• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Budget Fair Queueing (BFQ) I/O scheduler.
3  *
4  * Based on ideas and code from CFQ:
5  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6  *
7  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8  *		      Paolo Valente <paolo.valente@unimore.it>
9  *
10  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11  *                    Arianna Avanzini <avanzini@google.com>
12  *
13  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License as
17  *  published by the Free Software Foundation; either version 2 of the
18  *  License, or (at your option) any later version.
19  *
20  *  This program is distributed in the hope that it will be useful,
21  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
22  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  *  General Public License for more details.
24  *
25  * BFQ is a proportional-share I/O scheduler, with some extra
26  * low-latency capabilities. BFQ also supports full hierarchical
27  * scheduling through cgroups. Next paragraphs provide an introduction
28  * on BFQ inner workings. Details on BFQ benefits, usage and
29  * limitations can be found in Documentation/block/bfq-iosched.txt.
30  *
31  * BFQ is a proportional-share storage-I/O scheduling algorithm based
32  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33  * budgets, measured in number of sectors, to processes instead of
34  * time slices. The device is not granted to the in-service process
35  * for a given time slice, but until it has exhausted its assigned
36  * budget. This change from the time to the service domain enables BFQ
37  * to distribute the device throughput among processes as desired,
38  * without any distortion due to throughput fluctuations, or to device
39  * internal queueing. BFQ uses an ad hoc internal scheduler, called
40  * B-WF2Q+, to schedule processes according to their budgets. More
41  * precisely, BFQ schedules queues associated with processes. Each
42  * process/queue is assigned a user-configurable weight, and B-WF2Q+
43  * guarantees that each queue receives a fraction of the throughput
44  * proportional to its weight. Thanks to the accurate policy of
45  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46  * processes issuing sequential requests (to boost the throughput),
47  * and yet guarantee a low latency to interactive and soft real-time
48  * applications.
49  *
50  * In particular, to provide these low-latency guarantees, BFQ
51  * explicitly privileges the I/O of two classes of time-sensitive
52  * applications: interactive and soft real-time. This feature enables
53  * BFQ to provide applications in these classes with a very low
54  * latency. Finally, BFQ also features additional heuristics for
55  * preserving both a low latency and a high throughput on NCQ-capable,
56  * rotational or flash-based devices, and to get the job done quickly
57  * for applications consisting in many I/O-bound processes.
58  *
59  * NOTE: if the main or only goal, with a given device, is to achieve
60  * the maximum-possible throughput at all times, then do switch off
61  * all low-latency heuristics for that device, by setting low_latency
62  * to 0.
63  *
64  * BFQ is described in [1], where also a reference to the initial, more
65  * theoretical paper on BFQ can be found. The interested reader can find
66  * in the latter paper full details on the main algorithm, as well as
67  * formulas of the guarantees and formal proofs of all the properties.
68  * With respect to the version of BFQ presented in these papers, this
69  * implementation adds a few more heuristics, such as the one that
70  * guarantees a low latency to soft real-time applications, and a
71  * hierarchical extension based on H-WF2Q+.
72  *
73  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
74  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
75  * with O(log N) complexity derives from the one introduced with EEVDF
76  * in [3].
77  *
78  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
79  *     Scheduler", Proceedings of the First Workshop on Mobile System
80  *     Technologies (MST-2015), May 2015.
81  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
82  *
83  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
84  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
85  *     Oct 1997.
86  *
87  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
88  *
89  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
90  *     First: A Flexible and Accurate Mechanism for Proportional Share
91  *     Resource Allocation", technical report.
92  *
93  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
94  */
95 #include <linux/module.h>
96 #include <linux/slab.h>
97 #include <linux/blkdev.h>
98 #include <linux/cgroup.h>
99 #include <linux/elevator.h>
100 #include <linux/ktime.h>
101 #include <linux/rbtree.h>
102 #include <linux/ioprio.h>
103 #include <linux/sbitmap.h>
104 #include <linux/delay.h>
105 
106 #include "blk.h"
107 #include "blk-mq.h"
108 #include "blk-mq-tag.h"
109 #include "blk-mq-sched.h"
110 #include "bfq-iosched.h"
111 #include "blk-wbt.h"
112 
113 #define BFQ_BFQQ_FNS(name)						\
114 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
115 {									\
116 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
117 }									\
118 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
119 {									\
120 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
121 }									\
122 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
123 {									\
124 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
125 }
126 
127 BFQ_BFQQ_FNS(just_created);
128 BFQ_BFQQ_FNS(busy);
129 BFQ_BFQQ_FNS(wait_request);
130 BFQ_BFQQ_FNS(non_blocking_wait_rq);
131 BFQ_BFQQ_FNS(fifo_expire);
132 BFQ_BFQQ_FNS(has_short_ttime);
133 BFQ_BFQQ_FNS(sync);
134 BFQ_BFQQ_FNS(IO_bound);
135 BFQ_BFQQ_FNS(in_large_burst);
136 BFQ_BFQQ_FNS(coop);
137 BFQ_BFQQ_FNS(split_coop);
138 BFQ_BFQQ_FNS(softrt_update);
139 #undef BFQ_BFQQ_FNS						\
140 
141 /* Expiration time of sync (0) and async (1) requests, in ns. */
142 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
143 
144 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
145 static const int bfq_back_max = 16 * 1024;
146 
147 /* Penalty of a backwards seek, in number of sectors. */
148 static const int bfq_back_penalty = 2;
149 
150 /* Idling period duration, in ns. */
151 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
152 
153 /* Minimum number of assigned budgets for which stats are safe to compute. */
154 static const int bfq_stats_min_budgets = 194;
155 
156 /* Default maximum budget values, in sectors and number of requests. */
157 static const int bfq_default_max_budget = 16 * 1024;
158 
159 /*
160  * Async to sync throughput distribution is controlled as follows:
161  * when an async request is served, the entity is charged the number
162  * of sectors of the request, multiplied by the factor below
163  */
164 static const int bfq_async_charge_factor = 10;
165 
166 /* Default timeout values, in jiffies, approximating CFQ defaults. */
167 const int bfq_timeout = HZ / 8;
168 
169 static struct kmem_cache *bfq_pool;
170 
171 /* Below this threshold (in ns), we consider thinktime immediate. */
172 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
173 
174 /* hw_tag detection: parallel requests threshold and min samples needed. */
175 #define BFQ_HW_QUEUE_THRESHOLD	4
176 #define BFQ_HW_QUEUE_SAMPLES	32
177 
178 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
179 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
180 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
181 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 32/8)
182 
183 /* Min number of samples required to perform peak-rate update */
184 #define BFQ_RATE_MIN_SAMPLES	32
185 /* Min observation time interval required to perform a peak-rate update (ns) */
186 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
187 /* Target observation time interval for a peak-rate update (ns) */
188 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
189 
190 /* Shift used for peak rate fixed precision calculations. */
191 #define BFQ_RATE_SHIFT		16
192 
193 /*
194  * By default, BFQ computes the duration of the weight raising for
195  * interactive applications automatically, using the following formula:
196  * duration = (R / r) * T, where r is the peak rate of the device, and
197  * R and T are two reference parameters.
198  * In particular, R is the peak rate of the reference device (see below),
199  * and T is a reference time: given the systems that are likely to be
200  * installed on the reference device according to its speed class, T is
201  * about the maximum time needed, under BFQ and while reading two files in
202  * parallel, to load typical large applications on these systems.
203  * In practice, the slower/faster the device at hand is, the more/less it
204  * takes to load applications with respect to the reference device.
205  * Accordingly, the longer/shorter BFQ grants weight raising to interactive
206  * applications.
207  *
208  * BFQ uses four different reference pairs (R, T), depending on:
209  * . whether the device is rotational or non-rotational;
210  * . whether the device is slow, such as old or portable HDDs, as well as
211  *   SD cards, or fast, such as newer HDDs and SSDs.
212  *
213  * The device's speed class is dynamically (re)detected in
214  * bfq_update_peak_rate() every time the estimated peak rate is updated.
215  *
216  * In the following definitions, R_slow[0]/R_fast[0] and
217  * T_slow[0]/T_fast[0] are the reference values for a slow/fast
218  * rotational device, whereas R_slow[1]/R_fast[1] and
219  * T_slow[1]/T_fast[1] are the reference values for a slow/fast
220  * non-rotational device. Finally, device_speed_thresh are the
221  * thresholds used to switch between speed classes. The reference
222  * rates are not the actual peak rates of the devices used as a
223  * reference, but slightly lower values. The reason for using these
224  * slightly lower values is that the peak-rate estimator tends to
225  * yield slightly lower values than the actual peak rate (it can yield
226  * the actual peak rate only if there is only one process doing I/O,
227  * and the process does sequential I/O).
228  *
229  * Both the reference peak rates and the thresholds are measured in
230  * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
231  */
232 static int R_slow[2] = {1000, 10700};
233 static int R_fast[2] = {14000, 33000};
234 /*
235  * To improve readability, a conversion function is used to initialize the
236  * following arrays, which entails that they can be initialized only in a
237  * function.
238  */
239 static int T_slow[2];
240 static int T_fast[2];
241 static int device_speed_thresh[2];
242 
243 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
244 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
245 
bic_to_bfqq(struct bfq_io_cq * bic,bool is_sync)246 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
247 {
248 	return bic->bfqq[is_sync];
249 }
250 
bic_set_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq,bool is_sync)251 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
252 {
253 	bic->bfqq[is_sync] = bfqq;
254 }
255 
bic_to_bfqd(struct bfq_io_cq * bic)256 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
257 {
258 	return bic->icq.q->elevator->elevator_data;
259 }
260 
261 /**
262  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
263  * @icq: the iocontext queue.
264  */
icq_to_bic(struct io_cq * icq)265 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
266 {
267 	/* bic->icq is the first member, %NULL will convert to %NULL */
268 	return container_of(icq, struct bfq_io_cq, icq);
269 }
270 
271 /**
272  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
273  * @bfqd: the lookup key.
274  * @ioc: the io_context of the process doing I/O.
275  * @q: the request queue.
276  */
bfq_bic_lookup(struct bfq_data * bfqd,struct io_context * ioc,struct request_queue * q)277 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
278 					struct io_context *ioc,
279 					struct request_queue *q)
280 {
281 	if (ioc) {
282 		unsigned long flags;
283 		struct bfq_io_cq *icq;
284 
285 		spin_lock_irqsave(q->queue_lock, flags);
286 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
287 		spin_unlock_irqrestore(q->queue_lock, flags);
288 
289 		return icq;
290 	}
291 
292 	return NULL;
293 }
294 
295 /*
296  * Scheduler run of queue, if there are requests pending and no one in the
297  * driver that will restart queueing.
298  */
bfq_schedule_dispatch(struct bfq_data * bfqd)299 void bfq_schedule_dispatch(struct bfq_data *bfqd)
300 {
301 	if (bfqd->queued != 0) {
302 		bfq_log(bfqd, "schedule dispatch");
303 		blk_mq_run_hw_queues(bfqd->queue, true);
304 	}
305 }
306 
307 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
308 #define bfq_class_rt(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
309 
310 #define bfq_sample_valid(samples)	((samples) > 80)
311 
312 /*
313  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
314  * We choose the request that is closesr to the head right now.  Distance
315  * behind the head is penalized and only allowed to a certain extent.
316  */
bfq_choose_req(struct bfq_data * bfqd,struct request * rq1,struct request * rq2,sector_t last)317 static struct request *bfq_choose_req(struct bfq_data *bfqd,
318 				      struct request *rq1,
319 				      struct request *rq2,
320 				      sector_t last)
321 {
322 	sector_t s1, s2, d1 = 0, d2 = 0;
323 	unsigned long back_max;
324 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
325 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
326 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
327 
328 	if (!rq1 || rq1 == rq2)
329 		return rq2;
330 	if (!rq2)
331 		return rq1;
332 
333 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
334 		return rq1;
335 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
336 		return rq2;
337 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
338 		return rq1;
339 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
340 		return rq2;
341 
342 	s1 = blk_rq_pos(rq1);
343 	s2 = blk_rq_pos(rq2);
344 
345 	/*
346 	 * By definition, 1KiB is 2 sectors.
347 	 */
348 	back_max = bfqd->bfq_back_max * 2;
349 
350 	/*
351 	 * Strict one way elevator _except_ in the case where we allow
352 	 * short backward seeks which are biased as twice the cost of a
353 	 * similar forward seek.
354 	 */
355 	if (s1 >= last)
356 		d1 = s1 - last;
357 	else if (s1 + back_max >= last)
358 		d1 = (last - s1) * bfqd->bfq_back_penalty;
359 	else
360 		wrap |= BFQ_RQ1_WRAP;
361 
362 	if (s2 >= last)
363 		d2 = s2 - last;
364 	else if (s2 + back_max >= last)
365 		d2 = (last - s2) * bfqd->bfq_back_penalty;
366 	else
367 		wrap |= BFQ_RQ2_WRAP;
368 
369 	/* Found required data */
370 
371 	/*
372 	 * By doing switch() on the bit mask "wrap" we avoid having to
373 	 * check two variables for all permutations: --> faster!
374 	 */
375 	switch (wrap) {
376 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
377 		if (d1 < d2)
378 			return rq1;
379 		else if (d2 < d1)
380 			return rq2;
381 
382 		if (s1 >= s2)
383 			return rq1;
384 		else
385 			return rq2;
386 
387 	case BFQ_RQ2_WRAP:
388 		return rq1;
389 	case BFQ_RQ1_WRAP:
390 		return rq2;
391 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
392 	default:
393 		/*
394 		 * Since both rqs are wrapped,
395 		 * start with the one that's further behind head
396 		 * (--> only *one* back seek required),
397 		 * since back seek takes more time than forward.
398 		 */
399 		if (s1 <= s2)
400 			return rq1;
401 		else
402 			return rq2;
403 	}
404 }
405 
406 static struct bfq_queue *
bfq_rq_pos_tree_lookup(struct bfq_data * bfqd,struct rb_root * root,sector_t sector,struct rb_node ** ret_parent,struct rb_node *** rb_link)407 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
408 		     sector_t sector, struct rb_node **ret_parent,
409 		     struct rb_node ***rb_link)
410 {
411 	struct rb_node **p, *parent;
412 	struct bfq_queue *bfqq = NULL;
413 
414 	parent = NULL;
415 	p = &root->rb_node;
416 	while (*p) {
417 		struct rb_node **n;
418 
419 		parent = *p;
420 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
421 
422 		/*
423 		 * Sort strictly based on sector. Smallest to the left,
424 		 * largest to the right.
425 		 */
426 		if (sector > blk_rq_pos(bfqq->next_rq))
427 			n = &(*p)->rb_right;
428 		else if (sector < blk_rq_pos(bfqq->next_rq))
429 			n = &(*p)->rb_left;
430 		else
431 			break;
432 		p = n;
433 		bfqq = NULL;
434 	}
435 
436 	*ret_parent = parent;
437 	if (rb_link)
438 		*rb_link = p;
439 
440 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
441 		(unsigned long long)sector,
442 		bfqq ? bfqq->pid : 0);
443 
444 	return bfqq;
445 }
446 
bfq_pos_tree_add_move(struct bfq_data * bfqd,struct bfq_queue * bfqq)447 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
448 {
449 	struct rb_node **p, *parent;
450 	struct bfq_queue *__bfqq;
451 
452 	if (bfqq->pos_root) {
453 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
454 		bfqq->pos_root = NULL;
455 	}
456 
457 	if (bfq_class_idle(bfqq))
458 		return;
459 	if (!bfqq->next_rq)
460 		return;
461 
462 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
463 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
464 			blk_rq_pos(bfqq->next_rq), &parent, &p);
465 	if (!__bfqq) {
466 		rb_link_node(&bfqq->pos_node, parent, p);
467 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
468 	} else
469 		bfqq->pos_root = NULL;
470 }
471 
472 /*
473  * Tell whether there are active queues or groups with differentiated weights.
474  */
bfq_differentiated_weights(struct bfq_data * bfqd)475 static bool bfq_differentiated_weights(struct bfq_data *bfqd)
476 {
477 	/*
478 	 * For weights to differ, at least one of the trees must contain
479 	 * at least two nodes.
480 	 */
481 	return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
482 		(bfqd->queue_weights_tree.rb_node->rb_left ||
483 		 bfqd->queue_weights_tree.rb_node->rb_right)
484 #ifdef CONFIG_BFQ_GROUP_IOSCHED
485 	       ) ||
486 	       (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
487 		(bfqd->group_weights_tree.rb_node->rb_left ||
488 		 bfqd->group_weights_tree.rb_node->rb_right)
489 #endif
490 	       );
491 }
492 
493 /*
494  * The following function returns true if every queue must receive the
495  * same share of the throughput (this condition is used when deciding
496  * whether idling may be disabled, see the comments in the function
497  * bfq_bfqq_may_idle()).
498  *
499  * Such a scenario occurs when:
500  * 1) all active queues have the same weight,
501  * 2) all active groups at the same level in the groups tree have the same
502  *    weight,
503  * 3) all active groups at the same level in the groups tree have the same
504  *    number of children.
505  *
506  * Unfortunately, keeping the necessary state for evaluating exactly the
507  * above symmetry conditions would be quite complex and time-consuming.
508  * Therefore this function evaluates, instead, the following stronger
509  * sub-conditions, for which it is much easier to maintain the needed
510  * state:
511  * 1) all active queues have the same weight,
512  * 2) all active groups have the same weight,
513  * 3) all active groups have at most one active child each.
514  * In particular, the last two conditions are always true if hierarchical
515  * support and the cgroups interface are not enabled, thus no state needs
516  * to be maintained in this case.
517  */
bfq_symmetric_scenario(struct bfq_data * bfqd)518 static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
519 {
520 	return !bfq_differentiated_weights(bfqd);
521 }
522 
523 /*
524  * If the weight-counter tree passed as input contains no counter for
525  * the weight of the input entity, then add that counter; otherwise just
526  * increment the existing counter.
527  *
528  * Note that weight-counter trees contain few nodes in mostly symmetric
529  * scenarios. For example, if all queues have the same weight, then the
530  * weight-counter tree for the queues may contain at most one node.
531  * This holds even if low_latency is on, because weight-raised queues
532  * are not inserted in the tree.
533  * In most scenarios, the rate at which nodes are created/destroyed
534  * should be low too.
535  */
bfq_weights_tree_add(struct bfq_data * bfqd,struct bfq_entity * entity,struct rb_root * root)536 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
537 			  struct rb_root *root)
538 {
539 	struct rb_node **new = &(root->rb_node), *parent = NULL;
540 
541 	/*
542 	 * Do not insert if the entity is already associated with a
543 	 * counter, which happens if:
544 	 *   1) the entity is associated with a queue,
545 	 *   2) a request arrival has caused the queue to become both
546 	 *      non-weight-raised, and hence change its weight, and
547 	 *      backlogged; in this respect, each of the two events
548 	 *      causes an invocation of this function,
549 	 *   3) this is the invocation of this function caused by the
550 	 *      second event. This second invocation is actually useless,
551 	 *      and we handle this fact by exiting immediately. More
552 	 *      efficient or clearer solutions might possibly be adopted.
553 	 */
554 	if (entity->weight_counter)
555 		return;
556 
557 	while (*new) {
558 		struct bfq_weight_counter *__counter = container_of(*new,
559 						struct bfq_weight_counter,
560 						weights_node);
561 		parent = *new;
562 
563 		if (entity->weight == __counter->weight) {
564 			entity->weight_counter = __counter;
565 			goto inc_counter;
566 		}
567 		if (entity->weight < __counter->weight)
568 			new = &((*new)->rb_left);
569 		else
570 			new = &((*new)->rb_right);
571 	}
572 
573 	entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
574 					 GFP_ATOMIC);
575 
576 	/*
577 	 * In the unlucky event of an allocation failure, we just
578 	 * exit. This will cause the weight of entity to not be
579 	 * considered in bfq_differentiated_weights, which, in its
580 	 * turn, causes the scenario to be deemed wrongly symmetric in
581 	 * case entity's weight would have been the only weight making
582 	 * the scenario asymmetric. On the bright side, no unbalance
583 	 * will however occur when entity becomes inactive again (the
584 	 * invocation of this function is triggered by an activation
585 	 * of entity). In fact, bfq_weights_tree_remove does nothing
586 	 * if !entity->weight_counter.
587 	 */
588 	if (unlikely(!entity->weight_counter))
589 		return;
590 
591 	entity->weight_counter->weight = entity->weight;
592 	rb_link_node(&entity->weight_counter->weights_node, parent, new);
593 	rb_insert_color(&entity->weight_counter->weights_node, root);
594 
595 inc_counter:
596 	entity->weight_counter->num_active++;
597 }
598 
599 /*
600  * Decrement the weight counter associated with the entity, and, if the
601  * counter reaches 0, remove the counter from the tree.
602  * See the comments to the function bfq_weights_tree_add() for considerations
603  * about overhead.
604  */
bfq_weights_tree_remove(struct bfq_data * bfqd,struct bfq_entity * entity,struct rb_root * root)605 void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
606 			     struct rb_root *root)
607 {
608 	if (!entity->weight_counter)
609 		return;
610 
611 	entity->weight_counter->num_active--;
612 	if (entity->weight_counter->num_active > 0)
613 		goto reset_entity_pointer;
614 
615 	rb_erase(&entity->weight_counter->weights_node, root);
616 	kfree(entity->weight_counter);
617 
618 reset_entity_pointer:
619 	entity->weight_counter = NULL;
620 }
621 
622 /*
623  * Return expired entry, or NULL to just start from scratch in rbtree.
624  */
bfq_check_fifo(struct bfq_queue * bfqq,struct request * last)625 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
626 				      struct request *last)
627 {
628 	struct request *rq;
629 
630 	if (bfq_bfqq_fifo_expire(bfqq))
631 		return NULL;
632 
633 	bfq_mark_bfqq_fifo_expire(bfqq);
634 
635 	rq = rq_entry_fifo(bfqq->fifo.next);
636 
637 	if (rq == last || ktime_get_ns() < rq->fifo_time)
638 		return NULL;
639 
640 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
641 	return rq;
642 }
643 
bfq_find_next_rq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * last)644 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
645 					struct bfq_queue *bfqq,
646 					struct request *last)
647 {
648 	struct rb_node *rbnext = rb_next(&last->rb_node);
649 	struct rb_node *rbprev = rb_prev(&last->rb_node);
650 	struct request *next, *prev = NULL;
651 
652 	/* Follow expired path, else get first next available. */
653 	next = bfq_check_fifo(bfqq, last);
654 	if (next)
655 		return next;
656 
657 	if (rbprev)
658 		prev = rb_entry_rq(rbprev);
659 
660 	if (rbnext)
661 		next = rb_entry_rq(rbnext);
662 	else {
663 		rbnext = rb_first(&bfqq->sort_list);
664 		if (rbnext && rbnext != &last->rb_node)
665 			next = rb_entry_rq(rbnext);
666 	}
667 
668 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
669 }
670 
671 /* see the definition of bfq_async_charge_factor for details */
bfq_serv_to_charge(struct request * rq,struct bfq_queue * bfqq)672 static unsigned long bfq_serv_to_charge(struct request *rq,
673 					struct bfq_queue *bfqq)
674 {
675 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
676 		return blk_rq_sectors(rq);
677 
678 	/*
679 	 * If there are no weight-raised queues, then amplify service
680 	 * by just the async charge factor; otherwise amplify service
681 	 * by twice the async charge factor, to further reduce latency
682 	 * for weight-raised queues.
