  *
7143  *	Configures resource limits and capabilities for a physical or virtual
7144  *	function.
7145  */
t4_cfg_pfvf(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int txq,unsigned int txq_eth_ctrl,unsigned int rxqi,unsigned int rxq,unsigned int tc,unsigned int vi,unsigned int cmask,unsigned int pmask,unsigned int nexact,unsigned int rcaps,unsigned int wxcaps)7146 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7147 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7148 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7149 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7150 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7151 {
7152 	struct fw_pfvf_cmd c;
7153 
7154 	memset(&c, 0, sizeof(c));
7155 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7156 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7157 				  FW_PFVF_CMD_VFN_V(vf));
7158 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7159 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7160 				     FW_PFVF_CMD_NIQ_V(rxq));
7161 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7162 				    FW_PFVF_CMD_PMASK_V(pmask) |
7163 				    FW_PFVF_CMD_NEQ_V(txq));
7164 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7165 				      FW_PFVF_CMD_NVI_V(vi) |
7166 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7167 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7168 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7169 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7170 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7171 }
7172 
7173 /**
7174  *	t4_alloc_vi - allocate a virtual interface
7175  *	@adap: the adapter
7176  *	@mbox: mailbox to use for the FW command
7177  *	@port: physical port associated with the VI
7178  *	@pf: the PF owning the VI
7179  *	@vf: the VF owning the VI
7180  *	@nmac: number of MAC addresses needed (1 to 5)
7181  *	@mac: the MAC addresses of the VI
7182  *	@rss_size: size of RSS table slice associated with this VI
7183  *
7184  *	Allocates a virtual interface for the given physical port.  If @mac is
7185  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7186  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7187  *	stored consecutively so the space needed is @nmac * 6 bytes.
7188  *	Returns a negative error number or the non-negative VI id.
7189  */
t4_alloc_vi(struct adapter * adap,unsigned int mbox,unsigned int port,unsigned int pf,unsigned int vf,unsigned int nmac,u8 * mac,unsigned int * rss_size)7190 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7191 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7192 		unsigned int *rss_size)
7193 {
7194 	int ret;
7195 	struct fw_vi_cmd c;
7196 
7197 	memset(&c, 0, sizeof(c));
7198 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7199 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7200 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7201 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7202 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7203 	c.nmac = nmac - 1;
7204 
7205 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7206 	if (ret)
7207 		return ret;
7208 
7209 	if (mac) {
7210 		memcpy(mac, c.mac, sizeof(c.mac));
7211 		switch (nmac) {
7212 		case 5:
7213 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7214 		case 4:
7215 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7216 		case 3:
7217 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7218 		case 2:
7219 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7220 		}
7221 	}
7222 	if (rss_size)
7223 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7224 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7225 }
7226 
7227 /**
7228  *	t4_free_vi - free a virtual interface
7229  *	@adap: the adapter
7230  *	@mbox: mailbox to use for the FW command
7231  *	@pf: the PF owning the VI
7232  *	@vf: the VF owning the VI
7233  *	@viid: virtual interface identifiler
7234  *
7235  *	Free a previously allocated virtual interface.
7236  */
t4_free_vi(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int viid)7237 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7238 	       unsigned int vf, unsigned int viid)
7239 {
7240 	struct fw_vi_cmd c;
7241 
7242 	memset(&c, 0, sizeof(c));
7243 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7244 				  FW_CMD_REQUEST_F |
7245 				  FW_CMD_EXEC_F |
7246 				  FW_VI_CMD_PFN_V(pf) |
7247 				  FW_VI_CMD_VFN_V(vf));
7248 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7249 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7250 
7251 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7252 }
7253 
7254 /**
7255  *	t4_set_rxmode - set Rx properties of a virtual interface
7256  *	@adap: the adapter
7257  *	@mbox: mailbox to use for the FW command
7258  *	@viid: the VI id
7259  *	@mtu: the new MTU or -1
7260  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7261  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7262  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7263  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7264  *	@sleep_ok: if true we may sleep while awaiting command completion
7265  *
7266  *	Sets Rx properties of a virtual interface.
7267  */
t4_set_rxmode(struct adapter * adap,unsigned int mbox,unsigned int viid,int mtu,int promisc,int all_multi,int bcast,int vlanex,bool sleep_ok)7268 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7269 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7270 		  bool sleep_ok)
7271 {
7272 	struct fw_vi_rxmode_cmd c;
7273 
7274 	/* convert to FW values */
7275 	if (mtu < 0)
7276 		mtu = FW_RXMODE_MTU_NO_CHG;
7277 	if (promisc < 0)
7278 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7279 	if (all_multi < 0)
7280 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7281 	if (bcast < 0)
7282 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7283 	if (vlanex < 0)
7284 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7285 
7286 	memset(&c, 0, sizeof(c));
7287 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7288 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7289 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7290 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7291 	c.mtu_to_vlanexen =
7292 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7293 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7294 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7295 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7296 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7297 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7298 }
7299 
7300 /**
7301  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7302  *	@adap: the adapter
7303  *	@mbox: mailbox to use for the FW command
7304  *	@viid: the VI id
7305  *	@free: if true any existing filters for this VI id are first removed
7306  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7307  *	@addr: the MAC address(es)
7308  *	@idx: where to store the index of each allocated filter
7309  *	@hash: pointer to hash address filter bitmap
7310  *	@sleep_ok: call is allowed to sleep
7311  *
7312  *	Allocates an exact-match filter for each of the supplied addresses and
7313  *	sets it to the corresponding address.  If @idx is not %NULL it should
7314  *	have at least @naddr entries, each of which will be set to the index of
7315  *	the filter allocated for the corresponding MAC address.  If a filter
7316  *	could not be allocated for an address its index is set to 0xffff.
7317  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7318  *	are hashed and update the hash filter bitmap pointed at by @hash.
7319  *
7320  *	Returns a negative error number or the number of filters allocated.
7321  */
t4_alloc_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,bool free,unsigned int naddr,const u8 ** addr,u16 * idx,u64 * hash,bool sleep_ok)7322 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7323 		      unsigned int viid, bool free, unsigned int naddr,
7324 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7325 {
7326 	int offset, ret = 0;
7327 	struct fw_vi_mac_cmd c;
7328 	unsigned int nfilters = 0;
7329 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7330 	unsigned int rem = naddr;
7331 
7332 	if (naddr > max_naddr)
7333 		return -EINVAL;
7334 
7335 	for (offset = 0; offset < naddr ; /**/) {
7336 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7337 					 rem : ARRAY_SIZE(c.u.exact));
7338 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7339 						     u.exact[fw_naddr]), 16);
7340 		struct fw_vi_mac_exact *p;
7341 		int i;
7342 
7343 		memset(&c, 0, sizeof(c));
7344 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7345 					   FW_CMD_REQUEST_F |
7346 					   FW_CMD_WRITE_F |
7347 					   FW_CMD_EXEC_V(free) |
7348 					   FW_VI_MAC_CMD_VIID_V(viid));
7349 		c.freemacs_to_len16 =
7350 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7351 				    FW_CMD_LEN16_V(len16));
7352 
7353 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7354 			p->valid_to_idx =
7355 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7356 					    FW_VI_MAC_CMD_IDX_V(
7357 						    FW_VI_MAC_ADD_MAC));
7358 			memcpy(p->macaddr, addr[offset + i],
7359 			       sizeof(p->macaddr));
7360 		}
7361 
7362 		/* It's okay if we run out of space in our MAC address arena.
7363 		 * Some of the addresses we submit may get stored so we need
7364 		 * to run through the reply to see what the results were ...
7365 		 */
7366 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7367 		if (ret && ret != -FW_ENOMEM)
7368 			break;
7369 
7370 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7371 			u16 index = FW_VI_MAC_CMD_IDX_G(
7372 					be16_to_cpu(p->valid_to_idx));
7373 
7374 			if (idx)
7375 				idx[offset + i] = (index >= max_naddr ?
7376 						   0xffff : index);
7377 			if (index < max_naddr)
7378 				nfilters++;
7379 			else if (hash)
7380 				*hash |= (1ULL <<
7381 					  hash_mac_addr(addr[offset + i]));
7382 		}
7383 
7384 		free = false;
7385 		offset += fw_naddr;
7386 		rem -= fw_naddr;
7387 	}
7388 
7389 	if (ret == 0 || ret == -FW_ENOMEM)
7390 		ret = nfilters;
7391 	return ret;
7392 }
7393 
7394 /**
7395  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
7396  *	@adap: the adapter
7397  *	@mbox: mailbox to use for the FW command
7398  *	@viid: the VI id
7399  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7400  *	@addr: the MAC address(es)
7401  *	@sleep_ok: call is allowed to sleep
7402  *
7403  *	Frees the exact-match filter for each of the supplied addresses
7404  *
7405  *	Returns a negative error number or the number of filters freed.
7406  */
t4_free_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int naddr,const u8 ** addr,bool sleep_ok)7407 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7408 		     unsigned int viid, unsigned int naddr,
7409 		     const u8 **addr, bool sleep_ok)
7410 {
7411 	int offset, ret = 0;
7412 	struct fw_vi_mac_cmd c;
7413 	unsigned int nfilters = 0;
7414 	unsigned int max_naddr = is_t4(adap->params.chip) ?
