1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
41
42 #include "libata.h"
43
44 static struct workqueue_struct *ata_sff_wq;
45
46 const struct ata_port_operations ata_sff_port_ops = {
47 .inherits = &ata_base_port_ops,
48
49 .qc_prep = ata_noop_qc_prep,
50 .qc_issue = ata_sff_qc_issue,
51 .qc_fill_rtf = ata_sff_qc_fill_rtf,
52
53 .freeze = ata_sff_freeze,
54 .thaw = ata_sff_thaw,
55 .prereset = ata_sff_prereset,
56 .softreset = ata_sff_softreset,
57 .hardreset = sata_sff_hardreset,
58 .postreset = ata_sff_postreset,
59 .error_handler = ata_sff_error_handler,
60
61 .sff_dev_select = ata_sff_dev_select,
62 .sff_check_status = ata_sff_check_status,
63 .sff_tf_load = ata_sff_tf_load,
64 .sff_tf_read = ata_sff_tf_read,
65 .sff_exec_command = ata_sff_exec_command,
66 .sff_data_xfer = ata_sff_data_xfer,
67 .sff_drain_fifo = ata_sff_drain_fifo,
68
69 .lost_interrupt = ata_sff_lost_interrupt,
70 };
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72
73 /**
74 * ata_sff_check_status - Read device status reg & clear interrupt
75 * @ap: port where the device is
76 *
77 * Reads ATA taskfile status register for currently-selected device
78 * and return its value. This also clears pending interrupts
79 * from this device
80 *
81 * LOCKING:
82 * Inherited from caller.
83 */
ata_sff_check_status(struct ata_port * ap)84 u8 ata_sff_check_status(struct ata_port *ap)
85 {
86 return ioread8(ap->ioaddr.status_addr);
87 }
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89
90 /**
91 * ata_sff_altstatus - Read device alternate status reg
92 * @ap: port where the device is
93 *
94 * Reads ATA taskfile alternate status register for
95 * currently-selected device and return its value.
96 *
97 * Note: may NOT be used as the check_altstatus() entry in
98 * ata_port_operations.
99 *
100 * LOCKING:
101 * Inherited from caller.
102 */
ata_sff_altstatus(struct ata_port * ap)103 static u8 ata_sff_altstatus(struct ata_port *ap)
104 {
105 if (ap->ops->sff_check_altstatus)
106 return ap->ops->sff_check_altstatus(ap);
107
108 return ioread8(ap->ioaddr.altstatus_addr);
109 }
110
111 /**
112 * ata_sff_irq_status - Check if the device is busy
113 * @ap: port where the device is
114 *
115 * Determine if the port is currently busy. Uses altstatus
116 * if available in order to avoid clearing shared IRQ status
117 * when finding an IRQ source. Non ctl capable devices don't
118 * share interrupt lines fortunately for us.
119 *
120 * LOCKING:
121 * Inherited from caller.
122 */
ata_sff_irq_status(struct ata_port * ap)123 static u8 ata_sff_irq_status(struct ata_port *ap)
124 {
125 u8 status;
126
127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 status = ata_sff_altstatus(ap);
129 /* Not us: We are busy */
130 if (status & ATA_BUSY)
131 return status;
132 }
133 /* Clear INTRQ latch */
134 status = ap->ops->sff_check_status(ap);
135 return status;
136 }
137
138 /**
139 * ata_sff_sync - Flush writes
140 * @ap: Port to wait for.
141 *
142 * CAUTION:
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
ata_sff_sync(struct ata_port * ap)150 static void ata_sff_sync(struct ata_port *ap)
151 {
152 if (ap->ops->sff_check_altstatus)
153 ap->ops->sff_check_altstatus(ap);
154 else if (ap->ioaddr.altstatus_addr)
155 ioread8(ap->ioaddr.altstatus_addr);
156 }
157
158 /**
159 * ata_sff_pause - Flush writes and wait 400nS
160 * @ap: Port to pause for.
161 *
162 * CAUTION:
163 * If we have an mmio device with no ctl and no altstatus
164 * method this will fail. No such devices are known to exist.
165 *
166 * LOCKING:
167 * Inherited from caller.
168 */
169
ata_sff_pause(struct ata_port * ap)170 void ata_sff_pause(struct ata_port *ap)
171 {
172 ata_sff_sync(ap);
173 ndelay(400);
174 }
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
176
177 /**
178 * ata_sff_dma_pause - Pause before commencing DMA
179 * @ap: Port to pause for.
180 *
181 * Perform I/O fencing and ensure sufficient cycle delays occur
182 * for the HDMA1:0 transition
183 */
184
ata_sff_dma_pause(struct ata_port * ap)185 void ata_sff_dma_pause(struct ata_port *ap)
186 {
187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 /* An altstatus read will cause the needed delay without
189 messing up the IRQ status */
190 ata_sff_altstatus(ap);
191 return;
192 }
193 /* There are no DMA controllers without ctl. BUG here to ensure
194 we never violate the HDMA1:0 transition timing and risk
195 corruption. */
196 BUG();
197 }
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199
200 /**
201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
202 * @ap: port containing status register to be polled
203 * @tmout_pat: impatience timeout in msecs
204 * @tmout: overall timeout in msecs
205 *
206 * Sleep until ATA Status register bit BSY clears,
207 * or a timeout occurs.
208 *
209 * LOCKING:
210 * Kernel thread context (may sleep).
211 *
212 * RETURNS:
213 * 0 on success, -errno otherwise.
214 */
ata_sff_busy_sleep(struct ata_port * ap,unsigned long tmout_pat,unsigned long tmout)215 int ata_sff_busy_sleep(struct ata_port *ap,
216 unsigned long tmout_pat, unsigned long tmout)
217 {
218 unsigned long timer_start, timeout;
219 u8 status;
220
221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 timer_start = jiffies;
223 timeout = ata_deadline(timer_start, tmout_pat);
224 while (status != 0xff && (status & ATA_BUSY) &&
225 time_before(jiffies, timeout)) {
226 ata_msleep(ap, 50);
227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 }
229
230 if (status != 0xff && (status & ATA_BUSY))
231 ata_port_warn(ap,
232 "port is slow to respond, please be patient (Status 0x%x)\n",
233 status);
234
235 timeout = ata_deadline(timer_start, tmout);
236 while (status != 0xff && (status & ATA_BUSY) &&
237 time_before(jiffies, timeout)) {
238 ata_msleep(ap, 50);
239 status = ap->ops->sff_check_status(ap);
240 }
241
242 if (status == 0xff)
243 return -ENODEV;
244
245 if (status & ATA_BUSY) {
246 ata_port_err(ap,
247 "port failed to respond (%lu secs, Status 0x%x)\n",
248 DIV_ROUND_UP(tmout, 1000), status);
249 return -EBUSY;
250 }
251
252 return 0;
253 }
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255
ata_sff_check_ready(struct ata_link * link)256 static int ata_sff_check_ready(struct ata_link *link)
257 {
258 u8 status = link->ap->ops->sff_check_status(link->ap);
259
260 return ata_check_ready(status);
261 }
262
263 /**
264 * ata_sff_wait_ready - sleep until BSY clears, or timeout
265 * @link: SFF link to wait ready status for
266 * @deadline: deadline jiffies for the operation
267 *
268 * Sleep until ATA Status register bit BSY clears, or timeout
269 * occurs.
270 *
271 * LOCKING:
272 * Kernel thread context (may sleep).
273 *
274 * RETURNS:
275 * 0 on success, -errno otherwise.
276 */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 {
279 return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 }
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282
283 /**
284 * ata_sff_set_devctl - Write device control reg
285 * @ap: port where the device is
286 * @ctl: value to write
287 *
288 * Writes ATA taskfile device control register.
289 *
290 * Note: may NOT be used as the sff_set_devctl() entry in
291 * ata_port_operations.
292 *
293 * LOCKING:
294 * Inherited from caller.
295 */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 {
298 if (ap->ops->sff_set_devctl)
299 ap->ops->sff_set_devctl(ap, ctl);
300 else
301 iowrite8(ctl, ap->ioaddr.ctl_addr);
302 }
303
304 /**
305 * ata_sff_dev_select - Select device 0/1 on ATA bus
306 * @ap: ATA channel to manipulate
307 * @device: ATA device (numbered from zero) to select
308 *
309 * Use the method defined in the ATA specification to
310 * make either device 0, or device 1, active on the
311 * ATA channel. Works with both PIO and MMIO.
312 *
313 * May be used as the dev_select() entry in ata_port_operations.
314 *
315 * LOCKING:
316 * caller.
317 */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 {
320 u8 tmp;
321
322 if (device == 0)
323 tmp = ATA_DEVICE_OBS;
324 else
325 tmp = ATA_DEVICE_OBS | ATA_DEV1;
326
327 iowrite8(tmp, ap->ioaddr.device_addr);
328 ata_sff_pause(ap); /* needed; also flushes, for mmio */
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331
332 /**
333 * ata_dev_select - Select device 0/1 on ATA bus
334 * @ap: ATA channel to manipulate
335 * @device: ATA device (numbered from zero) to select
336 * @wait: non-zero to wait for Status register BSY bit to clear
337 * @can_sleep: non-zero if context allows sleeping
338 *
339 * Use the method defined in the ATA specification to
340 * make either device 0, or device 1, active on the
341 * ATA channel.
342 *
343 * This is a high-level version of ata_sff_dev_select(), which
344 * additionally provides the services of inserting the proper
345 * pauses and status polling, where needed.
346 *
347 * LOCKING:
348 * caller.
349 */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 unsigned int wait, unsigned int can_sleep)
352 {
353 if (ata_msg_probe(ap))
354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 device, wait);
356
357 if (wait)
358 ata_wait_idle(ap);
359
360 ap->ops->sff_dev_select(ap, device);
361
362 if (wait) {
363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 ata_msleep(ap, 150);
365 ata_wait_idle(ap);
366 }
367 }
368
369 /**
370 * ata_sff_irq_on - Enable interrupts on a port.
371 * @ap: Port on which interrupts are enabled.
372 *
373 * Enable interrupts on a legacy IDE device using MMIO or PIO,
374 * wait for idle, clear any pending interrupts.
375 *
376 * Note: may NOT be used as the sff_irq_on() entry in
377 * ata_port_operations.
378 *
379 * LOCKING:
380 * Inherited from caller.
381 */
ata_sff_irq_on(struct ata_port * ap)382 void ata_sff_irq_on(struct ata_port *ap)
383 {
384 struct ata_ioports *ioaddr = &ap->ioaddr;
385
386 if (ap->ops->sff_irq_on) {
387 ap->ops->sff_irq_on(ap);
388 return;
389 }
390
391 ap->ctl &= ~ATA_NIEN;
392 ap->last_ctl = ap->ctl;
393
394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 ata_sff_set_devctl(ap, ap->ctl);
396 ata_wait_idle(ap);
397
398 if (ap->ops->sff_irq_clear)
399 ap->ops->sff_irq_clear(ap);
400 }
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402
403 /**
404 * ata_sff_tf_load - send taskfile registers to host controller
405 * @ap: Port to which output is sent
406 * @tf: ATA taskfile register set
407 *
408 * Outputs ATA taskfile to standard ATA host controller.
409 *
410 * LOCKING:
411 * Inherited from caller.
412 */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 {
415 struct ata_ioports *ioaddr = &ap->ioaddr;
416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417
418 if (tf->ctl != ap->last_ctl) {
419 if (ioaddr->ctl_addr)
420 iowrite8(tf->ctl, ioaddr->ctl_addr);
421 ap->last_ctl = tf->ctl;
422 ata_wait_idle(ap);
423 }
424
425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 WARN_ON_ONCE(!ioaddr->ctl_addr);
427 iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 tf->hob_feature,
434 tf->hob_nsect,
435 tf->hob_lbal,
436 tf->hob_lbam,
437 tf->hob_lbah);
438 }
439
440 if (is_addr) {
441 iowrite8(tf->feature, ioaddr->feature_addr);
442 iowrite8(tf->nsect, ioaddr->nsect_addr);
443 iowrite8(tf->lbal, ioaddr->lbal_addr);
444 iowrite8(tf->lbam, ioaddr->lbam_addr);
445 iowrite8(tf->lbah, ioaddr->lbah_addr);
446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 tf->feature,
448 tf->nsect,
449 tf->lbal,
450 tf->lbam,
451 tf->lbah);
452 }
453
454 if (tf->flags & ATA_TFLAG_DEVICE) {
455 iowrite8(tf->device, ioaddr->device_addr);
456 VPRINTK("device 0x%X\n", tf->device);
457 }
458
459 ata_wait_idle(ap);
460 }
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462
463 /**
464 * ata_sff_tf_read - input device's ATA taskfile shadow registers
465 * @ap: Port from which input is read
466 * @tf: ATA taskfile register set for storing input
467 *
468 * Reads ATA taskfile registers for currently-selected device
469 * into @tf. Assumes the device has a fully SFF compliant task file
470 * layout and behaviour. If you device does not (eg has a different
471 * status method) then you will need to provide a replacement tf_read
472 *
473 * LOCKING:
474 * Inherited from caller.
