• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 #include <linux/spinlock.h>
58 #include <linux/rcupdate.h>
59 #include <linux/mutex.h>
60 #include <linux/gfp.h>
61 #include <linux/pid.h>
62 #include <linux/slab.h>
63 
64 #include <linux/audit.h>
65 
66 #include <net/sock.h>
67 #include <net/netlink.h>
68 #include <linux/skbuff.h>
69 #ifdef CONFIG_SECURITY
70 #include <linux/security.h>
71 #endif
72 #include <linux/freezer.h>
73 #include <linux/pid_namespace.h>
74 #include <net/netns/generic.h>
75 
76 #include "audit.h"
77 
78 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
79  * (Initialization happens after skb_init is called.) */
80 #define AUDIT_DISABLED		-1
81 #define AUDIT_UNINITIALIZED	0
82 #define AUDIT_INITIALIZED	1
83 static int	audit_initialized;
84 
85 #define AUDIT_OFF	0
86 #define AUDIT_ON	1
87 #define AUDIT_LOCKED	2
88 u32		audit_enabled = AUDIT_OFF;
89 u32		audit_ever_enabled = !!AUDIT_OFF;
90 
91 EXPORT_SYMBOL_GPL(audit_enabled);
92 
93 /* Default state when kernel boots without any parameters. */
94 static u32	audit_default = AUDIT_OFF;
95 
96 /* If auditing cannot proceed, audit_failure selects what happens. */
97 static u32	audit_failure = AUDIT_FAIL_PRINTK;
98 
99 /* private audit network namespace index */
100 static unsigned int audit_net_id;
101 
102 /**
103  * struct audit_net - audit private network namespace data
104  * @sk: communication socket
105  */
106 struct audit_net {
107 	struct sock *sk;
108 };
109 
110 /**
111  * struct auditd_connection - kernel/auditd connection state
112  * @pid: auditd PID
113  * @portid: netlink portid
114  * @net: the associated network namespace
115  * @rcu: RCU head
116  *
117  * Description:
118  * This struct is RCU protected; you must either hold the RCU lock for reading
119  * or the associated spinlock for writing.
120  */
121 static struct auditd_connection {
122 	struct pid *pid;
123 	u32 portid;
124 	struct net *net;
125 	struct rcu_head rcu;
126 } *auditd_conn = NULL;
127 static DEFINE_SPINLOCK(auditd_conn_lock);
128 
129 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
130  * to that number per second.  This prevents DoS attacks, but results in
131  * audit records being dropped. */
132 static u32	audit_rate_limit;
133 
134 /* Number of outstanding audit_buffers allowed.
135  * When set to zero, this means unlimited. */
136 static u32	audit_backlog_limit = 64;
137 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
138 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
139 
140 /* The identity of the user shutting down the audit system. */
141 kuid_t		audit_sig_uid = INVALID_UID;
142 pid_t		audit_sig_pid = -1;
143 u32		audit_sig_sid = 0;
144 
145 /* Records can be lost in several ways:
146    0) [suppressed in audit_alloc]
147    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
148    2) out of memory in audit_log_move [alloc_skb]
149    3) suppressed due to audit_rate_limit
150    4) suppressed due to audit_backlog_limit
151 */
152 static atomic_t	audit_lost = ATOMIC_INIT(0);
153 
154 /* Hash for inode-based rules */
155 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
156 
157 static struct kmem_cache *audit_buffer_cache;
158 
159 /* queue msgs to send via kauditd_task */
160 static struct sk_buff_head audit_queue;
161 /* queue msgs due to temporary unicast send problems */
162 static struct sk_buff_head audit_retry_queue;
163 /* queue msgs waiting for new auditd connection */
164 static struct sk_buff_head audit_hold_queue;
165 
166 /* queue servicing thread */
167 static struct task_struct *kauditd_task;
168 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
169 
170 /* waitqueue for callers who are blocked on the audit backlog */
171 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
172 
173 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
174 				   .mask = -1,
175 				   .features = 0,
176 				   .lock = 0,};
177 
178 static char *audit_feature_names[2] = {
179 	"only_unset_loginuid",
180 	"loginuid_immutable",
181 };
182 
183 
184 /* Serialize requests from userspace. */
185 DEFINE_MUTEX(audit_cmd_mutex);
186 
187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188  * audit records.  Since printk uses a 1024 byte buffer, this buffer
189  * should be at least that large. */
190 #define AUDIT_BUFSIZ 1024
191 
192 /* The audit_buffer is used when formatting an audit record.  The caller
193  * locks briefly to get the record off the freelist or to allocate the
194  * buffer, and locks briefly to send the buffer to the netlink layer or
195  * to place it on a transmit queue.  Multiple audit_buffers can be in
196  * use simultaneously. */
197 struct audit_buffer {
198 	struct sk_buff       *skb;	/* formatted skb ready to send */
199 	struct audit_context *ctx;	/* NULL or associated context */
200 	gfp_t		     gfp_mask;
201 };
202 
203 struct audit_reply {
204 	__u32 portid;
205 	struct net *net;
206 	struct sk_buff *skb;
207 };
208 
209 /**
210  * auditd_test_task - Check to see if a given task is an audit daemon
211  * @task: the task to check
212  *
213  * Description:
214  * Return 1 if the task is a registered audit daemon, 0 otherwise.
215  */
auditd_test_task(struct task_struct * task)216 int auditd_test_task(struct task_struct *task)
217 {
218 	int rc;
219 	struct auditd_connection *ac;
220 
221 	rcu_read_lock();
222 	ac = rcu_dereference(auditd_conn);
223 	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224 	rcu_read_unlock();
225 
226 	return rc;
227 }
228 
229 /**
230  * auditd_pid_vnr - Return the auditd PID relative to the namespace
231  *
232  * Description:
233  * Returns the PID in relation to the namespace, 0 on failure.
234  */
auditd_pid_vnr(void)235 static pid_t auditd_pid_vnr(void)
236 {
237 	pid_t pid;
238 	const struct auditd_connection *ac;
239 
240 	rcu_read_lock();
241 	ac = rcu_dereference(auditd_conn);
242 	if (!ac || !ac->pid)
243 		pid = 0;
244 	else
245 		pid = pid_vnr(ac->pid);
246 	rcu_read_unlock();
247 
248 	return pid;
249 }
250 
251 /**
252  * audit_get_sk - Return the audit socket for the given network namespace
253  * @net: the destination network namespace
254  *
255  * Description:
256  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
257  * that a reference is held for the network namespace while the sock is in use.
258  */
audit_get_sk(const struct net * net)259 static struct sock *audit_get_sk(const struct net *net)
260 {
261 	struct audit_net *aunet;
262 
263 	if (!net)
264 		return NULL;
265 
266 	aunet = net_generic(net, audit_net_id);
267 	return aunet->sk;
268 }
269 
audit_panic(const char * message)270 void audit_panic(const char *message)
271 {
272 	switch (audit_failure) {
273 	case AUDIT_FAIL_SILENT:
274 		break;
275 	case AUDIT_FAIL_PRINTK:
276 		if (printk_ratelimit())
277 			pr_err("%s\n", message);
278 		break;
279 	case AUDIT_FAIL_PANIC:
280 		panic("audit: %s\n", message);
281 		break;
282 	}
283 }
284 
audit_rate_check(void)285 static inline int audit_rate_check(void)
286 {
287 	static unsigned long	last_check = 0;
288 	static int		messages   = 0;
289 	static DEFINE_SPINLOCK(lock);
290 	unsigned long		flags;
291 	unsigned long		now;
292 	unsigned long		elapsed;
293 	int			retval	   = 0;
294 
295 	if (!audit_rate_limit) return 1;
296 
297 	spin_lock_irqsave(&lock, flags);
298 	if (++messages < audit_rate_limit) {
299 		retval = 1;
300 	} else {
301 		now     = jiffies;
302 		elapsed = now - last_check;
303 		if (elapsed > HZ) {
304 			last_check = now;
305 			messages   = 0;
306 			retval     = 1;
307 		}
308 	}
309 	spin_unlock_irqrestore(&lock, flags);
310 
311 	return retval;
312 }
313 
314 /**
315  * audit_log_lost - conditionally log lost audit message event
316  * @message: the message stating reason for lost audit message
317  *
318  * Emit at least 1 message per second, even if audit_rate_check is
319  * throttling.
320  * Always increment the lost messages counter.
