• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Set up the interrupt priorities
3  *
4  * Copyright  2004-2009 Analog Devices Inc.
5  *                 2003 Bas Vermeulen <bas@buyways.nl>
6  *                 2002 Arcturus Networks Inc. MaTed <mated@sympatico.ca>
7  *            2000-2001 Lineo, Inc. D. Jefff Dionne <jeff@lineo.ca>
8  *                 1999 D. Jeff Dionne <jeff@uclinux.org>
9  *                 1996 Roman Zippel
10  *
11  * Licensed under the GPL-2
12  */
13 
14 #include <linux/module.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/seq_file.h>
17 #include <linux/irq.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/gpio.h>
22 #include <asm/delay.h>
23 #ifdef CONFIG_IPIPE
24 #include <linux/ipipe.h>
25 #endif
26 #include <asm/traps.h>
27 #include <asm/blackfin.h>
28 #include <asm/irq_handler.h>
29 #include <asm/dpmc.h>
30 #include <asm/traps.h>
31 
32 /*
33  * NOTES:
34  * - we have separated the physical Hardware interrupt from the
35  * levels that the LINUX kernel sees (see the description in irq.h)
36  * -
37  */
38 
39 #ifndef CONFIG_SMP
40 /* Initialize this to an actual value to force it into the .data
41  * section so that we know it is properly initialized at entry into
42  * the kernel but before bss is initialized to zero (which is where
43  * it would live otherwise).  The 0x1f magic represents the IRQs we
44  * cannot actually mask out in hardware.
45  */
46 unsigned long bfin_irq_flags = 0x1f;
47 EXPORT_SYMBOL(bfin_irq_flags);
48 #endif
49 
50 #ifdef CONFIG_PM
51 unsigned long bfin_sic_iwr[3];	/* Up to 3 SIC_IWRx registers */
52 unsigned vr_wakeup;
53 #endif
54 
55 #ifndef SEC_GCTL
56 static struct ivgx {
57 	/* irq number for request_irq, available in mach-bf5xx/irq.h */
58 	unsigned int irqno;
59 	/* corresponding bit in the SIC_ISR register */
60 	unsigned int isrflag;
61 } ivg_table[NR_PERI_INTS];
62 
63 static struct ivg_slice {
64 	/* position of first irq in ivg_table for given ivg */
65 	struct ivgx *ifirst;
66 	struct ivgx *istop;
67 } ivg7_13[IVG13 - IVG7 + 1];
68 
69 
70 /*
71  * Search SIC_IAR and fill tables with the irqvalues
72  * and their positions in the SIC_ISR register.
73  */
search_IAR(void)74 static void __init search_IAR(void)
75 {
76 	unsigned ivg, irq_pos = 0;
77 	for (ivg = 0; ivg <= IVG13 - IVG7; ivg++) {
78 		int irqN;
79 
80 		ivg7_13[ivg].istop = ivg7_13[ivg].ifirst = &ivg_table[irq_pos];
81 
82 		for (irqN = 0; irqN < NR_PERI_INTS; irqN += 4) {
83 			int irqn;
84 			u32 iar =
85 				bfin_read32((unsigned long *)SIC_IAR0 +
86 #if defined(CONFIG_BF51x) || defined(CONFIG_BF52x) || \
87 	defined(CONFIG_BF538) || defined(CONFIG_BF539)
88 				((irqN % 32) >> 3) + ((irqN / 32) * ((SIC_IAR4 - SIC_IAR0) / 4))
89 #else
90 				(irqN >> 3)
91 #endif
92 				);
93 			for (irqn = irqN; irqn < irqN + 4; ++irqn) {
94 				int iar_shift = (irqn & 7) * 4;
95 				if (ivg == (0xf & (iar >> iar_shift))) {
96 					ivg_table[irq_pos].irqno = IVG7 + irqn;
97 					ivg_table[irq_pos].isrflag = 1 << (irqn % 32);
98 					ivg7_13[ivg].istop++;
99 					irq_pos++;
100 				}
101 			}
102 		}
103 	}
104 }
105 #endif
106 
107 /*
108  * This is for core internal IRQs
109  */
bfin_ack_noop(struct irq_data * d)110 void bfin_ack_noop(struct irq_data *d)
111 {
112 	/* Dummy function.  */
113 }
114 
bfin_core_mask_irq(struct irq_data * d)115 static void bfin_core_mask_irq(struct irq_data *d)
116 {
117 	bfin_irq_flags &= ~(1 << d->irq);
118 	if (!hard_irqs_disabled())
119 		hard_local_irq_enable();
120 }
121 
bfin_core_unmask_irq(struct irq_data * d)122 static void bfin_core_unmask_irq(struct irq_data *d)
123 {
124 	bfin_irq_flags |= 1 << d->irq;
125 	/*
126 	 * If interrupts are enabled, IMASK must contain the same value
127 	 * as bfin_irq_flags.  Make sure that invariant holds.  If interrupts
128 	 * are currently disabled we need not do anything; one of the
129 	 * callers will take care of setting IMASK to the proper value
130 	 * when reenabling interrupts.
131 	 * local_irq_enable just does "STI bfin_irq_flags", so it's exactly
132 	 * what we need.
