• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007	 Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/decompress/generic.h>
30 #include <linux/of_fdt.h>
31 
32 #include <asm/addrspace.h>
33 #include <asm/bootinfo.h>
34 #include <asm/bugs.h>
35 #include <asm/cache.h>
36 #include <asm/cdmm.h>
37 #include <asm/cpu.h>
38 #include <asm/debug.h>
39 #include <asm/sections.h>
40 #include <asm/setup.h>
41 #include <asm/smp-ops.h>
42 #include <asm/prom.h>
43 
44 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
45 const char __section(.appended_dtb) __appended_dtb[0x100000];
46 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
47 
48 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
49 
50 EXPORT_SYMBOL(cpu_data);
51 
52 #ifdef CONFIG_VT
53 struct screen_info screen_info;
54 #endif
55 
56 /*
57  * Setup information
58  *
59  * These are initialized so they are in the .data section
60  */
61 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
62 
63 EXPORT_SYMBOL(mips_machtype);
64 
65 struct boot_mem_map boot_mem_map;
66 
67 static char __initdata command_line[COMMAND_LINE_SIZE];
68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
69 
70 #ifdef CONFIG_CMDLINE_BOOL
71 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
72 #endif
73 
74 /*
75  * mips_io_port_base is the begin of the address space to which x86 style
76  * I/O ports are mapped.
77  */
78 unsigned long mips_io_port_base = -1;
79 EXPORT_SYMBOL(mips_io_port_base);
80 
81 static struct resource code_resource = { .name = "Kernel code", };
82 static struct resource data_resource = { .name = "Kernel data", };
83 
84 static void *detect_magic __initdata = detect_memory_region;
85 
add_memory_region(phys_addr_t start,phys_addr_t size,long type)86 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
87 {
88 	int x = boot_mem_map.nr_map;
89 	int i;
90 
91 	/*
92 	 * If the region reaches the top of the physical address space, adjust
93 	 * the size slightly so that (start + size) doesn't overflow
94 	 */
95 	if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
96 		--size;
97 
98 	/* Sanity check */
99 	if (start + size < start) {
100 		pr_warn("Trying to add an invalid memory region, skipped\n");
101 		return;
102 	}
103 
104 	/*
105 	 * Try to merge with existing entry, if any.
106 	 */
107 	for (i = 0; i < boot_mem_map.nr_map; i++) {
108 		struct boot_mem_map_entry *entry = boot_mem_map.map + i;
109 		unsigned long top;
110 
111 		if (entry->type != type)
112 			continue;
113 
114 		if (start + size < entry->addr)
115 			continue;			/* no overlap */
116 
117 		if (entry->addr + entry->size < start)
118 			continue;			/* no overlap */
119 
120 		top = max(entry->addr + entry->size, start + size);
121 		entry->addr = min(entry->addr, start);
122 		entry->size = top - entry->addr;
123 
124 		return;
125 	}
126 
127 	if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
128 		pr_err("Ooops! Too many entries in the memory map!\n");
129 		return;
130 	}
131 
132 	boot_mem_map.map[x].addr = start;
133 	boot_mem_map.map[x].size = size;
134 	boot_mem_map.map[x].type = type;
135 	boot_mem_map.nr_map++;
136 }
137 
detect_memory_region(phys_addr_t start,phys_addr_t sz_min,phys_addr_t sz_max)138 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
139 {
140 	void *dm = &detect_magic;
141 	phys_addr_t size;
142 
143 	for (size = sz_min; size < sz_max; size <<= 1) {
144 		if (!memcmp(dm, dm + size, sizeof(detect_magic)))
145 			break;
146 	}
147 
148 	pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
