• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/driver-api/libata.rst
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
41 
42 #include "libata.h"
43 
44 static struct workqueue_struct *ata_sff_wq;
45 
46 const struct ata_port_operations ata_sff_port_ops = {
47 	.inherits		= &ata_base_port_ops,
48 
49 	.qc_prep		= ata_noop_qc_prep,
50 	.qc_issue		= ata_sff_qc_issue,
51 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
52 
53 	.freeze			= ata_sff_freeze,
54 	.thaw			= ata_sff_thaw,
55 	.prereset		= ata_sff_prereset,
56 	.softreset		= ata_sff_softreset,
57 	.hardreset		= sata_sff_hardreset,
58 	.postreset		= ata_sff_postreset,
59 	.error_handler		= ata_sff_error_handler,
60 
61 	.sff_dev_select		= ata_sff_dev_select,
62 	.sff_check_status	= ata_sff_check_status,
63 	.sff_tf_load		= ata_sff_tf_load,
64 	.sff_tf_read		= ata_sff_tf_read,
65 	.sff_exec_command	= ata_sff_exec_command,
66 	.sff_data_xfer		= ata_sff_data_xfer,
67 	.sff_drain_fifo		= ata_sff_drain_fifo,
68 
69 	.lost_interrupt		= ata_sff_lost_interrupt,
70 };
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72 
73 /**
74  *	ata_sff_check_status - Read device status reg & clear interrupt
75  *	@ap: port where the device is
76  *
77  *	Reads ATA taskfile status register for currently-selected device
78  *	and return its value. This also clears pending interrupts
79  *      from this device
80  *
81  *	LOCKING:
82  *	Inherited from caller.
83  */
ata_sff_check_status(struct ata_port * ap)84 u8 ata_sff_check_status(struct ata_port *ap)
85 {
86 	return ioread8(ap->ioaddr.status_addr);
87 }
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89 
90 /**
91  *	ata_sff_altstatus - Read device alternate status reg
92  *	@ap: port where the device is
93  *
94  *	Reads ATA taskfile alternate status register for
95  *	currently-selected device and return its value.
96  *
97  *	Note: may NOT be used as the check_altstatus() entry in
98  *	ata_port_operations.
99  *
100  *	LOCKING:
101  *	Inherited from caller.
102  */
ata_sff_altstatus(struct ata_port * ap)103 static u8 ata_sff_altstatus(struct ata_port *ap)
104 {
105 	if (ap->ops->sff_check_altstatus)
106 		return ap->ops->sff_check_altstatus(ap);
107 
108 	return ioread8(ap->ioaddr.altstatus_addr);
109 }
110 
111 /**
112  *	ata_sff_irq_status - Check if the device is busy
113  *	@ap: port where the device is
114  *
115  *	Determine if the port is currently busy. Uses altstatus
116  *	if available in order to avoid clearing shared IRQ status
117  *	when finding an IRQ source. Non ctl capable devices don't
118  *	share interrupt lines fortunately for us.
119  *
120  *	LOCKING:
121  *	Inherited from caller.
122  */
ata_sff_irq_status(struct ata_port * ap)123 static u8 ata_sff_irq_status(struct ata_port *ap)
124 {
125 	u8 status;
126 
127 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 		status = ata_sff_altstatus(ap);
129 		/* Not us: We are busy */
130 		if (status & ATA_BUSY)
131 			return status;
132 	}
133 	/* Clear INTRQ latch */
134 	status = ap->ops->sff_check_status(ap);
135 	return status;
136 }
137 
138 /**
139  *	ata_sff_sync - Flush writes
140  *	@ap: Port to wait for.
141  *
142  *	CAUTION:
143  *	If we have an mmio device with no ctl and no altstatus
144  *	method this will fail. No such devices are known to exist.
145  *
146  *	LOCKING:
147  *	Inherited from caller.
148  */
149 
ata_sff_sync(struct ata_port * ap)150 static void ata_sff_sync(struct ata_port *ap)
151 {
152 	if (ap->ops->sff_check_altstatus)
153 		ap->ops->sff_check_altstatus(ap);
154 	else if (ap->ioaddr.altstatus_addr)
155 		ioread8(ap->ioaddr.altstatus_addr);
156 }
157 
158 /**
159  *	ata_sff_pause		-	Flush writes and wait 400nS
160  *	@ap: Port to pause for.
161  *
162  *	CAUTION:
163  *	If we have an mmio device with no ctl and no altstatus
164  *	method this will fail. No such devices are known to exist.
165  *
166  *	LOCKING:
167  *	Inherited from caller.
168  */
169 
ata_sff_pause(struct ata_port * ap)170 void ata_sff_pause(struct ata_port *ap)
171 {
172 	ata_sff_sync(ap);
173 	ndelay(400);
174 }
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
176 
177 /**
178  *	ata_sff_dma_pause	-	Pause before commencing DMA
179  *	@ap: Port to pause for.
180  *
181  *	Perform I/O fencing and ensure sufficient cycle delays occur
182  *	for the HDMA1:0 transition
183  */
184 
ata_sff_dma_pause(struct ata_port * ap)185 void ata_sff_dma_pause(struct ata_port *ap)
186 {
187 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 		/* An altstatus read will cause the needed delay without
189 		   messing up the IRQ status */
190 		ata_sff_altstatus(ap);
191 		return;
192 	}
193 	/* There are no DMA controllers without ctl. BUG here to ensure
194 	   we never violate the HDMA1:0 transition timing and risk
195 	   corruption. */
196 	BUG();
197 }
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199 
200 /**
201  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
202  *	@ap: port containing status register to be polled
203  *	@tmout_pat: impatience timeout in msecs
204  *	@tmout: overall timeout in msecs
205  *
206  *	Sleep until ATA Status register bit BSY clears,
207  *	or a timeout occurs.
208  *
209  *	LOCKING:
210  *	Kernel thread context (may sleep).
211  *
212  *	RETURNS:
213  *	0 on success, -errno otherwise.
214  */
ata_sff_busy_sleep(struct ata_port * ap,unsigned long tmout_pat,unsigned long tmout)215 int ata_sff_busy_sleep(struct ata_port *ap,
216 		       unsigned long tmout_pat, unsigned long tmout)
217 {
218 	unsigned long timer_start, timeout;
219 	u8 status;
220 
221 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 	timer_start = jiffies;
223 	timeout = ata_deadline(timer_start, tmout_pat);
224 	while (status != 0xff && (status & ATA_BUSY) &&
225 	       time_before(jiffies, timeout)) {
226 		ata_msleep(ap, 50);
227 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 	}
229 
230 	if (status != 0xff && (status & ATA_BUSY))
231 		ata_port_warn(ap,
232 			      "port is slow to respond, please be patient (Status 0x%x)\n",
233 			      status);
234 
235 	timeout = ata_deadline(timer_start, tmout);
236 	while (status != 0xff && (status & ATA_BUSY) &&
237 	       time_before(jiffies, timeout)) {
238 		ata_msleep(ap, 50);
239 		status = ap->ops->sff_check_status(ap);
240 	}
241 
242 	if (status == 0xff)
243 		return -ENODEV;
244 
245 	if (status & ATA_BUSY) {
246 		ata_port_err(ap,
247 			     "port failed to respond (%lu secs, Status 0x%x)\n",
248 			     DIV_ROUND_UP(tmout, 1000), status);
249 		return -EBUSY;
250 	}
251 
252 	return 0;
253 }
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255 
ata_sff_check_ready(struct ata_link * link)256 static int ata_sff_check_ready(struct ata_link *link)
257 {
258 	u8 status = link->ap->ops->sff_check_status(link->ap);
259 
260 	return ata_check_ready(status);
261 }
262 
263 /**
264  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
265  *	@link: SFF link to wait ready status for
266  *	@deadline: deadline jiffies for the operation
267  *
268  *	Sleep until ATA Status register bit BSY clears, or timeout
269  *	occurs.
270  *
271  *	LOCKING:
272  *	Kernel thread context (may sleep).
273  *
274  *	RETURNS:
275  *	0 on success, -errno otherwise.
276  */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 {
279 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 }
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282 
283 /**
284  *	ata_sff_set_devctl - Write device control reg
285  *	@ap: port where the device is
286  *	@ctl: value to write
287  *
288  *	Writes ATA taskfile device control register.
289  *
290  *	Note: may NOT be used as the sff_set_devctl() entry in
291  *	ata_port_operations.
292  *
293  *	LOCKING:
294  *	Inherited from caller.
295  */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 {
298 	if (ap->ops->sff_set_devctl)
299 		ap->ops->sff_set_devctl(ap, ctl);
300 	else
301 		iowrite8(ctl, ap->ioaddr.ctl_addr);
302 }
303 
304 /**
305  *	ata_sff_dev_select - Select device 0/1 on ATA bus
306  *	@ap: ATA channel to manipulate
307  *	@device: ATA device (numbered from zero) to select
308  *
309  *	Use the method defined in the ATA specification to
310  *	make either device 0, or device 1, active on the
311  *	ATA channel.  Works with both PIO and MMIO.
312  *
313  *	May be used as the dev_select() entry in ata_port_operations.
314  *
315  *	LOCKING:
316  *	caller.
317  */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 {
320 	u8 tmp;
321 
322 	if (device == 0)
323 		tmp = ATA_DEVICE_OBS;
324 	else
325 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
326 
327 	iowrite8(tmp, ap->ioaddr.device_addr);
328 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331 
332 /**
333  *	ata_dev_select - Select device 0/1 on ATA bus
334  *	@ap: ATA channel to manipulate
335  *	@device: ATA device (numbered from zero) to select
336  *	@wait: non-zero to wait for Status register BSY bit to clear
337  *	@can_sleep: non-zero if context allows sleeping
338  *
339  *	Use the method defined in the ATA specification to
340  *	make either device 0, or device 1, active on the
341  *	ATA channel.
342  *
343  *	This is a high-level version of ata_sff_dev_select(), which
344  *	additionally provides the services of inserting the proper
345  *	pauses and status polling, where needed.
346  *
347  *	LOCKING:
348  *	caller.
349  */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 			   unsigned int wait, unsigned int can_sleep)
352 {
353 	if (ata_msg_probe(ap))
354 		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 			      device, wait);
356 
357 	if (wait)
358 		ata_wait_idle(ap);
359 
360 	ap->ops->sff_dev_select(ap, device);
361 
362 	if (wait) {
363 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 			ata_msleep(ap, 150);
365 		ata_wait_idle(ap);
366 	}
367 }
368 
369 /**
370  *	ata_sff_irq_on - Enable interrupts on a port.
371  *	@ap: Port on which interrupts are enabled.
372  *
373  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
374  *	wait for idle, clear any pending interrupts.
375  *
376  *	Note: may NOT be used as the sff_irq_on() entry in
377  *	ata_port_operations.
378  *
379  *	LOCKING:
380  *	Inherited from caller.
381  */
ata_sff_irq_on(struct ata_port * ap)382 void ata_sff_irq_on(struct ata_port *ap)
383 {
384 	struct ata_ioports *ioaddr = &ap->ioaddr;
385 
386 	if (ap->ops->sff_irq_on) {
387 		ap->ops->sff_irq_on(ap);
388 		return;
389 	}
390 
391 	ap->ctl &= ~ATA_NIEN;
392 	ap->last_ctl = ap->ctl;
393 
394 	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 		ata_sff_set_devctl(ap, ap->ctl);
396 	ata_wait_idle(ap);
397 
398 	if (ap->ops->sff_irq_clear)
399 		ap->ops->sff_irq_clear(ap);
400 }
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402 
403 /**
404  *	ata_sff_tf_load - send taskfile registers to host controller
405  *	@ap: Port to which output is sent
406  *	@tf: ATA taskfile register set
407  *
408  *	Outputs ATA taskfile to standard ATA host controller.
409  *
410  *	LOCKING:
411  *	Inherited from caller.
412  */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 {
415 	struct ata_ioports *ioaddr = &ap->ioaddr;
416 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417 
418 	if (tf->ctl != ap->last_ctl) {
419 		if (ioaddr->ctl_addr)
420 			iowrite8(tf->ctl, ioaddr->ctl_addr);
421 		ap->last_ctl = tf->ctl;
422 		ata_wait_idle(ap);
423 	}
424 
425 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 		WARN_ON_ONCE(!ioaddr->ctl_addr);
427 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 			tf->hob_feature,
434 			tf->hob_nsect,
435 			tf->hob_lbal,
436 			tf->hob_lbam,
437 			tf->hob_lbah);
438 	}
439 
440 	if (is_addr) {
441 		iowrite8(tf->feature, ioaddr->feature_addr);
442 		iowrite8(tf->nsect, ioaddr->nsect_addr);
443 		iowrite8(tf->lbal, ioaddr->lbal_addr);
444 		iowrite8(tf->lbam, ioaddr->lbam_addr);
445 		iowrite8(tf->lbah, ioaddr->lbah_addr);
446 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 			tf->feature,
448 			tf->nsect,
449 			tf->lbal,
450 			tf->lbam,
451 			tf->lbah);
452 	}
453 
454 	if (tf->flags & ATA_TFLAG_DEVICE) {
455 		iowrite8(tf->device, ioaddr->device_addr);
456 		VPRINTK("device 0x%X\n", tf->device);
457 	}
458 
459 	ata_wait_idle(ap);
460 }
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462 
463 /**
464  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
465  *	@ap: Port from which input is read
466  *	@tf: ATA taskfile register set for storing input
467  *
468  *	Reads ATA taskfile registers for currently-selected device
469  *	into @tf. Assumes the device has a fully SFF compliant task file
470  *	layout and behaviour. If you device does not (eg has a different
471  *	status method) then you will need to provide a replacement tf_read
472  *
473  *	LOCKING:
474  *	Inherited from caller.