7415 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
7416 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7417 	unsigned int rem = naddr;
7418 
7419 	if (naddr > max_naddr)
7420 		return -EINVAL;
7421 
7422 	for (offset = 0; offset < (int)naddr ; /**/) {
7423 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7424 					 ? rem
7425 					 : ARRAY_SIZE(c.u.exact));
7426 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7427 						     u.exact[fw_naddr]), 16);
7428 		struct fw_vi_mac_exact *p;
7429 		int i;
7430 
7431 		memset(&c, 0, sizeof(c));
7432 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7433 				     FW_CMD_REQUEST_F |
7434 				     FW_CMD_WRITE_F |
7435 				     FW_CMD_EXEC_V(0) |
7436 				     FW_VI_MAC_CMD_VIID_V(viid));
7437 		c.freemacs_to_len16 =
7438 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7439 					    FW_CMD_LEN16_V(len16));
7440 
7441 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7442 			p->valid_to_idx = cpu_to_be16(
7443 				FW_VI_MAC_CMD_VALID_F |
7444 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7445 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7446 		}
7447 
7448 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7449 		if (ret)
7450 			break;
7451 
7452 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7453 			u16 index = FW_VI_MAC_CMD_IDX_G(
7454 						be16_to_cpu(p->valid_to_idx));
7455 
7456 			if (index < max_naddr)
7457 				nfilters++;
7458 		}
7459 
7460 		offset += fw_naddr;
7461 		rem -= fw_naddr;
7462 	}
7463 
7464 	if (ret == 0)
7465 		ret = nfilters;
7466 	return ret;
7467 }
7468 
7469 /**
7470  *	t4_change_mac - modifies the exact-match filter for a MAC address
7471  *	@adap: the adapter
7472  *	@mbox: mailbox to use for the FW command
7473  *	@viid: the VI id
7474  *	@idx: index of existing filter for old value of MAC address, or -1
7475  *	@addr: the new MAC address value
7476  *	@persist: whether a new MAC allocation should be persistent
7477  *	@add_smt: if true also add the address to the HW SMT
7478  *
7479  *	Modifies an exact-match filter and sets it to the new MAC address.
7480  *	Note that in general it is not possible to modify the value of a given
7481  *	filter so the generic way to modify an address filter is to free the one
7482  *	being used by the old address value and allocate a new filter for the
7483  *	new address value.  @idx can be -1 if the address is a new addition.
7484  *
7485  *	Returns a negative error number or the index of the filter with the new
7486  *	MAC value.
7487  */
t4_change_mac(struct adapter * adap,unsigned int mbox,unsigned int viid,int idx,const u8 * addr,bool persist,bool add_smt)7488 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7489 		  int idx, const u8 *addr, bool persist, bool add_smt)
7490 {
7491 	int ret, mode;
7492 	struct fw_vi_mac_cmd c;
7493 	struct fw_vi_mac_exact *p = c.u.exact;
7494 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7495 
7496 	if (idx < 0)                             /* new allocation */
7497 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7498 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7499 
7500 	memset(&c, 0, sizeof(c));
7501 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7502 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7503 				   FW_VI_MAC_CMD_VIID_V(viid));
7504 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7505 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7506 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7507 				      FW_VI_MAC_CMD_IDX_V(idx));
7508 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7509 
7510 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7511 	if (ret == 0) {
7512 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7513 		if (ret >= max_mac_addr)
7514 			ret = -ENOMEM;
7515 	}
7516 	return ret;
7517 }
7518 
7519 /**
7520  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7521  *	@adap: the adapter
7522  *	@mbox: mailbox to use for the FW command
7523  *	@viid: the VI id
7524  *	@ucast: whether the hash filter should also match unicast addresses
7525  *	@vec: the value to be written to the hash filter
7526  *	@sleep_ok: call is allowed to sleep
7527  *
7528  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7529  */
t4_set_addr_hash(struct adapter * adap,unsigned int mbox,unsigned int viid,bool ucast,u64 vec,bool sleep_ok)7530 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7531 		     bool ucast, u64 vec, bool sleep_ok)
7532 {
7533 	struct fw_vi_mac_cmd c;
7534 
7535 	memset(&c, 0, sizeof(c));
7536 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7537 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7538 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7539 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
7540 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
7541 					  FW_CMD_LEN16_V(1));
7542 	c.u.hash.hashvec = cpu_to_be64(vec);
7543 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7544 }
7545 
7546 /**
7547  *      t4_enable_vi_params - enable/disable a virtual interface
7548  *      @adap: the adapter
7549  *      @mbox: mailbox to use for the FW command
7550  *      @viid: the VI id
7551  *      @rx_en: 1=enable Rx, 0=disable Rx
7552  *      @tx_en: 1=enable Tx, 0=disable Tx
7553  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7554  *
7555  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7556  *      only makes sense when enabling a Virtual Interface ...
7557  */
t4_enable_vi_params(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en,bool dcb_en)7558 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7559 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7560 {
7561 	struct fw_vi_enable_cmd c;
7562 
7563 	memset(&c, 0, sizeof(c));
7564 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7565 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7566 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7567 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
7568 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
7569 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
7570 				     FW_LEN16(c));
7571 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7572 }
7573 
7574 /**
7575  *	t4_enable_vi - enable/disable a virtual interface
7576  *	@adap: the adapter
7577  *	@mbox: mailbox to use for the FW command
7578  *	@viid: the VI id
7579  *	@rx_en: 1=enable Rx, 0=disable Rx
7580  *	@tx_en: 1=enable Tx, 0=disable Tx
7581  *
7582  *	Enables/disables a virtual interface.
7583  */
t4_enable_vi(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en)7584 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7585 		 bool rx_en, bool tx_en)
7586 {
7587 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7588 }
7589 
7590 /**
7591  *	t4_identify_port - identify a VI's port by blinking its LED
7592  *	@adap: the adapter
7593  *	@mbox: mailbox to use for the FW command
7594  *	@viid: the VI id
7595  *	@nblinks: how many times to blink LED at 2.5 Hz
7596  *
7597  *	Identifies a VI's port by blinking its LED.
7598  */
t4_identify_port(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int nblinks)7599 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7600 		     unsigned int nblinks)
7601 {
7602 	struct fw_vi_enable_cmd c;
7603 
7604 	memset(&c, 0, sizeof(c));
7605 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7606 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7607 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7608 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7609 	c.blinkdur = cpu_to_be16(nblinks);
7610 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7611 }
7612 
7613 /**
7614  *	t4_iq_stop - stop an ingress queue and its FLs
7615  *	@adap: the adapter
7616  *	@mbox: mailbox to use for the FW command
7617  *	@pf: the PF owning the queues
7618  *	@vf: the VF owning the queues
7619  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7620  *	@iqid: ingress queue id
7621  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7622  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7623  *
7624  *	Stops an ingress queue and its associated FLs, if any.  This causes
7625  *	any current or future data/messages destined for these queues to be
7626  *	tossed.
7627  */
t4_iq_stop(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)7628 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7629 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7630 	       unsigned int fl0id, unsigned int fl1id)
7631 {
7632 	struct fw_iq_cmd c;
7633 
7634 	memset(&c, 0, sizeof(c));
7635 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7636 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7637 				  FW_IQ_CMD_VFN_V(vf));
7638 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7639 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7640 	c.iqid = cpu_to_be16(iqid);
7641 	c.fl0id = cpu_to_be16(fl0id);
7642 	c.fl1id = cpu_to_be16(fl1id);
7643 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7644 }
7645 
7646 /**
7647  *	t4_iq_free - free an ingress queue and its FLs
7648  *	@adap: the adapter
7649  *	@mbox: mailbox to use for the FW command
7650  *	@pf: the PF owning the queues
7651  *	@vf: the VF owning the queues
7652  *	@iqtype: the ingress queue type
7653  *	@iqid: ingress queue id
7654  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7655  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7656  *
7657  *	Frees an ingress queue and its associated FLs, if any.
7658  */
t4_iq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)7659 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7660 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7661 	       unsigned int fl0id, unsigned int fl1id)
7662 {
7663 	struct fw_iq_cmd c;
7664 
7665 	memset(&c, 0, sizeof(c));
7666 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7667 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7668 				  FW_IQ_CMD_VFN_V(vf));
7669 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7670 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7671 	c.iqid = cpu_to_be16(iqid);
7672 	c.fl0id = cpu_to_be16(fl0id);
7673 	c.fl1id = cpu_to_be16(fl1id);
7674 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7675 }
7676 
7677 /**
7678  *	t4_eth_eq_free - free an Ethernet egress queue
7679  *	@adap: the adapter
7680  *	@mbox: mailbox to use for the FW command
7681  *	@pf: the PF owning the queue
7682  *	@vf: the VF owning the queue
7683  *	@eqid: egress queue id
7684  *
7685  *	Frees an Ethernet egress queue.