133 	 */
134 	if (!hard_irqs_disabled())
135 		hard_local_irq_enable();
136 	return;
137 }
138 
139 #ifndef SEC_GCTL
bfin_internal_mask_irq(unsigned int irq)140 void bfin_internal_mask_irq(unsigned int irq)
141 {
142 	unsigned long flags = hard_local_irq_save();
143 #ifdef SIC_IMASK0
144 	unsigned mask_bank = BFIN_SYSIRQ(irq) / 32;
145 	unsigned mask_bit = BFIN_SYSIRQ(irq) % 32;
146 	bfin_write_SIC_IMASK(mask_bank, bfin_read_SIC_IMASK(mask_bank) &
147 			~(1 << mask_bit));
148 # if defined(CONFIG_SMP) || defined(CONFIG_ICC)
149 	bfin_write_SICB_IMASK(mask_bank, bfin_read_SICB_IMASK(mask_bank) &
150 			~(1 << mask_bit));
151 # endif
152 #else
153 	bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() &
154 			~(1 << BFIN_SYSIRQ(irq)));
155 #endif /* end of SIC_IMASK0 */
156 	hard_local_irq_restore(flags);
157 }
158 
bfin_internal_mask_irq_chip(struct irq_data * d)159 static void bfin_internal_mask_irq_chip(struct irq_data *d)
160 {
161 	bfin_internal_mask_irq(d->irq);
162 }
163 
164 #ifdef CONFIG_SMP
bfin_internal_unmask_irq_affinity(unsigned int irq,const struct cpumask * affinity)165 void bfin_internal_unmask_irq_affinity(unsigned int irq,
166 		const struct cpumask *affinity)
167 #else
168 void bfin_internal_unmask_irq(unsigned int irq)
169 #endif
170 {
171 	unsigned long flags = hard_local_irq_save();
172 
173 #ifdef SIC_IMASK0
174 	unsigned mask_bank = BFIN_SYSIRQ(irq) / 32;
175 	unsigned mask_bit = BFIN_SYSIRQ(irq) % 32;
176 # ifdef CONFIG_SMP
177 	if (cpumask_test_cpu(0, affinity))
178 # endif
179 		bfin_write_SIC_IMASK(mask_bank,
180 				bfin_read_SIC_IMASK(mask_bank) |
181 				(1 << mask_bit));
182 # ifdef CONFIG_SMP
183 	if (cpumask_test_cpu(1, affinity))
184 		bfin_write_SICB_IMASK(mask_bank,
185 				bfin_read_SICB_IMASK(mask_bank) |
186 				(1 << mask_bit));
187 # endif
188 #else
189 	bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() |
190 			(1 << BFIN_SYSIRQ(irq)));
191 #endif
192 	hard_local_irq_restore(flags);
193 }
194 
195 #ifdef CONFIG_SMP
bfin_internal_unmask_irq_chip(struct irq_data * d)196 static void bfin_internal_unmask_irq_chip(struct irq_data *d)
197 {
198 	bfin_internal_unmask_irq_affinity(d->irq,
199 					  irq_data_get_affinity_mask(d));
200 }
201 
bfin_internal_set_affinity(struct irq_data * d,const struct cpumask * mask,bool force)202 static int bfin_internal_set_affinity(struct irq_data *d,
203 				      const struct cpumask *mask, bool force)
204 {
205 	bfin_internal_mask_irq(d->irq);
206 	bfin_internal_unmask_irq_affinity(d->irq, mask);
207 
208 	return 0;
209 }
210 #else
bfin_internal_unmask_irq_chip(struct irq_data * d)211 static void bfin_internal_unmask_irq_chip(struct irq_data *d)
212 {
213 	bfin_internal_unmask_irq(d->irq);
214 }
215 #endif
216 
217 #if defined(CONFIG_PM)
bfin_internal_set_wake(unsigned int irq,unsigned int state)218 int bfin_internal_set_wake(unsigned int irq, unsigned int state)
219 {
220 	u32 bank, bit, wakeup = 0;
221 	unsigned long flags;
222 	bank = BFIN_SYSIRQ(irq) / 32;
223 	bit = BFIN_SYSIRQ(irq) % 32;
224 
225 	switch (irq) {
226 #ifdef IRQ_RTC
227 	case IRQ_RTC:
228 	wakeup |= WAKE;
229 	break;
230 #endif
231 #ifdef IRQ_CAN0_RX
232 	case IRQ_CAN0_RX:
233 	wakeup |= CANWE;
234 	break;
235 #endif
236 #ifdef IRQ_CAN1_RX
237 	case IRQ_CAN1_RX:
238 	wakeup |= CANWE;
239 	break;
240 #endif
241 #ifdef IRQ_USB_INT0
242 	case IRQ_USB_INT0:
243 	wakeup |= USBWE;
244 	break;
245 #endif
246 #ifdef CONFIG_BF54x
247 	case IRQ_CNT:
248 	wakeup |= ROTWE;
249 	break;
250 #endif
251 	default:
252 	break;
253 	}
254 
255 	flags = hard_local_irq_save();
256 
257 	if (state) {
258 		bfin_sic_iwr[bank] |= (1 << bit);
259 		vr_wakeup  |= wakeup;
260 
261 	} else {
262 		bfin_sic_iwr[bank] &= ~(1 << bit);
263 		vr_wakeup  &= ~wakeup;
264 	}
265 
266 	hard_local_irq_restore(flags);
267 
268 	return 0;
269 }
270 
bfin_internal_set_wake_chip(struct irq_data * d,unsigned int state)271 static int bfin_internal_set_wake_chip(struct irq_data *d, unsigned int state)
272 {
273 	return bfin_internal_set_wake(d->irq, state);
274 }
275 #else
bfin_internal_set_wake(unsigned int irq,unsigned int state)276 inline int bfin_internal_set_wake(unsigned int irq, unsigned int state)
277 {
278 	return 0;
279 }
280 # define bfin_internal_set_wake_chip NULL
281 #endif
282 
283 #else /* SEC_GCTL */
bfin_sec_preflow_handler(struct irq_data * d)284 static void bfin_sec_preflow_handler(struct irq_data *d)
285 {
286 	unsigned long flags = hard_local_irq_save();
287 	unsigned int sid = BFIN_SYSIRQ(d->irq);
288 
289 	bfin_write_SEC_SCI(0, SEC_CSID, sid);
290 
291 	hard_local_irq_restore(flags);
292 }
293 
bfin_sec_mask_ack_irq(struct irq_data * d)294 static void bfin_sec_mask_ack_irq(struct irq_data *d)
295 {
296 	unsigned long flags = hard_local_irq_save();
297 	unsigned int sid = BFIN_SYSIRQ(d->irq);
298 
299 	bfin_write_SEC_SCI(0, SEC_CSID, sid);
300 
301 	hard_local_irq_restore(flags);
302 }