321 */
audit_log_lost(const char * message)322 void audit_log_lost(const char *message)
323 {
324 	static unsigned long	last_msg = 0;
325 	static DEFINE_SPINLOCK(lock);
326 	unsigned long		flags;
327 	unsigned long		now;
328 	int			print;
329 
330 	atomic_inc(&audit_lost);
331 
332 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
333 
334 	if (!print) {
335 		spin_lock_irqsave(&lock, flags);
336 		now = jiffies;
337 		if (now - last_msg > HZ) {
338 			print = 1;
339 			last_msg = now;
340 		}
341 		spin_unlock_irqrestore(&lock, flags);
342 	}
343 
344 	if (print) {
345 		if (printk_ratelimit())
346 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
347 				atomic_read(&audit_lost),
348 				audit_rate_limit,
349 				audit_backlog_limit);
350 		audit_panic(message);
351 	}
352 }
353 
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)354 static int audit_log_config_change(char *function_name, u32 new, u32 old,
355 				   int allow_changes)
356 {
357 	struct audit_buffer *ab;
358 	int rc = 0;
359 
360 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
361 	if (unlikely(!ab))
362 		return rc;
363 	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
364 	audit_log_session_info(ab);
365 	rc = audit_log_task_context(ab);
366 	if (rc)
367 		allow_changes = 0; /* Something weird, deny request */
368 	audit_log_format(ab, " res=%d", allow_changes);
369 	audit_log_end(ab);
370 	return rc;
371 }
372 
audit_do_config_change(char * function_name,u32 * to_change,u32 new)373 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
374 {
375 	int allow_changes, rc = 0;
376 	u32 old = *to_change;
377 
378 	/* check if we are locked */
379 	if (audit_enabled == AUDIT_LOCKED)
380 		allow_changes = 0;
381 	else
382 		allow_changes = 1;
383 
384 	if (audit_enabled != AUDIT_OFF) {
385 		rc = audit_log_config_change(function_name, new, old, allow_changes);
386 		if (rc)
387 			allow_changes = 0;
388 	}
389 
390 	/* If we are allowed, make the change */
391 	if (allow_changes == 1)
392 		*to_change = new;
393 	/* Not allowed, update reason */
394 	else if (rc == 0)
395 		rc = -EPERM;
396 	return rc;
397 }
398 
audit_set_rate_limit(u32 limit)399 static int audit_set_rate_limit(u32 limit)
400 {
401 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
402 }
403 
audit_set_backlog_limit(u32 limit)404 static int audit_set_backlog_limit(u32 limit)
405 {
406 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
407 }
408 
audit_set_backlog_wait_time(u32 timeout)409 static int audit_set_backlog_wait_time(u32 timeout)
410 {
411 	return audit_do_config_change("audit_backlog_wait_time",
412 				      &audit_backlog_wait_time, timeout);
413 }
414 
audit_set_enabled(u32 state)415 static int audit_set_enabled(u32 state)
416 {
417 	int rc;
418 	if (state > AUDIT_LOCKED)
419 		return -EINVAL;
420 
421 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
422 	if (!rc)
423 		audit_ever_enabled |= !!state;
424 
425 	return rc;
426 }
427 
audit_set_failure(u32 state)428 static int audit_set_failure(u32 state)
429 {
430 	if (state != AUDIT_FAIL_SILENT
431 	    && state != AUDIT_FAIL_PRINTK
432 	    && state != AUDIT_FAIL_PANIC)
433 		return -EINVAL;
434 
435 	return audit_do_config_change("audit_failure", &audit_failure, state);
436 }
437 
438 /**
439  * auditd_conn_free - RCU helper to release an auditd connection struct
440  * @rcu: RCU head
441  *
442  * Description:
443  * Drop any references inside the auditd connection tracking struct and free
444  * the memory.
445  */
auditd_conn_free(struct rcu_head * rcu)446  static void auditd_conn_free(struct rcu_head *rcu)
447  {
448 	struct auditd_connection *ac;
449 
450 	ac = container_of(rcu, struct auditd_connection, rcu);
451 	put_pid(ac->pid);
452 	put_net(ac->net);
453 	kfree(ac);
454  }
455 
456 /**
457  * auditd_set - Set/Reset the auditd connection state
458  * @pid: auditd PID
459  * @portid: auditd netlink portid
460  * @net: auditd network namespace pointer
461  *
462  * Description:
463  * This function will obtain and drop network namespace references as
464  * necessary.  Returns zero on success, negative values on failure.
465  */
auditd_set(struct pid * pid,u32 portid,struct net * net)466 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
467 {
468 	unsigned long flags;
469 	struct auditd_connection *ac_old, *ac_new;
470 
471 	if (!pid || !net)
472 		return -EINVAL;
473 
474 	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
475 	if (!ac_new)
476 		return -ENOMEM;
477 	ac_new->pid = get_pid(pid);
478 	ac_new->portid = portid;
479 	ac_new->net = get_net(net);
480 
481 	spin_lock_irqsave(&auditd_conn_lock, flags);
482 	ac_old = rcu_dereference_protected(auditd_conn,
483 					   lockdep_is_held(&auditd_conn_lock));
484 	rcu_assign_pointer(auditd_conn, ac_new);
485 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
486 
487 	if (ac_old)
488 		call_rcu(&ac_old->rcu, auditd_conn_free);
489 
490 	return 0;
491 }
492 
493 /**
494  * kauditd_print_skb - Print the audit record to the ring buffer
495  * @skb: audit record
496  *
497  * Whatever the reason, this packet may not make it to the auditd connection
498  * so write it via printk so the information isn't completely lost.
499  */
kauditd_printk_skb(struct sk_buff * skb)500 static void kauditd_printk_skb(struct sk_buff *skb)
501 {
502 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
503 	char *data = nlmsg_data(nlh);
504 
505 	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
506 		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
507 }
508 
509 /**
510  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
511  * @skb: audit record
512  *
513  * Description:
514  * This should only be used by the kauditd_thread when it fails to flush the
515  * hold queue.
516  */
kauditd_rehold_skb(struct sk_buff * skb)517 static void kauditd_rehold_skb(struct sk_buff *skb)
518 {
519 	/* put the record back in the queue at the same place */
520 	skb_queue_head(&audit_hold_queue, skb);
521 }
522 
523 /**
524  * kauditd_hold_skb - Queue an audit record, waiting for auditd
525  * @skb: audit record
526  *
527  * Description:
528  * Queue the audit record, waiting for an instance of auditd.  When this
529  * function is called we haven't given up yet on sending the record, but things
530  * are not looking good.  The first thing we want to do is try to write the
531  * record via printk and then see if we want to try and hold on to the record
532  * and queue it, if we have room.  If we want to hold on to the record, but we
533  * don't have room, record a record lost message.
534  */
kauditd_hold_skb(struct sk_buff * skb)535 static void kauditd_hold_skb(struct sk_buff *skb)
536 {
537 	/* at this point it is uncertain if we will ever send this to auditd so
538 	 * try to send the message via printk before we go any further */
539 	kauditd_printk_skb(skb);
540 
541 	/* can we just silently drop the message? */
542 	if (!audit_default) {
543 		kfree_skb(skb);
544 		return;
545 	}
546 
547 	/* if we have room, queue the message */
548 	if (!audit_backlog_limit ||
549 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
550 		skb_queue_tail(&audit_hold_queue, skb);
551 		return;
552 	}
553 
554 	/* we have no other options - drop the message */
555 	audit_log_lost("kauditd hold queue overflow");
556 	kfree_skb(skb);
557 }
558 
559 /**
560  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
561  * @skb: audit record
562  *
563  * Description:
564  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
565  * but for some reason we are having problems sending it audit records so
566  * queue the given record and attempt to resend.
567  */
kauditd_retry_skb(struct sk_buff * skb)568 static void kauditd_retry_skb(struct sk_buff *skb)
569 {
570 	/* NOTE: because records should only live in the retry queue for a
571 	 * short period of time, before either being sent or moved to the hold
572 	 * queue, we don't currently enforce a limit on this queue */
573 	skb_queue_tail(&audit_retry_queue, skb);
574 }
575 
576 /**
577  * auditd_reset - Disconnect the auditd connection
578  * @ac: auditd connection state
579  *
580  * Description:
581  * Break the auditd/kauditd connection and move all the queued records into the
582  * hold queue in case auditd reconnects.  It is important to note that the @ac
583  * pointer should never be dereferenced inside this function as it may be NULL
584  * or invalid, you can only compare the memory address!  If @ac is NULL then
585  * the connection will always be reset.
586  */
auditd_reset(const struct auditd_connection * ac)587 static void auditd_reset(const struct auditd_connection *ac)
588 {
589 	unsigned long flags;
590 	struct sk_buff *skb;
591 	struct auditd_connection *ac_old;
592 
593 	/* if it isn't already broken, break the connection */
594 	spin_lock_irqsave(&auditd_conn_lock, flags);
595 	ac_old = rcu_dereference_protected(auditd_conn,
596 					   lockdep_is_held(&auditd_conn_lock));
597 	if (ac && ac != ac_old) {
598 		/* someone already registered a new auditd connection */
599 		spin_unlock_irqrestore(&auditd_conn_lock, flags);
600 		return;
601 	}
602 	rcu_assign_pointer(auditd_conn, NULL);
603 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
604 
605 	if (ac_old)
606 		call_rcu(&ac_old->rcu, auditd_conn_free);
607 
608 	/* flush the retry queue to the hold queue, but don't touch the main
609 	 * queue since we need to process that normally for multicast */
610 	while ((skb = skb_dequeue(&audit_retry_queue)))
611 		kauditd_hold_skb(skb);
612 }
613 
614 /**
615  * auditd_send_unicast_skb - Send a record via unicast to auditd
616  * @skb: audit record
617  *
618  * Description:
619  * Send a skb to the audit daemon, returns positive/zero values on success and
620  * negative values on failure; in all cases the skb will be consumed by this
621  * function.  If the send results in -ECONNREFUSED the connection with auditd
622  * will be reset.  This function may sleep so callers should not hold any locks
623  * where this would cause a problem.