7686  */
t4_eth_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)7687 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7688 		   unsigned int vf, unsigned int eqid)
7689 {
7690 	struct fw_eq_eth_cmd c;
7691 
7692 	memset(&c, 0, sizeof(c));
7693 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7694 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7695 				  FW_EQ_ETH_CMD_PFN_V(pf) |
7696 				  FW_EQ_ETH_CMD_VFN_V(vf));
7697 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7698 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7699 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7700 }
7701 
7702 /**
7703  *	t4_ctrl_eq_free - free a control egress queue
7704  *	@adap: the adapter
7705  *	@mbox: mailbox to use for the FW command
7706  *	@pf: the PF owning the queue
7707  *	@vf: the VF owning the queue
7708  *	@eqid: egress queue id
7709  *
7710  *	Frees a control egress queue.
7711  */
t4_ctrl_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)7712 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7713 		    unsigned int vf, unsigned int eqid)
7714 {
7715 	struct fw_eq_ctrl_cmd c;
7716 
7717 	memset(&c, 0, sizeof(c));
7718 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7719 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7720 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
7721 				  FW_EQ_CTRL_CMD_VFN_V(vf));
7722 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7723 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7724 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7725 }
7726 
7727 /**
7728  *	t4_ofld_eq_free - free an offload egress queue
7729  *	@adap: the adapter
7730  *	@mbox: mailbox to use for the FW command
7731  *	@pf: the PF owning the queue
7732  *	@vf: the VF owning the queue
7733  *	@eqid: egress queue id
7734  *
7735  *	Frees a control egress queue.
7736  */
t4_ofld_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)7737 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7738 		    unsigned int vf, unsigned int eqid)
7739 {
7740 	struct fw_eq_ofld_cmd c;
7741 
7742 	memset(&c, 0, sizeof(c));
7743 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7744 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7745 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
7746 				  FW_EQ_OFLD_CMD_VFN_V(vf));
7747 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7748 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7749 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7750 }
7751 
7752 /**
7753  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7754  *	@adap: the adapter
7755  *	@link_down_rc: Link Down Reason Code
7756  *
7757  *	Returns a string representation of the Link Down Reason Code.
7758  */
t4_link_down_rc_str(unsigned char link_down_rc)7759 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7760 {
7761 	static const char * const reason[] = {
7762 		"Link Down",
7763 		"Remote Fault",
7764 		"Auto-negotiation Failure",
7765 		"Reserved",
7766 		"Insufficient Airflow",
7767 		"Unable To Determine Reason",
7768 		"No RX Signal Detected",
7769 		"Reserved",
7770 	};
7771 
7772 	if (link_down_rc >= ARRAY_SIZE(reason))
7773 		return "Bad Reason Code";
7774 
7775 	return reason[link_down_rc];
7776 }
7777 
7778 /**
7779  * Return the highest speed set in the port capabilities, in Mb/s.
7780  */
fwcap_to_speed(fw_port_cap32_t caps)7781 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
7782 {
7783 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
7784 		do { \
7785 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7786 				return __speed; \
7787 		} while (0)
7788 
7789 	TEST_SPEED_RETURN(400G, 400000);
7790 	TEST_SPEED_RETURN(200G, 200000);
7791 	TEST_SPEED_RETURN(100G, 100000);
7792 	TEST_SPEED_RETURN(50G,   50000);
7793 	TEST_SPEED_RETURN(40G,   40000);
7794 	TEST_SPEED_RETURN(25G,   25000);
7795 	TEST_SPEED_RETURN(10G,   10000);
7796 	TEST_SPEED_RETURN(1G,     1000);
7797 	TEST_SPEED_RETURN(100M,    100);
7798 
7799 	#undef TEST_SPEED_RETURN
7800 
7801 	return 0;
7802 }
7803 
7804 /**
7805  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
7806  *	@acaps: advertised Port Capabilities
7807  *
7808  *	Get the highest speed for the port from the advertised Port
7809  *	Capabilities.  It will be either the highest speed from the list of
7810  *	speeds or whatever user has set using ethtool.
7811  */
fwcap_to_fwspeed(fw_port_cap32_t acaps)7812 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
7813 {
7814 	#define TEST_SPEED_RETURN(__caps_speed) \
7815 		do { \
7816 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7817 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
7818 		} while (0)
7819 
7820 	TEST_SPEED_RETURN(400G);
7821 	TEST_SPEED_RETURN(200G);
7822 	TEST_SPEED_RETURN(100G);
7823 	TEST_SPEED_RETURN(50G);
7824 	TEST_SPEED_RETURN(40G);
7825 	TEST_SPEED_RETURN(25G);
7826 	TEST_SPEED_RETURN(10G);
7827 	TEST_SPEED_RETURN(1G);
7828 	TEST_SPEED_RETURN(100M);
7829 
7830 	#undef TEST_SPEED_RETURN
7831 
7832 	return 0;
7833 }
7834 
7835 /**
7836  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
7837  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
7838  *
7839  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
7840  *	32-bit Port Capabilities value.
7841  */
lstatus_to_fwcap(u32 lstatus)7842 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
7843 {
7844 	fw_port_cap32_t linkattr = 0;
7845 
7846 	/* Unfortunately the format of the Link Status in the old
7847 	 * 16-bit Port Information message isn't the same as the
7848 	 * 16-bit Port Capabilities bitfield used everywhere else ...
7849 	 */
7850 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
7851 		linkattr |= FW_PORT_CAP32_FC_RX;
7852 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
7853 		linkattr |= FW_PORT_CAP32_FC_TX;
7854 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7855 		linkattr |= FW_PORT_CAP32_SPEED_100M;
7856 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7857 		linkattr |= FW_PORT_CAP32_SPEED_1G;
7858 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7859 		linkattr |= FW_PORT_CAP32_SPEED_10G;
7860 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
7861 		linkattr |= FW_PORT_CAP32_SPEED_25G;
7862 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7863 		linkattr |= FW_PORT_CAP32_SPEED_40G;
7864 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
7865 		linkattr |= FW_PORT_CAP32_SPEED_100G;
7866 
7867 	return linkattr;
7868 }
7869 
7870 /**
7871  *	t4_handle_get_port_info - process a FW reply message
7872  *	@pi: the port info
7873  *	@rpl: start of the FW message
7874  *
7875  *	Processes a GET_PORT_INFO FW reply message.
7876  */
t4_handle_get_port_info(struct port_info * pi,const __be64 * rpl)7877 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
7878 {
7879 	const struct fw_port_cmd *cmd = (const void *)rpl;
7880 	int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
7881 	struct adapter *adapter = pi->adapter;
7882 	struct link_config *lc = &pi->link_cfg;
7883 	int link_ok, linkdnrc;
7884 	enum fw_port_type port_type;
7885 	enum fw_port_module_type mod_type;
7886 	unsigned int speed, fc, fec;
7887 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
7888 
7889 	/* Extract the various fields from the Port Information message.
7890 	 */
7891 	switch (action) {
7892 	case FW_PORT_ACTION_GET_PORT_INFO: {
7893 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
7894 
7895 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
7896 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
7897 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
7898 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
7899 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
7900 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
7901 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
7902 		linkattr = lstatus_to_fwcap(lstatus);
7903 		break;
7904 	}
7905 
7906 	case FW_PORT_ACTION_GET_PORT_INFO32: {
7907 		u32 lstatus32;
7908 
7909 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
7910 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
7911 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
7912 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
7913 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
7914 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
7915 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
7916 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
7917 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
7918 		break;
7919 	}
7920 
7921 	default:
7922 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
7923 			be32_to_cpu(cmd->action_to_len16));
7924 		return;
7925 	}
7926 
7927 	fec = fwcap_to_cc_fec(acaps);
7928 	fc = fwcap_to_cc_pause(linkattr);
7929 	speed = fwcap_to_speed(linkattr);
7930 
7931 	if (mod_type != pi->mod_type) {
7932 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
7933 		 * various fundamental Port Capabilities which used to be
7934 		 * immutable can now change radically.  We can now have
7935 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
7936 		 * all change based on what Transceiver Module is inserted.
7937 		 * So we need to record the Physical "Port" Capabilities on
7938 		 * every Transceiver Module change.
7939 		 */
7940 		lc->pcaps = pcaps;
7941 
7942 		/* When a new Transceiver Module is inserted, the Firmware
7943 		 * will examine its i2c EPROM to determine its type and
7944 		 * general operating parameters including things like Forward
7945 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
7946 		 * how to interpret these i2c values to determine default
7947 		 * "sutomatic" settings.  We record these for future use when
7948 		 * the user explicitly requests these standards-based values.
7949 		 */
7950 		lc->def_acaps = acaps;
7951 
7952 		/* Some versions of the early T6 Firmware "cheated" when
7953 		 * handling different Transceiver Modules by changing the
7954 		 * underlaying Port Type reported to the Host Drivers.  As
7955 		 * such we need to capture whatever Port Type the Firmware
7956 		 * sends us and record it in case it's different from what we
7957 		 * were told earlier.  Unfortunately, since Firmware is
7958 		 * forever, we'll need to keep this code here forever, but in
7959 		 * later T6 Firmware it should just be an assignment of the
7960 		 * same value already recorded.