303 
bfin_sec_unmask_irq(struct irq_data * d)304 static void bfin_sec_unmask_irq(struct irq_data *d)
305 {
306 	unsigned long flags = hard_local_irq_save();
307 	unsigned int sid = BFIN_SYSIRQ(d->irq);
308 
309 	bfin_write32(SEC_END, sid);
310 
311 	hard_local_irq_restore(flags);
312 }
313 
bfin_sec_enable_ssi(unsigned int sid)314 static void bfin_sec_enable_ssi(unsigned int sid)
315 {
316 	unsigned long flags = hard_local_irq_save();
317 	uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
318 
319 	reg_sctl |= SEC_SCTL_SRC_EN;
320 	bfin_write_SEC_SCTL(sid, reg_sctl);
321 
322 	hard_local_irq_restore(flags);
323 }
324 
bfin_sec_disable_ssi(unsigned int sid)325 static void bfin_sec_disable_ssi(unsigned int sid)
326 {
327 	unsigned long flags = hard_local_irq_save();
328 	uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
329 
330 	reg_sctl &= ((uint32_t)~SEC_SCTL_SRC_EN);
331 	bfin_write_SEC_SCTL(sid, reg_sctl);
332 
333 	hard_local_irq_restore(flags);
334 }
335 
bfin_sec_set_ssi_coreid(unsigned int sid,unsigned int coreid)336 static void bfin_sec_set_ssi_coreid(unsigned int sid, unsigned int coreid)
337 {
338 	unsigned long flags = hard_local_irq_save();
339 	uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
340 
341 	reg_sctl &= ((uint32_t)~SEC_SCTL_CTG);
342 	bfin_write_SEC_SCTL(sid, reg_sctl | ((coreid << 20) & SEC_SCTL_CTG));
343 
344 	hard_local_irq_restore(flags);
345 }
346 
bfin_sec_enable_sci(unsigned int sid)347 static void bfin_sec_enable_sci(unsigned int sid)
348 {
349 	unsigned long flags = hard_local_irq_save();
350 	uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
351 
352 	if (sid == BFIN_SYSIRQ(IRQ_WATCH0))
353 		reg_sctl |= SEC_SCTL_FAULT_EN;
354 	else
355 		reg_sctl |= SEC_SCTL_INT_EN;
356 	bfin_write_SEC_SCTL(sid, reg_sctl);
357 
358 	hard_local_irq_restore(flags);
359 }
360 
bfin_sec_disable_sci(unsigned int sid)361 static void bfin_sec_disable_sci(unsigned int sid)
362 {
363 	unsigned long flags = hard_local_irq_save();
364 	uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
365 
366 	reg_sctl &= ((uint32_t)~SEC_SCTL_INT_EN);
367 	bfin_write_SEC_SCTL(sid, reg_sctl);
368 
369 	hard_local_irq_restore(flags);
370 }
371 
bfin_sec_enable(struct irq_data * d)372 static void bfin_sec_enable(struct irq_data *d)
373 {
374 	unsigned long flags = hard_local_irq_save();
375 	unsigned int sid = BFIN_SYSIRQ(d->irq);
376 
377 	bfin_sec_enable_sci(sid);
378 	bfin_sec_enable_ssi(sid);
379 
380 	hard_local_irq_restore(flags);
381 }
382 
bfin_sec_disable(struct irq_data * d)383 static void bfin_sec_disable(struct irq_data *d)
384 {
385 	unsigned long flags = hard_local_irq_save();
386 	unsigned int sid = BFIN_SYSIRQ(d->irq);
387 
388 	bfin_sec_disable_sci(sid);
389 	bfin_sec_disable_ssi(sid);
390 
391 	hard_local_irq_restore(flags);
392 }
393 
bfin_sec_set_priority(unsigned int sec_int_levels,u8 * sec_int_priority)394 static void bfin_sec_set_priority(unsigned int sec_int_levels, u8 *sec_int_priority)
395 {
396 	unsigned long flags = hard_local_irq_save();
397 	uint32_t reg_sctl;
398 	int i;
399 
400 	bfin_write_SEC_SCI(0, SEC_CPLVL, sec_int_levels);
401 
402 	for (i = 0; i < SYS_IRQS - BFIN_IRQ(0); i++) {
403 		reg_sctl = bfin_read_SEC_SCTL(i) & ~SEC_SCTL_PRIO;
404 		reg_sctl |= sec_int_priority[i] << SEC_SCTL_PRIO_OFFSET;
405 		bfin_write_SEC_SCTL(i, reg_sctl);
406 	}
407 
408 	hard_local_irq_restore(flags);
409 }
410 
bfin_sec_raise_irq(unsigned int irq)411 void bfin_sec_raise_irq(unsigned int irq)
412 {
413 	unsigned long flags = hard_local_irq_save();
414 	unsigned int sid = BFIN_SYSIRQ(irq);
415 
416 	bfin_write32(SEC_RAISE, sid);
417 
418 	hard_local_irq_restore(flags);
419 }
420 
init_software_driven_irq(void)421 static void init_software_driven_irq(void)
422 {
423 	bfin_sec_set_ssi_coreid(34, 0);
424 	bfin_sec_set_ssi_coreid(35, 1);
425 
426 	bfin_sec_enable_sci(35);
427 	bfin_sec_enable_ssi(35);
428 	bfin_sec_set_ssi_coreid(36, 0);
429 	bfin_sec_set_ssi_coreid(37, 1);
430 	bfin_sec_enable_sci(37);
431 	bfin_sec_enable_ssi(37);
432 }
433 
handle_sec_sfi_fault(uint32_t gstat)434 void handle_sec_sfi_fault(uint32_t gstat)
435 {
436 
437 }
438 
handle_sec_sci_fault(uint32_t gstat)439 void handle_sec_sci_fault(uint32_t gstat)
440 {
441 	uint32_t core_id;
442 	uint32_t cstat;
443 
444 	core_id = gstat & SEC_GSTAT_SCI;
445 	cstat = bfin_read_SEC_SCI(core_id, SEC_CSTAT);
446 	if (cstat & SEC_CSTAT_ERR) {
447 		switch (cstat & SEC_CSTAT_ERRC) {
448 		case SEC_CSTAT_ACKERR:
449 			printk(KERN_DEBUG "sec ack err\n");
450 			break;
451 		default:
452 			printk(KERN_DEBUG "sec sci unknown err\n");
453 		}
454 	}
455 
456 }
457 
handle_sec_ssi_fault(uint32_t gstat)458 void handle_sec_ssi_fault(uint32_t gstat)
459 {
460 	uint32_t sid;
461 	uint32_t sstat;
462 
463 	sid = gstat & SEC_GSTAT_SID;
464 	sstat = bfin_read_SEC_SSTAT(sid);
465 
466 }
467 
handle_sec_fault(uint32_t sec_gstat)468 void handle_sec_fault(uint32_t sec_gstat)