149 		((unsigned long long) size) / SZ_1M,
150 		(unsigned long long) start,
151 		((unsigned long long) sz_min) / SZ_1M,
152 		((unsigned long long) sz_max) / SZ_1M);
153 
154 	add_memory_region(start, size, BOOT_MEM_RAM);
155 }
156 
memory_region_available(phys_addr_t start,phys_addr_t size)157 bool __init memory_region_available(phys_addr_t start, phys_addr_t size)
158 {
159 	int i;
160 	bool in_ram = false, free = true;
161 
162 	for (i = 0; i < boot_mem_map.nr_map; i++) {
163 		phys_addr_t start_, end_;
164 
165 		start_ = boot_mem_map.map[i].addr;
166 		end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
167 
168 		switch (boot_mem_map.map[i].type) {
169 		case BOOT_MEM_RAM:
170 			if (start >= start_ && start + size <= end_)
171 				in_ram = true;
172 			break;
173 		case BOOT_MEM_RESERVED:
174 			if ((start >= start_ && start < end_) ||
175 			    (start < start_ && start + size >= start_))
176 				free = false;
177 			break;
178 		default:
179 			continue;
180 		}
181 	}
182 
183 	return in_ram && free;
184 }
185 
print_memory_map(void)186 static void __init print_memory_map(void)
187 {
188 	int i;
189 	const int field = 2 * sizeof(unsigned long);
190 
191 	for (i = 0; i < boot_mem_map.nr_map; i++) {
192 		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
193 		       field, (unsigned long long) boot_mem_map.map[i].size,
194 		       field, (unsigned long long) boot_mem_map.map[i].addr);
195 
196 		switch (boot_mem_map.map[i].type) {
197 		case BOOT_MEM_RAM:
198 			printk(KERN_CONT "(usable)\n");
199 			break;
200 		case BOOT_MEM_INIT_RAM:
201 			printk(KERN_CONT "(usable after init)\n");
202 			break;
203 		case BOOT_MEM_ROM_DATA:
204 			printk(KERN_CONT "(ROM data)\n");
205 			break;
206 		case BOOT_MEM_RESERVED:
207 			printk(KERN_CONT "(reserved)\n");
208 			break;
209 		default:
210 			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
211 			break;
212 		}
213 	}
214 }
215 
216 /*
217  * Manage initrd
218  */
219 #ifdef CONFIG_BLK_DEV_INITRD
220 
rd_start_early(char * p)221 static int __init rd_start_early(char *p)
222 {
223 	unsigned long start = memparse(p, &p);
224 
225 #ifdef CONFIG_64BIT
226 	/* Guess if the sign extension was forgotten by bootloader */
227 	if (start < XKPHYS)
228 		start = (int)start;
229 #endif
230 	initrd_start = start;
231 	initrd_end += start;
232 	return 0;
233 }
234 early_param("rd_start", rd_start_early);
235 
rd_size_early(char * p)236 static int __init rd_size_early(char *p)
237 {
238 	initrd_end += memparse(p, &p);
239 	return 0;
240 }
241 early_param("rd_size", rd_size_early);
242 
243 /* it returns the next free pfn after initrd */
init_initrd(void)244 static unsigned long __init init_initrd(void)
245 {
246 	unsigned long end;
247 
248 	/*
249 	 * Board specific code or command line parser should have
250 	 * already set up initrd_start and initrd_end. In these cases
251 	 * perfom sanity checks and use them if all looks good.
252 	 */
253 	if (!initrd_start || initrd_end <= initrd_start)
254 		goto disable;
255 
256 	if (initrd_start & ~PAGE_MASK) {
257 		pr_err("initrd start must be page aligned\n");
258 		goto disable;
259 	}
260 	if (initrd_start < PAGE_OFFSET) {
261 		pr_err("initrd start < PAGE_OFFSET\n");
262 		goto disable;
263 	}
264 
265 	/*
266 	 * Sanitize initrd addresses. For example firmware
267 	 * can't guess if they need to pass them through
268 	 * 64-bits values if the kernel has been built in pure
269 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
270 	 * addresses now, so the code can now safely use __pa().
