• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 
79 #include "audit.h"
80 
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85 
86 /* no execve audit message should be longer than this (userspace limits),
87  * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89 
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92 
93 /* number of audit rules */
94 int audit_n_rules;
95 
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98 
99 struct audit_aux_data {
100 	struct audit_aux_data	*next;
101 	int			type;
102 };
103 
104 #define AUDIT_AUX_IPCPERM	0
105 
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS	16
108 
109 struct audit_aux_data_pids {
110 	struct audit_aux_data	d;
111 	pid_t			target_pid[AUDIT_AUX_PIDS];
112 	kuid_t			target_auid[AUDIT_AUX_PIDS];
113 	kuid_t			target_uid[AUDIT_AUX_PIDS];
114 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
115 	u32			target_sid[AUDIT_AUX_PIDS];
116 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 	int			pid_count;
118 };
119 
120 struct audit_aux_data_bprm_fcaps {
121 	struct audit_aux_data	d;
122 	struct audit_cap_data	fcap;
123 	unsigned int		fcap_ver;
124 	struct audit_cap_data	old_pcap;
125 	struct audit_cap_data	new_pcap;
126 };
127 
128 struct audit_tree_refs {
129 	struct audit_tree_refs *next;
130 	struct audit_chunk *c[31];
131 };
132 
audit_match_perm(struct audit_context * ctx,int mask)133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 	unsigned n;
136 	if (unlikely(!ctx))
137 		return 0;
138 	n = ctx->major;
139 
140 	switch (audit_classify_syscall(ctx->arch, n)) {
141 	case 0:	/* native */
142 		if ((mask & AUDIT_PERM_WRITE) &&
143 		     audit_match_class(AUDIT_CLASS_WRITE, n))
144 			return 1;
145 		if ((mask & AUDIT_PERM_READ) &&
146 		     audit_match_class(AUDIT_CLASS_READ, n))
147 			return 1;
148 		if ((mask & AUDIT_PERM_ATTR) &&
149 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
150 			return 1;
151 		return 0;
152 	case 1: /* 32bit on biarch */
153 		if ((mask & AUDIT_PERM_WRITE) &&
154 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 			return 1;
156 		if ((mask & AUDIT_PERM_READ) &&
157 		     audit_match_class(AUDIT_CLASS_READ_32, n))
158 			return 1;
159 		if ((mask & AUDIT_PERM_ATTR) &&
160 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 			return 1;
162 		return 0;
163 	case 2: /* open */
164 		return mask & ACC_MODE(ctx->argv[1]);
165 	case 3: /* openat */
166 		return mask & ACC_MODE(ctx->argv[2]);
167 	case 4: /* socketcall */
168 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 	case 5: /* execve */
170 		return mask & AUDIT_PERM_EXEC;
171 	default:
172 		return 0;
173 	}
174 }
175 
audit_match_filetype(struct audit_context * ctx,int val)176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 	struct audit_names *n;
179 	umode_t mode = (umode_t)val;
180 
181 	if (unlikely(!ctx))
182 		return 0;
183 
184 	list_for_each_entry(n, &ctx->names_list, list) {
185 		if ((n->ino != AUDIT_INO_UNSET) &&
186 		    ((n->mode & S_IFMT) == mode))
187 			return 1;
188 	}
189 
190 	return 0;
191 }
192 
193 /*
194  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195  * ->first_trees points to its beginning, ->trees - to the current end of data.
196  * ->tree_count is the number of free entries in array pointed to by ->trees.
197  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
199  * it's going to remain 1-element for almost any setup) until we free context itself.
200  * References in it _are_ dropped - at the same time we free/drop aux stuff.
201  */
202 
203 #ifdef CONFIG_AUDIT_TREE
audit_set_auditable(struct audit_context * ctx)204 static void audit_set_auditable(struct audit_context *ctx)
205 {
206 	if (!ctx->prio) {
207 		ctx->prio = 1;
208 		ctx->current_state = AUDIT_RECORD_CONTEXT;
209 	}
210 }
211 
put_tree_ref(struct audit_context * ctx,struct audit_chunk * chunk)212 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
213 {
214 	struct audit_tree_refs *p = ctx->trees;
215 	int left = ctx->tree_count;
216 	if (likely(left)) {
217 		p->c[--left] = chunk;
218 		ctx->tree_count = left;
219 		return 1;
220 	}
221 	if (!p)
222 		return 0;
223 	p = p->next;
224 	if (p) {
225 		p->c[30] = chunk;
226 		ctx->trees = p;
227 		ctx->tree_count = 30;
228 		return 1;
229 	}
230 	return 0;
231 }
232 
grow_tree_refs(struct audit_context * ctx)233 static int grow_tree_refs(struct audit_context *ctx)
234 {
235 	struct audit_tree_refs *p = ctx->trees;
236 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
237 	if (!ctx->trees) {
238 		ctx->trees = p;
239 		return 0;
240 	}
241 	if (p)
242 		p->next = ctx->trees;
243 	else
244 		ctx->first_trees = ctx->trees;
245 	ctx->tree_count = 31;
246 	return 1;
247 }
248 #endif
249 
unroll_tree_refs(struct audit_context * ctx,struct audit_tree_refs * p,int count)250 static void unroll_tree_refs(struct audit_context *ctx,
251 		      struct audit_tree_refs *p, int count)
252 {
253 #ifdef CONFIG_AUDIT_TREE
254 	struct audit_tree_refs *q;
255 	int n;
256 	if (!p) {
257 		/* we started with empty chain */
258 		p = ctx->first_trees;
259 		count = 31;
260 		/* if the very first allocation has failed, nothing to do */
261 		if (!p)
262 			return;
263 	}
264 	n = count;
265 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
266 		while (n--) {
267 			audit_put_chunk(q->c[n]);
268 			q->c[n] = NULL;
269 		}
270 	}
271 	while (n-- > ctx->tree_count) {
272 		audit_put_chunk(q->c[n]);
273 		q->c[n] = NULL;
274 	}
275 	ctx->trees = p;
276 	ctx->tree_count = count;
277 #endif
278 }
279 
free_tree_refs(struct audit_context * ctx)280 static void free_tree_refs(struct audit_context *ctx)
281 {
282 	struct audit_tree_refs *p, *q;
283 	for (p = ctx->first_trees; p; p = q) {
284 		q = p->next;
285 		kfree(p);
286 	}
287 }
288 
match_tree_refs(struct audit_context * ctx,struct audit_tree * tree)289 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
290 {
291 #ifdef CONFIG_AUDIT_TREE
292 	struct audit_tree_refs *p;
293 	int n;
294 	if (!tree)
295 		return 0;
296 	/* full ones */
297 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
298 		for (n = 0; n < 31; n++)
299 			if (audit_tree_match(p->c[n], tree))
300 				return 1;
301 	}
302 	/* partial */
303 	if (p) {
304 		for (n = ctx->tree_count; n < 31; n++)
305 			if (audit_tree_match(p->c[n], tree))
306 				return 1;
307 	}
308 #endif
309 	return 0;
310 }
311 
audit_compare_uid(kuid_t uid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)312 static int audit_compare_uid(kuid_t uid,
313 			     struct audit_names *name,
314 			     struct audit_field *f,
315 			     struct audit_context *ctx)
316 {
317 	struct audit_names *n;
318 	int rc;
319 
320 	if (name) {
321 		rc = audit_uid_comparator(uid, f->op, name->uid);
322 		if (rc)
323 			return rc;
324 	}
325 
326 	if (ctx) {
327 		list_for_each_entry(n, &ctx->names_list, list) {
328 			rc = audit_uid_comparator(uid, f->op, n->uid);
329 			if (rc)
330 				return rc;
331 		}
332 	}
333 	return 0;
334 }
335 
audit_compare_gid(kgid_t gid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)336 static int audit_compare_gid(kgid_t gid,
337 			     struct audit_names *name,
338 			     struct audit_field *f,
339 			     struct audit_context *ctx)
340 {
341 	struct audit_names *n;
342 	int rc;
343 
344 	if (name) {
345 		rc = audit_gid_comparator(gid, f->op, name->gid);
346 		if (rc)
347 			return rc;
348 	}
349 
350 	if (ctx) {
351 		list_for_each_entry(n, &ctx->names_list, list) {
352 			rc = audit_gid_comparator(gid, f->op, n->gid);
353 			if (rc)
354 				return rc;
355 		}
356 	}
357 	return 0;
358 }
359 
audit_field_compare(struct task_struct * tsk,const struct cred * cred,struct audit_field * f,struct audit_context * ctx,struct audit_names * name)360 static int audit_field_compare(struct task_struct *tsk,
361 			       const struct cred *cred,
362 			       struct audit_field *f,
363 			       struct audit_context *ctx,
364 			       struct audit_names *name)
365 {
366 	switch (f->val) {
367 	/* process to file object comparisons */
368 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
369 		return audit_compare_uid(cred->uid, name, f, ctx);
370 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
371 		return audit_compare_gid(cred->gid, name, f, ctx);
372 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
373 		return audit_compare_uid(cred->euid, name, f, ctx);
374 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
375 		return audit_compare_gid(cred->egid, name, f, ctx);
376 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
377 		return audit_compare_uid(tsk->loginuid, name, f, ctx);
378 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
379 		return audit_compare_uid(cred->suid, name, f, ctx);
380 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
381 		return audit_compare_gid(cred->sgid, name, f, ctx);
382 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
383 		return audit_compare_uid(cred->fsuid, name, f, ctx);
384 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
385 		return audit_compare_gid(cred->fsgid, name, f, ctx);
386 	/* uid comparisons */
387 	case AUDIT_COMPARE_UID_TO_AUID:
388 		return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
389 	case AUDIT_COMPARE_UID_TO_EUID:
390 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
391 	case AUDIT_COMPARE_UID_TO_SUID:
392 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
393 	case AUDIT_COMPARE_UID_TO_FSUID:
394 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
395 	/* auid comparisons */
396 	case AUDIT_COMPARE_AUID_TO_EUID:
397 		return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
398 	case AUDIT_COMPARE_AUID_TO_SUID:
399 		return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
400 	case AUDIT_COMPARE_AUID_TO_FSUID:
401 		return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
402 	/* euid comparisons */
403 	case AUDIT_COMPARE_EUID_TO_SUID:
404 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
405 	case AUDIT_COMPARE_EUID_TO_FSUID:
406 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
407 	/* suid comparisons */
408 	case AUDIT_COMPARE_SUID_TO_FSUID:
409 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
410 	/* gid comparisons */
411 	case AUDIT_COMPARE_GID_TO_EGID:
412 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
413 	case AUDIT_COMPARE_GID_TO_SGID:
414 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
415 	case AUDIT_COMPARE_GID_TO_FSGID:
416 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
417 	/* egid comparisons */
418 	case AUDIT_COMPARE_EGID_TO_SGID:
419 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
420 	case AUDIT_COMPARE_EGID_TO_FSGID:
421 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
422 	/* sgid comparison */
423 	case AUDIT_COMPARE_SGID_TO_FSGID:
424 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
425 	default:
426 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
427 		return 0;
428 	}
429 	return 0;
430 }
431 
432 /* Determine if any context name data matches a rule's watch data */
433 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
434  * otherwise.