683 	 */
684 	if (bfqq->bfqd->wr_busy_queues == 0)
685 		return blk_rq_sectors(rq) * bfq_async_charge_factor;
686 
687 	return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
688 }
689 
690 /**
691  * bfq_updated_next_req - update the queue after a new next_rq selection.
692  * @bfqd: the device data the queue belongs to.
693  * @bfqq: the queue to update.
694  *
695  * If the first request of a queue changes we make sure that the queue
696  * has enough budget to serve at least its first request (if the
697  * request has grown).  We do this because if the queue has not enough
698  * budget for its first request, it has to go through two dispatch
699  * rounds to actually get it dispatched.
700  */
bfq_updated_next_req(struct bfq_data * bfqd,struct bfq_queue * bfqq)701 static void bfq_updated_next_req(struct bfq_data *bfqd,
702 				 struct bfq_queue *bfqq)
703 {
704 	struct bfq_entity *entity = &bfqq->entity;
705 	struct request *next_rq = bfqq->next_rq;
706 	unsigned long new_budget;
707 
708 	if (!next_rq)
709 		return;
710 
711 	if (bfqq == bfqd->in_service_queue)
712 		/*
713 		 * In order not to break guarantees, budgets cannot be
714 		 * changed after an entity has been selected.
715 		 */
716 		return;
717 
718 	new_budget = max_t(unsigned long, bfqq->max_budget,
719 			   bfq_serv_to_charge(next_rq, bfqq));
720 	if (entity->budget != new_budget) {
721 		entity->budget = new_budget;
722 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
723 					 new_budget);
724 		bfq_requeue_bfqq(bfqd, bfqq, false);
725 	}
726 }
727 
728 static void
bfq_bfqq_resume_state(struct bfq_queue * bfqq,struct bfq_data * bfqd,struct bfq_io_cq * bic,bool bfq_already_existing)729 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
730 		      struct bfq_io_cq *bic, bool bfq_already_existing)
731 {
732 	unsigned int old_wr_coeff = bfqq->wr_coeff;
733 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
734 
735 	if (bic->saved_has_short_ttime)
736 		bfq_mark_bfqq_has_short_ttime(bfqq);
737 	else
738 		bfq_clear_bfqq_has_short_ttime(bfqq);
739 
740 	if (bic->saved_IO_bound)
741 		bfq_mark_bfqq_IO_bound(bfqq);
742 	else
743 		bfq_clear_bfqq_IO_bound(bfqq);
744 
745 	bfqq->ttime = bic->saved_ttime;
746 	bfqq->wr_coeff = bic->saved_wr_coeff;
747 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
748 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
749 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
750 
751 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
752 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
753 				   bfqq->wr_cur_max_time))) {
754 		bfq_log_bfqq(bfqq->bfqd, bfqq,
755 		    "resume state: switching off wr");
756 
757 		bfqq->wr_coeff = 1;
758 	}
759 
760 	/* make sure weight will be updated, however we got here */
761 	bfqq->entity.prio_changed = 1;
762 
763 	if (likely(!busy))
764 		return;
765 
766 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
767 		bfqd->wr_busy_queues++;
768 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
769 		bfqd->wr_busy_queues--;
770 }
771 
bfqq_process_refs(struct bfq_queue * bfqq)772 static int bfqq_process_refs(struct bfq_queue *bfqq)
773 {
774 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
775 }
776 
777 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
bfq_reset_burst_list(struct bfq_data * bfqd,struct bfq_queue * bfqq)778 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
779 {
780 	struct bfq_queue *item;
781 	struct hlist_node *n;
782 
783 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
784 		hlist_del_init(&item->burst_list_node);
785 	hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
786 	bfqd->burst_size = 1;
787 	bfqd->burst_parent_entity = bfqq->entity.parent;
788 }
789 
790 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
bfq_add_to_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)791 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
792 {
793 	/* Increment burst size to take into account also bfqq */
794 	bfqd->burst_size++;
795 
796 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
797 		struct bfq_queue *pos, *bfqq_item;
798 		struct hlist_node *n;
799 
800 		/*
801 		 * Enough queues have been activated shortly after each
802 		 * other to consider this burst as large.
803 		 */
804 		bfqd->large_burst = true;
805 
806 		/*
807 		 * We can now mark all queues in the burst list as
808 		 * belonging to a large burst.
809 		 */
810 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
811 				     burst_list_node)
812 			bfq_mark_bfqq_in_large_burst(bfqq_item);
813 		bfq_mark_bfqq_in_large_burst(bfqq);
814 
815 		/*
816 		 * From now on, and until the current burst finishes, any
817 		 * new queue being activated shortly after the last queue
818 		 * was inserted in the burst can be immediately marked as
819 		 * belonging to a large burst. So the burst list is not
820 		 * needed any more. Remove it.
821 		 */
822 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
823 					  burst_list_node)
824 			hlist_del_init(&pos->burst_list_node);
825 	} else /*
826 		* Burst not yet large: add bfqq to the burst list. Do
827 		* not increment the ref counter for bfqq, because bfqq
828 		* is removed from the burst list before freeing bfqq
829 		* in put_queue.
830 		*/
831 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
832 }
833 
834 /*
835  * If many queues belonging to the same group happen to be created
836  * shortly after each other, then the processes associated with these
837  * queues have typically a common goal. In particular, bursts of queue
838  * creations are usually caused by services or applications that spawn
839  * many parallel threads/processes. Examples are systemd during boot,
840  * or git grep. To help these processes get their job done as soon as
841  * possible, it is usually better to not grant either weight-raising
842  * or device idling to their queues.
843  *
844  * In this comment we describe, firstly, the reasons why this fact
845  * holds, and, secondly, the next function, which implements the main
846  * steps needed to properly mark these queues so that they can then be
847  * treated in a different way.
848  *
849  * The above services or applications benefit mostly from a high
850  * throughput: the quicker the requests of the activated queues are
851  * cumulatively served, the sooner the target job of these queues gets
852  * completed. As a consequence, weight-raising any of these queues,
853  * which also implies idling the device for it, is almost always
854  * counterproductive. In most cases it just lowers throughput.
855  *
856  * On the other hand, a burst of queue creations may be caused also by
857  * the start of an application that does not consist of a lot of
858  * parallel I/O-bound threads. In fact, with a complex application,
859  * several short processes may need to be executed to start-up the
860  * application. In this respect, to start an application as quickly as
861  * possible, the best thing to do is in any case to privilege the I/O
862  * related to the application with respect to all other
863  * I/O. Therefore, the best strategy to start as quickly as possible
864  * an application that causes a burst of queue creations is to
865  * weight-raise all the queues created during the burst. This is the
866  * exact opposite of the best strategy for the other type of bursts.
867  *
868  * In the end, to take the best action for each of the two cases, the
869  * two types of bursts need to be distinguished. Fortunately, this
870  * seems relatively easy, by looking at the sizes of the bursts. In
871  * particular, we found a threshold such that only bursts with a
872  * larger size than that threshold are apparently caused by
873  * services or commands such as systemd or git grep. For brevity,
874  * hereafter we call just 'large' these bursts. BFQ *does not*
875  * weight-raise queues whose creation occurs in a large burst. In
876  * addition, for each of these queues BFQ performs or does not perform
877  * idling depending on which choice boosts the throughput more. The
878  * exact choice depends on the device and request pattern at
879  * hand.
880  *
881  * Unfortunately, false positives may occur while an interactive task
882  * is starting (e.g., an application is being started). The
883  * consequence is that the queues associated with the task do not
884  * enjoy weight raising as expected. Fortunately these false positives
885  * are very rare. They typically occur if some service happens to
886  * start doing I/O exactly when the interactive task starts.
887  *
888  * Turning back to the next function, it implements all the steps
889  * needed to detect the occurrence of a large burst and to properly
890  * mark all the queues belonging to it (so that they can then be
891  * treated in a different way). This goal is achieved by maintaining a
892  * "burst list" that holds, temporarily, the queues that belong to the
893  * burst in progress. The list is then used to mark these queues as
894  * belonging to a large burst if the burst does become large. The main
895  * steps are the following.
896  *
897  * . when the very first queue is created, the queue is inserted into the
898  *   list (as it could be the first queue in a possible burst)
899  *
900  * . if the current burst has not yet become large, and a queue Q that does
901  *   not yet belong to the burst is activated shortly after the last time
902  *   at which a new queue entered the burst list, then the function appends
903  *   Q to the burst list
904  *
905  * . if, as a consequence of the previous step, the burst size reaches
906  *   the large-burst threshold, then
907  *
908  *     . all the queues in the burst list are marked as belonging to a
909  *       large burst
910  *
911  *     . the burst list is deleted; in fact, the burst list already served
912  *       its purpose (keeping temporarily track of the queues in a burst,
913  *       so as to be able to mark them as belonging to a large burst in the
914  *       previous sub-step), and now is not needed any more
915  *
916  *     . the device enters a large-burst mode
917  *
918  * . if a queue Q that does not belong to the burst is created while
919  *   the device is in large-burst mode and shortly after the last time
920  *   at which a queue either entered the burst list or was marked as
921  *   belonging to the current large burst, then Q is immediately marked
922  *   as belonging to a large burst.
923  *
924  * . if a queue Q that does not belong to the burst is created a while
925  *   later, i.e., not shortly after, than the last time at which a queue
926  *   either entered the burst list or was marked as belonging to the
927  *   current large burst, then the current burst is deemed as finished and:
928  *
929  *        . the large-burst mode is reset if set
930  *
931  *        . the burst list is emptied
932  *
933  *        . Q is inserted in the burst list, as Q may be the first queue
934  *          in a possible new burst (then the burst list contains just Q
935  *          after this step).
936  */
bfq_handle_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)937 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
938 {
939 	/*
940 	 * If bfqq is already in the burst list or is part of a large
941 	 * burst, or finally has just been split, then there is
942 	 * nothing else to do.
943 	 */
944 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
945 	    bfq_bfqq_in_large_burst(bfqq) ||
946 	    time_is_after_eq_jiffies(bfqq->split_time +
947 				     msecs_to_jiffies(10)))
948 		return;
949 
950 	/*
951 	 * If bfqq's creation happens late enough, or bfqq belongs to
952 	 * a different group than the burst group, then the current
953 	 * burst is finished, and related data structures must be
954 	 * reset.
955 	 *
956 	 * In this respect, consider the special case where bfqq is
957 	 * the very first queue created after BFQ is selected for this
958 	 * device. In this case, last_ins_in_burst and
959 	 * burst_parent_entity are not yet significant when we get
960 	 * here. But it is easy to verify that, whether or not the
961 	 * following condition is true, bfqq will end up being
962 	 * inserted into the burst list. In particular the list will
963 	 * happen to contain only bfqq. And this is exactly what has
964 	 * to happen, as bfqq may be the first queue of the first
965 	 * burst.
966 	 */
967 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
968 	    bfqd->bfq_burst_interval) ||
969 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
970 		bfqd->large_burst = false;
971 		bfq_reset_burst_list(bfqd, bfqq);
972 		goto end;
973 	}
974 
975 	/*
976 	 * If we get here, then bfqq is being activated shortly after the
977 	 * last queue. So, if the current burst is also large, we can mark
978 	 * bfqq as belonging to this large burst immediately.
979 	 */
980 	if (bfqd->large_burst) {
981 		bfq_mark_bfqq_in_large_burst(bfqq);
982 		goto end;
983 	}
984 
985 	/*
986 	 * If we get here, then a large-burst state has not yet been
987 	 * reached, but bfqq is being activated shortly after the last
988 	 * queue. Then we add bfqq to the burst.
989 	 */
990 	bfq_add_to_burst(bfqd, bfqq);
991 end:
992 	/*
993 	 * At this point, bfqq either has been added to the current
994 	 * burst or has caused the current burst to terminate and a
995 	 * possible new burst to start. In particular, in the second
996 	 * case, bfqq has become the first queue in the possible new
997 	 * burst.  In both cases last_ins_in_burst needs to be moved
998 	 * forward.
999 	 */
1000 	bfqd->last_ins_in_burst = jiffies;
1001 }
1002 
bfq_bfqq_budget_left(struct bfq_queue * bfqq)1003 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1004 {
1005 	struct bfq_entity *entity = &bfqq->entity;
1006 
1007 	return entity->budget - entity->service;
1008 }
1009 
1010 /*
1011  * If enough samples have been computed, return the current max budget
1012  * stored in bfqd, which is dynamically updated according to the
1013  * estimated disk peak rate; otherwise return the default max budget
1014  */
bfq_max_budget(struct bfq_data * bfqd)1015 static int bfq_max_budget(struct bfq_data *bfqd)
1016 {
1017 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1018 		return bfq_default_max_budget;
1019 	else
1020 		return bfqd->bfq_max_budget;
1021 }
1022 
1023 /*
1024  * Return min budget, which is a fraction of the current or default
1025  * max budget (trying with 1/32)
1026  */
bfq_min_budget(struct bfq_data * bfqd)1027 static int bfq_min_budget(struct bfq_data *bfqd)
1028 {
1029 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1030 		return bfq_default_max_budget / 32;
1031 	else
1032 		return bfqd->bfq_max_budget / 32;
1033 }
1034 
1035 /*
1036  * The next function, invoked after the input queue bfqq switches from
1037  * idle to busy, updates the budget of bfqq. The function also tells
1038  * whether the in-service queue should be expired, by returning
1039  * true. The purpose of expiring the in-service queue is to give bfqq
1040  * the chance to possibly preempt the in-service queue, and the reason
1041  * for preempting the in-service queue is to achieve one of the two
1042  * goals below.
1043  *
1044  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1045  * expired because it has remained idle. In particular, bfqq may have
1046  * expired for one of the following two reasons:
1047  *
1048  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1049  *   and did not make it to issue a new request before its last
1050  *   request was served;
1051  *
1052  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1053  *   a new request before the expiration of the idling-time.
1054  *
1055  * Even if bfqq has expired for one of the above reasons, the process
1056  * associated with the queue may be however issuing requests greedily,
1057  * and thus be sensitive to the bandwidth it receives (bfqq may have
1058  * remained idle for other reasons: CPU high load, bfqq not enjoying
1059  * idling, I/O throttling somewhere in the path from the process to
1060  * the I/O scheduler, ...). But if, after every expiration for one of
1061  * the above two reasons, bfqq has to wait for the service of at least
1062  * one full budget of another queue before being served again, then
1063  * bfqq is likely to get a much lower bandwidth or resource time than
1064  * its reserved ones. To address this issue, two countermeasures need
1065  * to be taken.
1066  *
1067  * First, the budget and the timestamps of bfqq need to be updated in
1068  * a special way on bfqq reactivation: they need to be updated as if
1069  * bfqq did not remain idle and did not expire. In fact, if they are
1070  * computed as if bfqq expired and remained idle until reactivation,
1071  * then the process associated with bfqq is treated as if, instead of
1072  * being greedy, it stopped issuing requests when bfqq remained idle,
1073  * and restarts issuing requests only on this reactivation. In other
1074  * words, the scheduler does not help the process recover the "service
1075  * hole" between bfqq expiration and reactivation. As a consequence,
1076  * the process receives a lower bandwidth than its reserved one. In
1077  * contrast, to recover this hole, the budget must be updated as if
1078  * bfqq was not expired at all before this reactivation, i.e., it must
1079  * be set to the value of the remaining budget when bfqq was
1080  * expired. Along the same line, timestamps need to be assigned the
1081  * value they had the last time bfqq was selected for service, i.e.,
1082  * before last expiration. Thus timestamps need to be back-shifted
1083  * with respect to their normal computation (see [1] for more details
1084  * on this tricky aspect).
1085  *
1086  * Secondly, to allow the process to recover the hole, the in-service
1087  * queue must be expired too, to give bfqq the chance to preempt it
1088  * immediately. In fact, if bfqq has to wait for a full budget of the
1089  * in-service queue to be completed, then it may become impossible to
1090  * let the process recover the hole, even if the back-shifted
1091  * timestamps of bfqq are lower than those of the in-service queue. If
1092  * this happens for most or all of the holes, then the process may not
1093  * receive its reserved bandwidth. In this respect, it is worth noting
1094  * that, being the service of outstanding requests unpreemptible, a
1095  * little fraction of the holes may however be unrecoverable, thereby
1096  * causing a little loss of bandwidth.
1097  *
1098  * The last important point is detecting whether bfqq does need this
1099  * bandwidth recovery. In this respect, the next function deems the
1100  * process associated with bfqq greedy, and thus allows it to recover
1101  * the hole, if: 1) the process is waiting for the arrival of a new
1102  * request (which implies that bfqq expired for one of the above two
1103  * reasons), and 2) such a request has arrived soon. The first
1104  * condition is controlled through the flag non_blocking_wait_rq,
1105  * while the second through the flag arrived_in_time. If both
1106  * conditions hold, then the function computes the budget in the
1107  * above-described special way, and signals that the in-service queue
1108  * should be expired. Timestamp back-shifting is done later in
1109  * __bfq_activate_entity.
1110  *
1111  * 2. Reduce latency. Even if timestamps are not backshifted to let
1112  * the process associated with bfqq recover a service hole, bfqq may
1113  * however happen to have, after being (re)activated, a lower finish
1114  * timestamp than the in-service queue.	 That is, the next budget of
1115  * bfqq may have to be completed before the one of the in-service
1116  * queue. If this is the case, then preempting the in-service queue
1117  * allows this goal to be achieved, apart from the unpreemptible,
1118  * outstanding requests mentioned above.
1119  *
1120  * Unfortunately, regardless of which of the above two goals one wants
1121  * to achieve, service trees need first to be updated to know whether
1122  * the in-service queue must be preempted. To have service trees
1123  * correctly updated, the in-service queue must be expired and
1124  * rescheduled, and bfqq must be scheduled too. This is one of the
1125  * most costly operations (in future versions, the scheduling
1126  * mechanism may be re-designed in such a way to make it possible to
1127  * know whether preemption is needed without needing to update service
1128  * trees). In addition, queue preemptions almost always cause random
1129  * I/O, and thus loss of throughput. Because of these facts, the next
1130  * function adopts the following simple scheme to avoid both costly
1131  * operations and too frequent preemptions: it requests the expiration
1132  * of the in-service queue (unconditionally) only for queues that need
1133  * to recover a hole, or that either are weight-raised or deserve to
1134  * be weight-raised.
1135  */
bfq_bfqq_update_budg_for_activation(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool arrived_in_time,bool wr_or_deserves_wr)1136 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1137 						struct bfq_queue *bfqq,
1138 						bool arrived_in_time,
1139 						bool wr_or_deserves_wr)
1140 {
1141 	struct bfq_entity *entity = &bfqq->entity;
1142 
1143 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1144 		/*
1145 		 * We do not clear the flag non_blocking_wait_rq here, as
1146 		 * the latter is used in bfq_activate_bfqq to signal
1147 		 * that timestamps need to be back-shifted (and is
1148 		 * cleared right after).
1149 		 */
1150 
1151 		/*
1152 		 * In next assignment we rely on that either
1153 		 * entity->service or entity->budget are not updated
1154 		 * on expiration if bfqq is empty (see
1155 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1156 		 * remain unchanged after such an expiration, and the
1157 		 * following statement therefore assigns to
1158 		 * entity->budget the remaining budget on such an
1159 		 * expiration. For clarity, entity->service is not
1160 		 * updated on expiration in any case, and, in normal
1161 		 * operation, is reset only when bfqq is selected for
1162 		 * service (see bfq_get_next_queue).
1163 		 */
1164 		entity->budget = min_t(unsigned long,
1165 				       bfq_bfqq_budget_left(bfqq),
1166 				       bfqq->max_budget);
1167 
1168 		return true;
1169 	}
1170 
1171 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1172 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1173 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1174 	return wr_or_deserves_wr;
1175 }
1176 
bfq_wr_duration(struct bfq_data * bfqd)1177 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1178 {
1179 	u64 dur;
1180 
1181 	if (bfqd->bfq_wr_max_time > 0)
1182 		return bfqd->bfq_wr_max_time;
1183 
1184 	dur = bfqd->RT_prod;
1185 	do_div(dur, bfqd->peak_rate);
1186 
1187 	/*
1188 	 * Limit duration between 3 and 13 seconds. Tests show that
1189 	 * higher values than 13 seconds often yield the opposite of
1190 	 * the desired result, i.e., worsen responsiveness by letting
1191 	 * non-interactive and non-soft-real-time applications
1192 	 * preserve weight raising for a too long time interval.
1193 	 *
1194 	 * On the other end, lower values than 3 seconds make it
1195 	 * difficult for most interactive tasks to complete their jobs
1196 	 * before weight-raising finishes.
1197 	 */
1198 	if (dur > msecs_to_jiffies(13000))
1199 		dur = msecs_to_jiffies(13000);
1200 	else if (dur < msecs_to_jiffies(3000))
1201 		dur = msecs_to_jiffies(3000);
1202 
1203 	return dur;
1204 }
1205 
1206 /*
1207  * Return the farthest future time instant according to jiffies
1208  * macros.
1209  */
bfq_greatest_from_now(void)1210 static unsigned long bfq_greatest_from_now(void)
1211 {
1212 	return jiffies + MAX_JIFFY_OFFSET;
1213 }
1214 
1215 /*
1216  * Return the farthest past time instant according to jiffies
1217  * macros.
1218  */
bfq_smallest_from_now(void)1219 static unsigned long bfq_smallest_from_now(void)
1220 {
1221 	return jiffies - MAX_JIFFY_OFFSET;
1222 }
1223 
bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data * bfqd,struct bfq_queue * bfqq,unsigned int old_wr_coeff,bool wr_or_deserves_wr,bool interactive,bool in_burst,bool soft_rt)1224 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1225 					     struct bfq_queue *bfqq,
1226 					     unsigned int old_wr_coeff,
1227 					     bool wr_or_deserves_wr,
1228 					     bool interactive,
1229 					     bool in_burst,
1230 					     bool soft_rt)
1231 {
1232 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1233 		/* start a weight-raising period */
1234 		if (interactive) {
1235 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1236 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1237 		} else {
1238 			/*
1239 			 * No interactive weight raising in progress
1240 			 * here: assign minus infinity to
1241 			 * wr_start_at_switch_to_srt, to make sure
1242 			 * that, at the end of the soft-real-time
1243 			 * weight raising periods that is starting
1244 			 * now, no interactive weight-raising period
1245 			 * may be wrongly considered as still in
1246 			 * progress (and thus actually started by
1247 			 * mistake).