271 	 */
272 	end = __pa(initrd_end);
273 	initrd_end = (unsigned long)__va(end);
274 	initrd_start = (unsigned long)__va(__pa(initrd_start));
275 
276 	ROOT_DEV = Root_RAM0;
277 	return PFN_UP(end);
278 disable:
279 	initrd_start = 0;
280 	initrd_end = 0;
281 	return 0;
282 }
283 
284 /* In some conditions (e.g. big endian bootloader with a little endian
285    kernel), the initrd might appear byte swapped.  Try to detect this and
286    byte swap it if needed.  */
maybe_bswap_initrd(void)287 static void __init maybe_bswap_initrd(void)
288 {
289 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
290 	u64 buf;
291 
292 	/* Check for CPIO signature */
293 	if (!memcmp((void *)initrd_start, "070701", 6))
294 		return;
295 
296 	/* Check for compressed initrd */
297 	if (decompress_method((unsigned char *)initrd_start, 8, NULL))
298 		return;
299 
300 	/* Try again with a byte swapped header */
301 	buf = swab64p((u64 *)initrd_start);
302 	if (!memcmp(&buf, "070701", 6) ||
303 	    decompress_method((unsigned char *)(&buf), 8, NULL)) {
304 		unsigned long i;
305 
306 		pr_info("Byteswapped initrd detected\n");
307 		for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
308 			swab64s((u64 *)i);
309 	}
310 #endif
311 }
312 
finalize_initrd(void)313 static void __init finalize_initrd(void)
314 {
315 	unsigned long size = initrd_end - initrd_start;
316 
317 	if (size == 0) {
318 		printk(KERN_INFO "Initrd not found or empty");
319 		goto disable;
320 	}
321 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
322 		printk(KERN_ERR "Initrd extends beyond end of memory");
323 		goto disable;
324 	}
325 
326 	maybe_bswap_initrd();
327 
328 	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
329 	initrd_below_start_ok = 1;
330 
331 	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
332 		initrd_start, size);
333 	return;
334 disable:
335 	printk(KERN_CONT " - disabling initrd\n");
336 	initrd_start = 0;
337 	initrd_end = 0;
338 }
339 
340 #else  /* !CONFIG_BLK_DEV_INITRD */
341 
init_initrd(void)342 static unsigned long __init init_initrd(void)
343 {
344 	return 0;
345 }
346 
347 #define finalize_initrd()	do {} while (0)
348 
349 #endif
350 
351 /*
352  * Initialize the bootmem allocator. It also setup initrd related data
353  * if needed.
354  */
355 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
356 
bootmem_init(void)357 static void __init bootmem_init(void)
358 {
359 	init_initrd();
360 	finalize_initrd();
361 }
362 
363 #else  /* !CONFIG_SGI_IP27 */
364 
bootmap_bytes(unsigned long pages)365 static unsigned long __init bootmap_bytes(unsigned long pages)
366 {
367 	unsigned long bytes = DIV_ROUND_UP(pages, 8);
368 
369 	return ALIGN(bytes, sizeof(long));
370 }
371 
bootmem_init(void)372 static void __init bootmem_init(void)
373 {
374 	unsigned long reserved_end;
375 	unsigned long mapstart = ~0UL;
376 	unsigned long bootmap_size;
377 	phys_addr_t ramstart = (phys_addr_t)ULLONG_MAX;
378 	bool bootmap_valid = false;
379 	int i;
380 
381 	/*
382 	 * Sanity check any INITRD first. We don't take it into account
383 	 * for bootmem setup initially, rely on the end-of-kernel-code
384 	 * as our memory range starting point. Once bootmem is inited we
385 	 * will reserve the area used for the initrd.
386 	 */
387 	init_initrd();
388 	reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
389 
390 	/*
391 	 * max_low_pfn is not a number of pages. The number of pages
392 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
393 	 */
394 	min_low_pfn = ~0UL;
395 	max_low_pfn = 0;
396 
397 	/*
398 	 * Find the highest page frame number we have available
399 	 * and the lowest used RAM address
400 	 */
401 	for (i = 0; i < boot_mem_map.nr_map; i++) {
402 		unsigned long start, end;
403 
404 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
405 			continue;
406 
407 		start = PFN_UP(boot_mem_map.map[i].addr);
408 		end = PFN_DOWN(boot_mem_map.map[i].addr
409 				+ boot_mem_map.map[i].size);
410 
411 		ramstart = min(ramstart, boot_mem_map.map[i].addr);
412 
413 #ifndef CONFIG_HIGHMEM
414 		/*
415 		 * Skip highmem here so we get an accurate max_low_pfn if low
416 		 * memory stops short of high memory.