469 {
470 	if (sec_gstat & SEC_GSTAT_ERR) {
471 
472 		switch (sec_gstat & SEC_GSTAT_ERRC) {
473 		case 0:
474 			handle_sec_sfi_fault(sec_gstat);
475 			break;
476 		case SEC_GSTAT_SCIERR:
477 			handle_sec_sci_fault(sec_gstat);
478 			break;
479 		case SEC_GSTAT_SSIERR:
480 			handle_sec_ssi_fault(sec_gstat);
481 			break;
482 		}
483 
484 
485 	}
486 }
487 
488 static struct irqaction bfin_fault_irq = {
489 	.name = "Blackfin fault",
490 };
491 
bfin_fault_routine(int irq,void * data)492 static irqreturn_t bfin_fault_routine(int irq, void *data)
493 {
494 	struct pt_regs *fp = get_irq_regs();
495 
496 	switch (irq) {
497 	case IRQ_C0_DBL_FAULT:
498 		double_fault_c(fp);
499 		break;
500 	case IRQ_C0_HW_ERR:
501 		dump_bfin_process(fp);
502 		dump_bfin_mem(fp);
503 		show_regs(fp);
504 		printk(KERN_NOTICE "Kernel Stack\n");
505 		show_stack(current, NULL);
506 		print_modules();
507 		panic("Core 0 hardware error");
508 		break;
509 	case IRQ_C0_NMI_L1_PARITY_ERR:
510 		panic("Core 0 NMI L1 parity error");
511 		break;
512 	case IRQ_SEC_ERR:
513 		pr_err("SEC error\n");
514 		handle_sec_fault(bfin_read32(SEC_GSTAT));
515 		break;
516 	default:
517 		panic("Unknown fault %d", irq);
518 	}
519 
520 	return IRQ_HANDLED;
521 }
522 #endif /* SEC_GCTL */
523 
524 static struct irq_chip bfin_core_irqchip = {
525 	.name = "CORE",
526 	.irq_mask = bfin_core_mask_irq,
527 	.irq_unmask = bfin_core_unmask_irq,
528 };
529 
530 #ifndef SEC_GCTL
531 static struct irq_chip bfin_internal_irqchip = {
532 	.name = "INTN",
533 	.irq_mask = bfin_internal_mask_irq_chip,
534 	.irq_unmask = bfin_internal_unmask_irq_chip,
535 	.irq_disable = bfin_internal_mask_irq_chip,
536 	.irq_enable = bfin_internal_unmask_irq_chip,
537 #ifdef CONFIG_SMP
538 	.irq_set_affinity = bfin_internal_set_affinity,
539 #endif
540 	.irq_set_wake = bfin_internal_set_wake_chip,
541 };
542 #else
543 static struct irq_chip bfin_sec_irqchip = {
544 	.name = "SEC",
545 	.irq_mask_ack = bfin_sec_mask_ack_irq,
546 	.irq_mask = bfin_sec_mask_ack_irq,
547 	.irq_unmask = bfin_sec_unmask_irq,
548 	.irq_eoi = bfin_sec_unmask_irq,
549 	.irq_disable = bfin_sec_disable,
550 	.irq_enable = bfin_sec_enable,
551 };
552 #endif
553 
bfin_handle_irq(unsigned irq)554 void bfin_handle_irq(unsigned irq)
555 {
556 #ifdef CONFIG_IPIPE
557 	struct pt_regs regs;    /* Contents not used. */
558 	ipipe_trace_irq_entry(irq);
559 	__ipipe_handle_irq(irq, &regs);
560 	ipipe_trace_irq_exit(irq);
561 #else /* !CONFIG_IPIPE */
562 	generic_handle_irq(irq);
563 #endif  /* !CONFIG_IPIPE */
564 }
565 
566 #if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
567 static int mac_stat_int_mask;
568 
bfin_mac_status_ack_irq(unsigned int irq)569 static void bfin_mac_status_ack_irq(unsigned int irq)
570 {
571 	switch (irq) {
572 	case IRQ_MAC_MMCINT:
573 		bfin_write_EMAC_MMC_TIRQS(
574 			bfin_read_EMAC_MMC_TIRQE() &
575 			bfin_read_EMAC_MMC_TIRQS());
576 		bfin_write_EMAC_MMC_RIRQS(
577 			bfin_read_EMAC_MMC_RIRQE() &
578 			bfin_read_EMAC_MMC_RIRQS());
579 		break;
580 	case IRQ_MAC_RXFSINT:
581 		bfin_write_EMAC_RX_STKY(
582 			bfin_read_EMAC_RX_IRQE() &
583 			bfin_read_EMAC_RX_STKY());
584 		break;
585 	case IRQ_MAC_TXFSINT:
586 		bfin_write_EMAC_TX_STKY(
587 			bfin_read_EMAC_TX_IRQE() &
588 			bfin_read_EMAC_TX_STKY());
589 		break;
590 	case IRQ_MAC_WAKEDET:
591 		 bfin_write_EMAC_WKUP_CTL(
592 			bfin_read_EMAC_WKUP_CTL() | MPKS | RWKS);
593 		break;
594 	default:
595 		/* These bits are W1C */
596 		bfin_write_EMAC_SYSTAT(1L << (irq - IRQ_MAC_PHYINT));
597 		break;
598 	}
599 }
600 
bfin_mac_status_mask_irq(struct irq_data * d)601 static void bfin_mac_status_mask_irq(struct irq_data *d)
602 {
603 	unsigned int irq = d->irq;
604 
605 	mac_stat_int_mask &= ~(1L << (irq - IRQ_MAC_PHYINT));
606 #ifdef BF537_FAMILY
607 	switch (irq) {
608 	case IRQ_MAC_PHYINT:
609 		bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() & ~PHYIE);
610 		break;
611 	default:
612 		break;
613 	}
614 #else
615 	if (!mac_stat_int_mask)
616 		bfin_internal_mask_irq(IRQ_MAC_ERROR);
617 #endif
618 	bfin_mac_status_ack_irq(irq);
619 }
620 
bfin_mac_status_unmask_irq(struct irq_data * d)621 static void bfin_mac_status_unmask_irq(struct irq_data *d)
622 {
623 	unsigned int irq = d->irq;
624 
625 #ifdef BF537_FAMILY
626 	switch (irq) {
627 	case IRQ_MAC_PHYINT:
628 		bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() | PHYIE);
629 		break;
630 	default:
631 		break;
632 	}
633 #else
634 	if (!mac_stat_int_mask)
635 		bfin_internal_unmask_irq(IRQ_MAC_ERROR);
636 #endif
637 	mac_stat_int_mask |= 1L << (irq - IRQ_MAC_PHYINT);
638 }
639 
640 #ifdef CONFIG_PM
bfin_mac_status_set_wake(struct irq_data * d,unsigned int state)641 int bfin_mac_status_set_wake(struct irq_data *d, unsigned int state)
642 {
643 #ifdef BF537_FAMILY
644 	return bfin_internal_set_wake(IRQ_GENERIC_ERROR, state);
645 #else