7961 		 */
7962 		pi->port_type = port_type;
7963 
7964 		pi->mod_type = mod_type;
7965 		t4_os_portmod_changed(adapter, pi->port_id);
7966 	}
7967 
7968 	if (link_ok != lc->link_ok || speed != lc->speed ||
7969 	    fc != lc->fc || fec != lc->fec) {	/* something changed */
7970 		if (!link_ok && lc->link_ok) {
7971 			lc->link_down_rc = linkdnrc;
7972 			dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
7973 				 pi->tx_chan, t4_link_down_rc_str(linkdnrc));
7974 		}
7975 		lc->link_ok = link_ok;
7976 		lc->speed = speed;
7977 		lc->fc = fc;
7978 		lc->fec = fec;
7979 
7980 		lc->lpacaps = lpacaps;
7981 		lc->acaps = acaps & ADVERT_MASK;
7982 
7983 		if (lc->acaps & FW_PORT_CAP32_ANEG) {
7984 			lc->autoneg = AUTONEG_ENABLE;
7985 		} else {
7986 			/* When Autoneg is disabled, user needs to set
7987 			 * single speed.
7988 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
7989 			 */
7990 			lc->acaps = 0;
7991 			lc->speed_caps = fwcap_to_fwspeed(acaps);
7992 			lc->autoneg = AUTONEG_DISABLE;
7993 		}
7994 
7995 		t4_os_link_changed(adapter, pi->port_id, link_ok);
7996 	}
7997 }
7998 
7999 /**
8000  *	t4_update_port_info - retrieve and update port information if changed
8001  *	@pi: the port_info
8002  *
8003  *	We issue a Get Port Information Command to the Firmware and, if
8004  *	successful, we check to see if anything is different from what we
8005  *	last recorded and update things accordingly.
8006  */
t4_update_port_info(struct port_info * pi)8007 int t4_update_port_info(struct port_info *pi)
8008 {
8009 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8010 	struct fw_port_cmd port_cmd;
8011 	int ret;
8012 
8013 	memset(&port_cmd, 0, sizeof(port_cmd));
8014 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8015 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8016 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8017 	port_cmd.action_to_len16 = cpu_to_be32(
8018 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8019 				     ? FW_PORT_ACTION_GET_PORT_INFO
8020 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8021 		FW_LEN16(port_cmd));
8022 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8023 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8024 	if (ret)
8025 		return ret;
8026 
8027 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8028 	return 0;
8029 }
8030 
8031 /**
8032  *	t4_get_link_params - retrieve basic link parameters for given port
8033  *	@pi: the port
8034  *	@link_okp: value return pointer for link up/down
8035  *	@speedp: value return pointer for speed (Mb/s)
8036  *	@mtup: value return pointer for mtu
8037  *
8038  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8039  *	and MTU for a specified port.  A negative error is returned on
8040  *	failure; 0 on success.
8041  */
t4_get_link_params(struct port_info * pi,unsigned int * link_okp,unsigned int * speedp,unsigned int * mtup)8042 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8043 		       unsigned int *speedp, unsigned int *mtup)
8044 {
8045 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8046 	struct fw_port_cmd port_cmd;
8047 	unsigned int action, link_ok, speed, mtu;
8048 	fw_port_cap32_t linkattr;
8049 	int ret;
8050 
8051 	memset(&port_cmd, 0, sizeof(port_cmd));
8052 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8053 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8054 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8055 	action = (fw_caps == FW_CAPS16
8056 		  ? FW_PORT_ACTION_GET_PORT_INFO
8057 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8058 	port_cmd.action_to_len16 = cpu_to_be32(
8059 		FW_PORT_CMD_ACTION_V(action) |
8060 		FW_LEN16(port_cmd));
8061 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8062 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8063 	if (ret)
8064 		return ret;
8065 
8066 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8067 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8068 
8069 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8070 		linkattr = lstatus_to_fwcap(lstatus);
8071 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8072 	} else {
8073 		u32 lstatus32 =
8074 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8075 
8076 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8077 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8078 		mtu = FW_PORT_CMD_MTU32_G(
8079 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8080 	}
8081 	speed = fwcap_to_speed(linkattr);
8082 
8083 	*link_okp = link_ok;
8084 	*speedp = fwcap_to_speed(linkattr);
8085 	*mtup = mtu;
8086 
8087 	return 0;
8088 }
8089 
8090 /**
8091  *      t4_handle_fw_rpl - process a FW reply message
8092  *      @adap: the adapter
8093  *      @rpl: start of the FW message
8094  *
8095  *      Processes a FW message, such as link state change messages.
8096  */
t4_handle_fw_rpl(struct adapter * adap,const __be64 * rpl)8097 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8098 {
8099 	u8 opcode = *(const u8 *)rpl;
8100 
8101 	/* This might be a port command ... this simplifies the following
8102 	 * conditionals ...  We can get away with pre-dereferencing
8103 	 * action_to_len16 because it's in the first 16 bytes and all messages
8104 	 * will be at least that long.
8105 	 */
8106 	const struct fw_port_cmd *p = (const void *)rpl;
8107 	unsigned int action =
8108 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8109 
8110 	if (opcode == FW_PORT_CMD &&
8111 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8112 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8113 		int i;
8114 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8115 		struct port_info *pi = NULL;
8116 
8117 		for_each_port(adap, i) {
8118 			pi = adap2pinfo(adap, i);
8119 			if (pi->tx_chan == chan)
8120 				break;
8121 		}
8122 
8123 		t4_handle_get_port_info(pi, rpl);
8124 	} else {
8125 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8126 			 opcode);
8127 		return -EINVAL;
8128 	}
8129 	return 0;
8130 }
8131 
get_pci_mode(struct adapter * adapter,struct pci_params * p)8132 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8133 {
8134 	u16 val;
8135 
8136 	if (pci_is_pcie(adapter->pdev)) {
8137 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8138 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8139 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8140 	}
8141 }
8142 
8143 /**
8144  *	init_link_config - initialize a link's SW state
8145  *	@lc: pointer to structure holding the link state
8146  *	@pcaps: link Port Capabilities
8147  *	@acaps: link current Advertised Port Capabilities
8148  *
8149  *	Initializes the SW state maintained for each link, including the link's
8150  *	capabilities and default speed/flow-control/autonegotiation settings.
8151  */
init_link_config(struct link_config * lc,fw_port_cap32_t pcaps,fw_port_cap32_t acaps)8152 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8153 			     fw_port_cap32_t acaps)
8154 {
8155 	lc->pcaps = pcaps;
8156 	lc->def_acaps = acaps;
8157 	lc->lpacaps = 0;
8158 	lc->speed_caps = 0;
8159 	lc->speed = 0;
8160 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8161 
8162 	/* For Forward Error Control, we default to whatever the Firmware
8163 	 * tells us the Link is currently advertising.
8164 	 */
8165 	lc->requested_fec = FEC_AUTO;
8166 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8167 
8168 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8169 		lc->acaps = lc->pcaps & ADVERT_MASK;
8170 		lc->autoneg = AUTONEG_ENABLE;
8171 		lc->requested_fc |= PAUSE_AUTONEG;
8172 	} else {
8173 		lc->acaps = 0;
8174 		lc->autoneg = AUTONEG_DISABLE;
8175 	}
8176 }
8177 
8178 #define CIM_PF_NOACCESS 0xeeeeeeee
8179 
t4_wait_dev_ready(void __iomem * regs)8180 int t4_wait_dev_ready(void __iomem *regs)
8181 {
8182 	u32 whoami;
8183 
8184 	whoami = readl(regs + PL_WHOAMI_A);
8185 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8186 		return 0;
8187 
8188 	msleep(500);
8189 	whoami = readl(regs + PL_WHOAMI_A);
8190 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8191 }
8192 
8193 struct flash_desc {
8194 	u32 vendor_and_model_id;
8195 	u32 size_mb;
8196 };
8197 
get_flash_params(struct adapter * adap)8198 static int get_flash_params(struct adapter *adap)
8199 {
8200 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8201 	 * to the preexisting code.  All flash parts have 64KB sectors.