417 		 * If the region overlaps HIGHMEM_START, end is clipped so
418 		 * max_pfn excludes the highmem portion.
419 		 */
420 		if (start >= PFN_DOWN(HIGHMEM_START))
421 			continue;
422 		if (end > PFN_DOWN(HIGHMEM_START))
423 			end = PFN_DOWN(HIGHMEM_START);
424 #endif
425 
426 		if (end > max_low_pfn)
427 			max_low_pfn = end;
428 		if (start < min_low_pfn)
429 			min_low_pfn = start;
430 		if (end <= reserved_end)
431 			continue;
432 #ifdef CONFIG_BLK_DEV_INITRD
433 		/* Skip zones before initrd and initrd itself */
434 		if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
435 			continue;
436 #endif
437 		if (start >= mapstart)
438 			continue;
439 		mapstart = max(reserved_end, start);
440 	}
441 
442 	/*
443 	 * Reserve any memory between the start of RAM and PHYS_OFFSET
444 	 */
445 	if (ramstart > PHYS_OFFSET)
446 		add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET,
447 				  BOOT_MEM_RESERVED);
448 
449 	if (min_low_pfn >= max_low_pfn)
450 		panic("Incorrect memory mapping !!!");
451 	if (min_low_pfn > ARCH_PFN_OFFSET) {
452 		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
453 			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
454 			min_low_pfn - ARCH_PFN_OFFSET);
455 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
456 		pr_info("%lu free pages won't be used\n",
457 			ARCH_PFN_OFFSET - min_low_pfn);
458 	}
459 	min_low_pfn = ARCH_PFN_OFFSET;
460 
461 	/*
462 	 * Determine low and high memory ranges
463 	 */
464 	max_pfn = max_low_pfn;
465 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
466 #ifdef CONFIG_HIGHMEM
467 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
468 		highend_pfn = max_low_pfn;
469 #endif
470 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
471 	}
472 
473 #ifdef CONFIG_BLK_DEV_INITRD
474 	/*
475 	 * mapstart should be after initrd_end
476 	 */
477 	if (initrd_end)
478 		mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
479 #endif
480 
481 	/*
482 	 * check that mapstart doesn't overlap with any of
483 	 * memory regions that have been reserved through eg. DTB
484 	 */
485 	bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
486 
487 	bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
488 						bootmap_size);
489 	for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
490 		unsigned long mapstart_addr;
491 
492 		switch (boot_mem_map.map[i].type) {
493 		case BOOT_MEM_RESERVED:
494 			mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
495 						boot_mem_map.map[i].size);
496 			if (PHYS_PFN(mapstart_addr) < mapstart)
497 				break;
498 
499 			bootmap_valid = memory_region_available(mapstart_addr,
500 								bootmap_size);
501 			if (bootmap_valid)
502 				mapstart = PHYS_PFN(mapstart_addr);
503 			break;
504 		default:
505 			break;
506 		}
507 	}
508 
509 	if (!bootmap_valid)
510 		panic("No memory area to place a bootmap bitmap");
511 
512 	/*
513 	 * Initialize the boot-time allocator with low memory only.
514 	 */
515 	if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
516 					 min_low_pfn, max_low_pfn))
517 		panic("Unexpected memory size required for bootmap");
518 
519 	for (i = 0; i < boot_mem_map.nr_map; i++) {
520 		unsigned long start, end;
521 
522 		start = PFN_UP(boot_mem_map.map[i].addr);
523 		end = PFN_DOWN(boot_mem_map.map[i].addr
524 				+ boot_mem_map.map[i].size);
525 
526 		if (start <= min_low_pfn)
527 			start = min_low_pfn;
528 		if (start >= end)
529 			continue;
530 
531 #ifndef CONFIG_HIGHMEM
532 		if (end > max_low_pfn)
533 			end = max_low_pfn;
534 
535 		/*
536 		 * ... finally, is the area going away?