435  *
436  * If task_creation is true, this is an explicit indication that we are
437  * filtering a task rule at task creation time.  This and tsk == current are
438  * the only situations where tsk->cred may be accessed without an rcu read lock.
439  */
audit_filter_rules(struct task_struct * tsk,struct audit_krule * rule,struct audit_context * ctx,struct audit_names * name,enum audit_state * state,bool task_creation)440 static int audit_filter_rules(struct task_struct *tsk,
441 			      struct audit_krule *rule,
442 			      struct audit_context *ctx,
443 			      struct audit_names *name,
444 			      enum audit_state *state,
445 			      bool task_creation)
446 {
447 	const struct cred *cred;
448 	int i, need_sid = 1;
449 	u32 sid;
450 	unsigned int sessionid;
451 
452 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
453 
454 	for (i = 0; i < rule->field_count; i++) {
455 		struct audit_field *f = &rule->fields[i];
456 		struct audit_names *n;
457 		int result = 0;
458 		pid_t pid;
459 
460 		switch (f->type) {
461 		case AUDIT_PID:
462 			pid = task_tgid_nr(tsk);
463 			result = audit_comparator(pid, f->op, f->val);
464 			break;
465 		case AUDIT_PPID:
466 			if (ctx) {
467 				if (!ctx->ppid)
468 					ctx->ppid = task_ppid_nr(tsk);
469 				result = audit_comparator(ctx->ppid, f->op, f->val);
470 			}
471 			break;
472 		case AUDIT_EXE:
473 			result = audit_exe_compare(tsk, rule->exe);
474 			if (f->op == Audit_not_equal)
475 				result = !result;
476 			break;
477 		case AUDIT_UID:
478 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
479 			break;
480 		case AUDIT_EUID:
481 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
482 			break;
483 		case AUDIT_SUID:
484 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
485 			break;
486 		case AUDIT_FSUID:
487 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
488 			break;
489 		case AUDIT_GID:
490 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
491 			if (f->op == Audit_equal) {
492 				if (!result)
493 					result = in_group_p(f->gid);
494 			} else if (f->op == Audit_not_equal) {
495 				if (result)
496 					result = !in_group_p(f->gid);
497 			}
498 			break;
499 		case AUDIT_EGID:
500 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
501 			if (f->op == Audit_equal) {
502 				if (!result)
503 					result = in_egroup_p(f->gid);
504 			} else if (f->op == Audit_not_equal) {
505 				if (result)
506 					result = !in_egroup_p(f->gid);
507 			}
508 			break;
509 		case AUDIT_SGID:
510 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
511 			break;
512 		case AUDIT_FSGID:
513 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
514 			break;
515 		case AUDIT_SESSIONID:
516 			sessionid = audit_get_sessionid(current);
517 			result = audit_comparator(sessionid, f->op, f->val);
518 			break;
519 		case AUDIT_PERS:
520 			result = audit_comparator(tsk->personality, f->op, f->val);
521 			break;
522 		case AUDIT_ARCH:
523 			if (ctx)
524 				result = audit_comparator(ctx->arch, f->op, f->val);
525 			break;
526 
527 		case AUDIT_EXIT:
528 			if (ctx && ctx->return_valid)
529 				result = audit_comparator(ctx->return_code, f->op, f->val);
530 			break;
531 		case AUDIT_SUCCESS:
532 			if (ctx && ctx->return_valid) {
533 				if (f->val)
534 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
535 				else
536 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
537 			}
538 			break;
539 		case AUDIT_DEVMAJOR:
540 			if (name) {
541 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
542 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
543 					++result;
544 			} else if (ctx) {
545 				list_for_each_entry(n, &ctx->names_list, list) {
546 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
547 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
548 						++result;
549 						break;
550 					}
551 				}
552 			}
553 			break;
554 		case AUDIT_DEVMINOR:
555 			if (name) {
556 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
557 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
558 					++result;
559 			} else if (ctx) {
560 				list_for_each_entry(n, &ctx->names_list, list) {
561 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
562 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
563 						++result;
564 						break;
565 					}
566 				}
567 			}
568 			break;
569 		case AUDIT_INODE:
570 			if (name)
571 				result = audit_comparator(name->ino, f->op, f->val);
572 			else if (ctx) {
573 				list_for_each_entry(n, &ctx->names_list, list) {
574 					if (audit_comparator(n->ino, f->op, f->val)) {
575 						++result;
576 						break;
577 					}
578 				}
579 			}
580 			break;
581 		case AUDIT_OBJ_UID:
582 			if (name) {
583 				result = audit_uid_comparator(name->uid, f->op, f->uid);
584 			} else if (ctx) {
585 				list_for_each_entry(n, &ctx->names_list, list) {
586 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
587 						++result;
588 						break;
589 					}
590 				}
591 			}
592 			break;
593 		case AUDIT_OBJ_GID:
594 			if (name) {
595 				result = audit_gid_comparator(name->gid, f->op, f->gid);
596 			} else if (ctx) {
597 				list_for_each_entry(n, &ctx->names_list, list) {
598 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
599 						++result;
600 						break;
601 					}
602 				}
603 			}
604 			break;
605 		case AUDIT_WATCH:
606 			if (name)
607 				result = audit_watch_compare(rule->watch, name->ino, name->dev);
608 			break;
609 		case AUDIT_DIR:
610 			if (ctx)
611 				result = match_tree_refs(ctx, rule->tree);
612 			break;
613 		case AUDIT_LOGINUID:
614 			result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
615 			break;
616 		case AUDIT_LOGINUID_SET:
617 			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
618 			break;
619 		case AUDIT_SUBJ_USER:
620 		case AUDIT_SUBJ_ROLE:
621 		case AUDIT_SUBJ_TYPE:
622 		case AUDIT_SUBJ_SEN:
623 		case AUDIT_SUBJ_CLR:
624 			/* NOTE: this may return negative values indicating
625 			   a temporary error.  We simply treat this as a
626 			   match for now to avoid losing information that
627 			   may be wanted.   An error message will also be
628 			   logged upon error */
629 			if (f->lsm_rule) {
630 				if (need_sid) {
631 					security_task_getsecid(tsk, &sid);
632 					need_sid = 0;
633 				}
634 				result = security_audit_rule_match(sid, f->type,
635 				                                  f->op,
636 				                                  f->lsm_rule,
637 				                                  ctx);
638 			}
639 			break;
640 		case AUDIT_OBJ_USER:
641 		case AUDIT_OBJ_ROLE:
642 		case AUDIT_OBJ_TYPE:
643 		case AUDIT_OBJ_LEV_LOW:
644 		case AUDIT_OBJ_LEV_HIGH:
645 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
646 			   also applies here */
647 			if (f->lsm_rule) {
648 				/* Find files that match */
649 				if (name) {
650 					result = security_audit_rule_match(
651 					           name->osid, f->type, f->op,
652 					           f->lsm_rule, ctx);
653 				} else if (ctx) {
654 					list_for_each_entry(n, &ctx->names_list, list) {
655 						if (security_audit_rule_match(n->osid, f->type,
656 									      f->op, f->lsm_rule,
657 									      ctx)) {
658 							++result;
659 							break;
660 						}
661 					}
662 				}
663 				/* Find ipc objects that match */
664 				if (!ctx || ctx->type != AUDIT_IPC)
665 					break;
666 				if (security_audit_rule_match(ctx->ipc.osid,
667 							      f->type, f->op,
668 							      f->lsm_rule, ctx))
669 					++result;
670 			}
671 			break;
672 		case AUDIT_ARG0:
673 		case AUDIT_ARG1:
674 		case AUDIT_ARG2:
675 		case AUDIT_ARG3:
676 			if (ctx)
677 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
678 			break;
679 		case AUDIT_FILTERKEY:
680 			/* ignore this field for filtering */
681 			result = 1;
682 			break;
683 		case AUDIT_PERM:
684 			result = audit_match_perm(ctx, f->val);
685 			break;
686 		case AUDIT_FILETYPE:
687 			result = audit_match_filetype(ctx, f->val);
688 			break;
689 		case AUDIT_FIELD_COMPARE:
690 			result = audit_field_compare(tsk, cred, f, ctx, name);
691 			break;
692 		}
693 		if (!result)
694 			return 0;
695 	}
696 
697 	if (ctx) {
698 		if (rule->prio <= ctx->prio)
699 			return 0;
700 		if (rule->filterkey) {
701 			kfree(ctx->filterkey);
702 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
703 		}
704 		ctx->prio = rule->prio;
705 	}
706 	switch (rule->action) {
707 	case AUDIT_NEVER:
708 		*state = AUDIT_DISABLED;
709 		break;
710 	case AUDIT_ALWAYS:
711 		*state = AUDIT_RECORD_CONTEXT;
712 		break;
713 	}
714 	return 1;
715 }
716 
717 /* At process creation time, we can determine if system-call auditing is
718  * completely disabled for this task.  Since we only have the task
719  * structure at this point, we can only check uid and gid.