624  */
auditd_send_unicast_skb(struct sk_buff * skb)625 static int auditd_send_unicast_skb(struct sk_buff *skb)
626 {
627 	int rc;
628 	u32 portid;
629 	struct net *net;
630 	struct sock *sk;
631 	struct auditd_connection *ac;
632 
633 	/* NOTE: we can't call netlink_unicast while in the RCU section so
634 	 *       take a reference to the network namespace and grab local
635 	 *       copies of the namespace, the sock, and the portid; the
636 	 *       namespace and sock aren't going to go away while we hold a
637 	 *       reference and if the portid does become invalid after the RCU
638 	 *       section netlink_unicast() should safely return an error */
639 
640 	rcu_read_lock();
641 	ac = rcu_dereference(auditd_conn);
642 	if (!ac) {
643 		rcu_read_unlock();
644 		kfree_skb(skb);
645 		rc = -ECONNREFUSED;
646 		goto err;
647 	}
648 	net = get_net(ac->net);
649 	sk = audit_get_sk(net);
650 	portid = ac->portid;
651 	rcu_read_unlock();
652 
653 	rc = netlink_unicast(sk, skb, portid, 0);
654 	put_net(net);
655 	if (rc < 0)
656 		goto err;
657 
658 	return rc;
659 
660 err:
661 	if (ac && rc == -ECONNREFUSED)
662 		auditd_reset(ac);
663 	return rc;
664 }
665 
666 /**
667  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
668  * @sk: the sending sock
669  * @portid: the netlink destination
670  * @queue: the skb queue to process
671  * @retry_limit: limit on number of netlink unicast failures
672  * @skb_hook: per-skb hook for additional processing
673  * @err_hook: hook called if the skb fails the netlink unicast send
674  *
675  * Description:
676  * Run through the given queue and attempt to send the audit records to auditd,
677  * returns zero on success, negative values on failure.  It is up to the caller
678  * to ensure that the @sk is valid for the duration of this function.
679  *
680  */
kauditd_send_queue(struct sock * sk,u32 portid,struct sk_buff_head * queue,unsigned int retry_limit,void (* skb_hook)(struct sk_buff * skb),void (* err_hook)(struct sk_buff * skb))681 static int kauditd_send_queue(struct sock *sk, u32 portid,
682 			      struct sk_buff_head *queue,
683 			      unsigned int retry_limit,
684 			      void (*skb_hook)(struct sk_buff *skb),
685 			      void (*err_hook)(struct sk_buff *skb))
686 {
687 	int rc = 0;
688 	struct sk_buff *skb;
689 	static unsigned int failed = 0;
690 
691 	/* NOTE: kauditd_thread takes care of all our locking, we just use
692 	 *       the netlink info passed to us (e.g. sk and portid) */
693 
694 	while ((skb = skb_dequeue(queue))) {
695 		/* call the skb_hook for each skb we touch */
696 		if (skb_hook)
697 			(*skb_hook)(skb);
698 
699 		/* can we send to anyone via unicast? */
700 		if (!sk) {
701 			if (err_hook)
702 				(*err_hook)(skb);
703 			continue;
704 		}
705 
706 		/* grab an extra skb reference in case of error */
707 		skb_get(skb);
708 		rc = netlink_unicast(sk, skb, portid, 0);
709 		if (rc < 0) {
710 			/* fatal failure for our queue flush attempt? */
711 			if (++failed >= retry_limit ||
712 			    rc == -ECONNREFUSED || rc == -EPERM) {
713 				/* yes - error processing for the queue */
714 				sk = NULL;
715 				if (err_hook)
716 					(*err_hook)(skb);
717 				if (!skb_hook)
718 					goto out;
719 				/* keep processing with the skb_hook */
720 				continue;
721 			} else
722 				/* no - requeue to preserve ordering */
723 				skb_queue_head(queue, skb);
724 		} else {
725 			/* it worked - drop the extra reference and continue */
726 			consume_skb(skb);
727 			failed = 0;
728 		}
729 	}
730 
731 out:
732 	return (rc >= 0 ? 0 : rc);
733 }
734 
735 /*
736  * kauditd_send_multicast_skb - Send a record to any multicast listeners
737  * @skb: audit record
738  *
739  * Description:
740  * Write a multicast message to anyone listening in the initial network
741  * namespace.  This function doesn't consume an skb as might be expected since
742  * it has to copy it anyways.
743  */
kauditd_send_multicast_skb(struct sk_buff * skb)744 static void kauditd_send_multicast_skb(struct sk_buff *skb)
745 {
746 	struct sk_buff *copy;
747 	struct sock *sock = audit_get_sk(&init_net);
748 	struct nlmsghdr *nlh;
749 
750 	/* NOTE: we are not taking an additional reference for init_net since
751 	 *       we don't have to worry about it going away */
752 
753 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
754 		return;
755 
756 	/*
757 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
758 	 * using skb_get() is necessary because non-standard mods are made to
759 	 * the skb by the original kaudit unicast socket send routine.  The
760 	 * existing auditd daemon assumes this breakage.  Fixing this would
761 	 * require co-ordinating a change in the established protocol between
762 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
763 	 * no reason for new multicast clients to continue with this
764 	 * non-compliance.
765 	 */
766 	copy = skb_copy(skb, GFP_KERNEL);
767 	if (!copy)
768 		return;
769 	nlh = nlmsg_hdr(copy);
770 	nlh->nlmsg_len = skb->len;
771 
772 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
773 }
774 
775 /**
776  * kauditd_thread - Worker thread to send audit records to userspace
777  * @dummy: unused
778  */
kauditd_thread(void * dummy)779 static int kauditd_thread(void *dummy)
780 {
781 	int rc;
782 	u32 portid = 0;
783 	struct net *net = NULL;
784 	struct sock *sk = NULL;
785 	struct auditd_connection *ac;
786 
787 #define UNICAST_RETRIES 5
788 
789 	set_freezable();
790 	while (!kthread_should_stop()) {
791 		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
792 		rcu_read_lock();
793 		ac = rcu_dereference(auditd_conn);
794 		if (!ac) {
795 			rcu_read_unlock();
796 			goto main_queue;
797 		}
798 		net = get_net(ac->net);
799 		sk = audit_get_sk(net);
800 		portid = ac->portid;
801 		rcu_read_unlock();
802 
803 		/* attempt to flush the hold queue */
804 		rc = kauditd_send_queue(sk, portid,
805 					&audit_hold_queue, UNICAST_RETRIES,
806 					NULL, kauditd_rehold_skb);
807 		if (ac && rc < 0) {
808 			sk = NULL;
809 			auditd_reset(ac);
810 			goto main_queue;
811 		}
812 
813 		/* attempt to flush the retry queue */
814 		rc = kauditd_send_queue(sk, portid,
815 					&audit_retry_queue, UNICAST_RETRIES,
816 					NULL, kauditd_hold_skb);
817 		if (ac && rc < 0) {
818 			sk = NULL;
819 			auditd_reset(ac);
820 			goto main_queue;
821 		}
822 
823 main_queue:
824 		/* process the main queue - do the multicast send and attempt
825 		 * unicast, dump failed record sends to the retry queue; if
826 		 * sk == NULL due to previous failures we will just do the
827 		 * multicast send and move the record to the hold queue */
828 		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
829 					kauditd_send_multicast_skb,
830 					(sk ?
831 					 kauditd_retry_skb : kauditd_hold_skb));
832 		if (ac && rc < 0)
833 			auditd_reset(ac);
834 		sk = NULL;
835 
836 		/* drop our netns reference, no auditd sends past this line */
837 		if (net) {
838 			put_net(net);
839 			net = NULL;
840 		}
841 
842 		/* we have processed all the queues so wake everyone */
843 		wake_up(&audit_backlog_wait);
844 
845 		/* NOTE: we want to wake up if there is anything on the queue,
846 		 *       regardless of if an auditd is connected, as we need to
847 		 *       do the multicast send and rotate records from the
848 		 *       main queue to the retry/hold queues */
849 		wait_event_freezable(kauditd_wait,
850 				     (skb_queue_len(&audit_queue) ? 1 : 0));
851 	}
852 
853 	return 0;
854 }
855 
audit_send_list(void * _dest)856 int audit_send_list(void *_dest)
857 {
858 	struct audit_netlink_list *dest = _dest;
859 	struct sk_buff *skb;
860 	struct sock *sk = audit_get_sk(dest->net);
861 
862 	/* wait for parent to finish and send an ACK */
863 	mutex_lock(&audit_cmd_mutex);
864 	mutex_unlock(&audit_cmd_mutex);
865 
866 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
867 		netlink_unicast(sk, skb, dest->portid, 0);
868 
869 	put_net(dest->net);
870 	kfree(dest);
871 
872 	return 0;
873 }
874 
audit_make_reply(int seq,int type,int done,int multi,const void * payload,int size)875 struct sk_buff *audit_make_reply(int seq, int type, int done,
876 				 int multi, const void *payload, int size)
877 {
878 	struct sk_buff	*skb;
879 	struct nlmsghdr	*nlh;
880 	void		*data;
881 	int		flags = multi ? NLM_F_MULTI : 0;
882 	int		t     = done  ? NLMSG_DONE  : type;
883 
884 	skb = nlmsg_new(size, GFP_KERNEL);
885 	if (!skb)
886 		return NULL;
887 
888 	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
889 	if (!nlh)
890 		goto out_kfree_skb;
891 	data = nlmsg_data(nlh);
892 	memcpy(data, payload, size);
893 	return skb;
894 
895 out_kfree_skb:
896 	kfree_skb(skb);
897 	return NULL;
898 }
899 
audit_send_reply_thread(void * arg)900 static int audit_send_reply_thread(void *arg)
901 {
902 	struct audit_reply *reply = (struct audit_reply *)arg;
903 	struct sock *sk = audit_get_sk(reply->net);
904 
905 	mutex_lock(&audit_cmd_mutex);
906 	mutex_unlock(&audit_cmd_mutex);
907 
908 	/* Ignore failure. It'll only happen if the sender goes away,
909 	   because our timeout is set to infinite. */
910 	netlink_unicast(sk, reply->skb, reply->portid, 0);
911 	put_net(reply->net);
912 	kfree(reply);
913 	return 0;
914 }
915 
916 /**
917  * audit_send_reply - send an audit reply message via netlink
918  * @request_skb: skb of request we are replying to (used to target the reply)
919  * @seq: sequence number
920  * @type: audit message type
921  * @done: done (last) flag
922  * @multi: multi-part message flag
923  * @payload: payload data
924  * @size: payload size
925  *
926  * Allocates an skb, builds the netlink message, and sends it to the port id.
