1 /*
2 * Set up the interrupt priorities
3 *
4 * Copyright 2004-2009 Analog Devices Inc.
5 * 2003 Bas Vermeulen <bas@buyways.nl>
6 * 2002 Arcturus Networks Inc. MaTed <mated@sympatico.ca>
7 * 2000-2001 Lineo, Inc. D. Jefff Dionne <jeff@lineo.ca>
8 * 1999 D. Jeff Dionne <jeff@uclinux.org>
9 * 1996 Roman Zippel
10 *
11 * Licensed under the GPL-2
12 */
13
14 #include <linux/module.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/seq_file.h>
17 #include <linux/irq.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/gpio.h>
22 #include <asm/delay.h>
23 #ifdef CONFIG_IPIPE
24 #include <linux/ipipe.h>
25 #endif
26 #include <asm/traps.h>
27 #include <asm/blackfin.h>
28 #include <asm/irq_handler.h>
29 #include <asm/dpmc.h>
30 #include <asm/traps.h>
31
32 /*
33 * NOTES:
34 * - we have separated the physical Hardware interrupt from the
35 * levels that the LINUX kernel sees (see the description in irq.h)
36 * -
37 */
38
39 #ifndef CONFIG_SMP
40 /* Initialize this to an actual value to force it into the .data
41 * section so that we know it is properly initialized at entry into
42 * the kernel but before bss is initialized to zero (which is where
43 * it would live otherwise). The 0x1f magic represents the IRQs we
44 * cannot actually mask out in hardware.
45 */
46 unsigned long bfin_irq_flags = 0x1f;
47 EXPORT_SYMBOL(bfin_irq_flags);
48 #endif
49
50 #ifdef CONFIG_PM
51 unsigned long bfin_sic_iwr[3]; /* Up to 3 SIC_IWRx registers */
52 unsigned vr_wakeup;
53 #endif
54
55 #ifndef SEC_GCTL
56 static struct ivgx {
57 /* irq number for request_irq, available in mach-bf5xx/irq.h */
58 unsigned int irqno;
59 /* corresponding bit in the SIC_ISR register */
60 unsigned int isrflag;
61 } ivg_table[NR_PERI_INTS];
62
63 static struct ivg_slice {
64 /* position of first irq in ivg_table for given ivg */
65 struct ivgx *ifirst;
66 struct ivgx *istop;
67 } ivg7_13[IVG13 - IVG7 + 1];
68
69
70 /*
71 * Search SIC_IAR and fill tables with the irqvalues
72 * and their positions in the SIC_ISR register.
73 */
search_IAR(void)74 static void __init search_IAR(void)
75 {
76 unsigned ivg, irq_pos = 0;
77 for (ivg = 0; ivg <= IVG13 - IVG7; ivg++) {
78 int irqN;
79
80 ivg7_13[ivg].istop = ivg7_13[ivg].ifirst = &ivg_table[irq_pos];
81
82 for (irqN = 0; irqN < NR_PERI_INTS; irqN += 4) {
83 int irqn;
84 u32 iar =
85 bfin_read32((unsigned long *)SIC_IAR0 +
86 #if defined(CONFIG_BF51x) || defined(CONFIG_BF52x) || \
87 defined(CONFIG_BF538) || defined(CONFIG_BF539)
88 ((irqN % 32) >> 3) + ((irqN / 32) * ((SIC_IAR4 - SIC_IAR0) / 4))
89 #else
90 (irqN >> 3)
91 #endif
92 );
93 for (irqn = irqN; irqn < irqN + 4; ++irqn) {
94 int iar_shift = (irqn & 7) * 4;
95 if (ivg == (0xf & (iar >> iar_shift))) {
96 ivg_table[irq_pos].irqno = IVG7 + irqn;
97 ivg_table[irq_pos].isrflag = 1 << (irqn % 32);
98 ivg7_13[ivg].istop++;
99 irq_pos++;
100 }
101 }
102 }
103 }
104 }
105 #endif
106
107 /*
108 * This is for core internal IRQs
109 */
bfin_ack_noop(struct irq_data * d)110 void bfin_ack_noop(struct irq_data *d)
111 {
112 /* Dummy function. */
113 }
114
bfin_core_mask_irq(struct irq_data * d)115 static void bfin_core_mask_irq(struct irq_data *d)
116 {
117 bfin_irq_flags &= ~(1 << d->irq);
118 if (!hard_irqs_disabled())
119 hard_local_irq_enable();
120 }
121
bfin_core_unmask_irq(struct irq_data * d)122 static void bfin_core_unmask_irq(struct irq_data *d)
123 {
124 bfin_irq_flags |= 1 << d->irq;
125 /*
126 * If interrupts are enabled, IMASK must contain the same value
127 * as bfin_irq_flags. Make sure that invariant holds. If interrupts
128 * are currently disabled we need not do anything; one of the
129 * callers will take care of setting IMASK to the proper value
130 * when reenabling interrupts.
131 * local_irq_enable just does "STI bfin_irq_flags", so it's exactly
132 * what we need.