475  */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 {
478 	struct ata_ioports *ioaddr = &ap->ioaddr;
479 
480 	tf->command = ata_sff_check_status(ap);
481 	tf->feature = ioread8(ioaddr->error_addr);
482 	tf->nsect = ioread8(ioaddr->nsect_addr);
483 	tf->lbal = ioread8(ioaddr->lbal_addr);
484 	tf->lbam = ioread8(ioaddr->lbam_addr);
485 	tf->lbah = ioread8(ioaddr->lbah_addr);
486 	tf->device = ioread8(ioaddr->device_addr);
487 
488 	if (tf->flags & ATA_TFLAG_LBA48) {
489 		if (likely(ioaddr->ctl_addr)) {
490 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 			tf->hob_feature = ioread8(ioaddr->error_addr);
492 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 			iowrite8(tf->ctl, ioaddr->ctl_addr);
497 			ap->last_ctl = tf->ctl;
498 		} else
499 			WARN_ON_ONCE(1);
500 	}
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503 
504 /**
505  *	ata_sff_exec_command - issue ATA command to host controller
506  *	@ap: port to which command is being issued
507  *	@tf: ATA taskfile register set
508  *
509  *	Issues ATA command, with proper synchronization with interrupt
510  *	handler / other threads.
511  *
512  *	LOCKING:
513  *	spin_lock_irqsave(host lock)
514  */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 {
517 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518 
519 	iowrite8(tf->command, ap->ioaddr.command_addr);
520 	ata_sff_pause(ap);
521 }
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523 
524 /**
525  *	ata_tf_to_host - issue ATA taskfile to host controller
526  *	@ap: port to which command is being issued
527  *	@tf: ATA taskfile register set
528  *
529  *	Issues ATA taskfile register set to ATA host controller,
530  *	with proper synchronization with interrupt handler and
531  *	other threads.
532  *
533  *	LOCKING:
534  *	spin_lock_irqsave(host lock)
535  */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf)536 static inline void ata_tf_to_host(struct ata_port *ap,
537 				  const struct ata_taskfile *tf)
538 {
539 	ap->ops->sff_tf_load(ap, tf);
540 	ap->ops->sff_exec_command(ap, tf);
541 }
542 
543 /**
544  *	ata_sff_data_xfer - Transfer data by PIO
545  *	@qc: queued command
546  *	@buf: data buffer
547  *	@buflen: buffer length
548  *	@rw: read/write
549  *
550  *	Transfer data from/to the device data register by PIO.
551  *
552  *	LOCKING:
553  *	Inherited from caller.
554  *
555  *	RETURNS:
556  *	Bytes consumed.
557  */
ata_sff_data_xfer(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)558 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
559 			       unsigned int buflen, int rw)
560 {
561 	struct ata_port *ap = qc->dev->link->ap;
562 	void __iomem *data_addr = ap->ioaddr.data_addr;
563 	unsigned int words = buflen >> 1;
564 
565 	/* Transfer multiple of 2 bytes */
566 	if (rw == READ)
567 		ioread16_rep(data_addr, buf, words);
568 	else
569 		iowrite16_rep(data_addr, buf, words);
570 
571 	/* Transfer trailing byte, if any. */
572 	if (unlikely(buflen & 0x01)) {
573 		unsigned char pad[2] = { };
574 
575 		/* Point buf to the tail of buffer */
576 		buf += buflen - 1;
577 
578 		/*
579 		 * Use io*16_rep() accessors here as well to avoid pointlessly
580 		 * swapping bytes to and from on the big endian machines...
581 		 */
582 		if (rw == READ) {
583 			ioread16_rep(data_addr, pad, 1);
584 			*buf = pad[0];
585 		} else {
586 			pad[0] = *buf;
587 			iowrite16_rep(data_addr, pad, 1);
588 		}
589 		words++;
590 	}
591 
592 	return words << 1;
593 }
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595 
596 /**
597  *	ata_sff_data_xfer32 - Transfer data by PIO
598  *	@qc: queued command
599  *	@buf: data buffer
600  *	@buflen: buffer length
601  *	@rw: read/write
602  *
603  *	Transfer data from/to the device data register by PIO using 32bit
604  *	I/O operations.
605  *
606  *	LOCKING:
607  *	Inherited from caller.
608  *
609  *	RETURNS:
610  *	Bytes consumed.
611  */
612 
ata_sff_data_xfer32(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)613 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
614 			       unsigned int buflen, int rw)
615 {
616 	struct ata_device *dev = qc->dev;
617 	struct ata_port *ap = dev->link->ap;
618 	void __iomem *data_addr = ap->ioaddr.data_addr;
619 	unsigned int words = buflen >> 2;
620 	int slop = buflen & 3;
621 
622 	if (!(ap->pflags & ATA_PFLAG_PIO32))
623 		return ata_sff_data_xfer(qc, buf, buflen, rw);
624 
625 	/* Transfer multiple of 4 bytes */
626 	if (rw == READ)
627 		ioread32_rep(data_addr, buf, words);
628 	else
629 		iowrite32_rep(data_addr, buf, words);
630 
631 	/* Transfer trailing bytes, if any */
632 	if (unlikely(slop)) {
633 		unsigned char pad[4] = { };
634 
635 		/* Point buf to the tail of buffer */
636 		buf += buflen - slop;
637 
638 		/*
639 		 * Use io*_rep() accessors here as well to avoid pointlessly
640 		 * swapping bytes to and from on the big endian machines...
641 		 */
642 		if (rw == READ) {
643 			if (slop < 3)
644 				ioread16_rep(data_addr, pad, 1);
645 			else
646 				ioread32_rep(data_addr, pad, 1);
647 			memcpy(buf, pad, slop);
648 		} else {
649 			memcpy(pad, buf, slop);
650 			if (slop < 3)
651 				iowrite16_rep(data_addr, pad, 1);
652 			else
653 				iowrite32_rep(data_addr, pad, 1);
654 		}
655 	}
656 	return (buflen + 1) & ~1;
657 }
658 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
659 
660 /**
661  *	ata_sff_data_xfer_noirq - Transfer data by PIO
662  *	@qc: queued command
663  *	@buf: data buffer
664  *	@buflen: buffer length
665  *	@rw: read/write
666  *
667  *	Transfer data from/to the device data register by PIO. Do the
668  *	transfer with interrupts disabled.
669  *
670  *	LOCKING:
671  *	Inherited from caller.
672  *
673  *	RETURNS:
674  *	Bytes consumed.
675  */
ata_sff_data_xfer_noirq(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)676 unsigned int ata_sff_data_xfer_noirq(struct ata_queued_cmd *qc, unsigned char *buf,
677 				     unsigned int buflen, int rw)
678 {
679 	unsigned long flags;
680 	unsigned int consumed;
681 
682 	local_irq_save(flags);
683 	consumed = ata_sff_data_xfer32(qc, buf, buflen, rw);
684 	local_irq_restore(flags);
685 
686 	return consumed;
687 }
688 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
689 
690 /**
691  *	ata_pio_sector - Transfer a sector of data.
692  *	@qc: Command on going
693  *
694  *	Transfer qc->sect_size bytes of data from/to the ATA device.
695  *
696  *	LOCKING:
697  *	Inherited from caller.
698  */
ata_pio_sector(struct ata_queued_cmd * qc)699 static void ata_pio_sector(struct ata_queued_cmd *qc)
700 {
701 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
702 	struct ata_port *ap = qc->ap;
703 	struct page *page;
704 	unsigned int offset;
705 	unsigned char *buf;
706 
707 	if (!qc->cursg) {
708 		qc->curbytes = qc->nbytes;
709 		return;
710 	}
711 	if (qc->curbytes == qc->nbytes - qc->sect_size)
712 		ap->hsm_task_state = HSM_ST_LAST;
713 
714 	page = sg_page(qc->cursg);
715 	offset = qc->cursg->offset + qc->cursg_ofs;
716 
717 	/* get the current page and offset */
718 	page = nth_page(page, (offset >> PAGE_SHIFT));
719 	offset %= PAGE_SIZE;
720 
721 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
722 
723 	/* do the actual data transfer */
724 	buf = kmap_atomic(page);
725 	ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
726 	kunmap_atomic(buf);
727 
728 	if (!do_write && !PageSlab(page))
729 		flush_dcache_page(page);
730 
731 	qc->curbytes += qc->sect_size;
732 	qc->cursg_ofs += qc->sect_size;
733 
734 	if (qc->cursg_ofs == qc->cursg->length) {
735 		qc->cursg = sg_next(qc->cursg);
736 		if (!qc->cursg)
737 			ap->hsm_task_state = HSM_ST_LAST;
738 		qc->cursg_ofs = 0;
739 	}
740 }
741 
742 /**
743  *	ata_pio_sectors - Transfer one or many sectors.
744  *	@qc: Command on going
745  *
746  *	Transfer one or many sectors of data from/to the
747  *	ATA device for the DRQ request.
748  *
749  *	LOCKING:
750  *	Inherited from caller.
751  */
ata_pio_sectors(struct ata_queued_cmd * qc)752 static void ata_pio_sectors(struct ata_queued_cmd *qc)
753 {
754 	if (is_multi_taskfile(&qc->tf)) {
755 		/* READ/WRITE MULTIPLE */
756 		unsigned int nsect;
757 
758 		WARN_ON_ONCE(qc->dev->multi_count == 0);
759 
760 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
761 			    qc->dev->multi_count);
762 		while (nsect--)
763 			ata_pio_sector(qc);
764 	} else
765 		ata_pio_sector(qc);
766 
767 	ata_sff_sync(qc->ap); /* flush */
768 }
769 
770 /**
771  *	atapi_send_cdb - Write CDB bytes to hardware
772  *	@ap: Port to which ATAPI device is attached.
773  *	@qc: Taskfile currently active
774  *
775  *	When device has indicated its readiness to accept
776  *	a CDB, this function is called.  Send the CDB.
777  *
778  *	LOCKING:
779  *	caller.
780  */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)781 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
782 {
783 	/* send SCSI cdb */
784 	DPRINTK("send cdb\n");
785 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
786 
787 	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
788 	ata_sff_sync(ap);
789 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
790 	   or is bmdma_start guaranteed to do it ? */
791 	switch (qc->tf.protocol) {
792 	case ATAPI_PROT_PIO:
793 		ap->hsm_task_state = HSM_ST;
794 		break;
795 	case ATAPI_PROT_NODATA:
796 		ap->hsm_task_state = HSM_ST_LAST;
797 		break;
798 #ifdef CONFIG_ATA_BMDMA
799 	case ATAPI_PROT_DMA:
800 		ap->hsm_task_state = HSM_ST_LAST;
801 		/* initiate bmdma */
802 		ap->ops->bmdma_start(qc);
803 		break;
804 #endif /* CONFIG_ATA_BMDMA */
805 	default:
806 		BUG();
807 	}
808 }
809 
810 /**
811  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
812  *	@qc: Command on going
813  *	@bytes: number of bytes
814  *
815  *	Transfer Transfer data from/to the ATAPI device.
816  *
817  *	LOCKING:
818  *	Inherited from caller.
819  *
820  */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)821 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
822 {
823 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
824 	struct ata_port *ap = qc->ap;
825 	struct ata_device *dev = qc->dev;
826 	struct ata_eh_info *ehi = &dev->link->eh_info;
827 	struct scatterlist *sg;
828 	struct page *page;
829 	unsigned char *buf;
830 	unsigned int offset, count, consumed;
831 
832 next_sg:
833 	sg = qc->cursg;
834 	if (unlikely(!sg)) {
835 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
836 				  "buf=%u cur=%u bytes=%u",
837 				  qc->nbytes, qc->curbytes, bytes);
838 		return -1;
839 	}
840 
841 	page = sg_page(sg);
842 	offset = sg->offset + qc->cursg_ofs;
843 
844 	/* get the current page and offset */
845 	page = nth_page(page, (offset >> PAGE_SHIFT));
846 	offset %= PAGE_SIZE;
847 
848 	/* don't overrun current sg */
849 	count = min(sg->length - qc->cursg_ofs, bytes);
850 
851 	/* don't cross page boundaries */
852 	count = min(count, (unsigned int)PAGE_SIZE - offset);
853 
854 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
855 
856 	/* do the actual data transfer */
857 	buf = kmap_atomic(page);
858 	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
859 	kunmap_atomic(buf);
860 
861 	bytes -= min(bytes, consumed);
862 	qc->curbytes += count;
863 	qc->cursg_ofs += count;
864 
865 	if (qc->cursg_ofs == sg->length) {
866 		qc->cursg = sg_next(qc->cursg);
867 		qc->cursg_ofs = 0;
868 	}
869 
870 	/*
871 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
872 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
873 	 * check correctly as it doesn't know if it is the last request being
874 	 * made. Somebody should implement a proper sanity check.