475 */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 {
478 struct ata_ioports *ioaddr = &ap->ioaddr;
479
480 tf->command = ata_sff_check_status(ap);
481 tf->feature = ioread8(ioaddr->error_addr);
482 tf->nsect = ioread8(ioaddr->nsect_addr);
483 tf->lbal = ioread8(ioaddr->lbal_addr);
484 tf->lbam = ioread8(ioaddr->lbam_addr);
485 tf->lbah = ioread8(ioaddr->lbah_addr);
486 tf->device = ioread8(ioaddr->device_addr);
487
488 if (tf->flags & ATA_TFLAG_LBA48) {
489 if (likely(ioaddr->ctl_addr)) {
490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 tf->hob_feature = ioread8(ioaddr->error_addr);
492 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 iowrite8(tf->ctl, ioaddr->ctl_addr);
497 ap->last_ctl = tf->ctl;
498 } else
499 WARN_ON_ONCE(1);
500 }
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503
504 /**
505 * ata_sff_exec_command - issue ATA command to host controller
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
508 *
509 * Issues ATA command, with proper synchronization with interrupt
510 * handler / other threads.
511 *
512 * LOCKING:
513 * spin_lock_irqsave(host lock)
514 */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 {
517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518
519 iowrite8(tf->command, ap->ioaddr.command_addr);
520 ata_sff_pause(ap);
521 }
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523
524 /**
525 * ata_tf_to_host - issue ATA taskfile to host controller
526 * @ap: port to which command is being issued
527 * @tf: ATA taskfile register set
528 *
529 * Issues ATA taskfile register set to ATA host controller,
530 * with proper synchronization with interrupt handler and
531 * other threads.
532 *
533 * LOCKING:
534 * spin_lock_irqsave(host lock)
535 */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf)536 static inline void ata_tf_to_host(struct ata_port *ap,
537 const struct ata_taskfile *tf)
538 {
539 ap->ops->sff_tf_load(ap, tf);
540 ap->ops->sff_exec_command(ap, tf);
541 }
542
543 /**
544 * ata_sff_data_xfer - Transfer data by PIO
545 * @qc: queued command
546 * @buf: data buffer
547 * @buflen: buffer length
548 * @rw: read/write
549 *
550 * Transfer data from/to the device data register by PIO.
551 *
552 * LOCKING:
553 * Inherited from caller.
554 *
555 * RETURNS:
556 * Bytes consumed.
557 */
ata_sff_data_xfer(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)558 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
559 unsigned int buflen, int rw)
560 {
561 struct ata_port *ap = qc->dev->link->ap;
562 void __iomem *data_addr = ap->ioaddr.data_addr;
563 unsigned int words = buflen >> 1;
564
565 /* Transfer multiple of 2 bytes */
566 if (rw == READ)
567 ioread16_rep(data_addr, buf, words);
568 else
569 iowrite16_rep(data_addr, buf, words);
570
571 /* Transfer trailing byte, if any. */
572 if (unlikely(buflen & 0x01)) {
573 unsigned char pad[2] = { };
574
575 /* Point buf to the tail of buffer */
576 buf += buflen - 1;
577
578 /*
579 * Use io*16_rep() accessors here as well to avoid pointlessly
580 * swapping bytes to and from on the big endian machines...
581 */
582 if (rw == READ) {
583 ioread16_rep(data_addr, pad, 1);
584 *buf = pad[0];
585 } else {
586 pad[0] = *buf;
587 iowrite16_rep(data_addr, pad, 1);
588 }
589 words++;
590 }
591
592 return words << 1;
593 }
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595
596 /**
597 * ata_sff_data_xfer32 - Transfer data by PIO
598 * @qc: queued command
599 * @buf: data buffer
600 * @buflen: buffer length
601 * @rw: read/write
602 *
603 * Transfer data from/to the device data register by PIO using 32bit
604 * I/O operations.
605 *
606 * LOCKING:
607 * Inherited from caller.
608 *
609 * RETURNS:
610 * Bytes consumed.
611 */
612
ata_sff_data_xfer32(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)613 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
614 unsigned int buflen, int rw)
615 {
616 struct ata_device *dev = qc->dev;
617 struct ata_port *ap = dev->link->ap;
618 void __iomem *data_addr = ap->ioaddr.data_addr;
619 unsigned int words = buflen >> 2;
620 int slop = buflen & 3;
621
622 if (!(ap->pflags & ATA_PFLAG_PIO32))
623 return ata_sff_data_xfer(qc, buf, buflen, rw);
624
625 /* Transfer multiple of 4 bytes */
626 if (rw == READ)
627 ioread32_rep(data_addr, buf, words);
628 else
629 iowrite32_rep(data_addr, buf, words);
630
631 /* Transfer trailing bytes, if any */
632 if (unlikely(slop)) {
633 unsigned char pad[4] = { };
634
635 /* Point buf to the tail of buffer */
636 buf += buflen - slop;
637
638 /*
639 * Use io*_rep() accessors here as well to avoid pointlessly
640 * swapping bytes to and from on the big endian machines...
641 */
642 if (rw == READ) {
643 if (slop < 3)
644 ioread16_rep(data_addr, pad, 1);
645 else
646 ioread32_rep(data_addr, pad, 1);
647 memcpy(buf, pad, slop);
648 } else {
649 memcpy(pad, buf, slop);
650 if (slop < 3)
651 iowrite16_rep(data_addr, pad, 1);
652 else
653 iowrite32_rep(data_addr, pad, 1);
654 }
655 }
656 return (buflen + 1) & ~1;
657 }
658 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
659
660 /**
661 * ata_sff_data_xfer_noirq - Transfer data by PIO
662 * @qc: queued command
663 * @buf: data buffer
664 * @buflen: buffer length
665 * @rw: read/write
666 *
667 * Transfer data from/to the device data register by PIO. Do the
668 * transfer with interrupts disabled.
669 *
670 * LOCKING:
671 * Inherited from caller.
672 *
673 * RETURNS:
674 * Bytes consumed.
675 */
ata_sff_data_xfer_noirq(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)676 unsigned int ata_sff_data_xfer_noirq(struct ata_queued_cmd *qc, unsigned char *buf,
677 unsigned int buflen, int rw)
678 {
679 unsigned long flags;
680 unsigned int consumed;
681
682 local_irq_save(flags);
683 consumed = ata_sff_data_xfer32(qc, buf, buflen, rw);
684 local_irq_restore(flags);
685
686 return consumed;
687 }
688 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
689
690 /**
691 * ata_pio_sector - Transfer a sector of data.
692 * @qc: Command on going
693 *
694 * Transfer qc->sect_size bytes of data from/to the ATA device.
695 *
696 * LOCKING:
697 * Inherited from caller.
698 */
ata_pio_sector(struct ata_queued_cmd * qc)699 static void ata_pio_sector(struct ata_queued_cmd *qc)
700 {
701 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
702 struct ata_port *ap = qc->ap;
703 struct page *page;
704 unsigned int offset;
705 unsigned char *buf;
706
707 if (!qc->cursg) {
708 qc->curbytes = qc->nbytes;
709 return;
710 }
711 if (qc->curbytes == qc->nbytes - qc->sect_size)
712 ap->hsm_task_state = HSM_ST_LAST;
713
714 page = sg_page(qc->cursg);
715 offset = qc->cursg->offset + qc->cursg_ofs;
716
717 /* get the current page and offset */
718 page = nth_page(page, (offset >> PAGE_SHIFT));
719 offset %= PAGE_SIZE;
720
721 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
722
723 /* do the actual data transfer */
724 buf = kmap_atomic(page);
725 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
726 kunmap_atomic(buf);
727
728 if (!do_write && !PageSlab(page))
729 flush_dcache_page(page);
730
731 qc->curbytes += qc->sect_size;
732 qc->cursg_ofs += qc->sect_size;
733
734 if (qc->cursg_ofs == qc->cursg->length) {
735 qc->cursg = sg_next(qc->cursg);
736 if (!qc->cursg)
737 ap->hsm_task_state = HSM_ST_LAST;
738 qc->cursg_ofs = 0;
739 }
740 }
741
742 /**
743 * ata_pio_sectors - Transfer one or many sectors.
744 * @qc: Command on going
745 *
746 * Transfer one or many sectors of data from/to the
747 * ATA device for the DRQ request.
748 *
749 * LOCKING:
750 * Inherited from caller.
751 */
ata_pio_sectors(struct ata_queued_cmd * qc)752 static void ata_pio_sectors(struct ata_queued_cmd *qc)
753 {
754 if (is_multi_taskfile(&qc->tf)) {
755 /* READ/WRITE MULTIPLE */
756 unsigned int nsect;
757
758 WARN_ON_ONCE(qc->dev->multi_count == 0);
759
760 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
761 qc->dev->multi_count);
762 while (nsect--)
763 ata_pio_sector(qc);
764 } else
765 ata_pio_sector(qc);
766
767 ata_sff_sync(qc->ap); /* flush */
768 }
769
770 /**
771 * atapi_send_cdb - Write CDB bytes to hardware
772 * @ap: Port to which ATAPI device is attached.
773 * @qc: Taskfile currently active
774 *
775 * When device has indicated its readiness to accept
776 * a CDB, this function is called. Send the CDB.
777 *
778 * LOCKING:
779 * caller.
780 */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)781 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
782 {
783 /* send SCSI cdb */
784 DPRINTK("send cdb\n");
785 WARN_ON_ONCE(qc->dev->cdb_len < 12);
786
787 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
788 ata_sff_sync(ap);
789 /* FIXME: If the CDB is for DMA do we need to do the transition delay
790 or is bmdma_start guaranteed to do it ? */
791 switch (qc->tf.protocol) {
792 case ATAPI_PROT_PIO:
793 ap->hsm_task_state = HSM_ST;
794 break;
795 case ATAPI_PROT_NODATA:
796 ap->hsm_task_state = HSM_ST_LAST;
797 break;
798 #ifdef CONFIG_ATA_BMDMA
799 case ATAPI_PROT_DMA:
800 ap->hsm_task_state = HSM_ST_LAST;
801 /* initiate bmdma */
802 ap->ops->bmdma_start(qc);
803 break;
804 #endif /* CONFIG_ATA_BMDMA */
805 default:
806 BUG();
807 }
808 }
809
810 /**
811 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
812 * @qc: Command on going
813 * @bytes: number of bytes
814 *
815 * Transfer Transfer data from/to the ATAPI device.
816 *
817 * LOCKING:
818 * Inherited from caller.
819 *
820 */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)821 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
822 {
823 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
824 struct ata_port *ap = qc->ap;
825 struct ata_device *dev = qc->dev;
826 struct ata_eh_info *ehi = &dev->link->eh_info;
827 struct scatterlist *sg;
828 struct page *page;
829 unsigned char *buf;
830 unsigned int offset, count, consumed;
831
832 next_sg:
833 sg = qc->cursg;
834 if (unlikely(!sg)) {
835 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
836 "buf=%u cur=%u bytes=%u",
837 qc->nbytes, qc->curbytes, bytes);
838 return -1;
839 }
840
841 page = sg_page(sg);
842 offset = sg->offset + qc->cursg_ofs;
843
844 /* get the current page and offset */
845 page = nth_page(page, (offset >> PAGE_SHIFT));
846 offset %= PAGE_SIZE;
847
848 /* don't overrun current sg */
849 count = min(sg->length - qc->cursg_ofs, bytes);
850
851 /* don't cross page boundaries */
852 count = min(count, (unsigned int)PAGE_SIZE - offset);
853
854 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
855
856 /* do the actual data transfer */
857 buf = kmap_atomic(page);
858 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
859 kunmap_atomic(buf);
860
861 bytes -= min(bytes, consumed);
862 qc->curbytes += count;
863 qc->cursg_ofs += count;
864
865 if (qc->cursg_ofs == sg->length) {
866 qc->cursg = sg_next(qc->cursg);
867 qc->cursg_ofs = 0;
868 }
869
870 /*
871 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
872 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
873 * check correctly as it doesn't know if it is the last request being
874 * made. Somebody should implement a proper sanity check.