1248 			 */
1249 			bfqq->wr_start_at_switch_to_srt =
1250 				bfq_smallest_from_now();
1251 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1252 				BFQ_SOFTRT_WEIGHT_FACTOR;
1253 			bfqq->wr_cur_max_time =
1254 				bfqd->bfq_wr_rt_max_time;
1255 		}
1256 
1257 		/*
1258 		 * If needed, further reduce budget to make sure it is
1259 		 * close to bfqq's backlog, so as to reduce the
1260 		 * scheduling-error component due to a too large
1261 		 * budget. Do not care about throughput consequences,
1262 		 * but only about latency. Finally, do not assign a
1263 		 * too small budget either, to avoid increasing
1264 		 * latency by causing too frequent expirations.
1265 		 */
1266 		bfqq->entity.budget = min_t(unsigned long,
1267 					    bfqq->entity.budget,
1268 					    2 * bfq_min_budget(bfqd));
1269 	} else if (old_wr_coeff > 1) {
1270 		if (interactive) { /* update wr coeff and duration */
1271 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1272 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1273 		} else if (in_burst)
1274 			bfqq->wr_coeff = 1;
1275 		else if (soft_rt) {
1276 			/*
1277 			 * The application is now or still meeting the
1278 			 * requirements for being deemed soft rt.  We
1279 			 * can then correctly and safely (re)charge
1280 			 * the weight-raising duration for the
1281 			 * application with the weight-raising
1282 			 * duration for soft rt applications.
1283 			 *
1284 			 * In particular, doing this recharge now, i.e.,
1285 			 * before the weight-raising period for the
1286 			 * application finishes, reduces the probability
1287 			 * of the following negative scenario:
1288 			 * 1) the weight of a soft rt application is
1289 			 *    raised at startup (as for any newly
1290 			 *    created application),
1291 			 * 2) since the application is not interactive,
1292 			 *    at a certain time weight-raising is
1293 			 *    stopped for the application,
1294 			 * 3) at that time the application happens to
1295 			 *    still have pending requests, and hence
1296 			 *    is destined to not have a chance to be
1297 			 *    deemed soft rt before these requests are
1298 			 *    completed (see the comments to the
1299 			 *    function bfq_bfqq_softrt_next_start()
1300 			 *    for details on soft rt detection),
1301 			 * 4) these pending requests experience a high
1302 			 *    latency because the application is not
1303 			 *    weight-raised while they are pending.
1304 			 */
1305 			if (bfqq->wr_cur_max_time !=
1306 				bfqd->bfq_wr_rt_max_time) {
1307 				bfqq->wr_start_at_switch_to_srt =
1308 					bfqq->last_wr_start_finish;
1309 
1310 				bfqq->wr_cur_max_time =
1311 					bfqd->bfq_wr_rt_max_time;
1312 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1313 					BFQ_SOFTRT_WEIGHT_FACTOR;
1314 			}
1315 			bfqq->last_wr_start_finish = jiffies;
1316 		}
1317 	}
1318 }
1319 
bfq_bfqq_idle_for_long_time(struct bfq_data * bfqd,struct bfq_queue * bfqq)1320 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1321 					struct bfq_queue *bfqq)
1322 {
1323 	return bfqq->dispatched == 0 &&
1324 		time_is_before_jiffies(
1325 			bfqq->budget_timeout +
1326 			bfqd->bfq_wr_min_idle_time);
1327 }
1328 
bfq_bfqq_handle_idle_busy_switch(struct bfq_data * bfqd,struct bfq_queue * bfqq,int old_wr_coeff,struct request * rq,bool * interactive)1329 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1330 					     struct bfq_queue *bfqq,
1331 					     int old_wr_coeff,
1332 					     struct request *rq,
1333 					     bool *interactive)
1334 {
1335 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1336 		bfqq_wants_to_preempt,
1337 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1338 		/*
1339 		 * See the comments on
1340 		 * bfq_bfqq_update_budg_for_activation for
1341 		 * details on the usage of the next variable.
1342 		 */
1343 		arrived_in_time =  ktime_get_ns() <=
1344 			bfqq->ttime.last_end_request +
1345 			bfqd->bfq_slice_idle * 3;
1346 
1347 	bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags);
1348 
1349 	/*
1350 	 * bfqq deserves to be weight-raised if:
1351 	 * - it is sync,
1352 	 * - it does not belong to a large burst,
1353 	 * - it has been idle for enough time or is soft real-time,
1354 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1355 	 */
1356 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1357 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1358 		!in_burst &&
1359 		time_is_before_jiffies(bfqq->soft_rt_next_start);
1360 	*interactive = !in_burst && idle_for_long_time;
1361 	wr_or_deserves_wr = bfqd->low_latency &&
1362 		(bfqq->wr_coeff > 1 ||
1363 		 (bfq_bfqq_sync(bfqq) &&
1364 		  bfqq->bic && (*interactive || soft_rt)));
1365 
1366 	/*
1367 	 * Using the last flag, update budget and check whether bfqq
1368 	 * may want to preempt the in-service queue.
1369 	 */
1370 	bfqq_wants_to_preempt =
1371 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1372 						    arrived_in_time,
1373 						    wr_or_deserves_wr);
1374 
1375 	/*
1376 	 * If bfqq happened to be activated in a burst, but has been
1377 	 * idle for much more than an interactive queue, then we
1378 	 * assume that, in the overall I/O initiated in the burst, the
1379 	 * I/O associated with bfqq is finished. So bfqq does not need
1380 	 * to be treated as a queue belonging to a burst
1381 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1382 	 * if set, and remove bfqq from the burst list if it's
1383 	 * there. We do not decrement burst_size, because the fact
1384 	 * that bfqq does not need to belong to the burst list any
1385 	 * more does not invalidate the fact that bfqq was created in
1386 	 * a burst.
1387 	 */
1388 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1389 	    idle_for_long_time &&
1390 	    time_is_before_jiffies(
1391 		    bfqq->budget_timeout +
1392 		    msecs_to_jiffies(10000))) {
1393 		hlist_del_init(&bfqq->burst_list_node);
1394 		bfq_clear_bfqq_in_large_burst(bfqq);
1395 	}
1396 
1397 	bfq_clear_bfqq_just_created(bfqq);
1398 
1399 
1400 	if (!bfq_bfqq_IO_bound(bfqq)) {
1401 		if (arrived_in_time) {
1402 			bfqq->requests_within_timer++;
1403 			if (bfqq->requests_within_timer >=
1404 			    bfqd->bfq_requests_within_timer)
1405 				bfq_mark_bfqq_IO_bound(bfqq);
1406 		} else
1407 			bfqq->requests_within_timer = 0;
1408 	}
1409 
1410 	if (bfqd->low_latency) {
1411 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1412 			/* wraparound */
1413 			bfqq->split_time =
1414 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1415 
1416 		if (time_is_before_jiffies(bfqq->split_time +
1417 					   bfqd->bfq_wr_min_idle_time)) {
1418 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1419 							 old_wr_coeff,
1420 							 wr_or_deserves_wr,
1421 							 *interactive,
1422 							 in_burst,
1423 							 soft_rt);
1424 
1425 			if (old_wr_coeff != bfqq->wr_coeff)
1426 				bfqq->entity.prio_changed = 1;
1427 		}
1428 	}
1429 
1430 	bfqq->last_idle_bklogged = jiffies;
1431 	bfqq->service_from_backlogged = 0;
1432 	bfq_clear_bfqq_softrt_update(bfqq);
1433 
1434 	bfq_add_bfqq_busy(bfqd, bfqq);
1435 
1436 	/*
1437 	 * Expire in-service queue only if preemption may be needed
1438 	 * for guarantees. In this respect, the function
1439 	 * next_queue_may_preempt just checks a simple, necessary
1440 	 * condition, and not a sufficient condition based on
1441 	 * timestamps. In fact, for the latter condition to be
1442 	 * evaluated, timestamps would need first to be updated, and
1443 	 * this operation is quite costly (see the comments on the
1444 	 * function bfq_bfqq_update_budg_for_activation).
1445 	 */
1446 	if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
1447 	    bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
1448 	    next_queue_may_preempt(bfqd))
1449 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1450 				false, BFQQE_PREEMPTED);
1451 }
1452 
bfq_add_request(struct request * rq)1453 static void bfq_add_request(struct request *rq)
1454 {
1455 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1456 	struct bfq_data *bfqd = bfqq->bfqd;
1457 	struct request *next_rq, *prev;
1458 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1459 	bool interactive = false;
1460 
1461 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1462 	bfqq->queued[rq_is_sync(rq)]++;
1463 	bfqd->queued++;
1464 
1465 	elv_rb_add(&bfqq->sort_list, rq);
1466 
1467 	/*
1468 	 * Check if this request is a better next-serve candidate.
1469 	 */
1470 	prev = bfqq->next_rq;
1471 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1472 	bfqq->next_rq = next_rq;
1473 
1474 	/*
1475 	 * Adjust priority tree position, if next_rq changes.
1476 	 */
1477 	if (prev != bfqq->next_rq)
1478 		bfq_pos_tree_add_move(bfqd, bfqq);
1479 
1480 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
1481 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1482 						 rq, &interactive);
1483 	else {
1484 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1485 		    time_is_before_jiffies(
1486 				bfqq->last_wr_start_finish +
1487 				bfqd->bfq_wr_min_inter_arr_async)) {
1488 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1489 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1490 
1491 			bfqd->wr_busy_queues++;
1492 			bfqq->entity.prio_changed = 1;
1493 		}
1494 		if (prev != bfqq->next_rq)
1495 			bfq_updated_next_req(bfqd, bfqq);
1496 	}
1497 
1498 	/*
1499 	 * Assign jiffies to last_wr_start_finish in the following
1500 	 * cases:
1501 	 *
1502 	 * . if bfqq is not going to be weight-raised, because, for
1503 	 *   non weight-raised queues, last_wr_start_finish stores the
1504 	 *   arrival time of the last request; as of now, this piece
1505 	 *   of information is used only for deciding whether to
1506 	 *   weight-raise async queues
1507 	 *
1508 	 * . if bfqq is not weight-raised, because, if bfqq is now
1509 	 *   switching to weight-raised, then last_wr_start_finish
1510 	 *   stores the time when weight-raising starts
1511 	 *
1512 	 * . if bfqq is interactive, because, regardless of whether
1513 	 *   bfqq is currently weight-raised, the weight-raising
1514 	 *   period must start or restart (this case is considered
1515 	 *   separately because it is not detected by the above
1516 	 *   conditions, if bfqq is already weight-raised)
1517 	 *
1518 	 * last_wr_start_finish has to be updated also if bfqq is soft
1519 	 * real-time, because the weight-raising period is constantly
1520 	 * restarted on idle-to-busy transitions for these queues, but
1521 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1522 	 * needed.
1523 	 */
1524 	if (bfqd->low_latency &&
1525 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1526 		bfqq->last_wr_start_finish = jiffies;
1527 }
1528 
bfq_find_rq_fmerge(struct bfq_data * bfqd,struct bio * bio,struct request_queue * q)1529 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1530 					  struct bio *bio,
1531 					  struct request_queue *q)
1532 {
1533 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
1534 
1535 
1536 	if (bfqq)
1537 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1538 
1539 	return NULL;
1540 }
1541 
get_sdist(sector_t last_pos,struct request * rq)1542 static sector_t get_sdist(sector_t last_pos, struct request *rq)
1543 {
1544 	if (last_pos)
1545 		return abs(blk_rq_pos(rq) - last_pos);
1546 
1547 	return 0;
1548 }
1549 
1550 #if 0 /* Still not clear if we can do without next two functions */
1551 static void bfq_activate_request(struct request_queue *q, struct request *rq)
1552 {
1553 	struct bfq_data *bfqd = q->elevator->elevator_data;
1554 
1555 	bfqd->rq_in_driver++;
1556 }
1557 
1558 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1559 {
1560 	struct bfq_data *bfqd = q->elevator->elevator_data;
1561 
1562 	bfqd->rq_in_driver--;
1563 }
1564 #endif
1565 
bfq_remove_request(struct request_queue * q,struct request * rq)1566 static void bfq_remove_request(struct request_queue *q,
1567 			       struct request *rq)
1568 {
1569 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1570 	struct bfq_data *bfqd = bfqq->bfqd;
1571 	const int sync = rq_is_sync(rq);
1572 
1573 	if (bfqq->next_rq == rq) {
1574 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1575 		bfq_updated_next_req(bfqd, bfqq);
1576 	}
1577 
1578 	if (rq->queuelist.prev != &rq->queuelist)
1579 		list_del_init(&rq->queuelist);
1580 	bfqq->queued[sync]--;
1581 	bfqd->queued--;
1582 	elv_rb_del(&bfqq->sort_list, rq);
1583 
1584 	elv_rqhash_del(q, rq);
1585 	if (q->last_merge == rq)
1586 		q->last_merge = NULL;
1587 
1588 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1589 		bfqq->next_rq = NULL;
1590 
1591 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
1592 			bfq_del_bfqq_busy(bfqd, bfqq, false);
1593 			/*
1594 			 * bfqq emptied. In normal operation, when
1595 			 * bfqq is empty, bfqq->entity.service and
1596 			 * bfqq->entity.budget must contain,
1597 			 * respectively, the service received and the
1598 			 * budget used last time bfqq emptied. These
1599 			 * facts do not hold in this case, as at least
1600 			 * this last removal occurred while bfqq is
1601 			 * not in service. To avoid inconsistencies,
1602 			 * reset both bfqq->entity.service and
1603 			 * bfqq->entity.budget, if bfqq has still a
1604 			 * process that may issue I/O requests to it.
1605 			 */
1606 			bfqq->entity.budget = bfqq->entity.service = 0;
1607 		}
1608 
1609 		/*
1610 		 * Remove queue from request-position tree as it is empty.
1611 		 */
1612 		if (bfqq->pos_root) {
1613 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
1614 			bfqq->pos_root = NULL;
1615 		}
1616 	}
1617 
1618 	if (rq->cmd_flags & REQ_META)
1619 		bfqq->meta_pending--;
1620 
1621 	bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
1622 }
1623 
bfq_bio_merge(struct blk_mq_hw_ctx * hctx,struct bio * bio)1624 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1625 {
1626 	struct request_queue *q = hctx->queue;
1627 	struct bfq_data *bfqd = q->elevator->elevator_data;
1628 	struct request *free = NULL;
1629 	/*
1630 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1631 	 * store its return value for later use, to avoid nesting
1632 	 * queue_lock inside the bfqd->lock. We assume that the bic
1633 	 * returned by bfq_bic_lookup does not go away before
1634 	 * bfqd->lock is taken.
1635 	 */
1636 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1637 	bool ret;
1638 
1639 	spin_lock_irq(&bfqd->lock);
1640 
1641 	if (bic)
1642 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1643 	else
1644 		bfqd->bio_bfqq = NULL;
1645 	bfqd->bio_bic = bic;
1646 
1647 	ret = blk_mq_sched_try_merge(q, bio, &free);
1648 
1649 	if (free)
1650 		blk_mq_free_request(free);
1651 	spin_unlock_irq(&bfqd->lock);
1652 
1653 	return ret;
1654 }
1655 
bfq_request_merge(struct request_queue * q,struct request ** req,struct bio * bio)1656 static int bfq_request_merge(struct request_queue *q, struct request **req,
1657 			     struct bio *bio)
1658 {
1659 	struct bfq_data *bfqd = q->elevator->elevator_data;
1660 	struct request *__rq;
1661 
1662 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
1663 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
1664 		*req = __rq;
1665 		return ELEVATOR_FRONT_MERGE;
1666 	}
1667 
1668 	return ELEVATOR_NO_MERGE;
1669 }
1670 
bfq_request_merged(struct request_queue * q,struct request * req,enum elv_merge type)1671 static void bfq_request_merged(struct request_queue *q, struct request *req,
1672 			       enum elv_merge type)
1673 {
1674 	if (type == ELEVATOR_FRONT_MERGE &&
1675 	    rb_prev(&req->rb_node) &&
1676 	    blk_rq_pos(req) <
1677 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
1678 				    struct request, rb_node))) {
1679 		struct bfq_queue *bfqq = RQ_BFQQ(req);
1680 		struct bfq_data *bfqd = bfqq->bfqd;
1681 		struct request *prev, *next_rq;
1682 
1683 		/* Reposition request in its sort_list */
1684 		elv_rb_del(&bfqq->sort_list, req);
1685 		elv_rb_add(&bfqq->sort_list, req);
1686 
1687 		/* Choose next request to be served for bfqq */
1688 		prev = bfqq->next_rq;
1689 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1690 					 bfqd->last_position);
1691 		bfqq->next_rq = next_rq;
1692 		/*
1693 		 * If next_rq changes, update both the queue's budget to
1694 		 * fit the new request and the queue's position in its
1695 		 * rq_pos_tree.
1696 		 */
1697 		if (prev != bfqq->next_rq) {
1698 			bfq_updated_next_req(bfqd, bfqq);
1699 			bfq_pos_tree_add_move(bfqd, bfqq);
1700 		}
1701 	}
1702 }
1703 
bfq_requests_merged(struct request_queue * q,struct request * rq,struct request * next)1704 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1705 				struct request *next)
1706 {
1707 	struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
1708 
1709 	if (!RB_EMPTY_NODE(&rq->rb_node))
1710 		goto end;
1711 
1712 	/*
1713 	 * If next and rq belong to the same bfq_queue and next is older
1714 	 * than rq, then reposition rq in the fifo (by substituting next
1715 	 * with rq). Otherwise, if next and rq belong to different
1716 	 * bfq_queues, never reposition rq: in fact, we would have to
1717 	 * reposition it with respect to next's position in its own fifo,
1718 	 * which would most certainly be too expensive with respect to
1719 	 * the benefits.
1720 	 */
1721 	if (bfqq == next_bfqq &&
1722 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1723 	    next->fifo_time < rq->fifo_time) {
1724 		list_del_init(&rq->queuelist);
1725 		list_replace_init(&next->queuelist, &rq->queuelist);
1726 		rq->fifo_time = next->fifo_time;
1727 	}
1728 
1729 	if (bfqq->next_rq == next)
1730 		bfqq->next_rq = rq;
1731 
1732 	bfq_remove_request(q, next);
1733 
1734 end:
1735 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
1736 }
1737 
1738 /* Must be called with bfqq != NULL */
bfq_bfqq_end_wr(struct bfq_queue * bfqq)1739 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1740 {
1741 	if (bfq_bfqq_busy(bfqq))
1742 		bfqq->bfqd->wr_busy_queues--;
1743 	bfqq->wr_coeff = 1;
1744 	bfqq->wr_cur_max_time = 0;
1745 	bfqq->last_wr_start_finish = jiffies;
1746 	/*
1747 	 * Trigger a weight change on the next invocation of
1748 	 * __bfq_entity_update_weight_prio.
1749 	 */
1750 	bfqq->entity.prio_changed = 1;
1751 }
1752 
bfq_end_wr_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)1753 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1754 			     struct bfq_group *bfqg)
1755 {
1756 	int i, j;
1757 
1758 	for (i = 0; i < 2; i++)
1759 		for (j = 0; j < IOPRIO_BE_NR; j++)
1760 			if (bfqg->async_bfqq[i][j])
1761 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1762 	if (bfqg->async_idle_bfqq)
1763 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1764 }
1765 
bfq_end_wr(struct bfq_data * bfqd)1766 static void bfq_end_wr(struct bfq_data *bfqd)
1767 {
1768 	struct bfq_queue *bfqq;
1769 
1770 	spin_lock_irq(&bfqd->lock);
1771 
1772 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1773 		bfq_bfqq_end_wr(bfqq);
1774 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1775 		bfq_bfqq_end_wr(bfqq);
1776 	bfq_end_wr_async(bfqd);
1777 
1778 	spin_unlock_irq(&bfqd->lock);
1779 }
1780 
bfq_io_struct_pos(void * io_struct,bool request)1781 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1782 {
1783 	if (request)
1784 		return blk_rq_pos(io_struct);
1785 	else
1786 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
1787 }
1788 
bfq_rq_close_to_sector(void * io_struct,bool request,sector_t sector)1789 static int bfq_rq_close_to_sector(void *io_struct, bool request,
1790 				  sector_t sector)
1791 {
1792 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
1793 	       BFQQ_CLOSE_THR;
1794 }
1795 
bfqq_find_close(struct bfq_data * bfqd,struct bfq_queue * bfqq,sector_t sector)1796 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
1797 					 struct bfq_queue *bfqq,
1798 					 sector_t sector)
1799 {
1800 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
1801 	struct rb_node *parent, *node;
1802 	struct bfq_queue *__bfqq;
1803 
1804 	if (RB_EMPTY_ROOT(root))
1805 		return NULL;
1806 
1807 	/*
1808 	 * First, if we find a request starting at the end of the last
1809 	 * request, choose it.
1810 	 */
1811 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
1812 	if (__bfqq)
1813 		return __bfqq;
1814 
1815 	/*
1816 	 * If the exact sector wasn't found, the parent of the NULL leaf
1817 	 * will contain the closest sector (rq_pos_tree sorted by
1818 	 * next_request position).
1819 	 */
1820 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
1821 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1822 		return __bfqq;
1823 
1824 	if (blk_rq_pos(__bfqq->next_rq) < sector)
1825 		node = rb_next(&__bfqq->pos_node);
1826 	else
1827 		node = rb_prev(&__bfqq->pos_node);
1828 	if (!node)
1829 		return NULL;
1830 
1831 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
1832 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1833 		return __bfqq;
1834 
1835 	return NULL;
1836 }
1837 
bfq_find_close_cooperator(struct bfq_data * bfqd,struct bfq_queue * cur_bfqq,sector_t sector)1838 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
1839 						   struct bfq_queue *cur_bfqq,
1840 						   sector_t sector)
1841 {
1842 	struct bfq_queue *bfqq;
1843 
1844 	/*
1845 	 * We shall notice if some of the queues are cooperating,
1846 	 * e.g., working closely on the same area of the device. In
1847 	 * that case, we can group them together and: 1) don't waste
1848 	 * time idling, and 2) serve the union of their requests in
1849 	 * the best possible order for throughput.
1850 	 */
1851 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
1852 	if (!bfqq || bfqq == cur_bfqq)
1853 		return NULL;
1854 
1855 	return bfqq;
1856 }
1857 
1858 static struct bfq_queue *
bfq_setup_merge(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)1859 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
1860 {
1861 	int process_refs, new_process_refs;
1862 	struct bfq_queue *__bfqq;
1863 
1864 	/*
1865 	 * If there are no process references on the new_bfqq, then it is
1866 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
1867 	 * may have dropped their last reference (not just their last process
1868 	 * reference).