875 	 */
876 	if (bytes)
877 		goto next_sg;
878 	return 0;
879 }
880 
881 /**
882  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
883  *	@qc: Command on going
884  *
885  *	Transfer Transfer data from/to the ATAPI device.
886  *
887  *	LOCKING:
888  *	Inherited from caller.
889  */
atapi_pio_bytes(struct ata_queued_cmd * qc)890 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
891 {
892 	struct ata_port *ap = qc->ap;
893 	struct ata_device *dev = qc->dev;
894 	struct ata_eh_info *ehi = &dev->link->eh_info;
895 	unsigned int ireason, bc_lo, bc_hi, bytes;
896 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
897 
898 	/* Abuse qc->result_tf for temp storage of intermediate TF
899 	 * here to save some kernel stack usage.
900 	 * For normal completion, qc->result_tf is not relevant. For
901 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
902 	 * So, the correctness of qc->result_tf is not affected.
903 	 */
904 	ap->ops->sff_tf_read(ap, &qc->result_tf);
905 	ireason = qc->result_tf.nsect;
906 	bc_lo = qc->result_tf.lbam;
907 	bc_hi = qc->result_tf.lbah;
908 	bytes = (bc_hi << 8) | bc_lo;
909 
910 	/* shall be cleared to zero, indicating xfer of data */
911 	if (unlikely(ireason & ATAPI_COD))
912 		goto atapi_check;
913 
914 	/* make sure transfer direction matches expected */
915 	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
916 	if (unlikely(do_write != i_write))
917 		goto atapi_check;
918 
919 	if (unlikely(!bytes))
920 		goto atapi_check;
921 
922 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
923 
924 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
925 		goto err_out;
926 	ata_sff_sync(ap); /* flush */
927 
928 	return;
929 
930  atapi_check:
931 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
932 			  ireason, bytes);
933  err_out:
934 	qc->err_mask |= AC_ERR_HSM;
935 	ap->hsm_task_state = HSM_ST_ERR;
936 }
937 
938 /**
939  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
940  *	@ap: the target ata_port
941  *	@qc: qc on going
942  *
943  *	RETURNS:
944  *	1 if ok in workqueue, 0 otherwise.
945  */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)946 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
947 						struct ata_queued_cmd *qc)
948 {
949 	if (qc->tf.flags & ATA_TFLAG_POLLING)
950 		return 1;
951 
952 	if (ap->hsm_task_state == HSM_ST_FIRST) {
953 		if (qc->tf.protocol == ATA_PROT_PIO &&
954 		   (qc->tf.flags & ATA_TFLAG_WRITE))
955 		    return 1;
956 
957 		if (ata_is_atapi(qc->tf.protocol) &&
958 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
959 			return 1;
960 	}
961 
962 	return 0;
963 }
964 
965 /**
966  *	ata_hsm_qc_complete - finish a qc running on standard HSM
967  *	@qc: Command to complete
968  *	@in_wq: 1 if called from workqueue, 0 otherwise
969  *
970  *	Finish @qc which is running on standard HSM.
971  *
972  *	LOCKING:
973  *	If @in_wq is zero, spin_lock_irqsave(host lock).
974  *	Otherwise, none on entry and grabs host lock.
975  */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)976 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
977 {
978 	struct ata_port *ap = qc->ap;
979 
980 	if (ap->ops->error_handler) {
981 		if (in_wq) {
982 			/* EH might have kicked in while host lock is
983 			 * released.
984 			 */
985 			qc = ata_qc_from_tag(ap, qc->tag);
986 			if (qc) {
987 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
988 					ata_sff_irq_on(ap);
989 					ata_qc_complete(qc);
990 				} else
991 					ata_port_freeze(ap);
992 			}
993 		} else {
994 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
995 				ata_qc_complete(qc);
996 			else
997 				ata_port_freeze(ap);
998 		}
999 	} else {
1000 		if (in_wq) {
1001 			ata_sff_irq_on(ap);
1002 			ata_qc_complete(qc);
1003 		} else
1004 			ata_qc_complete(qc);
1005 	}
1006 }
1007 
1008 /**
1009  *	ata_sff_hsm_move - move the HSM to the next state.
1010  *	@ap: the target ata_port
1011  *	@qc: qc on going
1012  *	@status: current device status
1013  *	@in_wq: 1 if called from workqueue, 0 otherwise
1014  *
1015  *	RETURNS:
1016  *	1 when poll next status needed, 0 otherwise.
1017  */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)1018 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1019 		     u8 status, int in_wq)
1020 {
1021 	struct ata_link *link = qc->dev->link;
1022 	struct ata_eh_info *ehi = &link->eh_info;
1023 	int poll_next;
1024 
1025 	lockdep_assert_held(ap->lock);
1026 
1027 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1028 
1029 	/* Make sure ata_sff_qc_issue() does not throw things
1030 	 * like DMA polling into the workqueue. Notice that
1031 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1032 	 */
1033 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1034 
1035 fsm_start:
1036 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1037 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1038 
1039 	switch (ap->hsm_task_state) {
1040 	case HSM_ST_FIRST:
1041 		/* Send first data block or PACKET CDB */
1042 
1043 		/* If polling, we will stay in the work queue after
1044 		 * sending the data. Otherwise, interrupt handler
1045 		 * takes over after sending the data.
1046 		 */
1047 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1048 
1049 		/* check device status */
1050 		if (unlikely((status & ATA_DRQ) == 0)) {
1051 			/* handle BSY=0, DRQ=0 as error */
1052 			if (likely(status & (ATA_ERR | ATA_DF)))
1053 				/* device stops HSM for abort/error */
1054 				qc->err_mask |= AC_ERR_DEV;
1055 			else {
1056 				/* HSM violation. Let EH handle this */
1057 				ata_ehi_push_desc(ehi,
1058 					"ST_FIRST: !(DRQ|ERR|DF)");
1059 				qc->err_mask |= AC_ERR_HSM;
1060 			}
1061 
1062 			ap->hsm_task_state = HSM_ST_ERR;
1063 			goto fsm_start;
1064 		}
1065 
1066 		/* Device should not ask for data transfer (DRQ=1)
1067 		 * when it finds something wrong.
1068 		 * We ignore DRQ here and stop the HSM by
1069 		 * changing hsm_task_state to HSM_ST_ERR and
1070 		 * let the EH abort the command or reset the device.
1071 		 */
1072 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1073 			/* Some ATAPI tape drives forget to clear the ERR bit
1074 			 * when doing the next command (mostly request sense).
1075 			 * We ignore ERR here to workaround and proceed sending
1076 			 * the CDB.
1077 			 */
1078 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1079 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1080 					"DRQ=1 with device error, "
1081 					"dev_stat 0x%X", status);
1082 				qc->err_mask |= AC_ERR_HSM;
1083 				ap->hsm_task_state = HSM_ST_ERR;
1084 				goto fsm_start;
1085 			}
1086 		}
1087 
1088 		if (qc->tf.protocol == ATA_PROT_PIO) {
1089 			/* PIO data out protocol.
1090 			 * send first data block.
1091 			 */
1092 
1093 			/* ata_pio_sectors() might change the state
1094 			 * to HSM_ST_LAST. so, the state is changed here
1095 			 * before ata_pio_sectors().
1096 			 */
1097 			ap->hsm_task_state = HSM_ST;
1098 			ata_pio_sectors(qc);
1099 		} else
1100 			/* send CDB */
1101 			atapi_send_cdb(ap, qc);
1102 
1103 		/* if polling, ata_sff_pio_task() handles the rest.
1104 		 * otherwise, interrupt handler takes over from here.
1105 		 */
1106 		break;
1107 
1108 	case HSM_ST:
1109 		/* complete command or read/write the data register */
1110 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1111 			/* ATAPI PIO protocol */
1112 			if ((status & ATA_DRQ) == 0) {
1113 				/* No more data to transfer or device error.
1114 				 * Device error will be tagged in HSM_ST_LAST.
1115 				 */
1116 				ap->hsm_task_state = HSM_ST_LAST;
1117 				goto fsm_start;
1118 			}
1119 
1120 			/* Device should not ask for data transfer (DRQ=1)
1121 			 * when it finds something wrong.
1122 			 * We ignore DRQ here and stop the HSM by
1123 			 * changing hsm_task_state to HSM_ST_ERR and
1124 			 * let the EH abort the command or reset the device.
1125 			 */
1126 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1127 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1128 					"DRQ=1 with device error, "
1129 					"dev_stat 0x%X", status);
1130 				qc->err_mask |= AC_ERR_HSM;
1131 				ap->hsm_task_state = HSM_ST_ERR;
1132 				goto fsm_start;
1133 			}
1134 
1135 			atapi_pio_bytes(qc);
1136 
1137 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1138 				/* bad ireason reported by device */
1139 				goto fsm_start;
1140 
1141 		} else {
1142 			/* ATA PIO protocol */
1143 			if (unlikely((status & ATA_DRQ) == 0)) {
1144 				/* handle BSY=0, DRQ=0 as error */
1145 				if (likely(status & (ATA_ERR | ATA_DF))) {
1146 					/* device stops HSM for abort/error */
1147 					qc->err_mask |= AC_ERR_DEV;
1148 
1149 					/* If diagnostic failed and this is
1150 					 * IDENTIFY, it's likely a phantom
1151 					 * device.  Mark hint.
1152 					 */
1153 					if (qc->dev->horkage &
1154 					    ATA_HORKAGE_DIAGNOSTIC)
1155 						qc->err_mask |=
1156 							AC_ERR_NODEV_HINT;
1157 				} else {
1158 					/* HSM violation. Let EH handle this.
1159 					 * Phantom devices also trigger this
1160 					 * condition.  Mark hint.
1161 					 */
1162 					ata_ehi_push_desc(ehi, "ST-ATA: "
1163 						"DRQ=0 without device error, "
1164 						"dev_stat 0x%X", status);
1165 					qc->err_mask |= AC_ERR_HSM |
1166 							AC_ERR_NODEV_HINT;
1167 				}
1168 
1169 				ap->hsm_task_state = HSM_ST_ERR;
1170 				goto fsm_start;
1171 			}
1172 
1173 			/* For PIO reads, some devices may ask for
1174 			 * data transfer (DRQ=1) alone with ERR=1.
1175 			 * We respect DRQ here and transfer one
1176 			 * block of junk data before changing the
1177 			 * hsm_task_state to HSM_ST_ERR.
1178 			 *
1179 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1180 			 * sense since the data block has been
1181 			 * transferred to the device.
1182 			 */
1183 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1184 				/* data might be corrputed */
1185 				qc->err_mask |= AC_ERR_DEV;
1186 
1187 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1188 					ata_pio_sectors(qc);
1189 					status = ata_wait_idle(ap);
1190 				}
1191 
1192 				if (status & (ATA_BUSY | ATA_DRQ)) {
1193 					ata_ehi_push_desc(ehi, "ST-ATA: "
1194 						"BUSY|DRQ persists on ERR|DF, "
1195 						"dev_stat 0x%X", status);
1196 					qc->err_mask |= AC_ERR_HSM;
1197 				}
1198 
1199 				/* There are oddball controllers with
1200 				 * status register stuck at 0x7f and
1201 				 * lbal/m/h at zero which makes it
1202 				 * pass all other presence detection
1203 				 * mechanisms we have.  Set NODEV_HINT
1204 				 * for it.  Kernel bz#7241.
1205 				 */
1206 				if (status == 0x7f)
1207 					qc->err_mask |= AC_ERR_NODEV_HINT;
1208 
1209 				/* ata_pio_sectors() might change the
1210 				 * state to HSM_ST_LAST. so, the state
1211 				 * is changed after ata_pio_sectors().