875 */
876 if (bytes)
877 goto next_sg;
878 return 0;
879 }
880
881 /**
882 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
883 * @qc: Command on going
884 *
885 * Transfer Transfer data from/to the ATAPI device.
886 *
887 * LOCKING:
888 * Inherited from caller.
889 */
atapi_pio_bytes(struct ata_queued_cmd * qc)890 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
891 {
892 struct ata_port *ap = qc->ap;
893 struct ata_device *dev = qc->dev;
894 struct ata_eh_info *ehi = &dev->link->eh_info;
895 unsigned int ireason, bc_lo, bc_hi, bytes;
896 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
897
898 /* Abuse qc->result_tf for temp storage of intermediate TF
899 * here to save some kernel stack usage.
900 * For normal completion, qc->result_tf is not relevant. For
901 * error, qc->result_tf is later overwritten by ata_qc_complete().
902 * So, the correctness of qc->result_tf is not affected.
903 */
904 ap->ops->sff_tf_read(ap, &qc->result_tf);
905 ireason = qc->result_tf.nsect;
906 bc_lo = qc->result_tf.lbam;
907 bc_hi = qc->result_tf.lbah;
908 bytes = (bc_hi << 8) | bc_lo;
909
910 /* shall be cleared to zero, indicating xfer of data */
911 if (unlikely(ireason & ATAPI_COD))
912 goto atapi_check;
913
914 /* make sure transfer direction matches expected */
915 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
916 if (unlikely(do_write != i_write))
917 goto atapi_check;
918
919 if (unlikely(!bytes))
920 goto atapi_check;
921
922 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
923
924 if (unlikely(__atapi_pio_bytes(qc, bytes)))
925 goto err_out;
926 ata_sff_sync(ap); /* flush */
927
928 return;
929
930 atapi_check:
931 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
932 ireason, bytes);
933 err_out:
934 qc->err_mask |= AC_ERR_HSM;
935 ap->hsm_task_state = HSM_ST_ERR;
936 }
937
938 /**
939 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
940 * @ap: the target ata_port
941 * @qc: qc on going
942 *
943 * RETURNS:
944 * 1 if ok in workqueue, 0 otherwise.
945 */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)946 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
947 struct ata_queued_cmd *qc)
948 {
949 if (qc->tf.flags & ATA_TFLAG_POLLING)
950 return 1;
951
952 if (ap->hsm_task_state == HSM_ST_FIRST) {
953 if (qc->tf.protocol == ATA_PROT_PIO &&
954 (qc->tf.flags & ATA_TFLAG_WRITE))
955 return 1;
956
957 if (ata_is_atapi(qc->tf.protocol) &&
958 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
959 return 1;
960 }
961
962 return 0;
963 }
964
965 /**
966 * ata_hsm_qc_complete - finish a qc running on standard HSM
967 * @qc: Command to complete
968 * @in_wq: 1 if called from workqueue, 0 otherwise
969 *
970 * Finish @qc which is running on standard HSM.
971 *
972 * LOCKING:
973 * If @in_wq is zero, spin_lock_irqsave(host lock).
974 * Otherwise, none on entry and grabs host lock.
975 */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)976 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
977 {
978 struct ata_port *ap = qc->ap;
979
980 if (ap->ops->error_handler) {
981 if (in_wq) {
982 /* EH might have kicked in while host lock is
983 * released.
984 */
985 qc = ata_qc_from_tag(ap, qc->tag);
986 if (qc) {
987 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
988 ata_sff_irq_on(ap);
989 ata_qc_complete(qc);
990 } else
991 ata_port_freeze(ap);
992 }
993 } else {
994 if (likely(!(qc->err_mask & AC_ERR_HSM)))
995 ata_qc_complete(qc);
996 else
997 ata_port_freeze(ap);
998 }
999 } else {
1000 if (in_wq) {
1001 ata_sff_irq_on(ap);
1002 ata_qc_complete(qc);
1003 } else
1004 ata_qc_complete(qc);
1005 }
1006 }
1007
1008 /**
1009 * ata_sff_hsm_move - move the HSM to the next state.
1010 * @ap: the target ata_port
1011 * @qc: qc on going
1012 * @status: current device status
1013 * @in_wq: 1 if called from workqueue, 0 otherwise
1014 *
1015 * RETURNS:
1016 * 1 when poll next status needed, 0 otherwise.
1017 */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)1018 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1019 u8 status, int in_wq)
1020 {
1021 struct ata_link *link = qc->dev->link;
1022 struct ata_eh_info *ehi = &link->eh_info;
1023 int poll_next;
1024
1025 lockdep_assert_held(ap->lock);
1026
1027 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1028
1029 /* Make sure ata_sff_qc_issue() does not throw things
1030 * like DMA polling into the workqueue. Notice that
1031 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1032 */
1033 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1034
1035 fsm_start:
1036 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1037 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1038
1039 switch (ap->hsm_task_state) {
1040 case HSM_ST_FIRST:
1041 /* Send first data block or PACKET CDB */
1042
1043 /* If polling, we will stay in the work queue after
1044 * sending the data. Otherwise, interrupt handler
1045 * takes over after sending the data.
1046 */
1047 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1048
1049 /* check device status */
1050 if (unlikely((status & ATA_DRQ) == 0)) {
1051 /* handle BSY=0, DRQ=0 as error */
1052 if (likely(status & (ATA_ERR | ATA_DF)))
1053 /* device stops HSM for abort/error */
1054 qc->err_mask |= AC_ERR_DEV;
1055 else {
1056 /* HSM violation. Let EH handle this */
1057 ata_ehi_push_desc(ehi,
1058 "ST_FIRST: !(DRQ|ERR|DF)");
1059 qc->err_mask |= AC_ERR_HSM;
1060 }
1061
1062 ap->hsm_task_state = HSM_ST_ERR;
1063 goto fsm_start;
1064 }
1065
1066 /* Device should not ask for data transfer (DRQ=1)
1067 * when it finds something wrong.
1068 * We ignore DRQ here and stop the HSM by
1069 * changing hsm_task_state to HSM_ST_ERR and
1070 * let the EH abort the command or reset the device.
1071 */
1072 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1073 /* Some ATAPI tape drives forget to clear the ERR bit
1074 * when doing the next command (mostly request sense).
1075 * We ignore ERR here to workaround and proceed sending
1076 * the CDB.
1077 */
1078 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1079 ata_ehi_push_desc(ehi, "ST_FIRST: "
1080 "DRQ=1 with device error, "
1081 "dev_stat 0x%X", status);
1082 qc->err_mask |= AC_ERR_HSM;
1083 ap->hsm_task_state = HSM_ST_ERR;
1084 goto fsm_start;
1085 }
1086 }
1087
1088 if (qc->tf.protocol == ATA_PROT_PIO) {
1089 /* PIO data out protocol.
1090 * send first data block.
1091 */
1092
1093 /* ata_pio_sectors() might change the state
1094 * to HSM_ST_LAST. so, the state is changed here
1095 * before ata_pio_sectors().
1096 */
1097 ap->hsm_task_state = HSM_ST;
1098 ata_pio_sectors(qc);
1099 } else
1100 /* send CDB */
1101 atapi_send_cdb(ap, qc);
1102
1103 /* if polling, ata_sff_pio_task() handles the rest.
1104 * otherwise, interrupt handler takes over from here.
1105 */
1106 break;
1107
1108 case HSM_ST:
1109 /* complete command or read/write the data register */
1110 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1111 /* ATAPI PIO protocol */
1112 if ((status & ATA_DRQ) == 0) {
1113 /* No more data to transfer or device error.
1114 * Device error will be tagged in HSM_ST_LAST.
1115 */
1116 ap->hsm_task_state = HSM_ST_LAST;
1117 goto fsm_start;
1118 }
1119
1120 /* Device should not ask for data transfer (DRQ=1)
1121 * when it finds something wrong.
1122 * We ignore DRQ here and stop the HSM by
1123 * changing hsm_task_state to HSM_ST_ERR and
1124 * let the EH abort the command or reset the device.
1125 */
1126 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1127 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1128 "DRQ=1 with device error, "
1129 "dev_stat 0x%X", status);
1130 qc->err_mask |= AC_ERR_HSM;
1131 ap->hsm_task_state = HSM_ST_ERR;
1132 goto fsm_start;
1133 }
1134
1135 atapi_pio_bytes(qc);
1136
1137 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1138 /* bad ireason reported by device */
1139 goto fsm_start;
1140
1141 } else {
1142 /* ATA PIO protocol */
1143 if (unlikely((status & ATA_DRQ) == 0)) {
1144 /* handle BSY=0, DRQ=0 as error */
1145 if (likely(status & (ATA_ERR | ATA_DF))) {
1146 /* device stops HSM for abort/error */
1147 qc->err_mask |= AC_ERR_DEV;
1148
1149 /* If diagnostic failed and this is
1150 * IDENTIFY, it's likely a phantom
1151 * device. Mark hint.
1152 */
1153 if (qc->dev->horkage &
1154 ATA_HORKAGE_DIAGNOSTIC)
1155 qc->err_mask |=
1156 AC_ERR_NODEV_HINT;
1157 } else {
1158 /* HSM violation. Let EH handle this.
1159 * Phantom devices also trigger this
1160 * condition. Mark hint.
1161 */
1162 ata_ehi_push_desc(ehi, "ST-ATA: "
1163 "DRQ=0 without device error, "
1164 "dev_stat 0x%X", status);
1165 qc->err_mask |= AC_ERR_HSM |
1166 AC_ERR_NODEV_HINT;
1167 }
1168
1169 ap->hsm_task_state = HSM_ST_ERR;
1170 goto fsm_start;
1171 }
1172
1173 /* For PIO reads, some devices may ask for
1174 * data transfer (DRQ=1) alone with ERR=1.
1175 * We respect DRQ here and transfer one
1176 * block of junk data before changing the
1177 * hsm_task_state to HSM_ST_ERR.
1178 *
1179 * For PIO writes, ERR=1 DRQ=1 doesn't make
1180 * sense since the data block has been
1181 * transferred to the device.
1182 */
1183 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1184 /* data might be corrputed */
1185 qc->err_mask |= AC_ERR_DEV;
1186
1187 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1188 ata_pio_sectors(qc);
1189 status = ata_wait_idle(ap);
1190 }
1191
1192 if (status & (ATA_BUSY | ATA_DRQ)) {
1193 ata_ehi_push_desc(ehi, "ST-ATA: "
1194 "BUSY|DRQ persists on ERR|DF, "
1195 "dev_stat 0x%X", status);
1196 qc->err_mask |= AC_ERR_HSM;
1197 }
1198
1199 /* There are oddball controllers with
1200 * status register stuck at 0x7f and
1201 * lbal/m/h at zero which makes it
1202 * pass all other presence detection
1203 * mechanisms we have. Set NODEV_HINT
1204 * for it. Kernel bz#7241.
1205 */
1206 if (status == 0x7f)
1207 qc->err_mask |= AC_ERR_NODEV_HINT;
1208
1209 /* ata_pio_sectors() might change the
1210 * state to HSM_ST_LAST. so, the state
1211 * is changed after ata_pio_sectors().