1869 	 */
1870 	if (!bfqq_process_refs(new_bfqq))
1871 		return NULL;
1872 
1873 	/* Avoid a circular list and skip interim queue merges. */
1874 	while ((__bfqq = new_bfqq->new_bfqq)) {
1875 		if (__bfqq == bfqq)
1876 			return NULL;
1877 		new_bfqq = __bfqq;
1878 	}
1879 
1880 	process_refs = bfqq_process_refs(bfqq);
1881 	new_process_refs = bfqq_process_refs(new_bfqq);
1882 	/*
1883 	 * If the process for the bfqq has gone away, there is no
1884 	 * sense in merging the queues.
1885 	 */
1886 	if (process_refs == 0 || new_process_refs == 0)
1887 		return NULL;
1888 
1889 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
1890 		new_bfqq->pid);
1891 
1892 	/*
1893 	 * Merging is just a redirection: the requests of the process
1894 	 * owning one of the two queues are redirected to the other queue.
1895 	 * The latter queue, in its turn, is set as shared if this is the
1896 	 * first time that the requests of some process are redirected to
1897 	 * it.
1898 	 *
1899 	 * We redirect bfqq to new_bfqq and not the opposite, because
1900 	 * we are in the context of the process owning bfqq, thus we
1901 	 * have the io_cq of this process. So we can immediately
1902 	 * configure this io_cq to redirect the requests of the
1903 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
1904 	 * not available any more (new_bfqq->bic == NULL).
1905 	 *
1906 	 * Anyway, even in case new_bfqq coincides with the in-service
1907 	 * queue, redirecting requests the in-service queue is the
1908 	 * best option, as we feed the in-service queue with new
1909 	 * requests close to the last request served and, by doing so,
1910 	 * are likely to increase the throughput.
1911 	 */
1912 	bfqq->new_bfqq = new_bfqq;
1913 	new_bfqq->ref += process_refs;
1914 	return new_bfqq;
1915 }
1916 
bfq_may_be_close_cooperator(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)1917 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
1918 					struct bfq_queue *new_bfqq)
1919 {
1920 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
1921 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
1922 		return false;
1923 
1924 	/*
1925 	 * If either of the queues has already been detected as seeky,
1926 	 * then merging it with the other queue is unlikely to lead to
1927 	 * sequential I/O.
1928 	 */
1929 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
1930 		return false;
1931 
1932 	/*
1933 	 * Interleaved I/O is known to be done by (some) applications
1934 	 * only for reads, so it does not make sense to merge async
1935 	 * queues.
1936 	 */
1937 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
1938 		return false;
1939 
1940 	return true;
1941 }
1942 
1943 /*
1944  * If this function returns true, then bfqq cannot be merged. The idea
1945  * is that true cooperation happens very early after processes start
1946  * to do I/O. Usually, late cooperations are just accidental false
1947  * positives. In case bfqq is weight-raised, such false positives
1948  * would evidently degrade latency guarantees for bfqq.
1949  */
wr_from_too_long(struct bfq_queue * bfqq)1950 static bool wr_from_too_long(struct bfq_queue *bfqq)
1951 {
1952 	return bfqq->wr_coeff > 1 &&
1953 		time_is_before_jiffies(bfqq->last_wr_start_finish +
1954 				       msecs_to_jiffies(100));
1955 }
1956 
1957 /*
1958  * Attempt to schedule a merge of bfqq with the currently in-service
1959  * queue or with a close queue among the scheduled queues.  Return
1960  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
1961  * structure otherwise.
1962  *
1963  * The OOM queue is not allowed to participate to cooperation: in fact, since
1964  * the requests temporarily redirected to the OOM queue could be redirected
1965  * again to dedicated queues at any time, the state needed to correctly
1966  * handle merging with the OOM queue would be quite complex and expensive
1967  * to maintain. Besides, in such a critical condition as an out of memory,
1968  * the benefits of queue merging may be little relevant, or even negligible.
1969  *
1970  * Weight-raised queues can be merged only if their weight-raising
1971  * period has just started. In fact cooperating processes are usually
1972  * started together. Thus, with this filter we avoid false positives
1973  * that would jeopardize low-latency guarantees.
1974  *
1975  * WARNING: queue merging may impair fairness among non-weight raised
1976  * queues, for at least two reasons: 1) the original weight of a
1977  * merged queue may change during the merged state, 2) even being the
1978  * weight the same, a merged queue may be bloated with many more
1979  * requests than the ones produced by its originally-associated
1980  * process.
1981  */
1982 static struct bfq_queue *
bfq_setup_cooperator(struct bfq_data * bfqd,struct bfq_queue * bfqq,void * io_struct,bool request)1983 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1984 		     void *io_struct, bool request)
1985 {
1986 	struct bfq_queue *in_service_bfqq, *new_bfqq;
1987 
1988 	if (bfqq->new_bfqq)
1989 		return bfqq->new_bfqq;
1990 
1991 	if (!io_struct ||
1992 	    wr_from_too_long(bfqq) ||
1993 	    unlikely(bfqq == &bfqd->oom_bfqq))
1994 		return NULL;
1995 
1996 	/* If there is only one backlogged queue, don't search. */
1997 	if (bfqd->busy_queues == 1)
1998 		return NULL;
1999 
2000 	in_service_bfqq = bfqd->in_service_queue;
2001 
2002 	if (!in_service_bfqq || in_service_bfqq == bfqq
2003 	    || wr_from_too_long(in_service_bfqq) ||
2004 	    unlikely(in_service_bfqq == &bfqd->oom_bfqq))
2005 		goto check_scheduled;
2006 
2007 	if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
2008 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2009 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2010 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2011 		if (new_bfqq)
2012 			return new_bfqq;
2013 	}
2014 	/*
2015 	 * Check whether there is a cooperator among currently scheduled
2016 	 * queues. The only thing we need is that the bio/request is not
2017 	 * NULL, as we need it to establish whether a cooperator exists.
2018 	 */
2019 check_scheduled:
2020 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2021 			bfq_io_struct_pos(io_struct, request));
2022 
2023 	if (new_bfqq && !wr_from_too_long(new_bfqq) &&
2024 	    likely(new_bfqq != &bfqd->oom_bfqq) &&
2025 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2026 		return bfq_setup_merge(bfqq, new_bfqq);
2027 
2028 	return NULL;
2029 }
2030 
bfq_bfqq_save_state(struct bfq_queue * bfqq)2031 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2032 {
2033 	struct bfq_io_cq *bic = bfqq->bic;
2034 
2035 	/*
2036 	 * If !bfqq->bic, the queue is already shared or its requests
2037 	 * have already been redirected to a shared queue; both idle window
2038 	 * and weight raising state have already been saved. Do nothing.
2039 	 */
2040 	if (!bic)
2041 		return;
2042 
2043 	bic->saved_ttime = bfqq->ttime;
2044 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2045 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2046 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2047 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2048 	bic->saved_wr_coeff = bfqq->wr_coeff;
2049 	bic->saved_wr_start_at_switch_to_srt = bfqq->wr_start_at_switch_to_srt;
2050 	bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2051 	bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2052 }
2053 
2054 static void
bfq_merge_bfqqs(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2055 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2056 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2057 {
2058 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2059 		(unsigned long)new_bfqq->pid);
2060 	/* Save weight raising and idle window of the merged queues */
2061 	bfq_bfqq_save_state(bfqq);
2062 	bfq_bfqq_save_state(new_bfqq);
2063 	if (bfq_bfqq_IO_bound(bfqq))
2064 		bfq_mark_bfqq_IO_bound(new_bfqq);
2065 	bfq_clear_bfqq_IO_bound(bfqq);
2066 
2067 	/*
2068 	 * If bfqq is weight-raised, then let new_bfqq inherit
2069 	 * weight-raising. To reduce false positives, neglect the case
2070 	 * where bfqq has just been created, but has not yet made it
2071 	 * to be weight-raised (which may happen because EQM may merge
2072 	 * bfqq even before bfq_add_request is executed for the first
2073 	 * time for bfqq). Handling this case would however be very
2074 	 * easy, thanks to the flag just_created.
2075 	 */
2076 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2077 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2078 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2079 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2080 		new_bfqq->wr_start_at_switch_to_srt =
2081 			bfqq->wr_start_at_switch_to_srt;
2082 		if (bfq_bfqq_busy(new_bfqq))
2083 			bfqd->wr_busy_queues++;
2084 		new_bfqq->entity.prio_changed = 1;
2085 	}
2086 
2087 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2088 		bfqq->wr_coeff = 1;
2089 		bfqq->entity.prio_changed = 1;
2090 		if (bfq_bfqq_busy(bfqq))
2091 			bfqd->wr_busy_queues--;
2092 	}
2093 
2094 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2095 		     bfqd->wr_busy_queues);
2096 
2097 	/*
2098 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2099 	 */
2100 	bic_set_bfqq(bic, new_bfqq, 1);
2101 	bfq_mark_bfqq_coop(new_bfqq);
2102 	/*
2103 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2104 	 * set new_bfqq->bic to NULL. bfqq either:
2105 	 * - does not belong to any bic any more, and hence bfqq->bic must
2106 	 *   be set to NULL, or
2107 	 * - is a queue whose owning bics have already been redirected to a
2108 	 *   different queue, hence the queue is destined to not belong to
2109 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2110 	 *   assignment causes no harm).
2111 	 */
2112 	new_bfqq->bic = NULL;
2113 	bfqq->bic = NULL;
2114 	/* release process reference to bfqq */
2115 	bfq_put_queue(bfqq);
2116 }
2117 
bfq_allow_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio)2118 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2119 				struct bio *bio)
2120 {
2121 	struct bfq_data *bfqd = q->elevator->elevator_data;
2122 	bool is_sync = op_is_sync(bio->bi_opf);
2123 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2124 
2125 	/*
2126 	 * Disallow merge of a sync bio into an async request.
2127 	 */
2128 	if (is_sync && !rq_is_sync(rq))
2129 		return false;
2130 
2131 	/*
2132 	 * Lookup the bfqq that this bio will be queued with. Allow
2133 	 * merge only if rq is queued there.
2134 	 */
2135 	if (!bfqq)
2136 		return false;
2137 
2138 	/*
2139 	 * We take advantage of this function to perform an early merge
2140 	 * of the queues of possible cooperating processes.
2141 	 */
2142 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2143 	if (new_bfqq) {
2144 		/*
2145 		 * bic still points to bfqq, then it has not yet been
2146 		 * redirected to some other bfq_queue, and a queue
2147 		 * merge beween bfqq and new_bfqq can be safely
2148 		 * fulfillled, i.e., bic can be redirected to new_bfqq
2149 		 * and bfqq can be put.
2150 		 */
2151 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2152 				new_bfqq);
2153 		/*
2154 		 * If we get here, bio will be queued into new_queue,
2155 		 * so use new_bfqq to decide whether bio and rq can be
2156 		 * merged.
2157 		 */
2158 		bfqq = new_bfqq;
2159 
2160 		/*
2161 		 * Change also bqfd->bio_bfqq, as
2162 		 * bfqd->bio_bic now points to new_bfqq, and
2163 		 * this function may be invoked again (and then may
2164 		 * use again bqfd->bio_bfqq).
2165 		 */
2166 		bfqd->bio_bfqq = bfqq;
2167 	}
2168 
2169 	return bfqq == RQ_BFQQ(rq);
2170 }
2171 
2172 /*
2173  * Set the maximum time for the in-service queue to consume its
2174  * budget. This prevents seeky processes from lowering the throughput.
2175  * In practice, a time-slice service scheme is used with seeky
2176  * processes.
2177  */
bfq_set_budget_timeout(struct bfq_data * bfqd,struct bfq_queue * bfqq)2178 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2179 				   struct bfq_queue *bfqq)
2180 {
2181 	unsigned int timeout_coeff;
2182 
2183 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2184 		timeout_coeff = 1;
2185 	else
2186 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2187 
2188 	bfqd->last_budget_start = ktime_get();
2189 
2190 	bfqq->budget_timeout = jiffies +
2191 		bfqd->bfq_timeout * timeout_coeff;
2192 }
2193 
__bfq_set_in_service_queue(struct bfq_data * bfqd,struct bfq_queue * bfqq)2194 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2195 				       struct bfq_queue *bfqq)
2196 {
2197 	if (bfqq) {
2198 		bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
2199 		bfq_clear_bfqq_fifo_expire(bfqq);
2200 
2201 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2202 
2203 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2204 		    bfqq->wr_coeff > 1 &&
2205 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2206 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2207 			/*
2208 			 * For soft real-time queues, move the start
2209 			 * of the weight-raising period forward by the
2210 			 * time the queue has not received any
2211 			 * service. Otherwise, a relatively long
2212 			 * service delay is likely to cause the
2213 			 * weight-raising period of the queue to end,
2214 			 * because of the short duration of the
2215 			 * weight-raising period of a soft real-time
2216 			 * queue.  It is worth noting that this move
2217 			 * is not so dangerous for the other queues,
2218 			 * because soft real-time queues are not
2219 			 * greedy.
2220 			 *
2221 			 * To not add a further variable, we use the
2222 			 * overloaded field budget_timeout to
2223 			 * determine for how long the queue has not
2224 			 * received service, i.e., how much time has
2225 			 * elapsed since the queue expired. However,
2226 			 * this is a little imprecise, because
2227 			 * budget_timeout is set to jiffies if bfqq
2228 			 * not only expires, but also remains with no
2229 			 * request.
2230 			 */
2231 			if (time_after(bfqq->budget_timeout,
2232 				       bfqq->last_wr_start_finish))
2233 				bfqq->last_wr_start_finish +=
2234 					jiffies - bfqq->budget_timeout;
2235 			else
2236 				bfqq->last_wr_start_finish = jiffies;
2237 		}
2238 
2239 		bfq_set_budget_timeout(bfqd, bfqq);
2240 		bfq_log_bfqq(bfqd, bfqq,
2241 			     "set_in_service_queue, cur-budget = %d",
2242 			     bfqq->entity.budget);
2243 	}
2244 
2245 	bfqd->in_service_queue = bfqq;
2246 }
2247 
2248 /*
2249  * Get and set a new queue for service.
2250  */
bfq_set_in_service_queue(struct bfq_data * bfqd)2251 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2252 {
2253 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2254 
2255 	__bfq_set_in_service_queue(bfqd, bfqq);
2256 	return bfqq;
2257 }
2258 
bfq_arm_slice_timer(struct bfq_data * bfqd)2259 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2260 {
2261 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2262 	u32 sl;
2263 
2264 	bfq_mark_bfqq_wait_request(bfqq);
2265 
2266 	/*
2267 	 * We don't want to idle for seeks, but we do want to allow
2268 	 * fair distribution of slice time for a process doing back-to-back
2269 	 * seeks. So allow a little bit of time for him to submit a new rq.
2270 	 */
2271 	sl = bfqd->bfq_slice_idle;
2272 	/*
2273 	 * Unless the queue is being weight-raised or the scenario is
2274 	 * asymmetric, grant only minimum idle time if the queue
2275 	 * is seeky. A long idling is preserved for a weight-raised
2276 	 * queue, or, more in general, in an asymmetric scenario,
2277 	 * because a long idling is needed for guaranteeing to a queue
2278 	 * its reserved share of the throughput (in particular, it is
2279 	 * needed if the queue has a higher weight than some other
2280 	 * queue).
2281 	 */
2282 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2283 	    bfq_symmetric_scenario(bfqd))
2284 		sl = min_t(u64, sl, BFQ_MIN_TT);
2285 	else if (bfqq->wr_coeff > 1)
2286 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
2287 
2288 	bfqd->last_idling_start = ktime_get();
2289 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2290 		      HRTIMER_MODE_REL);
2291 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2292 }
2293 
2294 /*
2295  * In autotuning mode, max_budget is dynamically recomputed as the
2296  * amount of sectors transferred in timeout at the estimated peak
2297  * rate. This enables BFQ to utilize a full timeslice with a full
2298  * budget, even if the in-service queue is served at peak rate. And
2299  * this maximises throughput with sequential workloads.
2300  */
bfq_calc_max_budget(struct bfq_data * bfqd)2301 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2302 {
2303 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2304 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2305 }
2306 
2307 /*
2308  * Update parameters related to throughput and responsiveness, as a
2309  * function of the estimated peak rate. See comments on
2310  * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
2311  */
update_thr_responsiveness_params(struct bfq_data * bfqd)2312 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2313 {
2314 	int dev_type = blk_queue_nonrot(bfqd->queue);
2315 
2316 	if (bfqd->bfq_user_max_budget == 0)
2317 		bfqd->bfq_max_budget =
2318 			bfq_calc_max_budget(bfqd);
2319 
2320 	if (bfqd->device_speed == BFQ_BFQD_FAST &&
2321 	    bfqd->peak_rate < device_speed_thresh[dev_type]) {
2322 		bfqd->device_speed = BFQ_BFQD_SLOW;
2323 		bfqd->RT_prod = R_slow[dev_type] *
2324 			T_slow[dev_type];
2325 	} else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
2326 		   bfqd->peak_rate > device_speed_thresh[dev_type]) {
2327 		bfqd->device_speed = BFQ_BFQD_FAST;
2328 		bfqd->RT_prod = R_fast[dev_type] *
2329 			T_fast[dev_type];
2330 	}
2331 
2332 	bfq_log(bfqd,
2333 "dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
2334 		dev_type == 0 ? "ROT" : "NONROT",
2335 		bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
2336 		bfqd->device_speed == BFQ_BFQD_FAST ?
2337 		(USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
2338 		(USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
2339 		(USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
2340 		BFQ_RATE_SHIFT);
2341 }
2342 
bfq_reset_rate_computation(struct bfq_data * bfqd,struct request * rq)2343 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2344 				       struct request *rq)
2345 {
2346 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2347 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2348 		bfqd->peak_rate_samples = 1;
2349 		bfqd->sequential_samples = 0;
2350 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2351 			blk_rq_sectors(rq);
2352 	} else /* no new rq dispatched, just reset the number of samples */
2353 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2354 
2355 	bfq_log(bfqd,
2356 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
2357 		bfqd->peak_rate_samples, bfqd->sequential_samples,
2358 		bfqd->tot_sectors_dispatched);
2359 }
2360 
bfq_update_rate_reset(struct bfq_data * bfqd,struct request * rq)2361 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2362 {
2363 	u32 rate, weight, divisor;
2364 
2365 	/*
2366 	 * For the convergence property to hold (see comments on
2367 	 * bfq_update_peak_rate()) and for the assessment to be
2368 	 * reliable, a minimum number of samples must be present, and
2369 	 * a minimum amount of time must have elapsed. If not so, do
2370 	 * not compute new rate. Just reset parameters, to get ready
2371 	 * for a new evaluation attempt.
2372 	 */
2373 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2374 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2375 		goto reset_computation;
2376 
2377 	/*
2378 	 * If a new request completion has occurred after last
2379 	 * dispatch, then, to approximate the rate at which requests
2380 	 * have been served by the device, it is more precise to
2381 	 * extend the observation interval to the last completion.
2382 	 */
2383 	bfqd->delta_from_first =
2384 		max_t(u64, bfqd->delta_from_first,
2385 		      bfqd->last_completion - bfqd->first_dispatch);
2386 
2387 	/*
2388 	 * Rate computed in sects/usec, and not sects/nsec, for
2389 	 * precision issues.
2390 	 */
2391 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2392 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2393 
2394 	/*
2395 	 * Peak rate not updated if:
2396 	 * - the percentage of sequential dispatches is below 3/4 of the
2397 	 *   total, and rate is below the current estimated peak rate
2398 	 * - rate is unreasonably high (> 20M sectors/sec)
2399 	 */
2400 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2401 	     rate <= bfqd->peak_rate) ||
2402 		rate > 20<<BFQ_RATE_SHIFT)
2403 		goto reset_computation;
2404 
2405 	/*
2406 	 * We have to update the peak rate, at last! To this purpose,
2407 	 * we use a low-pass filter. We compute the smoothing constant
2408 	 * of the filter as a function of the 'weight' of the new
2409 	 * measured rate.
2410 	 *
2411 	 * As can be seen in next formulas, we define this weight as a
2412 	 * quantity proportional to how sequential the workload is,
2413 	 * and to how long the observation time interval is.
2414 	 *
2415 	 * The weight runs from 0 to 8. The maximum value of the
2416 	 * weight, 8, yields the minimum value for the smoothing
2417 	 * constant. At this minimum value for the smoothing constant,
2418 	 * the measured rate contributes for half of the next value of
2419 	 * the estimated peak rate.
2420 	 *
2421 	 * So, the first step is to compute the weight as a function
2422 	 * of how sequential the workload is. Note that the weight
2423 	 * cannot reach 9, because bfqd->sequential_samples cannot
2424 	 * become equal to bfqd->peak_rate_samples, which, in its
2425 	 * turn, holds true because bfqd->sequential_samples is not
2426 	 * incremented for the first sample.
2427 	 */
2428 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2429 
2430 	/*
2431 	 * Second step: further refine the weight as a function of the
2432 	 * duration of the observation interval.
2433 	 */
2434 	weight = min_t(u32, 8,
2435 		       div_u64(weight * bfqd->delta_from_first,
2436 			       BFQ_RATE_REF_INTERVAL));
2437 
2438 	/*
2439 	 * Divisor ranging from 10, for minimum weight, to 2, for
2440 	 * maximum weight.
2441 	 */
2442 	divisor = 10 - weight;
2443 
2444 	/*
2445 	 * Finally, update peak rate:
2446 	 *
2447 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
2448 	 */
2449 	bfqd->peak_rate *= divisor-1;
2450 	bfqd->peak_rate /= divisor;
2451 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
2452 
2453 	bfqd->peak_rate += rate;
2454 	update_thr_responsiveness_params(bfqd);
2455 
2456 reset_computation:
2457 	bfq_reset_rate_computation(bfqd, rq);
2458 }
2459 
2460 /*
2461  * Update the read/write peak rate (the main quantity used for
2462  * auto-tuning, see update_thr_responsiveness_params()).
2463  *
2464  * It is not trivial to estimate the peak rate (correctly): because of
2465  * the presence of sw and hw queues between the scheduler and the
2466  * device components that finally serve I/O requests, it is hard to
2467  * say exactly when a given dispatched request is served inside the
2468  * device, and for how long. As a consequence, it is hard to know
2469  * precisely at what rate a given set of requests is actually served
2470  * by the device.
2471  *
2472  * On the opposite end, the dispatch time of any request is trivially
2473  * available, and, from this piece of information, the "dispatch rate"
2474  * of requests can be immediately computed. So, the idea in the next
2475  * function is to use what is known, namely request dispatch times
2476  * (plus, when useful, request completion times), to estimate what is
2477  * unknown, namely in-device request service rate.