1212 				 */
1213 				ap->hsm_task_state = HSM_ST_ERR;
1214 				goto fsm_start;
1215 			}
1216 
1217 			ata_pio_sectors(qc);
1218 
1219 			if (ap->hsm_task_state == HSM_ST_LAST &&
1220 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1221 				/* all data read */
1222 				status = ata_wait_idle(ap);
1223 				goto fsm_start;
1224 			}
1225 		}
1226 
1227 		poll_next = 1;
1228 		break;
1229 
1230 	case HSM_ST_LAST:
1231 		if (unlikely(!ata_ok(status))) {
1232 			qc->err_mask |= __ac_err_mask(status);
1233 			ap->hsm_task_state = HSM_ST_ERR;
1234 			goto fsm_start;
1235 		}
1236 
1237 		/* no more data to transfer */
1238 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1239 			ap->print_id, qc->dev->devno, status);
1240 
1241 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1242 
1243 		ap->hsm_task_state = HSM_ST_IDLE;
1244 
1245 		/* complete taskfile transaction */
1246 		ata_hsm_qc_complete(qc, in_wq);
1247 
1248 		poll_next = 0;
1249 		break;
1250 
1251 	case HSM_ST_ERR:
1252 		ap->hsm_task_state = HSM_ST_IDLE;
1253 
1254 		/* complete taskfile transaction */
1255 		ata_hsm_qc_complete(qc, in_wq);
1256 
1257 		poll_next = 0;
1258 		break;
1259 	default:
1260 		poll_next = 0;
1261 		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1262 		     ap->print_id, ap->hsm_task_state);
1263 	}
1264 
1265 	return poll_next;
1266 }
1267 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1268 
ata_sff_queue_work(struct work_struct * work)1269 void ata_sff_queue_work(struct work_struct *work)
1270 {
1271 	queue_work(ata_sff_wq, work);
1272 }
1273 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1274 
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1275 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1276 {
1277 	queue_delayed_work(ata_sff_wq, dwork, delay);
1278 }
1279 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1280 
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1281 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1282 {
1283 	struct ata_port *ap = link->ap;
1284 
1285 	WARN_ON((ap->sff_pio_task_link != NULL) &&
1286 		(ap->sff_pio_task_link != link));
1287 	ap->sff_pio_task_link = link;
1288 
1289 	/* may fail if ata_sff_flush_pio_task() in progress */
1290 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1291 }
1292 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1293 
ata_sff_flush_pio_task(struct ata_port * ap)1294 void ata_sff_flush_pio_task(struct ata_port *ap)
1295 {
1296 	DPRINTK("ENTER\n");
1297 
1298 	cancel_delayed_work_sync(&ap->sff_pio_task);
1299 
1300 	/*
1301 	 * We wanna reset the HSM state to IDLE.  If we do so without
1302 	 * grabbing the port lock, critical sections protected by it which
1303 	 * expect the HSM state to stay stable may get surprised.  For
1304 	 * example, we may set IDLE in between the time
1305 	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1306 	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1307 	 */
1308 	spin_lock_irq(ap->lock);
1309 	ap->hsm_task_state = HSM_ST_IDLE;
1310 	spin_unlock_irq(ap->lock);
1311 
1312 	ap->sff_pio_task_link = NULL;
1313 
1314 	if (ata_msg_ctl(ap))
1315 		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1316 }
1317 
ata_sff_pio_task(struct work_struct * work)1318 static void ata_sff_pio_task(struct work_struct *work)
1319 {
1320 	struct ata_port *ap =
1321 		container_of(work, struct ata_port, sff_pio_task.work);
1322 	struct ata_link *link = ap->sff_pio_task_link;
1323 	struct ata_queued_cmd *qc;
1324 	u8 status;
1325 	int poll_next;
1326 
1327 	spin_lock_irq(ap->lock);
1328 
1329 	BUG_ON(ap->sff_pio_task_link == NULL);
1330 	/* qc can be NULL if timeout occurred */
1331 	qc = ata_qc_from_tag(ap, link->active_tag);
1332 	if (!qc) {
1333 		ap->sff_pio_task_link = NULL;
1334 		goto out_unlock;
1335 	}
1336 
1337 fsm_start:
1338 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1339 
1340 	/*
1341 	 * This is purely heuristic.  This is a fast path.
1342 	 * Sometimes when we enter, BSY will be cleared in
1343 	 * a chk-status or two.  If not, the drive is probably seeking
1344 	 * or something.  Snooze for a couple msecs, then
1345 	 * chk-status again.  If still busy, queue delayed work.
1346 	 */
1347 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1348 	if (status & ATA_BUSY) {
1349 		spin_unlock_irq(ap->lock);
1350 		ata_msleep(ap, 2);
1351 		spin_lock_irq(ap->lock);
1352 
1353 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1354 		if (status & ATA_BUSY) {
1355 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1356 			goto out_unlock;
1357 		}
1358 	}
1359 
1360 	/*
1361 	 * hsm_move() may trigger another command to be processed.
1362 	 * clean the link beforehand.
1363 	 */
1364 	ap->sff_pio_task_link = NULL;
1365 	/* move the HSM */
1366 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1367 
1368 	/* another command or interrupt handler
1369 	 * may be running at this point.
1370 	 */
1371 	if (poll_next)
1372 		goto fsm_start;
1373 out_unlock:
1374 	spin_unlock_irq(ap->lock);
1375 }
1376 
1377 /**
1378  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1379  *	@qc: command to issue to device
1380  *
1381  *	This function issues a PIO or NODATA command to a SFF
1382  *	controller.
1383  *
1384  *	LOCKING:
1385  *	spin_lock_irqsave(host lock)
1386  *
1387  *	RETURNS:
1388  *	Zero on success, AC_ERR_* mask on failure
1389  */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1390 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1391 {
1392 	struct ata_port *ap = qc->ap;
1393 	struct ata_link *link = qc->dev->link;
1394 
1395 	/* Use polling pio if the LLD doesn't handle
1396 	 * interrupt driven pio and atapi CDB interrupt.
1397 	 */
1398 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1399 		qc->tf.flags |= ATA_TFLAG_POLLING;
1400 
1401 	/* select the device */
1402 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1403 
1404 	/* start the command */
1405 	switch (qc->tf.protocol) {
1406 	case ATA_PROT_NODATA:
1407 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1408 			ata_qc_set_polling(qc);
1409 
1410 		ata_tf_to_host(ap, &qc->tf);
1411 		ap->hsm_task_state = HSM_ST_LAST;
1412 
1413 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1414 			ata_sff_queue_pio_task(link, 0);
1415 
1416 		break;
1417 
1418 	case ATA_PROT_PIO:
1419 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1420 			ata_qc_set_polling(qc);
1421 
1422 		ata_tf_to_host(ap, &qc->tf);
1423 
1424 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1425 			/* PIO data out protocol */
1426 			ap->hsm_task_state = HSM_ST_FIRST;
1427 			ata_sff_queue_pio_task(link, 0);
1428 
1429 			/* always send first data block using the
1430 			 * ata_sff_pio_task() codepath.
1431 			 */
1432 		} else {
1433 			/* PIO data in protocol */
1434 			ap->hsm_task_state = HSM_ST;
1435 
1436 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1437 				ata_sff_queue_pio_task(link, 0);
1438 
1439 			/* if polling, ata_sff_pio_task() handles the
1440 			 * rest.  otherwise, interrupt handler takes
1441 			 * over from here.
1442 			 */
1443 		}
1444 
1445 		break;
1446 
1447 	case ATAPI_PROT_PIO:
1448 	case ATAPI_PROT_NODATA:
1449 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1450 			ata_qc_set_polling(qc);
1451 
1452 		ata_tf_to_host(ap, &qc->tf);
1453 
1454 		ap->hsm_task_state = HSM_ST_FIRST;
1455 
1456 		/* send cdb by polling if no cdb interrupt */
1457 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1458 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1459 			ata_sff_queue_pio_task(link, 0);
1460 		break;
1461 
1462 	default:
1463 		return AC_ERR_SYSTEM;
1464 	}
1465 
1466 	return 0;
1467 }
1468 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1469 
1470 /**
1471  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1472  *	@qc: qc to fill result TF for
1473  *
1474  *	@qc is finished and result TF needs to be filled.  Fill it
1475  *	using ->sff_tf_read.
1476  *
1477  *	LOCKING:
1478  *	spin_lock_irqsave(host lock)
1479  *
1480  *	RETURNS:
1481  *	true indicating that result TF is successfully filled.
1482  */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1483 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1484 {
1485 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1486 	return true;
1487 }
1488 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1489 
ata_sff_idle_irq(struct ata_port * ap)1490 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1491 {
1492 	ap->stats.idle_irq++;
1493 
1494 #ifdef ATA_IRQ_TRAP
1495 	if ((ap->stats.idle_irq % 1000) == 0) {
1496 		ap->ops->sff_check_status(ap);
1497 		if (ap->ops->sff_irq_clear)
1498 			ap->ops->sff_irq_clear(ap);
1499 		ata_port_warn(ap, "irq trap\n");
1500 		return 1;
1501 	}
1502 #endif
1503 	return 0;	/* irq not handled */
1504 }
1505 
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1506 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1507 					struct ata_queued_cmd *qc,
1508 					bool hsmv_on_idle)
1509 {
1510 	u8 status;
1511 
1512 	VPRINTK("ata%u: protocol %d task_state %d\n",
1513 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1514 
1515 	/* Check whether we are expecting interrupt in this state */
1516 	switch (ap->hsm_task_state) {
1517 	case HSM_ST_FIRST:
1518 		/* Some pre-ATAPI-4 devices assert INTRQ
1519 		 * at this state when ready to receive CDB.
1520 		 */
1521 
1522 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1523 		 * The flag was turned on only for atapi devices.  No
1524 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1525 		 */
1526 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1527 			return ata_sff_idle_irq(ap);
1528 		break;
1529 	case HSM_ST_IDLE:
1530 		return ata_sff_idle_irq(ap);
1531 	default:
1532 		break;
1533 	}
1534 
1535 	/* check main status, clearing INTRQ if needed */
1536 	status = ata_sff_irq_status(ap);
1537 	if (status & ATA_BUSY) {
1538 		if (hsmv_on_idle) {
1539 			/* BMDMA engine is already stopped, we're screwed */
1540 			qc->err_mask |= AC_ERR_HSM;
1541 			ap->hsm_task_state = HSM_ST_ERR;
1542 		} else
1543 			return ata_sff_idle_irq(ap);
1544 	}
1545 
1546 	/* clear irq events */
1547 	if (ap->ops->sff_irq_clear)
1548 		ap->ops->sff_irq_clear(ap);
1549 
1550 	ata_sff_hsm_move(ap, qc, status, 0);
1551 
1552 	return 1;	/* irq handled */
1553 }
1554 
1555 /**
1556  *	ata_sff_port_intr - Handle SFF port interrupt
1557  *	@ap: Port on which interrupt arrived (possibly...)
1558  *	@qc: Taskfile currently active in engine
1559  *
1560  *	Handle port interrupt for given queued command.
1561  *
1562  *	LOCKING:
1563  *	spin_lock_irqsave(host lock)
1564  *
1565  *	RETURNS:
1566  *	One if interrupt was handled, zero if not (shared irq).
1567  */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1568 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1569 {
1570 	return __ata_sff_port_intr(ap, qc, false);
1571 }
1572 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1573 
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1574 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1575 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1576 {
1577 	struct ata_host *host = dev_instance;
1578 	bool retried = false;
1579 	unsigned int i;
1580 	unsigned int handled, idle, polling;
1581 	unsigned long flags;
1582 
1583 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1584 	spin_lock_irqsave(&host->lock, flags);
1585 
1586 retry:
1587 	handled = idle = polling = 0;
1588 	for (i = 0; i < host->n_ports; i++) {
1589 		struct ata_port *ap = host->ports[i];
1590 		struct ata_queued_cmd *qc;
1591 
1592 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1593 		if (qc) {
1594 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1595 				handled |= port_intr(ap, qc);
1596 			else
1597 				polling |= 1 << i;
1598 		} else
1599 			idle |= 1 << i;
1600 	}
1601 
1602 	/*
1603 	 * If no port was expecting IRQ but the controller is actually
1604 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1605 	 * pending status if available and clear spurious IRQ.
1606 	 */
1607 	if (!handled && !retried) {
1608 		bool retry = false;
1609 
1610 		for (i = 0; i < host->n_ports; i++) {
1611 			struct ata_port *ap = host->ports[i];
1612 
1613 			if (polling & (1 << i))
1614 				continue;
1615 
1616 			if (!ap->ops->sff_irq_check ||
1617 			    !ap->ops->sff_irq_check(ap))
1618 				continue;
1619 
1620 			if (idle & (1 << i)) {
1621 				ap->ops->sff_check_status(ap);
1622 				if (ap->ops->sff_irq_clear)
1623 					ap->ops->sff_irq_clear(ap);
1624 			} else {
1625 				/* clear INTRQ and check if BUSY cleared */
1626 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1627 					retry |= true;
1628 				/*
1629 				 * With command in flight, we can't do
1630 				 * sff_irq_clear() w/o racing with completion.
1631 				 */
1632 			}
1633 		}
1634 
1635 		if (retry) {
1636 			retried = true;
1637 			goto retry;
1638 		}
1639 	}
1640 
1641 	spin_unlock_irqrestore(&host->lock, flags);
1642 
1643 	return IRQ_RETVAL(handled);
1644 }
1645 
1646 /**
1647  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1648  *	@irq: irq line (unused)
1649  *	@dev_instance: pointer to our ata_host information structure
1650  *
1651  *	Default interrupt handler for PCI IDE devices.  Calls
1652  *	ata_sff_port_intr() for each port that is not disabled.
1653  *
1654  *	LOCKING:
1655  *	Obtains host lock during operation.
1656  *
1657  *	RETURNS:
1658  *	IRQ_NONE or IRQ_HANDLED.