720  */
audit_filter_task(struct task_struct * tsk,char ** key)721 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
722 {
723 	struct audit_entry *e;
724 	enum audit_state   state;
725 
726 	rcu_read_lock();
727 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
728 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
729 				       &state, true)) {
730 			if (state == AUDIT_RECORD_CONTEXT)
731 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
732 			rcu_read_unlock();
733 			return state;
734 		}
735 	}
736 	rcu_read_unlock();
737 	return AUDIT_BUILD_CONTEXT;
738 }
739 
audit_in_mask(const struct audit_krule * rule,unsigned long val)740 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
741 {
742 	int word, bit;
743 
744 	if (val > 0xffffffff)
745 		return false;
746 
747 	word = AUDIT_WORD(val);
748 	if (word >= AUDIT_BITMASK_SIZE)
749 		return false;
750 
751 	bit = AUDIT_BIT(val);
752 
753 	return rule->mask[word] & bit;
754 }
755 
756 /* At syscall entry and exit time, this filter is called if the
757  * audit_state is not low enough that auditing cannot take place, but is
758  * also not high enough that we already know we have to write an audit
759  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
760  */
audit_filter_syscall(struct task_struct * tsk,struct audit_context * ctx,struct list_head * list)761 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
762 					     struct audit_context *ctx,
763 					     struct list_head *list)
764 {
765 	struct audit_entry *e;
766 	enum audit_state state;
767 
768 	if (auditd_test_task(tsk))
769 		return AUDIT_DISABLED;
770 
771 	rcu_read_lock();
772 	if (!list_empty(list)) {
773 		list_for_each_entry_rcu(e, list, list) {
774 			if (audit_in_mask(&e->rule, ctx->major) &&
775 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
776 					       &state, false)) {
777 				rcu_read_unlock();
778 				ctx->current_state = state;
779 				return state;
780 			}
781 		}
782 	}
783 	rcu_read_unlock();
784 	return AUDIT_BUILD_CONTEXT;
785 }
786 
787 /*
788  * Given an audit_name check the inode hash table to see if they match.
789  * Called holding the rcu read lock to protect the use of audit_inode_hash
790  */
audit_filter_inode_name(struct task_struct * tsk,struct audit_names * n,struct audit_context * ctx)791 static int audit_filter_inode_name(struct task_struct *tsk,
792 				   struct audit_names *n,
793 				   struct audit_context *ctx) {
794 	int h = audit_hash_ino((u32)n->ino);
795 	struct list_head *list = &audit_inode_hash[h];
796 	struct audit_entry *e;
797 	enum audit_state state;
798 
799 	if (list_empty(list))
800 		return 0;
801 
802 	list_for_each_entry_rcu(e, list, list) {
803 		if (audit_in_mask(&e->rule, ctx->major) &&
804 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
805 			ctx->current_state = state;
806 			return 1;
807 		}
808 	}
809 
810 	return 0;
811 }
812 
813 /* At syscall exit time, this filter is called if any audit_names have been
814  * collected during syscall processing.  We only check rules in sublists at hash
815  * buckets applicable to the inode numbers in audit_names.
816  * Regarding audit_state, same rules apply as for audit_filter_syscall().
817  */
audit_filter_inodes(struct task_struct * tsk,struct audit_context * ctx)818 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
819 {
820 	struct audit_names *n;
821 
822 	if (auditd_test_task(tsk))
823 		return;
824 
825 	rcu_read_lock();
826 
827 	list_for_each_entry(n, &ctx->names_list, list) {
828 		if (audit_filter_inode_name(tsk, n, ctx))
829 			break;
830 	}
831 	rcu_read_unlock();
832 }
833 
834 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
audit_take_context(struct task_struct * tsk,int return_valid,long return_code)835 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
836 						      int return_valid,
837 						      long return_code)
838 {
839 	struct audit_context *context = tsk->audit_context;
840 
841 	if (!context)
842 		return NULL;
843 	context->return_valid = return_valid;
844 
845 	/*
846 	 * we need to fix up the return code in the audit logs if the actual
847 	 * return codes are later going to be fixed up by the arch specific
848 	 * signal handlers
849 	 *
850 	 * This is actually a test for:
851 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
852 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
853 	 *
854 	 * but is faster than a bunch of ||
855 	 */
856 	if (unlikely(return_code <= -ERESTARTSYS) &&
857 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
858 	    (return_code != -ENOIOCTLCMD))
859 		context->return_code = -EINTR;
860 	else
861 		context->return_code  = return_code;
862 
863 	if (context->in_syscall && !context->dummy) {
864 		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
865 		audit_filter_inodes(tsk, context);
866 	}
867 
868 	tsk->audit_context = NULL;
869 	return context;
870 }
871 
audit_proctitle_free(struct audit_context * context)872 static inline void audit_proctitle_free(struct audit_context *context)
873 {
874 	kfree(context->proctitle.value);
875 	context->proctitle.value = NULL;
876 	context->proctitle.len = 0;
877 }
878 
audit_free_names(struct audit_context * context)879 static inline void audit_free_names(struct audit_context *context)
880 {
881 	struct audit_names *n, *next;
882 
883 	list_for_each_entry_safe(n, next, &context->names_list, list) {
884 		list_del(&n->list);
885 		if (n->name)
886 			putname(n->name);
887 		if (n->should_free)
888 			kfree(n);
889 	}
890 	context->name_count = 0;
891 	path_put(&context->pwd);
892 	context->pwd.dentry = NULL;
893 	context->pwd.mnt = NULL;
894 }
895 
audit_free_aux(struct audit_context * context)896 static inline void audit_free_aux(struct audit_context *context)
897 {
898 	struct audit_aux_data *aux;
899 
900 	while ((aux = context->aux)) {
901 		context->aux = aux->next;
902 		kfree(aux);
903 	}
904 	while ((aux = context->aux_pids)) {
905 		context->aux_pids = aux->next;
906 		kfree(aux);
907 	}
908 }
909 
audit_alloc_context(enum audit_state state)910 static inline struct audit_context *audit_alloc_context(enum audit_state state)
911 {
912 	struct audit_context *context;
913 
914 	context = kzalloc(sizeof(*context), GFP_KERNEL);
915 	if (!context)
916 		return NULL;
917 	context->state = state;
918 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
919 	INIT_LIST_HEAD(&context->killed_trees);
920 	INIT_LIST_HEAD(&context->names_list);
921 	return context;
922 }
923 
924 /**
925  * audit_alloc - allocate an audit context block for a task
926  * @tsk: task
927  *
928  * Filter on the task information and allocate a per-task audit context
929  * if necessary.  Doing so turns on system call auditing for the
930  * specified task.  This is called from copy_process, so no lock is
931  * needed.
932  */
audit_alloc(struct task_struct * tsk)933 int audit_alloc(struct task_struct *tsk)
934 {
935 	struct audit_context *context;
936 	enum audit_state     state;
937 	char *key = NULL;
938 
939 	if (likely(!audit_ever_enabled))
940 		return 0; /* Return if not auditing. */
941 
942 	state = audit_filter_task(tsk, &key);
943 	if (state == AUDIT_DISABLED) {
944 		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
945 		return 0;
946 	}
947 
948 	if (!(context = audit_alloc_context(state))) {
949 		kfree(key);
950 		audit_log_lost("out of memory in audit_alloc");
951 		return -ENOMEM;
952 	}
953 	context->filterkey = key;
954 
955 	tsk->audit_context  = context;
956 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
957 	return 0;
958 }
959 
audit_free_context(struct audit_context * context)960 static inline void audit_free_context(struct audit_context *context)
961 {
962 	audit_free_names(context);
963 	unroll_tree_refs(context, NULL, 0);
964 	free_tree_refs(context);
965 	audit_free_aux(context);
966 	kfree(context->filterkey);
967 	kfree(context->sockaddr);
968 	audit_proctitle_free(context);
969 	kfree(context);
970 }
971 
audit_log_pid_context(struct audit_context * context,pid_t pid,kuid_t auid,kuid_t uid,unsigned int sessionid,u32 sid,char * comm)972 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
973 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
974 				 u32 sid, char *comm)
975 {
976 	struct audit_buffer *ab;
977 	char *ctx = NULL;
978 	u32 len;
979 	int rc = 0;
980 
981 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
982 	if (!ab)
983 		return rc;
984 
985 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
986 			 from_kuid(&init_user_ns, auid),
987 			 from_kuid(&init_user_ns, uid), sessionid);
988 	if (sid) {
989 		if (security_secid_to_secctx(sid, &ctx, &len)) {
990 			audit_log_format(ab, " obj=(none)");
991 			rc = 1;
992 		} else {
993 			audit_log_format(ab, " obj=%s", ctx);
994 			security_release_secctx(ctx, len);
995 		}
996 	}
997 	audit_log_format(ab, " ocomm=");
998 	audit_log_untrustedstring(ab, comm);
999 	audit_log_end(ab);
1000 
1001 	return rc;
1002 }
1003 
audit_log_execve_info(struct audit_context * context,struct audit_buffer ** ab)1004 static void audit_log_execve_info(struct audit_context *context,
1005 				  struct audit_buffer **ab)
1006 {
1007 	long len_max;
1008 	long len_rem;
1009 	long len_full;
1010 	long len_buf;
1011 	long len_abuf = 0;
1012 	long len_tmp;
1013 	bool require_data;
1014 	bool encode;
1015 	unsigned int iter;
1016 	unsigned int arg;
1017 	char *buf_head;
1018 	char *buf;
1019 	const char __user *p = (const char __user *)current->mm->arg_start;
1020 
1021 	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1022 	 *       data we put in the audit record for this argument (see the
1023 	 *       code below) ... at this point in time 96 is plenty */
1024 	char abuf[96];
1025 
1026 	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1027 	 *       current value of 7500 is not as important as the fact that it
1028 	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1029 	 *       room if we go over a little bit in the logging below */
1030 	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1031 	len_max = MAX_EXECVE_AUDIT_LEN;
1032 
1033 	/* scratch buffer to hold the userspace args */
1034 	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1035 	if (!buf_head) {
1036 		audit_panic("out of memory for argv string");
1037 		return;
1038 	}
1039 	buf = buf_head;
1040 
1041 	audit_log_format(*ab, "argc=%d", context->execve.argc);
1042 
1043 	len_rem = len_max;
1044 	len_buf = 0;
1045 	len_full = 0;
1046 	require_data = true;
1047 	encode = false;
1048 	iter = 0;
1049 	arg = 0;
1050 	do {
1051 		/* NOTE: we don't ever want to trust this value for anything
1052 		 *       serious, but the audit record format insists we
1053 		 *       provide an argument length for really long arguments,
1054 		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1055 		 *       to use strncpy_from_user() to obtain this value for
1056 		 *       recording in the log, although we don't use it
1057 		 *       anywhere here to avoid a double-fetch problem */
1058 		if (len_full == 0)
1059 			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1060 
1061 		/* read more data from userspace */
1062 		if (require_data) {
1063 			/* can we make more room in the buffer? */
1064 			if (buf != buf_head) {
1065 				memmove(buf_head, buf, len_buf);
1066 				buf = buf_head;
1067 			}
1068 
1069 			/* fetch as much as we can of the argument */
1070 			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1071 						    len_max - len_buf);
1072 			if (len_tmp == -EFAULT) {
1073 				/* unable to copy from userspace */
1074 				send_sig(SIGKILL, current, 0);
1075 				goto out;
1076 			} else if (len_tmp == (len_max - len_buf)) {
1077 				/* buffer is not large enough */
1078 				require_data = true;
1079 				/* NOTE: if we are going to span multiple
1080 				 *       buffers force the encoding so we stand
1081 				 *       a chance at a sane len_full value and
1082 				 *       consistent record encoding */
1083 				encode = true;
1084 				len_full = len_full * 2;
1085 				p += len_tmp;
1086 			} else {
1087 				require_data = false;
1088 				if (!encode)
1089 					encode = audit_string_contains_control(
1090 								buf, len_tmp);
1091 				/* try to use a trusted value for len_full */
1092 				if (len_full < len_max)
1093 					len_full = (encode ?