1212 */
1213 ap->hsm_task_state = HSM_ST_ERR;
1214 goto fsm_start;
1215 }
1216
1217 ata_pio_sectors(qc);
1218
1219 if (ap->hsm_task_state == HSM_ST_LAST &&
1220 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1221 /* all data read */
1222 status = ata_wait_idle(ap);
1223 goto fsm_start;
1224 }
1225 }
1226
1227 poll_next = 1;
1228 break;
1229
1230 case HSM_ST_LAST:
1231 if (unlikely(!ata_ok(status))) {
1232 qc->err_mask |= __ac_err_mask(status);
1233 ap->hsm_task_state = HSM_ST_ERR;
1234 goto fsm_start;
1235 }
1236
1237 /* no more data to transfer */
1238 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1239 ap->print_id, qc->dev->devno, status);
1240
1241 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1242
1243 ap->hsm_task_state = HSM_ST_IDLE;
1244
1245 /* complete taskfile transaction */
1246 ata_hsm_qc_complete(qc, in_wq);
1247
1248 poll_next = 0;
1249 break;
1250
1251 case HSM_ST_ERR:
1252 ap->hsm_task_state = HSM_ST_IDLE;
1253
1254 /* complete taskfile transaction */
1255 ata_hsm_qc_complete(qc, in_wq);
1256
1257 poll_next = 0;
1258 break;
1259 default:
1260 poll_next = 0;
1261 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1262 ap->print_id, ap->hsm_task_state);
1263 }
1264
1265 return poll_next;
1266 }
1267 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1268
ata_sff_queue_work(struct work_struct * work)1269 void ata_sff_queue_work(struct work_struct *work)
1270 {
1271 queue_work(ata_sff_wq, work);
1272 }
1273 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1274
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1275 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1276 {
1277 queue_delayed_work(ata_sff_wq, dwork, delay);
1278 }
1279 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1280
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1281 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1282 {
1283 struct ata_port *ap = link->ap;
1284
1285 WARN_ON((ap->sff_pio_task_link != NULL) &&
1286 (ap->sff_pio_task_link != link));
1287 ap->sff_pio_task_link = link;
1288
1289 /* may fail if ata_sff_flush_pio_task() in progress */
1290 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1291 }
1292 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1293
ata_sff_flush_pio_task(struct ata_port * ap)1294 void ata_sff_flush_pio_task(struct ata_port *ap)
1295 {
1296 DPRINTK("ENTER\n");
1297
1298 cancel_delayed_work_sync(&ap->sff_pio_task);
1299
1300 /*
1301 * We wanna reset the HSM state to IDLE. If we do so without
1302 * grabbing the port lock, critical sections protected by it which
1303 * expect the HSM state to stay stable may get surprised. For
1304 * example, we may set IDLE in between the time
1305 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1306 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1307 */
1308 spin_lock_irq(ap->lock);
1309 ap->hsm_task_state = HSM_ST_IDLE;
1310 spin_unlock_irq(ap->lock);
1311
1312 ap->sff_pio_task_link = NULL;
1313
1314 if (ata_msg_ctl(ap))
1315 ata_port_dbg(ap, "%s: EXIT\n", __func__);
1316 }
1317
ata_sff_pio_task(struct work_struct * work)1318 static void ata_sff_pio_task(struct work_struct *work)
1319 {
1320 struct ata_port *ap =
1321 container_of(work, struct ata_port, sff_pio_task.work);
1322 struct ata_link *link = ap->sff_pio_task_link;
1323 struct ata_queued_cmd *qc;
1324 u8 status;
1325 int poll_next;
1326
1327 spin_lock_irq(ap->lock);
1328
1329 BUG_ON(ap->sff_pio_task_link == NULL);
1330 /* qc can be NULL if timeout occurred */
1331 qc = ata_qc_from_tag(ap, link->active_tag);
1332 if (!qc) {
1333 ap->sff_pio_task_link = NULL;
1334 goto out_unlock;
1335 }
1336
1337 fsm_start:
1338 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1339
1340 /*
1341 * This is purely heuristic. This is a fast path.
1342 * Sometimes when we enter, BSY will be cleared in
1343 * a chk-status or two. If not, the drive is probably seeking
1344 * or something. Snooze for a couple msecs, then
1345 * chk-status again. If still busy, queue delayed work.
1346 */
1347 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1348 if (status & ATA_BUSY) {
1349 spin_unlock_irq(ap->lock);
1350 ata_msleep(ap, 2);
1351 spin_lock_irq(ap->lock);
1352
1353 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1354 if (status & ATA_BUSY) {
1355 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1356 goto out_unlock;
1357 }
1358 }
1359
1360 /*
1361 * hsm_move() may trigger another command to be processed.
1362 * clean the link beforehand.
1363 */
1364 ap->sff_pio_task_link = NULL;
1365 /* move the HSM */
1366 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1367
1368 /* another command or interrupt handler
1369 * may be running at this point.
1370 */
1371 if (poll_next)
1372 goto fsm_start;
1373 out_unlock:
1374 spin_unlock_irq(ap->lock);
1375 }
1376
1377 /**
1378 * ata_sff_qc_issue - issue taskfile to a SFF controller
1379 * @qc: command to issue to device
1380 *
1381 * This function issues a PIO or NODATA command to a SFF
1382 * controller.
1383 *
1384 * LOCKING:
1385 * spin_lock_irqsave(host lock)
1386 *
1387 * RETURNS:
1388 * Zero on success, AC_ERR_* mask on failure
1389 */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1390 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1391 {
1392 struct ata_port *ap = qc->ap;
1393 struct ata_link *link = qc->dev->link;
1394
1395 /* Use polling pio if the LLD doesn't handle
1396 * interrupt driven pio and atapi CDB interrupt.
1397 */
1398 if (ap->flags & ATA_FLAG_PIO_POLLING)
1399 qc->tf.flags |= ATA_TFLAG_POLLING;
1400
1401 /* select the device */
1402 ata_dev_select(ap, qc->dev->devno, 1, 0);
1403
1404 /* start the command */
1405 switch (qc->tf.protocol) {
1406 case ATA_PROT_NODATA:
1407 if (qc->tf.flags & ATA_TFLAG_POLLING)
1408 ata_qc_set_polling(qc);
1409
1410 ata_tf_to_host(ap, &qc->tf);
1411 ap->hsm_task_state = HSM_ST_LAST;
1412
1413 if (qc->tf.flags & ATA_TFLAG_POLLING)
1414 ata_sff_queue_pio_task(link, 0);
1415
1416 break;
1417
1418 case ATA_PROT_PIO:
1419 if (qc->tf.flags & ATA_TFLAG_POLLING)
1420 ata_qc_set_polling(qc);
1421
1422 ata_tf_to_host(ap, &qc->tf);
1423
1424 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1425 /* PIO data out protocol */
1426 ap->hsm_task_state = HSM_ST_FIRST;
1427 ata_sff_queue_pio_task(link, 0);
1428
1429 /* always send first data block using the
1430 * ata_sff_pio_task() codepath.
1431 */
1432 } else {
1433 /* PIO data in protocol */
1434 ap->hsm_task_state = HSM_ST;
1435
1436 if (qc->tf.flags & ATA_TFLAG_POLLING)
1437 ata_sff_queue_pio_task(link, 0);
1438
1439 /* if polling, ata_sff_pio_task() handles the
1440 * rest. otherwise, interrupt handler takes
1441 * over from here.
1442 */
1443 }
1444
1445 break;
1446
1447 case ATAPI_PROT_PIO:
1448 case ATAPI_PROT_NODATA:
1449 if (qc->tf.flags & ATA_TFLAG_POLLING)
1450 ata_qc_set_polling(qc);
1451
1452 ata_tf_to_host(ap, &qc->tf);
1453
1454 ap->hsm_task_state = HSM_ST_FIRST;
1455
1456 /* send cdb by polling if no cdb interrupt */
1457 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1458 (qc->tf.flags & ATA_TFLAG_POLLING))
1459 ata_sff_queue_pio_task(link, 0);
1460 break;
1461
1462 default:
1463 return AC_ERR_SYSTEM;
1464 }
1465
1466 return 0;
1467 }
1468 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1469
1470 /**
1471 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1472 * @qc: qc to fill result TF for
1473 *
1474 * @qc is finished and result TF needs to be filled. Fill it
1475 * using ->sff_tf_read.
1476 *
1477 * LOCKING:
1478 * spin_lock_irqsave(host lock)
1479 *
1480 * RETURNS:
1481 * true indicating that result TF is successfully filled.
1482 */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1483 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1484 {
1485 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1486 return true;
1487 }
1488 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1489
ata_sff_idle_irq(struct ata_port * ap)1490 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1491 {
1492 ap->stats.idle_irq++;
1493
1494 #ifdef ATA_IRQ_TRAP
1495 if ((ap->stats.idle_irq % 1000) == 0) {
1496 ap->ops->sff_check_status(ap);
1497 if (ap->ops->sff_irq_clear)
1498 ap->ops->sff_irq_clear(ap);
1499 ata_port_warn(ap, "irq trap\n");
1500 return 1;
1501 }
1502 #endif
1503 return 0; /* irq not handled */
1504 }
1505
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1506 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1507 struct ata_queued_cmd *qc,
1508 bool hsmv_on_idle)
1509 {
1510 u8 status;
1511
1512 VPRINTK("ata%u: protocol %d task_state %d\n",
1513 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1514
1515 /* Check whether we are expecting interrupt in this state */
1516 switch (ap->hsm_task_state) {
1517 case HSM_ST_FIRST:
1518 /* Some pre-ATAPI-4 devices assert INTRQ
1519 * at this state when ready to receive CDB.
1520 */
1521
1522 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1523 * The flag was turned on only for atapi devices. No
1524 * need to check ata_is_atapi(qc->tf.protocol) again.
1525 */
1526 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1527 return ata_sff_idle_irq(ap);
1528 break;
1529 case HSM_ST_IDLE:
1530 return ata_sff_idle_irq(ap);
1531 default:
1532 break;
1533 }
1534
1535 /* check main status, clearing INTRQ if needed */
1536 status = ata_sff_irq_status(ap);
1537 if (status & ATA_BUSY) {
1538 if (hsmv_on_idle) {
1539 /* BMDMA engine is already stopped, we're screwed */
1540 qc->err_mask |= AC_ERR_HSM;
1541 ap->hsm_task_state = HSM_ST_ERR;
1542 } else
1543 return ata_sff_idle_irq(ap);
1544 }
1545
1546 /* clear irq events */
1547 if (ap->ops->sff_irq_clear)
1548 ap->ops->sff_irq_clear(ap);
1549
1550 ata_sff_hsm_move(ap, qc, status, 0);
1551
1552 return 1; /* irq handled */
1553 }
1554
1555 /**
1556 * ata_sff_port_intr - Handle SFF port interrupt
1557 * @ap: Port on which interrupt arrived (possibly...)
1558 * @qc: Taskfile currently active in engine
1559 *
1560 * Handle port interrupt for given queued command.
1561 *
1562 * LOCKING:
1563 * spin_lock_irqsave(host lock)
1564 *
1565 * RETURNS:
1566 * One if interrupt was handled, zero if not (shared irq).
1567 */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1568 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1569 {
1570 return __ata_sff_port_intr(ap, qc, false);
1571 }
1572 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1573
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1574 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1575 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1576 {
1577 struct ata_host *host = dev_instance;
1578 bool retried = false;
1579 unsigned int i;
1580 unsigned int handled, idle, polling;
1581 unsigned long flags;
1582
1583 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1584 spin_lock_irqsave(&host->lock, flags);
1585
1586 retry:
1587 handled = idle = polling = 0;
1588 for (i = 0; i < host->n_ports; i++) {
1589 struct ata_port *ap = host->ports[i];
1590 struct ata_queued_cmd *qc;
1591
1592 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1593 if (qc) {
1594 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1595 handled |= port_intr(ap, qc);
1596 else
1597 polling |= 1 << i;
1598 } else
1599 idle |= 1 << i;
1600 }
1601
1602 /*
1603 * If no port was expecting IRQ but the controller is actually
1604 * asserting IRQ line, nobody cared will ensue. Check IRQ
1605 * pending status if available and clear spurious IRQ.
1606 */
1607 if (!handled && !retried) {
1608 bool retry = false;
1609
1610 for (i = 0; i < host->n_ports; i++) {
1611 struct ata_port *ap = host->ports[i];
1612
1613 if (polling & (1 << i))
1614 continue;
1615
1616 if (!ap->ops->sff_irq_check ||
1617 !ap->ops->sff_irq_check(ap))
1618 continue;
1619
1620 if (idle & (1 << i)) {
1621 ap->ops->sff_check_status(ap);
1622 if (ap->ops->sff_irq_clear)
1623 ap->ops->sff_irq_clear(ap);
1624 } else {
1625 /* clear INTRQ and check if BUSY cleared */
1626 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1627 retry |= true;
1628 /*
1629 * With command in flight, we can't do
1630 * sff_irq_clear() w/o racing with completion.
1631 */
1632 }
1633 }
1634
1635 if (retry) {
1636 retried = true;
1637 goto retry;
1638 }
1639 }
1640
1641 spin_unlock_irqrestore(&host->lock, flags);
1642
1643 return IRQ_RETVAL(handled);
1644 }
1645
1646 /**
1647 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1648 * @irq: irq line (unused)
1649 * @dev_instance: pointer to our ata_host information structure
1650 *
1651 * Default interrupt handler for PCI IDE devices. Calls
1652 * ata_sff_port_intr() for each port that is not disabled.
1653 *
1654 * LOCKING:
1655 * Obtains host lock during operation.
1656 *
1657 * RETURNS:
1658 * IRQ_NONE or IRQ_HANDLED.
1659 */
ata_sff_interrupt(int irq,void * dev_instance)1660 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1661 {
1662 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1663 }
1664 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1665
1666 /**
1667 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1668 * @ap: port that appears to have timed out
1669 *
1670 * Called from the libata error handlers when the core code suspects
1671 * an interrupt has been lost. If it has complete anything we can and
1672 * then return. Interface must support altstatus for this faster
1673 * recovery to occur.