1659  */
ata_sff_interrupt(int irq,void * dev_instance)1660 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1661 {
1662 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1663 }
1664 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1665 
1666 /**
1667  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1668  *	@ap: port that appears to have timed out
1669  *
1670  *	Called from the libata error handlers when the core code suspects
1671  *	an interrupt has been lost. If it has complete anything we can and
1672  *	then return. Interface must support altstatus for this faster
1673  *	recovery to occur.
1674  *
1675  *	Locking:
1676  *	Caller holds host lock
1677  */
1678 
ata_sff_lost_interrupt(struct ata_port * ap)1679 void ata_sff_lost_interrupt(struct ata_port *ap)
1680 {
1681 	u8 status;
1682 	struct ata_queued_cmd *qc;
1683 
1684 	/* Only one outstanding command per SFF channel */
1685 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1686 	/* We cannot lose an interrupt on a non-existent or polled command */
1687 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1688 		return;
1689 	/* See if the controller thinks it is still busy - if so the command
1690 	   isn't a lost IRQ but is still in progress */
1691 	status = ata_sff_altstatus(ap);
1692 	if (status & ATA_BUSY)
1693 		return;
1694 
1695 	/* There was a command running, we are no longer busy and we have
1696 	   no interrupt. */
1697 	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1698 								status);
1699 	/* Run the host interrupt logic as if the interrupt had not been
1700 	   lost */
1701 	ata_sff_port_intr(ap, qc);
1702 }
1703 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1704 
1705 /**
1706  *	ata_sff_freeze - Freeze SFF controller port
1707  *	@ap: port to freeze
1708  *
1709  *	Freeze SFF controller port.
1710  *
1711  *	LOCKING:
1712  *	Inherited from caller.
1713  */
ata_sff_freeze(struct ata_port * ap)1714 void ata_sff_freeze(struct ata_port *ap)
1715 {
1716 	ap->ctl |= ATA_NIEN;
1717 	ap->last_ctl = ap->ctl;
1718 
1719 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1720 		ata_sff_set_devctl(ap, ap->ctl);
1721 
1722 	/* Under certain circumstances, some controllers raise IRQ on
1723 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1724 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1725 	 */
1726 	ap->ops->sff_check_status(ap);
1727 
1728 	if (ap->ops->sff_irq_clear)
1729 		ap->ops->sff_irq_clear(ap);
1730 }
1731 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1732 
1733 /**
1734  *	ata_sff_thaw - Thaw SFF controller port
1735  *	@ap: port to thaw
1736  *
1737  *	Thaw SFF controller port.
1738  *
1739  *	LOCKING:
1740  *	Inherited from caller.
1741  */
ata_sff_thaw(struct ata_port * ap)1742 void ata_sff_thaw(struct ata_port *ap)
1743 {
1744 	/* clear & re-enable interrupts */
1745 	ap->ops->sff_check_status(ap);
1746 	if (ap->ops->sff_irq_clear)
1747 		ap->ops->sff_irq_clear(ap);
1748 	ata_sff_irq_on(ap);
1749 }
1750 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1751 
1752 /**
1753  *	ata_sff_prereset - prepare SFF link for reset
1754  *	@link: SFF link to be reset
1755  *	@deadline: deadline jiffies for the operation
1756  *
1757  *	SFF link @link is about to be reset.  Initialize it.  It first
1758  *	calls ata_std_prereset() and wait for !BSY if the port is
1759  *	being softreset.
1760  *
1761  *	LOCKING:
1762  *	Kernel thread context (may sleep)
1763  *
1764  *	RETURNS:
1765  *	0 on success, -errno otherwise.
1766  */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1767 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1768 {
1769 	struct ata_eh_context *ehc = &link->eh_context;
1770 	int rc;
1771 
1772 	rc = ata_std_prereset(link, deadline);
1773 	if (rc)
1774 		return rc;
1775 
1776 	/* if we're about to do hardreset, nothing more to do */
1777 	if (ehc->i.action & ATA_EH_HARDRESET)
1778 		return 0;
1779 
1780 	/* wait for !BSY if we don't know that no device is attached */
1781 	if (!ata_link_offline(link)) {
1782 		rc = ata_sff_wait_ready(link, deadline);
1783 		if (rc && rc != -ENODEV) {
1784 			ata_link_warn(link,
1785 				      "device not ready (errno=%d), forcing hardreset\n",
1786 				      rc);
1787 			ehc->i.action |= ATA_EH_HARDRESET;
1788 		}
1789 	}
1790 
1791 	return 0;
1792 }
1793 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1794 
1795 /**
1796  *	ata_devchk - PATA device presence detection
1797  *	@ap: ATA channel to examine
1798  *	@device: Device to examine (starting at zero)
1799  *
1800  *	This technique was originally described in
1801  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1802  *	later found its way into the ATA/ATAPI spec.
1803  *
1804  *	Write a pattern to the ATA shadow registers,
1805  *	and if a device is present, it will respond by
1806  *	correctly storing and echoing back the
1807  *	ATA shadow register contents.
1808  *
1809  *	LOCKING:
1810  *	caller.
1811  */
ata_devchk(struct ata_port * ap,unsigned int device)1812 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1813 {
1814 	struct ata_ioports *ioaddr = &ap->ioaddr;
1815 	u8 nsect, lbal;
1816 
1817 	ap->ops->sff_dev_select(ap, device);
1818 
1819 	iowrite8(0x55, ioaddr->nsect_addr);
1820 	iowrite8(0xaa, ioaddr->lbal_addr);
1821 
1822 	iowrite8(0xaa, ioaddr->nsect_addr);
1823 	iowrite8(0x55, ioaddr->lbal_addr);
1824 
1825 	iowrite8(0x55, ioaddr->nsect_addr);
1826 	iowrite8(0xaa, ioaddr->lbal_addr);
1827 
1828 	nsect = ioread8(ioaddr->nsect_addr);
1829 	lbal = ioread8(ioaddr->lbal_addr);
1830 
1831 	if ((nsect == 0x55) && (lbal == 0xaa))
1832 		return 1;	/* we found a device */
1833 
1834 	return 0;		/* nothing found */
1835 }
1836 
1837 /**
1838  *	ata_sff_dev_classify - Parse returned ATA device signature
1839  *	@dev: ATA device to classify (starting at zero)
1840  *	@present: device seems present
1841  *	@r_err: Value of error register on completion
1842  *
1843  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1844  *	an ATA/ATAPI-defined set of values is placed in the ATA
1845  *	shadow registers, indicating the results of device detection
1846  *	and diagnostics.
1847  *
1848  *	Select the ATA device, and read the values from the ATA shadow
1849  *	registers.  Then parse according to the Error register value,
1850  *	and the spec-defined values examined by ata_dev_classify().
1851  *
1852  *	LOCKING:
1853  *	caller.
1854  *
1855  *	RETURNS:
1856  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1857  */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1858 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1859 				  u8 *r_err)
1860 {
1861 	struct ata_port *ap = dev->link->ap;
1862 	struct ata_taskfile tf;
1863 	unsigned int class;
1864 	u8 err;
1865 
1866 	ap->ops->sff_dev_select(ap, dev->devno);
1867 
1868 	memset(&tf, 0, sizeof(tf));
1869 
1870 	ap->ops->sff_tf_read(ap, &tf);
1871 	err = tf.feature;
1872 	if (r_err)
1873 		*r_err = err;
1874 
1875 	/* see if device passed diags: continue and warn later */
1876 	if (err == 0)
1877 		/* diagnostic fail : do nothing _YET_ */
1878 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1879 	else if (err == 1)
1880 		/* do nothing */ ;
1881 	else if ((dev->devno == 0) && (err == 0x81))
1882 		/* do nothing */ ;
1883 	else
1884 		return ATA_DEV_NONE;
1885 
1886 	/* determine if device is ATA or ATAPI */
1887 	class = ata_dev_classify(&tf);
1888 
1889 	if (class == ATA_DEV_UNKNOWN) {
1890 		/* If the device failed diagnostic, it's likely to
1891 		 * have reported incorrect device signature too.
1892 		 * Assume ATA device if the device seems present but
1893 		 * device signature is invalid with diagnostic
1894 		 * failure.
1895 		 */
1896 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1897 			class = ATA_DEV_ATA;
1898 		else
1899 			class = ATA_DEV_NONE;
1900 	} else if ((class == ATA_DEV_ATA) &&
1901 		   (ap->ops->sff_check_status(ap) == 0))
1902 		class = ATA_DEV_NONE;
1903 
1904 	return class;
1905 }
1906 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1907 
1908 /**
1909  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1910  *	@link: SFF link which is just reset
1911  *	@devmask: mask of present devices
1912  *	@deadline: deadline jiffies for the operation
1913  *
1914  *	Wait devices attached to SFF @link to become ready after
1915  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1916  *	status register too early.
1917  *
1918  *	LOCKING:
1919  *	Kernel thread context (may sleep).
1920  *
1921  *	RETURNS:
1922  *	0 on success, -ENODEV if some or all of devices in @devmask
1923  *	don't seem to exist.  -errno on other errors.
1924  */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1925 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1926 			     unsigned long deadline)
1927 {
1928 	struct ata_port *ap = link->ap;
1929 	struct ata_ioports *ioaddr = &ap->ioaddr;
1930 	unsigned int dev0 = devmask & (1 << 0);
1931 	unsigned int dev1 = devmask & (1 << 1);
1932 	int rc, ret = 0;
1933 
1934 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1935 
1936 	/* always check readiness of the master device */
1937 	rc = ata_sff_wait_ready(link, deadline);
1938 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1939 	 * and TF status is 0xff, bail out on it too.
1940 	 */
1941 	if (rc)
1942 		return rc;
1943 
1944 	/* if device 1 was found in ata_devchk, wait for register
1945 	 * access briefly, then wait for BSY to clear.
1946 	 */
1947 	if (dev1) {
1948 		int i;
1949 
1950 		ap->ops->sff_dev_select(ap, 1);
1951 
1952 		/* Wait for register access.  Some ATAPI devices fail
1953 		 * to set nsect/lbal after reset, so don't waste too
1954 		 * much time on it.  We're gonna wait for !BSY anyway.
1955 		 */
1956 		for (i = 0; i < 2; i++) {
1957 			u8 nsect, lbal;
1958 
1959 			nsect = ioread8(ioaddr->nsect_addr);
1960 			lbal = ioread8(ioaddr->lbal_addr);
1961 			if ((nsect == 1) && (lbal == 1))
1962 				break;
1963 			ata_msleep(ap, 50);	/* give drive a breather */
1964 		}
1965 
1966 		rc = ata_sff_wait_ready(link, deadline);
1967 		if (rc) {
1968 			if (rc != -ENODEV)
1969 				return rc;
1970 			ret = rc;
1971 		}
1972 	}
1973 
1974 	/* is all this really necessary? */
1975 	ap->ops->sff_dev_select(ap, 0);
1976 	if (dev1)
1977 		ap->ops->sff_dev_select(ap, 1);
1978 	if (dev0)
1979 		ap->ops->sff_dev_select(ap, 0);
1980 
1981 	return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1984 
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)1985 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1986 			     unsigned long deadline)
1987 {
1988 	struct ata_ioports *ioaddr = &ap->ioaddr;
1989 
1990 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1991 
1992 	if (ap->ioaddr.ctl_addr) {
1993 		/* software reset.  causes dev0 to be selected */
1994 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1995 		udelay(20);	/* FIXME: flush */
1996 		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1997 		udelay(20);	/* FIXME: flush */
1998 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1999 		ap->last_ctl = ap->ctl;
2000 	}
2001 
2002 	/* wait the port to become ready */
2003 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2004 }
2005 
2006 /**
2007  *	ata_sff_softreset - reset host port via ATA SRST
2008  *	@link: ATA link to reset
2009  *	@classes: resulting classes of attached devices
2010  *	@deadline: deadline jiffies for the operation
2011  *
2012  *	Reset host port using ATA SRST.
2013  *
2014  *	LOCKING:
2015  *	Kernel thread context (may sleep)
2016  *
2017  *	RETURNS:
2018  *	0 on success, -errno otherwise.
2019  */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)2020 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2021 		      unsigned long deadline)
2022 {
2023 	struct ata_port *ap = link->ap;
2024 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2025 	unsigned int devmask = 0;
2026 	int rc;
2027 	u8 err;
2028 
2029 	DPRINTK("ENTER\n");
2030 
2031 	/* determine if device 0/1 are present */
2032 	if (ata_devchk(ap, 0))
2033 		devmask |= (1 << 0);
2034 	if (slave_possible && ata_devchk(ap, 1))
2035 		devmask |= (1 << 1);
2036 
2037 	/* select device 0 again */
2038 	ap->ops->sff_dev_select(ap, 0);
2039 
2040 	/* issue bus reset */
2041 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2042 	rc = ata_bus_softreset(ap, devmask, deadline);
2043 	/* if link is occupied, -ENODEV too is an error */
2044 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2045 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2046 		return rc;
2047 	}
2048 
2049 	/* determine by signature whether we have ATA or ATAPI devices */
2050 	classes[0] = ata_sff_dev_classify(&link->device[0],
2051 					  devmask & (1 << 0), &err);
2052 	if (slave_possible && err != 0x81)
2053 		classes[1] = ata_sff_dev_classify(&link->device[1],
2054 						  devmask & (1 << 1), &err);
2055 
2056 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2057 	return 0;
2058 }
2059 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2060 
2061 /**
2062  *	sata_sff_hardreset - reset host port via SATA phy reset
2063  *	@link: link to reset
2064  *	@class: resulting class of attached device
2065  *	@deadline: deadline jiffies for the operation
2066  *
2067  *	SATA phy-reset host port using DET bits of SControl register,
2068  *	wait for !BSY and classify the attached device.