927  * No failure notifications.
928  */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)929 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
930 			     int multi, const void *payload, int size)
931 {
932 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
933 	struct sk_buff *skb;
934 	struct task_struct *tsk;
935 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
936 					    GFP_KERNEL);
937 
938 	if (!reply)
939 		return;
940 
941 	skb = audit_make_reply(seq, type, done, multi, payload, size);
942 	if (!skb)
943 		goto out;
944 
945 	reply->net = get_net(net);
946 	reply->portid = NETLINK_CB(request_skb).portid;
947 	reply->skb = skb;
948 
949 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
950 	if (!IS_ERR(tsk))
951 		return;
952 	kfree_skb(skb);
953 out:
954 	kfree(reply);
955 }
956 
957 /*
958  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
959  * control messages.
960  */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)961 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
962 {
963 	int err = 0;
964 
965 	/* Only support initial user namespace for now. */
966 	/*
967 	 * We return ECONNREFUSED because it tricks userspace into thinking
968 	 * that audit was not configured into the kernel.  Lots of users
969 	 * configure their PAM stack (because that's what the distro does)
970 	 * to reject login if unable to send messages to audit.  If we return
971 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
972 	 * configured in and will let login proceed.  If we return EPERM
973 	 * userspace will reject all logins.  This should be removed when we
974 	 * support non init namespaces!!
975 	 */
976 	if (current_user_ns() != &init_user_ns)
977 		return -ECONNREFUSED;
978 
979 	switch (msg_type) {
980 	case AUDIT_LIST:
981 	case AUDIT_ADD:
982 	case AUDIT_DEL:
983 		return -EOPNOTSUPP;
984 	case AUDIT_GET:
985 	case AUDIT_SET:
986 	case AUDIT_GET_FEATURE:
987 	case AUDIT_SET_FEATURE:
988 	case AUDIT_LIST_RULES:
989 	case AUDIT_ADD_RULE:
990 	case AUDIT_DEL_RULE:
991 	case AUDIT_SIGNAL_INFO:
992 	case AUDIT_TTY_GET:
993 	case AUDIT_TTY_SET:
994 	case AUDIT_TRIM:
995 	case AUDIT_MAKE_EQUIV:
996 		/* Only support auditd and auditctl in initial pid namespace
997 		 * for now. */
998 		if (task_active_pid_ns(current) != &init_pid_ns)
999 			return -EPERM;
1000 
1001 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1002 			err = -EPERM;
1003 		break;
1004 	case AUDIT_USER:
1005 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1006 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1007 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1008 			err = -EPERM;
1009 		break;
1010 	default:  /* bad msg */
1011 		err = -EINVAL;
1012 	}
1013 
1014 	return err;
1015 }
1016 
audit_log_common_recv_msg(struct audit_buffer ** ab,u16 msg_type)1017 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
1018 {
1019 	uid_t uid = from_kuid(&init_user_ns, current_uid());
1020 	pid_t pid = task_tgid_nr(current);
1021 
1022 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1023 		*ab = NULL;
1024 		return;
1025 	}
1026 
1027 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
1028 	if (unlikely(!*ab))
1029 		return;
1030 	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
1031 	audit_log_session_info(*ab);
1032 	audit_log_task_context(*ab);
1033 }
1034 
is_audit_feature_set(int i)1035 int is_audit_feature_set(int i)
1036 {
1037 	return af.features & AUDIT_FEATURE_TO_MASK(i);
1038 }
1039 
1040 
audit_get_feature(struct sk_buff * skb)1041 static int audit_get_feature(struct sk_buff *skb)
1042 {
1043 	u32 seq;
1044 
1045 	seq = nlmsg_hdr(skb)->nlmsg_seq;
1046 
1047 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1048 
1049 	return 0;
1050 }
1051 
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)1052 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1053 				     u32 old_lock, u32 new_lock, int res)
1054 {
1055 	struct audit_buffer *ab;
1056 
1057 	if (audit_enabled == AUDIT_OFF)
1058 		return;
1059 
1060 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1061 	if (!ab)
1062 		return;
1063 	audit_log_task_info(ab, current);
1064 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1065 			 audit_feature_names[which], !!old_feature, !!new_feature,
1066 			 !!old_lock, !!new_lock, res);
1067 	audit_log_end(ab);
1068 }
1069 
audit_set_feature(struct audit_features * uaf)1070 static int audit_set_feature(struct audit_features *uaf)
1071 {
1072 	int i;
1073 
1074 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1075 
1076 	/* if there is ever a version 2 we should handle that here */
1077 
1078 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1079 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1080 		u32 old_feature, new_feature, old_lock, new_lock;
1081 
1082 		/* if we are not changing this feature, move along */
1083 		if (!(feature & uaf->mask))
1084 			continue;
1085 
1086 		old_feature = af.features & feature;
1087 		new_feature = uaf->features & feature;
1088 		new_lock = (uaf->lock | af.lock) & feature;
1089 		old_lock = af.lock & feature;
1090 
1091 		/* are we changing a locked feature? */
1092 		if (old_lock && (new_feature != old_feature)) {
1093 			audit_log_feature_change(i, old_feature, new_feature,
1094 						 old_lock, new_lock, 0);
1095 			return -EPERM;
1096 		}
1097 	}
1098 	/* nothing invalid, do the changes */
1099 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1100 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1101 		u32 old_feature, new_feature, old_lock, new_lock;
1102 
1103 		/* if we are not changing this feature, move along */
1104 		if (!(feature & uaf->mask))
1105 			continue;
1106 
1107 		old_feature = af.features & feature;
1108 		new_feature = uaf->features & feature;
1109 		old_lock = af.lock & feature;
1110 		new_lock = (uaf->lock | af.lock) & feature;
1111 
1112 		if (new_feature != old_feature)
1113 			audit_log_feature_change(i, old_feature, new_feature,
1114 						 old_lock, new_lock, 1);
1115 
1116 		if (new_feature)
1117 			af.features |= feature;
1118 		else
1119 			af.features &= ~feature;
1120 		af.lock |= new_lock;
1121 	}
1122 
1123 	return 0;
1124 }
1125 
audit_replace(struct pid * pid)1126 static int audit_replace(struct pid *pid)
1127 {
1128 	pid_t pvnr;
1129 	struct sk_buff *skb;
1130 
1131 	pvnr = pid_vnr(pid);
1132 	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1133 	if (!skb)
1134 		return -ENOMEM;
1135 	return auditd_send_unicast_skb(skb);
1136 }
1137 
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh)1138 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1139 {
1140 	u32			seq;
1141 	void			*data;
1142 	int			data_len;
1143 	int			err;
1144 	struct audit_buffer	*ab;
1145 	u16			msg_type = nlh->nlmsg_type;
1146 	struct audit_sig_info   *sig_data;
1147 	char			*ctx = NULL;
1148 	u32			len;
1149 
1150 	err = audit_netlink_ok(skb, msg_type);
1151 	if (err)
1152 		return err;
1153 
1154 	seq  = nlh->nlmsg_seq;
1155 	data = nlmsg_data(nlh);
1156 	data_len = nlmsg_len(nlh);
1157 
1158 	switch (msg_type) {
1159 	case AUDIT_GET: {
1160 		struct audit_status	s;
1161 		memset(&s, 0, sizeof(s));
1162 		s.enabled		= audit_enabled;
1163 		s.failure		= audit_failure;
1164 		/* NOTE: use pid_vnr() so the PID is relative to the current
1165 		 *       namespace */
1166 		s.pid			= auditd_pid_vnr();
1167 		s.rate_limit		= audit_rate_limit;
1168 		s.backlog_limit		= audit_backlog_limit;
1169 		s.lost			= atomic_read(&audit_lost);
1170 		s.backlog		= skb_queue_len(&audit_queue);
1171 		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
1172 		s.backlog_wait_time	= audit_backlog_wait_time;
1173 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1174 		break;
1175 	}
1176 	case AUDIT_SET: {
1177 		struct audit_status	s;
1178 		memset(&s, 0, sizeof(s));
1179 		/* guard against past and future API changes */
1180 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1181 		if (s.mask & AUDIT_STATUS_ENABLED) {
1182 			err = audit_set_enabled(s.enabled);
1183 			if (err < 0)
1184 				return err;
1185 		}
1186 		if (s.mask & AUDIT_STATUS_FAILURE) {
1187 			err = audit_set_failure(s.failure);
1188 			if (err < 0)
1189 				return err;
1190 		}
1191 		if (s.mask & AUDIT_STATUS_PID) {
1192 			/* NOTE: we are using the vnr PID functions below