133 */
134 if (!hard_irqs_disabled())
135 hard_local_irq_enable();
136 return;
137 }
138
139 #ifndef SEC_GCTL
bfin_internal_mask_irq(unsigned int irq)140 void bfin_internal_mask_irq(unsigned int irq)
141 {
142 unsigned long flags = hard_local_irq_save();
143 #ifdef SIC_IMASK0
144 unsigned mask_bank = BFIN_SYSIRQ(irq) / 32;
145 unsigned mask_bit = BFIN_SYSIRQ(irq) % 32;
146 bfin_write_SIC_IMASK(mask_bank, bfin_read_SIC_IMASK(mask_bank) &
147 ~(1 << mask_bit));
148 # if defined(CONFIG_SMP) || defined(CONFIG_ICC)
149 bfin_write_SICB_IMASK(mask_bank, bfin_read_SICB_IMASK(mask_bank) &
150 ~(1 << mask_bit));
151 # endif
152 #else
153 bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() &
154 ~(1 << BFIN_SYSIRQ(irq)));
155 #endif /* end of SIC_IMASK0 */
156 hard_local_irq_restore(flags);
157 }
158
bfin_internal_mask_irq_chip(struct irq_data * d)159 static void bfin_internal_mask_irq_chip(struct irq_data *d)
160 {
161 bfin_internal_mask_irq(d->irq);
162 }
163
164 #ifdef CONFIG_SMP
bfin_internal_unmask_irq_affinity(unsigned int irq,const struct cpumask * affinity)165 void bfin_internal_unmask_irq_affinity(unsigned int irq,
166 const struct cpumask *affinity)
167 #else
168 void bfin_internal_unmask_irq(unsigned int irq)
169 #endif
170 {
171 unsigned long flags = hard_local_irq_save();
172
173 #ifdef SIC_IMASK0
174 unsigned mask_bank = BFIN_SYSIRQ(irq) / 32;
175 unsigned mask_bit = BFIN_SYSIRQ(irq) % 32;
176 # ifdef CONFIG_SMP
177 if (cpumask_test_cpu(0, affinity))
178 # endif
179 bfin_write_SIC_IMASK(mask_bank,
180 bfin_read_SIC_IMASK(mask_bank) |
181 (1 << mask_bit));
182 # ifdef CONFIG_SMP
183 if (cpumask_test_cpu(1, affinity))
184 bfin_write_SICB_IMASK(mask_bank,
185 bfin_read_SICB_IMASK(mask_bank) |
186 (1 << mask_bit));
187 # endif
188 #else
189 bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() |
190 (1 << BFIN_SYSIRQ(irq)));
191 #endif
192 hard_local_irq_restore(flags);
193 }
194
195 #ifdef CONFIG_SMP
bfin_internal_unmask_irq_chip(struct irq_data * d)196 static void bfin_internal_unmask_irq_chip(struct irq_data *d)
197 {
198 bfin_internal_unmask_irq_affinity(d->irq,
199 irq_data_get_affinity_mask(d));
200 }
201
bfin_internal_set_affinity(struct irq_data * d,const struct cpumask * mask,bool force)202 static int bfin_internal_set_affinity(struct irq_data *d,
203 const struct cpumask *mask, bool force)
204 {
205 bfin_internal_mask_irq(d->irq);
206 bfin_internal_unmask_irq_affinity(d->irq, mask);
207
208 return 0;
209 }
210 #else
bfin_internal_unmask_irq_chip(struct irq_data * d)211 static void bfin_internal_unmask_irq_chip(struct irq_data *d)
212 {
213 bfin_internal_unmask_irq(d->irq);
214 }
215 #endif
216
217 #if defined(CONFIG_PM)
bfin_internal_set_wake(unsigned int irq,unsigned int state)218 int bfin_internal_set_wake(unsigned int irq, unsigned int state)
219 {
220 u32 bank, bit, wakeup = 0;
221 unsigned long flags;
222 bank = BFIN_SYSIRQ(irq) / 32;
223 bit = BFIN_SYSIRQ(irq) % 32;
224
225 switch (irq) {
226 #ifdef IRQ_RTC
227 case IRQ_RTC:
228 wakeup |= WAKE;
229 break;
230 #endif
231 #ifdef IRQ_CAN0_RX
232 case IRQ_CAN0_RX:
233 wakeup |= CANWE;
234 break;
235 #endif
236 #ifdef IRQ_CAN1_RX
237 case IRQ_CAN1_RX:
238 wakeup |= CANWE;
239 break;
240 #endif
241 #ifdef IRQ_USB_INT0
242 case IRQ_USB_INT0:
243 wakeup |= USBWE;
244 break;
245 #endif
246 #ifdef CONFIG_BF54x
247 case IRQ_CNT:
248 wakeup |= ROTWE;
249 break;
250 #endif
251 default:
252 break;
253 }
254
255 flags = hard_local_irq_save();
256
257 if (state) {
258 bfin_sic_iwr[bank] |= (1 << bit);
259 vr_wakeup |= wakeup;
260
261 } else {
262 bfin_sic_iwr[bank] &= ~(1 << bit);
263 vr_wakeup &= ~wakeup;
264 }
265
266 hard_local_irq_restore(flags);
267
268 return 0;
269 }
270
bfin_internal_set_wake_chip(struct irq_data * d,unsigned int state)271 static int bfin_internal_set_wake_chip(struct irq_data *d, unsigned int state)
272 {
273 return bfin_internal_set_wake(d->irq, state);
274 }
275 #else
bfin_internal_set_wake(unsigned int irq,unsigned int state)276 inline int bfin_internal_set_wake(unsigned int irq, unsigned int state)
277 {
278 return 0;
279 }
280 # define bfin_internal_set_wake_chip NULL
281 #endif
282
283 #else /* SEC_GCTL */
bfin_sec_preflow_handler(struct irq_data * d)284 static void bfin_sec_preflow_handler(struct irq_data *d)
285 {
286 unsigned long flags = hard_local_irq_save();
287 unsigned int sid = BFIN_SYSIRQ(d->irq);
288
289 bfin_write_SEC_SCI(0, SEC_CSID, sid);
290
291 hard_local_irq_restore(flags);
292 }
293
bfin_sec_mask_ack_irq(struct irq_data * d)294 static void bfin_sec_mask_ack_irq(struct irq_data *d)
295 {
296 unsigned long flags = hard_local_irq_save();
297 unsigned int sid = BFIN_SYSIRQ(d->irq);
298
299 bfin_write_SEC_SCI(0, SEC_CSID, sid);
300