2069  *
2070  *	LOCKING:
2071  *	Kernel thread context (may sleep)
2072  *
2073  *	RETURNS:
2074  *	0 on success, -errno otherwise.
2075  */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)2076 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2077 		       unsigned long deadline)
2078 {
2079 	struct ata_eh_context *ehc = &link->eh_context;
2080 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2081 	bool online;
2082 	int rc;
2083 
2084 	rc = sata_link_hardreset(link, timing, deadline, &online,
2085 				 ata_sff_check_ready);
2086 	if (online)
2087 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2088 
2089 	DPRINTK("EXIT, class=%u\n", *class);
2090 	return rc;
2091 }
2092 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2093 
2094 /**
2095  *	ata_sff_postreset - SFF postreset callback
2096  *	@link: the target SFF ata_link
2097  *	@classes: classes of attached devices
2098  *
2099  *	This function is invoked after a successful reset.  It first
2100  *	calls ata_std_postreset() and performs SFF specific postreset
2101  *	processing.
2102  *
2103  *	LOCKING:
2104  *	Kernel thread context (may sleep)
2105  */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)2106 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2107 {
2108 	struct ata_port *ap = link->ap;
2109 
2110 	ata_std_postreset(link, classes);
2111 
2112 	/* is double-select really necessary? */
2113 	if (classes[0] != ATA_DEV_NONE)
2114 		ap->ops->sff_dev_select(ap, 1);
2115 	if (classes[1] != ATA_DEV_NONE)
2116 		ap->ops->sff_dev_select(ap, 0);
2117 
2118 	/* bail out if no device is present */
2119 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2120 		DPRINTK("EXIT, no device\n");
2121 		return;
2122 	}
2123 
2124 	/* set up device control */
2125 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2126 		ata_sff_set_devctl(ap, ap->ctl);
2127 		ap->last_ctl = ap->ctl;
2128 	}
2129 }
2130 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2131 
2132 /**
2133  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2134  *	@qc: command
2135  *
2136  *	Drain the FIFO and device of any stuck data following a command
2137  *	failing to complete. In some cases this is necessary before a
2138  *	reset will recover the device.
2139  *
2140  */
2141 
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2142 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2143 {
2144 	int count;
2145 	struct ata_port *ap;
2146 
2147 	/* We only need to flush incoming data when a command was running */
2148 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2149 		return;
2150 
2151 	ap = qc->ap;
2152 	/* Drain up to 64K of data before we give up this recovery method */
2153 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2154 						&& count < 65536; count += 2)
2155 		ioread16(ap->ioaddr.data_addr);
2156 
2157 	/* Can become DEBUG later */
2158 	if (count)
2159 		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2160 
2161 }
2162 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2163 
2164 /**
2165  *	ata_sff_error_handler - Stock error handler for SFF controller
2166  *	@ap: port to handle error for
2167  *
2168  *	Stock error handler for SFF controller.  It can handle both
2169  *	PATA and SATA controllers.  Many controllers should be able to
2170  *	use this EH as-is or with some added handling before and
2171  *	after.
2172  *
2173  *	LOCKING:
2174  *	Kernel thread context (may sleep)
2175  */
ata_sff_error_handler(struct ata_port * ap)2176 void ata_sff_error_handler(struct ata_port *ap)
2177 {
2178 	ata_reset_fn_t softreset = ap->ops->softreset;
2179 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2180 	struct ata_queued_cmd *qc;
2181 	unsigned long flags;
2182 
2183 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2184 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2185 		qc = NULL;
2186 
2187 	spin_lock_irqsave(ap->lock, flags);
2188 
2189 	/*
2190 	 * We *MUST* do FIFO draining before we issue a reset as
2191 	 * several devices helpfully clear their internal state and
2192 	 * will lock solid if we touch the data port post reset. Pass
2193 	 * qc in case anyone wants to do different PIO/DMA recovery or
2194 	 * has per command fixups
2195 	 */
2196 	if (ap->ops->sff_drain_fifo)
2197 		ap->ops->sff_drain_fifo(qc);
2198 
2199 	spin_unlock_irqrestore(ap->lock, flags);
2200 
2201 	/* ignore built-in hardresets if SCR access is not available */
2202 	if ((hardreset == sata_std_hardreset ||
2203 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2204 		hardreset = NULL;
2205 
2206 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2207 		  ap->ops->postreset);
2208 }
2209 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2210 
2211 /**
2212  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2213  *	@ioaddr: IO address structure to be initialized
2214  *
2215  *	Utility function which initializes data_addr, error_addr,
2216  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2217  *	device_addr, status_addr, and command_addr to standard offsets
2218  *	relative to cmd_addr.
2219  *
2220  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2221  */
ata_sff_std_ports(struct ata_ioports * ioaddr)2222 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2223 {
2224 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2225 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2226 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2227 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2228 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2229 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2230 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2231 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2232 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2233 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2234 }
2235 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2236 
2237 #ifdef CONFIG_PCI
2238 
ata_resources_present(struct pci_dev * pdev,int port)2239 static int ata_resources_present(struct pci_dev *pdev, int port)
2240 {
2241 	int i;
2242 
2243 	/* Check the PCI resources for this channel are enabled */
2244 	port = port * 2;
2245 	for (i = 0; i < 2; i++) {
2246 		if (pci_resource_start(pdev, port + i) == 0 ||
2247 		    pci_resource_len(pdev, port + i) == 0)
2248 			return 0;
2249 	}
2250 	return 1;
2251 }
2252 
2253 /**
2254  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2255  *	@host: target ATA host
2256  *
2257  *	Acquire native PCI ATA resources for @host and initialize the
2258  *	first two ports of @host accordingly.  Ports marked dummy are
2259  *	skipped and allocation failure makes the port dummy.
2260  *
2261  *	Note that native PCI resources are valid even for legacy hosts
2262  *	as we fix up pdev resources array early in boot, so this
2263  *	function can be used for both native and legacy SFF hosts.
2264  *
2265  *	LOCKING:
2266  *	Inherited from calling layer (may sleep).
2267  *
2268  *	RETURNS:
2269  *	0 if at least one port is initialized, -ENODEV if no port is
2270  *	available.
2271  */
ata_pci_sff_init_host(struct ata_host * host)2272 int ata_pci_sff_init_host(struct ata_host *host)
2273 {
2274 	struct device *gdev = host->dev;
2275 	struct pci_dev *pdev = to_pci_dev(gdev);
2276 	unsigned int mask = 0;
2277 	int i, rc;
2278 
2279 	/* request, iomap BARs and init port addresses accordingly */
2280 	for (i = 0; i < 2; i++) {
2281 		struct ata_port *ap = host->ports[i];
2282 		int base = i * 2;
2283 		void __iomem * const *iomap;
2284 
2285 		if (ata_port_is_dummy(ap))
2286 			continue;
2287 
2288 		/* Discard disabled ports.  Some controllers show
2289 		 * their unused channels this way.  Disabled ports are
2290 		 * made dummy.
2291 		 */
2292 		if (!ata_resources_present(pdev, i)) {
2293 			ap->ops = &ata_dummy_port_ops;
2294 			continue;
2295 		}
2296 
2297 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2298 					dev_driver_string(gdev));
2299 		if (rc) {
2300 			dev_warn(gdev,
2301 				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2302 				 i, rc);
2303 			if (rc == -EBUSY)
2304 				pcim_pin_device(pdev);
2305 			ap->ops = &ata_dummy_port_ops;
2306 			continue;
2307 		}
2308 		host->iomap = iomap = pcim_iomap_table(pdev);
2309 
2310 		ap->ioaddr.cmd_addr = iomap[base];
2311 		ap->ioaddr.altstatus_addr =
2312 		ap->ioaddr.ctl_addr = (void __iomem *)
2313 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2314 		ata_sff_std_ports(&ap->ioaddr);
2315 
2316 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2317 			(unsigned long long)pci_resource_start(pdev, base),
2318 			(unsigned long long)pci_resource_start(pdev, base + 1));
2319 
2320 		mask |= 1 << i;
2321 	}
2322 
2323 	if (!mask) {
2324 		dev_err(gdev, "no available native port\n");
2325 		return -ENODEV;
2326 	}
2327 
2328 	return 0;
2329 }
2330 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2331 
2332 /**
2333  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2334  *	@pdev: target PCI device
2335  *	@ppi: array of port_info, must be enough for two ports
2336  *	@r_host: out argument for the initialized ATA host
2337  *
2338  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2339  *	all PCI resources and initialize it accordingly in one go.
2340  *
2341  *	LOCKING:
2342  *	Inherited from calling layer (may sleep).
2343  *
2344  *	RETURNS:
2345  *	0 on success, -errno otherwise.
2346  */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2347 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2348 			     const struct ata_port_info * const *ppi,
2349 			     struct ata_host **r_host)
2350 {
2351 	struct ata_host *host;
2352 	int rc;
2353 
2354 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2355 		return -ENOMEM;
2356 
2357 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2358 	if (!host) {
2359 		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2360 		rc = -ENOMEM;
2361 		goto err_out;
2362 	}
2363 
2364 	rc = ata_pci_sff_init_host(host);
2365 	if (rc)
2366 		goto err_out;
2367 
2368 	devres_remove_group(&pdev->dev, NULL);
2369 	*r_host = host;
2370 	return 0;
2371 
2372 err_out:
2373 	devres_release_group(&pdev->dev, NULL);
2374 	return rc;
2375 }
2376 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2377 
2378 /**
2379  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2380  *	@host: target SFF ATA host
2381  *	@irq_handler: irq_handler used when requesting IRQ(s)
2382  *	@sht: scsi_host_template to use when registering the host
2383  *
2384  *	This is the counterpart of ata_host_activate() for SFF ATA
2385  *	hosts.  This separate helper is necessary because SFF hosts
2386  *	use two separate interrupts in legacy mode.
2387  *
2388  *	LOCKING:
2389  *	Inherited from calling layer (may sleep).
2390  *
2391  *	RETURNS:
2392  *	0 on success, -errno otherwise.