646 	return bfin_internal_set_wake(IRQ_MAC_ERROR, state);
647 #endif
648 }
649 #else
650 # define bfin_mac_status_set_wake NULL
651 #endif
652 
653 static struct irq_chip bfin_mac_status_irqchip = {
654 	.name = "MACST",
655 	.irq_mask = bfin_mac_status_mask_irq,
656 	.irq_unmask = bfin_mac_status_unmask_irq,
657 	.irq_set_wake = bfin_mac_status_set_wake,
658 };
659 
bfin_demux_mac_status_irq(struct irq_desc * inta_desc)660 void bfin_demux_mac_status_irq(struct irq_desc *inta_desc)
661 {
662 	int i, irq = 0;
663 	u32 status = bfin_read_EMAC_SYSTAT();
664 
665 	for (i = 0; i <= (IRQ_MAC_STMDONE - IRQ_MAC_PHYINT); i++)
666 		if (status & (1L << i)) {
667 			irq = IRQ_MAC_PHYINT + i;
668 			break;
669 		}
670 
671 	if (irq) {
672 		if (mac_stat_int_mask & (1L << (irq - IRQ_MAC_PHYINT))) {
673 			bfin_handle_irq(irq);
674 		} else {
675 			bfin_mac_status_ack_irq(irq);
676 			pr_debug("IRQ %d:"
677 					" MASKED MAC ERROR INTERRUPT ASSERTED\n",
678 					irq);
679 		}
680 	} else
681 		printk(KERN_ERR
682 				"%s : %s : LINE %d :\nIRQ ?: MAC ERROR"
683 				" INTERRUPT ASSERTED BUT NO SOURCE FOUND"
684 				"(EMAC_SYSTAT=0x%X)\n",
685 				__func__, __FILE__, __LINE__, status);
686 }
687 #endif
688 
bfin_set_irq_handler(struct irq_data * d,irq_flow_handler_t handle)689 static inline void bfin_set_irq_handler(struct irq_data *d, irq_flow_handler_t handle)
690 {
691 #ifdef CONFIG_IPIPE
692 	handle = handle_level_irq;
693 #endif
694 	irq_set_handler_locked(d, handle);
695 }
696 
697 #ifdef CONFIG_GPIO_ADI
698 
699 static DECLARE_BITMAP(gpio_enabled, MAX_BLACKFIN_GPIOS);
700 
bfin_gpio_ack_irq(struct irq_data * d)701 static void bfin_gpio_ack_irq(struct irq_data *d)
702 {
703 	/* AFAIK ack_irq in case mask_ack is provided
704 	 * get's only called for edge sense irqs
705 	 */
706 	set_gpio_data(irq_to_gpio(d->irq), 0);
707 }
708 
bfin_gpio_mask_ack_irq(struct irq_data * d)709 static void bfin_gpio_mask_ack_irq(struct irq_data *d)
710 {
711 	unsigned int irq = d->irq;
712 	u32 gpionr = irq_to_gpio(irq);
713 
714 	if (!irqd_is_level_type(d))
715 		set_gpio_data(gpionr, 0);
716 
717 	set_gpio_maska(gpionr, 0);
718 }
719 
bfin_gpio_mask_irq(struct irq_data * d)720 static void bfin_gpio_mask_irq(struct irq_data *d)
721 {
722 	set_gpio_maska(irq_to_gpio(d->irq), 0);
723 }
724 
bfin_gpio_unmask_irq(struct irq_data * d)725 static void bfin_gpio_unmask_irq(struct irq_data *d)
726 {
727 	set_gpio_maska(irq_to_gpio(d->irq), 1);
728 }
729 
bfin_gpio_irq_startup(struct irq_data * d)730 static unsigned int bfin_gpio_irq_startup(struct irq_data *d)
731 {
732 	u32 gpionr = irq_to_gpio(d->irq);
733 
734 	if (__test_and_set_bit(gpionr, gpio_enabled))
735 		bfin_gpio_irq_prepare(gpionr);
736 
737 	bfin_gpio_unmask_irq(d);
738 
739 	return 0;
740 }
741 
bfin_gpio_irq_shutdown(struct irq_data * d)742 static void bfin_gpio_irq_shutdown(struct irq_data *d)
743 {
744 	u32 gpionr = irq_to_gpio(d->irq);
745 
746 	bfin_gpio_mask_irq(d);
747 	__clear_bit(gpionr, gpio_enabled);
748 	bfin_gpio_irq_free(gpionr);
749 }
750 
bfin_gpio_irq_type(struct irq_data * d,unsigned int type)751 static int bfin_gpio_irq_type(struct irq_data *d, unsigned int type)
752 {
753 	unsigned int irq = d->irq;
754 	int ret;
755 	char buf[16];
756 	u32 gpionr = irq_to_gpio(irq);
757 
758 	if (type == IRQ_TYPE_PROBE) {
759 		/* only probe unenabled GPIO interrupt lines */
760 		if (test_bit(gpionr, gpio_enabled))
761 			return 0;
762 		type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING;
763 	}
764 
765 	if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING |
766 		    IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) {
767 
768 		snprintf(buf, 16, "gpio-irq%d", irq);
769 		ret = bfin_gpio_irq_request(gpionr, buf);
770 		if (ret)
771 			return ret;
772 
773 		if (__test_and_set_bit(gpionr, gpio_enabled))
774 			bfin_gpio_irq_prepare(gpionr);
775 
776 	} else {
777 		__clear_bit(gpionr, gpio_enabled);
778 		return 0;
779 	}
780 
781 	set_gpio_inen(gpionr, 0);
782 	set_gpio_dir(gpionr, 0);
783 
784 	if ((type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
785 	    == (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
786 		set_gpio_both(gpionr, 1);
787 	else
788 		set_gpio_both(gpionr, 0);
789 
790 	if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW)))
791 		set_gpio_polar(gpionr, 1);	/* low or falling edge denoted by one */
792 	else
793 		set_gpio_polar(gpionr, 0);	/* high or rising edge denoted by zero */
794 
795 	if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
796 		set_gpio_edge(gpionr, 1);
797 		set_gpio_inen(gpionr, 1);
798 		set_gpio_data(gpionr, 0);
799 
800 	} else {
801 		set_gpio_edge(gpionr, 0);
802 		set_gpio_inen(gpionr, 1);
803 	}
804 
805 	if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
806 		bfin_set_irq_handler(d, handle_edge_irq);
807 	else
808 		bfin_set_irq_handler(d, handle_level_irq);
809 
810 	return 0;
811 }
812 