301 hard_local_irq_restore(flags);
302 }
303
bfin_sec_unmask_irq(struct irq_data * d)304 static void bfin_sec_unmask_irq(struct irq_data *d)
305 {
306 unsigned long flags = hard_local_irq_save();
307 unsigned int sid = BFIN_SYSIRQ(d->irq);
308
309 bfin_write32(SEC_END, sid);
310
311 hard_local_irq_restore(flags);
312 }
313
bfin_sec_enable_ssi(unsigned int sid)314 static void bfin_sec_enable_ssi(unsigned int sid)
315 {
316 unsigned long flags = hard_local_irq_save();
317 uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
318
319 reg_sctl |= SEC_SCTL_SRC_EN;
320 bfin_write_SEC_SCTL(sid, reg_sctl);
321
322 hard_local_irq_restore(flags);
323 }
324
bfin_sec_disable_ssi(unsigned int sid)325 static void bfin_sec_disable_ssi(unsigned int sid)
326 {
327 unsigned long flags = hard_local_irq_save();
328 uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
329
330 reg_sctl &= ((uint32_t)~SEC_SCTL_SRC_EN);
331 bfin_write_SEC_SCTL(sid, reg_sctl);
332
333 hard_local_irq_restore(flags);
334 }
335
bfin_sec_set_ssi_coreid(unsigned int sid,unsigned int coreid)336 static void bfin_sec_set_ssi_coreid(unsigned int sid, unsigned int coreid)
337 {
338 unsigned long flags = hard_local_irq_save();
339 uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
340
341 reg_sctl &= ((uint32_t)~SEC_SCTL_CTG);
342 bfin_write_SEC_SCTL(sid, reg_sctl | ((coreid << 20) & SEC_SCTL_CTG));
343
344 hard_local_irq_restore(flags);
345 }
346
bfin_sec_enable_sci(unsigned int sid)347 static void bfin_sec_enable_sci(unsigned int sid)
348 {
349 unsigned long flags = hard_local_irq_save();
350 uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
351
352 if (sid == BFIN_SYSIRQ(IRQ_WATCH0))
353 reg_sctl |= SEC_SCTL_FAULT_EN;
354 else
355 reg_sctl |= SEC_SCTL_INT_EN;
356 bfin_write_SEC_SCTL(sid, reg_sctl);
357
358 hard_local_irq_restore(flags);
359 }
360
bfin_sec_disable_sci(unsigned int sid)361 static void bfin_sec_disable_sci(unsigned int sid)
362 {
363 unsigned long flags = hard_local_irq_save();
364 uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
365
366 reg_sctl &= ((uint32_t)~SEC_SCTL_INT_EN);
367 bfin_write_SEC_SCTL(sid, reg_sctl);
368
369 hard_local_irq_restore(flags);
370 }
371
bfin_sec_enable(struct irq_data * d)372 static void bfin_sec_enable(struct irq_data *d)
373 {
374 unsigned long flags = hard_local_irq_save();
375 unsigned int sid = BFIN_SYSIRQ(d->irq);
376
377 bfin_sec_enable_sci(sid);
378 bfin_sec_enable_ssi(sid);
379
380 hard_local_irq_restore(flags);
381 }
382
bfin_sec_disable(struct irq_data * d)383 static void bfin_sec_disable(struct irq_data *d)
384 {
385 unsigned long flags = hard_local_irq_save();
386 unsigned int sid = BFIN_SYSIRQ(d->irq);
387
388 bfin_sec_disable_sci(sid);
389 bfin_sec_disable_ssi(sid);
390
391 hard_local_irq_restore(flags);
392 }
393
bfin_sec_set_priority(unsigned int sec_int_levels,u8 * sec_int_priority)394 static void bfin_sec_set_priority(unsigned int sec_int_levels, u8 *sec_int_priority)
395 {
396 unsigned long flags = hard_local_irq_save();
397 uint32_t reg_sctl;
398 int i;
399
400 bfin_write_SEC_SCI(0, SEC_CPLVL, sec_int_levels);
401
402 for (i = 0; i < SYS_IRQS - BFIN_IRQ(0); i++) {
403 reg_sctl = bfin_read_SEC_SCTL(i) & ~SEC_SCTL_PRIO;
404 reg_sctl |= sec_int_priority[i] << SEC_SCTL_PRIO_OFFSET;
405 bfin_write_SEC_SCTL(i, reg_sctl);
406 }
407
408 hard_local_irq_restore(flags);
409 }
410
bfin_sec_raise_irq(unsigned int irq)411 void bfin_sec_raise_irq(unsigned int irq)
412 {
413 unsigned long flags = hard_local_irq_save();
414 unsigned int sid = BFIN_SYSIRQ(irq);
415
416 bfin_write32(SEC_RAISE, sid);
417
418 hard_local_irq_restore(flags);
419 }
420
init_software_driven_irq(void)421 static void init_software_driven_irq(void)
422 {
423 bfin_sec_set_ssi_coreid(34, 0);
424 bfin_sec_set_ssi_coreid(35, 1);
425
426 bfin_sec_enable_sci(35);
427 bfin_sec_enable_ssi(35);
428 bfin_sec_set_ssi_coreid(36, 0);
429 bfin_sec_set_ssi_coreid(37, 1);
430 bfin_sec_enable_sci(37);
431 bfin_sec_enable_ssi(37);
432 }
433
handle_sec_sfi_fault(uint32_t gstat)434 void handle_sec_sfi_fault(uint32_t gstat)
435 {
436
437 }
438
handle_sec_sci_fault(uint32_t gstat)439 void handle_sec_sci_fault(uint32_t gstat)
440 {
441 uint32_t core_id;
442 uint32_t cstat;
443
444 core_id = gstat & SEC_GSTAT_SCI;
445 cstat = bfin_read_SEC_SCI(core_id, SEC_CSTAT);
446 if (cstat & SEC_CSTAT_ERR) {
447 switch (cstat & SEC_CSTAT_ERRC) {
448 case SEC_CSTAT_ACKERR:
449 printk(KERN_DEBUG "sec ack err\n");
450 break;
451 default:
452 printk(KERN_DEBUG "sec sci unknown err\n");
453 }
454 }
455
456 }
457
handle_sec_ssi_fault(uint32_t gstat)458 void handle_sec_ssi_fault(uint32_t gstat)
459 {
460 uint32_t sid;
461 uint32_t sstat;
462
463 sid = gstat & SEC_GSTAT_SID;
464 sstat = bfin_read_SEC_SSTAT(sid);