2393  */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,struct scsi_host_template * sht)2394 int ata_pci_sff_activate_host(struct ata_host *host,
2395 			      irq_handler_t irq_handler,
2396 			      struct scsi_host_template *sht)
2397 {
2398 	struct device *dev = host->dev;
2399 	struct pci_dev *pdev = to_pci_dev(dev);
2400 	const char *drv_name = dev_driver_string(host->dev);
2401 	int legacy_mode = 0, rc;
2402 
2403 	rc = ata_host_start(host);
2404 	if (rc)
2405 		return rc;
2406 
2407 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2408 		u8 tmp8, mask = 0;
2409 
2410 		/*
2411 		 * ATA spec says we should use legacy mode when one
2412 		 * port is in legacy mode, but disabled ports on some
2413 		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2414 		 * on which the secondary port is not wired, so
2415 		 * ignore ports that are marked as 'dummy' during
2416 		 * this check
2417 		 */
2418 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2419 		if (!ata_port_is_dummy(host->ports[0]))
2420 			mask |= (1 << 0);
2421 		if (!ata_port_is_dummy(host->ports[1]))
2422 			mask |= (1 << 2);
2423 		if ((tmp8 & mask) != mask)
2424 			legacy_mode = 1;
2425 	}
2426 
2427 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2428 		return -ENOMEM;
2429 
2430 	if (!legacy_mode && pdev->irq) {
2431 		int i;
2432 
2433 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2434 				      IRQF_SHARED, drv_name, host);
2435 		if (rc)
2436 			goto out;
2437 
2438 		for (i = 0; i < 2; i++) {
2439 			if (ata_port_is_dummy(host->ports[i]))
2440 				continue;
2441 			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2442 		}
2443 	} else if (legacy_mode) {
2444 		if (!ata_port_is_dummy(host->ports[0])) {
2445 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2446 					      irq_handler, IRQF_SHARED,
2447 					      drv_name, host);
2448 			if (rc)
2449 				goto out;
2450 
2451 			ata_port_desc(host->ports[0], "irq %d",
2452 				      ATA_PRIMARY_IRQ(pdev));
2453 		}
2454 
2455 		if (!ata_port_is_dummy(host->ports[1])) {
2456 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2457 					      irq_handler, IRQF_SHARED,
2458 					      drv_name, host);
2459 			if (rc)
2460 				goto out;
2461 
2462 			ata_port_desc(host->ports[1], "irq %d",
2463 				      ATA_SECONDARY_IRQ(pdev));
2464 		}
2465 	}
2466 
2467 	rc = ata_host_register(host, sht);
2468 out:
2469 	if (rc == 0)
2470 		devres_remove_group(dev, NULL);
2471 	else
2472 		devres_release_group(dev, NULL);
2473 
2474 	return rc;
2475 }
2476 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2477 
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2478 static const struct ata_port_info *ata_sff_find_valid_pi(
2479 					const struct ata_port_info * const *ppi)
2480 {
2481 	int i;
2482 
2483 	/* look up the first valid port_info */
2484 	for (i = 0; i < 2 && ppi[i]; i++)
2485 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2486 			return ppi[i];
2487 
2488 	return NULL;
2489 }
2490 
ata_pci_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags,bool bmdma)2491 static int ata_pci_init_one(struct pci_dev *pdev,
2492 		const struct ata_port_info * const *ppi,
2493 		struct scsi_host_template *sht, void *host_priv,
2494 		int hflags, bool bmdma)
2495 {
2496 	struct device *dev = &pdev->dev;
2497 	const struct ata_port_info *pi;
2498 	struct ata_host *host = NULL;
2499 	int rc;
2500 
2501 	DPRINTK("ENTER\n");
2502 
2503 	pi = ata_sff_find_valid_pi(ppi);
2504 	if (!pi) {
2505 		dev_err(&pdev->dev, "no valid port_info specified\n");
2506 		return -EINVAL;
2507 	}
2508 
2509 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2510 		return -ENOMEM;
2511 
2512 	rc = pcim_enable_device(pdev);
2513 	if (rc)
2514 		goto out;
2515 
2516 #ifdef CONFIG_ATA_BMDMA
2517 	if (bmdma)
2518 		/* prepare and activate BMDMA host */
2519 		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2520 	else
2521 #endif
2522 		/* prepare and activate SFF host */
2523 		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2524 	if (rc)
2525 		goto out;
2526 	host->private_data = host_priv;
2527 	host->flags |= hflags;
2528 
2529 #ifdef CONFIG_ATA_BMDMA
2530 	if (bmdma) {
2531 		pci_set_master(pdev);
2532 		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2533 	} else
2534 #endif
2535 		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2536 out:
2537 	if (rc == 0)
2538 		devres_remove_group(&pdev->dev, NULL);
2539 	else
2540 		devres_release_group(&pdev->dev, NULL);
2541 
2542 	return rc;
2543 }
2544 
2545 /**
2546  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2547  *	@pdev: Controller to be initialized
2548  *	@ppi: array of port_info, must be enough for two ports
2549  *	@sht: scsi_host_template to use when registering the host
2550  *	@host_priv: host private_data
2551  *	@hflag: host flags
2552  *
2553  *	This is a helper function which can be called from a driver's
2554  *	xxx_init_one() probe function if the hardware uses traditional
2555  *	IDE taskfile registers and is PIO only.
2556  *
2557  *	ASSUMPTION:
2558  *	Nobody makes a single channel controller that appears solely as
2559  *	the secondary legacy port on PCI.
2560  *
2561  *	LOCKING:
2562  *	Inherited from PCI layer (may sleep).
2563  *
2564  *	RETURNS:
2565  *	Zero on success, negative on errno-based value on error.
2566  */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflag)2567 int ata_pci_sff_init_one(struct pci_dev *pdev,
2568 		 const struct ata_port_info * const *ppi,
2569 		 struct scsi_host_template *sht, void *host_priv, int hflag)
2570 {
2571 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2572 }
2573 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2574 
2575 #endif /* CONFIG_PCI */
2576 
2577 /*
2578  *	BMDMA support
2579  */
2580 
2581 #ifdef CONFIG_ATA_BMDMA
2582 
2583 const struct ata_port_operations ata_bmdma_port_ops = {
2584 	.inherits		= &ata_sff_port_ops,
2585 
2586 	.error_handler		= ata_bmdma_error_handler,
2587 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2588 
2589 	.qc_prep		= ata_bmdma_qc_prep,
2590 	.qc_issue		= ata_bmdma_qc_issue,
2591 
2592 	.sff_irq_clear		= ata_bmdma_irq_clear,
2593 	.bmdma_setup		= ata_bmdma_setup,
2594 	.bmdma_start		= ata_bmdma_start,
2595 	.bmdma_stop		= ata_bmdma_stop,
2596 	.bmdma_status		= ata_bmdma_status,
2597 
2598 	.port_start		= ata_bmdma_port_start,
2599 };
2600 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2601 
2602 const struct ata_port_operations ata_bmdma32_port_ops = {
2603 	.inherits		= &ata_bmdma_port_ops,
2604 
2605 	.sff_data_xfer		= ata_sff_data_xfer32,
2606 	.port_start		= ata_bmdma_port_start32,
2607 };
2608 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2609 
2610 /**
2611  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2612  *	@qc: Metadata associated with taskfile to be transferred
2613  *
2614  *	Fill PCI IDE PRD (scatter-gather) table with segments
2615  *	associated with the current disk command.
2616  *
2617  *	LOCKING:
2618  *	spin_lock_irqsave(host lock)
2619  *
2620  */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2621 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2622 {
2623 	struct ata_port *ap = qc->ap;
2624 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2625 	struct scatterlist *sg;
2626 	unsigned int si, pi;
2627 
2628 	pi = 0;
2629 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2630 		u32 addr, offset;
2631 		u32 sg_len, len;
2632 
2633 		/* determine if physical DMA addr spans 64K boundary.
2634 		 * Note h/w doesn't support 64-bit, so we unconditionally
2635 		 * truncate dma_addr_t to u32.
2636 		 */
2637 		addr = (u32) sg_dma_address(sg);
2638 		sg_len = sg_dma_len(sg);
2639 
2640 		while (sg_len) {
2641 			offset = addr & 0xffff;
2642 			len = sg_len;
2643 			if ((offset + sg_len) > 0x10000)
2644 				len = 0x10000 - offset;
2645 
2646 			prd[pi].addr = cpu_to_le32(addr);
2647 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2648 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2649 
2650 			pi++;
2651 			sg_len -= len;
2652 			addr += len;
2653 		}
2654 	}
2655 
2656 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2657 }
2658 
2659 /**
2660  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2661  *	@qc: Metadata associated with taskfile to be transferred
2662  *
2663  *	Fill PCI IDE PRD (scatter-gather) table with segments
2664  *	associated with the current disk command. Perform the fill
2665  *	so that we avoid writing any length 64K records for
2666  *	controllers that don't follow the spec.
2667  *
2668  *	LOCKING:
2669  *	spin_lock_irqsave(host lock)
2670  *
2671  */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2672 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2673 {
2674 	struct ata_port *ap = qc->ap;
2675 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2676 	struct scatterlist *sg;
2677 	unsigned int si, pi;
2678 
2679 	pi = 0;
2680 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2681 		u32 addr, offset;
2682 		u32 sg_len, len, blen;
2683 
2684 		/* determine if physical DMA addr spans 64K boundary.
2685 		 * Note h/w doesn't support 64-bit, so we unconditionally
2686 		 * truncate dma_addr_t to u32.
2687 		 */
2688 		addr = (u32) sg_dma_address(sg);
2689 		sg_len = sg_dma_len(sg);
2690 
2691 		while (sg_len) {
2692 			offset = addr & 0xffff;
2693 			len = sg_len;
2694 			if ((offset + sg_len) > 0x10000)
2695 				len = 0x10000 - offset;
2696 
2697 			blen = len & 0xffff;
2698 			prd[pi].addr = cpu_to_le32(addr);
2699 			if (blen == 0) {
2700 				/* Some PATA chipsets like the CS5530 can't
2701 				   cope with 0x0000 meaning 64K as the spec
2702 				   says */
2703 				prd[pi].flags_len = cpu_to_le32(0x8000);
2704 				blen = 0x8000;
2705 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2706 			}
2707 			prd[pi].flags_len = cpu_to_le32(blen);
2708 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2709 
2710 			pi++;
2711 			sg_len -= len;
2712 			addr += len;
2713 		}
2714 	}
2715 
2716 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2717 }
2718 
2719 /**
2720  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2721  *	@qc: Metadata associated with taskfile to be prepared
2722  *
2723  *	Prepare ATA taskfile for submission.
2724  *
2725  *	LOCKING:
2726  *	spin_lock_irqsave(host lock)
2727  */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2728 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2729 {
2730 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2731 		return;
2732 
2733 	ata_bmdma_fill_sg(qc);
2734 }
2735 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2736 
2737 /**
2738  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2739  *	@qc: Metadata associated with taskfile to be prepared
2740  *
2741  *	Prepare ATA taskfile for submission.
2742  *
2743  *	LOCKING:
2744  *	spin_lock_irqsave(host lock)
2745  */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2746 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2747 {
2748 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2749 		return;
2750 
2751 	ata_bmdma_fill_sg_dumb(qc);
2752 }
2753 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2754 
2755 /**
2756  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2757  *	@qc: command to issue to device
2758  *
2759  *	This function issues a PIO, NODATA or DMA command to a
2760  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2761  *	ata_sff_qc_issue().
2762  *
2763  *	LOCKING:
2764  *	spin_lock_irqsave(host lock)
2765  *
2766  *	RETURNS:
2767  *	Zero on success, AC_ERR_* mask on failure
2768  */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2769 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2770 {
2771 	struct ata_port *ap = qc->ap;
2772 	struct ata_link *link = qc->dev->link;
2773 
2774 	/* defer PIO handling to sff_qc_issue */
2775 	if (!ata_is_dma(qc->tf.protocol))
2776 		return ata_sff_qc_issue(qc);
2777 
2778 	/* select the device */
2779 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2780 
2781 	/* start the command */
2782 	switch (qc->tf.protocol) {
2783 	case ATA_PROT_DMA:
2784 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2785 
2786 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2787 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2788 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2789 		ap->hsm_task_state = HSM_ST_LAST;
2790 		break;
2791 
2792 	case ATAPI_PROT_DMA:
2793 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2794 
2795 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2796 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2797 		ap->hsm_task_state = HSM_ST_FIRST;
2798 
2799 		/* send cdb by polling if no cdb interrupt */
2800 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2801 			ata_sff_queue_pio_task(link, 0);
2802 		break;
2803 
2804 	default:
2805 		WARN_ON(1);
2806 		return AC_ERR_SYSTEM;
2807 	}
2808 
2809 	return 0;
2810 }
2811 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2812 
2813 /**
2814  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2815  *	@ap: Port on which interrupt arrived (possibly...)
2816  *	@qc: Taskfile currently active in engine
2817  *
2818  *	Handle port interrupt for given queued command.
2819  *
2820  *	LOCKING:
2821  *	spin_lock_irqsave(host lock)
2822  *
2823  *	RETURNS:
2824  *	One if interrupt was handled, zero if not (shared irq).
2825  */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2826 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2827 {
2828 	struct ata_eh_info *ehi = &ap->link.eh_info;
2829 	u8 host_stat = 0;
2830 	bool bmdma_stopped = false;
2831 	unsigned int handled;
2832 
2833 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2834 		/* check status of DMA engine */
2835 		host_stat = ap->ops->bmdma_status(ap);
2836 		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2837 
2838 		/* if it's not our irq... */
2839 		if (!(host_stat & ATA_DMA_INTR))
2840 			return ata_sff_idle_irq(ap);
2841 
2842 		/* before we do anything else, clear DMA-Start bit */
2843 		ap->ops->bmdma_stop(qc);
2844 		bmdma_stopped = true;
2845 
2846 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2847 			/* error when transferring data to/from memory */
2848 			qc->err_mask |= AC_ERR_HOST_BUS;
2849 			ap->hsm_task_state = HSM_ST_ERR;
2850 		}
2851 	}
2852 
2853 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2854 
2855 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2856 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2857 
2858 	return handled;
2859 }
2860 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2861 
2862 /**
2863  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2864  *	@irq: irq line (unused)
2865  *	@dev_instance: pointer to our ata_host information structure
2866  *
2867  *	Default interrupt handler for PCI IDE devices.  Calls
2868  *	ata_bmdma_port_intr() for each port that is not disabled.
2869  *
2870  *	LOCKING:
2871  *	Obtains host lock during operation.
2872  *
2873  *	RETURNS:
2874  *	IRQ_NONE or IRQ_HANDLED.
2875  */
ata_bmdma_interrupt(int irq,void * dev_instance)2876 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2877 {
2878 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2879 }
2880 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2881 
2882 /**
2883  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2884  *	@ap: port to handle error for
2885  *
2886  *	Stock error handler for BMDMA controller.  It can handle both
2887  *	PATA and SATA controllers.  Most BMDMA controllers should be
2888  *	able to use this EH as-is or with some added handling before
2889  *	and after.
2890  *
2891  *	LOCKING:
2892  *	Kernel thread context (may sleep)
2893  */
ata_bmdma_error_handler(struct ata_port * ap)2894 void ata_bmdma_error_handler(struct ata_port *ap)
2895 {
2896 	struct ata_queued_cmd *qc;
2897 	unsigned long flags;
2898 	bool thaw = false;
2899 
2900 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2901 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2902 		qc = NULL;
2903 
2904 	/* reset PIO HSM and stop DMA engine */
2905 	spin_lock_irqsave(ap->lock, flags);
2906 
2907 	if (qc && ata_is_dma(qc->tf.protocol)) {
2908 		u8 host_stat;
2909 
2910 		host_stat = ap->ops->bmdma_status(ap);
2911 
2912 		/* BMDMA controllers indicate host bus error by
2913 		 * setting DMA_ERR bit and timing out.  As it wasn't
2914 		 * really a timeout event, adjust error mask and
2915 		 * cancel frozen state.