1193 			 *       because the s.pid value is relative to the
1194 			 *       namespace of the caller; at present this
1195 			 *       doesn't matter much since you can really only
1196 			 *       run auditd from the initial pid namespace, but
1197 			 *       something to keep in mind if this changes */
1198 			pid_t new_pid = s.pid;
1199 			pid_t auditd_pid;
1200 			struct pid *req_pid = task_tgid(current);
1201 
1202 			/* Sanity check - PID values must match. Setting
1203 			 * pid to 0 is how auditd ends auditing. */
1204 			if (new_pid && (new_pid != pid_vnr(req_pid)))
1205 				return -EINVAL;
1206 
1207 			/* test the auditd connection */
1208 			audit_replace(req_pid);
1209 
1210 			auditd_pid = auditd_pid_vnr();
1211 			if (auditd_pid) {
1212 				/* replacing a healthy auditd is not allowed */
1213 				if (new_pid) {
1214 					audit_log_config_change("audit_pid",
1215 							new_pid, auditd_pid, 0);
1216 					return -EEXIST;
1217 				}
1218 				/* only current auditd can unregister itself */
1219 				if (pid_vnr(req_pid) != auditd_pid) {
1220 					audit_log_config_change("audit_pid",
1221 							new_pid, auditd_pid, 0);
1222 					return -EACCES;
1223 				}
1224 			}
1225 
1226 			if (new_pid) {
1227 				/* register a new auditd connection */
1228 				err = auditd_set(req_pid,
1229 						 NETLINK_CB(skb).portid,
1230 						 sock_net(NETLINK_CB(skb).sk));
1231 				if (audit_enabled != AUDIT_OFF)
1232 					audit_log_config_change("audit_pid",
1233 								new_pid,
1234 								auditd_pid,
1235 								err ? 0 : 1);
1236 				if (err)
1237 					return err;
1238 
1239 				/* try to process any backlog */
1240 				wake_up_interruptible(&kauditd_wait);
1241 			} else {
1242 				if (audit_enabled != AUDIT_OFF)
1243 					audit_log_config_change("audit_pid",
1244 								new_pid,
1245 								auditd_pid, 1);
1246 
1247 				/* unregister the auditd connection */
1248 				auditd_reset(NULL);
1249 			}
1250 		}
1251 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1252 			err = audit_set_rate_limit(s.rate_limit);
1253 			if (err < 0)
1254 				return err;
1255 		}
1256 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1257 			err = audit_set_backlog_limit(s.backlog_limit);
1258 			if (err < 0)
1259 				return err;
1260 		}
1261 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1262 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1263 				return -EINVAL;
1264 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1265 				return -EINVAL;
1266 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1267 			if (err < 0)
1268 				return err;
1269 		}
1270 		if (s.mask == AUDIT_STATUS_LOST) {
1271 			u32 lost = atomic_xchg(&audit_lost, 0);
1272 
1273 			audit_log_config_change("lost", 0, lost, 1);
1274 			return lost;
1275 		}
1276 		break;
1277 	}
1278 	case AUDIT_GET_FEATURE:
1279 		err = audit_get_feature(skb);
1280 		if (err)
1281 			return err;
1282 		break;
1283 	case AUDIT_SET_FEATURE:
1284 		if (data_len < sizeof(struct audit_features))
1285 			return -EINVAL;
1286 		err = audit_set_feature(data);
1287 		if (err)
1288 			return err;
1289 		break;
1290 	case AUDIT_USER:
1291 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1292 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1293 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1294 			return 0;
1295 
1296 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1297 		if (err == 1) { /* match or error */
1298 			char *str = data;
1299 
1300 			err = 0;
1301 			if (msg_type == AUDIT_USER_TTY) {
1302 				err = tty_audit_push();
1303 				if (err)
1304 					break;
1305 			}
1306 			audit_log_common_recv_msg(&ab, msg_type);
1307 			if (msg_type != AUDIT_USER_TTY) {
1308 				/* ensure NULL termination */
1309 				str[data_len - 1] = '\0';
1310 				audit_log_format(ab, " msg='%.*s'",
1311 						 AUDIT_MESSAGE_TEXT_MAX,
1312 						 str);
1313 			} else {
1314 				audit_log_format(ab, " data=");
1315 				if (data_len > 0 && str[data_len - 1] == '\0')
1316 					data_len--;
1317 				audit_log_n_untrustedstring(ab, str, data_len);
1318 			}
1319 			audit_log_end(ab);
1320 		}
1321 		break;
1322 	case AUDIT_ADD_RULE:
1323 	case AUDIT_DEL_RULE:
1324 		if (data_len < sizeof(struct audit_rule_data))
1325 			return -EINVAL;
1326 		if (audit_enabled == AUDIT_LOCKED) {
1327 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1328 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1329 			audit_log_end(ab);
1330 			return -EPERM;
1331 		}
1332 		err = audit_rule_change(msg_type, seq, data, data_len);
1333 		break;
1334 	case AUDIT_LIST_RULES:
1335 		err = audit_list_rules_send(skb, seq);
1336 		break;
1337 	case AUDIT_TRIM:
1338 		audit_trim_trees();
1339 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1340 		audit_log_format(ab, " op=trim res=1");
1341 		audit_log_end(ab);
1342 		break;
1343 	case AUDIT_MAKE_EQUIV: {
1344 		void *bufp = data;
1345 		u32 sizes[2];
1346 		size_t msglen = data_len;
1347 		char *old, *new;
1348 
1349 		err = -EINVAL;
1350 		if (msglen < 2 * sizeof(u32))
1351 			break;
1352 		memcpy(sizes, bufp, 2 * sizeof(u32));
1353 		bufp += 2 * sizeof(u32);
1354 		msglen -= 2 * sizeof(u32);
1355 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1356 		if (IS_ERR(old)) {
1357 			err = PTR_ERR(old);
1358 			break;
1359 		}
1360 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1361 		if (IS_ERR(new)) {
1362 			err = PTR_ERR(new);
1363 			kfree(old);
1364 			break;
1365 		}
1366 		/* OK, here comes... */
1367 		err = audit_tag_tree(old, new);
1368 
1369 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1370 
1371 		audit_log_format(ab, " op=make_equiv old=");
1372 		audit_log_untrustedstring(ab, old);
1373 		audit_log_format(ab, " new=");
1374 		audit_log_untrustedstring(ab, new);
1375 		audit_log_format(ab, " res=%d", !err);
1376 		audit_log_end(ab);
1377 		kfree(old);
1378 		kfree(new);
1379 		break;
1380 	}
1381 	case AUDIT_SIGNAL_INFO:
1382 		len = 0;
1383 		if (audit_sig_sid) {
1384 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1385 			if (err)
1386 				return err;
1387 		}
1388 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1389 		if (!sig_data) {
1390 			if (audit_sig_sid)
1391 				security_release_secctx(ctx, len);
1392 			return -ENOMEM;
1393 		}
1394 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1395 		sig_data->pid = audit_sig_pid;
1396 		if (audit_sig_sid) {
1397 			memcpy(sig_data->ctx, ctx, len);
1398 			security_release_secctx(ctx, len);
1399 		}
1400 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1401 				 sig_data, sizeof(*sig_data) + len);
1402 		kfree(sig_data);
1403 		break;
1404 	case AUDIT_TTY_GET: {
1405 		struct audit_tty_status s;
1406 		unsigned int t;
1407 
1408 		t = READ_ONCE(current->signal->audit_tty);
1409 		s.enabled = t & AUDIT_TTY_ENABLE;
1410 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1411 
1412 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1413 		break;
1414 	}
1415 	case AUDIT_TTY_SET: {
1416 		struct audit_tty_status s, old;
1417 		struct audit_buffer	*ab;
1418 		unsigned int t;
1419 
1420 		memset(&s, 0, sizeof(s));
1421 		/* guard against past and future API changes */
1422 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1423 		/* check if new data is valid */
1424 		if ((s.enabled != 0 && s.enabled != 1) ||
1425 		    (s.log_passwd != 0 && s.log_passwd != 1))
1426 			err = -EINVAL;
1427 
1428 		if (err)
1429 			t = READ_ONCE(current->signal->audit_tty);
1430 		else {
1431 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1432 			t = xchg(&current->signal->audit_tty, t);
1433 		}
1434 		old.enabled = t & AUDIT_TTY_ENABLE;
1435 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1436 
1437 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1438 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1439 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1440 				 old.enabled, s.enabled, old.log_passwd,
1441 				 s.log_passwd, !err);
1442 		audit_log_end(ab);
1443 		break;
1444 	}
1445 	default:
1446 		err = -EINVAL;
1447 		break;
1448 	}
1449 
1450 	return err < 0 ? err : 0;
1451 }
1452 
1453 /**
1454  * audit_receive - receive messages from a netlink control socket
1455  * @skb: the message buffer
1456  *
1457  * Parse the provided skb and deal with any messages that may be present,
1458  * malformed skbs are discarded.