8202 	 */
8203 	static struct flash_desc supported_flash[] = {
8204 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8205 	};
8206 
8207 	int ret;
8208 	u32 info;
8209 
8210 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8211 	if (!ret)
8212 		ret = sf1_read(adap, 3, 0, 1, &info);
8213 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8214 	if (ret)
8215 		return ret;
8216 
8217 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
8218 		if (supported_flash[ret].vendor_and_model_id == info) {
8219 			adap->params.sf_size = supported_flash[ret].size_mb;
8220 			adap->params.sf_nsec =
8221 				adap->params.sf_size / SF_SEC_SIZE;
8222 			return 0;
8223 		}
8224 
8225 	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
8226 		return -EINVAL;
8227 	info >>= 16;                           /* log2 of size */
8228 	if (info >= 0x14 && info < 0x18)
8229 		adap->params.sf_nsec = 1 << (info - 16);
8230 	else if (info == 0x18)
8231 		adap->params.sf_nsec = 64;
8232 	else
8233 		return -EINVAL;
8234 	adap->params.sf_size = 1 << info;
8235 	adap->params.sf_fw_start =
8236 		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
8237 
8238 	if (adap->params.sf_size < FLASH_MIN_SIZE)
8239 		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
8240 			 adap->params.sf_size, FLASH_MIN_SIZE);
8241 	return 0;
8242 }
8243 
set_pcie_completion_timeout(struct adapter * adapter,u8 range)8244 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
8245 {
8246 	u16 val;
8247 	u32 pcie_cap;
8248 
8249 	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
8250 	if (pcie_cap) {
8251 		pci_read_config_word(adapter->pdev,
8252 				     pcie_cap + PCI_EXP_DEVCTL2, &val);
8253 		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
8254 		val |= range;
8255 		pci_write_config_word(adapter->pdev,
8256 				      pcie_cap + PCI_EXP_DEVCTL2, val);
8257 	}
8258 }
8259 
8260 /**
8261  *	t4_prep_adapter - prepare SW and HW for operation
8262  *	@adapter: the adapter
8263  *	@reset: if true perform a HW reset
8264  *
8265  *	Initialize adapter SW state for the various HW modules, set initial
8266  *	values for some adapter tunables, take PHYs out of reset, and
8267  *	initialize the MDIO interface.
8268  */
t4_prep_adapter(struct adapter * adapter)8269 int t4_prep_adapter(struct adapter *adapter)
8270 {
8271 	int ret, ver;
8272 	uint16_t device_id;
8273 	u32 pl_rev;
8274 
8275 	get_pci_mode(adapter, &adapter->params.pci);
8276 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8277 
8278 	ret = get_flash_params(adapter);
8279 	if (ret < 0) {
8280 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8281 		return ret;
8282 	}
8283 
8284 	/* Retrieve adapter's device ID
8285 	 */
8286 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8287 	ver = device_id >> 12;
8288 	adapter->params.chip = 0;
8289 	switch (ver) {
8290 	case CHELSIO_T4:
8291 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8292 		adapter->params.arch.sge_fl_db = DBPRIO_F;
8293 		adapter->params.arch.mps_tcam_size =
8294 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
8295 		adapter->params.arch.mps_rplc_size = 128;
8296 		adapter->params.arch.nchan = NCHAN;
8297 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8298 		adapter->params.arch.vfcount = 128;
8299 		/* Congestion map is for 4 channels so that
8300 		 * MPS can have 4 priority per port.
8301 		 */
8302 		adapter->params.arch.cng_ch_bits_log = 2;
8303 		break;
8304 	case CHELSIO_T5:
8305 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
8306 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8307 		adapter->params.arch.mps_tcam_size =
8308 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8309 		adapter->params.arch.mps_rplc_size = 128;
8310 		adapter->params.arch.nchan = NCHAN;
8311 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8312 		adapter->params.arch.vfcount = 128;
8313 		adapter->params.arch.cng_ch_bits_log = 2;
8314 		break;
8315 	case CHELSIO_T6:
8316 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8317 		adapter->params.arch.sge_fl_db = 0;
8318 		adapter->params.arch.mps_tcam_size =
8319 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8320 		adapter->params.arch.mps_rplc_size = 256;
8321 		adapter->params.arch.nchan = 2;
8322 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
8323 		adapter->params.arch.vfcount = 256;
8324 		/* Congestion map will be for 2 channels so that
8325 		 * MPS can have 8 priority per port.
8326 		 */
8327 		adapter->params.arch.cng_ch_bits_log = 3;
8328 		break;
8329 	default:
8330 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8331 			device_id);
8332 		return -EINVAL;
8333 	}
8334 
8335 	adapter->params.cim_la_size = CIMLA_SIZE;
8336 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8337 
8338 	/*
8339 	 * Default port for debugging in case we can't reach FW.
8340 	 */
8341 	adapter->params.nports = 1;
8342 	adapter->params.portvec = 1;
8343 	adapter->params.vpd.cclk = 50000;
8344 
8345 	/* Set pci completion timeout value to 4 seconds. */
8346 	set_pcie_completion_timeout(adapter, 0xd);
8347 	return 0;
8348 }
8349 
8350 /**
8351  *	t4_shutdown_adapter - shut down adapter, host & wire
8352  *	@adapter: the adapter
8353  *
8354  *	Perform an emergency shutdown of the adapter and stop it from
8355  *	continuing any further communication on the ports or DMA to the
8356  *	host.  This is typically used when the adapter and/or firmware
8357  *	have crashed and we want to prevent any further accidental
8358  *	communication with the rest of the world.  This will also force
8359  *	the port Link Status to go down -- if register writes work --
8360  *	which should help our peers figure out that we're down.
8361  */
t4_shutdown_adapter(struct adapter * adapter)8362 int t4_shutdown_adapter(struct adapter *adapter)
8363 {
8364 	int port;
8365 
8366 	t4_intr_disable(adapter);
8367 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
8368 	for_each_port(adapter, port) {
8369 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
8370 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
8371 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
8372 
8373 		t4_write_reg(adapter, a_port_cfg,
8374 			     t4_read_reg(adapter, a_port_cfg)
8375 			     & ~SIGNAL_DET_V(1));
8376 	}
8377 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
8378 
8379 	return 0;
8380 }
8381 
8382 /**
8383  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8384  *	@adapter: the adapter
8385  *	@qid: the Queue ID
8386  *	@qtype: the Ingress or Egress type for @qid
8387  *	@user: true if this request is for a user mode queue
8388  *	@pbar2_qoffset: BAR2 Queue Offset
8389  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8390  *
8391  *	Returns the BAR2 SGE Queue Registers information associated with the
8392  *	indicated Absolute Queue ID.  These are passed back in return value
8393  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8394  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8395  *
8396  *	This may return an error which indicates that BAR2 SGE Queue
8397  *	registers aren't available.  If an error is not returned, then the
8398  *	following values are returned:
8399  *
8400  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8401  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8402  *
8403  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8404  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8405  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8406  *	then these "Inferred Queue ID" register may not be used.
8407  */
t4_bar2_sge_qregs(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)8408 int t4_bar2_sge_qregs(struct adapter *adapter,
8409 		      unsigned int qid,
8410 		      enum t4_bar2_qtype qtype,
8411 		      int user,
8412 		      u64 *pbar2_qoffset,
8413 		      unsigned int *pbar2_qid)
8414 {
8415 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8416 	u64 bar2_page_offset, bar2_qoffset;
8417 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8418 
8419 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
8420 	if (!user && is_t4(adapter->params.chip))
8421 		return -EINVAL;
8422 
8423 	/* Get our SGE Page Size parameters.
8424 	 */
8425 	page_shift = adapter->params.sge.hps + 10;
8426 	page_size = 1 << page_shift;
8427 
8428 	/* Get the right Queues per Page parameters for our Queue.
8429 	 */
8430 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8431 		     ? adapter->params.sge.eq_qpp
8432 		     : adapter->params.sge.iq_qpp);
8433 	qpp_mask = (1 << qpp_shift) - 1;
8434 
8435 	/*  Calculate the basics of the BAR2 SGE Queue register area:
8436 	 *  o The BAR2 page the Queue registers will be in.
8437 	 *  o The BAR2 Queue ID.
8438 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8439 	 */
8440 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8441 	bar2_qid = qid & qpp_mask;
8442 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8443 
8444 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8445 	 * hardware will infer the Absolute Queue ID simply from the writes to
8446 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8447 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8448 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8449 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8450 	 * from the BAR2 Page and BAR2 Queue ID.
8451 	 *
8452 	 * One important censequence of this is that some BAR2 SGE registers
8453 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8454 	 * there.  But other registers synthesize the SGE Queue ID purely
8455 	 * from the writes to the registers -- the Write Combined Doorbell
8456 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8457 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8458 	 * Queue ID can be inferred from simple writes.
8459 	 */
8460 	bar2_qoffset = bar2_page_offset;
8461 	bar2_qinferred = (bar2_qid_offset < page_size);
8462 	if (bar2_qinferred) {
8463 		bar2_qoffset += bar2_qid_offset;
8464 		bar2_qid = 0;
8465 	}
8466 
8467 	*pbar2_qoffset = bar2_qoffset;
8468 	*pbar2_qid = bar2_qid;
8469 	return 0;
8470 }
8471 
8472 /**
8473  *	t4_init_devlog_params - initialize adapter->params.devlog
8474  *	@adap: the adapter
8475  *
8476  *	Initialize various fields of the adapter's Firmware Device Log
8477  *	Parameters structure.
8478  */
t4_init_devlog_params(struct adapter * adap)8479 int t4_init_devlog_params(struct adapter *adap)
8480 {
8481 	struct devlog_params *dparams = &adap->params.devlog;
8482 	u32 pf_dparams;
8483 	unsigned int devlog_meminfo;
8484 	struct fw_devlog_cmd devlog_cmd;
8485 	int ret;
8486 
8487 	/* If we're dealing with newer firmware, the Device Log Paramerters
8488 	 * are stored in a designated register which allows us to access the
8489 	 * Device Log even if we can't talk to the firmware.