2478  *
2479  * The main issue is that, because of the above facts, the rate at
2480  * which a certain set of requests is dispatched over a certain time
2481  * interval can vary greatly with respect to the rate at which the
2482  * same requests are then served. But, since the size of any
2483  * intermediate queue is limited, and the service scheme is lossless
2484  * (no request is silently dropped), the following obvious convergence
2485  * property holds: the number of requests dispatched MUST become
2486  * closer and closer to the number of requests completed as the
2487  * observation interval grows. This is the key property used in
2488  * the next function to estimate the peak service rate as a function
2489  * of the observed dispatch rate. The function assumes to be invoked
2490  * on every request dispatch.
2491  */
bfq_update_peak_rate(struct bfq_data * bfqd,struct request * rq)2492 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2493 {
2494 	u64 now_ns = ktime_get_ns();
2495 
2496 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2497 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2498 			bfqd->peak_rate_samples);
2499 		bfq_reset_rate_computation(bfqd, rq);
2500 		goto update_last_values; /* will add one sample */
2501 	}
2502 
2503 	/*
2504 	 * Device idle for very long: the observation interval lasting
2505 	 * up to this dispatch cannot be a valid observation interval
2506 	 * for computing a new peak rate (similarly to the late-
2507 	 * completion event in bfq_completed_request()). Go to
2508 	 * update_rate_and_reset to have the following three steps
2509 	 * taken:
2510 	 * - close the observation interval at the last (previous)
2511 	 *   request dispatch or completion
2512 	 * - compute rate, if possible, for that observation interval
2513 	 * - start a new observation interval with this dispatch
2514 	 */
2515 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2516 	    bfqd->rq_in_driver == 0)
2517 		goto update_rate_and_reset;
2518 
2519 	/* Update sampling information */
2520 	bfqd->peak_rate_samples++;
2521 
2522 	if ((bfqd->rq_in_driver > 0 ||
2523 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
2524 	     && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2525 		bfqd->sequential_samples++;
2526 
2527 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2528 
2529 	/* Reset max observed rq size every 32 dispatches */
2530 	if (likely(bfqd->peak_rate_samples % 32))
2531 		bfqd->last_rq_max_size =
2532 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2533 	else
2534 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
2535 
2536 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2537 
2538 	/* Target observation interval not yet reached, go on sampling */
2539 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2540 		goto update_last_values;
2541 
2542 update_rate_and_reset:
2543 	bfq_update_rate_reset(bfqd, rq);
2544 update_last_values:
2545 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2546 	bfqd->last_dispatch = now_ns;
2547 }
2548 
2549 /*
2550  * Remove request from internal lists.
2551  */
bfq_dispatch_remove(struct request_queue * q,struct request * rq)2552 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2553 {
2554 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2555 
2556 	/*
2557 	 * For consistency, the next instruction should have been
2558 	 * executed after removing the request from the queue and
2559 	 * dispatching it.  We execute instead this instruction before
2560 	 * bfq_remove_request() (and hence introduce a temporary
2561 	 * inconsistency), for efficiency.  In fact, should this
2562 	 * dispatch occur for a non in-service bfqq, this anticipated
2563 	 * increment prevents two counters related to bfqq->dispatched
2564 	 * from risking to be, first, uselessly decremented, and then
2565 	 * incremented again when the (new) value of bfqq->dispatched
2566 	 * happens to be taken into account.
2567 	 */
2568 	bfqq->dispatched++;
2569 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
2570 
2571 	bfq_remove_request(q, rq);
2572 }
2573 
__bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq)2574 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2575 {
2576 	/*
2577 	 * If this bfqq is shared between multiple processes, check
2578 	 * to make sure that those processes are still issuing I/Os
2579 	 * within the mean seek distance. If not, it may be time to
2580 	 * break the queues apart again.
2581 	 */
2582 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2583 		bfq_mark_bfqq_split_coop(bfqq);
2584 
2585 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2586 		if (bfqq->dispatched == 0)
2587 			/*
2588 			 * Overloading budget_timeout field to store
2589 			 * the time at which the queue remains with no
2590 			 * backlog and no outstanding request; used by
2591 			 * the weight-raising mechanism.
2592 			 */
2593 			bfqq->budget_timeout = jiffies;
2594 
2595 		bfq_del_bfqq_busy(bfqd, bfqq, true);
2596 	} else {
2597 		bfq_requeue_bfqq(bfqd, bfqq, true);
2598 		/*
2599 		 * Resort priority tree of potential close cooperators.
2600 		 */
2601 		bfq_pos_tree_add_move(bfqd, bfqq);
2602 	}
2603 
2604 	/*
2605 	 * All in-service entities must have been properly deactivated
2606 	 * or requeued before executing the next function, which
2607 	 * resets all in-service entites as no more in service.
2608 	 */
2609 	__bfq_bfqd_reset_in_service(bfqd);
2610 }
2611 
2612 /**
2613  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2614  * @bfqd: device data.
2615  * @bfqq: queue to update.
2616  * @reason: reason for expiration.
2617  *
2618  * Handle the feedback on @bfqq budget at queue expiration.
2619  * See the body for detailed comments.
2620  */
__bfq_bfqq_recalc_budget(struct bfq_data * bfqd,struct bfq_queue * bfqq,enum bfqq_expiration reason)2621 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2622 				     struct bfq_queue *bfqq,
2623 				     enum bfqq_expiration reason)
2624 {
2625 	struct request *next_rq;
2626 	int budget, min_budget;
2627 
2628 	min_budget = bfq_min_budget(bfqd);
2629 
2630 	if (bfqq->wr_coeff == 1)
2631 		budget = bfqq->max_budget;
2632 	else /*
2633 	      * Use a constant, low budget for weight-raised queues,
2634 	      * to help achieve a low latency. Keep it slightly higher
2635 	      * than the minimum possible budget, to cause a little
2636 	      * bit fewer expirations.
2637 	      */
2638 		budget = 2 * min_budget;
2639 
2640 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2641 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2642 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2643 		budget, bfq_min_budget(bfqd));
2644 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2645 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2646 
2647 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
2648 		switch (reason) {
2649 		/*
2650 		 * Caveat: in all the following cases we trade latency
2651 		 * for throughput.
2652 		 */
2653 		case BFQQE_TOO_IDLE:
2654 			/*
2655 			 * This is the only case where we may reduce
2656 			 * the budget: if there is no request of the
2657 			 * process still waiting for completion, then
2658 			 * we assume (tentatively) that the timer has
2659 			 * expired because the batch of requests of
2660 			 * the process could have been served with a
2661 			 * smaller budget.  Hence, betting that
2662 			 * process will behave in the same way when it
2663 			 * becomes backlogged again, we reduce its
2664 			 * next budget.  As long as we guess right,
2665 			 * this budget cut reduces the latency
2666 			 * experienced by the process.
2667 			 *
2668 			 * However, if there are still outstanding
2669 			 * requests, then the process may have not yet
2670 			 * issued its next request just because it is
2671 			 * still waiting for the completion of some of
2672 			 * the still outstanding ones.  So in this
2673 			 * subcase we do not reduce its budget, on the
2674 			 * contrary we increase it to possibly boost
2675 			 * the throughput, as discussed in the
2676 			 * comments to the BUDGET_TIMEOUT case.
2677 			 */
2678 			if (bfqq->dispatched > 0) /* still outstanding reqs */
2679 				budget = min(budget * 2, bfqd->bfq_max_budget);
2680 			else {
2681 				if (budget > 5 * min_budget)
2682 					budget -= 4 * min_budget;
2683 				else
2684 					budget = min_budget;
2685 			}
2686 			break;
2687 		case BFQQE_BUDGET_TIMEOUT:
2688 			/*
2689 			 * We double the budget here because it gives
2690 			 * the chance to boost the throughput if this
2691 			 * is not a seeky process (and has bumped into
2692 			 * this timeout because of, e.g., ZBR).
2693 			 */
2694 			budget = min(budget * 2, bfqd->bfq_max_budget);
2695 			break;
2696 		case BFQQE_BUDGET_EXHAUSTED:
2697 			/*
2698 			 * The process still has backlog, and did not
2699 			 * let either the budget timeout or the disk
2700 			 * idling timeout expire. Hence it is not
2701 			 * seeky, has a short thinktime and may be
2702 			 * happy with a higher budget too. So
2703 			 * definitely increase the budget of this good
2704 			 * candidate to boost the disk throughput.
2705 			 */
2706 			budget = min(budget * 4, bfqd->bfq_max_budget);
2707 			break;
2708 		case BFQQE_NO_MORE_REQUESTS:
2709 			/*
2710 			 * For queues that expire for this reason, it
2711 			 * is particularly important to keep the
2712 			 * budget close to the actual service they
2713 			 * need. Doing so reduces the timestamp
2714 			 * misalignment problem described in the
2715 			 * comments in the body of
2716 			 * __bfq_activate_entity. In fact, suppose
2717 			 * that a queue systematically expires for
2718 			 * BFQQE_NO_MORE_REQUESTS and presents a
2719 			 * new request in time to enjoy timestamp
2720 			 * back-shifting. The larger the budget of the
2721 			 * queue is with respect to the service the
2722 			 * queue actually requests in each service
2723 			 * slot, the more times the queue can be
2724 			 * reactivated with the same virtual finish
2725 			 * time. It follows that, even if this finish
2726 			 * time is pushed to the system virtual time
2727 			 * to reduce the consequent timestamp
2728 			 * misalignment, the queue unjustly enjoys for
2729 			 * many re-activations a lower finish time
2730 			 * than all newly activated queues.
2731 			 *
2732 			 * The service needed by bfqq is measured
2733 			 * quite precisely by bfqq->entity.service.
2734 			 * Since bfqq does not enjoy device idling,
2735 			 * bfqq->entity.service is equal to the number
2736 			 * of sectors that the process associated with
2737 			 * bfqq requested to read/write before waiting
2738 			 * for request completions, or blocking for
2739 			 * other reasons.
2740 			 */
2741 			budget = max_t(int, bfqq->entity.service, min_budget);
2742 			break;
2743 		default:
2744 			return;
2745 		}
2746 	} else if (!bfq_bfqq_sync(bfqq)) {
2747 		/*
2748 		 * Async queues get always the maximum possible
2749 		 * budget, as for them we do not care about latency
2750 		 * (in addition, their ability to dispatch is limited
2751 		 * by the charging factor).
2752 		 */
2753 		budget = bfqd->bfq_max_budget;
2754 	}
2755 
2756 	bfqq->max_budget = budget;
2757 
2758 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2759 	    !bfqd->bfq_user_max_budget)
2760 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2761 
2762 	/*
2763 	 * If there is still backlog, then assign a new budget, making
2764 	 * sure that it is large enough for the next request.  Since
2765 	 * the finish time of bfqq must be kept in sync with the
2766 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
2767 	 * update.
2768 	 *
2769 	 * If there is no backlog, then no need to update the budget;
2770 	 * it will be updated on the arrival of a new request.
2771 	 */
2772 	next_rq = bfqq->next_rq;
2773 	if (next_rq)
2774 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2775 					    bfq_serv_to_charge(next_rq, bfqq));
2776 
2777 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2778 			next_rq ? blk_rq_sectors(next_rq) : 0,
2779 			bfqq->entity.budget);
2780 }
2781 
2782 /*
2783  * Return true if the process associated with bfqq is "slow". The slow
2784  * flag is used, in addition to the budget timeout, to reduce the
2785  * amount of service provided to seeky processes, and thus reduce
2786  * their chances to lower the throughput. More details in the comments
2787  * on the function bfq_bfqq_expire().
2788  *
2789  * An important observation is in order: as discussed in the comments
2790  * on the function bfq_update_peak_rate(), with devices with internal
2791  * queues, it is hard if ever possible to know when and for how long
2792  * an I/O request is processed by the device (apart from the trivial
2793  * I/O pattern where a new request is dispatched only after the
2794  * previous one has been completed). This makes it hard to evaluate
2795  * the real rate at which the I/O requests of each bfq_queue are
2796  * served.  In fact, for an I/O scheduler like BFQ, serving a
2797  * bfq_queue means just dispatching its requests during its service
2798  * slot (i.e., until the budget of the queue is exhausted, or the
2799  * queue remains idle, or, finally, a timeout fires). But, during the
2800  * service slot of a bfq_queue, around 100 ms at most, the device may
2801  * be even still processing requests of bfq_queues served in previous
2802  * service slots. On the opposite end, the requests of the in-service
2803  * bfq_queue may be completed after the service slot of the queue
2804  * finishes.
2805  *
2806  * Anyway, unless more sophisticated solutions are used
2807  * (where possible), the sum of the sizes of the requests dispatched
2808  * during the service slot of a bfq_queue is probably the only
2809  * approximation available for the service received by the bfq_queue
2810  * during its service slot. And this sum is the quantity used in this
2811  * function to evaluate the I/O speed of a process.
2812  */
bfq_bfqq_is_slow(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,enum bfqq_expiration reason,unsigned long * delta_ms)2813 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2814 				 bool compensate, enum bfqq_expiration reason,
2815 				 unsigned long *delta_ms)
2816 {
2817 	ktime_t delta_ktime;
2818 	u32 delta_usecs;
2819 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
2820 
2821 	if (!bfq_bfqq_sync(bfqq))
2822 		return false;
2823 
2824 	if (compensate)
2825 		delta_ktime = bfqd->last_idling_start;
2826 	else
2827 		delta_ktime = ktime_get();
2828 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
2829 	delta_usecs = ktime_to_us(delta_ktime);
2830 
2831 	/* don't use too short time intervals */
2832 	if (delta_usecs < 1000) {
2833 		if (blk_queue_nonrot(bfqd->queue))
2834 			 /*
2835 			  * give same worst-case guarantees as idling
2836 			  * for seeky
2837 			  */
2838 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
2839 		else /* charge at least one seek */
2840 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
2841 
2842 		return slow;
2843 	}
2844 
2845 	*delta_ms = delta_usecs / USEC_PER_MSEC;
2846 
2847 	/*
2848 	 * Use only long (> 20ms) intervals to filter out excessive
2849 	 * spikes in service rate estimation.
2850 	 */
2851 	if (delta_usecs > 20000) {
2852 		/*
2853 		 * Caveat for rotational devices: processes doing I/O
2854 		 * in the slower disk zones tend to be slow(er) even
2855 		 * if not seeky. In this respect, the estimated peak
2856 		 * rate is likely to be an average over the disk
2857 		 * surface. Accordingly, to not be too harsh with
2858 		 * unlucky processes, a process is deemed slow only if
2859 		 * its rate has been lower than half of the estimated
2860 		 * peak rate.
2861 		 */
2862 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
2863 	}
2864 
2865 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
2866 
2867 	return slow;
2868 }
2869 
2870 /*
2871  * To be deemed as soft real-time, an application must meet two
2872  * requirements. First, the application must not require an average
2873  * bandwidth higher than the approximate bandwidth required to playback or
2874  * record a compressed high-definition video.
2875  * The next function is invoked on the completion of the last request of a
2876  * batch, to compute the next-start time instant, soft_rt_next_start, such
2877  * that, if the next request of the application does not arrive before
2878  * soft_rt_next_start, then the above requirement on the bandwidth is met.
2879  *
2880  * The second requirement is that the request pattern of the application is
2881  * isochronous, i.e., that, after issuing a request or a batch of requests,
2882  * the application stops issuing new requests until all its pending requests
2883  * have been completed. After that, the application may issue a new batch,
2884  * and so on.
2885  * For this reason the next function is invoked to compute
2886  * soft_rt_next_start only for applications that meet this requirement,
2887  * whereas soft_rt_next_start is set to infinity for applications that do
2888  * not.
2889  *
2890  * Unfortunately, even a greedy application may happen to behave in an
2891  * isochronous way if the CPU load is high. In fact, the application may
2892  * stop issuing requests while the CPUs are busy serving other processes,
2893  * then restart, then stop again for a while, and so on. In addition, if
2894  * the disk achieves a low enough throughput with the request pattern
2895  * issued by the application (e.g., because the request pattern is random
2896  * and/or the device is slow), then the application may meet the above
2897  * bandwidth requirement too. To prevent such a greedy application to be
2898  * deemed as soft real-time, a further rule is used in the computation of
2899  * soft_rt_next_start: soft_rt_next_start must be higher than the current
2900  * time plus the maximum time for which the arrival of a request is waited
2901  * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle.
2902  * This filters out greedy applications, as the latter issue instead their
2903  * next request as soon as possible after the last one has been completed
2904  * (in contrast, when a batch of requests is completed, a soft real-time
2905  * application spends some time processing data).
2906  *
2907  * Unfortunately, the last filter may easily generate false positives if
2908  * only bfqd->bfq_slice_idle is used as a reference time interval and one
2909  * or both the following cases occur:
2910  * 1) HZ is so low that the duration of a jiffy is comparable to or higher
2911  *    than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
2912  *    HZ=100.
2913  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
2914  *    for a while, then suddenly 'jump' by several units to recover the lost
2915  *    increments. This seems to happen, e.g., inside virtual machines.
2916  * To address this issue, we do not use as a reference time interval just
2917  * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
2918  * particular we add the minimum number of jiffies for which the filter
2919  * seems to be quite precise also in embedded systems and KVM/QEMU virtual
2920  * machines.
2921  */
bfq_bfqq_softrt_next_start(struct bfq_data * bfqd,struct bfq_queue * bfqq)2922 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
2923 						struct bfq_queue *bfqq)
2924 {
2925 	return max(bfqq->last_idle_bklogged +
2926 		   HZ * bfqq->service_from_backlogged /
2927 		   bfqd->bfq_wr_max_softrt_rate,
2928 		   jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
2929 }
2930 
2931 /**
2932  * bfq_bfqq_expire - expire a queue.
2933  * @bfqd: device owning the queue.
2934  * @bfqq: the queue to expire.
2935  * @compensate: if true, compensate for the time spent idling.
2936  * @reason: the reason causing the expiration.
2937  *
2938  * If the process associated with bfqq does slow I/O (e.g., because it
2939  * issues random requests), we charge bfqq with the time it has been
2940  * in service instead of the service it has received (see
2941  * bfq_bfqq_charge_time for details on how this goal is achieved). As
2942  * a consequence, bfqq will typically get higher timestamps upon
2943  * reactivation, and hence it will be rescheduled as if it had
2944  * received more service than what it has actually received. In the
2945  * end, bfqq receives less service in proportion to how slowly its
2946  * associated process consumes its budgets (and hence how seriously it
2947  * tends to lower the throughput). In addition, this time-charging
2948  * strategy guarantees time fairness among slow processes. In
2949  * contrast, if the process associated with bfqq is not slow, we
2950  * charge bfqq exactly with the service it has received.
2951  *
2952  * Charging time to the first type of queues and the exact service to
2953  * the other has the effect of using the WF2Q+ policy to schedule the
2954  * former on a timeslice basis, without violating service domain
2955  * guarantees among the latter.
2956  */
bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,enum bfqq_expiration reason)2957 void bfq_bfqq_expire(struct bfq_data *bfqd,
2958 		     struct bfq_queue *bfqq,
2959 		     bool compensate,
2960 		     enum bfqq_expiration reason)
2961 {
2962 	bool slow;
2963 	unsigned long delta = 0;
2964 	struct bfq_entity *entity = &bfqq->entity;
2965 	int ref;
2966 
2967 	/*
2968 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
2969 	 */
2970 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
2971 
2972 	/*
2973 	 * Increase service_from_backlogged before next statement,
2974 	 * because the possible next invocation of
2975 	 * bfq_bfqq_charge_time would likely inflate
2976 	 * entity->service. In contrast, service_from_backlogged must
2977 	 * contain real service, to enable the soft real-time
2978 	 * heuristic to correctly compute the bandwidth consumed by
2979 	 * bfqq.
2980 	 */
2981 	bfqq->service_from_backlogged += entity->service;
2982 
2983 	/*
2984 	 * As above explained, charge slow (typically seeky) and
2985 	 * timed-out queues with the time and not the service
2986 	 * received, to favor sequential workloads.
2987 	 *
2988 	 * Processes doing I/O in the slower disk zones will tend to
2989 	 * be slow(er) even if not seeky. Therefore, since the
2990 	 * estimated peak rate is actually an average over the disk
2991 	 * surface, these processes may timeout just for bad luck. To
2992 	 * avoid punishing them, do not charge time to processes that
2993 	 * succeeded in consuming at least 2/3 of their budget. This
2994 	 * allows BFQ to preserve enough elasticity to still perform
2995 	 * bandwidth, and not time, distribution with little unlucky
2996 	 * or quasi-sequential processes.
2997 	 */
2998 	if (bfqq->wr_coeff == 1 &&
2999 	    (slow ||
3000 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3001 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3002 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3003 
3004 	if (reason == BFQQE_TOO_IDLE &&
3005 	    entity->service <= 2 * entity->budget / 10)
3006 		bfq_clear_bfqq_IO_bound(bfqq);
3007 
3008 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3009 		bfqq->last_wr_start_finish = jiffies;
3010 
3011 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3012 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3013 		/*
3014 		 * If we get here, and there are no outstanding
3015 		 * requests, then the request pattern is isochronous
3016 		 * (see the comments on the function
3017 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3018 		 * soft_rt_next_start. If, instead, the queue still
3019 		 * has outstanding requests, then we have to wait for
3020 		 * the completion of all the outstanding requests to
3021 		 * discover whether the request pattern is actually
3022 		 * isochronous.
3023 		 */
3024 		if (bfqq->dispatched == 0)
3025 			bfqq->soft_rt_next_start =
3026 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
3027 		else {
3028 			/*
3029 			 * The application is still waiting for the
3030 			 * completion of one or more requests:
3031 			 * prevent it from possibly being incorrectly
3032 			 * deemed as soft real-time by setting its
3033 			 * soft_rt_next_start to infinity. In fact,
3034 			 * without this assignment, the application
3035 			 * would be incorrectly deemed as soft
3036 			 * real-time if:
3037 			 * 1) it issued a new request before the
3038 			 *    completion of all its in-flight
3039 			 *    requests, and
3040 			 * 2) at that time, its soft_rt_next_start
3041 			 *    happened to be in the past.
3042 			 */
3043 			bfqq->soft_rt_next_start =
3044 				bfq_greatest_from_now();
3045 			/*
3046 			 * Schedule an update of soft_rt_next_start to when
3047 			 * the task may be discovered to be isochronous.
3048 			 */
3049 			bfq_mark_bfqq_softrt_update(bfqq);
3050 		}
3051 	}
3052 
3053 	bfq_log_bfqq(bfqd, bfqq,
3054 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3055 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
3056 
3057 	/*
3058 	 * Increase, decrease or leave budget unchanged according to
3059 	 * reason.
3060 	 */
3061 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3062 	ref = bfqq->ref;
3063 	__bfq_bfqq_expire(bfqd, bfqq);
3064 
3065 	/* mark bfqq as waiting a request only if a bic still points to it */
3066 	if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
3067 	    reason != BFQQE_BUDGET_TIMEOUT &&
3068 	    reason != BFQQE_BUDGET_EXHAUSTED)
3069 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3070 }
3071 
3072 /*
3073  * Budget timeout is not implemented through a dedicated timer, but
3074  * just checked on request arrivals and completions, as well as on
3075  * idle timer expirations.