1459  */
audit_receive(struct sk_buff * skb)1460 static void audit_receive(struct sk_buff  *skb)
1461 {
1462 	struct nlmsghdr *nlh;
1463 	/*
1464 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1465 	 * if the nlmsg_len was not aligned
1466 	 */
1467 	int len;
1468 	int err;
1469 
1470 	nlh = nlmsg_hdr(skb);
1471 	len = skb->len;
1472 
1473 	mutex_lock(&audit_cmd_mutex);
1474 	while (nlmsg_ok(nlh, len)) {
1475 		err = audit_receive_msg(skb, nlh);
1476 		/* if err or if this message says it wants a response */
1477 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1478 			netlink_ack(skb, nlh, err, NULL);
1479 
1480 		nlh = nlmsg_next(nlh, &len);
1481 	}
1482 	mutex_unlock(&audit_cmd_mutex);
1483 }
1484 
1485 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_bind(struct net * net,int group)1486 static int audit_bind(struct net *net, int group)
1487 {
1488 	if (!capable(CAP_AUDIT_READ))
1489 		return -EPERM;
1490 
1491 	return 0;
1492 }
1493 
audit_net_init(struct net * net)1494 static int __net_init audit_net_init(struct net *net)
1495 {
1496 	struct netlink_kernel_cfg cfg = {
1497 		.input	= audit_receive,
1498 		.bind	= audit_bind,
1499 		.flags	= NL_CFG_F_NONROOT_RECV,
1500 		.groups	= AUDIT_NLGRP_MAX,
1501 	};
1502 
1503 	struct audit_net *aunet = net_generic(net, audit_net_id);
1504 
1505 	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1506 	if (aunet->sk == NULL) {
1507 		audit_panic("cannot initialize netlink socket in namespace");
1508 		return -ENOMEM;
1509 	}
1510 	aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1511 
1512 	return 0;
1513 }
1514 
audit_net_exit(struct net * net)1515 static void __net_exit audit_net_exit(struct net *net)
1516 {
1517 	struct audit_net *aunet = net_generic(net, audit_net_id);
1518 
1519 	/* NOTE: you would think that we would want to check the auditd
1520 	 * connection and potentially reset it here if it lives in this
1521 	 * namespace, but since the auditd connection tracking struct holds a
1522 	 * reference to this namespace (see auditd_set()) we are only ever
1523 	 * going to get here after that connection has been released */
1524 
1525 	netlink_kernel_release(aunet->sk);
1526 }
1527 
1528 static struct pernet_operations audit_net_ops __net_initdata = {
1529 	.init = audit_net_init,
1530 	.exit = audit_net_exit,
1531 	.id = &audit_net_id,
1532 	.size = sizeof(struct audit_net),
1533 };
1534 
1535 /* Initialize audit support at boot time. */
audit_init(void)1536 static int __init audit_init(void)
1537 {
1538 	int i;
1539 
1540 	if (audit_initialized == AUDIT_DISABLED)
1541 		return 0;
1542 
1543 	audit_buffer_cache = kmem_cache_create("audit_buffer",
1544 					       sizeof(struct audit_buffer),
1545 					       0, SLAB_PANIC, NULL);
1546 
1547 	skb_queue_head_init(&audit_queue);
1548 	skb_queue_head_init(&audit_retry_queue);
1549 	skb_queue_head_init(&audit_hold_queue);
1550 
1551 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1552 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1553 
1554 	pr_info("initializing netlink subsys (%s)\n",
1555 		audit_default ? "enabled" : "disabled");
1556 	register_pernet_subsys(&audit_net_ops);
1557 
1558 	audit_initialized = AUDIT_INITIALIZED;
1559 
1560 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1561 	if (IS_ERR(kauditd_task)) {
1562 		int err = PTR_ERR(kauditd_task);
1563 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1564 	}
1565 
1566 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1567 		"state=initialized audit_enabled=%u res=1",
1568 		 audit_enabled);
1569 
1570 	return 0;
1571 }
1572 __initcall(audit_init);
1573 
1574 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
audit_enable(char * str)1575 static int __init audit_enable(char *str)
1576 {
1577 	audit_default = !!simple_strtol(str, NULL, 0);
1578 	if (!audit_default)
1579 		audit_initialized = AUDIT_DISABLED;
1580 	audit_enabled = audit_default;
1581 	audit_ever_enabled = !!audit_enabled;
1582 
1583 	pr_info("%s\n", audit_default ?
1584 		"enabled (after initialization)" : "disabled (until reboot)");
1585 
1586 	return 1;
1587 }
1588 __setup("audit=", audit_enable);
1589 
1590 /* Process kernel command-line parameter at boot time.
1591  * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1592 static int __init audit_backlog_limit_set(char *str)
1593 {
1594 	u32 audit_backlog_limit_arg;
1595 
1596 	pr_info("audit_backlog_limit: ");
1597 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1598 		pr_cont("using default of %u, unable to parse %s\n",
1599 			audit_backlog_limit, str);
1600 		return 1;
1601 	}
1602 
1603 	audit_backlog_limit = audit_backlog_limit_arg;
1604 	pr_cont("%d\n", audit_backlog_limit);
1605 
1606 	return 1;
1607 }
1608 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1609 
audit_buffer_free(struct audit_buffer * ab)1610 static void audit_buffer_free(struct audit_buffer *ab)
1611 {
1612 	if (!ab)
1613 		return;
1614 
1615 	kfree_skb(ab->skb);
1616 	kmem_cache_free(audit_buffer_cache, ab);
1617 }
1618 
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1619 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1620 					       gfp_t gfp_mask, int type)
1621 {
1622 	struct audit_buffer *ab;
1623 
1624 	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1625 	if (!ab)
1626 		return NULL;
1627 
1628 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1629 	if (!ab->skb)
1630 		goto err;
1631 	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1632 		goto err;
1633 
1634 	ab->ctx = ctx;
1635 	ab->gfp_mask = gfp_mask;
1636 
1637 	return ab;
1638 
1639 err:
1640 	audit_buffer_free(ab);
1641 	return NULL;
1642 }
1643 
1644 /**
1645  * audit_serial - compute a serial number for the audit record
1646  *
1647  * Compute a serial number for the audit record.  Audit records are
1648  * written to user-space as soon as they are generated, so a complete
1649  * audit record may be written in several pieces.  The timestamp of the
1650  * record and this serial number are used by the user-space tools to
1651  * determine which pieces belong to the same audit record.  The
1652  * (timestamp,serial) tuple is unique for each syscall and is live from
1653  * syscall entry to syscall exit.
1654  *
1655  * NOTE: Another possibility is to store the formatted records off the
1656  * audit context (for those records that have a context), and emit them
1657  * all at syscall exit.  However, this could delay the reporting of
1658  * significant errors until syscall exit (or never, if the system
1659  * halts).
1660  */
audit_serial(void)1661 unsigned int audit_serial(void)
1662 {
1663 	static atomic_t serial = ATOMIC_INIT(0);
1664 
1665 	return atomic_add_return(1, &serial);
1666 }
1667 
audit_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)1668 static inline void audit_get_stamp(struct audit_context *ctx,
1669 				   struct timespec64 *t, unsigned int *serial)
1670 {
1671 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1672 		*t = current_kernel_time64();
1673 		*serial = audit_serial();
1674 	}
1675 }
1676 
1677 /**
1678  * audit_log_start - obtain an audit buffer
1679  * @ctx: audit_context (may be NULL)
1680  * @gfp_mask: type of allocation
1681  * @type: audit message type
1682  *
1683  * Returns audit_buffer pointer on success or NULL on error.
1684  *
1685  * Obtain an audit buffer.  This routine does locking to obtain the
1686  * audit buffer, but then no locking is required for calls to
1687  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1688  * syscall, then the syscall is marked as auditable and an audit record
1689  * will be written at syscall exit.  If there is no associated task, then
1690  * task context (ctx) should be NULL.
1691  */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1692 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1693 				     int type)
1694 {
1695 	struct audit_buffer *ab;
1696 	struct timespec64 t;
1697 	unsigned int uninitialized_var(serial);
1698 
1699 	if (audit_initialized != AUDIT_INITIALIZED)
1700 		return NULL;
1701 
1702 	if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1703 		return NULL;
1704 
1705 	/* NOTE: don't ever fail/sleep on these two conditions:
1706 	 * 1. auditd generated record - since we need auditd to drain the
1707 	 *    queue; also, when we are checking for auditd, compare PIDs using
1708 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1709 	 *    using a PID anchored in the caller's namespace
1710 	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1711 	 *    while holding the mutex */
1712 	if (!(auditd_test_task(current) ||
1713 	      (current == __mutex_owner(&audit_cmd_mutex)))) {
1714 		long stime = audit_backlog_wait_time;
1715 
1716 		while (audit_backlog_limit &&
1717 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1718 			/* wake kauditd to try and flush the queue */
1719 			wake_up_interruptible(&kauditd_wait);
1720 
1721 			/* sleep if we are allowed and we haven't exhausted our
1722 			 * backlog wait limit */
1723 			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1724 				DECLARE_WAITQUEUE(wait, current);
1725 
1726 				add_wait_queue_exclusive(&audit_backlog_wait,
1727 							 &wait);
1728 				set_current_state(TASK_UNINTERRUPTIBLE);
1729 				stime = schedule_timeout(stime);
1730 				remove_wait_queue(&audit_backlog_wait, &wait);
1731 			} else {
1732 				if (audit_rate_check() && printk_ratelimit())
1733 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1734 						skb_queue_len(&audit_queue),
1735 						audit_backlog_limit);
1736 				audit_log_lost("backlog limit exceeded");
1737 				return NULL;
1738 			}
1739 		}
1740 	}
1741 
1742 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1743 	if (!ab) {
1744 		audit_log_lost("out of memory in audit_log_start");
1745 		return NULL;
1746 	}
1747 
1748 	audit_get_stamp(ab->ctx, &t, &serial);
1749 	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1750 			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1751 
1752 	return ab;
1753 }
1754 
1755 /**
1756  * audit_expand - expand skb in the audit buffer
1757  * @ab: audit_buffer
1758  * @extra: space to add at tail of the skb
1759  *
1760  * Returns 0 (no space) on failed expansion, or available space if
1761  * successful.
1762  */
audit_expand(struct audit_buffer * ab,int extra)1763 static inline int audit_expand(struct audit_buffer *ab, int extra)
1764 {
1765 	struct sk_buff *skb = ab->skb;
1766 	int oldtail = skb_tailroom(skb);
1767 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1768 	int newtail = skb_tailroom(skb);
1769 
1770 	if (ret < 0) {
1771 		audit_log_lost("out of memory in audit_expand");
1772 		return 0;
1773 	}
1774 
1775 	skb->truesize += newtail - oldtail;
1776 	return newtail;
1777 }
1778 
1779 /*
1780  * Format an audit message into the audit buffer.  If there isn't enough
1781  * room in the audit buffer, more room will be allocated and vsnprint
1782  * will be called a second time.  Currently, we assume that a printk
1783  * can't format message larger than 1024 bytes, so we don't either.