1094 						    len_tmp * 2 : len_tmp);
1095 				p += len_tmp + 1;
1096 			}
1097 			len_buf += len_tmp;
1098 			buf_head[len_buf] = '\0';
1099 
1100 			/* length of the buffer in the audit record? */
1101 			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1102 		}
1103 
1104 		/* write as much as we can to the audit log */
1105 		if (len_buf >= 0) {
1106 			/* NOTE: some magic numbers here - basically if we
1107 			 *       can't fit a reasonable amount of data into the
1108 			 *       existing audit buffer, flush it and start with
1109 			 *       a new buffer */
1110 			if ((sizeof(abuf) + 8) > len_rem) {
1111 				len_rem = len_max;
1112 				audit_log_end(*ab);
1113 				*ab = audit_log_start(context,
1114 						      GFP_KERNEL, AUDIT_EXECVE);
1115 				if (!*ab)
1116 					goto out;
1117 			}
1118 
1119 			/* create the non-arg portion of the arg record */
1120 			len_tmp = 0;
1121 			if (require_data || (iter > 0) ||
1122 			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1123 				if (iter == 0) {
1124 					len_tmp += snprintf(&abuf[len_tmp],
1125 							sizeof(abuf) - len_tmp,
1126 							" a%d_len=%lu",
1127 							arg, len_full);
1128 				}
1129 				len_tmp += snprintf(&abuf[len_tmp],
1130 						    sizeof(abuf) - len_tmp,
1131 						    " a%d[%d]=", arg, iter++);
1132 			} else
1133 				len_tmp += snprintf(&abuf[len_tmp],
1134 						    sizeof(abuf) - len_tmp,
1135 						    " a%d=", arg);
1136 			WARN_ON(len_tmp >= sizeof(abuf));
1137 			abuf[sizeof(abuf) - 1] = '\0';
1138 
1139 			/* log the arg in the audit record */
1140 			audit_log_format(*ab, "%s", abuf);
1141 			len_rem -= len_tmp;
1142 			len_tmp = len_buf;
1143 			if (encode) {
1144 				if (len_abuf > len_rem)
1145 					len_tmp = len_rem / 2; /* encoding */
1146 				audit_log_n_hex(*ab, buf, len_tmp);
1147 				len_rem -= len_tmp * 2;
1148 				len_abuf -= len_tmp * 2;
1149 			} else {
1150 				if (len_abuf > len_rem)
1151 					len_tmp = len_rem - 2; /* quotes */
1152 				audit_log_n_string(*ab, buf, len_tmp);
1153 				len_rem -= len_tmp + 2;
1154 				/* don't subtract the "2" because we still need
1155 				 * to add quotes to the remaining string */
1156 				len_abuf -= len_tmp;
1157 			}
1158 			len_buf -= len_tmp;
1159 			buf += len_tmp;
1160 		}
1161 
1162 		/* ready to move to the next argument? */
1163 		if ((len_buf == 0) && !require_data) {
1164 			arg++;
1165 			iter = 0;
1166 			len_full = 0;
1167 			require_data = true;
1168 			encode = false;
1169 		}
1170 	} while (arg < context->execve.argc);
1171 
1172 	/* NOTE: the caller handles the final audit_log_end() call */
1173 
1174 out:
1175 	kfree(buf_head);
1176 }
1177 
show_special(struct audit_context * context,int * call_panic)1178 static void show_special(struct audit_context *context, int *call_panic)
1179 {
1180 	struct audit_buffer *ab;
1181 	int i;
1182 
1183 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1184 	if (!ab)
1185 		return;
1186 
1187 	switch (context->type) {
1188 	case AUDIT_SOCKETCALL: {
1189 		int nargs = context->socketcall.nargs;
1190 		audit_log_format(ab, "nargs=%d", nargs);
1191 		for (i = 0; i < nargs; i++)
1192 			audit_log_format(ab, " a%d=%lx", i,
1193 				context->socketcall.args[i]);
1194 		break; }
1195 	case AUDIT_IPC: {
1196 		u32 osid = context->ipc.osid;
1197 
1198 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1199 				 from_kuid(&init_user_ns, context->ipc.uid),
1200 				 from_kgid(&init_user_ns, context->ipc.gid),
1201 				 context->ipc.mode);
1202 		if (osid) {
1203 			char *ctx = NULL;
1204 			u32 len;
1205 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1206 				audit_log_format(ab, " osid=%u", osid);
1207 				*call_panic = 1;
1208 			} else {
1209 				audit_log_format(ab, " obj=%s", ctx);
1210 				security_release_secctx(ctx, len);
1211 			}
1212 		}
1213 		if (context->ipc.has_perm) {
1214 			audit_log_end(ab);
1215 			ab = audit_log_start(context, GFP_KERNEL,
1216 					     AUDIT_IPC_SET_PERM);
1217 			if (unlikely(!ab))
1218 				return;
1219 			audit_log_format(ab,
1220 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1221 				context->ipc.qbytes,
1222 				context->ipc.perm_uid,
1223 				context->ipc.perm_gid,
1224 				context->ipc.perm_mode);
1225 		}
1226 		break; }
1227 	case AUDIT_MQ_OPEN:
1228 		audit_log_format(ab,
1229 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1230 			"mq_msgsize=%ld mq_curmsgs=%ld",
1231 			context->mq_open.oflag, context->mq_open.mode,
1232 			context->mq_open.attr.mq_flags,
1233 			context->mq_open.attr.mq_maxmsg,
1234 			context->mq_open.attr.mq_msgsize,
1235 			context->mq_open.attr.mq_curmsgs);
1236 		break;
1237 	case AUDIT_MQ_SENDRECV:
1238 		audit_log_format(ab,
1239 			"mqdes=%d msg_len=%zd msg_prio=%u "
1240 			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1241 			context->mq_sendrecv.mqdes,
1242 			context->mq_sendrecv.msg_len,
1243 			context->mq_sendrecv.msg_prio,
1244 			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1245 			context->mq_sendrecv.abs_timeout.tv_nsec);
1246 		break;
1247 	case AUDIT_MQ_NOTIFY:
1248 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1249 				context->mq_notify.mqdes,
1250 				context->mq_notify.sigev_signo);
1251 		break;
1252 	case AUDIT_MQ_GETSETATTR: {
1253 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1254 		audit_log_format(ab,
1255 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1256 			"mq_curmsgs=%ld ",
1257 			context->mq_getsetattr.mqdes,
1258 			attr->mq_flags, attr->mq_maxmsg,
1259 			attr->mq_msgsize, attr->mq_curmsgs);
1260 		break; }
1261 	case AUDIT_CAPSET:
1262 		audit_log_format(ab, "pid=%d", context->capset.pid);
1263 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1264 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1265 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1266 		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1267 		break;
1268 	case AUDIT_MMAP:
1269 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1270 				 context->mmap.flags);
1271 		break;
1272 	case AUDIT_EXECVE:
1273 		audit_log_execve_info(context, &ab);
1274 		break;
1275 	case AUDIT_KERN_MODULE:
1276 		audit_log_format(ab, "name=");
1277 		if (context->module.name) {
1278 			audit_log_untrustedstring(ab, context->module.name);
1279 			kfree(context->module.name);
1280 		} else
1281 			audit_log_format(ab, "(null)");
1282 
1283 		break;
1284 	}
1285 	audit_log_end(ab);
1286 }
1287 
audit_proctitle_rtrim(char * proctitle,int len)1288 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1289 {
1290 	char *end = proctitle + len - 1;
1291 	while (end > proctitle && !isprint(*end))
1292 		end--;
1293 
1294 	/* catch the case where proctitle is only 1 non-print character */
1295 	len = end - proctitle + 1;
1296 	len -= isprint(proctitle[len-1]) == 0;
1297 	return len;
1298 }
1299 
audit_log_proctitle(struct task_struct * tsk,struct audit_context * context)1300 static void audit_log_proctitle(struct task_struct *tsk,
1301 			 struct audit_context *context)
1302 {
1303 	int res;
1304 	char *buf;
1305 	char *msg = "(null)";
1306 	int len = strlen(msg);
1307 	struct audit_buffer *ab;
1308 
1309 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1310 	if (!ab)
1311 		return;	/* audit_panic or being filtered */
1312 
1313 	audit_log_format(ab, "proctitle=");
1314 
1315 	/* Not  cached */
1316 	if (!context->proctitle.value) {
1317 		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1318 		if (!buf)
1319 			goto out;
1320 		/* Historically called this from procfs naming */
1321 		res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1322 		if (res == 0) {
1323 			kfree(buf);
1324 			goto out;
1325 		}
1326 		res = audit_proctitle_rtrim(buf, res);
1327 		if (res == 0) {
1328 			kfree(buf);
1329 			goto out;
1330 		}
1331 		context->proctitle.value = buf;
1332 		context->proctitle.len = res;
1333 	}
1334 	msg = context->proctitle.value;