bfin_demux_gpio_block(unsigned int irq)813 static void bfin_demux_gpio_block(unsigned int irq)
814 {
815 	unsigned int gpio, mask;
816 
817 	gpio = irq_to_gpio(irq);
818 	mask = get_gpiop_data(gpio) & get_gpiop_maska(gpio);
819 
820 	while (mask) {
821 		if (mask & 1)
822 			bfin_handle_irq(irq);
823 		irq++;
824 		mask >>= 1;
825 	}
826 }
827 
bfin_demux_gpio_irq(struct irq_desc * desc)828 void bfin_demux_gpio_irq(struct irq_desc *desc)
829 {
830 	unsigned int inta_irq = irq_desc_get_irq(desc);
831 	unsigned int irq;
832 
833 	switch (inta_irq) {
834 #if defined(BF537_FAMILY)
835 	case IRQ_PF_INTA_PG_INTA:
836 		bfin_demux_gpio_block(IRQ_PF0);
837 		irq = IRQ_PG0;
838 		break;
839 	case IRQ_PH_INTA_MAC_RX:
840 		irq = IRQ_PH0;
841 		break;
842 #elif defined(BF533_FAMILY)
843 	case IRQ_PROG_INTA:
844 		irq = IRQ_PF0;
845 		break;
846 #elif defined(BF538_FAMILY)
847 	case IRQ_PORTF_INTA:
848 		irq = IRQ_PF0;
849 		break;
850 #elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
851 	case IRQ_PORTF_INTA:
852 		irq = IRQ_PF0;
853 		break;
854 	case IRQ_PORTG_INTA:
855 		irq = IRQ_PG0;
856 		break;
857 	case IRQ_PORTH_INTA:
858 		irq = IRQ_PH0;
859 		break;
860 #elif defined(CONFIG_BF561)
861 	case IRQ_PROG0_INTA:
862 		irq = IRQ_PF0;
863 		break;
864 	case IRQ_PROG1_INTA:
865 		irq = IRQ_PF16;
866 		break;
867 	case IRQ_PROG2_INTA:
868 		irq = IRQ_PF32;
869 		break;
870 #endif
871 	default:
872 		BUG();
873 		return;
874 	}
875 
876 	bfin_demux_gpio_block(irq);
877 }
878 
879 #ifdef CONFIG_PM
880 
bfin_gpio_set_wake(struct irq_data * d,unsigned int state)881 static int bfin_gpio_set_wake(struct irq_data *d, unsigned int state)
882 {
883 	return bfin_gpio_pm_wakeup_ctrl(irq_to_gpio(d->irq), state);
884 }
885 
886 #else
887 
888 # define bfin_gpio_set_wake NULL
889 
890 #endif
891 
892 static struct irq_chip bfin_gpio_irqchip = {
893 	.name = "GPIO",
894 	.irq_ack = bfin_gpio_ack_irq,
895 	.irq_mask = bfin_gpio_mask_irq,
896 	.irq_mask_ack = bfin_gpio_mask_ack_irq,
897 	.irq_unmask = bfin_gpio_unmask_irq,
898 	.irq_disable = bfin_gpio_mask_irq,
899 	.irq_enable = bfin_gpio_unmask_irq,
900 	.irq_set_type = bfin_gpio_irq_type,
901 	.irq_startup = bfin_gpio_irq_startup,
902 	.irq_shutdown = bfin_gpio_irq_shutdown,
903 	.irq_set_wake = bfin_gpio_set_wake,
904 };
905 
906 #endif
907 
908 #ifdef CONFIG_PM
909 
910 #ifdef SEC_GCTL
911 static u32 save_pint_sec_ctl[NR_PINT_SYS_IRQS];
912 
sec_suspend(void)913 static int sec_suspend(void)
914 {
915 	u32 bank;
916 
917 	for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
918 		save_pint_sec_ctl[bank] = bfin_read_SEC_SCTL(bank + BFIN_SYSIRQ(IRQ_PINT0));
919 	return 0;
920 }
921 
sec_resume(void)922 static void sec_resume(void)
923 {
924 	u32 bank;
925 
926 	bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
927 	udelay(100);
928 	bfin_write_SEC_GCTL(SEC_GCTL_EN);
929 	bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
930 
931 	for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
932 		bfin_write_SEC_SCTL(bank + BFIN_SYSIRQ(IRQ_PINT0), save_pint_sec_ctl[bank]);
933 }
934 
935 static struct syscore_ops sec_pm_syscore_ops = {
936 	.suspend = sec_suspend,
937 	.resume = sec_resume,
938 };
939 #endif
940 
941 #endif
942 
init_exception_vectors(void)943 void init_exception_vectors(void)
944 {
945 	/* cannot program in software:
946 	 * evt0 - emulation (jtag)
947 	 * evt1 - reset
948 	 */
949 	bfin_write_EVT2(evt_nmi);
950 	bfin_write_EVT3(trap);
951 	bfin_write_EVT5(evt_ivhw);
952 	bfin_write_EVT6(evt_timer);
953 	bfin_write_EVT7(evt_evt7);
954 	bfin_write_EVT8(evt_evt8);
955 	bfin_write_EVT9(evt_evt9);
956 	bfin_write_EVT10(evt_evt10);
957 	bfin_write_EVT11(evt_evt11);
958 	bfin_write_EVT12(evt_evt12);
959 	bfin_write_EVT13(evt_evt13);
960 	bfin_write_EVT14(evt_evt14);
961 	bfin_write_EVT15(evt_system_call);
962 	CSYNC();
963 }
964 
965 #ifndef SEC_GCTL
966 /*
967  * This function should be called during kernel startup to initialize
968  * the BFin IRQ handling routines.
969  */
970 
init_arch_irq(void)971 int __init init_arch_irq(void)
972 {
973 	int irq;
974 	unsigned long ilat = 0;
975 
976 	/*  Disable all the peripheral intrs  - page 4-29 HW Ref manual */
977 #ifdef SIC_IMASK0
978 	bfin_write_SIC_IMASK0(SIC_UNMASK_ALL);
979 	bfin_write_SIC_IMASK1(SIC_UNMASK_ALL);
980 # ifdef SIC_IMASK2
981 	bfin_write_SIC_IMASK2(SIC_UNMASK_ALL);
982 # endif
983 # if defined(CONFIG_SMP) || defined(CONFIG_ICC)
984 	bfin_write_SICB_IMASK0(SIC_UNMASK_ALL);
985 	bfin_write_SICB_IMASK1(SIC_UNMASK_ALL);
986 # endif
987 #else
988 	bfin_write_SIC_IMASK(SIC_UNMASK_ALL);
989 #endif
990 
991 	local_irq_disable();
992 
993 	for (irq = 0; irq <= SYS_IRQS; irq++) {
994 		if (irq <= IRQ_CORETMR)
995 			irq_set_chip(irq, &bfin_core_irqchip);
996 		else
997 			irq_set_chip(irq, &bfin_internal_irqchip);
998 
999 		switch (irq) {
1000 #if !BFIN_GPIO_PINT
1001 #if defined(BF537_FAMILY)