1784  */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1785 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1786 			      va_list args)
1787 {
1788 	int len, avail;
1789 	struct sk_buff *skb;
1790 	va_list args2;
1791 
1792 	if (!ab)
1793 		return;
1794 
1795 	BUG_ON(!ab->skb);
1796 	skb = ab->skb;
1797 	avail = skb_tailroom(skb);
1798 	if (avail == 0) {
1799 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1800 		if (!avail)
1801 			goto out;
1802 	}
1803 	va_copy(args2, args);
1804 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1805 	if (len >= avail) {
1806 		/* The printk buffer is 1024 bytes long, so if we get
1807 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1808 		 * log everything that printk could have logged. */
1809 		avail = audit_expand(ab,
1810 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1811 		if (!avail)
1812 			goto out_va_end;
1813 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1814 	}
1815 	if (len > 0)
1816 		skb_put(skb, len);
1817 out_va_end:
1818 	va_end(args2);
1819 out:
1820 	return;
1821 }
1822 
1823 /**
1824  * audit_log_format - format a message into the audit buffer.
1825  * @ab: audit_buffer
1826  * @fmt: format string
1827  * @...: optional parameters matching @fmt string
1828  *
1829  * All the work is done in audit_log_vformat.
1830  */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)1831 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1832 {
1833 	va_list args;
1834 
1835 	if (!ab)
1836 		return;
1837 	va_start(args, fmt);
1838 	audit_log_vformat(ab, fmt, args);
1839 	va_end(args);
1840 }
1841 
1842 /**
1843  * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1844  * @ab: the audit_buffer
1845  * @buf: buffer to convert to hex
1846  * @len: length of @buf to be converted
1847  *
1848  * No return value; failure to expand is silently ignored.
1849  *
1850  * This function will take the passed buf and convert it into a string of
1851  * ascii hex digits. The new string is placed onto the skb.
1852  */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)1853 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1854 		size_t len)
1855 {
1856 	int i, avail, new_len;
1857 	unsigned char *ptr;
1858 	struct sk_buff *skb;
1859 
1860 	if (!ab)
1861 		return;
1862 
1863 	BUG_ON(!ab->skb);
1864 	skb = ab->skb;
1865 	avail = skb_tailroom(skb);
1866 	new_len = len<<1;
1867 	if (new_len >= avail) {
1868 		/* Round the buffer request up to the next multiple */
1869 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1870 		avail = audit_expand(ab, new_len);
1871 		if (!avail)
1872 			return;
1873 	}
1874 
1875 	ptr = skb_tail_pointer(skb);
1876 	for (i = 0; i < len; i++)
1877 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1878 	*ptr = 0;
1879 	skb_put(skb, len << 1); /* new string is twice the old string */
1880 }
1881 
1882 /*
1883  * Format a string of no more than slen characters into the audit buffer,
1884  * enclosed in quote marks.
1885  */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)1886 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1887 			size_t slen)
1888 {
1889 	int avail, new_len;
1890 	unsigned char *ptr;
1891 	struct sk_buff *skb;
1892 
1893 	if (!ab)
1894 		return;
1895 
1896 	BUG_ON(!ab->skb);
1897 	skb = ab->skb;
1898 	avail = skb_tailroom(skb);
1899 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1900 	if (new_len > avail) {
1901 		avail = audit_expand(ab, new_len);
1902 		if (!avail)
1903 			return;
1904 	}
1905 	ptr = skb_tail_pointer(skb);
1906 	*ptr++ = '"';
1907 	memcpy(ptr, string, slen);
1908 	ptr += slen;
1909 	*ptr++ = '"';
1910 	*ptr = 0;
1911 	skb_put(skb, slen + 2);	/* don't include null terminator */
1912 }
1913 
1914 /**
1915  * audit_string_contains_control - does a string need to be logged in hex
1916  * @string: string to be checked
1917  * @len: max length of the string to check
1918  */
audit_string_contains_control(const char * string,size_t len)1919 bool audit_string_contains_control(const char *string, size_t len)
1920 {
1921 	const unsigned char *p;
1922 	for (p = string; p < (const unsigned char *)string + len; p++) {
1923 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1924 			return true;
1925 	}
1926 	return false;
1927 }
1928 
1929 /**
1930  * audit_log_n_untrustedstring - log a string that may contain random characters
1931  * @ab: audit_buffer
1932  * @len: length of string (not including trailing null)
1933  * @string: string to be logged
1934  *
1935  * This code will escape a string that is passed to it if the string
1936  * contains a control character, unprintable character, double quote mark,
1937  * or a space. Unescaped strings will start and end with a double quote mark.
1938  * Strings that are escaped are printed in hex (2 digits per char).
1939  *
1940  * The caller specifies the number of characters in the string to log, which may
1941  * or may not be the entire string.
1942  */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)1943 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1944 				 size_t len)
1945 {
1946 	if (audit_string_contains_control(string, len))
1947 		audit_log_n_hex(ab, string, len);
1948 	else
1949 		audit_log_n_string(ab, string, len);
1950 }
1951 
1952 /**
1953  * audit_log_untrustedstring - log a string that may contain random characters
1954  * @ab: audit_buffer
1955  * @string: string to be logged
1956  *
1957  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1958  * determine string length.
1959  */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)1960 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1961 {
1962 	audit_log_n_untrustedstring(ab, string, strlen(string));
1963 }
1964 
1965 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)1966 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1967 		      const struct path *path)
1968 {
1969 	char *p, *pathname;
1970 
1971 	if (prefix)
1972 		audit_log_format(ab, "%s", prefix);
1973 
1974 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1975 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1976 	if (!pathname) {
1977 		audit_log_string(ab, "<no_memory>");
1978 		return;
1979 	}
1980 	p = d_path(path, pathname, PATH_MAX+11);
1981 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1982 		/* FIXME: can we save some information here? */
1983 		audit_log_string(ab, "<too_long>");
1984 	} else
1985 		audit_log_untrustedstring(ab, p);
1986 	kfree(pathname);
1987 }
1988 
audit_log_session_info(struct audit_buffer * ab)1989 void audit_log_session_info(struct audit_buffer *ab)
1990 {
1991 	unsigned int sessionid = audit_get_sessionid(current);
1992 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1993 
1994 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1995 }
1996 
audit_log_key(struct audit_buffer * ab,char * key)1997 void audit_log_key(struct audit_buffer *ab, char *key)
1998 {
1999 	audit_log_format(ab, " key=");
2000 	if (key)
2001 		audit_log_untrustedstring(ab, key);
2002 	else
2003 		audit_log_format(ab, "(null)");
2004 }
2005 
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)2006 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
2007 {
2008 	int i;
2009 
2010 	audit_log_format(ab, " %s=", prefix);
2011 	CAP_FOR_EACH_U32(i) {
2012 		audit_log_format(ab, "%08x",
2013 				 cap->cap[CAP_LAST_U32 - i]);
2014 	}
2015 }
2016 
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)2017 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
2018 {
2019 	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
2020 	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
2021 	audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2022 			 name->fcap.fE, name->fcap_ver);
2023 }
2024 
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)2025 static inline int audit_copy_fcaps(struct audit_names *name,
2026 				   const struct dentry *dentry)
2027 {
2028 	struct cpu_vfs_cap_data caps;
2029 	int rc;
2030 
2031 	if (!dentry)
2032 		return 0;
2033 
2034 	rc = get_vfs_caps_from_disk(dentry, &caps);
2035 	if (rc)
2036 		return rc;
2037 
2038 	name->fcap.permitted = caps.permitted;
2039 	name->fcap.inheritable = caps.inheritable;
2040 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2041 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2042 				VFS_CAP_REVISION_SHIFT;
2043 
2044 	return 0;
2045 }
2046 
2047 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,struct inode * inode)2048 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2049 		      struct inode *inode)
2050 {
2051 	name->ino   = inode->i_ino;
2052 	name->dev   = inode->i_sb->s_dev;
2053 	name->mode  = inode->i_mode;
2054 	name->uid   = inode->i_uid;
2055 	name->gid   = inode->i_gid;
2056 	name->rdev  = inode->i_rdev;
2057 	security_inode_getsecid(inode, &name->osid);
2058 	audit_copy_fcaps(name, dentry);
2059 }
2060 
2061 /**
2062  * audit_log_name - produce AUDIT_PATH record from struct audit_names
2063  * @context: audit_context for the task
2064  * @n: audit_names structure with reportable details
2065  * @path: optional path to report instead of audit_names->name
2066  * @record_num: record number to report when handling a list of names
2067  * @call_panic: optional pointer to int that will be updated if secid fails
2068  */
audit_log_name(struct audit_context * context,struct audit_names * n,const struct path * path,int record_num,int * call_panic)2069 void audit_log_name(struct audit_context *context, struct audit_names *n,
2070 		    const struct path *path, int record_num, int *call_panic)