1335 	len = context->proctitle.len;
1336 out:
1337 	audit_log_n_untrustedstring(ab, msg, len);
1338 	audit_log_end(ab);
1339 }
1340 
audit_log_exit(struct audit_context * context,struct task_struct * tsk)1341 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1342 {
1343 	int i, call_panic = 0;
1344 	struct audit_buffer *ab;
1345 	struct audit_aux_data *aux;
1346 	struct audit_names *n;
1347 
1348 	/* tsk == current */
1349 	context->personality = tsk->personality;
1350 
1351 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1352 	if (!ab)
1353 		return;		/* audit_panic has been called */
1354 	audit_log_format(ab, "arch=%x syscall=%d",
1355 			 context->arch, context->major);
1356 	if (context->personality != PER_LINUX)
1357 		audit_log_format(ab, " per=%lx", context->personality);
1358 	if (context->return_valid)
1359 		audit_log_format(ab, " success=%s exit=%ld",
1360 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1361 				 context->return_code);
1362 
1363 	audit_log_format(ab,
1364 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1365 			 context->argv[0],
1366 			 context->argv[1],
1367 			 context->argv[2],
1368 			 context->argv[3],
1369 			 context->name_count);
1370 
1371 	audit_log_task_info(ab, tsk);
1372 	audit_log_key(ab, context->filterkey);
1373 	audit_log_end(ab);
1374 
1375 	for (aux = context->aux; aux; aux = aux->next) {
1376 
1377 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1378 		if (!ab)
1379 			continue; /* audit_panic has been called */
1380 
1381 		switch (aux->type) {
1382 
1383 		case AUDIT_BPRM_FCAPS: {
1384 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1385 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1386 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1387 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1388 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1389 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1390 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1391 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1392 			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1393 			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1394 			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1395 			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1396 			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1397 			break; }
1398 
1399 		}
1400 		audit_log_end(ab);
1401 	}
1402 
1403 	if (context->type)
1404 		show_special(context, &call_panic);
1405 
1406 	if (context->fds[0] >= 0) {
1407 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1408 		if (ab) {
1409 			audit_log_format(ab, "fd0=%d fd1=%d",
1410 					context->fds[0], context->fds[1]);
1411 			audit_log_end(ab);
1412 		}
1413 	}
1414 
1415 	if (context->sockaddr_len) {
1416 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1417 		if (ab) {
1418 			audit_log_format(ab, "saddr=");
1419 			audit_log_n_hex(ab, (void *)context->sockaddr,
1420 					context->sockaddr_len);
1421 			audit_log_end(ab);
1422 		}
1423 	}
1424 
1425 	for (aux = context->aux_pids; aux; aux = aux->next) {
1426 		struct audit_aux_data_pids *axs = (void *)aux;
1427 
1428 		for (i = 0; i < axs->pid_count; i++)
1429 			if (audit_log_pid_context(context, axs->target_pid[i],
1430 						  axs->target_auid[i],
1431 						  axs->target_uid[i],
1432 						  axs->target_sessionid[i],
1433 						  axs->target_sid[i],
1434 						  axs->target_comm[i]))
1435 				call_panic = 1;
1436 	}
1437 
1438 	if (context->target_pid &&
1439 	    audit_log_pid_context(context, context->target_pid,
1440 				  context->target_auid, context->target_uid,
1441 				  context->target_sessionid,
1442 				  context->target_sid, context->target_comm))
1443 			call_panic = 1;
1444 
1445 	if (context->pwd.dentry && context->pwd.mnt) {
1446 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1447 		if (ab) {
1448 			audit_log_d_path(ab, "cwd=", &context->pwd);
1449 			audit_log_end(ab);
1450 		}
1451 	}
1452 
1453 	i = 0;
1454 	list_for_each_entry(n, &context->names_list, list) {
1455 		if (n->hidden)
1456 			continue;
1457 		audit_log_name(context, n, NULL, i++, &call_panic);
1458 	}
1459 
1460 	audit_log_proctitle(tsk, context);
1461 
1462 	/* Send end of event record to help user space know we are finished */
1463 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1464 	if (ab)
1465 		audit_log_end(ab);
1466 	if (call_panic)
1467 		audit_panic("error converting sid to string");
1468 }
1469 
1470 /**
1471  * __audit_free - free a per-task audit context
1472  * @tsk: task whose audit context block to free
1473  *
1474  * Called from copy_process and do_exit
1475  */
__audit_free(struct task_struct * tsk)1476 void __audit_free(struct task_struct *tsk)
1477 {
1478 	struct audit_context *context;
1479 
1480 	context = audit_take_context(tsk, 0, 0);
1481 	if (!context)
1482 		return;
1483 
1484 	/* Check for system calls that do not go through the exit
1485 	 * function (e.g., exit_group), then free context block.
1486 	 * We use GFP_ATOMIC here because we might be doing this
1487 	 * in the context of the idle thread */
1488 	/* that can happen only if we are called from do_exit() */
1489 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1490 		audit_log_exit(context, tsk);
1491 	if (!list_empty(&context->killed_trees))
1492 		audit_kill_trees(&context->killed_trees);
1493 
1494 	audit_free_context(context);
1495 }
1496 
1497 /**
1498  * __audit_syscall_entry - fill in an audit record at syscall entry
1499  * @major: major syscall type (function)
1500  * @a1: additional syscall register 1
1501  * @a2: additional syscall register 2
1502  * @a3: additional syscall register 3
1503  * @a4: additional syscall register 4
1504  *
1505  * Fill in audit context at syscall entry.  This only happens if the
1506  * audit context was created when the task was created and the state or
1507  * filters demand the audit context be built.  If the state from the
1508  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1509  * then the record will be written at syscall exit time (otherwise, it
1510  * will only be written if another part of the kernel requests that it
1511  * be written).
1512  */
__audit_syscall_entry(int major,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4)1513 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1514 			   unsigned long a3, unsigned long a4)
1515 {
1516 	struct task_struct *tsk = current;
1517 	struct audit_context *context = tsk->audit_context;
1518 	enum audit_state     state;
1519 
1520 	if (!context)
1521 		return;
1522 
1523 	BUG_ON(context->in_syscall || context->name_count);
1524 
1525 	if (!audit_enabled)
1526 		return;
1527 
1528 	context->arch	    = syscall_get_arch();
1529 	context->major      = major;
1530 	context->argv[0]    = a1;
1531 	context->argv[1]    = a2;
1532 	context->argv[2]    = a3;
1533 	context->argv[3]    = a4;
1534 
1535 	state = context->state;
1536 	context->dummy = !audit_n_rules;
1537 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1538 		context->prio = 0;
1539 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1540 	}
1541 	if (state == AUDIT_DISABLED)
1542 		return;
1543 
1544 	context->serial     = 0;
1545 	context->ctime = current_kernel_time64();
1546 	context->in_syscall = 1;
1547 	context->current_state  = state;
1548 	context->ppid       = 0;
1549 }
1550 
1551 /**
1552  * __audit_syscall_exit - deallocate audit context after a system call
1553  * @success: success value of the syscall
1554  * @return_code: return value of the syscall
1555  *
1556  * Tear down after system call.  If the audit context has been marked as
1557  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1558  * filtering, or because some other part of the kernel wrote an audit
1559  * message), then write out the syscall information.  In call cases,
1560  * free the names stored from getname().