537 		 */
538 		if (end <= start)
539 			continue;
540 #endif
541 
542 		memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
543 	}
544 
545 	/*
546 	 * Register fully available low RAM pages with the bootmem allocator.
547 	 */
548 	for (i = 0; i < boot_mem_map.nr_map; i++) {
549 		unsigned long start, end, size;
550 
551 		start = PFN_UP(boot_mem_map.map[i].addr);
552 		end   = PFN_DOWN(boot_mem_map.map[i].addr
553 				    + boot_mem_map.map[i].size);
554 
555 		/*
556 		 * Reserve usable memory.
557 		 */
558 		switch (boot_mem_map.map[i].type) {
559 		case BOOT_MEM_RAM:
560 			break;
561 		case BOOT_MEM_INIT_RAM:
562 			memory_present(0, start, end);
563 			continue;
564 		default:
565 			/* Not usable memory */
566 			if (start > min_low_pfn && end < max_low_pfn)
567 				reserve_bootmem(boot_mem_map.map[i].addr,
568 						boot_mem_map.map[i].size,
569 						BOOTMEM_DEFAULT);
570 			continue;
571 		}
572 
573 		/*
574 		 * We are rounding up the start address of usable memory
575 		 * and at the end of the usable range downwards.
576 		 */
577 		if (start >= max_low_pfn)
578 			continue;
579 		if (start < reserved_end)
580 			start = reserved_end;
581 		if (end > max_low_pfn)
582 			end = max_low_pfn;
583 
584 		/*
585 		 * ... finally, is the area going away?
586 		 */
587 		if (end <= start)
588 			continue;
589 		size = end - start;
590 
591 		/* Register lowmem ranges */
592 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
593 		memory_present(0, start, end);
594 	}
595 
596 	/*
597 	 * Reserve the bootmap memory.
598 	 */
599 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
600 
601 #ifdef CONFIG_RELOCATABLE
602 	/*
603 	 * The kernel reserves all memory below its _end symbol as bootmem,
604 	 * but the kernel may now be at a much higher address. The memory
605 	 * between the original and new locations may be returned to the system.
606 	 */
607 	if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
608 		unsigned long offset;
609 		extern void show_kernel_relocation(const char *level);
610 
611 		offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
612 		free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
613 
614 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
615 		/*
616 		 * This information is necessary when debugging the kernel
617 		 * But is a security vulnerability otherwise!
618 		 */
619 		show_kernel_relocation(KERN_INFO);
620 #endif
621 	}
622 #endif
623 
624 	/*
625 	 * Reserve initrd memory if needed.
626 	 */
627 	finalize_initrd();
628 }
629 
630 #endif	/* CONFIG_SGI_IP27 */
631 
632 /*
633  * arch_mem_init - initialize memory management subsystem
634  *
635  *  o plat_mem_setup() detects the memory configuration and will record detected
636  *    memory areas using add_memory_region.
637  *
638  * At this stage the memory configuration of the system is known to the
639  * kernel but generic memory management system is still entirely uninitialized.
640  *
641  *  o bootmem_init()
642  *  o sparse_init()
643  *  o paging_init()
644  *  o dma_contiguous_reserve()
645  *
646  * At this stage the bootmem allocator is ready to use.
647  *
648  * NOTE: historically plat_mem_setup did the entire platform initialization.
649  *	 This was rather impractical because it meant plat_mem_setup had to
650  * get away without any kind of memory allocator.  To keep old code from
651  * breaking plat_setup was just renamed to plat_mem_setup and a second platform
652  * initialization hook for anything else was introduced.
653  */
654 
655 static int usermem __initdata;
656 
early_parse_mem(char * p)657 static int __init early_parse_mem(char *p)
658 {
659 	phys_addr_t start, size;
660 
661 	/*
662 	 * If a user specifies memory size, we
663 	 * blow away any automatically generated
664 	 * size.