465
466 }
467
handle_sec_fault(uint32_t sec_gstat)468 void handle_sec_fault(uint32_t sec_gstat)
469 {
470 if (sec_gstat & SEC_GSTAT_ERR) {
471
472 switch (sec_gstat & SEC_GSTAT_ERRC) {
473 case 0:
474 handle_sec_sfi_fault(sec_gstat);
475 break;
476 case SEC_GSTAT_SCIERR:
477 handle_sec_sci_fault(sec_gstat);
478 break;
479 case SEC_GSTAT_SSIERR:
480 handle_sec_ssi_fault(sec_gstat);
481 break;
482 }
483
484
485 }
486 }
487
488 static struct irqaction bfin_fault_irq = {
489 .name = "Blackfin fault",
490 };
491
bfin_fault_routine(int irq,void * data)492 static irqreturn_t bfin_fault_routine(int irq, void *data)
493 {
494 struct pt_regs *fp = get_irq_regs();
495
496 switch (irq) {
497 case IRQ_C0_DBL_FAULT:
498 double_fault_c(fp);
499 break;
500 case IRQ_C0_HW_ERR:
501 dump_bfin_process(fp);
502 dump_bfin_mem(fp);
503 show_regs(fp);
504 printk(KERN_NOTICE "Kernel Stack\n");
505 show_stack(current, NULL);
506 print_modules();
507 panic("Core 0 hardware error");
508 break;
509 case IRQ_C0_NMI_L1_PARITY_ERR:
510 panic("Core 0 NMI L1 parity error");
511 break;
512 case IRQ_SEC_ERR:
513 pr_err("SEC error\n");
514 handle_sec_fault(bfin_read32(SEC_GSTAT));
515 break;
516 default:
517 panic("Unknown fault %d", irq);
518 }
519
520 return IRQ_HANDLED;
521 }
522 #endif /* SEC_GCTL */
523
524 static struct irq_chip bfin_core_irqchip = {
525 .name = "CORE",
526 .irq_mask = bfin_core_mask_irq,
527 .irq_unmask = bfin_core_unmask_irq,
528 };
529
530 #ifndef SEC_GCTL
531 static struct irq_chip bfin_internal_irqchip = {
532 .name = "INTN",
533 .irq_mask = bfin_internal_mask_irq_chip,
534 .irq_unmask = bfin_internal_unmask_irq_chip,
535 .irq_disable = bfin_internal_mask_irq_chip,
536 .irq_enable = bfin_internal_unmask_irq_chip,
537 #ifdef CONFIG_SMP
538 .irq_set_affinity = bfin_internal_set_affinity,
539 #endif
540 .irq_set_wake = bfin_internal_set_wake_chip,
541 };
542 #else
543 static struct irq_chip bfin_sec_irqchip = {
544 .name = "SEC",
545 .irq_mask_ack = bfin_sec_mask_ack_irq,
546 .irq_mask = bfin_sec_mask_ack_irq,
547 .irq_unmask = bfin_sec_unmask_irq,
548 .irq_eoi = bfin_sec_unmask_irq,
549 .irq_disable = bfin_sec_disable,
550 .irq_enable = bfin_sec_enable,
551 };
552 #endif
553
bfin_handle_irq(unsigned irq)554 void bfin_handle_irq(unsigned irq)
555 {
556 #ifdef CONFIG_IPIPE
557 struct pt_regs regs; /* Contents not used. */
558 ipipe_trace_irq_entry(irq);
559 __ipipe_handle_irq(irq, ®s);
560 ipipe_trace_irq_exit(irq);
561 #else /* !CONFIG_IPIPE */
562 generic_handle_irq(irq);
563 #endif /* !CONFIG_IPIPE */
564 }
565
566 #if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
567 static int mac_stat_int_mask;
568
bfin_mac_status_ack_irq(unsigned int irq)569 static void bfin_mac_status_ack_irq(unsigned int irq)
570 {
571 switch (irq) {
572 case IRQ_MAC_MMCINT:
573 bfin_write_EMAC_MMC_TIRQS(
574 bfin_read_EMAC_MMC_TIRQE() &
575 bfin_read_EMAC_MMC_TIRQS());
576 bfin_write_EMAC_MMC_RIRQS(
577 bfin_read_EMAC_MMC_RIRQE() &
578 bfin_read_EMAC_MMC_RIRQS());
579 break;
580 case IRQ_MAC_RXFSINT:
581 bfin_write_EMAC_RX_STKY(
582 bfin_read_EMAC_RX_IRQE() &
583 bfin_read_EMAC_RX_STKY());
584 break;
585 case IRQ_MAC_TXFSINT:
586 bfin_write_EMAC_TX_STKY(
587 bfin_read_EMAC_TX_IRQE() &
588 bfin_read_EMAC_TX_STKY());
589 break;
590 case IRQ_MAC_WAKEDET:
591 bfin_write_EMAC_WKUP_CTL(
592 bfin_read_EMAC_WKUP_CTL() | MPKS | RWKS);
593 break;
594 default:
595 /* These bits are W1C */
596 bfin_write_EMAC_SYSTAT(1L << (irq - IRQ_MAC_PHYINT));
597 break;
598 }
599 }
600
bfin_mac_status_mask_irq(struct irq_data * d)601 static void bfin_mac_status_mask_irq(struct irq_data *d)
602 {
603 unsigned int irq = d->irq;
604
605 mac_stat_int_mask &= ~(1L << (irq - IRQ_MAC_PHYINT));
606 #ifdef BF537_FAMILY
607 switch (irq) {
608 case IRQ_MAC_PHYINT:
609 bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() & ~PHYIE);
610 break;
611 default:
612 break;
613 }
614 #else
615 if (!mac_stat_int_mask)
616 bfin_internal_mask_irq(IRQ_MAC_ERROR);
617 #endif
618 bfin_mac_status_ack_irq(irq);
619 }
620
bfin_mac_status_unmask_irq(struct irq_data * d)621 static void bfin_mac_status_unmask_irq(struct irq_data *d)
622 {
623 unsigned int irq = d->irq;
624
625 #ifdef BF537_FAMILY
626 switch (irq) {
627 case IRQ_MAC_PHYINT:
628 bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() | PHYIE);
629 break;
630 default:
631 break;
632 }
633 #else
634 if (!mac_stat_int_mask)
635 bfin_internal_unmask_irq(IRQ_MAC_ERROR);
636 #endif
637 mac_stat_int_mask |= 1L << (irq - IRQ_MAC_PHYINT);
638 }
639
640 #ifdef CONFIG_PM
bfin_mac_status_set_wake(struct irq_data * d,unsigned int state)641 int bfin_mac_status_set_wake(struct irq_data *d, unsigned int state)
642 {
643 #ifdef BF537_FAMILY