8490 	 */
8491 	pf_dparams =
8492 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
8493 	if (pf_dparams) {
8494 		unsigned int nentries, nentries128;
8495 
8496 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
8497 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
8498 
8499 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
8500 		nentries = (nentries128 + 1) * 128;
8501 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8502 
8503 		return 0;
8504 	}
8505 
8506 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8507 	 */
8508 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
8509 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
8510 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
8511 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8512 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8513 			 &devlog_cmd);
8514 	if (ret)
8515 		return ret;
8516 
8517 	devlog_meminfo =
8518 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8519 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
8520 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
8521 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8522 
8523 	return 0;
8524 }
8525 
8526 /**
8527  *	t4_init_sge_params - initialize adap->params.sge
8528  *	@adapter: the adapter
8529  *
8530  *	Initialize various fields of the adapter's SGE Parameters structure.
8531  */
t4_init_sge_params(struct adapter * adapter)8532 int t4_init_sge_params(struct adapter *adapter)
8533 {
8534 	struct sge_params *sge_params = &adapter->params.sge;
8535 	u32 hps, qpp;
8536 	unsigned int s_hps, s_qpp;
8537 
8538 	/* Extract the SGE Page Size for our PF.
8539 	 */
8540 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
8541 	s_hps = (HOSTPAGESIZEPF0_S +
8542 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
8543 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
8544 
8545 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
8546 	 */
8547 	s_qpp = (QUEUESPERPAGEPF0_S +
8548 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
8549 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
8550 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8551 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
8552 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
8553 
8554 	return 0;
8555 }
8556 
8557 /**
8558  *      t4_init_tp_params - initialize adap->params.tp
8559  *      @adap: the adapter
8560  *
8561  *      Initialize various fields of the adapter's TP Parameters structure.
8562  */
t4_init_tp_params(struct adapter * adap)8563 int t4_init_tp_params(struct adapter *adap)
8564 {
8565 	int chan;
8566 	u32 v;
8567 
8568 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
8569 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
8570 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
8571 
8572 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8573 	for (chan = 0; chan < NCHAN; chan++)
8574 		adap->params.tp.tx_modq[chan] = chan;
8575 
8576 	/* Cache the adapter's Compressed Filter Mode and global Incress
8577 	 * Configuration.
8578 	 */
8579 	if (t4_use_ldst(adap)) {
8580 		t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
8581 				TP_VLAN_PRI_MAP_A, 1);
8582 		t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
8583 				TP_INGRESS_CONFIG_A, 1);
8584 	} else {
8585 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
8586 				 &adap->params.tp.vlan_pri_map, 1,
8587 				 TP_VLAN_PRI_MAP_A);
8588 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
8589 				 &adap->params.tp.ingress_config, 1,
8590 				 TP_INGRESS_CONFIG_A);
8591 	}
8592 	/* For T6, cache the adapter's compressed error vector
8593 	 * and passing outer header info for encapsulated packets.
8594 	 */
8595 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
8596 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
8597 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
8598 	}
8599 
8600 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8601 	 * shift positions of several elements of the Compressed Filter Tuple
8602 	 * for this adapter which we need frequently ...
8603 	 */
8604 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
8605 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
8606 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
8607 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
8608 							       PROTOCOL_F);
8609 
8610 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8611 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
8612 	 */
8613 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
8614 		adap->params.tp.vnic_shift = -1;
8615 
8616 	return 0;
8617 }
8618 
8619 /**
8620  *      t4_filter_field_shift - calculate filter field shift
8621  *      @adap: the adapter
8622  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8623  *
8624  *      Return the shift position of a filter field within the Compressed
8625  *      Filter Tuple.  The filter field is specified via its selection bit
8626  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8627  */
t4_filter_field_shift(const struct adapter * adap,int filter_sel)8628 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8629 {
8630 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8631 	unsigned int sel;
8632 	int field_shift;
8633 
8634 	if ((filter_mode & filter_sel) == 0)
8635 		return -1;
8636 
8637 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8638 		switch (filter_mode & sel) {
8639 		case FCOE_F:
8640 			field_shift += FT_FCOE_W;
8641 			break;
8642 		case PORT_F:
8643 			field_shift += FT_PORT_W;
8644 			break;
8645 		case VNIC_ID_F:
8646 			field_shift += FT_VNIC_ID_W;
8647 			break;
8648 		case VLAN_F:
8649 			field_shift += FT_VLAN_W;
8650 			break;
8651 		case TOS_F:
8652 			field_shift += FT_TOS_W;
8653 			break;
8654 		case PROTOCOL_F:
8655 			field_shift += FT_PROTOCOL_W;
8656 			break;
8657 		case ETHERTYPE_F:
8658 			field_shift += FT_ETHERTYPE_W;
8659 			break;
8660 		case MACMATCH_F:
8661 			field_shift += FT_MACMATCH_W;
8662 			break;
8663 		case MPSHITTYPE_F:
8664 			field_shift += FT_MPSHITTYPE_W;
8665 			break;
8666 		case FRAGMENTATION_F:
8667 			field_shift += FT_FRAGMENTATION_W;
8668 			break;
8669 		}
8670 	}
8671 	return field_shift;
8672 }
8673 
t4_init_rss_mode(struct adapter * adap,int mbox)8674 int t4_init_rss_mode(struct adapter *adap, int mbox)
8675 {
8676 	int i, ret;
8677 	struct fw_rss_vi_config_cmd rvc;
8678 
8679 	memset(&rvc, 0, sizeof(rvc));
8680 
8681 	for_each_port(adap, i) {
8682 		struct port_info *p = adap2pinfo(adap, i);
8683 
8684 		rvc.op_to_viid =
8685 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
8686 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8687 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
8688 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
8689 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
8690 		if (ret)
8691 			return ret;
8692 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
8693 	}
8694 	return 0;
8695 }
8696 
8697 /**
8698  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
8699  *	@pi: the port_info
8700  *	@mbox: mailbox to use for the FW command
8701  *	@port: physical port associated with the VI
8702  *	@pf: the PF owning the VI
8703  *	@vf: the VF owning the VI
8704  *	@mac: the MAC address of the VI
8705  *
8706  *	Allocates a virtual interface for the given physical port.  If @mac is
8707  *	not %NULL it contains the MAC address of the VI as assigned by FW.
8708  *	@mac should be large enough to hold an Ethernet address.
8709  *	Returns < 0 on error.
8710  */
t4_init_portinfo(struct port_info * pi,int mbox,int port,int pf,int vf,u8 mac[])8711 int t4_init_portinfo(struct port_info *pi, int mbox,
8712 		     int port, int pf, int vf, u8 mac[])
8713 {
8714 	struct adapter *adapter = pi->adapter;
8715 	unsigned int fw_caps = adapter->params.fw_caps_support;
8716 	struct fw_port_cmd cmd;
8717 	unsigned int rss_size;
8718 	enum fw_port_type port_type;
8719 	int mdio_addr;
8720 	fw_port_cap32_t pcaps, acaps;
8721 	int ret;
8722 
8723 	/* If we haven't yet determined whether we're talking to Firmware
8724 	 * which knows the new 32-bit Port Capabilities, it's time to find
8725 	 * out now.  This will also tell new Firmware to send us Port Status
8726 	 * Updates using the new 32-bit Port Capabilities version of the
8727 	 * Port Information message.
8728 	 */
8729 	if (fw_caps == FW_CAPS_UNKNOWN) {
8730 		u32 param, val;
8731 
8732 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
8733 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
8734 		val = 1;
8735 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
8736 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
8737 		adapter->params.fw_caps_support = fw_caps;
8738 	}
8739 
8740 	memset(&cmd, 0, sizeof(cmd));
8741 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8742 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
8743 				       FW_PORT_CMD_PORTID_V(port));
8744 	cmd.action_to_len16 = cpu_to_be32(
8745 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8746 				     ? FW_PORT_ACTION_GET_PORT_INFO
8747 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8748 		FW_LEN16(cmd));
8749 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
8750 	if (ret)
8751 		return ret;
8752 
8753 	/* Extract the various fields from the Port Information message.
8754 	 */
8755 	if (fw_caps == FW_CAPS16) {
8756 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
8757 
8758 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8759 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
8760 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
8761 			     : -1);
8762 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
8763 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
8764 	} else {
8765 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
8766 
8767 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8768 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
8769 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
8770 			     : -1);
8771 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
8772 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
8773 	}
8774 
8775 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
8776 	if (ret < 0)
8777 		return ret;
8778 
8779 	pi->viid = ret;
8780 	pi->tx_chan = port;
8781 	pi->lport = port;
8782 	pi->rss_size = rss_size;
8783 
8784 	pi->port_type = port_type;
8785 	pi->mdio_addr = mdio_addr;
8786 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
8787 
8788 	init_link_config(&pi->link_cfg, pcaps, acaps);
8789 	return 0;
8790 }
8791 
t4_port_init(struct adapter * adap,int mbox,int pf,int vf)8792 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
8793 {
8794 	u8 addr[6];
8795 	int ret, i, j = 0;
8796 
8797 	for_each_port(adap, i) {
8798 		struct port_info *pi = adap2pinfo(adap, i);
8799 
8800 		while ((adap->params.portvec & (1 << j)) == 0)
8801 			j++;
8802 
8803 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
8804 		if (ret)
8805 			return ret;
8806 
8807 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
8808 		j++;
8809 	}
8810 	return 0;
8811 }
8812 
8813 /**
8814  *	t4_read_cimq_cfg - read CIM queue configuration
8815  *	@adap: the adapter
8816  *	@base: holds the queue base addresses in bytes
8817  *	@size: holds the queue sizes in bytes
8818  *	@thres: holds the queue full thresholds in bytes
8819  *
8820  *	Returns the current configuration of the CIM queues, starting with
8821  *	the IBQs, then the OBQs.