1002 		case IRQ_PH_INTA_MAC_RX:
1003 		case IRQ_PF_INTA_PG_INTA:
1004 #elif defined(BF533_FAMILY)
1005 		case IRQ_PROG_INTA:
1006 #elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
1007 		case IRQ_PORTF_INTA:
1008 		case IRQ_PORTG_INTA:
1009 		case IRQ_PORTH_INTA:
1010 #elif defined(CONFIG_BF561)
1011 		case IRQ_PROG0_INTA:
1012 		case IRQ_PROG1_INTA:
1013 		case IRQ_PROG2_INTA:
1014 #elif defined(BF538_FAMILY)
1015 		case IRQ_PORTF_INTA:
1016 #endif
1017 			irq_set_chained_handler(irq, bfin_demux_gpio_irq);
1018 			break;
1019 #endif
1020 #if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
1021 		case IRQ_MAC_ERROR:
1022 			irq_set_chained_handler(irq,
1023 						bfin_demux_mac_status_irq);
1024 			break;
1025 #endif
1026 #if defined(CONFIG_SMP) || defined(CONFIG_ICC)
1027 		case IRQ_SUPPLE_0:
1028 		case IRQ_SUPPLE_1:
1029 			irq_set_handler(irq, handle_percpu_irq);
1030 			break;
1031 #endif
1032 
1033 #ifdef CONFIG_TICKSOURCE_CORETMR
1034 		case IRQ_CORETMR:
1035 # ifdef CONFIG_SMP
1036 			irq_set_handler(irq, handle_percpu_irq);
1037 # else
1038 			irq_set_handler(irq, handle_simple_irq);
1039 # endif
1040 			break;
1041 #endif
1042 
1043 #ifdef CONFIG_TICKSOURCE_GPTMR0
1044 		case IRQ_TIMER0:
1045 			irq_set_handler(irq, handle_simple_irq);
1046 			break;
1047 #endif
1048 
1049 		default:
1050 #ifdef CONFIG_IPIPE
1051 			irq_set_handler(irq, handle_level_irq);
1052 #else
1053 			irq_set_handler(irq, handle_simple_irq);
1054 #endif
1055 			break;
1056 		}
1057 	}
1058 
1059 	init_mach_irq();
1060 
1061 #if (defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE))
1062 	for (irq = IRQ_MAC_PHYINT; irq <= IRQ_MAC_STMDONE; irq++)
1063 		irq_set_chip_and_handler(irq, &bfin_mac_status_irqchip,
1064 					 handle_level_irq);
1065 #endif
1066 	/* if configured as edge, then will be changed to do_edge_IRQ */
1067 #ifdef CONFIG_GPIO_ADI
1068 	for (irq = GPIO_IRQ_BASE;
1069 		irq < (GPIO_IRQ_BASE + MAX_BLACKFIN_GPIOS); irq++)
1070 		irq_set_chip_and_handler(irq, &bfin_gpio_irqchip,
1071 					 handle_level_irq);
1072 #endif
1073 	bfin_write_IMASK(0);
1074 	CSYNC();
1075 	ilat = bfin_read_ILAT();
1076 	CSYNC();
1077 	bfin_write_ILAT(ilat);
1078 	CSYNC();
1079 
1080 	printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
1081 	/* IMASK=xxx is equivalent to STI xx or bfin_irq_flags=xx,
1082 	 * local_irq_enable()
1083 	 */
1084 	program_IAR();
1085 	/* Therefore it's better to setup IARs before interrupts enabled */
1086 	search_IAR();
1087 
1088 	/* Enable interrupts IVG7-15 */
1089 	bfin_irq_flags |= IMASK_IVG15 |
1090 		IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
1091 		IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
1092 
1093 
1094 	/* This implicitly covers ANOMALY_05000171
1095 	 * Boot-ROM code modifies SICA_IWRx wakeup registers
1096 	 */
1097 #ifdef SIC_IWR0
1098 	bfin_write_SIC_IWR0(IWR_DISABLE_ALL);
1099 # ifdef SIC_IWR1
1100 	/* BF52x/BF51x system reset does not properly reset SIC_IWR1 which
1101 	 * will screw up the bootrom as it relies on MDMA0/1 waking it
1102 	 * up from IDLE instructions.  See this report for more info:
1103 	 * http://blackfin.uclinux.org/gf/tracker/4323
1104 	 */
1105 	if (ANOMALY_05000435)
1106 		bfin_write_SIC_IWR1(IWR_ENABLE(10) | IWR_ENABLE(11));
1107 	else
1108 		bfin_write_SIC_IWR1(IWR_DISABLE_ALL);
1109 # endif
1110 # ifdef SIC_IWR2
1111 	bfin_write_SIC_IWR2(IWR_DISABLE_ALL);
1112 # endif
1113 #else
1114 	bfin_write_SIC_IWR(IWR_DISABLE_ALL);
1115 #endif
1116 	return 0;
1117 }
1118 
1119 #ifdef CONFIG_DO_IRQ_L1
1120 __attribute__((l1_text))
1121 #endif
vec_to_irq(int vec)1122 static int vec_to_irq(int vec)
1123 {
1124 	struct ivgx *ivg = ivg7_13[vec - IVG7].ifirst;
1125 	struct ivgx *ivg_stop = ivg7_13[vec - IVG7].istop;
1126 	unsigned long sic_status[3];
1127 	if (likely(vec == EVT_IVTMR_P))
1128 		return IRQ_CORETMR;
1129 #ifdef SIC_ISR
1130 	sic_status[0] = bfin_read_SIC_IMASK() & bfin_read_SIC_ISR();
1131 #else
1132 	if (smp_processor_id()) {
1133 # ifdef SICB_ISR0
1134 		/* This will be optimized out in UP mode. */
1135 		sic_status[0] = bfin_read_SICB_ISR0() & bfin_read_SICB_IMASK0();
1136 		sic_status[1] = bfin_read_SICB_ISR1() & bfin_read_SICB_IMASK1();
1137 # endif
1138 	} else {
1139 		sic_status[0] = bfin_read_SIC_ISR0() & bfin_read_SIC_IMASK0();
1140 		sic_status[1] = bfin_read_SIC_ISR1() & bfin_read_SIC_IMASK1();
1141 	}
1142 #endif
1143 #ifdef SIC_ISR2
1144 	sic_status[2] = bfin_read_SIC_ISR2() & bfin_read_SIC_IMASK2();
1145 #endif
1146 
1147 	for (;; ivg++) {
1148 		if (ivg >= ivg_stop)
1149 			return -1;
1150 #ifdef SIC_ISR
1151 		if (sic_status[0] & ivg->isrflag)
1152 #else
1153 		if (sic_status[(ivg->irqno - IVG7) / 32] & ivg->isrflag)
1154 #endif
1155 			return ivg->irqno;
1156 	}
1157 }
1158 
1159 #else /* SEC_GCTL */
1160 
1161 /*
1162  * This function should be called during kernel startup to initialize
1163  * the BFin IRQ handling routines.