644 return bfin_internal_set_wake(IRQ_GENERIC_ERROR, state);
645 #else
646 return bfin_internal_set_wake(IRQ_MAC_ERROR, state);
647 #endif
648 }
649 #else
650 # define bfin_mac_status_set_wake NULL
651 #endif
652
653 static struct irq_chip bfin_mac_status_irqchip = {
654 .name = "MACST",
655 .irq_mask = bfin_mac_status_mask_irq,
656 .irq_unmask = bfin_mac_status_unmask_irq,
657 .irq_set_wake = bfin_mac_status_set_wake,
658 };
659
bfin_demux_mac_status_irq(struct irq_desc * inta_desc)660 void bfin_demux_mac_status_irq(struct irq_desc *inta_desc)
661 {
662 int i, irq = 0;
663 u32 status = bfin_read_EMAC_SYSTAT();
664
665 for (i = 0; i <= (IRQ_MAC_STMDONE - IRQ_MAC_PHYINT); i++)
666 if (status & (1L << i)) {
667 irq = IRQ_MAC_PHYINT + i;
668 break;
669 }
670
671 if (irq) {
672 if (mac_stat_int_mask & (1L << (irq - IRQ_MAC_PHYINT))) {
673 bfin_handle_irq(irq);
674 } else {
675 bfin_mac_status_ack_irq(irq);
676 pr_debug("IRQ %d:"
677 " MASKED MAC ERROR INTERRUPT ASSERTED\n",
678 irq);
679 }
680 } else
681 printk(KERN_ERR
682 "%s : %s : LINE %d :\nIRQ ?: MAC ERROR"
683 " INTERRUPT ASSERTED BUT NO SOURCE FOUND"
684 "(EMAC_SYSTAT=0x%X)\n",
685 __func__, __FILE__, __LINE__, status);
686 }
687 #endif
688
bfin_set_irq_handler(struct irq_data * d,irq_flow_handler_t handle)689 static inline void bfin_set_irq_handler(struct irq_data *d, irq_flow_handler_t handle)
690 {
691 #ifdef CONFIG_IPIPE
692 handle = handle_level_irq;
693 #endif
694 irq_set_handler_locked(d, handle);
695 }
696
697 #ifdef CONFIG_GPIO_ADI
698
699 static DECLARE_BITMAP(gpio_enabled, MAX_BLACKFIN_GPIOS);
700
bfin_gpio_ack_irq(struct irq_data * d)701 static void bfin_gpio_ack_irq(struct irq_data *d)
702 {
703 /* AFAIK ack_irq in case mask_ack is provided
704 * get's only called for edge sense irqs
705 */
706 set_gpio_data(irq_to_gpio(d->irq), 0);
707 }
708
bfin_gpio_mask_ack_irq(struct irq_data * d)709 static void bfin_gpio_mask_ack_irq(struct irq_data *d)
710 {
711 unsigned int irq = d->irq;
712 u32 gpionr = irq_to_gpio(irq);
713
714 if (!irqd_is_level_type(d))
715 set_gpio_data(gpionr, 0);
716
717 set_gpio_maska(gpionr, 0);
718 }
719
bfin_gpio_mask_irq(struct irq_data * d)720 static void bfin_gpio_mask_irq(struct irq_data *d)
721 {
722 set_gpio_maska(irq_to_gpio(d->irq), 0);
723 }
724
bfin_gpio_unmask_irq(struct irq_data * d)725 static void bfin_gpio_unmask_irq(struct irq_data *d)
726 {
727 set_gpio_maska(irq_to_gpio(d->irq), 1);
728 }
729
bfin_gpio_irq_startup(struct irq_data * d)730 static unsigned int bfin_gpio_irq_startup(struct irq_data *d)
731 {
732 u32 gpionr = irq_to_gpio(d->irq);
733
734 if (__test_and_set_bit(gpionr, gpio_enabled))
735 bfin_gpio_irq_prepare(gpionr);
736
737 bfin_gpio_unmask_irq(d);
738
739 return 0;
740 }
741
bfin_gpio_irq_shutdown(struct irq_data * d)742 static void bfin_gpio_irq_shutdown(struct irq_data *d)
743 {
744 u32 gpionr = irq_to_gpio(d->irq);
745
746 bfin_gpio_mask_irq(d);
747 __clear_bit(gpionr, gpio_enabled);
748 bfin_gpio_irq_free(gpionr);
749 }
750
bfin_gpio_irq_type(struct irq_data * d,unsigned int type)751 static int bfin_gpio_irq_type(struct irq_data *d, unsigned int type)
752 {
753 unsigned int irq = d->irq;
754 int ret;
755 char buf[16];
756 u32 gpionr = irq_to_gpio(irq);
757
758 if (type == IRQ_TYPE_PROBE) {
759 /* only probe unenabled GPIO interrupt lines */
760 if (test_bit(gpionr, gpio_enabled))
761 return 0;
762 type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING;
763 }
764
765 if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING |
766 IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) {
767
768 snprintf(buf, 16, "gpio-irq%d", irq);
769 ret = bfin_gpio_irq_request(gpionr, buf);
770 if (ret)
771 return ret;
772
773 if (__test_and_set_bit(gpionr, gpio_enabled))
774 bfin_gpio_irq_prepare(gpionr);
775
776 } else {
777 __clear_bit(gpionr, gpio_enabled);
778 return 0;
779 }
780
781 set_gpio_inen(gpionr, 0);
782 set_gpio_dir(gpionr, 0);
783
784 if ((type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
785 == (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
786 set_gpio_both(gpionr, 1);
787 else
788 set_gpio_both(gpionr, 0);
789
790 if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW)))
791 set_gpio_polar(gpionr, 1); /* low or falling edge denoted by one */
792 else
793 set_gpio_polar(gpionr, 0); /* high or rising edge denoted by zero */
794
795 if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
796 set_gpio_edge(gpionr, 1);
797 set_gpio_inen(gpionr, 1);
798 set_gpio_data(gpionr, 0);
799
800 } else {
801 set_gpio_edge(gpionr, 0);
802 set_gpio_inen(gpionr, 1);
803 }
804
805 if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
806 bfin_set_irq_handler(d, handle_edge_irq);
807 else
808 bfin_set_irq_handler(d, handle_level_irq);
809