8822  */
t4_read_cimq_cfg(struct adapter * adap,u16 * base,u16 * size,u16 * thres)8823 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8824 {
8825 	unsigned int i, v;
8826 	int cim_num_obq = is_t4(adap->params.chip) ?
8827 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
8828 
8829 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8830 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
8831 			     QUENUMSELECT_V(i));
8832 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8833 		/* value is in 256-byte units */
8834 		*base++ = CIMQBASE_G(v) * 256;
8835 		*size++ = CIMQSIZE_G(v) * 256;
8836 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
8837 	}
8838 	for (i = 0; i < cim_num_obq; i++) {
8839 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
8840 			     QUENUMSELECT_V(i));
8841 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8842 		/* value is in 256-byte units */
8843 		*base++ = CIMQBASE_G(v) * 256;
8844 		*size++ = CIMQSIZE_G(v) * 256;
8845 	}
8846 }
8847 
8848 /**
8849  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8850  *	@adap: the adapter
8851  *	@qid: the queue index
8852  *	@data: where to store the queue contents
8853  *	@n: capacity of @data in 32-bit words
8854  *
8855  *	Reads the contents of the selected CIM queue starting at address 0 up
8856  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8857  *	error and the number of 32-bit words actually read on success.
8858  */
t4_read_cim_ibq(struct adapter * adap,unsigned int qid,u32 * data,size_t n)8859 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8860 {
8861 	int i, err, attempts;
8862 	unsigned int addr;
8863 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8864 
8865 	if (qid > 5 || (n & 3))
8866 		return -EINVAL;
8867 
8868 	addr = qid * nwords;
8869 	if (n > nwords)
8870 		n = nwords;
8871 
8872 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8873 	 * Wait for 1 Sec with a delay of 1 usec.
8874 	 */
8875 	attempts = 1000000;
8876 
8877 	for (i = 0; i < n; i++, addr++) {
8878 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
8879 			     IBQDBGEN_F);
8880 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
8881 				      attempts, 1);
8882 		if (err)
8883 			return err;
8884 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
8885 	}
8886 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
8887 	return i;
8888 }
8889 
8890 /**
8891  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8892  *	@adap: the adapter
8893  *	@qid: the queue index
8894  *	@data: where to store the queue contents
8895  *	@n: capacity of @data in 32-bit words
8896  *
8897  *	Reads the contents of the selected CIM queue starting at address 0 up
8898  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8899  *	error and the number of 32-bit words actually read on success.
8900  */
t4_read_cim_obq(struct adapter * adap,unsigned int qid,u32 * data,size_t n)8901 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8902 {
8903 	int i, err;
8904 	unsigned int addr, v, nwords;
8905 	int cim_num_obq = is_t4(adap->params.chip) ?
8906 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
8907 
8908 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8909 		return -EINVAL;
8910 
8911 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
8912 		     QUENUMSELECT_V(qid));
8913 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
8914 
8915 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
8916 	nwords = CIMQSIZE_G(v) * 64;  /* same */
8917 	if (n > nwords)
8918 		n = nwords;
8919 
8920 	for (i = 0; i < n; i++, addr++) {
8921 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
8922 			     OBQDBGEN_F);
8923 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
8924 				      2, 1);
8925 		if (err)
8926 			return err;
8927 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
8928 	}
8929 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
8930 	return i;
8931 }
8932 
8933 /**
8934  *	t4_cim_read - read a block from CIM internal address space
8935  *	@adap: the adapter
8936  *	@addr: the start address within the CIM address space
8937  *	@n: number of words to read
8938  *	@valp: where to store the result
8939  *
8940  *	Reads a block of 4-byte words from the CIM intenal address space.
8941  */
t4_cim_read(struct adapter * adap,unsigned int addr,unsigned int n,unsigned int * valp)8942 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8943 		unsigned int *valp)
8944 {
8945 	int ret = 0;
8946 
8947 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8948 		return -EBUSY;
8949 
8950 	for ( ; !ret && n--; addr += 4) {
8951 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
8952 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8953 				      0, 5, 2);
8954 		if (!ret)
8955 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
8956 	}
8957 	return ret;
8958 }
8959 
8960 /**
8961  *	t4_cim_write - write a block into CIM internal address space
8962  *	@adap: the adapter
8963  *	@addr: the start address within the CIM address space
8964  *	@n: number of words to write
8965  *	@valp: set of values to write
8966  *
8967  *	Writes a block of 4-byte words into the CIM intenal address space.
8968  */
t4_cim_write(struct adapter * adap,unsigned int addr,unsigned int n,const unsigned int * valp)8969 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8970 		 const unsigned int *valp)
8971 {
8972 	int ret = 0;
8973 
8974 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8975 		return -EBUSY;
8976 
8977 	for ( ; !ret && n--; addr += 4) {
8978 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
8979 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
8980 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8981 				      0, 5, 2);
8982 	}
8983 	return ret;
8984 }
8985 
t4_cim_write1(struct adapter * adap,unsigned int addr,unsigned int val)8986 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8987 			 unsigned int val)
8988 {
8989 	return t4_cim_write(adap, addr, 1, &val);
8990 }
8991 
8992 /**
8993  *	t4_cim_read_la - read CIM LA capture buffer
8994  *	@adap: the adapter
8995  *	@la_buf: where to store the LA data
8996  *	@wrptr: the HW write pointer within the capture buffer
8997  *
8998  *	Reads the contents of the CIM LA buffer with the most recent entry at
8999  *	the end	of the returned data and with the entry at @wrptr first.
9000  *	We try to leave the LA in the running state we find it in.
9001  */
t4_cim_read_la(struct adapter * adap,u32 * la_buf,unsigned int * wrptr)9002 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9003 {
9004 	int i, ret;
9005 	unsigned int cfg, val, idx;
9006 
9007 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9008 	if (ret)
9009 		return ret;
9010 
9011 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9012 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9013 		if (ret)
9014 			return ret;
9015 	}
9016 
9017 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9018 	if (ret)
9019 		goto restart;
9020 
9021 	idx = UPDBGLAWRPTR_G(val);
9022 	if (wrptr)
9023 		*wrptr = idx;
9024 
9025 	for (i = 0; i < adap->params.cim_la_size; i++) {
9026 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9027 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9028 		if (ret)
9029 			break;
9030 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9031 		if (ret)
9032 			break;
9033 		if (val & UPDBGLARDEN_F) {
9034 			ret = -ETIMEDOUT;
9035 			break;
9036 		}
9037 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9038 		if (ret)
9039 			break;
9040 
9041 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9042 		 * identify the 32-bit portion of the full 312-bit data
9043 		 */
9044 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9045 			idx = (idx & 0xff0) + 0x10;
9046 		else
9047 			idx++;
9048 		/* address can't exceed 0xfff */
9049 		idx &= UPDBGLARDPTR_M;
9050 	}
9051 restart:
9052 	if (cfg & UPDBGLAEN_F) {
9053 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9054 				      cfg & ~UPDBGLARDEN_F);
9055 		if (!ret)
9056 			ret = r;
9057 	}
9058 	return ret;
9059 }
9060 
9061 /**
9062  *	t4_tp_read_la - read TP LA capture buffer
9063  *	@adap: the adapter
9064  *	@la_buf: where to store the LA data
9065  *	@wrptr: the HW write pointer within the capture buffer
9066  *
9067  *	Reads the contents of the TP LA buffer with the most recent entry at
9068  *	the end	of the returned data and with the entry at @wrptr first.
9069  *	We leave the LA in the running state we find it in.
9070  */
t4_tp_read_la(struct adapter * adap,u64 * la_buf,unsigned int * wrptr)9071 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9072 {
9073 	bool last_incomplete;
9074 	unsigned int i, cfg, val, idx;
9075 
9076 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9077 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9078 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9079 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9080 
9081 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9082 	idx = DBGLAWPTR_G(val);
9083 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9084 	if (last_incomplete)
9085 		idx = (idx + 1) & DBGLARPTR_M;
9086 	if (wrptr)
9087 		*wrptr = idx;
9088 
9089 	val &= 0xffff;
9090 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
9091 	val |= adap->params.tp.la_mask;
9092 
9093 	for (i = 0; i < TPLA_SIZE; i++) {
9094 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9095 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9096 		idx = (idx + 1) & DBGLARPTR_M;
9097 	}
9098 
9099 	/* Wipe out last entry if it isn't valid */
9100 	if (last_incomplete)
9101 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9102 
9103 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
9104 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9105 			     cfg | adap->params.tp.la_mask);
9106 }
9107 
9108 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9109  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9110  * state for more than the Warning Threshold then we'll issue a warning about
9111  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9112  * appears to be hung every Warning Repeat second till the situation clears.