1164  */
1165 
init_arch_irq(void)1166 int __init init_arch_irq(void)
1167 {
1168 	int irq;
1169 	unsigned long ilat = 0;
1170 
1171 	bfin_write_SEC_GCTL(SEC_GCTL_RESET);
1172 
1173 	local_irq_disable();
1174 
1175 	for (irq = 0; irq <= SYS_IRQS; irq++) {
1176 		if (irq <= IRQ_CORETMR) {
1177 			irq_set_chip_and_handler(irq, &bfin_core_irqchip,
1178 				handle_simple_irq);
1179 #if defined(CONFIG_TICKSOURCE_CORETMR) && defined(CONFIG_SMP)
1180 			if (irq == IRQ_CORETMR)
1181 				irq_set_handler(irq, handle_percpu_irq);
1182 #endif
1183 		} else if (irq >= BFIN_IRQ(34) && irq <= BFIN_IRQ(37)) {
1184 			irq_set_chip_and_handler(irq, &bfin_sec_irqchip,
1185 				handle_percpu_irq);
1186 		} else {
1187 			irq_set_chip(irq, &bfin_sec_irqchip);
1188 			irq_set_handler(irq, handle_fasteoi_irq);
1189 			__irq_set_preflow_handler(irq, bfin_sec_preflow_handler);
1190 		}
1191 	}
1192 
1193 	bfin_write_IMASK(0);
1194 	CSYNC();
1195 	ilat = bfin_read_ILAT();
1196 	CSYNC();
1197 	bfin_write_ILAT(ilat);
1198 	CSYNC();
1199 
1200 	printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
1201 
1202 	bfin_sec_set_priority(CONFIG_SEC_IRQ_PRIORITY_LEVELS, sec_int_priority);
1203 
1204 	/* Enable interrupts IVG7-15 */
1205 	bfin_irq_flags |= IMASK_IVG15 |
1206 	    IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
1207 	    IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
1208 
1209 
1210 	bfin_write_SEC_FCTL(SEC_FCTL_EN | SEC_FCTL_SYSRST_EN | SEC_FCTL_FLTIN_EN);
1211 	bfin_sec_enable_sci(BFIN_SYSIRQ(IRQ_WATCH0));
1212 	bfin_sec_enable_ssi(BFIN_SYSIRQ(IRQ_WATCH0));
1213 	bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
1214 	udelay(100);
1215 	bfin_write_SEC_GCTL(SEC_GCTL_EN);
1216 	bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1217 	bfin_write_SEC_SCI(1, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1218 
1219 	init_software_driven_irq();
1220 
1221 #ifdef CONFIG_PM
1222 	register_syscore_ops(&sec_pm_syscore_ops);
1223 #endif
1224 
1225 	bfin_fault_irq.handler = bfin_fault_routine;
1226 #ifdef CONFIG_L1_PARITY_CHECK
1227 	setup_irq(IRQ_C0_NMI_L1_PARITY_ERR, &bfin_fault_irq);
1228 #endif
1229 	setup_irq(IRQ_C0_DBL_FAULT, &bfin_fault_irq);
1230 	setup_irq(IRQ_SEC_ERR, &bfin_fault_irq);
1231 
1232 	return 0;
1233 }
1234 
1235 #ifdef CONFIG_DO_IRQ_L1
1236 __attribute__((l1_text))
1237 #endif
vec_to_irq(int vec)1238 static int vec_to_irq(int vec)
1239 {
1240 	if (likely(vec == EVT_IVTMR_P))
1241 		return IRQ_CORETMR;
1242 
1243 	return BFIN_IRQ(bfin_read_SEC_SCI(0, SEC_CSID));
1244 }
1245 #endif  /* SEC_GCTL */
1246 
1247 #ifdef CONFIG_DO_IRQ_L1
1248 __attribute__((l1_text))
1249 #endif
do_irq(int vec,struct pt_regs * fp)1250 void do_irq(int vec, struct pt_regs *fp)
1251 {
1252 	int irq = vec_to_irq(vec);
1253 	if (irq == -1)
1254 		return;
1255 	asm_do_IRQ(irq, fp);
1256 }
1257 
1258 #ifdef CONFIG_IPIPE
1259 
__ipipe_get_irq_priority(unsigned irq)1260 int __ipipe_get_irq_priority(unsigned irq)
1261 {
1262 	int ient, prio;
1263 
1264 	if (irq <= IRQ_CORETMR)
1265 		return irq;
1266 
1267 #ifdef SEC_GCTL
1268 	if (irq >= BFIN_IRQ(0))
1269 		return IVG11;
1270 #else
1271 	for (ient = 0; ient < NR_PERI_INTS; ient++) {
1272 		struct ivgx *ivg = ivg_table + ient;
1273 		if (ivg->irqno == irq) {
1274 			for (prio = 0; prio <= IVG13-IVG7; prio++) {
1275 				if (ivg7_13[prio].ifirst <= ivg &&
1276 				    ivg7_13[prio].istop > ivg)
1277 					return IVG7 + prio;
1278 			}
1279 		}
1280 	}
1281 #endif
1282 
1283 	return IVG15;
1284 }
1285 
1286 /* Hw interrupts are disabled on entry (check SAVE_CONTEXT). */
1287 #ifdef CONFIG_DO_IRQ_L1
1288 __attribute__((l1_text))
1289 #endif
__ipipe_grab_irq(int vec,struct pt_regs * regs)1290 asmlinkage int __ipipe_grab_irq(int vec, struct pt_regs *regs)
1291 {
1292 	struct ipipe_percpu_domain_data *p = ipipe_root_cpudom_ptr();
1293 	struct ipipe_domain *this_domain = __ipipe_current_domain;
1294 	int irq, s = 0;
1295 
1296 	irq = vec_to_irq(vec);
1297 	if (irq == -1)
1298 		return 0;
1299 
1300 	if (irq == IRQ_SYSTMR) {
1301 #if !defined(CONFIG_GENERIC_CLOCKEVENTS) || defined(CONFIG_TICKSOURCE_GPTMR0)
1302 		bfin_write_TIMER_STATUS(1); /* Latch TIMIL0 */
1303 #endif
1304 		/* This is basically what we need from the register frame. */
1305 		__this_cpu_write(__ipipe_tick_regs.ipend, regs->ipend);
1306 		__this_cpu_write(__ipipe_tick_regs.pc, regs->pc);
1307 		if (this_domain != ipipe_root_domain)
1308 			__this_cpu_and(__ipipe_tick_regs.ipend, ~0x10);
1309 		else
1310 			__this_cpu_or(__ipipe_tick_regs.ipend, 0x10);
1311 	}
1312 
1313 	/*
1314 	 * We don't want Linux interrupt handlers to run at the
1315 	 * current core priority level (i.e. < EVT15), since this
1316 	 * might delay other interrupts handled by a high priority
1317 	 * domain. Here is what we do instead:
1318 	 *
1319 	 * - we raise the SYNCDEFER bit to prevent
1320 	 * __ipipe_handle_irq() to sync the pipeline for the root
1321 	 * stage for the incoming interrupt. Upon return, that IRQ is
1322 	 * pending in the interrupt log.
1323 	 *
1324 	 * - we raise the TIF_IRQ_SYNC bit for the current thread, so
1325 	 * that _schedule_and_signal_from_int will eventually sync the
1326 	 * pipeline from EVT15.
1327 	 */
1328 	if (this_domain == ipipe_root_domain) {
1329 		s = __test_and_set_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
1330 		barrier();
1331 	}
1332 
1333 	ipipe_trace_irq_entry(irq);
1334 	__ipipe_handle_irq(irq, regs);
1335 	ipipe_trace_irq_exit(irq);
1336 
1337 	if (user_mode(regs) &&
1338 	    !ipipe_test_foreign_stack() &&
1339 	    (current->ipipe_flags & PF_EVTRET) != 0) {
1340 		/*
1341 		 * Testing for user_regs() does NOT fully eliminate
1342 		 * foreign stack contexts, because of the forged
1343 		 * interrupt returns we do through
1344 		 * __ipipe_call_irqtail. In that case, we might have
1345 		 * preempted a foreign stack context in a high
1346 		 * priority domain, with a single interrupt level now
1347 		 * pending after the irqtail unwinding is done. In
1348 		 * which case user_mode() is now true, and the event
1349 		 * gets dispatched spuriously.
1350 		 */
1351 		current->ipipe_flags &= ~PF_EVTRET;
1352 		__ipipe_dispatch_event(IPIPE_EVENT_RETURN, regs);
1353 	}
1354 
1355 	if (this_domain == ipipe_root_domain) {
1356 		set_thread_flag(TIF_IRQ_SYNC);
1357 		if (!s) {
1358 			__clear_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
1359 			return !test_bit(IPIPE_STALL_FLAG, &p->status);
1360 		}
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 #endif /* CONFIG_IPIPE */
1367