810 return 0;
811 }
812
bfin_demux_gpio_block(unsigned int irq)813 static void bfin_demux_gpio_block(unsigned int irq)
814 {
815 unsigned int gpio, mask;
816
817 gpio = irq_to_gpio(irq);
818 mask = get_gpiop_data(gpio) & get_gpiop_maska(gpio);
819
820 while (mask) {
821 if (mask & 1)
822 bfin_handle_irq(irq);
823 irq++;
824 mask >>= 1;
825 }
826 }
827
bfin_demux_gpio_irq(struct irq_desc * desc)828 void bfin_demux_gpio_irq(struct irq_desc *desc)
829 {
830 unsigned int inta_irq = irq_desc_get_irq(desc);
831 unsigned int irq;
832
833 switch (inta_irq) {
834 #if defined(BF537_FAMILY)
835 case IRQ_PF_INTA_PG_INTA:
836 bfin_demux_gpio_block(IRQ_PF0);
837 irq = IRQ_PG0;
838 break;
839 case IRQ_PH_INTA_MAC_RX:
840 irq = IRQ_PH0;
841 break;
842 #elif defined(BF533_FAMILY)
843 case IRQ_PROG_INTA:
844 irq = IRQ_PF0;
845 break;
846 #elif defined(BF538_FAMILY)
847 case IRQ_PORTF_INTA:
848 irq = IRQ_PF0;
849 break;
850 #elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
851 case IRQ_PORTF_INTA:
852 irq = IRQ_PF0;
853 break;
854 case IRQ_PORTG_INTA:
855 irq = IRQ_PG0;
856 break;
857 case IRQ_PORTH_INTA:
858 irq = IRQ_PH0;
859 break;
860 #elif defined(CONFIG_BF561)
861 case IRQ_PROG0_INTA:
862 irq = IRQ_PF0;
863 break;
864 case IRQ_PROG1_INTA:
865 irq = IRQ_PF16;
866 break;
867 case IRQ_PROG2_INTA:
868 irq = IRQ_PF32;
869 break;
870 #endif
871 default:
872 BUG();
873 return;
874 }
875
876 bfin_demux_gpio_block(irq);
877 }
878
879 #ifdef CONFIG_PM
880
bfin_gpio_set_wake(struct irq_data * d,unsigned int state)881 static int bfin_gpio_set_wake(struct irq_data *d, unsigned int state)
882 {
883 return bfin_gpio_pm_wakeup_ctrl(irq_to_gpio(d->irq), state);
884 }
885
886 #else
887
888 # define bfin_gpio_set_wake NULL
889
890 #endif
891
892 static struct irq_chip bfin_gpio_irqchip = {
893 .name = "GPIO",
894 .irq_ack = bfin_gpio_ack_irq,
895 .irq_mask = bfin_gpio_mask_irq,
896 .irq_mask_ack = bfin_gpio_mask_ack_irq,
897 .irq_unmask = bfin_gpio_unmask_irq,
898 .irq_disable = bfin_gpio_mask_irq,
899 .irq_enable = bfin_gpio_unmask_irq,
900 .irq_set_type = bfin_gpio_irq_type,
901 .irq_startup = bfin_gpio_irq_startup,
902 .irq_shutdown = bfin_gpio_irq_shutdown,
903 .irq_set_wake = bfin_gpio_set_wake,
904 };
905
906 #endif
907
908 #ifdef CONFIG_PM
909
910 #ifdef SEC_GCTL
911 static u32 save_pint_sec_ctl[NR_PINT_SYS_IRQS];
912
sec_suspend(void)913 static int sec_suspend(void)
914 {
915 u32 bank;
916
917 for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
918 save_pint_sec_ctl[bank] = bfin_read_SEC_SCTL(bank + BFIN_SYSIRQ(IRQ_PINT0));
919 return 0;
920 }
921
sec_resume(void)922 static void sec_resume(void)
923 {
924 u32 bank;
925
926 bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
927 udelay(100);
928 bfin_write_SEC_GCTL(SEC_GCTL_EN);
929 bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
930
931 for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
932 bfin_write_SEC_SCTL(bank + BFIN_SYSIRQ(IRQ_PINT0), save_pint_sec_ctl[bank]);
933 }
934
935 static struct syscore_ops sec_pm_syscore_ops = {
936 .suspend = sec_suspend,
937 .resume = sec_resume,
938 };
939 #endif
940
941 #endif
942
init_exception_vectors(void)943 void init_exception_vectors(void)
944 {
945 /* cannot program in software:
946 * evt0 - emulation (jtag)
947 * evt1 - reset
948 */
949 bfin_write_EVT2(evt_nmi);
950 bfin_write_EVT3(trap);
951 bfin_write_EVT5(evt_ivhw);
952 bfin_write_EVT6(evt_timer);
953 bfin_write_EVT7(evt_evt7);
954 bfin_write_EVT8(evt_evt8);
955 bfin_write_EVT9(evt_evt9);
956 bfin_write_EVT10(evt_evt10);
957 bfin_write_EVT11(evt_evt11);
958 bfin_write_EVT12(evt_evt12);
959 bfin_write_EVT13(evt_evt13);
960 bfin_write_EVT14(evt_evt14);
961 bfin_write_EVT15(evt_system_call);
962 CSYNC();
963 }
964
965 #ifndef SEC_GCTL
966 /*
967 * This function should be called during kernel startup to initialize
968 * the BFin IRQ handling routines.
969 */
970
init_arch_irq(void)971 int __init init_arch_irq(void)
972 {
973 int irq;
974 unsigned long ilat = 0;
975
976 /* Disable all the peripheral intrs - page 4-29 HW Ref manual */
977 #ifdef SIC_IMASK0
978 bfin_write_SIC_IMASK0(SIC_UNMASK_ALL);
979 bfin_write_SIC_IMASK1(SIC_UNMASK_ALL);
980 # ifdef SIC_IMASK2
981 bfin_write_SIC_IMASK2(SIC_UNMASK_ALL);
982 # endif
983 # if defined(CONFIG_SMP) || defined(CONFIG_ICC)
984 bfin_write_SICB_IMASK0(SIC_UNMASK_ALL);
985 bfin_write_SICB_IMASK1(SIC_UNMASK_ALL);
986 # endif
987 #else
988 bfin_write_SIC_IMASK(SIC_UNMASK_ALL);
989 #endif
990
991 local_irq_disable();
992
993 for (irq = 0; irq <= SYS_IRQS; irq++) {
994 if (irq <= IRQ_CORETMR)
995 irq_set_chip(irq, &bfin_core_irqchip);
996 else
997 irq_set_chip(irq, &bfin_internal_irqchip);
998
999 switch (irq) {
1000 #if !BFIN_GPIO_PINT
1001 #if defined(BF537_FAMILY)