9113  * If the situation clears, we'll note that as well.
9114  */
9115 #define SGE_IDMA_WARN_THRESH 1
9116 #define SGE_IDMA_WARN_REPEAT 300
9117 
9118 /**
9119  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9120  *	@adapter: the adapter
9121  *	@idma: the adapter IDMA Monitor state
9122  *
9123  *	Initialize the state of an SGE Ingress DMA Monitor.
9124  */
t4_idma_monitor_init(struct adapter * adapter,struct sge_idma_monitor_state * idma)9125 void t4_idma_monitor_init(struct adapter *adapter,
9126 			  struct sge_idma_monitor_state *idma)
9127 {
9128 	/* Initialize the state variables for detecting an SGE Ingress DMA
9129 	 * hang.  The SGE has internal counters which count up on each clock
9130 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9131 	 * same state they were on the previous clock tick.  The clock used is
9132 	 * the Core Clock so we have a limit on the maximum "time" they can
9133 	 * record; typically a very small number of seconds.  For instance,
9134 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9135 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9136 	 * risk of having the "timers" overflow and give us the flexibility to
9137 	 * maintain a Hung SGE State Machine of our own which operates across
9138 	 * a longer time frame.
9139 	 */
9140 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9141 	idma->idma_stalled[0] = 0;
9142 	idma->idma_stalled[1] = 0;
9143 }
9144 
9145 /**
9146  *	t4_idma_monitor - monitor SGE Ingress DMA state
9147  *	@adapter: the adapter
9148  *	@idma: the adapter IDMA Monitor state
9149  *	@hz: number of ticks/second
9150  *	@ticks: number of ticks since the last IDMA Monitor call
9151  */
t4_idma_monitor(struct adapter * adapter,struct sge_idma_monitor_state * idma,int hz,int ticks)9152 void t4_idma_monitor(struct adapter *adapter,
9153 		     struct sge_idma_monitor_state *idma,
9154 		     int hz, int ticks)
9155 {
9156 	int i, idma_same_state_cnt[2];
9157 
9158 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9159 	  * are counters inside the SGE which count up on each clock when the
9160 	  * SGE finds its Ingress DMA State Engines in the same states they
9161 	  * were in the previous clock.  The counters will peg out at
9162 	  * 0xffffffff without wrapping around so once they pass the 1s
9163 	  * threshold they'll stay above that till the IDMA state changes.
9164 	  */
9165 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9166 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9167 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9168 
9169 	for (i = 0; i < 2; i++) {
9170 		u32 debug0, debug11;
9171 
9172 		/* If the Ingress DMA Same State Counter ("timer") is less
9173 		 * than 1s, then we can reset our synthesized Stall Timer and
9174 		 * continue.  If we have previously emitted warnings about a
9175 		 * potential stalled Ingress Queue, issue a note indicating
9176 		 * that the Ingress Queue has resumed forward progress.
9177 		 */
9178 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9179 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9180 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9181 					 "resumed after %d seconds\n",
9182 					 i, idma->idma_qid[i],
9183 					 idma->idma_stalled[i] / hz);
9184 			idma->idma_stalled[i] = 0;
9185 			continue;
9186 		}
9187 
9188 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9189 		 * domain.  The first time we get here it'll be because we
9190 		 * passed the 1s Threshold; each additional time it'll be
9191 		 * because the RX Timer Callback is being fired on its regular
9192 		 * schedule.
9193 		 *
9194 		 * If the stall is below our Potential Hung Ingress Queue
9195 		 * Warning Threshold, continue.
9196 		 */
9197 		if (idma->idma_stalled[i] == 0) {
9198 			idma->idma_stalled[i] = hz;
9199 			idma->idma_warn[i] = 0;
9200 		} else {
9201 			idma->idma_stalled[i] += ticks;
9202 			idma->idma_warn[i] -= ticks;
9203 		}
9204 
9205 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9206 			continue;
9207 
9208 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9209 		 */
9210 		if (idma->idma_warn[i] > 0)
9211 			continue;
9212 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9213 
9214 		/* Read and save the SGE IDMA State and Queue ID information.
9215 		 * We do this every time in case it changes across time ...
9216 		 * can't be too careful ...
9217 		 */
9218 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9219 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9220 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9221 
9222 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9223 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9224 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9225 
9226 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9227 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9228 			 i, idma->idma_qid[i], idma->idma_state[i],
9229 			 idma->idma_stalled[i] / hz,
9230 			 debug0, debug11);
9231 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9232 	}
9233 }
9234 
9235 /**
9236  *	t4_load_cfg - download config file
9237  *	@adap: the adapter
9238  *	@cfg_data: the cfg text file to write
9239  *	@size: text file size
9240  *
9241  *	Write the supplied config text file to the card's serial flash.
9242  */
t4_load_cfg(struct adapter * adap,const u8 * cfg_data,unsigned int size)9243 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9244 {
9245 	int ret, i, n, cfg_addr;
9246 	unsigned int addr;
9247 	unsigned int flash_cfg_start_sec;
9248 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9249 
9250 	cfg_addr = t4_flash_cfg_addr(adap);
9251 	if (cfg_addr < 0)
9252 		return cfg_addr;
9253 
9254 	addr = cfg_addr;
9255 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9256 
9257 	if (size > FLASH_CFG_MAX_SIZE) {
9258 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9259 			FLASH_CFG_MAX_SIZE);
9260 		return -EFBIG;
9261 	}
9262 
9263 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9264 			 sf_sec_size);
9265 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9266 				     flash_cfg_start_sec + i - 1);
9267 	/* If size == 0 then we're simply erasing the FLASH sectors associated
9268 	 * with the on-adapter Firmware Configuration File.
9269 	 */
9270 	if (ret || size == 0)
9271 		goto out;
9272 
9273 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9274 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
9275 		if ((size - i) <  SF_PAGE_SIZE)
9276 			n = size - i;
9277 		else
9278 			n = SF_PAGE_SIZE;
9279 		ret = t4_write_flash(adap, addr, n, cfg_data);
9280 		if (ret)
9281 			goto out;
9282 
9283 		addr += SF_PAGE_SIZE;
9284 		cfg_data += SF_PAGE_SIZE;
9285 	}
9286 
9287 out:
9288 	if (ret)
9289 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
9290 			(size == 0 ? "clear" : "download"), ret);
9291 	return ret;
9292 }
9293 
9294 /**
9295  *	t4_set_vf_mac - Set MAC address for the specified VF
9296  *	@adapter: The adapter
9297  *	@vf: one of the VFs instantiated by the specified PF
9298  *	@naddr: the number of MAC addresses
9299  *	@addr: the MAC address(es) to be set to the specified VF
9300  */
t4_set_vf_mac_acl(struct adapter * adapter,unsigned int vf,unsigned int naddr,u8 * addr)9301 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
9302 		      unsigned int naddr, u8 *addr)
9303 {
9304 	struct fw_acl_mac_cmd cmd;
9305 
9306 	memset(&cmd, 0, sizeof(cmd));
9307 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
9308 				    FW_CMD_REQUEST_F |
9309 				    FW_CMD_WRITE_F |
9310 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
9311 				    FW_ACL_MAC_CMD_VFN_V(vf));
9312 
9313 	/* Note: Do not enable the ACL */
9314 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
9315 	cmd.nmac = naddr;
9316 
9317 	switch (adapter->pf) {
9318 	case 3:
9319 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
9320 		break;
9321 	case 2:
9322 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
9323 		break;
9324 	case 1:
9325 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
9326 		break;
9327 	case 0:
9328 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
9329 		break;
9330 	}
9331 
9332 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
9333 }
9334 
t4_sched_params(struct adapter * adapter,int type,int level,int mode,int rateunit,int ratemode,int channel,int class,int minrate,int maxrate,int weight,int pktsize)9335 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9336 		    int rateunit, int ratemode, int channel, int class,
9337 		    int minrate, int maxrate, int weight, int pktsize)
9338 {
9339 	struct fw_sched_cmd cmd;
9340 
9341 	memset(&cmd, 0, sizeof(cmd));
9342 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
9343 				      FW_CMD_REQUEST_F |
9344 				      FW_CMD_WRITE_F);
9345 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9346 
9347 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9348 	cmd.u.params.type = type;
9349 	cmd.u.params.level = level;
9350 	cmd.u.params.mode = mode;
9351 	cmd.u.params.ch = channel;
9352 	cmd.u.params.cl = class;
9353 	cmd.u.params.unit = rateunit;
9354 	cmd.u.params.rate = ratemode;
9355 	cmd.u.params.min = cpu_to_be32(minrate);
9356 	cmd.u.params.max = cpu_to_be32(maxrate);
9357 	cmd.u.params.weight = cpu_to_be16(weight);
9358 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9359 
9360 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
9361 			       NULL, 1);
9362 }
9363