1674 *
1675 * Locking:
1676 * Caller holds host lock
1677 */
1678
ata_sff_lost_interrupt(struct ata_port * ap)1679 void ata_sff_lost_interrupt(struct ata_port *ap)
1680 {
1681 u8 status;
1682 struct ata_queued_cmd *qc;
1683
1684 /* Only one outstanding command per SFF channel */
1685 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1686 /* We cannot lose an interrupt on a non-existent or polled command */
1687 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1688 return;
1689 /* See if the controller thinks it is still busy - if so the command
1690 isn't a lost IRQ but is still in progress */
1691 status = ata_sff_altstatus(ap);
1692 if (status & ATA_BUSY)
1693 return;
1694
1695 /* There was a command running, we are no longer busy and we have
1696 no interrupt. */
1697 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1698 status);
1699 /* Run the host interrupt logic as if the interrupt had not been
1700 lost */
1701 ata_sff_port_intr(ap, qc);
1702 }
1703 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1704
1705 /**
1706 * ata_sff_freeze - Freeze SFF controller port
1707 * @ap: port to freeze
1708 *
1709 * Freeze SFF controller port.
1710 *
1711 * LOCKING:
1712 * Inherited from caller.
1713 */
ata_sff_freeze(struct ata_port * ap)1714 void ata_sff_freeze(struct ata_port *ap)
1715 {
1716 ap->ctl |= ATA_NIEN;
1717 ap->last_ctl = ap->ctl;
1718
1719 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1720 ata_sff_set_devctl(ap, ap->ctl);
1721
1722 /* Under certain circumstances, some controllers raise IRQ on
1723 * ATA_NIEN manipulation. Also, many controllers fail to mask
1724 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1725 */
1726 ap->ops->sff_check_status(ap);
1727
1728 if (ap->ops->sff_irq_clear)
1729 ap->ops->sff_irq_clear(ap);
1730 }
1731 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1732
1733 /**
1734 * ata_sff_thaw - Thaw SFF controller port
1735 * @ap: port to thaw
1736 *
1737 * Thaw SFF controller port.
1738 *
1739 * LOCKING:
1740 * Inherited from caller.
1741 */
ata_sff_thaw(struct ata_port * ap)1742 void ata_sff_thaw(struct ata_port *ap)
1743 {
1744 /* clear & re-enable interrupts */
1745 ap->ops->sff_check_status(ap);
1746 if (ap->ops->sff_irq_clear)
1747 ap->ops->sff_irq_clear(ap);
1748 ata_sff_irq_on(ap);
1749 }
1750 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1751
1752 /**
1753 * ata_sff_prereset - prepare SFF link for reset
1754 * @link: SFF link to be reset
1755 * @deadline: deadline jiffies for the operation
1756 *
1757 * SFF link @link is about to be reset. Initialize it. It first
1758 * calls ata_std_prereset() and wait for !BSY if the port is
1759 * being softreset.
1760 *
1761 * LOCKING:
1762 * Kernel thread context (may sleep)
1763 *
1764 * RETURNS:
1765 * 0 on success, -errno otherwise.
1766 */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1767 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1768 {
1769 struct ata_eh_context *ehc = &link->eh_context;
1770 int rc;
1771
1772 rc = ata_std_prereset(link, deadline);
1773 if (rc)
1774 return rc;
1775
1776 /* if we're about to do hardreset, nothing more to do */
1777 if (ehc->i.action & ATA_EH_HARDRESET)
1778 return 0;
1779
1780 /* wait for !BSY if we don't know that no device is attached */
1781 if (!ata_link_offline(link)) {
1782 rc = ata_sff_wait_ready(link, deadline);
1783 if (rc && rc != -ENODEV) {
1784 ata_link_warn(link,
1785 "device not ready (errno=%d), forcing hardreset\n",
1786 rc);
1787 ehc->i.action |= ATA_EH_HARDRESET;
1788 }
1789 }
1790
1791 return 0;
1792 }
1793 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1794
1795 /**
1796 * ata_devchk - PATA device presence detection
1797 * @ap: ATA channel to examine
1798 * @device: Device to examine (starting at zero)
1799 *
1800 * This technique was originally described in
1801 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1802 * later found its way into the ATA/ATAPI spec.
1803 *
1804 * Write a pattern to the ATA shadow registers,
1805 * and if a device is present, it will respond by
1806 * correctly storing and echoing back the
1807 * ATA shadow register contents.
1808 *
1809 * LOCKING:
1810 * caller.
1811 */
ata_devchk(struct ata_port * ap,unsigned int device)1812 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1813 {
1814 struct ata_ioports *ioaddr = &ap->ioaddr;
1815 u8 nsect, lbal;
1816
1817 ap->ops->sff_dev_select(ap, device);
1818
1819 iowrite8(0x55, ioaddr->nsect_addr);
1820 iowrite8(0xaa, ioaddr->lbal_addr);
1821
1822 iowrite8(0xaa, ioaddr->nsect_addr);
1823 iowrite8(0x55, ioaddr->lbal_addr);
1824
1825 iowrite8(0x55, ioaddr->nsect_addr);
1826 iowrite8(0xaa, ioaddr->lbal_addr);
1827
1828 nsect = ioread8(ioaddr->nsect_addr);
1829 lbal = ioread8(ioaddr->lbal_addr);
1830
1831 if ((nsect == 0x55) && (lbal == 0xaa))
1832 return 1; /* we found a device */
1833
1834 return 0; /* nothing found */
1835 }
1836
1837 /**
1838 * ata_sff_dev_classify - Parse returned ATA device signature
1839 * @dev: ATA device to classify (starting at zero)
1840 * @present: device seems present
1841 * @r_err: Value of error register on completion
1842 *
1843 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1844 * an ATA/ATAPI-defined set of values is placed in the ATA
1845 * shadow registers, indicating the results of device detection
1846 * and diagnostics.
1847 *
1848 * Select the ATA device, and read the values from the ATA shadow
1849 * registers. Then parse according to the Error register value,
1850 * and the spec-defined values examined by ata_dev_classify().
1851 *
1852 * LOCKING:
1853 * caller.
1854 *
1855 * RETURNS:
1856 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1857 */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1858 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1859 u8 *r_err)
1860 {
1861 struct ata_port *ap = dev->link->ap;
1862 struct ata_taskfile tf;
1863 unsigned int class;
1864 u8 err;
1865
1866 ap->ops->sff_dev_select(ap, dev->devno);
1867
1868 memset(&tf, 0, sizeof(tf));
1869
1870 ap->ops->sff_tf_read(ap, &tf);
1871 err = tf.feature;
1872 if (r_err)
1873 *r_err = err;
1874
1875 /* see if device passed diags: continue and warn later */
1876 if (err == 0)
1877 /* diagnostic fail : do nothing _YET_ */
1878 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1879 else if (err == 1)
1880 /* do nothing */ ;
1881 else if ((dev->devno == 0) && (err == 0x81))
1882 /* do nothing */ ;
1883 else
1884 return ATA_DEV_NONE;
1885
1886 /* determine if device is ATA or ATAPI */
1887 class = ata_dev_classify(&tf);
1888
1889 if (class == ATA_DEV_UNKNOWN) {
1890 /* If the device failed diagnostic, it's likely to
1891 * have reported incorrect device signature too.
1892 * Assume ATA device if the device seems present but
1893 * device signature is invalid with diagnostic
1894 * failure.
1895 */
1896 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1897 class = ATA_DEV_ATA;
1898 else
1899 class = ATA_DEV_NONE;
1900 } else if ((class == ATA_DEV_ATA) &&
1901 (ap->ops->sff_check_status(ap) == 0))
1902 class = ATA_DEV_NONE;
1903
1904 return class;
1905 }
1906 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1907
1908 /**
1909 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1910 * @link: SFF link which is just reset
1911 * @devmask: mask of present devices
1912 * @deadline: deadline jiffies for the operation
1913 *
1914 * Wait devices attached to SFF @link to become ready after
1915 * reset. It contains preceding 150ms wait to avoid accessing TF
1916 * status register too early.
1917 *
1918 * LOCKING:
1919 * Kernel thread context (may sleep).
1920 *
1921 * RETURNS:
1922 * 0 on success, -ENODEV if some or all of devices in @devmask
1923 * don't seem to exist. -errno on other errors.
1924 */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1925 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1926 unsigned long deadline)
1927 {
1928 struct ata_port *ap = link->ap;
1929 struct ata_ioports *ioaddr = &ap->ioaddr;
1930 unsigned int dev0 = devmask & (1 << 0);
1931 unsigned int dev1 = devmask & (1 << 1);
1932 int rc, ret = 0;
1933
1934 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1935
1936 /* always check readiness of the master device */
1937 rc = ata_sff_wait_ready(link, deadline);
1938 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1939 * and TF status is 0xff, bail out on it too.
1940 */
1941 if (rc)
1942 return rc;
1943
1944 /* if device 1 was found in ata_devchk, wait for register
1945 * access briefly, then wait for BSY to clear.
1946 */
1947 if (dev1) {
1948 int i;
1949
1950 ap->ops->sff_dev_select(ap, 1);
1951
1952 /* Wait for register access. Some ATAPI devices fail
1953 * to set nsect/lbal after reset, so don't waste too
1954 * much time on it. We're gonna wait for !BSY anyway.
1955 */
1956 for (i = 0; i < 2; i++) {
1957 u8 nsect, lbal;
1958
1959 nsect = ioread8(ioaddr->nsect_addr);
1960 lbal = ioread8(ioaddr->lbal_addr);
1961 if ((nsect == 1) && (lbal == 1))
1962 break;
1963 ata_msleep(ap, 50); /* give drive a breather */
1964 }
1965
1966 rc = ata_sff_wait_ready(link, deadline);
1967 if (rc) {
1968 if (rc != -ENODEV)
1969 return rc;
1970 ret = rc;
1971 }
1972 }
1973
1974 /* is all this really necessary? */
1975 ap->ops->sff_dev_select(ap, 0);
1976 if (dev1)
1977 ap->ops->sff_dev_select(ap, 1);
1978 if (dev0)
1979 ap->ops->sff_dev_select(ap, 0);
1980
1981 return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1984
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)1985 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1986 unsigned long deadline)
1987 {
1988 struct ata_ioports *ioaddr = &ap->ioaddr;
1989
1990 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1991
1992 if (ap->ioaddr.ctl_addr) {
1993 /* software reset. causes dev0 to be selected */
1994 iowrite8(ap->ctl, ioaddr->ctl_addr);
1995 udelay(20); /* FIXME: flush */
1996 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1997 udelay(20); /* FIXME: flush */
1998 iowrite8(ap->ctl, ioaddr->ctl_addr);
1999 ap->last_ctl = ap->ctl;
2000 }
2001
2002 /* wait the port to become ready */
2003 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2004 }
2005
2006 /**
2007 * ata_sff_softreset - reset host port via ATA SRST
2008 * @link: ATA link to reset
2009 * @classes: resulting classes of attached devices
2010 * @deadline: deadline jiffies for the operation
2011 *
2012 * Reset host port using ATA SRST.
2013 *
2014 * LOCKING:
2015 * Kernel thread context (may sleep)
2016 *
2017 * RETURNS:
2018 * 0 on success, -errno otherwise.
2019 */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)2020 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2021 unsigned long deadline)
2022 {
2023 struct ata_port *ap = link->ap;
2024 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2025 unsigned int devmask = 0;
2026 int rc;
2027 u8 err;
2028
2029 DPRINTK("ENTER\n");
2030
2031 /* determine if device 0/1 are present */
2032 if (ata_devchk(ap, 0))
2033 devmask |= (1 << 0);
2034 if (slave_possible && ata_devchk(ap, 1))
2035 devmask |= (1 << 1);
2036
2037 /* select device 0 again */
2038 ap->ops->sff_dev_select(ap, 0);
2039
2040 /* issue bus reset */
2041 DPRINTK("about to softreset, devmask=%x\n", devmask);
2042 rc = ata_bus_softreset(ap, devmask, deadline);
2043 /* if link is occupied, -ENODEV too is an error */
2044 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2045 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2046 return rc;
2047 }
2048
2049 /* determine by signature whether we have ATA or ATAPI devices */
2050 classes[0] = ata_sff_dev_classify(&link->device[0],
2051 devmask & (1 << 0), &err);
2052 if (slave_possible && err != 0x81)
2053 classes[1] = ata_sff_dev_classify(&link->device[1],
2054 devmask & (1 << 1), &err);
2055
2056 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2057 return 0;
2058 }
2059 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2060
2061 /**
2062 * sata_sff_hardreset - reset host port via SATA phy reset
2063 * @link: link to reset
2064 * @class: resulting class of attached device
2065 * @deadline: deadline jiffies for the operation
2066 *
2067 * SATA phy-reset host port using DET bits of SControl register,
2068 * wait for !BSY and classify the attached device.