1561  */
__audit_syscall_exit(int success,long return_code)1562 void __audit_syscall_exit(int success, long return_code)
1563 {
1564 	struct task_struct *tsk = current;
1565 	struct audit_context *context;
1566 
1567 	if (success)
1568 		success = AUDITSC_SUCCESS;
1569 	else
1570 		success = AUDITSC_FAILURE;
1571 
1572 	context = audit_take_context(tsk, success, return_code);
1573 	if (!context)
1574 		return;
1575 
1576 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1577 		audit_log_exit(context, tsk);
1578 
1579 	context->in_syscall = 0;
1580 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1581 
1582 	if (!list_empty(&context->killed_trees))
1583 		audit_kill_trees(&context->killed_trees);
1584 
1585 	audit_free_names(context);
1586 	unroll_tree_refs(context, NULL, 0);
1587 	audit_free_aux(context);
1588 	context->aux = NULL;
1589 	context->aux_pids = NULL;
1590 	context->target_pid = 0;
1591 	context->target_sid = 0;
1592 	context->sockaddr_len = 0;
1593 	context->type = 0;
1594 	context->fds[0] = -1;
1595 	if (context->state != AUDIT_RECORD_CONTEXT) {
1596 		kfree(context->filterkey);
1597 		context->filterkey = NULL;
1598 	}
1599 	tsk->audit_context = context;
1600 }
1601 
handle_one(const struct inode * inode)1602 static inline void handle_one(const struct inode *inode)
1603 {
1604 #ifdef CONFIG_AUDIT_TREE
1605 	struct audit_context *context;
1606 	struct audit_tree_refs *p;
1607 	struct audit_chunk *chunk;
1608 	int count;
1609 	if (likely(!inode->i_fsnotify_marks))
1610 		return;
1611 	context = current->audit_context;
1612 	p = context->trees;
1613 	count = context->tree_count;
1614 	rcu_read_lock();
1615 	chunk = audit_tree_lookup(inode);
1616 	rcu_read_unlock();
1617 	if (!chunk)
1618 		return;
1619 	if (likely(put_tree_ref(context, chunk)))
1620 		return;
1621 	if (unlikely(!grow_tree_refs(context))) {
1622 		pr_warn("out of memory, audit has lost a tree reference\n");
1623 		audit_set_auditable(context);
1624 		audit_put_chunk(chunk);
1625 		unroll_tree_refs(context, p, count);
1626 		return;
1627 	}
1628 	put_tree_ref(context, chunk);
1629 #endif
1630 }
1631 
handle_path(const struct dentry * dentry)1632 static void handle_path(const struct dentry *dentry)
1633 {
1634 #ifdef CONFIG_AUDIT_TREE
1635 	struct audit_context *context;
1636 	struct audit_tree_refs *p;
1637 	const struct dentry *d, *parent;
1638 	struct audit_chunk *drop;
1639 	unsigned long seq;
1640 	int count;
1641 
1642 	context = current->audit_context;
1643 	p = context->trees;
1644 	count = context->tree_count;
1645 retry:
1646 	drop = NULL;
1647 	d = dentry;
1648 	rcu_read_lock();
1649 	seq = read_seqbegin(&rename_lock);
1650 	for(;;) {
1651 		struct inode *inode = d_backing_inode(d);
1652 		if (inode && unlikely(inode->i_fsnotify_marks)) {
1653 			struct audit_chunk *chunk;
1654 			chunk = audit_tree_lookup(inode);
1655 			if (chunk) {
1656 				if (unlikely(!put_tree_ref(context, chunk))) {
1657 					drop = chunk;
1658 					break;
1659 				}
1660 			}
1661 		}
1662 		parent = d->d_parent;
1663 		if (parent == d)
1664 			break;
1665 		d = parent;
1666 	}
1667 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1668 		rcu_read_unlock();
1669 		if (!drop) {
1670 			/* just a race with rename */
1671 			unroll_tree_refs(context, p, count);
1672 			goto retry;
1673 		}
1674 		audit_put_chunk(drop);
1675 		if (grow_tree_refs(context)) {
1676 			/* OK, got more space */
1677 			unroll_tree_refs(context, p, count);
1678 			goto retry;
1679 		}
1680 		/* too bad */
1681 		pr_warn("out of memory, audit has lost a tree reference\n");
1682 		unroll_tree_refs(context, p, count);
1683 		audit_set_auditable(context);
1684 		return;
1685 	}
1686 	rcu_read_unlock();
1687 #endif
1688 }
1689 
audit_alloc_name(struct audit_context * context,unsigned char type)1690 static struct audit_names *audit_alloc_name(struct audit_context *context,
1691 						unsigned char type)
1692 {
1693 	struct audit_names *aname;
1694 
1695 	if (context->name_count < AUDIT_NAMES) {
1696 		aname = &context->preallocated_names[context->name_count];
1697 		memset(aname, 0, sizeof(*aname));
1698 	} else {
1699 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1700 		if (!aname)
1701 			return NULL;
1702 		aname->should_free = true;
1703 	}
1704 
1705 	aname->ino = AUDIT_INO_UNSET;
1706 	aname->type = type;
1707 	list_add_tail(&aname->list, &context->names_list);
1708 
1709 	context->name_count++;
1710 	return aname;
1711 }
1712 
1713 /**
1714  * __audit_reusename - fill out filename with info from existing entry
1715  * @uptr: userland ptr to pathname
1716  *
1717  * Search the audit_names list for the current audit context. If there is an
1718  * existing entry with a matching "uptr" then return the filename
1719  * associated with that audit_name. If not, return NULL.
1720  */
1721 struct filename *
__audit_reusename(const __user char * uptr)1722 __audit_reusename(const __user char *uptr)
1723 {
1724 	struct audit_context *context = current->audit_context;
1725 	struct audit_names *n;
1726 
1727 	list_for_each_entry(n, &context->names_list, list) {
1728 		if (!n->name)
1729 			continue;
1730 		if (n->name->uptr == uptr) {
1731 			n->name->refcnt++;
1732 			return n->name;
1733 		}
1734 	}
1735 	return NULL;
1736 }
1737 
1738 /**
1739  * __audit_getname - add a name to the list
1740  * @name: name to add
1741  *
1742  * Add a name to the list of audit names for this context.
1743  * Called from fs/namei.c:getname().
1744  */
__audit_getname(struct filename * name)1745 void __audit_getname(struct filename *name)
1746 {
1747 	struct audit_context *context = current->audit_context;
1748 	struct audit_names *n;
1749 
1750 	if (!context->in_syscall)
1751 		return;
1752 
1753 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1754 	if (!n)
1755 		return;
1756 
1757 	n->name = name;
1758 	n->name_len = AUDIT_NAME_FULL;
1759 	name->aname = n;
1760 	name->refcnt++;
1761 
1762 	if (!context->pwd.dentry)
1763 		get_fs_pwd(current->fs, &context->pwd);
1764 }
1765 
1766 /**
1767  * __audit_inode - store the inode and device from a lookup
1768  * @name: name being audited
1769  * @dentry: dentry being audited
1770  * @flags: attributes for this particular entry
1771  */
__audit_inode(struct filename * name,const struct dentry * dentry,unsigned int flags)1772 void __audit_inode(struct filename *name, const struct dentry *dentry,
1773 		   unsigned int flags)
1774 {
1775 	struct audit_context *context = current->audit_context;
1776 	struct inode *inode = d_backing_inode(dentry);
1777 	struct audit_names *n;
1778 	bool parent = flags & AUDIT_INODE_PARENT;
1779 
1780 	if (!context->in_syscall)
1781 		return;
1782 
1783 	if (!name)
1784 		goto out_alloc;
1785 
1786 	/*
1787 	 * If we have a pointer to an audit_names entry already, then we can
1788 	 * just use it directly if the type is correct.
1789 	 */
1790 	n = name->aname;
1791 	if (n) {
1792 		if (parent) {
1793 			if (n->type == AUDIT_TYPE_PARENT ||
1794 			    n->type == AUDIT_TYPE_UNKNOWN)
1795 				goto out;
1796 		} else {
1797 			if (n->type != AUDIT_TYPE_PARENT)
1798 				goto out;
1799 		}
1800 	}
1801 
1802 	list_for_each_entry_reverse(n, &context->names_list, list) {
1803 		if (n->ino) {
1804 			/* valid inode number, use that for the comparison */
1805 			if (n->ino != inode->i_ino ||
1806 			    n->dev != inode->i_sb->s_dev)
1807 				continue;
1808 		} else if (n->name) {
1809 			/* inode number has not been set, check the name */
1810 			if (strcmp(n->name->name, name->name))
1811 				continue;
1812 		} else
1813 			/* no inode and no name (?!) ... this is odd ... */
1814 			continue;
1815 
1816 		/* match the correct record type */
1817 		if (parent) {
1818 			if (n->type == AUDIT_TYPE_PARENT ||
1819 			    n->type == AUDIT_TYPE_UNKNOWN)
1820 				goto out;
1821 		} else {
1822 			if (n->type != AUDIT_TYPE_PARENT)
1823 				goto out;
1824 		}
1825 	}
1826 
1827 out_alloc:
1828 	/* unable to find an entry with both a matching name and type */
1829 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1830 	if (!n)
1831 		return;
1832 	if (name) {
1833 		n->name = name;
1834 		name->refcnt++;
1835 	}
1836 
1837 out:
1838 	if (parent) {
1839 		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1840 		n->type = AUDIT_TYPE_PARENT;
1841 		if (flags & AUDIT_INODE_HIDDEN)
1842 			n->hidden = true;
1843 	} else {
1844 		n->name_len = AUDIT_NAME_FULL;
1845 		n->type = AUDIT_TYPE_NORMAL;
1846 	}
1847 	handle_path(dentry);
1848 	audit_copy_inode(n, dentry, inode);
1849 }
1850 
__audit_file(const struct file * file)1851 void __audit_file(const struct file *file)
1852 {
1853 	__audit_inode(NULL, file->f_path.dentry, 0);
1854 }
1855 
1856 /**
1857  * __audit_inode_child - collect inode info for created/removed objects
1858  * @parent: inode of dentry parent
1859  * @dentry: dentry being audited
1860  * @type:   AUDIT_TYPE_* value that we're looking for
1861  *
1862  * For syscalls that create or remove filesystem objects, audit_inode
1863  * can only collect information for the filesystem object's parent.
1864  * This call updates the audit context with the child's information.
1865  * Syscalls that create a new filesystem object must be hooked after
1866  * the object is created.  Syscalls that remove a filesystem object
1867  * must be hooked prior, in order to capture the target inode during
1868  * unsuccessful attempts.
1869  */
__audit_inode_child(struct inode * parent,const struct dentry * dentry,const unsigned char type)1870 void __audit_inode_child(struct inode *parent,
1871 			 const struct dentry *dentry,
1872 			 const unsigned char type)
1873 {
1874 	struct audit_context *context = current->audit_context;
1875 	struct inode *inode = d_backing_inode(dentry);
1876 	const char *dname = dentry->d_name.name;
1877 	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1878 
1879 	if (!context->in_syscall)
1880 		return;
1881 
1882 	if (inode)
1883 		handle_one(inode);
1884 
1885 	/* look for a parent entry first */
1886 	list_for_each_entry(n, &context->names_list, list) {
1887 		if (!n->name ||
1888 		    (n->type != AUDIT_TYPE_PARENT &&
1889 		     n->type != AUDIT_TYPE_UNKNOWN))
1890 			continue;
1891 
1892 		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1893 		    !audit_compare_dname_path(dname,
1894 					      n->name->name, n->name_len)) {
1895 			if (n->type == AUDIT_TYPE_UNKNOWN)
1896 				n->type = AUDIT_TYPE_PARENT;
1897 			found_parent = n;
1898 			break;
1899 		}
1900 	}
1901 
1902 	/* is there a matching child entry? */
1903 	list_for_each_entry(n, &context->names_list, list) {
1904 		/* can only match entries that have a name */
1905 		if (!n->name ||
1906 		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1907 			continue;
1908 
1909 		if (!strcmp(dname, n->name->name) ||
1910 		    !audit_compare_dname_path(dname, n->name->name,
1911 						found_parent ?