665 	 */
666 	if (usermem == 0) {
667 		boot_mem_map.nr_map = 0;
668 		usermem = 1;
669 	}
670 	start = 0;
671 	size = memparse(p, &p);
672 	if (*p == '@')
673 		start = memparse(p + 1, &p);
674 
675 	add_memory_region(start, size, BOOT_MEM_RAM);
676 
677 	return 0;
678 }
679 early_param("mem", early_parse_mem);
680 
early_parse_memmap(char * p)681 static int __init early_parse_memmap(char *p)
682 {
683 	char *oldp;
684 	u64 start_at, mem_size;
685 
686 	if (!p)
687 		return -EINVAL;
688 
689 	if (!strncmp(p, "exactmap", 8)) {
690 		pr_err("\"memmap=exactmap\" invalid on MIPS\n");
691 		return 0;
692 	}
693 
694 	oldp = p;
695 	mem_size = memparse(p, &p);
696 	if (p == oldp)
697 		return -EINVAL;
698 
699 	if (*p == '@') {
700 		start_at = memparse(p+1, &p);
701 		add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
702 	} else if (*p == '#') {
703 		pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
704 		return -EINVAL;
705 	} else if (*p == '$') {
706 		start_at = memparse(p+1, &p);
707 		add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
708 	} else {
709 		pr_err("\"memmap\" invalid format!\n");
710 		return -EINVAL;
711 	}
712 
713 	if (*p == '\0') {
714 		usermem = 1;
715 		return 0;
716 	} else
717 		return -EINVAL;
718 }
719 early_param("memmap", early_parse_memmap);
720 
721 #ifdef CONFIG_PROC_VMCORE
722 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
early_parse_elfcorehdr(char * p)723 static int __init early_parse_elfcorehdr(char *p)
724 {
725 	int i;
726 
727 	setup_elfcorehdr = memparse(p, &p);
728 
729 	for (i = 0; i < boot_mem_map.nr_map; i++) {
730 		unsigned long start = boot_mem_map.map[i].addr;
731 		unsigned long end = (boot_mem_map.map[i].addr +
732 				     boot_mem_map.map[i].size);
733 		if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
734 			/*
735 			 * Reserve from the elf core header to the end of
736 			 * the memory segment, that should all be kdump
737 			 * reserved memory.
738 			 */
739 			setup_elfcorehdr_size = end - setup_elfcorehdr;
740 			break;
741 		}
742 	}
743 	/*
744 	 * If we don't find it in the memory map, then we shouldn't
745 	 * have to worry about it, as the new kernel won't use it.
746 	 */
747 	return 0;
748 }
749 early_param("elfcorehdr", early_parse_elfcorehdr);
750 #endif
751 
arch_mem_addpart(phys_addr_t mem,phys_addr_t end,int type)752 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
753 {
754 	phys_addr_t size;
755 	int i;
756 
757 	size = end - mem;
758 	if (!size)
759 		return;
760 
761 	/* Make sure it is in the boot_mem_map */
762 	for (i = 0; i < boot_mem_map.nr_map; i++) {
763 		if (mem >= boot_mem_map.map[i].addr &&
764 		    mem < (boot_mem_map.map[i].addr +
765 			   boot_mem_map.map[i].size))
766 			return;
767 	}
768 	add_memory_region(mem, size, type);
769 }
770 
771 #ifdef CONFIG_KEXEC
get_total_mem(void)772 static inline unsigned long long get_total_mem(void)
773 {
774 	unsigned long long total;
775 
776 	total = max_pfn - min_low_pfn;
777 	return total << PAGE_SHIFT;
778 }
779 
mips_parse_crashkernel(void)780 static void __init mips_parse_crashkernel(void)
781 {
782 	unsigned long long total_mem;
783 	unsigned long long crash_size, crash_base;
784 	int ret;
785 
786 	total_mem = get_total_mem();
787 	ret = parse_crashkernel(boot_command_line, total_mem,
788 				&crash_size, &crash_base);
789 	if (ret != 0 || crash_size <= 0)
790 		return;
791 
792 	if (!memory_region_available(crash_base, crash_size)) {
793 		pr_warn("Invalid memory region reserved for crash kernel\n");
794 		return;
795 	}
796 
797 	crashk_res.start = crash_base;
798 	crashk_res.end	 = crash_base + crash_size - 1;
799 }
800 
request_crashkernel(struct resource * res)801 static void __init request_crashkernel(struct resource *res)