3076  */
bfq_bfqq_budget_timeout(struct bfq_queue * bfqq)3077 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3078 {
3079 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
3080 }
3081 
3082 /*
3083  * If we expire a queue that is actively waiting (i.e., with the
3084  * device idled) for the arrival of a new request, then we may incur
3085  * the timestamp misalignment problem described in the body of the
3086  * function __bfq_activate_entity. Hence we return true only if this
3087  * condition does not hold, or if the queue is slow enough to deserve
3088  * only to be kicked off for preserving a high throughput.
3089  */
bfq_may_expire_for_budg_timeout(struct bfq_queue * bfqq)3090 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3091 {
3092 	bfq_log_bfqq(bfqq->bfqd, bfqq,
3093 		"may_budget_timeout: wait_request %d left %d timeout %d",
3094 		bfq_bfqq_wait_request(bfqq),
3095 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
3096 		bfq_bfqq_budget_timeout(bfqq));
3097 
3098 	return (!bfq_bfqq_wait_request(bfqq) ||
3099 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
3100 		&&
3101 		bfq_bfqq_budget_timeout(bfqq);
3102 }
3103 
3104 /*
3105  * For a queue that becomes empty, device idling is allowed only if
3106  * this function returns true for the queue. As a consequence, since
3107  * device idling plays a critical role in both throughput boosting and
3108  * service guarantees, the return value of this function plays a
3109  * critical role in both these aspects as well.
3110  *
3111  * In a nutshell, this function returns true only if idling is
3112  * beneficial for throughput or, even if detrimental for throughput,
3113  * idling is however necessary to preserve service guarantees (low
3114  * latency, desired throughput distribution, ...). In particular, on
3115  * NCQ-capable devices, this function tries to return false, so as to
3116  * help keep the drives' internal queues full, whenever this helps the
3117  * device boost the throughput without causing any service-guarantee
3118  * issue.
3119  *
3120  * In more detail, the return value of this function is obtained by,
3121  * first, computing a number of boolean variables that take into
3122  * account throughput and service-guarantee issues, and, then,
3123  * combining these variables in a logical expression. Most of the
3124  * issues taken into account are not trivial. We discuss these issues
3125  * individually while introducing the variables.
3126  */
bfq_bfqq_may_idle(struct bfq_queue * bfqq)3127 static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
3128 {
3129 	struct bfq_data *bfqd = bfqq->bfqd;
3130 	bool rot_without_queueing =
3131 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3132 		bfqq_sequential_and_IO_bound,
3133 		idling_boosts_thr, idling_boosts_thr_without_issues,
3134 		idling_needed_for_service_guarantees,
3135 		asymmetric_scenario;
3136 
3137 	if (bfqd->strict_guarantees)
3138 		return true;
3139 
3140 	/*
3141 	 * Idling is performed only if slice_idle > 0. In addition, we
3142 	 * do not idle if
3143 	 * (a) bfqq is async
3144 	 * (b) bfqq is in the idle io prio class: in this case we do
3145 	 * not idle because we want to minimize the bandwidth that
3146 	 * queues in this class can steal to higher-priority queues
3147 	 */
3148 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3149 	    bfq_class_idle(bfqq))
3150 		return false;
3151 
3152 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3153 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3154 
3155 	/*
3156 	 * The next variable takes into account the cases where idling
3157 	 * boosts the throughput.
3158 	 *
3159 	 * The value of the variable is computed considering, first, that
3160 	 * idling is virtually always beneficial for the throughput if:
3161 	 * (a) the device is not NCQ-capable and rotational, or
3162 	 * (b) regardless of the presence of NCQ, the device is rotational and
3163 	 *     the request pattern for bfqq is I/O-bound and sequential, or
3164 	 * (c) regardless of whether it is rotational, the device is
3165 	 *     not NCQ-capable and the request pattern for bfqq is
3166 	 *     I/O-bound and sequential.
3167 	 *
3168 	 * Secondly, and in contrast to the above item (b), idling an
3169 	 * NCQ-capable flash-based device would not boost the
3170 	 * throughput even with sequential I/O; rather it would lower
3171 	 * the throughput in proportion to how fast the device
3172 	 * is. Accordingly, the next variable is true if any of the
3173 	 * above conditions (a), (b) or (c) is true, and, in
3174 	 * particular, happens to be false if bfqd is an NCQ-capable
3175 	 * flash-based device.
3176 	 */
3177 	idling_boosts_thr = rot_without_queueing ||
3178 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3179 		 bfqq_sequential_and_IO_bound);
3180 
3181 	/*
3182 	 * The value of the next variable,
3183 	 * idling_boosts_thr_without_issues, is equal to that of
3184 	 * idling_boosts_thr, unless a special case holds. In this
3185 	 * special case, described below, idling may cause problems to
3186 	 * weight-raised queues.
3187 	 *
3188 	 * When the request pool is saturated (e.g., in the presence
3189 	 * of write hogs), if the processes associated with
3190 	 * non-weight-raised queues ask for requests at a lower rate,
3191 	 * then processes associated with weight-raised queues have a
3192 	 * higher probability to get a request from the pool
3193 	 * immediately (or at least soon) when they need one. Thus
3194 	 * they have a higher probability to actually get a fraction
3195 	 * of the device throughput proportional to their high
3196 	 * weight. This is especially true with NCQ-capable drives,
3197 	 * which enqueue several requests in advance, and further
3198 	 * reorder internally-queued requests.
3199 	 *
3200 	 * For this reason, we force to false the value of
3201 	 * idling_boosts_thr_without_issues if there are weight-raised
3202 	 * busy queues. In this case, and if bfqq is not weight-raised,
3203 	 * this guarantees that the device is not idled for bfqq (if,
3204 	 * instead, bfqq is weight-raised, then idling will be
3205 	 * guaranteed by another variable, see below). Combined with
3206 	 * the timestamping rules of BFQ (see [1] for details), this
3207 	 * behavior causes bfqq, and hence any sync non-weight-raised
3208 	 * queue, to get a lower number of requests served, and thus
3209 	 * to ask for a lower number of requests from the request
3210 	 * pool, before the busy weight-raised queues get served
3211 	 * again. This often mitigates starvation problems in the
3212 	 * presence of heavy write workloads and NCQ, thereby
3213 	 * guaranteeing a higher application and system responsiveness
3214 	 * in these hostile scenarios.
3215 	 */
3216 	idling_boosts_thr_without_issues = idling_boosts_thr &&
3217 		bfqd->wr_busy_queues == 0;
3218 
3219 	/*
3220 	 * There is then a case where idling must be performed not
3221 	 * for throughput concerns, but to preserve service
3222 	 * guarantees.
3223 	 *
3224 	 * To introduce this case, we can note that allowing the drive
3225 	 * to enqueue more than one request at a time, and hence
3226 	 * delegating de facto final scheduling decisions to the
3227 	 * drive's internal scheduler, entails loss of control on the
3228 	 * actual request service order. In particular, the critical
3229 	 * situation is when requests from different processes happen
3230 	 * to be present, at the same time, in the internal queue(s)
3231 	 * of the drive. In such a situation, the drive, by deciding
3232 	 * the service order of the internally-queued requests, does
3233 	 * determine also the actual throughput distribution among
3234 	 * these processes. But the drive typically has no notion or
3235 	 * concern about per-process throughput distribution, and
3236 	 * makes its decisions only on a per-request basis. Therefore,
3237 	 * the service distribution enforced by the drive's internal
3238 	 * scheduler is likely to coincide with the desired
3239 	 * device-throughput distribution only in a completely
3240 	 * symmetric scenario where:
3241 	 * (i)  each of these processes must get the same throughput as
3242 	 *      the others;
3243 	 * (ii) all these processes have the same I/O pattern
3244 		(either sequential or random).
3245 	 * In fact, in such a scenario, the drive will tend to treat
3246 	 * the requests of each of these processes in about the same
3247 	 * way as the requests of the others, and thus to provide
3248 	 * each of these processes with about the same throughput
3249 	 * (which is exactly the desired throughput distribution). In
3250 	 * contrast, in any asymmetric scenario, device idling is
3251 	 * certainly needed to guarantee that bfqq receives its
3252 	 * assigned fraction of the device throughput (see [1] for
3253 	 * details).
3254 	 *
3255 	 * We address this issue by controlling, actually, only the
3256 	 * symmetry sub-condition (i), i.e., provided that
3257 	 * sub-condition (i) holds, idling is not performed,
3258 	 * regardless of whether sub-condition (ii) holds. In other
3259 	 * words, only if sub-condition (i) holds, then idling is
3260 	 * allowed, and the device tends to be prevented from queueing
3261 	 * many requests, possibly of several processes. The reason
3262 	 * for not controlling also sub-condition (ii) is that we
3263 	 * exploit preemption to preserve guarantees in case of
3264 	 * symmetric scenarios, even if (ii) does not hold, as
3265 	 * explained in the next two paragraphs.
3266 	 *
3267 	 * Even if a queue, say Q, is expired when it remains idle, Q
3268 	 * can still preempt the new in-service queue if the next
3269 	 * request of Q arrives soon (see the comments on
3270 	 * bfq_bfqq_update_budg_for_activation). If all queues and
3271 	 * groups have the same weight, this form of preemption,
3272 	 * combined with the hole-recovery heuristic described in the
3273 	 * comments on function bfq_bfqq_update_budg_for_activation,
3274 	 * are enough to preserve a correct bandwidth distribution in
3275 	 * the mid term, even without idling. In fact, even if not
3276 	 * idling allows the internal queues of the device to contain
3277 	 * many requests, and thus to reorder requests, we can rather
3278 	 * safely assume that the internal scheduler still preserves a
3279 	 * minimum of mid-term fairness. The motivation for using
3280 	 * preemption instead of idling is that, by not idling,
3281 	 * service guarantees are preserved without minimally
3282 	 * sacrificing throughput. In other words, both a high
3283 	 * throughput and its desired distribution are obtained.
3284 	 *
3285 	 * More precisely, this preemption-based, idleless approach
3286 	 * provides fairness in terms of IOPS, and not sectors per
3287 	 * second. This can be seen with a simple example. Suppose
3288 	 * that there are two queues with the same weight, but that
3289 	 * the first queue receives requests of 8 sectors, while the
3290 	 * second queue receives requests of 1024 sectors. In
3291 	 * addition, suppose that each of the two queues contains at
3292 	 * most one request at a time, which implies that each queue
3293 	 * always remains idle after it is served. Finally, after
3294 	 * remaining idle, each queue receives very quickly a new
3295 	 * request. It follows that the two queues are served
3296 	 * alternatively, preempting each other if needed. This
3297 	 * implies that, although both queues have the same weight,
3298 	 * the queue with large requests receives a service that is
3299 	 * 1024/8 times as high as the service received by the other
3300 	 * queue.
3301 	 *
3302 	 * On the other hand, device idling is performed, and thus
3303 	 * pure sector-domain guarantees are provided, for the
3304 	 * following queues, which are likely to need stronger
3305 	 * throughput guarantees: weight-raised queues, and queues
3306 	 * with a higher weight than other queues. When such queues
3307 	 * are active, sub-condition (i) is false, which triggers
3308 	 * device idling.
3309 	 *
3310 	 * According to the above considerations, the next variable is
3311 	 * true (only) if sub-condition (i) holds. To compute the
3312 	 * value of this variable, we not only use the return value of
3313 	 * the function bfq_symmetric_scenario(), but also check
3314 	 * whether bfqq is being weight-raised, because
3315 	 * bfq_symmetric_scenario() does not take into account also
3316 	 * weight-raised queues (see comments on
3317 	 * bfq_weights_tree_add()). In particular, if bfqq is being
3318 	 * weight-raised, it is important to idle only if there are
3319 	 * other, non-weight-raised queues that may steal throughput
3320 	 * to bfqq. Actually, we should be even more precise, and
3321 	 * differentiate between interactive weight raising and
3322 	 * soft real-time weight raising.
3323 	 *
3324 	 * As a side note, it is worth considering that the above
3325 	 * device-idling countermeasures may however fail in the
3326 	 * following unlucky scenario: if idling is (correctly)
3327 	 * disabled in a time period during which all symmetry
3328 	 * sub-conditions hold, and hence the device is allowed to
3329 	 * enqueue many requests, but at some later point in time some
3330 	 * sub-condition stops to hold, then it may become impossible
3331 	 * to let requests be served in the desired order until all
3332 	 * the requests already queued in the device have been served.
3333 	 */
3334 	asymmetric_scenario = (bfqq->wr_coeff > 1 &&
3335 			       bfqd->wr_busy_queues < bfqd->busy_queues) ||
3336 		!bfq_symmetric_scenario(bfqd);
3337 
3338 	/*
3339 	 * Finally, there is a case where maximizing throughput is the
3340 	 * best choice even if it may cause unfairness toward
3341 	 * bfqq. Such a case is when bfqq became active in a burst of
3342 	 * queue activations. Queues that became active during a large
3343 	 * burst benefit only from throughput, as discussed in the
3344 	 * comments on bfq_handle_burst. Thus, if bfqq became active
3345 	 * in a burst and not idling the device maximizes throughput,
3346 	 * then the device must no be idled, because not idling the
3347 	 * device provides bfqq and all other queues in the burst with
3348 	 * maximum benefit. Combining this and the above case, we can
3349 	 * now establish when idling is actually needed to preserve
3350 	 * service guarantees.
3351 	 */
3352 	idling_needed_for_service_guarantees =
3353 		asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3354 
3355 	/*
3356 	 * We have now all the components we need to compute the
3357 	 * return value of the function, which is true only if idling
3358 	 * either boosts the throughput (without issues), or is
3359 	 * necessary to preserve service guarantees.
3360 	 */
3361 	return idling_boosts_thr_without_issues ||
3362 		idling_needed_for_service_guarantees;
3363 }
3364 
3365 /*
3366  * If the in-service queue is empty but the function bfq_bfqq_may_idle
3367  * returns true, then:
3368  * 1) the queue must remain in service and cannot be expired, and
3369  * 2) the device must be idled to wait for the possible arrival of a new
3370  *    request for the queue.
3371  * See the comments on the function bfq_bfqq_may_idle for the reasons
3372  * why performing device idling is the best choice to boost the throughput
3373  * and preserve service guarantees when bfq_bfqq_may_idle itself
3374  * returns true.
3375  */
bfq_bfqq_must_idle(struct bfq_queue * bfqq)3376 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3377 {
3378 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_may_idle(bfqq);
3379 }
3380 
3381 /*
3382  * Select a queue for service.  If we have a current queue in service,
3383  * check whether to continue servicing it, or retrieve and set a new one.
3384  */
bfq_select_queue(struct bfq_data * bfqd)3385 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3386 {
3387 	struct bfq_queue *bfqq;
3388 	struct request *next_rq;
3389 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3390 
3391 	bfqq = bfqd->in_service_queue;
3392 	if (!bfqq)
3393 		goto new_queue;
3394 
3395 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3396 
3397 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
3398 	    !bfq_bfqq_wait_request(bfqq) &&
3399 	    !bfq_bfqq_must_idle(bfqq))
3400 		goto expire;
3401 
3402 check_queue:
3403 	/*
3404 	 * This loop is rarely executed more than once. Even when it
3405 	 * happens, it is much more convenient to re-execute this loop
3406 	 * than to return NULL and trigger a new dispatch to get a
3407 	 * request served.
3408 	 */
3409 	next_rq = bfqq->next_rq;
3410 	/*
3411 	 * If bfqq has requests queued and it has enough budget left to
3412 	 * serve them, keep the queue, otherwise expire it.
3413 	 */
3414 	if (next_rq) {
3415 		if (bfq_serv_to_charge(next_rq, bfqq) >
3416 			bfq_bfqq_budget_left(bfqq)) {
3417 			/*
3418 			 * Expire the queue for budget exhaustion,
3419 			 * which makes sure that the next budget is
3420 			 * enough to serve the next request, even if
3421 			 * it comes from the fifo expired path.
3422 			 */
3423 			reason = BFQQE_BUDGET_EXHAUSTED;
3424 			goto expire;
3425 		} else {
3426 			/*
3427 			 * The idle timer may be pending because we may
3428 			 * not disable disk idling even when a new request
3429 			 * arrives.
3430 			 */
3431 			if (bfq_bfqq_wait_request(bfqq)) {
3432 				/*
3433 				 * If we get here: 1) at least a new request
3434 				 * has arrived but we have not disabled the
3435 				 * timer because the request was too small,
3436 				 * 2) then the block layer has unplugged
3437 				 * the device, causing the dispatch to be
3438 				 * invoked.
3439 				 *
3440 				 * Since the device is unplugged, now the
3441 				 * requests are probably large enough to
3442 				 * provide a reasonable throughput.
3443 				 * So we disable idling.
3444 				 */
3445 				bfq_clear_bfqq_wait_request(bfqq);
3446 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3447 				bfqg_stats_update_idle_time(bfqq_group(bfqq));
3448 			}
3449 			goto keep_queue;
3450 		}
3451 	}
3452 
3453 	/*
3454 	 * No requests pending. However, if the in-service queue is idling
3455 	 * for a new request, or has requests waiting for a completion and
3456 	 * may idle after their completion, then keep it anyway.
3457 	 */
3458 	if (bfq_bfqq_wait_request(bfqq) ||
3459 	    (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
3460 		bfqq = NULL;
3461 		goto keep_queue;
3462 	}
3463 
3464 	reason = BFQQE_NO_MORE_REQUESTS;
3465 expire:
3466 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
3467 new_queue:
3468 	bfqq = bfq_set_in_service_queue(bfqd);
3469 	if (bfqq) {
3470 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3471 		goto check_queue;
3472 	}
3473 keep_queue:
3474 	if (bfqq)
3475 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3476 	else
3477 		bfq_log(bfqd, "select_queue: no queue returned");
3478 
3479 	return bfqq;
3480 }
3481 
bfq_update_wr_data(struct bfq_data * bfqd,struct bfq_queue * bfqq)3482 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3483 {
3484 	struct bfq_entity *entity = &bfqq->entity;
3485 
3486 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3487 		bfq_log_bfqq(bfqd, bfqq,
3488 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3489 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3490 			jiffies_to_msecs(bfqq->wr_cur_max_time),
3491 			bfqq->wr_coeff,
3492 			bfqq->entity.weight, bfqq->entity.orig_weight);
3493 
3494 		if (entity->prio_changed)
3495 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3496 
3497 		/*
3498 		 * If the queue was activated in a burst, or too much
3499 		 * time has elapsed from the beginning of this
3500 		 * weight-raising period, then end weight raising.
3501 		 */
3502 		if (bfq_bfqq_in_large_burst(bfqq))
3503 			bfq_bfqq_end_wr(bfqq);
3504 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3505 						bfqq->wr_cur_max_time)) {
3506 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3507 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
3508 					       bfq_wr_duration(bfqd)))
3509 				bfq_bfqq_end_wr(bfqq);
3510 			else {
3511 				/* switch back to interactive wr */
3512 				bfqq->wr_coeff = bfqd->bfq_wr_coeff;
3513 				bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
3514 				bfqq->last_wr_start_finish =
3515 					bfqq->wr_start_at_switch_to_srt;
3516 				bfqq->entity.prio_changed = 1;
3517 			}
3518 		}
3519 	}
3520 	/*
3521 	 * To improve latency (for this or other queues), immediately
3522 	 * update weight both if it must be raised and if it must be
3523 	 * lowered. Since, entity may be on some active tree here, and
3524 	 * might have a pending change of its ioprio class, invoke
3525 	 * next function with the last parameter unset (see the
3526 	 * comments on the function).
3527 	 */
3528 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
3529 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3530 						entity, false);
3531 }
3532 
3533 /*
3534  * Dispatch next request from bfqq.
3535  */
bfq_dispatch_rq_from_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)3536 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3537 						 struct bfq_queue *bfqq)
3538 {
3539 	struct request *rq = bfqq->next_rq;
3540 	unsigned long service_to_charge;
3541 
3542 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
3543 
3544 	bfq_bfqq_served(bfqq, service_to_charge);
3545 
3546 	bfq_dispatch_remove(bfqd->queue, rq);
3547 
3548 	/*
3549 	 * If weight raising has to terminate for bfqq, then next
3550 	 * function causes an immediate update of bfqq's weight,
3551 	 * without waiting for next activation. As a consequence, on
3552 	 * expiration, bfqq will be timestamped as if has never been
3553 	 * weight-raised during this service slot, even if it has
3554 	 * received part or even most of the service as a
3555 	 * weight-raised queue. This inflates bfqq's timestamps, which
3556 	 * is beneficial, as bfqq is then more willing to leave the
3557 	 * device immediately to possible other weight-raised queues.
3558 	 */
3559 	bfq_update_wr_data(bfqd, bfqq);
3560 
3561 	/*
3562 	 * Expire bfqq, pretending that its budget expired, if bfqq
3563 	 * belongs to CLASS_IDLE and other queues are waiting for
3564 	 * service.
3565 	 */
3566 	if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3567 		goto expire;
3568 
3569 	return rq;
3570 
3571 expire:
3572 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3573 	return rq;
3574 }
3575 
bfq_has_work(struct blk_mq_hw_ctx * hctx)3576 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3577 {
3578 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3579 
3580 	/*
3581 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
3582 	 * most a call to dispatch for nothing
3583 	 */
3584 	return !list_empty_careful(&bfqd->dispatch) ||
3585 		bfqd->busy_queues > 0;
3586 }
3587 
__bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)3588 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3589 {
3590 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3591 	struct request *rq = NULL;
3592 	struct bfq_queue *bfqq = NULL;
3593 
3594 	if (!list_empty(&bfqd->dispatch)) {
3595 		rq = list_first_entry(&bfqd->dispatch, struct request,
3596 				      queuelist);
3597 		list_del_init(&rq->queuelist);
3598 
3599 		bfqq = RQ_BFQQ(rq);
3600 
3601 		if (bfqq) {
3602 			/*
3603 			 * Increment counters here, because this
3604 			 * dispatch does not follow the standard
3605 			 * dispatch flow (where counters are
3606 			 * incremented)
3607 			 */
3608 			bfqq->dispatched++;
3609 
3610 			goto inc_in_driver_start_rq;
3611 		}
3612 
3613 		/*
3614 		 * We exploit the put_rq_private hook to decrement
3615 		 * rq_in_driver, but put_rq_private will not be
3616 		 * invoked on this request. So, to avoid unbalance,
3617 		 * just start this request, without incrementing
3618 		 * rq_in_driver. As a negative consequence,
3619 		 * rq_in_driver is deceptively lower than it should be
3620 		 * while this request is in service. This may cause
3621 		 * bfq_schedule_dispatch to be invoked uselessly.