1002 case IRQ_PH_INTA_MAC_RX:
1003 case IRQ_PF_INTA_PG_INTA:
1004 #elif defined(BF533_FAMILY)
1005 case IRQ_PROG_INTA:
1006 #elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
1007 case IRQ_PORTF_INTA:
1008 case IRQ_PORTG_INTA:
1009 case IRQ_PORTH_INTA:
1010 #elif defined(CONFIG_BF561)
1011 case IRQ_PROG0_INTA:
1012 case IRQ_PROG1_INTA:
1013 case IRQ_PROG2_INTA:
1014 #elif defined(BF538_FAMILY)
1015 case IRQ_PORTF_INTA:
1016 #endif
1017 irq_set_chained_handler(irq, bfin_demux_gpio_irq);
1018 break;
1019 #endif
1020 #if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
1021 case IRQ_MAC_ERROR:
1022 irq_set_chained_handler(irq,
1023 bfin_demux_mac_status_irq);
1024 break;
1025 #endif
1026 #if defined(CONFIG_SMP) || defined(CONFIG_ICC)
1027 case IRQ_SUPPLE_0:
1028 case IRQ_SUPPLE_1:
1029 irq_set_handler(irq, handle_percpu_irq);
1030 break;
1031 #endif
1032
1033 #ifdef CONFIG_TICKSOURCE_CORETMR
1034 case IRQ_CORETMR:
1035 # ifdef CONFIG_SMP
1036 irq_set_handler(irq, handle_percpu_irq);
1037 # else
1038 irq_set_handler(irq, handle_simple_irq);
1039 # endif
1040 break;
1041 #endif
1042
1043 #ifdef CONFIG_TICKSOURCE_GPTMR0
1044 case IRQ_TIMER0:
1045 irq_set_handler(irq, handle_simple_irq);
1046 break;
1047 #endif
1048
1049 default:
1050 #ifdef CONFIG_IPIPE
1051 irq_set_handler(irq, handle_level_irq);
1052 #else
1053 irq_set_handler(irq, handle_simple_irq);
1054 #endif
1055 break;
1056 }
1057 }
1058
1059 init_mach_irq();
1060
1061 #if (defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE))
1062 for (irq = IRQ_MAC_PHYINT; irq <= IRQ_MAC_STMDONE; irq++)
1063 irq_set_chip_and_handler(irq, &bfin_mac_status_irqchip,
1064 handle_level_irq);
1065 #endif
1066 /* if configured as edge, then will be changed to do_edge_IRQ */
1067 #ifdef CONFIG_GPIO_ADI
1068 for (irq = GPIO_IRQ_BASE;
1069 irq < (GPIO_IRQ_BASE + MAX_BLACKFIN_GPIOS); irq++)
1070 irq_set_chip_and_handler(irq, &bfin_gpio_irqchip,
1071 handle_level_irq);
1072 #endif
1073 bfin_write_IMASK(0);
1074 CSYNC();
1075 ilat = bfin_read_ILAT();
1076 CSYNC();
1077 bfin_write_ILAT(ilat);
1078 CSYNC();
1079
1080 printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
1081 /* IMASK=xxx is equivalent to STI xx or bfin_irq_flags=xx,
1082 * local_irq_enable()
1083 */
1084 program_IAR();
1085 /* Therefore it's better to setup IARs before interrupts enabled */
1086 search_IAR();
1087
1088 /* Enable interrupts IVG7-15 */
1089 bfin_irq_flags |= IMASK_IVG15 |
1090 IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
1091 IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
1092
1093
1094 /* This implicitly covers ANOMALY_05000171
1095 * Boot-ROM code modifies SICA_IWRx wakeup registers
1096 */
1097 #ifdef SIC_IWR0
1098 bfin_write_SIC_IWR0(IWR_DISABLE_ALL);
1099 # ifdef SIC_IWR1
1100 /* BF52x/BF51x system reset does not properly reset SIC_IWR1 which
1101 * will screw up the bootrom as it relies on MDMA0/1 waking it
1102 * up from IDLE instructions. See this report for more info:
1103 * http://blackfin.uclinux.org/gf/tracker/4323
1104 */
1105 if (ANOMALY_05000435)
1106 bfin_write_SIC_IWR1(IWR_ENABLE(10) | IWR_ENABLE(11));
1107 else
1108 bfin_write_SIC_IWR1(IWR_DISABLE_ALL);
1109 # endif
1110 # ifdef SIC_IWR2
1111 bfin_write_SIC_IWR2(IWR_DISABLE_ALL);
1112 # endif
1113 #else
1114 bfin_write_SIC_IWR(IWR_DISABLE_ALL);
1115 #endif
1116 return 0;
1117 }
1118
1119 #ifdef CONFIG_DO_IRQ_L1
1120 __attribute__((l1_text))
1121 #endif
vec_to_irq(int vec)1122 static int vec_to_irq(int vec)
1123 {
1124 struct ivgx *ivg = ivg7_13[vec - IVG7].ifirst;
1125 struct ivgx *ivg_stop = ivg7_13[vec - IVG7].istop;
1126 unsigned long sic_status[3];
1127 if (likely(vec == EVT_IVTMR_P))
1128 return IRQ_CORETMR;
1129 #ifdef SIC_ISR
1130 sic_status[0] = bfin_read_SIC_IMASK() & bfin_read_SIC_ISR();
1131 #else
1132 if (smp_processor_id()) {
1133 # ifdef SICB_ISR0
1134 /* This will be optimized out in UP mode. */
1135 sic_status[0] = bfin_read_SICB_ISR0() & bfin_read_SICB_IMASK0();
1136 sic_status[1] = bfin_read_SICB_ISR1() & bfin_read_SICB_IMASK1();
1137 # endif
1138 } else {
1139 sic_status[0] = bfin_read_SIC_ISR0() & bfin_read_SIC_IMASK0();
1140 sic_status[1] = bfin_read_SIC_ISR1() & bfin_read_SIC_IMASK1();
1141 }
1142 #endif
1143 #ifdef SIC_ISR2
1144 sic_status[2] = bfin_read_SIC_ISR2() & bfin_read_SIC_IMASK2();
1145 #endif
1146
1147 for (;; ivg++) {
1148 if (ivg >= ivg_stop)
1149 return -1;
1150 #ifdef SIC_ISR
1151 if (sic_status[0] & ivg->isrflag)
1152 #else
1153 if (sic_status[(ivg->irqno - IVG7) / 32] & ivg->isrflag)
1154 #endif
1155 return ivg->irqno;
1156 }
1157 }
1158
1159 #else /* SEC_GCTL */
1160
1161 /*
1162 * This function should be called during kernel startup to initialize
1163 * the BFin IRQ handling routines.