802 {
803 	int ret;
804 
805 	if (crashk_res.start == crashk_res.end)
806 		return;
807 
808 	ret = request_resource(res, &crashk_res);
809 	if (!ret)
810 		pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
811 			(unsigned long)((crashk_res.end -
812 					 crashk_res.start + 1) >> 20),
813 			(unsigned long)(crashk_res.start  >> 20));
814 }
815 #else /* !defined(CONFIG_KEXEC)		*/
mips_parse_crashkernel(void)816 static void __init mips_parse_crashkernel(void)
817 {
818 }
819 
request_crashkernel(struct resource * res)820 static void __init request_crashkernel(struct resource *res)
821 {
822 }
823 #endif /* !defined(CONFIG_KEXEC)  */
824 
825 #define USE_PROM_CMDLINE	IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
826 #define USE_DTB_CMDLINE		IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
827 #define EXTEND_WITH_PROM	IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
828 #define BUILTIN_EXTEND_WITH_PROM	\
829 	IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
830 
arch_mem_init(char ** cmdline_p)831 static void __init arch_mem_init(char **cmdline_p)
832 {
833 	struct memblock_region *reg;
834 	extern void plat_mem_setup(void);
835 
836 	/* call board setup routine */
837 	plat_mem_setup();
838 
839 	/*
840 	 * Make sure all kernel memory is in the maps.  The "UP" and
841 	 * "DOWN" are opposite for initdata since if it crosses over
842 	 * into another memory section you don't want that to be
843 	 * freed when the initdata is freed.
844 	 */
845 	arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
846 			 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
847 			 BOOT_MEM_RAM);
848 	arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
849 			 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
850 			 BOOT_MEM_INIT_RAM);
851 
852 	pr_info("Determined physical RAM map:\n");
853 	print_memory_map();
854 
855 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
856 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
857 #else
858 	if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
859 	    (USE_DTB_CMDLINE && !boot_command_line[0]))
860 		strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
861 
862 	if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
863 		if (boot_command_line[0])
864 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
865 		strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
866 	}
867 
868 #if defined(CONFIG_CMDLINE_BOOL)
869 	if (builtin_cmdline[0]) {
870 		if (boot_command_line[0])
871 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
872 		strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
873 	}
874 
875 	if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
876 		if (boot_command_line[0])
877 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
878 		strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
879 	}
880 #endif
881 #endif
882 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
883 
884 	*cmdline_p = command_line;
885 
886 	parse_early_param();
887 
888 	if (usermem) {
889 		pr_info("User-defined physical RAM map:\n");
890 		print_memory_map();
891 	}
892 
893 	early_init_fdt_reserve_self();
894 	early_init_fdt_scan_reserved_mem();
895 
896 	bootmem_init();
897 #ifdef CONFIG_PROC_VMCORE
898 	if (setup_elfcorehdr && setup_elfcorehdr_size) {
899 		printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
900 		       setup_elfcorehdr, setup_elfcorehdr_size);
901 		reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
902 				BOOTMEM_DEFAULT);
903 	}
904 #endif
905 
906 	mips_parse_crashkernel();
907 #ifdef CONFIG_KEXEC
908 	if (crashk_res.start != crashk_res.end)
909 		reserve_bootmem(crashk_res.start,