3622 		 *
3623 		 * As for implementing an exact solution, the
3624 		 * put_request hook, if defined, is probably invoked
3625 		 * also on this request. So, by exploiting this hook,
3626 		 * we could 1) increment rq_in_driver here, and 2)
3627 		 * decrement it in put_request. Such a solution would
3628 		 * let the value of the counter be always accurate,
3629 		 * but it would entail using an extra interface
3630 		 * function. This cost seems higher than the benefit,
3631 		 * being the frequency of non-elevator-private
3632 		 * requests very low.
3633 		 */
3634 		goto start_rq;
3635 	}
3636 
3637 	bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3638 
3639 	if (bfqd->busy_queues == 0)
3640 		goto exit;
3641 
3642 	/*
3643 	 * Force device to serve one request at a time if
3644 	 * strict_guarantees is true. Forcing this service scheme is
3645 	 * currently the ONLY way to guarantee that the request
3646 	 * service order enforced by the scheduler is respected by a
3647 	 * queueing device. Otherwise the device is free even to make
3648 	 * some unlucky request wait for as long as the device
3649 	 * wishes.
3650 	 *
3651 	 * Of course, serving one request at at time may cause loss of
3652 	 * throughput.
3653 	 */
3654 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3655 		goto exit;
3656 
3657 	bfqq = bfq_select_queue(bfqd);
3658 	if (!bfqq)
3659 		goto exit;
3660 
3661 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3662 
3663 	if (rq) {
3664 inc_in_driver_start_rq:
3665 		bfqd->rq_in_driver++;
3666 start_rq:
3667 		rq->rq_flags |= RQF_STARTED;
3668 	}
3669 exit:
3670 	return rq;
3671 }
3672 
bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)3673 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3674 {
3675 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3676 	struct request *rq;
3677 
3678 	spin_lock_irq(&bfqd->lock);
3679 
3680 	rq = __bfq_dispatch_request(hctx);
3681 	spin_unlock_irq(&bfqd->lock);
3682 
3683 	return rq;
3684 }
3685 
3686 /*
3687  * Task holds one reference to the queue, dropped when task exits.  Each rq
3688  * in-flight on this queue also holds a reference, dropped when rq is freed.
3689  *
3690  * Scheduler lock must be held here. Recall not to use bfqq after calling
3691  * this function on it.
3692  */
bfq_put_queue(struct bfq_queue * bfqq)3693 void bfq_put_queue(struct bfq_queue *bfqq)
3694 {
3695 #ifdef CONFIG_BFQ_GROUP_IOSCHED
3696 	struct bfq_group *bfqg = bfqq_group(bfqq);
3697 #endif
3698 
3699 	if (bfqq->bfqd)
3700 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
3701 			     bfqq, bfqq->ref);
3702 
3703 	bfqq->ref--;
3704 	if (bfqq->ref)
3705 		return;
3706 
3707 	if (bfq_bfqq_sync(bfqq))
3708 		/*
3709 		 * The fact that this queue is being destroyed does not
3710 		 * invalidate the fact that this queue may have been
3711 		 * activated during the current burst. As a consequence,
3712 		 * although the queue does not exist anymore, and hence
3713 		 * needs to be removed from the burst list if there,
3714 		 * the burst size has not to be decremented.
3715 		 */
3716 		hlist_del_init(&bfqq->burst_list_node);
3717 
3718 	kmem_cache_free(bfq_pool, bfqq);
3719 #ifdef CONFIG_BFQ_GROUP_IOSCHED
3720 	bfqg_and_blkg_put(bfqg);
3721 #endif
3722 }
3723 
bfq_put_cooperator(struct bfq_queue * bfqq)3724 static void bfq_put_cooperator(struct bfq_queue *bfqq)
3725 {
3726 	struct bfq_queue *__bfqq, *next;
3727 
3728 	/*
3729 	 * If this queue was scheduled to merge with another queue, be
3730 	 * sure to drop the reference taken on that queue (and others in
3731 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
3732 	 */
3733 	__bfqq = bfqq->new_bfqq;
3734 	while (__bfqq) {
3735 		if (__bfqq == bfqq)
3736 			break;
3737 		next = __bfqq->new_bfqq;
3738 		bfq_put_queue(__bfqq);
3739 		__bfqq = next;
3740 	}
3741 }
3742 
bfq_exit_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)3743 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3744 {
3745 	if (bfqq == bfqd->in_service_queue) {
3746 		__bfq_bfqq_expire(bfqd, bfqq);
3747 		bfq_schedule_dispatch(bfqd);
3748 	}
3749 
3750 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
3751 
3752 	bfq_put_cooperator(bfqq);
3753 
3754 	bfq_put_queue(bfqq); /* release process reference */
3755 }
3756 
bfq_exit_icq_bfqq(struct bfq_io_cq * bic,bool is_sync)3757 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
3758 {
3759 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
3760 	struct bfq_data *bfqd;
3761 
3762 	if (bfqq)
3763 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
3764 
3765 	if (bfqq && bfqd) {
3766 		unsigned long flags;
3767 
3768 		spin_lock_irqsave(&bfqd->lock, flags);
3769 		bfqq->bic = NULL;
3770 		bfq_exit_bfqq(bfqd, bfqq);
3771 		bic_set_bfqq(bic, NULL, is_sync);
3772 		spin_unlock_irqrestore(&bfqd->lock, flags);
3773 	}
3774 }
3775 
bfq_exit_icq(struct io_cq * icq)3776 static void bfq_exit_icq(struct io_cq *icq)
3777 {
3778 	struct bfq_io_cq *bic = icq_to_bic(icq);
3779 
3780 	bfq_exit_icq_bfqq(bic, true);
3781 	bfq_exit_icq_bfqq(bic, false);
3782 }
3783 
3784 /*
3785  * Update the entity prio values; note that the new values will not
3786  * be used until the next (re)activation.
3787  */
3788 static void
bfq_set_next_ioprio_data(struct bfq_queue * bfqq,struct bfq_io_cq * bic)3789 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
3790 {
3791 	struct task_struct *tsk = current;
3792 	int ioprio_class;
3793 	struct bfq_data *bfqd = bfqq->bfqd;
3794 
3795 	if (!bfqd)
3796 		return;
3797 
3798 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
3799 	switch (ioprio_class) {
3800 	default:
3801 		dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
3802 			"bfq: bad prio class %d\n", ioprio_class);
3803 		/* fall through */
3804 	case IOPRIO_CLASS_NONE:
3805 		/*
3806 		 * No prio set, inherit CPU scheduling settings.
3807 		 */
3808 		bfqq->new_ioprio = task_nice_ioprio(tsk);
3809 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
3810 		break;
3811 	case IOPRIO_CLASS_RT:
3812 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3813 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
3814 		break;
3815 	case IOPRIO_CLASS_BE:
3816 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3817 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
3818 		break;
3819 	case IOPRIO_CLASS_IDLE:
3820 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
3821 		bfqq->new_ioprio = 7;
3822 		break;
3823 	}
3824 
3825 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
3826 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
3827 			bfqq->new_ioprio);
3828 		bfqq->new_ioprio = IOPRIO_BE_NR;
3829 	}
3830 
3831 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
3832 	bfqq->entity.prio_changed = 1;
3833 }
3834 
3835 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
3836 				       struct bio *bio, bool is_sync,
3837 				       struct bfq_io_cq *bic);
3838 
bfq_check_ioprio_change(struct bfq_io_cq * bic,struct bio * bio)3839 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
3840 {
3841 	struct bfq_data *bfqd = bic_to_bfqd(bic);
3842 	struct bfq_queue *bfqq;
3843 	int ioprio = bic->icq.ioc->ioprio;
3844 
3845 	/*
3846 	 * This condition may trigger on a newly created bic, be sure to
3847 	 * drop the lock before returning.
3848 	 */
3849 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
3850 		return;
3851 
3852 	bic->ioprio = ioprio;
3853 
3854 	bfqq = bic_to_bfqq(bic, false);
3855 	if (bfqq) {
3856 		/* release process reference on this queue */
3857 		bfq_put_queue(bfqq);
3858 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
3859 		bic_set_bfqq(bic, bfqq, false);
3860 	}
3861 
3862 	bfqq = bic_to_bfqq(bic, true);
3863 	if (bfqq)
3864 		bfq_set_next_ioprio_data(bfqq, bic);
3865 }
3866 
bfq_init_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic,pid_t pid,int is_sync)3867 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3868 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
3869 {
3870 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
3871 	INIT_LIST_HEAD(&bfqq->fifo);
3872 	INIT_HLIST_NODE(&bfqq->burst_list_node);
3873 
3874 	bfqq->ref = 0;
3875 	bfqq->bfqd = bfqd;
3876 
3877 	if (bic)
3878 		bfq_set_next_ioprio_data(bfqq, bic);
3879 
3880 	if (is_sync) {
3881 		/*
3882 		 * No need to mark as has_short_ttime if in
3883 		 * idle_class, because no device idling is performed
3884 		 * for queues in idle class
3885 		 */
3886 		if (!bfq_class_idle(bfqq))
3887 			/* tentatively mark as has_short_ttime */
3888 			bfq_mark_bfqq_has_short_ttime(bfqq);
3889 		bfq_mark_bfqq_sync(bfqq);
3890 		bfq_mark_bfqq_just_created(bfqq);
3891 	} else
3892 		bfq_clear_bfqq_sync(bfqq);
3893 
3894 	/* set end request to minus infinity from now */
3895 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
3896 
3897 	bfq_mark_bfqq_IO_bound(bfqq);
3898 
3899 	bfqq->pid = pid;
3900 
3901 	/* Tentative initial value to trade off between thr and lat */
3902 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
3903 	bfqq->budget_timeout = bfq_smallest_from_now();
3904 
3905 	bfqq->wr_coeff = 1;
3906 	bfqq->last_wr_start_finish = jiffies;
3907 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
3908 	bfqq->split_time = bfq_smallest_from_now();
3909 
3910 	/*
3911 	 * Set to the value for which bfqq will not be deemed as
3912 	 * soft rt when it becomes backlogged.
3913 	 */
3914 	bfqq->soft_rt_next_start = bfq_greatest_from_now();
3915 
3916 	/* first request is almost certainly seeky */
3917 	bfqq->seek_history = 1;
3918 }
3919 
bfq_async_queue_prio(struct bfq_data * bfqd,struct bfq_group * bfqg,int ioprio_class,int ioprio)3920 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
3921 					       struct bfq_group *bfqg,
3922 					       int ioprio_class, int ioprio)
3923 {
3924 	switch (ioprio_class) {
3925 	case IOPRIO_CLASS_RT:
3926 		return &bfqg->async_bfqq[0][ioprio];
3927 	case IOPRIO_CLASS_NONE:
3928 		ioprio = IOPRIO_NORM;
3929 		/* fall through */
3930 	case IOPRIO_CLASS_BE:
3931 		return &bfqg->async_bfqq[1][ioprio];
3932 	case IOPRIO_CLASS_IDLE:
3933 		return &bfqg->async_idle_bfqq;
3934 	default:
3935 		return NULL;
3936 	}
3937 }
3938 
bfq_get_queue(struct bfq_data * bfqd,struct bio * bio,bool is_sync,struct bfq_io_cq * bic)3939 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
3940 				       struct bio *bio, bool is_sync,
3941 				       struct bfq_io_cq *bic)
3942 {
3943 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3944 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
3945 	struct bfq_queue **async_bfqq = NULL;
3946 	struct bfq_queue *bfqq;
3947 	struct bfq_group *bfqg;
3948 
3949 	rcu_read_lock();
3950 
3951 	bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
3952 	if (!bfqg) {
3953 		bfqq = &bfqd->oom_bfqq;
3954 		goto out;
3955 	}
3956 
3957 	if (!is_sync) {
3958 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
3959 						  ioprio);
3960 		bfqq = *async_bfqq;
3961 		if (bfqq)
3962 			goto out;
3963 	}
3964 
3965 	bfqq = kmem_cache_alloc_node(bfq_pool,
3966 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3967 				     bfqd->queue->node);
3968 
3969 	if (bfqq) {
3970 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
3971 			      is_sync);
3972 		bfq_init_entity(&bfqq->entity, bfqg);
3973 		bfq_log_bfqq(bfqd, bfqq, "allocated");
3974 	} else {
3975 		bfqq = &bfqd->oom_bfqq;
3976 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
3977 		goto out;
3978 	}
3979 
3980 	/*
3981 	 * Pin the queue now that it's allocated, scheduler exit will
3982 	 * prune it.
3983 	 */
3984 	if (async_bfqq) {
3985 		bfqq->ref++; /*
3986 			      * Extra group reference, w.r.t. sync
3987 			      * queue. This extra reference is removed
3988 			      * only if bfqq->bfqg disappears, to
3989 			      * guarantee that this queue is not freed
3990 			      * until its group goes away.
3991 			      */
3992 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
3993 			     bfqq, bfqq->ref);
3994 		*async_bfqq = bfqq;
3995 	}
3996 
3997 out:
3998 	bfqq->ref++; /* get a process reference to this queue */
3999 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4000 	rcu_read_unlock();
4001 	return bfqq;
4002 }
4003 
bfq_update_io_thinktime(struct bfq_data * bfqd,struct bfq_queue * bfqq)4004 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4005 				    struct bfq_queue *bfqq)
4006 {
4007 	struct bfq_ttime *ttime = &bfqq->ttime;
4008 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4009 
4010 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4011 
4012 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4013 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
4014 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4015 				     ttime->ttime_samples);
4016 }
4017 
4018 static void
bfq_update_io_seektime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)4019 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4020 		       struct request *rq)
4021 {
4022 	bfqq->seek_history <<= 1;
4023 	bfqq->seek_history |=
4024 		get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
4025 		(!blk_queue_nonrot(bfqd->queue) ||
4026 		 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4027 }
4028 
bfq_update_has_short_ttime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic)4029 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4030 				       struct bfq_queue *bfqq,
4031 				       struct bfq_io_cq *bic)
4032 {
4033 	bool has_short_ttime = true;
4034 
4035 	/*
4036 	 * No need to update has_short_ttime if bfqq is async or in
4037 	 * idle io prio class, or if bfq_slice_idle is zero, because
4038 	 * no device idling is performed for bfqq in this case.
4039 	 */
4040 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4041 	    bfqd->bfq_slice_idle == 0)
4042 		return;
4043 
4044 	/* Idle window just restored, statistics are meaningless. */
4045 	if (time_is_after_eq_jiffies(bfqq->split_time +
4046 				     bfqd->bfq_wr_min_idle_time))
4047 		return;
4048 
4049 	/* Think time is infinite if no process is linked to
4050 	 * bfqq. Otherwise check average think time to
4051 	 * decide whether to mark as has_short_ttime
4052 	 */
4053 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
4054 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4055 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4056 		has_short_ttime = false;
4057 
4058 	bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4059 		     has_short_ttime);
4060 
4061 	if (has_short_ttime)
4062 		bfq_mark_bfqq_has_short_ttime(bfqq);
4063 	else
4064 		bfq_clear_bfqq_has_short_ttime(bfqq);
4065 }
4066 
4067 /*
4068  * Called when a new fs request (rq) is added to bfqq.  Check if there's
4069  * something we should do about it.
4070  */
bfq_rq_enqueued(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)4071 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4072 			    struct request *rq)
4073 {
4074 	struct bfq_io_cq *bic = RQ_BIC(rq);
4075 
4076 	if (rq->cmd_flags & REQ_META)
4077 		bfqq->meta_pending++;
4078 
4079 	bfq_update_io_thinktime(bfqd, bfqq);
4080 	bfq_update_has_short_ttime(bfqd, bfqq, bic);
4081 	bfq_update_io_seektime(bfqd, bfqq, rq);
4082 
4083 	bfq_log_bfqq(bfqd, bfqq,
4084 		     "rq_enqueued: has_short_ttime=%d (seeky %d)",
4085 		     bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
4086 
4087 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4088 
4089 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4090 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4091 				 blk_rq_sectors(rq) < 32;
4092 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4093 
4094 		/*
4095 		 * There is just this request queued: if the request
4096 		 * is small and the queue is not to be expired, then
4097 		 * just exit.
4098 		 *
4099 		 * In this way, if the device is being idled to wait
4100 		 * for a new request from the in-service queue, we
4101 		 * avoid unplugging the device and committing the
4102 		 * device to serve just a small request. On the
4103 		 * contrary, we wait for the block layer to decide
4104 		 * when to unplug the device: hopefully, new requests
4105 		 * will be merged to this one quickly, then the device
4106 		 * will be unplugged and larger requests will be
4107 		 * dispatched.
4108 		 */
4109 		if (small_req && !budget_timeout)
4110 			return;
4111 
4112 		/*
4113 		 * A large enough request arrived, or the queue is to
4114 		 * be expired: in both cases disk idling is to be
4115 		 * stopped, so clear wait_request flag and reset
4116 		 * timer.
4117 		 */
4118 		bfq_clear_bfqq_wait_request(bfqq);
4119 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4120 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
4121 
4122 		/*
4123 		 * The queue is not empty, because a new request just
4124 		 * arrived. Hence we can safely expire the queue, in
4125 		 * case of budget timeout, without risking that the
4126 		 * timestamps of the queue are not updated correctly.
4127 		 * See [1] for more details.
4128 		 */
4129 		if (budget_timeout)
4130 			bfq_bfqq_expire(bfqd, bfqq, false,
4131 					BFQQE_BUDGET_TIMEOUT);
4132 	}
4133 }
4134 
__bfq_insert_request(struct bfq_data * bfqd,struct request * rq)4135 static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4136 {
4137 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
4138 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4139 
4140 	if (new_bfqq) {
4141 		if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4142 			new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4143 		/*
4144 		 * Release the request's reference to the old bfqq
4145 		 * and make sure one is taken to the shared queue.
4146 		 */
4147 		new_bfqq->allocated++;
4148 		bfqq->allocated--;
4149 		new_bfqq->ref++;
4150 		bfq_clear_bfqq_just_created(bfqq);
4151 		/*
4152 		 * If the bic associated with the process
4153 		 * issuing this request still points to bfqq
4154 		 * (and thus has not been already redirected
4155 		 * to new_bfqq or even some other bfq_queue),
4156 		 * then complete the merge and redirect it to
4157 		 * new_bfqq.
4158 		 */
4159 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4160 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4161 					bfqq, new_bfqq);
4162 		/*
4163 		 * rq is about to be enqueued into new_bfqq,
4164 		 * release rq reference on bfqq
4165 		 */
4166 		bfq_put_queue(bfqq);
4167 		rq->elv.priv[1] = new_bfqq;
4168 		bfqq = new_bfqq;
4169 	}
4170 
4171 	bfq_add_request(rq);
4172 
4173 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4174 	list_add_tail(&rq->queuelist, &bfqq->fifo);
4175 
4176 	bfq_rq_enqueued(bfqd, bfqq, rq);
4177 }
4178 
bfq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)4179 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4180 			       bool at_head)
4181 {
4182 	struct request_queue *q = hctx->queue;
4183 	struct bfq_data *bfqd = q->elevator->elevator_data;
4184 
4185 	spin_lock_irq(&bfqd->lock);
4186 	if (blk_mq_sched_try_insert_merge(q, rq)) {
4187 		spin_unlock_irq(&bfqd->lock);
4188 		return;
4189 	}
4190 
4191 	spin_unlock_irq(&bfqd->lock);
4192 
4193 	blk_mq_sched_request_inserted(rq);
4194 
4195 	spin_lock_irq(&bfqd->lock);
4196 	if (at_head || blk_rq_is_passthrough(rq)) {
4197 		if (at_head)
4198 			list_add(&rq->queuelist, &bfqd->dispatch);
4199 		else
4200 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
4201 	} else {
4202 		__bfq_insert_request(bfqd, rq);
4203 
4204 		if (rq_mergeable(rq)) {
4205 			elv_rqhash_add(q, rq);
4206 			if (!q->last_merge)
4207 				q->last_merge = rq;
4208 		}
4209 	}
4210 
4211 	spin_unlock_irq(&bfqd->lock);
4212 }
4213 
bfq_insert_requests(struct blk_mq_hw_ctx * hctx,struct list_head * list,bool at_head)4214 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4215 				struct list_head *list, bool at_head)
4216 {
4217 	while (!list_empty(list)) {
4218 		struct request *rq;
4219 
4220 		rq = list_first_entry(list, struct request, queuelist);
4221 		list_del_init(&rq->queuelist);
4222 		bfq_insert_request(hctx, rq, at_head);
4223 	}
4224 }
4225 
bfq_update_hw_tag(struct bfq_data * bfqd)4226 static void bfq_update_hw_tag(struct bfq_data *bfqd)
4227 {
4228 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4229 				       bfqd->rq_in_driver);
4230 
4231 	if (bfqd->hw_tag == 1)
4232 		return;
4233 
4234 	/*
4235 	 * This sample is valid if the number of outstanding requests
4236 	 * is large enough to allow a queueing behavior.  Note that the
4237 	 * sum is not exact, as it's not taking into account deactivated
4238 	 * requests.
4239 	 */
4240 	if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4241 		return;
4242 
4243 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4244 		return;
4245 
4246 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4247 	bfqd->max_rq_in_driver = 0;
4248 	bfqd->hw_tag_samples = 0;
4249 }
4250 
bfq_completed_request(struct bfq_queue * bfqq,struct bfq_data * bfqd)4251 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4252 {
4253 	u64 now_ns;
4254 	u32 delta_us;
4255 
4256 	bfq_update_hw_tag(bfqd);
4257 
4258 	bfqd->rq_in_driver--;
4259 	bfqq->dispatched--;
4260 
4261 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4262 		/*
4263 		 * Set budget_timeout (which we overload to store the
4264 		 * time at which the queue remains with no backlog and
4265 		 * no outstanding request; used by the weight-raising
4266 		 * mechanism).
4267 		 */
4268 		bfqq->budget_timeout = jiffies;
4269 
4270 		bfq_weights_tree_remove(bfqd, &bfqq->entity,
4271 					&bfqd->queue_weights_tree);
4272 	}
4273 
4274 	now_ns = ktime_get_ns();
4275 
4276 	bfqq->ttime.last_end_request = now_ns;
4277 
4278 	/*
4279 	 * Using us instead of ns, to get a reasonable precision in
4280 	 * computing rate in next check.
4281 	 */
4282 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4283 
4284 	/*
4285 	 * If the request took rather long to complete, and, according
4286 	 * to the maximum request size recorded, this completion latency
4287 	 * implies that the request was certainly served at a very low
4288 	 * rate (less than 1M sectors/sec), then the whole observation
4289 	 * interval that lasts up to this time instant cannot be a
4290 	 * valid time interval for computing a new peak rate.  Invoke
4291 	 * bfq_update_rate_reset to have the following three steps
4292 	 * taken:
4293 	 * - close the observation interval at the last (previous)
4294 	 *   request dispatch or completion
4295 	 * - compute rate, if possible, for that observation interval
4296 	 * - reset to zero samples, which will trigger a proper
4297 	 *   re-initialization of the observation interval on next
4298 	 *   dispatch
4299 	 */
4300 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4301 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4302 			1UL<<(BFQ_RATE_SHIFT - 10))
4303 		bfq_update_rate_reset(bfqd, NULL);
4304 	bfqd->last_completion = now_ns;
4305 
4306 	/*
4307 	 * If we are waiting to discover whether the request pattern
4308 	 * of the task associated with the queue is actually
4309 	 * isochronous, and both requisites for this condition to hold
4310 	 * are now satisfied, then compute soft_rt_next_start (see the
4311 	 * comments on the function bfq_bfqq_softrt_next_start()). We
4312 	 * schedule this delayed check when bfqq expires, if it still
4313 	 * has in-flight requests.