1912 						found_parent->name_len :
1913 						AUDIT_NAME_FULL)) {
1914 			if (n->type == AUDIT_TYPE_UNKNOWN)
1915 				n->type = type;
1916 			found_child = n;
1917 			break;
1918 		}
1919 	}
1920 
1921 	if (!found_parent) {
1922 		/* create a new, "anonymous" parent record */
1923 		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1924 		if (!n)
1925 			return;
1926 		audit_copy_inode(n, NULL, parent);
1927 	}
1928 
1929 	if (!found_child) {
1930 		found_child = audit_alloc_name(context, type);
1931 		if (!found_child)
1932 			return;
1933 
1934 		/* Re-use the name belonging to the slot for a matching parent
1935 		 * directory. All names for this context are relinquished in
1936 		 * audit_free_names() */
1937 		if (found_parent) {
1938 			found_child->name = found_parent->name;
1939 			found_child->name_len = AUDIT_NAME_FULL;
1940 			found_child->name->refcnt++;
1941 		}
1942 	}
1943 
1944 	if (inode)
1945 		audit_copy_inode(found_child, dentry, inode);
1946 	else
1947 		found_child->ino = AUDIT_INO_UNSET;
1948 }
1949 EXPORT_SYMBOL_GPL(__audit_inode_child);
1950 
1951 /**
1952  * auditsc_get_stamp - get local copies of audit_context values
1953  * @ctx: audit_context for the task
1954  * @t: timespec64 to store time recorded in the audit_context
1955  * @serial: serial value that is recorded in the audit_context
1956  *
1957  * Also sets the context as auditable.
1958  */
auditsc_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)1959 int auditsc_get_stamp(struct audit_context *ctx,
1960 		       struct timespec64 *t, unsigned int *serial)
1961 {
1962 	if (!ctx->in_syscall)
1963 		return 0;
1964 	if (!ctx->serial)
1965 		ctx->serial = audit_serial();
1966 	t->tv_sec  = ctx->ctime.tv_sec;
1967 	t->tv_nsec = ctx->ctime.tv_nsec;
1968 	*serial    = ctx->serial;
1969 	if (!ctx->prio) {
1970 		ctx->prio = 1;
1971 		ctx->current_state = AUDIT_RECORD_CONTEXT;
1972 	}
1973 	return 1;
1974 }
1975 
1976 /* global counter which is incremented every time something logs in */
1977 static atomic_t session_id = ATOMIC_INIT(0);
1978 
audit_set_loginuid_perm(kuid_t loginuid)1979 static int audit_set_loginuid_perm(kuid_t loginuid)
1980 {
1981 	/* if we are unset, we don't need privs */
1982 	if (!audit_loginuid_set(current))
1983 		return 0;
1984 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1985 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1986 		return -EPERM;
1987 	/* it is set, you need permission */
1988 	if (!capable(CAP_AUDIT_CONTROL))
1989 		return -EPERM;
1990 	/* reject if this is not an unset and we don't allow that */
1991 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1992 		return -EPERM;
1993 	return 0;
1994 }
1995 
audit_log_set_loginuid(kuid_t koldloginuid,kuid_t kloginuid,unsigned int oldsessionid,unsigned int sessionid,int rc)1996 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1997 				   unsigned int oldsessionid, unsigned int sessionid,
1998 				   int rc)
1999 {
2000 	struct audit_buffer *ab;
2001 	uid_t uid, oldloginuid, loginuid;
2002 	struct tty_struct *tty;
2003 
2004 	if (!audit_enabled)
2005 		return;
2006 
2007 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2008 	if (!ab)
2009 		return;
2010 
2011 	uid = from_kuid(&init_user_ns, task_uid(current));
2012 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2013 	loginuid = from_kuid(&init_user_ns, kloginuid),
2014 	tty = audit_get_tty(current);
2015 
2016 	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2017 	audit_log_task_context(ab);
2018 	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2019 			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2020 			 oldsessionid, sessionid, !rc);
2021 	audit_put_tty(tty);
2022 	audit_log_end(ab);
2023 }
2024 
2025 /**
2026  * audit_set_loginuid - set current task's audit_context loginuid
2027  * @loginuid: loginuid value
2028  *
2029  * Returns 0.
2030  *
2031  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2032  */
audit_set_loginuid(kuid_t loginuid)2033 int audit_set_loginuid(kuid_t loginuid)
2034 {
2035 	struct task_struct *task = current;
2036 	unsigned int oldsessionid, sessionid = (unsigned int)-1;
2037 	kuid_t oldloginuid;
2038 	int rc;
2039 
2040 	oldloginuid = audit_get_loginuid(current);
2041 	oldsessionid = audit_get_sessionid(current);
2042 
2043 	rc = audit_set_loginuid_perm(loginuid);
2044 	if (rc)
2045 		goto out;
2046 
2047 	/* are we setting or clearing? */
2048 	if (uid_valid(loginuid)) {
2049 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2050 		if (unlikely(sessionid == (unsigned int)-1))
2051 			sessionid = (unsigned int)atomic_inc_return(&session_id);
2052 	}
2053 
2054 	task->sessionid = sessionid;
2055 	task->loginuid = loginuid;
2056 out:
2057 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2058 	return rc;
2059 }
2060 
2061 /**
2062  * __audit_mq_open - record audit data for a POSIX MQ open
2063  * @oflag: open flag
2064  * @mode: mode bits
2065  * @attr: queue attributes
2066  *
2067  */
__audit_mq_open(int oflag,umode_t mode,struct mq_attr * attr)2068 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2069 {
2070 	struct audit_context *context = current->audit_context;
2071 
2072 	if (attr)
2073 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2074 	else
2075 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2076 
2077 	context->mq_open.oflag = oflag;
2078 	context->mq_open.mode = mode;
2079 
2080 	context->type = AUDIT_MQ_OPEN;
2081 }
2082 
2083 /**
2084  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2085  * @mqdes: MQ descriptor
2086  * @msg_len: Message length
2087  * @msg_prio: Message priority
2088  * @abs_timeout: Message timeout in absolute time
2089  *
2090  */
__audit_mq_sendrecv(mqd_t mqdes,size_t msg_len,unsigned int msg_prio,const struct timespec64 * abs_timeout)2091 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2092 			const struct timespec64 *abs_timeout)
2093 {
2094 	struct audit_context *context = current->audit_context;
2095 	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2096 
2097 	if (abs_timeout)
2098 		memcpy(p, abs_timeout, sizeof(*p));
2099 	else
2100 		memset(p, 0, sizeof(*p));
2101 
2102 	context->mq_sendrecv.mqdes = mqdes;
2103 	context->mq_sendrecv.msg_len = msg_len;
2104 	context->mq_sendrecv.msg_prio = msg_prio;
2105 
2106 	context->type = AUDIT_MQ_SENDRECV;
2107 }
2108 
2109 /**
2110  * __audit_mq_notify - record audit data for a POSIX MQ notify
2111  * @mqdes: MQ descriptor
2112  * @notification: Notification event
2113  *
2114  */
2115 
__audit_mq_notify(mqd_t mqdes,const struct sigevent * notification)2116 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2117 {
2118 	struct audit_context *context = current->audit_context;
2119 
2120 	if (notification)
2121 		context->mq_notify.sigev_signo = notification->sigev_signo;
2122 	else
2123 		context->mq_notify.sigev_signo = 0;
2124 
2125 	context->mq_notify.mqdes = mqdes;
2126 	context->type = AUDIT_MQ_NOTIFY;
2127 }
2128 
2129 /**
2130  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2131  * @mqdes: MQ descriptor
2132  * @mqstat: MQ flags
2133  *
2134  */
__audit_mq_getsetattr(mqd_t mqdes,struct mq_attr * mqstat)2135 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2136 {
2137 	struct audit_context *context = current->audit_context;
2138 	context->mq_getsetattr.mqdes = mqdes;
2139 	context->mq_getsetattr.mqstat = *mqstat;
2140 	context->type = AUDIT_MQ_GETSETATTR;
2141 }
2142 
2143 /**
2144  * __audit_ipc_obj - record audit data for ipc object
2145  * @ipcp: ipc permissions
2146  *
2147  */
__audit_ipc_obj(struct kern_ipc_perm * ipcp)2148 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2149 {
2150 	struct audit_context *context = current->audit_context;
2151 	context->ipc.uid = ipcp->uid;
2152 	context->ipc.gid = ipcp->gid;
2153 	context->ipc.mode = ipcp->mode;
2154 	context->ipc.has_perm = 0;
2155 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2156 	context->type = AUDIT_IPC;
2157 }
2158 
2159 /**
2160  * __audit_ipc_set_perm - record audit data for new ipc permissions
2161  * @qbytes: msgq bytes
2162  * @uid: msgq user id
2163  * @gid: msgq group id
2164  * @mode: msgq mode (permissions)
2165  *
2166  * Called only after audit_ipc_obj().