2069 *
2070 * LOCKING:
2071 * Kernel thread context (may sleep)
2072 *
2073 * RETURNS:
2074 * 0 on success, -errno otherwise.
2075 */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)2076 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2077 unsigned long deadline)
2078 {
2079 struct ata_eh_context *ehc = &link->eh_context;
2080 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2081 bool online;
2082 int rc;
2083
2084 rc = sata_link_hardreset(link, timing, deadline, &online,
2085 ata_sff_check_ready);
2086 if (online)
2087 *class = ata_sff_dev_classify(link->device, 1, NULL);
2088
2089 DPRINTK("EXIT, class=%u\n", *class);
2090 return rc;
2091 }
2092 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2093
2094 /**
2095 * ata_sff_postreset - SFF postreset callback
2096 * @link: the target SFF ata_link
2097 * @classes: classes of attached devices
2098 *
2099 * This function is invoked after a successful reset. It first
2100 * calls ata_std_postreset() and performs SFF specific postreset
2101 * processing.
2102 *
2103 * LOCKING:
2104 * Kernel thread context (may sleep)
2105 */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)2106 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2107 {
2108 struct ata_port *ap = link->ap;
2109
2110 ata_std_postreset(link, classes);
2111
2112 /* is double-select really necessary? */
2113 if (classes[0] != ATA_DEV_NONE)
2114 ap->ops->sff_dev_select(ap, 1);
2115 if (classes[1] != ATA_DEV_NONE)
2116 ap->ops->sff_dev_select(ap, 0);
2117
2118 /* bail out if no device is present */
2119 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2120 DPRINTK("EXIT, no device\n");
2121 return;
2122 }
2123
2124 /* set up device control */
2125 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2126 ata_sff_set_devctl(ap, ap->ctl);
2127 ap->last_ctl = ap->ctl;
2128 }
2129 }
2130 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2131
2132 /**
2133 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2134 * @qc: command
2135 *
2136 * Drain the FIFO and device of any stuck data following a command
2137 * failing to complete. In some cases this is necessary before a
2138 * reset will recover the device.
2139 *
2140 */
2141
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2142 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2143 {
2144 int count;
2145 struct ata_port *ap;
2146
2147 /* We only need to flush incoming data when a command was running */
2148 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2149 return;
2150
2151 ap = qc->ap;
2152 /* Drain up to 64K of data before we give up this recovery method */
2153 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2154 && count < 65536; count += 2)
2155 ioread16(ap->ioaddr.data_addr);
2156
2157 /* Can become DEBUG later */
2158 if (count)
2159 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2160
2161 }
2162 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2163
2164 /**
2165 * ata_sff_error_handler - Stock error handler for SFF controller
2166 * @ap: port to handle error for
2167 *
2168 * Stock error handler for SFF controller. It can handle both
2169 * PATA and SATA controllers. Many controllers should be able to
2170 * use this EH as-is or with some added handling before and
2171 * after.
2172 *
2173 * LOCKING:
2174 * Kernel thread context (may sleep)
2175 */
ata_sff_error_handler(struct ata_port * ap)2176 void ata_sff_error_handler(struct ata_port *ap)
2177 {
2178 ata_reset_fn_t softreset = ap->ops->softreset;
2179 ata_reset_fn_t hardreset = ap->ops->hardreset;
2180 struct ata_queued_cmd *qc;
2181 unsigned long flags;
2182
2183 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2184 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2185 qc = NULL;
2186
2187 spin_lock_irqsave(ap->lock, flags);
2188
2189 /*
2190 * We *MUST* do FIFO draining before we issue a reset as
2191 * several devices helpfully clear their internal state and
2192 * will lock solid if we touch the data port post reset. Pass
2193 * qc in case anyone wants to do different PIO/DMA recovery or
2194 * has per command fixups
2195 */
2196 if (ap->ops->sff_drain_fifo)
2197 ap->ops->sff_drain_fifo(qc);
2198
2199 spin_unlock_irqrestore(ap->lock, flags);
2200
2201 /* ignore built-in hardresets if SCR access is not available */
2202 if ((hardreset == sata_std_hardreset ||
2203 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2204 hardreset = NULL;
2205
2206 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2207 ap->ops->postreset);
2208 }
2209 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2210
2211 /**
2212 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2213 * @ioaddr: IO address structure to be initialized
2214 *
2215 * Utility function which initializes data_addr, error_addr,
2216 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2217 * device_addr, status_addr, and command_addr to standard offsets
2218 * relative to cmd_addr.
2219 *
2220 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2221 */
ata_sff_std_ports(struct ata_ioports * ioaddr)2222 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2223 {
2224 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2225 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2226 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2227 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2228 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2229 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2230 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2231 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2232 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2233 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2234 }
2235 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2236
2237 #ifdef CONFIG_PCI
2238
ata_resources_present(struct pci_dev * pdev,int port)2239 static int ata_resources_present(struct pci_dev *pdev, int port)
2240 {
2241 int i;
2242
2243 /* Check the PCI resources for this channel are enabled */
2244 port = port * 2;
2245 for (i = 0; i < 2; i++) {
2246 if (pci_resource_start(pdev, port + i) == 0 ||
2247 pci_resource_len(pdev, port + i) == 0)
2248 return 0;
2249 }
2250 return 1;
2251 }
2252
2253 /**
2254 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2255 * @host: target ATA host
2256 *
2257 * Acquire native PCI ATA resources for @host and initialize the
2258 * first two ports of @host accordingly. Ports marked dummy are
2259 * skipped and allocation failure makes the port dummy.
2260 *
2261 * Note that native PCI resources are valid even for legacy hosts
2262 * as we fix up pdev resources array early in boot, so this
2263 * function can be used for both native and legacy SFF hosts.
2264 *
2265 * LOCKING:
2266 * Inherited from calling layer (may sleep).
2267 *
2268 * RETURNS:
2269 * 0 if at least one port is initialized, -ENODEV if no port is
2270 * available.
2271 */
ata_pci_sff_init_host(struct ata_host * host)2272 int ata_pci_sff_init_host(struct ata_host *host)
2273 {
2274 struct device *gdev = host->dev;
2275 struct pci_dev *pdev = to_pci_dev(gdev);
2276 unsigned int mask = 0;
2277 int i, rc;
2278
2279 /* request, iomap BARs and init port addresses accordingly */
2280 for (i = 0; i < 2; i++) {
2281 struct ata_port *ap = host->ports[i];
2282 int base = i * 2;
2283 void __iomem * const *iomap;
2284
2285 if (ata_port_is_dummy(ap))
2286 continue;
2287
2288 /* Discard disabled ports. Some controllers show
2289 * their unused channels this way. Disabled ports are
2290 * made dummy.
2291 */
2292 if (!ata_resources_present(pdev, i)) {
2293 ap->ops = &ata_dummy_port_ops;
2294 continue;
2295 }
2296
2297 rc = pcim_iomap_regions(pdev, 0x3 << base,
2298 dev_driver_string(gdev));
2299 if (rc) {
2300 dev_warn(gdev,
2301 "failed to request/iomap BARs for port %d (errno=%d)\n",
2302 i, rc);
2303 if (rc == -EBUSY)
2304 pcim_pin_device(pdev);
2305 ap->ops = &ata_dummy_port_ops;
2306 continue;
2307 }
2308 host->iomap = iomap = pcim_iomap_table(pdev);
2309
2310 ap->ioaddr.cmd_addr = iomap[base];
2311 ap->ioaddr.altstatus_addr =
2312 ap->ioaddr.ctl_addr = (void __iomem *)
2313 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2314 ata_sff_std_ports(&ap->ioaddr);
2315
2316 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2317 (unsigned long long)pci_resource_start(pdev, base),
2318 (unsigned long long)pci_resource_start(pdev, base + 1));
2319
2320 mask |= 1 << i;
2321 }
2322
2323 if (!mask) {
2324 dev_err(gdev, "no available native port\n");
2325 return -ENODEV;
2326 }
2327
2328 return 0;
2329 }
2330 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2331
2332 /**
2333 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2334 * @pdev: target PCI device
2335 * @ppi: array of port_info, must be enough for two ports
2336 * @r_host: out argument for the initialized ATA host
2337 *
2338 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2339 * all PCI resources and initialize it accordingly in one go.
2340 *
2341 * LOCKING:
2342 * Inherited from calling layer (may sleep).
2343 *
2344 * RETURNS:
2345 * 0 on success, -errno otherwise.
2346 */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2347 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2348 const struct ata_port_info * const *ppi,
2349 struct ata_host **r_host)
2350 {
2351 struct ata_host *host;
2352 int rc;
2353
2354 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2355 return -ENOMEM;
2356
2357 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2358 if (!host) {
2359 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2360 rc = -ENOMEM;
2361 goto err_out;
2362 }
2363
2364 rc = ata_pci_sff_init_host(host);
2365 if (rc)
2366 goto err_out;
2367
2368 devres_remove_group(&pdev->dev, NULL);
2369 *r_host = host;
2370 return 0;
2371
2372 err_out:
2373 devres_release_group(&pdev->dev, NULL);
2374 return rc;
2375 }
2376 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2377
2378 /**
2379 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2380 * @host: target SFF ATA host
2381 * @irq_handler: irq_handler used when requesting IRQ(s)
2382 * @sht: scsi_host_template to use when registering the host
2383 *
2384 * This is the counterpart of ata_host_activate() for SFF ATA
2385 * hosts. This separate helper is necessary because SFF hosts
2386 * use two separate interrupts in legacy mode.
2387 *
2388 * LOCKING:
2389 * Inherited from calling layer (may sleep).
2390 *
2391 * RETURNS:
2392 * 0 on success, -errno otherwise.
2393 */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,struct scsi_host_template * sht)2394 int ata_pci_sff_activate_host(struct ata_host *host,
2395 irq_handler_t irq_handler,
2396 struct scsi_host_template *sht)
2397 {
2398 struct device *dev = host->dev;
2399 struct pci_dev *pdev = to_pci_dev(dev);
2400 const char *drv_name = dev_driver_string(host->dev);
2401 int legacy_mode = 0, rc;
2402
2403 rc = ata_host_start(host);
2404 if (rc)
2405 return rc;
2406
2407 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2408 u8 tmp8, mask = 0;
2409
2410 /*
2411 * ATA spec says we should use legacy mode when one
2412 * port is in legacy mode, but disabled ports on some
2413 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2414 * on which the secondary port is not wired, so
2415 * ignore ports that are marked as 'dummy' during
2416 * this check
2417 */
2418 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2419 if (!ata_port_is_dummy(host->ports[0]))
2420 mask |= (1 << 0);
2421 if (!ata_port_is_dummy(host->ports[1]))
2422 mask |= (1 << 2);
2423 if ((tmp8 & mask) != mask)
2424 legacy_mode = 1;
2425 }
2426
2427 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2428 return -ENOMEM;
2429
2430 if (!legacy_mode && pdev->irq) {
2431 int i;
2432
2433 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2434 IRQF_SHARED, drv_name, host);
2435 if (rc)
2436 goto out;
2437
2438 for (i = 0; i < 2; i++) {
2439 if (ata_port_is_dummy(host->ports[i]))
2440 continue;
2441 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2442 }
2443 } else if (legacy_mode) {
2444 if (!ata_port_is_dummy(host->ports[0])) {
2445 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2446 irq_handler, IRQF_SHARED,
2447 drv_name, host);
2448 if (rc)
2449 goto out;
2450
2451 ata_port_desc(host->ports[0], "irq %d",
2452 ATA_PRIMARY_IRQ(pdev));
2453 }
2454
2455 if (!ata_port_is_dummy(host->ports[1])) {
2456 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2457 irq_handler, IRQF_SHARED,
2458 drv_name, host);
2459 if (rc)
2460 goto out;
2461
2462 ata_port_desc(host->ports[1], "irq %d",
2463 ATA_SECONDARY_IRQ(pdev));
2464 }
2465 }
2466
2467 rc = ata_host_register(host, sht);
2468 out:
2469 if (rc == 0)
2470 devres_remove_group(dev, NULL);
2471 else
2472 devres_release_group(dev, NULL);
2473
2474 return rc;
2475 }
2476 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2477
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2478 static const struct ata_port_info *ata_sff_find_valid_pi(
2479 const struct ata_port_info * const *ppi)
2480 {
2481 int i;
2482
2483 /* look up the first valid port_info */
2484 for (i = 0; i < 2 && ppi[i]; i++)
2485 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2486 return ppi[i];
2487
2488 return NULL;
2489 }
2490
ata_pci_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags,bool bmdma)2491 static int ata_pci_init_one(struct pci_dev *pdev,
2492 const struct ata_port_info * const *ppi,
2493 struct scsi_host_template *sht, void *host_priv,
2494 int hflags, bool bmdma)
2495 {
2496 struct device *dev = &pdev->dev;
2497 const struct ata_port_info *pi;
2498 struct ata_host *host = NULL;
2499 int rc;
2500
2501 DPRINTK("ENTER\n");
2502
2503 pi = ata_sff_find_valid_pi(ppi);
2504 if (!pi) {
2505 dev_err(&pdev->dev, "no valid port_info specified\n");
2506 return -EINVAL;
2507 }
2508
2509 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2510 return -ENOMEM;
2511
2512 rc = pcim_enable_device(pdev);
2513 if (rc)
2514 goto out;
2515
2516 #ifdef CONFIG_ATA_BMDMA
2517 if (bmdma)
2518 /* prepare and activate BMDMA host */
2519 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2520 else
2521 #endif
2522 /* prepare and activate SFF host */
2523 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2524 if (rc)
2525 goto out;
2526 host->private_data = host_priv;
2527 host->flags |= hflags;
2528
2529 #ifdef CONFIG_ATA_BMDMA
2530 if (bmdma) {
2531 pci_set_master(pdev);
2532 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2533 } else
2534 #endif
2535 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2536 out:
2537 if (rc == 0)
2538 devres_remove_group(&pdev->dev, NULL);
2539 else
2540 devres_release_group(&pdev->dev, NULL);
2541
2542 return rc;
2543 }
2544
2545 /**
2546 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2547 * @pdev: Controller to be initialized
2548 * @ppi: array of port_info, must be enough for two ports
2549 * @sht: scsi_host_template to use when registering the host
2550 * @host_priv: host private_data
2551 * @hflag: host flags
2552 *
2553 * This is a helper function which can be called from a driver's
2554 * xxx_init_one() probe function if the hardware uses traditional
2555 * IDE taskfile registers and is PIO only.