1164 */
1165
init_arch_irq(void)1166 int __init init_arch_irq(void)
1167 {
1168 int irq;
1169 unsigned long ilat = 0;
1170
1171 bfin_write_SEC_GCTL(SEC_GCTL_RESET);
1172
1173 local_irq_disable();
1174
1175 for (irq = 0; irq <= SYS_IRQS; irq++) {
1176 if (irq <= IRQ_CORETMR) {
1177 irq_set_chip_and_handler(irq, &bfin_core_irqchip,
1178 handle_simple_irq);
1179 #if defined(CONFIG_TICKSOURCE_CORETMR) && defined(CONFIG_SMP)
1180 if (irq == IRQ_CORETMR)
1181 irq_set_handler(irq, handle_percpu_irq);
1182 #endif
1183 } else if (irq >= BFIN_IRQ(34) && irq <= BFIN_IRQ(37)) {
1184 irq_set_chip_and_handler(irq, &bfin_sec_irqchip,
1185 handle_percpu_irq);
1186 } else {
1187 irq_set_chip(irq, &bfin_sec_irqchip);
1188 irq_set_handler(irq, handle_fasteoi_irq);
1189 __irq_set_preflow_handler(irq, bfin_sec_preflow_handler);
1190 }
1191 }
1192
1193 bfin_write_IMASK(0);
1194 CSYNC();
1195 ilat = bfin_read_ILAT();
1196 CSYNC();
1197 bfin_write_ILAT(ilat);
1198 CSYNC();
1199
1200 printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
1201
1202 bfin_sec_set_priority(CONFIG_SEC_IRQ_PRIORITY_LEVELS, sec_int_priority);
1203
1204 /* Enable interrupts IVG7-15 */
1205 bfin_irq_flags |= IMASK_IVG15 |
1206 IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
1207 IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
1208
1209
1210 bfin_write_SEC_FCTL(SEC_FCTL_EN | SEC_FCTL_SYSRST_EN | SEC_FCTL_FLTIN_EN);
1211 bfin_sec_enable_sci(BFIN_SYSIRQ(IRQ_WATCH0));
1212 bfin_sec_enable_ssi(BFIN_SYSIRQ(IRQ_WATCH0));
1213 bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
1214 udelay(100);
1215 bfin_write_SEC_GCTL(SEC_GCTL_EN);
1216 bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1217 bfin_write_SEC_SCI(1, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1218
1219 init_software_driven_irq();
1220
1221 #ifdef CONFIG_PM
1222 register_syscore_ops(&sec_pm_syscore_ops);
1223 #endif
1224
1225 bfin_fault_irq.handler = bfin_fault_routine;
1226 #ifdef CONFIG_L1_PARITY_CHECK
1227 setup_irq(IRQ_C0_NMI_L1_PARITY_ERR, &bfin_fault_irq);
1228 #endif
1229 setup_irq(IRQ_C0_DBL_FAULT, &bfin_fault_irq);
1230 setup_irq(IRQ_SEC_ERR, &bfin_fault_irq);
1231
1232 return 0;
1233 }
1234
1235 #ifdef CONFIG_DO_IRQ_L1
1236 __attribute__((l1_text))
1237 #endif
vec_to_irq(int vec)1238 static int vec_to_irq(int vec)
1239 {
1240 if (likely(vec == EVT_IVTMR_P))
1241 return IRQ_CORETMR;
1242
1243 return BFIN_IRQ(bfin_read_SEC_SCI(0, SEC_CSID));
1244 }
1245 #endif /* SEC_GCTL */
1246
1247 #ifdef CONFIG_DO_IRQ_L1
1248 __attribute__((l1_text))
1249 #endif
do_irq(int vec,struct pt_regs * fp)1250 void do_irq(int vec, struct pt_regs *fp)
1251 {
1252 int irq = vec_to_irq(vec);
1253 if (irq == -1)
1254 return;
1255 asm_do_IRQ(irq, fp);
1256 }
1257
1258 #ifdef CONFIG_IPIPE
1259
__ipipe_get_irq_priority(unsigned irq)1260 int __ipipe_get_irq_priority(unsigned irq)
1261 {
1262 int ient, prio;
1263
1264 if (irq <= IRQ_CORETMR)
1265 return irq;
1266
1267 #ifdef SEC_GCTL
1268 if (irq >= BFIN_IRQ(0))
1269 return IVG11;
1270 #else
1271 for (ient = 0; ient < NR_PERI_INTS; ient++) {
1272 struct ivgx *ivg = ivg_table + ient;
1273 if (ivg->irqno == irq) {
1274 for (prio = 0; prio <= IVG13-IVG7; prio++) {
1275 if (ivg7_13[prio].ifirst <= ivg &&
1276 ivg7_13[prio].istop > ivg)
1277 return IVG7 + prio;
1278 }
1279 }
1280 }
1281 #endif
1282
1283 return IVG15;
1284 }
1285
1286 /* Hw interrupts are disabled on entry (check SAVE_CONTEXT). */
1287 #ifdef CONFIG_DO_IRQ_L1
1288 __attribute__((l1_text))
1289 #endif
__ipipe_grab_irq(int vec,struct pt_regs * regs)1290 asmlinkage int __ipipe_grab_irq(int vec, struct pt_regs *regs)
1291 {
1292 struct ipipe_percpu_domain_data *p = ipipe_root_cpudom_ptr();
1293 struct ipipe_domain *this_domain = __ipipe_current_domain;
1294 int irq, s = 0;
1295
1296 irq = vec_to_irq(vec);
1297 if (irq == -1)
1298 return 0;
1299
1300 if (irq == IRQ_SYSTMR) {
1301 #if !defined(CONFIG_GENERIC_CLOCKEVENTS) || defined(CONFIG_TICKSOURCE_GPTMR0)
1302 bfin_write_TIMER_STATUS(1); /* Latch TIMIL0 */
1303 #endif
1304 /* This is basically what we need from the register frame. */
1305 __this_cpu_write(__ipipe_tick_regs.ipend, regs->ipend);
1306 __this_cpu_write(__ipipe_tick_regs.pc, regs->pc);
1307 if (this_domain != ipipe_root_domain)
1308 __this_cpu_and(__ipipe_tick_regs.ipend, ~0x10);
1309 else
1310 __this_cpu_or(__ipipe_tick_regs.ipend, 0x10);
1311 }
1312
1313 /*
1314 * We don't want Linux interrupt handlers to run at the
1315 * current core priority level (i.e. < EVT15), since this
1316 * might delay other interrupts handled by a high priority
1317 * domain. Here is what we do instead:
1318 *
1319 * - we raise the SYNCDEFER bit to prevent
1320 * __ipipe_handle_irq() to sync the pipeline for the root
1321 * stage for the incoming interrupt. Upon return, that IRQ is
1322 * pending in the interrupt log.
1323 *
1324 * - we raise the TIF_IRQ_SYNC bit for the current thread, so
1325 * that _schedule_and_signal_from_int will eventually sync the
1326 * pipeline from EVT15.
1327 */
1328 if (this_domain == ipipe_root_domain) {
1329 s = __test_and_set_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
1330 barrier();
1331 }
1332
1333 ipipe_trace_irq_entry(irq);
1334 __ipipe_handle_irq(irq, regs);
1335 ipipe_trace_irq_exit(irq);
1336
1337 if (user_mode(regs) &&
1338 !ipipe_test_foreign_stack() &&
1339 (current->ipipe_flags & PF_EVTRET) != 0) {
1340 /*
1341 * Testing for user_regs() does NOT fully eliminate
1342 * foreign stack contexts, because of the forged
1343 * interrupt returns we do through
1344 * __ipipe_call_irqtail. In that case, we might have
1345 * preempted a foreign stack context in a high
1346 * priority domain, with a single interrupt level now
1347 * pending after the irqtail unwinding is done. In
1348 * which case user_mode() is now true, and the event
1349 * gets dispatched spuriously.
1350 */
1351 current->ipipe_flags &= ~PF_EVTRET;
1352 __ipipe_dispatch_event(IPIPE_EVENT_RETURN, regs);
1353 }
1354
1355 if (this_domain == ipipe_root_domain) {
1356 set_thread_flag(TIF_IRQ_SYNC);
1357 if (!s) {
1358 __clear_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
1359 return !test_bit(IPIPE_STALL_FLAG, &p->status);
1360 }
1361 }
1362
1363 return 0;
1364 }
1365
1366 #endif /* CONFIG_IPIPE */
1367