2167  */
__audit_ipc_set_perm(unsigned long qbytes,uid_t uid,gid_t gid,umode_t mode)2168 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2169 {
2170 	struct audit_context *context = current->audit_context;
2171 
2172 	context->ipc.qbytes = qbytes;
2173 	context->ipc.perm_uid = uid;
2174 	context->ipc.perm_gid = gid;
2175 	context->ipc.perm_mode = mode;
2176 	context->ipc.has_perm = 1;
2177 }
2178 
__audit_bprm(struct linux_binprm * bprm)2179 void __audit_bprm(struct linux_binprm *bprm)
2180 {
2181 	struct audit_context *context = current->audit_context;
2182 
2183 	context->type = AUDIT_EXECVE;
2184 	context->execve.argc = bprm->argc;
2185 }
2186 
2187 
2188 /**
2189  * __audit_socketcall - record audit data for sys_socketcall
2190  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2191  * @args: args array
2192  *
2193  */
__audit_socketcall(int nargs,unsigned long * args)2194 int __audit_socketcall(int nargs, unsigned long *args)
2195 {
2196 	struct audit_context *context = current->audit_context;
2197 
2198 	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2199 		return -EINVAL;
2200 	context->type = AUDIT_SOCKETCALL;
2201 	context->socketcall.nargs = nargs;
2202 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2203 	return 0;
2204 }
2205 
2206 /**
2207  * __audit_fd_pair - record audit data for pipe and socketpair
2208  * @fd1: the first file descriptor
2209  * @fd2: the second file descriptor
2210  *
2211  */
__audit_fd_pair(int fd1,int fd2)2212 void __audit_fd_pair(int fd1, int fd2)
2213 {
2214 	struct audit_context *context = current->audit_context;
2215 	context->fds[0] = fd1;
2216 	context->fds[1] = fd2;
2217 }
2218 
2219 /**
2220  * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2221  * @len: data length in user space
2222  * @a: data address in kernel space
2223  *
2224  * Returns 0 for success or NULL context or < 0 on error.
2225  */
__audit_sockaddr(int len,void * a)2226 int __audit_sockaddr(int len, void *a)
2227 {
2228 	struct audit_context *context = current->audit_context;
2229 
2230 	if (!context->sockaddr) {
2231 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2232 		if (!p)
2233 			return -ENOMEM;
2234 		context->sockaddr = p;
2235 	}
2236 
2237 	context->sockaddr_len = len;
2238 	memcpy(context->sockaddr, a, len);
2239 	return 0;
2240 }
2241 
__audit_ptrace(struct task_struct * t)2242 void __audit_ptrace(struct task_struct *t)
2243 {
2244 	struct audit_context *context = current->audit_context;
2245 
2246 	context->target_pid = task_tgid_nr(t);
2247 	context->target_auid = audit_get_loginuid(t);
2248 	context->target_uid = task_uid(t);
2249 	context->target_sessionid = audit_get_sessionid(t);
2250 	security_task_getsecid(t, &context->target_sid);
2251 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2252 }
2253 
2254 /**
2255  * audit_signal_info - record signal info for shutting down audit subsystem
2256  * @sig: signal value
2257  * @t: task being signaled
2258  *
2259  * If the audit subsystem is being terminated, record the task (pid)
2260  * and uid that is doing that.
2261  */
audit_signal_info(int sig,struct task_struct * t)2262 int audit_signal_info(int sig, struct task_struct *t)
2263 {
2264 	struct audit_aux_data_pids *axp;
2265 	struct task_struct *tsk = current;
2266 	struct audit_context *ctx = tsk->audit_context;
2267 	kuid_t uid = current_uid(), t_uid = task_uid(t);
2268 
2269 	if (auditd_test_task(t) &&
2270 	    (sig == SIGTERM || sig == SIGHUP ||
2271 	     sig == SIGUSR1 || sig == SIGUSR2)) {
2272 		audit_sig_pid = task_tgid_nr(tsk);
2273 		if (uid_valid(tsk->loginuid))
2274 			audit_sig_uid = tsk->loginuid;
2275 		else
2276 			audit_sig_uid = uid;
2277 		security_task_getsecid(tsk, &audit_sig_sid);
2278 	}
2279 
2280 	if (!audit_signals || audit_dummy_context())
2281 		return 0;
2282 
2283 	/* optimize the common case by putting first signal recipient directly
2284 	 * in audit_context */
2285 	if (!ctx->target_pid) {
2286 		ctx->target_pid = task_tgid_nr(t);
2287 		ctx->target_auid = audit_get_loginuid(t);
2288 		ctx->target_uid = t_uid;
2289 		ctx->target_sessionid = audit_get_sessionid(t);
2290 		security_task_getsecid(t, &ctx->target_sid);
2291 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2292 		return 0;
2293 	}
2294 
2295 	axp = (void *)ctx->aux_pids;
2296 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2297 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2298 		if (!axp)
2299 			return -ENOMEM;
2300 
2301 		axp->d.type = AUDIT_OBJ_PID;
2302 		axp->d.next = ctx->aux_pids;
2303 		ctx->aux_pids = (void *)axp;
2304 	}
2305 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2306 
2307 	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2308 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2309 	axp->target_uid[axp->pid_count] = t_uid;
2310 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2311 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2312 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2313 	axp->pid_count++;
2314 
2315 	return 0;
2316 }
2317 
2318 /**
2319  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2320  * @bprm: pointer to the bprm being processed
2321  * @new: the proposed new credentials
2322  * @old: the old credentials
2323  *
2324  * Simply check if the proc already has the caps given by the file and if not
2325  * store the priv escalation info for later auditing at the end of the syscall
2326  *
2327  * -Eric
2328  */
__audit_log_bprm_fcaps(struct linux_binprm * bprm,const struct cred * new,const struct cred * old)2329 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2330 			   const struct cred *new, const struct cred *old)
2331 {
2332 	struct audit_aux_data_bprm_fcaps *ax;
2333 	struct audit_context *context = current->audit_context;
2334 	struct cpu_vfs_cap_data vcaps;
2335 
2336 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2337 	if (!ax)
2338 		return -ENOMEM;
2339 
2340 	ax->d.type = AUDIT_BPRM_FCAPS;
2341 	ax->d.next = context->aux;
2342 	context->aux = (void *)ax;
2343 
2344 	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2345 
2346 	ax->fcap.permitted = vcaps.permitted;
2347 	ax->fcap.inheritable = vcaps.inheritable;
2348 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2349 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2350 
2351 	ax->old_pcap.permitted   = old->cap_permitted;
2352 	ax->old_pcap.inheritable = old->cap_inheritable;
2353 	ax->old_pcap.effective   = old->cap_effective;
2354 	ax->old_pcap.ambient     = old->cap_ambient;
2355 
2356 	ax->new_pcap.permitted   = new->cap_permitted;
2357 	ax->new_pcap.inheritable = new->cap_inheritable;
2358 	ax->new_pcap.effective   = new->cap_effective;
2359 	ax->new_pcap.ambient     = new->cap_ambient;
2360 	return 0;
2361 }
2362 
2363 /**
2364  * __audit_log_capset - store information about the arguments to the capset syscall
2365  * @new: the new credentials
2366  * @old: the old (current) credentials
2367  *
2368  * Record the arguments userspace sent to sys_capset for later printing by the
2369  * audit system if applicable
2370  */
__audit_log_capset(const struct cred * new,const struct cred * old)2371 void __audit_log_capset(const struct cred *new, const struct cred *old)
2372 {
2373 	struct audit_context *context = current->audit_context;
2374 	context->capset.pid = task_tgid_nr(current);
2375 	context->capset.cap.effective   = new->cap_effective;
2376 	context->capset.cap.inheritable = new->cap_effective;
2377 	context->capset.cap.permitted   = new->cap_permitted;
2378 	context->capset.cap.ambient     = new->cap_ambient;
2379 	context->type = AUDIT_CAPSET;
2380 }
2381 
__audit_mmap_fd(int fd,int flags)2382 void __audit_mmap_fd(int fd, int flags)
2383 {
2384 	struct audit_context *context = current->audit_context;
2385 	context->mmap.fd = fd;
2386 	context->mmap.flags = flags;
2387 	context->type = AUDIT_MMAP;
2388 }
2389 
__audit_log_kern_module(char * name)2390 void __audit_log_kern_module(char *name)
2391 {
2392 	struct audit_context *context = current->audit_context;
2393 
2394 	context->module.name = kstrdup(name, GFP_KERNEL);
2395 	if (!context->module.name)
2396 		audit_log_lost("out of memory in __audit_log_kern_module");
2397 	context->type = AUDIT_KERN_MODULE;
2398 }
2399 
audit_log_task(struct audit_buffer * ab)2400 static void audit_log_task(struct audit_buffer *ab)
2401 {
2402 	kuid_t auid, uid;
2403 	kgid_t gid;
2404 	unsigned int sessionid;
2405 	char comm[sizeof(current->comm)];
2406 
2407 	auid = audit_get_loginuid(current);
2408 	sessionid = audit_get_sessionid(current);
2409 	current_uid_gid(&uid, &gid);
2410 
2411 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2412 			 from_kuid(&init_user_ns, auid),
2413 			 from_kuid(&init_user_ns, uid),
2414 			 from_kgid(&init_user_ns, gid),
2415 			 sessionid);
2416 	audit_log_task_context(ab);
2417 	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2418 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2419 	audit_log_d_path_exe(ab, current->mm);
2420 }
2421 
2422 /**
2423  * audit_core_dumps - record information about processes that end abnormally
2424  * @signr: signal value
2425  *
2426  * If a process ends with a core dump, something fishy is going on and we
2427  * should record the event for investigation.
2428  */
audit_core_dumps(long signr)2429 void audit_core_dumps(long signr)
2430 {
2431 	struct audit_buffer *ab;
2432 
2433 	if (!audit_enabled)
2434 		return;
2435 
2436 	if (signr == SIGQUIT)	/* don't care for those */
2437 		return;
2438 
2439 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2440 	if (unlikely(!ab))
2441 		return;
2442 	audit_log_task(ab);
2443 	audit_log_format(ab, " sig=%ld res=1", signr);
2444 	audit_log_end(ab);
2445 }
2446 
__audit_seccomp(unsigned long syscall,long signr,int code)2447 void __audit_seccomp(unsigned long syscall, long signr, int code)
2448 {
2449 	struct audit_buffer *ab;
2450 
2451 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2452 	if (unlikely(!ab))
2453 		return;
2454 	audit_log_task(ab);
2455 	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2456 			 signr, syscall_get_arch(), syscall,
2457 			 in_compat_syscall(), KSTK_EIP(current), code);
2458 	audit_log_end(ab);
2459 }
2460 
audit_killed_trees(void)2461 struct list_head *audit_killed_trees(void)
2462 {
2463 	struct audit_context *ctx = current->audit_context;
2464 	if (likely(!ctx || !ctx->in_syscall))
2465 		return NULL;
2466 	return &ctx->killed_trees;
2467 }
2468