2916 		 */
2917 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2918 			qc->err_mask = AC_ERR_HOST_BUS;
2919 			thaw = true;
2920 		}
2921 
2922 		ap->ops->bmdma_stop(qc);
2923 
2924 		/* if we're gonna thaw, make sure IRQ is clear */
2925 		if (thaw) {
2926 			ap->ops->sff_check_status(ap);
2927 			if (ap->ops->sff_irq_clear)
2928 				ap->ops->sff_irq_clear(ap);
2929 		}
2930 	}
2931 
2932 	spin_unlock_irqrestore(ap->lock, flags);
2933 
2934 	if (thaw)
2935 		ata_eh_thaw_port(ap);
2936 
2937 	ata_sff_error_handler(ap);
2938 }
2939 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2940 
2941 /**
2942  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2943  *	@qc: internal command to clean up
2944  *
2945  *	LOCKING:
2946  *	Kernel thread context (may sleep)
2947  */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2948 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2949 {
2950 	struct ata_port *ap = qc->ap;
2951 	unsigned long flags;
2952 
2953 	if (ata_is_dma(qc->tf.protocol)) {
2954 		spin_lock_irqsave(ap->lock, flags);
2955 		ap->ops->bmdma_stop(qc);
2956 		spin_unlock_irqrestore(ap->lock, flags);
2957 	}
2958 }
2959 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2960 
2961 /**
2962  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2963  *	@ap: Port associated with this ATA transaction.
2964  *
2965  *	Clear interrupt and error flags in DMA status register.
2966  *
2967  *	May be used as the irq_clear() entry in ata_port_operations.
2968  *
2969  *	LOCKING:
2970  *	spin_lock_irqsave(host lock)
2971  */
ata_bmdma_irq_clear(struct ata_port * ap)2972 void ata_bmdma_irq_clear(struct ata_port *ap)
2973 {
2974 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2975 
2976 	if (!mmio)
2977 		return;
2978 
2979 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2980 }
2981 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2982 
2983 /**
2984  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2985  *	@qc: Info associated with this ATA transaction.
2986  *
2987  *	LOCKING:
2988  *	spin_lock_irqsave(host lock)
2989  */
ata_bmdma_setup(struct ata_queued_cmd * qc)2990 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2991 {
2992 	struct ata_port *ap = qc->ap;
2993 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2994 	u8 dmactl;
2995 
2996 	/* load PRD table addr. */
2997 	mb();	/* make sure PRD table writes are visible to controller */
2998 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2999 
3000 	/* specify data direction, triple-check start bit is clear */
3001 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3002 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3003 	if (!rw)
3004 		dmactl |= ATA_DMA_WR;
3005 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3006 
3007 	/* issue r/w command */
3008 	ap->ops->sff_exec_command(ap, &qc->tf);
3009 }
3010 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3011 
3012 /**
3013  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
3014  *	@qc: Info associated with this ATA transaction.
3015  *
3016  *	LOCKING:
3017  *	spin_lock_irqsave(host lock)
3018  */
ata_bmdma_start(struct ata_queued_cmd * qc)3019 void ata_bmdma_start(struct ata_queued_cmd *qc)
3020 {
3021 	struct ata_port *ap = qc->ap;
3022 	u8 dmactl;
3023 
3024 	/* start host DMA transaction */
3025 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3026 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3027 
3028 	/* Strictly, one may wish to issue an ioread8() here, to
3029 	 * flush the mmio write.  However, control also passes
3030 	 * to the hardware at this point, and it will interrupt
3031 	 * us when we are to resume control.  So, in effect,
3032 	 * we don't care when the mmio write flushes.
3033 	 * Further, a read of the DMA status register _immediately_
3034 	 * following the write may not be what certain flaky hardware
3035 	 * is expected, so I think it is best to not add a readb()
3036 	 * without first all the MMIO ATA cards/mobos.
3037 	 * Or maybe I'm just being paranoid.
3038 	 *
3039 	 * FIXME: The posting of this write means I/O starts are
3040 	 * unnecessarily delayed for MMIO
3041 	 */
3042 }
3043 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3044 
3045 /**
3046  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3047  *	@qc: Command we are ending DMA for
3048  *
3049  *	Clears the ATA_DMA_START flag in the dma control register
3050  *
3051  *	May be used as the bmdma_stop() entry in ata_port_operations.
3052  *
3053  *	LOCKING:
3054  *	spin_lock_irqsave(host lock)
3055  */
ata_bmdma_stop(struct ata_queued_cmd * qc)3056 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3057 {
3058 	struct ata_port *ap = qc->ap;
3059 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3060 
3061 	/* clear start/stop bit */
3062 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3063 		 mmio + ATA_DMA_CMD);
3064 
3065 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3066 	ata_sff_dma_pause(ap);
3067 }
3068 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3069 
3070 /**
3071  *	ata_bmdma_status - Read PCI IDE BMDMA status
3072  *	@ap: Port associated with this ATA transaction.
3073  *
3074  *	Read and return BMDMA status register.
3075  *
3076  *	May be used as the bmdma_status() entry in ata_port_operations.
3077  *
3078  *	LOCKING:
3079  *	spin_lock_irqsave(host lock)
3080  */
ata_bmdma_status(struct ata_port * ap)3081 u8 ata_bmdma_status(struct ata_port *ap)
3082 {
3083 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3084 }
3085 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3086 
3087 
3088 /**
3089  *	ata_bmdma_port_start - Set port up for bmdma.
3090  *	@ap: Port to initialize
3091  *
3092  *	Called just after data structures for each port are
3093  *	initialized.  Allocates space for PRD table.
3094  *
3095  *	May be used as the port_start() entry in ata_port_operations.
3096  *
3097  *	LOCKING:
3098  *	Inherited from caller.
3099  */
ata_bmdma_port_start(struct ata_port * ap)3100 int ata_bmdma_port_start(struct ata_port *ap)
3101 {
3102 	if (ap->mwdma_mask || ap->udma_mask) {
3103 		ap->bmdma_prd =
3104 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3105 					    &ap->bmdma_prd_dma, GFP_KERNEL);
3106 		if (!ap->bmdma_prd)
3107 			return -ENOMEM;
3108 	}
3109 
3110 	return 0;
3111 }
3112 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3113 
3114 /**
3115  *	ata_bmdma_port_start32 - Set port up for dma.
3116  *	@ap: Port to initialize
3117  *
3118  *	Called just after data structures for each port are
3119  *	initialized.  Enables 32bit PIO and allocates space for PRD
3120  *	table.
3121  *
3122  *	May be used as the port_start() entry in ata_port_operations for
3123  *	devices that are capable of 32bit PIO.
3124  *
3125  *	LOCKING:
3126  *	Inherited from caller.
3127  */
ata_bmdma_port_start32(struct ata_port * ap)3128 int ata_bmdma_port_start32(struct ata_port *ap)
3129 {
3130 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3131 	return ata_bmdma_port_start(ap);
3132 }
3133 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3134 
3135 #ifdef CONFIG_PCI
3136 
3137 /**
3138  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3139  *	@pdev: PCI device
3140  *
3141  *	Some PCI ATA devices report simplex mode but in fact can be told to
3142  *	enter non simplex mode. This implements the necessary logic to
3143  *	perform the task on such devices. Calling it on other devices will
3144  *	have -undefined- behaviour.
3145  */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3146 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3147 {
3148 	unsigned long bmdma = pci_resource_start(pdev, 4);
3149 	u8 simplex;
3150 
3151 	if (bmdma == 0)
3152 		return -ENOENT;
3153 
3154 	simplex = inb(bmdma + 0x02);
3155 	outb(simplex & 0x60, bmdma + 0x02);
3156 	simplex = inb(bmdma + 0x02);
3157 	if (simplex & 0x80)
3158 		return -EOPNOTSUPP;
3159 	return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3162 
ata_bmdma_nodma(struct ata_host * host,const char * reason)3163 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3164 {
3165 	int i;
3166 
3167 	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3168 
3169 	for (i = 0; i < 2; i++) {
3170 		host->ports[i]->mwdma_mask = 0;
3171 		host->ports[i]->udma_mask = 0;
3172 	}
3173 }
3174 
3175 /**
3176  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3177  *	@host: target ATA host
3178  *
3179  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3180  *
3181  *	LOCKING:
3182  *	Inherited from calling layer (may sleep).
3183  */
ata_pci_bmdma_init(struct ata_host * host)3184 void ata_pci_bmdma_init(struct ata_host *host)
3185 {
3186 	struct device *gdev = host->dev;
3187 	struct pci_dev *pdev = to_pci_dev(gdev);
3188 	int i, rc;
3189 
3190 	/* No BAR4 allocation: No DMA */
3191 	if (pci_resource_start(pdev, 4) == 0) {
3192 		ata_bmdma_nodma(host, "BAR4 is zero");
3193 		return;
3194 	}
3195 
3196 	/*
3197 	 * Some controllers require BMDMA region to be initialized
3198 	 * even if DMA is not in use to clear IRQ status via
3199 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3200 	 * regardless of dma masks.
3201 	 */
3202 	rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3203 	if (rc)
3204 		ata_bmdma_nodma(host, "failed to set dma mask");
3205 	if (!rc) {
3206 		rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3207 		if (rc)
3208 			ata_bmdma_nodma(host,
3209 					"failed to set consistent dma mask");
3210 	}
3211 
3212 	/* request and iomap DMA region */
3213 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3214 	if (rc) {
3215 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3216 		return;
3217 	}
3218 	host->iomap = pcim_iomap_table(pdev);
3219 
3220 	for (i = 0; i < 2; i++) {
3221 		struct ata_port *ap = host->ports[i];
3222 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3223 
3224 		if (ata_port_is_dummy(ap))
3225 			continue;
3226 
3227 		ap->ioaddr.bmdma_addr = bmdma;
3228 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3229 		    (ioread8(bmdma + 2) & 0x80))
3230 			host->flags |= ATA_HOST_SIMPLEX;
3231 
3232 		ata_port_desc(ap, "bmdma 0x%llx",
3233 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3234 	}
3235 }
3236 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3237 
3238 /**
3239  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3240  *	@pdev: target PCI device
3241  *	@ppi: array of port_info, must be enough for two ports
3242  *	@r_host: out argument for the initialized ATA host
3243  *
3244  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3245  *	resources and initialize it accordingly in one go.
3246  *
3247  *	LOCKING:
3248  *	Inherited from calling layer (may sleep).
3249  *
3250  *	RETURNS:
3251  *	0 on success, -errno otherwise.
3252  */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3253 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3254 			       const struct ata_port_info * const * ppi,
3255 			       struct ata_host **r_host)
3256 {
3257 	int rc;
3258 
3259 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3260 	if (rc)
3261 		return rc;
3262 
3263 	ata_pci_bmdma_init(*r_host);
3264 	return 0;
3265 }
3266 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3267 
3268 /**
3269  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3270  *	@pdev: Controller to be initialized
3271  *	@ppi: array of port_info, must be enough for two ports
3272  *	@sht: scsi_host_template to use when registering the host
3273  *	@host_priv: host private_data
3274  *	@hflags: host flags
3275  *
3276  *	This function is similar to ata_pci_sff_init_one() but also
3277  *	takes care of BMDMA initialization.
3278  *
3279  *	LOCKING:
3280  *	Inherited from PCI layer (may sleep).
3281  *
3282  *	RETURNS:
3283  *	Zero on success, negative on errno-based value on error.
3284  */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags)3285 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3286 			   const struct ata_port_info * const * ppi,
3287 			   struct scsi_host_template *sht, void *host_priv,
3288 			   int hflags)
3289 {
3290 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3291 }
3292 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3293 
3294 #endif /* CONFIG_PCI */
3295 #endif /* CONFIG_ATA_BMDMA */
3296 
3297 /**
3298  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3299  *	@ap: Port to initialize
3300  *
3301  *	Called on port allocation to initialize SFF/BMDMA specific
3302  *	fields.
3303  *
3304  *	LOCKING:
3305  *	None.
3306  */
ata_sff_port_init(struct ata_port * ap)3307 void ata_sff_port_init(struct ata_port *ap)
3308 {
3309 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3310 	ap->ctl = ATA_DEVCTL_OBS;
3311 	ap->last_ctl = 0xFF;
3312 }
3313 
ata_sff_init(void)3314 int __init ata_sff_init(void)
3315 {
3316 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3317 	if (!ata_sff_wq)
3318 		return -ENOMEM;
3319 
3320 	return 0;
3321 }
3322 
ata_sff_exit(void)3323 void ata_sff_exit(void)
3324 {
3325 	destroy_workqueue(ata_sff_wq);
3326 }
3327