2556 *
2557 * ASSUMPTION:
2558 * Nobody makes a single channel controller that appears solely as
2559 * the secondary legacy port on PCI.
2560 *
2561 * LOCKING:
2562 * Inherited from PCI layer (may sleep).
2563 *
2564 * RETURNS:
2565 * Zero on success, negative on errno-based value on error.
2566 */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflag)2567 int ata_pci_sff_init_one(struct pci_dev *pdev,
2568 const struct ata_port_info * const *ppi,
2569 struct scsi_host_template *sht, void *host_priv, int hflag)
2570 {
2571 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2572 }
2573 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2574
2575 #endif /* CONFIG_PCI */
2576
2577 /*
2578 * BMDMA support
2579 */
2580
2581 #ifdef CONFIG_ATA_BMDMA
2582
2583 const struct ata_port_operations ata_bmdma_port_ops = {
2584 .inherits = &ata_sff_port_ops,
2585
2586 .error_handler = ata_bmdma_error_handler,
2587 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2588
2589 .qc_prep = ata_bmdma_qc_prep,
2590 .qc_issue = ata_bmdma_qc_issue,
2591
2592 .sff_irq_clear = ata_bmdma_irq_clear,
2593 .bmdma_setup = ata_bmdma_setup,
2594 .bmdma_start = ata_bmdma_start,
2595 .bmdma_stop = ata_bmdma_stop,
2596 .bmdma_status = ata_bmdma_status,
2597
2598 .port_start = ata_bmdma_port_start,
2599 };
2600 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2601
2602 const struct ata_port_operations ata_bmdma32_port_ops = {
2603 .inherits = &ata_bmdma_port_ops,
2604
2605 .sff_data_xfer = ata_sff_data_xfer32,
2606 .port_start = ata_bmdma_port_start32,
2607 };
2608 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2609
2610 /**
2611 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2612 * @qc: Metadata associated with taskfile to be transferred
2613 *
2614 * Fill PCI IDE PRD (scatter-gather) table with segments
2615 * associated with the current disk command.
2616 *
2617 * LOCKING:
2618 * spin_lock_irqsave(host lock)
2619 *
2620 */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2621 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2622 {
2623 struct ata_port *ap = qc->ap;
2624 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2625 struct scatterlist *sg;
2626 unsigned int si, pi;
2627
2628 pi = 0;
2629 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2630 u32 addr, offset;
2631 u32 sg_len, len;
2632
2633 /* determine if physical DMA addr spans 64K boundary.
2634 * Note h/w doesn't support 64-bit, so we unconditionally
2635 * truncate dma_addr_t to u32.
2636 */
2637 addr = (u32) sg_dma_address(sg);
2638 sg_len = sg_dma_len(sg);
2639
2640 while (sg_len) {
2641 offset = addr & 0xffff;
2642 len = sg_len;
2643 if ((offset + sg_len) > 0x10000)
2644 len = 0x10000 - offset;
2645
2646 prd[pi].addr = cpu_to_le32(addr);
2647 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2648 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2649
2650 pi++;
2651 sg_len -= len;
2652 addr += len;
2653 }
2654 }
2655
2656 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2657 }
2658
2659 /**
2660 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2661 * @qc: Metadata associated with taskfile to be transferred
2662 *
2663 * Fill PCI IDE PRD (scatter-gather) table with segments
2664 * associated with the current disk command. Perform the fill
2665 * so that we avoid writing any length 64K records for
2666 * controllers that don't follow the spec.
2667 *
2668 * LOCKING:
2669 * spin_lock_irqsave(host lock)
2670 *
2671 */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2672 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2673 {
2674 struct ata_port *ap = qc->ap;
2675 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2676 struct scatterlist *sg;
2677 unsigned int si, pi;
2678
2679 pi = 0;
2680 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2681 u32 addr, offset;
2682 u32 sg_len, len, blen;
2683
2684 /* determine if physical DMA addr spans 64K boundary.
2685 * Note h/w doesn't support 64-bit, so we unconditionally
2686 * truncate dma_addr_t to u32.
2687 */
2688 addr = (u32) sg_dma_address(sg);
2689 sg_len = sg_dma_len(sg);
2690
2691 while (sg_len) {
2692 offset = addr & 0xffff;
2693 len = sg_len;
2694 if ((offset + sg_len) > 0x10000)
2695 len = 0x10000 - offset;
2696
2697 blen = len & 0xffff;
2698 prd[pi].addr = cpu_to_le32(addr);
2699 if (blen == 0) {
2700 /* Some PATA chipsets like the CS5530 can't
2701 cope with 0x0000 meaning 64K as the spec
2702 says */
2703 prd[pi].flags_len = cpu_to_le32(0x8000);
2704 blen = 0x8000;
2705 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2706 }
2707 prd[pi].flags_len = cpu_to_le32(blen);
2708 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2709
2710 pi++;
2711 sg_len -= len;
2712 addr += len;
2713 }
2714 }
2715
2716 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2717 }
2718
2719 /**
2720 * ata_bmdma_qc_prep - Prepare taskfile for submission
2721 * @qc: Metadata associated with taskfile to be prepared
2722 *
2723 * Prepare ATA taskfile for submission.
2724 *
2725 * LOCKING:
2726 * spin_lock_irqsave(host lock)
2727 */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2728 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2729 {
2730 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2731 return;
2732
2733 ata_bmdma_fill_sg(qc);
2734 }
2735 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2736
2737 /**
2738 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2739 * @qc: Metadata associated with taskfile to be prepared
2740 *
2741 * Prepare ATA taskfile for submission.
2742 *
2743 * LOCKING:
2744 * spin_lock_irqsave(host lock)
2745 */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2746 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2747 {
2748 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2749 return;
2750
2751 ata_bmdma_fill_sg_dumb(qc);
2752 }
2753 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2754
2755 /**
2756 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2757 * @qc: command to issue to device
2758 *
2759 * This function issues a PIO, NODATA or DMA command to a
2760 * SFF/BMDMA controller. PIO and NODATA are handled by
2761 * ata_sff_qc_issue().
2762 *
2763 * LOCKING:
2764 * spin_lock_irqsave(host lock)
2765 *
2766 * RETURNS:
2767 * Zero on success, AC_ERR_* mask on failure
2768 */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2769 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2770 {
2771 struct ata_port *ap = qc->ap;
2772 struct ata_link *link = qc->dev->link;
2773
2774 /* defer PIO handling to sff_qc_issue */
2775 if (!ata_is_dma(qc->tf.protocol))
2776 return ata_sff_qc_issue(qc);
2777
2778 /* select the device */
2779 ata_dev_select(ap, qc->dev->devno, 1, 0);
2780
2781 /* start the command */
2782 switch (qc->tf.protocol) {
2783 case ATA_PROT_DMA:
2784 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2785
2786 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2787 ap->ops->bmdma_setup(qc); /* set up bmdma */
2788 ap->ops->bmdma_start(qc); /* initiate bmdma */
2789 ap->hsm_task_state = HSM_ST_LAST;
2790 break;
2791
2792 case ATAPI_PROT_DMA:
2793 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2794
2795 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2796 ap->ops->bmdma_setup(qc); /* set up bmdma */
2797 ap->hsm_task_state = HSM_ST_FIRST;
2798
2799 /* send cdb by polling if no cdb interrupt */
2800 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2801 ata_sff_queue_pio_task(link, 0);
2802 break;
2803
2804 default:
2805 WARN_ON(1);
2806 return AC_ERR_SYSTEM;
2807 }
2808
2809 return 0;
2810 }
2811 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2812
2813 /**
2814 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2815 * @ap: Port on which interrupt arrived (possibly...)
2816 * @qc: Taskfile currently active in engine
2817 *
2818 * Handle port interrupt for given queued command.
2819 *
2820 * LOCKING:
2821 * spin_lock_irqsave(host lock)
2822 *
2823 * RETURNS:
2824 * One if interrupt was handled, zero if not (shared irq).
2825 */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2826 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2827 {
2828 struct ata_eh_info *ehi = &ap->link.eh_info;
2829 u8 host_stat = 0;
2830 bool bmdma_stopped = false;
2831 unsigned int handled;
2832
2833 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2834 /* check status of DMA engine */
2835 host_stat = ap->ops->bmdma_status(ap);
2836 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2837
2838 /* if it's not our irq... */
2839 if (!(host_stat & ATA_DMA_INTR))
2840 return ata_sff_idle_irq(ap);
2841
2842 /* before we do anything else, clear DMA-Start bit */
2843 ap->ops->bmdma_stop(qc);
2844 bmdma_stopped = true;
2845
2846 if (unlikely(host_stat & ATA_DMA_ERR)) {
2847 /* error when transferring data to/from memory */
2848 qc->err_mask |= AC_ERR_HOST_BUS;
2849 ap->hsm_task_state = HSM_ST_ERR;
2850 }
2851 }
2852
2853 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2854
2855 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2856 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2857
2858 return handled;
2859 }
2860 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2861
2862 /**
2863 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2864 * @irq: irq line (unused)
2865 * @dev_instance: pointer to our ata_host information structure
2866 *
2867 * Default interrupt handler for PCI IDE devices. Calls
2868 * ata_bmdma_port_intr() for each port that is not disabled.
2869 *
2870 * LOCKING:
2871 * Obtains host lock during operation.
2872 *
2873 * RETURNS:
2874 * IRQ_NONE or IRQ_HANDLED.
2875 */
ata_bmdma_interrupt(int irq,void * dev_instance)2876 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2877 {
2878 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2879 }
2880 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2881
2882 /**
2883 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2884 * @ap: port to handle error for
2885 *
2886 * Stock error handler for BMDMA controller. It can handle both
2887 * PATA and SATA controllers. Most BMDMA controllers should be
2888 * able to use this EH as-is or with some added handling before
2889 * and after.