2071 {
2072 	struct audit_buffer *ab;
2073 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2074 	if (!ab)
2075 		return;
2076 
2077 	audit_log_format(ab, "item=%d", record_num);
2078 
2079 	if (path)
2080 		audit_log_d_path(ab, " name=", path);
2081 	else if (n->name) {
2082 		switch (n->name_len) {
2083 		case AUDIT_NAME_FULL:
2084 			/* log the full path */
2085 			audit_log_format(ab, " name=");
2086 			audit_log_untrustedstring(ab, n->name->name);
2087 			break;
2088 		case 0:
2089 			/* name was specified as a relative path and the
2090 			 * directory component is the cwd */
2091 			audit_log_d_path(ab, " name=", &context->pwd);
2092 			break;
2093 		default:
2094 			/* log the name's directory component */
2095 			audit_log_format(ab, " name=");
2096 			audit_log_n_untrustedstring(ab, n->name->name,
2097 						    n->name_len);
2098 		}
2099 	} else
2100 		audit_log_format(ab, " name=(null)");
2101 
2102 	if (n->ino != AUDIT_INO_UNSET)
2103 		audit_log_format(ab, " inode=%lu"
2104 				 " dev=%02x:%02x mode=%#ho"
2105 				 " ouid=%u ogid=%u rdev=%02x:%02x",
2106 				 n->ino,
2107 				 MAJOR(n->dev),
2108 				 MINOR(n->dev),
2109 				 n->mode,
2110 				 from_kuid(&init_user_ns, n->uid),
2111 				 from_kgid(&init_user_ns, n->gid),
2112 				 MAJOR(n->rdev),
2113 				 MINOR(n->rdev));
2114 	if (n->osid != 0) {
2115 		char *ctx = NULL;
2116 		u32 len;
2117 		if (security_secid_to_secctx(
2118 			n->osid, &ctx, &len)) {
2119 			audit_log_format(ab, " osid=%u", n->osid);
2120 			if (call_panic)
2121 				*call_panic = 2;
2122 		} else {
2123 			audit_log_format(ab, " obj=%s", ctx);
2124 			security_release_secctx(ctx, len);
2125 		}
2126 	}
2127 
2128 	/* log the audit_names record type */
2129 	audit_log_format(ab, " nametype=");
2130 	switch(n->type) {
2131 	case AUDIT_TYPE_NORMAL:
2132 		audit_log_format(ab, "NORMAL");
2133 		break;
2134 	case AUDIT_TYPE_PARENT:
2135 		audit_log_format(ab, "PARENT");
2136 		break;
2137 	case AUDIT_TYPE_CHILD_DELETE:
2138 		audit_log_format(ab, "DELETE");
2139 		break;
2140 	case AUDIT_TYPE_CHILD_CREATE:
2141 		audit_log_format(ab, "CREATE");
2142 		break;
2143 	default:
2144 		audit_log_format(ab, "UNKNOWN");
2145 		break;
2146 	}
2147 
2148 	audit_log_fcaps(ab, n);
2149 	audit_log_end(ab);
2150 }
2151 
audit_log_task_context(struct audit_buffer * ab)2152 int audit_log_task_context(struct audit_buffer *ab)
2153 {
2154 	char *ctx = NULL;
2155 	unsigned len;
2156 	int error;
2157 	u32 sid;
2158 
2159 	security_task_getsecid(current, &sid);
2160 	if (!sid)
2161 		return 0;
2162 
2163 	error = security_secid_to_secctx(sid, &ctx, &len);
2164 	if (error) {
2165 		if (error != -EINVAL)
2166 			goto error_path;
2167 		return 0;
2168 	}
2169 
2170 	audit_log_format(ab, " subj=%s", ctx);
2171 	security_release_secctx(ctx, len);
2172 	return 0;
2173 
2174 error_path:
2175 	audit_panic("error in audit_log_task_context");
2176 	return error;
2177 }
2178 EXPORT_SYMBOL(audit_log_task_context);
2179 
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)2180 void audit_log_d_path_exe(struct audit_buffer *ab,
2181 			  struct mm_struct *mm)
2182 {
2183 	struct file *exe_file;
2184 
2185 	if (!mm)
2186 		goto out_null;
2187 
2188 	exe_file = get_mm_exe_file(mm);
2189 	if (!exe_file)
2190 		goto out_null;
2191 
2192 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2193 	fput(exe_file);
2194 	return;
2195 out_null:
2196 	audit_log_format(ab, " exe=(null)");
2197 }
2198 
audit_get_tty(struct task_struct * tsk)2199 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2200 {
2201 	struct tty_struct *tty = NULL;
2202 	unsigned long flags;
2203 
2204 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2205 	if (tsk->signal)
2206 		tty = tty_kref_get(tsk->signal->tty);
2207 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2208 	return tty;
2209 }
2210 
audit_put_tty(struct tty_struct * tty)2211 void audit_put_tty(struct tty_struct *tty)
2212 {
2213 	tty_kref_put(tty);
2214 }
2215 
audit_log_task_info(struct audit_buffer * ab,struct task_struct * tsk)2216 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2217 {
2218 	const struct cred *cred;
2219 	char comm[sizeof(tsk->comm)];
2220 	struct tty_struct *tty;
2221 
2222 	if (!ab)
2223 		return;
2224 
2225 	/* tsk == current */
2226 	cred = current_cred();
2227 	tty = audit_get_tty(tsk);
2228 	audit_log_format(ab,
2229 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2230 			 " euid=%u suid=%u fsuid=%u"
2231 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2232 			 task_ppid_nr(tsk),
2233 			 task_tgid_nr(tsk),
2234 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2235 			 from_kuid(&init_user_ns, cred->uid),
2236 			 from_kgid(&init_user_ns, cred->gid),
2237 			 from_kuid(&init_user_ns, cred->euid),
2238 			 from_kuid(&init_user_ns, cred->suid),
2239 			 from_kuid(&init_user_ns, cred->fsuid),
2240 			 from_kgid(&init_user_ns, cred->egid),
2241 			 from_kgid(&init_user_ns, cred->sgid),
2242 			 from_kgid(&init_user_ns, cred->fsgid),
2243 			 tty ? tty_name(tty) : "(none)",
2244 			 audit_get_sessionid(tsk));
2245 	audit_put_tty(tty);
2246 	audit_log_format(ab, " comm=");
2247 	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2248 	audit_log_d_path_exe(ab, tsk->mm);
2249 	audit_log_task_context(ab);
2250 }
2251 EXPORT_SYMBOL(audit_log_task_info);
2252 
2253 /**
2254  * audit_log_link_denied - report a link restriction denial
2255  * @operation: specific link operation
2256  * @link: the path that triggered the restriction
2257  */
audit_log_link_denied(const char * operation,const struct path * link)2258 void audit_log_link_denied(const char *operation, const struct path *link)
2259 {
2260 	struct audit_buffer *ab;
2261 	struct audit_names *name;
2262 
2263 	name = kzalloc(sizeof(*name), GFP_NOFS);
2264 	if (!name)
2265 		return;
2266 
2267 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2268 	ab = audit_log_start(current->audit_context, GFP_KERNEL,
2269 			     AUDIT_ANOM_LINK);
2270 	if (!ab)
2271 		goto out;
2272 	audit_log_format(ab, "op=%s", operation);
2273 	audit_log_task_info(ab, current);
2274 	audit_log_format(ab, " res=0");
2275 	audit_log_end(ab);
2276 
2277 	/* Generate AUDIT_PATH record with object. */
2278 	name->type = AUDIT_TYPE_NORMAL;
2279 	audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
2280 	audit_log_name(current->audit_context, name, link, 0, NULL);
2281 out:
2282 	kfree(name);
2283 }
2284 
2285 /**
2286  * audit_log_end - end one audit record
2287  * @ab: the audit_buffer
2288  *
2289  * We can not do a netlink send inside an irq context because it blocks (last
2290  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2291  * queue and a tasklet is scheduled to remove them from the queue outside the
2292  * irq context.  May be called in any context.
2293  */
audit_log_end(struct audit_buffer * ab)2294 void audit_log_end(struct audit_buffer *ab)
2295 {
2296 	struct sk_buff *skb;
2297 	struct nlmsghdr *nlh;
2298 
2299 	if (!ab)
2300 		return;
2301 
2302 	if (audit_rate_check()) {
2303 		skb = ab->skb;
2304 		ab->skb = NULL;
2305 
2306 		/* setup the netlink header, see the comments in
2307 		 * kauditd_send_multicast_skb() for length quirks */
2308 		nlh = nlmsg_hdr(skb);
2309 		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2310 
2311 		/* queue the netlink packet and poke the kauditd thread */
2312 		skb_queue_tail(&audit_queue, skb);
2313 		wake_up_interruptible(&kauditd_wait);
2314 	} else
2315 		audit_log_lost("rate limit exceeded");
2316 
2317 	audit_buffer_free(ab);
2318 }
2319 
2320 /**
2321  * audit_log - Log an audit record
2322  * @ctx: audit context
2323  * @gfp_mask: type of allocation
2324  * @type: audit message type
2325  * @fmt: format string to use
2326  * @...: variable parameters matching the format string
2327  *
2328  * This is a convenience function that calls audit_log_start,
2329  * audit_log_vformat, and audit_log_end.  It may be called
2330  * in any context.
2331  */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2332 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2333 	       const char *fmt, ...)
2334 {
2335 	struct audit_buffer *ab;
2336 	va_list args;
2337 
2338 	ab = audit_log_start(ctx, gfp_mask, type);
2339 	if (ab) {
2340 		va_start(args, fmt);
2341 		audit_log_vformat(ab, fmt, args);
2342 		va_end(args);
2343 		audit_log_end(ab);
2344 	}
2345 }
2346 
2347 #ifdef CONFIG_SECURITY
2348 /**
2349  * audit_log_secctx - Converts and logs SELinux context
2350  * @ab: audit_buffer
2351  * @secid: security number
2352  *
2353  * This is a helper function that calls security_secid_to_secctx to convert
2354  * secid to secctx and then adds the (converted) SELinux context to the audit
2355  * log by calling audit_log_format, thus also preventing leak of internal secid
2356  * to userspace. If secid cannot be converted audit_panic is called.
2357  */
audit_log_secctx(struct audit_buffer * ab,u32 secid)2358 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2359 {
2360 	u32 len;
2361 	char *secctx;
2362 
2363 	if (security_secid_to_secctx(secid, &secctx, &len)) {
2364 		audit_panic("Cannot convert secid to context");
2365 	} else {
2366 		audit_log_format(ab, " obj=%s", secctx);
2367 		security_release_secctx(secctx, len);
2368 	}
2369 }
2370 EXPORT_SYMBOL(audit_log_secctx);
2371 #endif
2372 
2373 EXPORT_SYMBOL(audit_log_start);
2374 EXPORT_SYMBOL(audit_log_end);
2375 EXPORT_SYMBOL(audit_log_format);
2376 EXPORT_SYMBOL(audit_log);
2377