910 				crashk_res.end - crashk_res.start + 1,
911 				BOOTMEM_DEFAULT);
912 #endif
913 	device_tree_init();
914 	sparse_init();
915 	plat_swiotlb_setup();
916 
917 	dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
918 	/* Tell bootmem about cma reserved memblock section */
919 	for_each_memblock(reserved, reg)
920 		if (reg->size != 0)
921 			reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
922 
923 	reserve_bootmem_region(__pa_symbol(&__nosave_begin),
924 			__pa_symbol(&__nosave_end)); /* Reserve for hibernation */
925 }
926 
resource_init(void)927 static void __init resource_init(void)
928 {
929 	int i;
930 
931 	if (UNCAC_BASE != IO_BASE)
932 		return;
933 
934 	code_resource.start = __pa_symbol(&_text);
935 	code_resource.end = __pa_symbol(&_etext) - 1;
936 	data_resource.start = __pa_symbol(&_etext);
937 	data_resource.end = __pa_symbol(&_edata) - 1;
938 
939 	for (i = 0; i < boot_mem_map.nr_map; i++) {
940 		struct resource *res;
941 		unsigned long start, end;
942 
943 		start = boot_mem_map.map[i].addr;
944 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
945 		if (start >= HIGHMEM_START)
946 			continue;
947 		if (end >= HIGHMEM_START)
948 			end = HIGHMEM_START - 1;
949 
950 		res = alloc_bootmem(sizeof(struct resource));
951 
952 		res->start = start;
953 		res->end = end;
954 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
955 
956 		switch (boot_mem_map.map[i].type) {
957 		case BOOT_MEM_RAM:
958 		case BOOT_MEM_INIT_RAM:
959 		case BOOT_MEM_ROM_DATA:
960 			res->name = "System RAM";
961 			res->flags |= IORESOURCE_SYSRAM;
962 			break;
963 		case BOOT_MEM_RESERVED:
964 		default:
965 			res->name = "reserved";
966 		}
967 
968 		request_resource(&iomem_resource, res);
969 
970 		/*
971 		 *  We don't know which RAM region contains kernel data,
972 		 *  so we try it repeatedly and let the resource manager
973 		 *  test it.
974 		 */
975 		request_resource(res, &code_resource);
976 		request_resource(res, &data_resource);
977 		request_crashkernel(res);
978 	}
979 }
980 
981 #ifdef CONFIG_SMP
prefill_possible_map(void)982 static void __init prefill_possible_map(void)
983 {
984 	int i, possible = num_possible_cpus();
985 
986 	if (possible > nr_cpu_ids)
987 		possible = nr_cpu_ids;
988 
989 	for (i = 0; i < possible; i++)
990 		set_cpu_possible(i, true);
991 	for (; i < NR_CPUS; i++)
992 		set_cpu_possible(i, false);
993 
994 	nr_cpu_ids = possible;
995 }
996 #else
prefill_possible_map(void)997 static inline void prefill_possible_map(void) {}
998 #endif
999 
setup_arch(char ** cmdline_p)1000 void __init setup_arch(char **cmdline_p)
1001 {
1002 	cpu_probe();
1003 	mips_cm_probe();
1004 	prom_init();
1005 
1006 	setup_early_fdc_console();
1007 #ifdef CONFIG_EARLY_PRINTK
1008 	setup_early_printk();
1009 #endif
1010 	cpu_report();
1011 	check_bugs_early();
1012 
1013 #if defined(CONFIG_VT)
1014 #if defined(CONFIG_VGA_CONSOLE)
1015 	conswitchp = &vga_con;
1016 #elif defined(CONFIG_DUMMY_CONSOLE)
1017 	conswitchp = &dummy_con;
1018 #endif
1019 #endif
1020 
1021 	arch_mem_init(cmdline_p);
1022 
1023 	resource_init();
1024 	plat_smp_setup();
1025 	prefill_possible_map();
1026 
1027 	cpu_cache_init();
1028 	paging_init();
1029 }
1030 
1031 unsigned long kernelsp[NR_CPUS];
1032 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
1033 
1034 #ifdef CONFIG_USE_OF
1035 unsigned long fw_passed_dtb;
1036 #endif
1037 
1038 #ifdef CONFIG_DEBUG_FS
1039 struct dentry *mips_debugfs_dir;
debugfs_mips(void)1040 static int __init debugfs_mips(void)
1041 {
1042 	struct dentry *d;
1043 
1044 	d = debugfs_create_dir("mips", NULL);
1045 	if (!d)
1046 		return -ENOMEM;
1047 	mips_debugfs_dir = d;
1048 	return 0;
1049 }
1050 arch_initcall(debugfs_mips);
1051 #endif
1052