2890 *
2891 * LOCKING:
2892 * Kernel thread context (may sleep)
2893 */
ata_bmdma_error_handler(struct ata_port * ap)2894 void ata_bmdma_error_handler(struct ata_port *ap)
2895 {
2896 struct ata_queued_cmd *qc;
2897 unsigned long flags;
2898 bool thaw = false;
2899
2900 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2901 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2902 qc = NULL;
2903
2904 /* reset PIO HSM and stop DMA engine */
2905 spin_lock_irqsave(ap->lock, flags);
2906
2907 if (qc && ata_is_dma(qc->tf.protocol)) {
2908 u8 host_stat;
2909
2910 host_stat = ap->ops->bmdma_status(ap);
2911
2912 /* BMDMA controllers indicate host bus error by
2913 * setting DMA_ERR bit and timing out. As it wasn't
2914 * really a timeout event, adjust error mask and
2915 * cancel frozen state.
2916 */
2917 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2918 qc->err_mask = AC_ERR_HOST_BUS;
2919 thaw = true;
2920 }
2921
2922 ap->ops->bmdma_stop(qc);
2923
2924 /* if we're gonna thaw, make sure IRQ is clear */
2925 if (thaw) {
2926 ap->ops->sff_check_status(ap);
2927 if (ap->ops->sff_irq_clear)
2928 ap->ops->sff_irq_clear(ap);
2929 }
2930 }
2931
2932 spin_unlock_irqrestore(ap->lock, flags);
2933
2934 if (thaw)
2935 ata_eh_thaw_port(ap);
2936
2937 ata_sff_error_handler(ap);
2938 }
2939 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2940
2941 /**
2942 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2943 * @qc: internal command to clean up
2944 *
2945 * LOCKING:
2946 * Kernel thread context (may sleep)
2947 */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2948 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2949 {
2950 struct ata_port *ap = qc->ap;
2951 unsigned long flags;
2952
2953 if (ata_is_dma(qc->tf.protocol)) {
2954 spin_lock_irqsave(ap->lock, flags);
2955 ap->ops->bmdma_stop(qc);
2956 spin_unlock_irqrestore(ap->lock, flags);
2957 }
2958 }
2959 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2960
2961 /**
2962 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2963 * @ap: Port associated with this ATA transaction.
2964 *
2965 * Clear interrupt and error flags in DMA status register.
2966 *
2967 * May be used as the irq_clear() entry in ata_port_operations.
2968 *
2969 * LOCKING:
2970 * spin_lock_irqsave(host lock)
2971 */
ata_bmdma_irq_clear(struct ata_port * ap)2972 void ata_bmdma_irq_clear(struct ata_port *ap)
2973 {
2974 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2975
2976 if (!mmio)
2977 return;
2978
2979 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2980 }
2981 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2982
2983 /**
2984 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2985 * @qc: Info associated with this ATA transaction.
2986 *
2987 * LOCKING:
2988 * spin_lock_irqsave(host lock)
2989 */
ata_bmdma_setup(struct ata_queued_cmd * qc)2990 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2991 {
2992 struct ata_port *ap = qc->ap;
2993 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2994 u8 dmactl;
2995
2996 /* load PRD table addr. */
2997 mb(); /* make sure PRD table writes are visible to controller */
2998 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2999
3000 /* specify data direction, triple-check start bit is clear */
3001 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3002 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3003 if (!rw)
3004 dmactl |= ATA_DMA_WR;
3005 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3006
3007 /* issue r/w command */
3008 ap->ops->sff_exec_command(ap, &qc->tf);
3009 }
3010 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3011
3012 /**
3013 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3014 * @qc: Info associated with this ATA transaction.
3015 *
3016 * LOCKING:
3017 * spin_lock_irqsave(host lock)
3018 */
ata_bmdma_start(struct ata_queued_cmd * qc)3019 void ata_bmdma_start(struct ata_queued_cmd *qc)
3020 {
3021 struct ata_port *ap = qc->ap;
3022 u8 dmactl;
3023
3024 /* start host DMA transaction */
3025 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3026 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3027
3028 /* Strictly, one may wish to issue an ioread8() here, to
3029 * flush the mmio write. However, control also passes
3030 * to the hardware at this point, and it will interrupt
3031 * us when we are to resume control. So, in effect,
3032 * we don't care when the mmio write flushes.
3033 * Further, a read of the DMA status register _immediately_
3034 * following the write may not be what certain flaky hardware
3035 * is expected, so I think it is best to not add a readb()
3036 * without first all the MMIO ATA cards/mobos.
3037 * Or maybe I'm just being paranoid.
3038 *
3039 * FIXME: The posting of this write means I/O starts are
3040 * unnecessarily delayed for MMIO
3041 */
3042 }
3043 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3044
3045 /**
3046 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3047 * @qc: Command we are ending DMA for
3048 *
3049 * Clears the ATA_DMA_START flag in the dma control register
3050 *
3051 * May be used as the bmdma_stop() entry in ata_port_operations.
3052 *
3053 * LOCKING:
3054 * spin_lock_irqsave(host lock)
3055 */
ata_bmdma_stop(struct ata_queued_cmd * qc)3056 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3057 {
3058 struct ata_port *ap = qc->ap;
3059 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3060
3061 /* clear start/stop bit */
3062 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3063 mmio + ATA_DMA_CMD);
3064
3065 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3066 ata_sff_dma_pause(ap);
3067 }
3068 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3069
3070 /**
3071 * ata_bmdma_status - Read PCI IDE BMDMA status
3072 * @ap: Port associated with this ATA transaction.
3073 *
3074 * Read and return BMDMA status register.
3075 *
3076 * May be used as the bmdma_status() entry in ata_port_operations.
3077 *
3078 * LOCKING:
3079 * spin_lock_irqsave(host lock)
3080 */
ata_bmdma_status(struct ata_port * ap)3081 u8 ata_bmdma_status(struct ata_port *ap)
3082 {
3083 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3084 }
3085 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3086
3087
3088 /**
3089 * ata_bmdma_port_start - Set port up for bmdma.
3090 * @ap: Port to initialize
3091 *
3092 * Called just after data structures for each port are
3093 * initialized. Allocates space for PRD table.
3094 *
3095 * May be used as the port_start() entry in ata_port_operations.
3096 *
3097 * LOCKING:
3098 * Inherited from caller.
3099 */
ata_bmdma_port_start(struct ata_port * ap)3100 int ata_bmdma_port_start(struct ata_port *ap)
3101 {
3102 if (ap->mwdma_mask || ap->udma_mask) {
3103 ap->bmdma_prd =
3104 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3105 &ap->bmdma_prd_dma, GFP_KERNEL);
3106 if (!ap->bmdma_prd)
3107 return -ENOMEM;
3108 }
3109
3110 return 0;
3111 }
3112 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3113
3114 /**
3115 * ata_bmdma_port_start32 - Set port up for dma.
3116 * @ap: Port to initialize
3117 *
3118 * Called just after data structures for each port are
3119 * initialized. Enables 32bit PIO and allocates space for PRD
3120 * table.
3121 *
3122 * May be used as the port_start() entry in ata_port_operations for
3123 * devices that are capable of 32bit PIO.
3124 *
3125 * LOCKING:
3126 * Inherited from caller.
3127 */
ata_bmdma_port_start32(struct ata_port * ap)3128 int ata_bmdma_port_start32(struct ata_port *ap)
3129 {
3130 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3131 return ata_bmdma_port_start(ap);
3132 }
3133 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3134
3135 #ifdef CONFIG_PCI
3136
3137 /**
3138 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3139 * @pdev: PCI device
3140 *
3141 * Some PCI ATA devices report simplex mode but in fact can be told to
3142 * enter non simplex mode. This implements the necessary logic to
3143 * perform the task on such devices. Calling it on other devices will
3144 * have -undefined- behaviour.
3145 */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3146 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3147 {
3148 unsigned long bmdma = pci_resource_start(pdev, 4);
3149 u8 simplex;
3150
3151 if (bmdma == 0)
3152 return -ENOENT;
3153
3154 simplex = inb(bmdma + 0x02);
3155 outb(simplex & 0x60, bmdma + 0x02);
3156 simplex = inb(bmdma + 0x02);
3157 if (simplex & 0x80)
3158 return -EOPNOTSUPP;
3159 return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3162
ata_bmdma_nodma(struct ata_host * host,const char * reason)3163 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3164 {
3165 int i;
3166
3167 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3168
3169 for (i = 0; i < 2; i++) {
3170 host->ports[i]->mwdma_mask = 0;
3171 host->ports[i]->udma_mask = 0;
3172 }
3173 }
3174
3175 /**
3176 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3177 * @host: target ATA host
3178 *
3179 * Acquire PCI BMDMA resources and initialize @host accordingly.
3180 *
3181 * LOCKING:
3182 * Inherited from calling layer (may sleep).
3183 */
ata_pci_bmdma_init(struct ata_host * host)3184 void ata_pci_bmdma_init(struct ata_host *host)
3185 {
3186 struct device *gdev = host->dev;
3187 struct pci_dev *pdev = to_pci_dev(gdev);
3188 int i, rc;
3189
3190 /* No BAR4 allocation: No DMA */
3191 if (pci_resource_start(pdev, 4) == 0) {
3192 ata_bmdma_nodma(host, "BAR4 is zero");
3193 return;
3194 }
3195
3196 /*
3197 * Some controllers require BMDMA region to be initialized
3198 * even if DMA is not in use to clear IRQ status via
3199 * ->sff_irq_clear method. Try to initialize bmdma_addr
3200 * regardless of dma masks.
3201 */
3202 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3203 if (rc)
3204 ata_bmdma_nodma(host, "failed to set dma mask");
3205 if (!rc) {
3206 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3207 if (rc)
3208 ata_bmdma_nodma(host,
3209 "failed to set consistent dma mask");
3210 }
3211
3212 /* request and iomap DMA region */
3213 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3214 if (rc) {
3215 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3216 return;
3217 }
3218 host->iomap = pcim_iomap_table(pdev);
3219
3220 for (i = 0; i < 2; i++) {
3221 struct ata_port *ap = host->ports[i];
3222 void __iomem *bmdma = host->iomap[4] + 8 * i;
3223
3224 if (ata_port_is_dummy(ap))
3225 continue;
3226
3227 ap->ioaddr.bmdma_addr = bmdma;
3228 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3229 (ioread8(bmdma + 2) & 0x80))
3230 host->flags |= ATA_HOST_SIMPLEX;
3231
3232 ata_port_desc(ap, "bmdma 0x%llx",
3233 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3234 }
3235 }
3236 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3237
3238 /**
3239 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3240 * @pdev: target PCI device
3241 * @ppi: array of port_info, must be enough for two ports
3242 * @r_host: out argument for the initialized ATA host
3243 *
3244 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3245 * resources and initialize it accordingly in one go.
3246 *
3247 * LOCKING:
3248 * Inherited from calling layer (may sleep).
3249 *
3250 * RETURNS:
3251 * 0 on success, -errno otherwise.
3252 */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3253 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3254 const struct ata_port_info * const * ppi,
3255 struct ata_host **r_host)
3256 {
3257 int rc;
3258
3259 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3260 if (rc)
3261 return rc;
3262
3263 ata_pci_bmdma_init(*r_host);
3264 return 0;
3265 }
3266 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3267
3268 /**
3269 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3270 * @pdev: Controller to be initialized
3271 * @ppi: array of port_info, must be enough for two ports
3272 * @sht: scsi_host_template to use when registering the host
3273 * @host_priv: host private_data
3274 * @hflags: host flags
3275 *
3276 * This function is similar to ata_pci_sff_init_one() but also
3277 * takes care of BMDMA initialization.
3278 *
3279 * LOCKING:
3280 * Inherited from PCI layer (may sleep).
3281 *
3282 * RETURNS:
3283 * Zero on success, negative on errno-based value on error.
3284 */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags)3285 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3286 const struct ata_port_info * const * ppi,
3287 struct scsi_host_template *sht, void *host_priv,
3288 int hflags)
3289 {
3290 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3291 }
3292 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3293
3294 #endif /* CONFIG_PCI */
3295 #endif /* CONFIG_ATA_BMDMA */
3296
3297 /**
3298 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3299 * @ap: Port to initialize
3300 *
3301 * Called on port allocation to initialize SFF/BMDMA specific
3302 * fields.
3303 *
3304 * LOCKING:
3305 * None.
3306 */
ata_sff_port_init(struct ata_port * ap)3307 void ata_sff_port_init(struct ata_port *ap)
3308 {
3309 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3310 ap->ctl = ATA_DEVCTL_OBS;
3311 ap->last_ctl = 0xFF;
3312 }
3313
ata_sff_init(void)3314 int __init ata_sff_init(void)
3315 {
3316 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3317 if (!ata_sff_wq)
3318 return -ENOMEM;
3319
3320 return 0;
3321 }
3322
ata_sff_exit(void)3323 void ata_sff_exit(void)
3324 {
3325 destroy_workqueue(ata_sff_wq);
3326 }
3327