4314 	 */
4315 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4316 	    RB_EMPTY_ROOT(&bfqq->sort_list))
4317 		bfqq->soft_rt_next_start =
4318 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
4319 
4320 	/*
4321 	 * If this is the in-service queue, check if it needs to be expired,
4322 	 * or if we want to idle in case it has no pending requests.
4323 	 */
4324 	if (bfqd->in_service_queue == bfqq) {
4325 		if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
4326 			bfq_arm_slice_timer(bfqd);
4327 			return;
4328 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
4329 			bfq_bfqq_expire(bfqd, bfqq, false,
4330 					BFQQE_BUDGET_TIMEOUT);
4331 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4332 			 (bfqq->dispatched == 0 ||
4333 			  !bfq_bfqq_may_idle(bfqq)))
4334 			bfq_bfqq_expire(bfqd, bfqq, false,
4335 					BFQQE_NO_MORE_REQUESTS);
4336 	}
4337 
4338 	if (!bfqd->rq_in_driver)
4339 		bfq_schedule_dispatch(bfqd);
4340 }
4341 
bfq_put_rq_priv_body(struct bfq_queue * bfqq)4342 static void bfq_put_rq_priv_body(struct bfq_queue *bfqq)
4343 {
4344 	bfqq->allocated--;
4345 
4346 	bfq_put_queue(bfqq);
4347 }
4348 
bfq_finish_request(struct request * rq)4349 static void bfq_finish_request(struct request *rq)
4350 {
4351 	struct bfq_queue *bfqq;
4352 	struct bfq_data *bfqd;
4353 
4354 	if (!rq->elv.icq)
4355 		return;
4356 
4357 	bfqq = RQ_BFQQ(rq);
4358 	bfqd = bfqq->bfqd;
4359 
4360 	if (rq->rq_flags & RQF_STARTED)
4361 		bfqg_stats_update_completion(bfqq_group(bfqq),
4362 					     rq_start_time_ns(rq),
4363 					     rq_io_start_time_ns(rq),
4364 					     rq->cmd_flags);
4365 
4366 	if (likely(rq->rq_flags & RQF_STARTED)) {
4367 		unsigned long flags;
4368 
4369 		spin_lock_irqsave(&bfqd->lock, flags);
4370 
4371 		bfq_completed_request(bfqq, bfqd);
4372 		bfq_put_rq_priv_body(bfqq);
4373 
4374 		spin_unlock_irqrestore(&bfqd->lock, flags);
4375 	} else {
4376 		/*
4377 		 * Request rq may be still/already in the scheduler,
4378 		 * in which case we need to remove it. And we cannot
4379 		 * defer such a check and removal, to avoid
4380 		 * inconsistencies in the time interval from the end
4381 		 * of this function to the start of the deferred work.
4382 		 * This situation seems to occur only in process
4383 		 * context, as a consequence of a merge. In the
4384 		 * current version of the code, this implies that the
4385 		 * lock is held.
4386 		 */
4387 
4388 		if (!RB_EMPTY_NODE(&rq->rb_node))
4389 			bfq_remove_request(rq->q, rq);
4390 		bfq_put_rq_priv_body(bfqq);
4391 	}
4392 
4393 	rq->elv.priv[0] = NULL;
4394 	rq->elv.priv[1] = NULL;
4395 }
4396 
4397 /*
4398  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4399  * was the last process referring to that bfqq.
4400  */
4401 static struct bfq_queue *
bfq_split_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq)4402 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4403 {
4404 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4405 
4406 	if (bfqq_process_refs(bfqq) == 1) {
4407 		bfqq->pid = current->pid;
4408 		bfq_clear_bfqq_coop(bfqq);
4409 		bfq_clear_bfqq_split_coop(bfqq);
4410 		return bfqq;
4411 	}
4412 
4413 	bic_set_bfqq(bic, NULL, 1);
4414 
4415 	bfq_put_cooperator(bfqq);
4416 
4417 	bfq_put_queue(bfqq);
4418 	return NULL;
4419 }
4420 
bfq_get_bfqq_handle_split(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bio * bio,bool split,bool is_sync,bool * new_queue)4421 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4422 						   struct bfq_io_cq *bic,
4423 						   struct bio *bio,
4424 						   bool split, bool is_sync,
4425 						   bool *new_queue)
4426 {
4427 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4428 
4429 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4430 		return bfqq;
4431 
4432 	if (new_queue)
4433 		*new_queue = true;
4434 
4435 	if (bfqq)
4436 		bfq_put_queue(bfqq);
4437 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4438 
4439 	bic_set_bfqq(bic, bfqq, is_sync);
4440 	if (split && is_sync) {
4441 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
4442 		    bic->saved_in_large_burst)
4443 			bfq_mark_bfqq_in_large_burst(bfqq);
4444 		else {
4445 			bfq_clear_bfqq_in_large_burst(bfqq);
4446 			if (bic->was_in_burst_list)
4447 				hlist_add_head(&bfqq->burst_list_node,
4448 					       &bfqd->burst_list);
4449 		}
4450 		bfqq->split_time = jiffies;
4451 	}
4452 
4453 	return bfqq;
4454 }
4455 
4456 /*
4457  * Allocate bfq data structures associated with this request.
4458  */
bfq_prepare_request(struct request * rq,struct bio * bio)4459 static void bfq_prepare_request(struct request *rq, struct bio *bio)
4460 {
4461 	struct request_queue *q = rq->q;
4462 	struct bfq_data *bfqd = q->elevator->elevator_data;
4463 	struct bfq_io_cq *bic;
4464 	const int is_sync = rq_is_sync(rq);
4465 	struct bfq_queue *bfqq;
4466 	bool new_queue = false;
4467 	bool bfqq_already_existing = false, split = false;
4468 
4469 	/*
4470 	 * Even if we don't have an icq attached, we should still clear
4471 	 * the scheduler pointers, as they might point to previously
4472 	 * allocated bic/bfqq structs.
4473 	 */
4474 	if (!rq->elv.icq) {
4475 		rq->elv.priv[0] = rq->elv.priv[1] = NULL;
4476 		return;
4477 	}
4478 
4479 	bic = icq_to_bic(rq->elv.icq);
4480 
4481 	spin_lock_irq(&bfqd->lock);
4482 
4483 	bfq_check_ioprio_change(bic, bio);
4484 
4485 	bfq_bic_update_cgroup(bic, bio);
4486 
4487 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
4488 					 &new_queue);
4489 
4490 	if (likely(!new_queue)) {
4491 		/* If the queue was seeky for too long, break it apart. */
4492 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
4493 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
4494 
4495 			/* Update bic before losing reference to bfqq */
4496 			if (bfq_bfqq_in_large_burst(bfqq))
4497 				bic->saved_in_large_burst = true;
4498 
4499 			bfqq = bfq_split_bfqq(bic, bfqq);
4500 			split = true;
4501 
4502 			if (!bfqq)
4503 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
4504 								 true, is_sync,
4505 								 NULL);
4506 			else
4507 				bfqq_already_existing = true;
4508 		}
4509 	}
4510 
4511 	bfqq->allocated++;
4512 	bfqq->ref++;
4513 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
4514 		     rq, bfqq, bfqq->ref);
4515 
4516 	rq->elv.priv[0] = bic;
4517 	rq->elv.priv[1] = bfqq;
4518 
4519 	/*
4520 	 * If a bfq_queue has only one process reference, it is owned
4521 	 * by only this bic: we can then set bfqq->bic = bic. in
4522 	 * addition, if the queue has also just been split, we have to
4523 	 * resume its state.
4524 	 */
4525 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
4526 		bfqq->bic = bic;
4527 		if (split) {
4528 			/*
4529 			 * The queue has just been split from a shared
4530 			 * queue: restore the idle window and the
4531 			 * possible weight raising period.
4532 			 */
4533 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
4534 					      bfqq_already_existing);
4535 		}
4536 	}
4537 
4538 	if (unlikely(bfq_bfqq_just_created(bfqq)))
4539 		bfq_handle_burst(bfqd, bfqq);
4540 
4541 	spin_unlock_irq(&bfqd->lock);
4542 }
4543 
bfq_idle_slice_timer_body(struct bfq_queue * bfqq)4544 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
4545 {
4546 	struct bfq_data *bfqd = bfqq->bfqd;
4547 	enum bfqq_expiration reason;
4548 	unsigned long flags;
4549 
4550 	spin_lock_irqsave(&bfqd->lock, flags);
4551 	bfq_clear_bfqq_wait_request(bfqq);
4552 
4553 	if (bfqq != bfqd->in_service_queue) {
4554 		spin_unlock_irqrestore(&bfqd->lock, flags);
4555 		return;
4556 	}
4557 
4558 	if (bfq_bfqq_budget_timeout(bfqq))
4559 		/*
4560 		 * Also here the queue can be safely expired
4561 		 * for budget timeout without wasting
4562 		 * guarantees
4563 		 */
4564 		reason = BFQQE_BUDGET_TIMEOUT;
4565 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
4566 		/*
4567 		 * The queue may not be empty upon timer expiration,
4568 		 * because we may not disable the timer when the
4569 		 * first request of the in-service queue arrives
4570 		 * during disk idling.
4571 		 */
4572 		reason = BFQQE_TOO_IDLE;
4573 	else
4574 		goto schedule_dispatch;
4575 
4576 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
4577 
4578 schedule_dispatch:
4579 	spin_unlock_irqrestore(&bfqd->lock, flags);
4580 	bfq_schedule_dispatch(bfqd);
4581 }
4582 
4583 /*
4584  * Handler of the expiration of the timer running if the in-service queue
4585  * is idling inside its time slice.
4586  */
bfq_idle_slice_timer(struct hrtimer * timer)4587 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
4588 {
4589 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
4590 					     idle_slice_timer);
4591 	struct bfq_queue *bfqq = bfqd->in_service_queue;
4592 
4593 	/*
4594 	 * Theoretical race here: the in-service queue can be NULL or
4595 	 * different from the queue that was idling if a new request
4596 	 * arrives for the current queue and there is a full dispatch
4597 	 * cycle that changes the in-service queue.  This can hardly
4598 	 * happen, but in the worst case we just expire a queue too
4599 	 * early.
4600 	 */
4601 	if (bfqq)
4602 		bfq_idle_slice_timer_body(bfqq);
4603 
4604 	return HRTIMER_NORESTART;
4605 }
4606 
__bfq_put_async_bfqq(struct bfq_data * bfqd,struct bfq_queue ** bfqq_ptr)4607 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
4608 				 struct bfq_queue **bfqq_ptr)
4609 {
4610 	struct bfq_queue *bfqq = *bfqq_ptr;
4611 
4612 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
4613 	if (bfqq) {
4614 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
4615 
4616 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
4617 			     bfqq, bfqq->ref);
4618 		bfq_put_queue(bfqq);
4619 		*bfqq_ptr = NULL;
4620 	}
4621 }
4622 
4623 /*
4624  * Release all the bfqg references to its async queues.  If we are
4625  * deallocating the group these queues may still contain requests, so
4626  * we reparent them to the root cgroup (i.e., the only one that will
4627  * exist for sure until all the requests on a device are gone).
4628  */
bfq_put_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)4629 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
4630 {
4631 	int i, j;
4632 
4633 	for (i = 0; i < 2; i++)
4634 		for (j = 0; j < IOPRIO_BE_NR; j++)
4635 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
4636 
4637 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
4638 }
4639 
bfq_exit_queue(struct elevator_queue * e)4640 static void bfq_exit_queue(struct elevator_queue *e)
4641 {
4642 	struct bfq_data *bfqd = e->elevator_data;
4643 	struct bfq_queue *bfqq, *n;
4644 
4645 	hrtimer_cancel(&bfqd->idle_slice_timer);
4646 
4647 	spin_lock_irq(&bfqd->lock);
4648 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
4649 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
4650 	spin_unlock_irq(&bfqd->lock);
4651 
4652 	hrtimer_cancel(&bfqd->idle_slice_timer);
4653 
4654 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4655 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
4656 #else
4657 	spin_lock_irq(&bfqd->lock);
4658 	bfq_put_async_queues(bfqd, bfqd->root_group);
4659 	kfree(bfqd->root_group);
4660 	spin_unlock_irq(&bfqd->lock);
4661 #endif
4662 
4663 	kfree(bfqd);
4664 }
4665 
bfq_init_root_group(struct bfq_group * root_group,struct bfq_data * bfqd)4666 static void bfq_init_root_group(struct bfq_group *root_group,
4667 				struct bfq_data *bfqd)
4668 {
4669 	int i;
4670 
4671 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4672 	root_group->entity.parent = NULL;
4673 	root_group->my_entity = NULL;
4674 	root_group->bfqd = bfqd;
4675 #endif
4676 	root_group->rq_pos_tree = RB_ROOT;
4677 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
4678 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
4679 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
4680 }
4681 
bfq_init_queue(struct request_queue * q,struct elevator_type * e)4682 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
4683 {
4684 	struct bfq_data *bfqd;
4685 	struct elevator_queue *eq;
4686 
4687 	eq = elevator_alloc(q, e);
4688 	if (!eq)
4689 		return -ENOMEM;
4690 
4691 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
4692 	if (!bfqd) {
4693 		kobject_put(&eq->kobj);
4694 		return -ENOMEM;
4695 	}
4696 	eq->elevator_data = bfqd;
4697 
4698 	spin_lock_irq(q->queue_lock);
4699 	q->elevator = eq;
4700 	spin_unlock_irq(q->queue_lock);
4701 
4702 	/*
4703 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
4704 	 * Grab a permanent reference to it, so that the normal code flow
4705 	 * will not attempt to free it.
4706 	 */
4707 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
4708 	bfqd->oom_bfqq.ref++;
4709 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
4710 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
4711 	bfqd->oom_bfqq.entity.new_weight =
4712 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
4713 
4714 	/* oom_bfqq does not participate to bursts */
4715 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
4716 
4717 	/*
4718 	 * Trigger weight initialization, according to ioprio, at the
4719 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
4720 	 * class won't be changed any more.
4721 	 */
4722 	bfqd->oom_bfqq.entity.prio_changed = 1;
4723 
4724 	bfqd->queue = q;
4725 
4726 	INIT_LIST_HEAD(&bfqd->dispatch);
4727 
4728 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
4729 		     HRTIMER_MODE_REL);
4730 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
4731 
4732 	bfqd->queue_weights_tree = RB_ROOT;
4733 	bfqd->group_weights_tree = RB_ROOT;
4734 
4735 	INIT_LIST_HEAD(&bfqd->active_list);
4736 	INIT_LIST_HEAD(&bfqd->idle_list);
4737 	INIT_HLIST_HEAD(&bfqd->burst_list);
4738 
4739 	bfqd->hw_tag = -1;
4740 
4741 	bfqd->bfq_max_budget = bfq_default_max_budget;
4742 
4743 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
4744 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
4745 	bfqd->bfq_back_max = bfq_back_max;
4746 	bfqd->bfq_back_penalty = bfq_back_penalty;
4747 	bfqd->bfq_slice_idle = bfq_slice_idle;
4748 	bfqd->bfq_timeout = bfq_timeout;
4749 
4750 	bfqd->bfq_requests_within_timer = 120;
4751 
4752 	bfqd->bfq_large_burst_thresh = 8;
4753 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
4754 
4755 	bfqd->low_latency = true;
4756 
4757 	/*
4758 	 * Trade-off between responsiveness and fairness.
4759 	 */
4760 	bfqd->bfq_wr_coeff = 30;
4761 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
4762 	bfqd->bfq_wr_max_time = 0;
4763 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
4764 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
4765 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
4766 					      * Approximate rate required
4767 					      * to playback or record a
4768 					      * high-definition compressed
4769 					      * video.
4770 					      */
4771 	bfqd->wr_busy_queues = 0;
4772 
4773 	/*
4774 	 * Begin by assuming, optimistically, that the device is a
4775 	 * high-speed one, and that its peak rate is equal to 2/3 of
4776 	 * the highest reference rate.
4777 	 */
4778 	bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
4779 			T_fast[blk_queue_nonrot(bfqd->queue)];
4780 	bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
4781 	bfqd->device_speed = BFQ_BFQD_FAST;
4782 
4783 	spin_lock_init(&bfqd->lock);
4784 
4785 	/*
4786 	 * The invocation of the next bfq_create_group_hierarchy
4787 	 * function is the head of a chain of function calls
4788 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
4789 	 * blk_mq_freeze_queue) that may lead to the invocation of the
4790 	 * has_work hook function. For this reason,
4791 	 * bfq_create_group_hierarchy is invoked only after all
4792 	 * scheduler data has been initialized, apart from the fields
4793 	 * that can be initialized only after invoking
4794 	 * bfq_create_group_hierarchy. This, in particular, enables
4795 	 * has_work to correctly return false. Of course, to avoid
4796 	 * other inconsistencies, the blk-mq stack must then refrain
4797 	 * from invoking further scheduler hooks before this init
4798 	 * function is finished.
4799 	 */
4800 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
4801 	if (!bfqd->root_group)
4802 		goto out_free;
4803 	bfq_init_root_group(bfqd->root_group, bfqd);
4804 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
4805 
4806 	wbt_disable_default(q);
4807 	return 0;
4808 
4809 out_free:
4810 	kfree(bfqd);
4811 	kobject_put(&eq->kobj);
4812 	return -ENOMEM;
4813 }
4814 
bfq_slab_kill(void)4815 static void bfq_slab_kill(void)
4816 {
4817 	kmem_cache_destroy(bfq_pool);
4818 }
4819 
bfq_slab_setup(void)4820 static int __init bfq_slab_setup(void)
4821 {
4822 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
4823 	if (!bfq_pool)
4824 		return -ENOMEM;
4825 	return 0;
4826 }
4827 
bfq_var_show(unsigned int var,char * page)4828 static ssize_t bfq_var_show(unsigned int var, char *page)
4829 {
4830 	return sprintf(page, "%u\n", var);
4831 }
4832 
bfq_var_store(unsigned long * var,const char * page)4833 static int bfq_var_store(unsigned long *var, const char *page)
4834 {
4835 	unsigned long new_val;
4836 	int ret = kstrtoul(page, 10, &new_val);
4837 
4838 	if (ret)
4839 		return ret;
4840 	*var = new_val;
4841 	return 0;
4842 }
4843 
4844 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4845 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4846 {									\
4847 	struct bfq_data *bfqd = e->elevator_data;			\
4848 	u64 __data = __VAR;						\
4849 	if (__CONV == 1)						\
4850 		__data = jiffies_to_msecs(__data);			\
4851 	else if (__CONV == 2)						\
4852 		__data = div_u64(__data, NSEC_PER_MSEC);		\
4853 	return bfq_var_show(__data, (page));				\
4854 }
4855 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
4856 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
4857 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
4858 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
4859 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
4860 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
4861 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
4862 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
4863 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
4864 #undef SHOW_FUNCTION
4865 
4866 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
4867 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4868 {									\
4869 	struct bfq_data *bfqd = e->elevator_data;			\
4870 	u64 __data = __VAR;						\
4871 	__data = div_u64(__data, NSEC_PER_USEC);			\
4872 	return bfq_var_show(__data, (page));				\
4873 }
4874 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
4875 #undef USEC_SHOW_FUNCTION
4876 
4877 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4878 static ssize_t								\
4879 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4880 {									\
4881 	struct bfq_data *bfqd = e->elevator_data;			\
4882 	unsigned long __data, __min = (MIN), __max = (MAX);		\
4883 	int ret;							\
4884 									\
4885 	ret = bfq_var_store(&__data, (page));				\
4886 	if (ret)							\
4887 		return ret;						\
4888 	if (__data < __min)						\
4889 		__data = __min;						\
4890 	else if (__data > __max)					\
4891 		__data = __max;						\
4892 	if (__CONV == 1)						\
4893 		*(__PTR) = msecs_to_jiffies(__data);			\
4894 	else if (__CONV == 2)						\
4895 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
4896 	else								\
4897 		*(__PTR) = __data;					\
4898 	return count;							\
4899 }
4900 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
4901 		INT_MAX, 2);
4902 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
4903 		INT_MAX, 2);
4904 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
4905 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
4906 		INT_MAX, 0);
4907 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
4908 #undef STORE_FUNCTION
4909 
4910 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
4911 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
4912 {									\
4913 	struct bfq_data *bfqd = e->elevator_data;			\
4914 	unsigned long __data, __min = (MIN), __max = (MAX);		\
4915 	int ret;							\
4916 									\
4917 	ret = bfq_var_store(&__data, (page));				\
4918 	if (ret)							\
4919 		return ret;						\
4920 	if (__data < __min)						\
4921 		__data = __min;						\
4922 	else if (__data > __max)					\
4923 		__data = __max;						\
4924 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
4925 	return count;							\
4926 }
4927 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
4928 		    UINT_MAX);
4929 #undef USEC_STORE_FUNCTION
4930 
bfq_max_budget_store(struct elevator_queue * e,const char * page,size_t count)4931 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
4932 				    const char *page, size_t count)
4933 {
4934 	struct bfq_data *bfqd = e->elevator_data;
4935 	unsigned long __data;
4936 	int ret;
4937 
4938 	ret = bfq_var_store(&__data, (page));
4939 	if (ret)
4940 		return ret;
4941 
4942 	if (__data == 0)
4943 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
4944 	else {
4945 		if (__data > INT_MAX)
4946 			__data = INT_MAX;
4947 		bfqd->bfq_max_budget = __data;
4948 	}
4949 
4950 	bfqd->bfq_user_max_budget = __data;
4951 
4952 	return count;
4953 }
4954 
4955 /*
4956  * Leaving this name to preserve name compatibility with cfq
4957  * parameters, but this timeout is used for both sync and async.
4958  */
bfq_timeout_sync_store(struct elevator_queue * e,const char * page,size_t count)4959 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
4960 				      const char *page, size_t count)
4961 {
4962 	struct bfq_data *bfqd = e->elevator_data;
4963 	unsigned long __data;
4964 	int ret;
4965 
4966 	ret = bfq_var_store(&__data, (page));
4967 	if (ret)
4968 		return ret;
4969 
4970 	if (__data < 1)
4971 		__data = 1;
4972 	else if (__data > INT_MAX)
4973 		__data = INT_MAX;
4974 
4975 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
4976 	if (bfqd->bfq_user_max_budget == 0)
4977 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
4978 
4979 	return count;
4980 }
4981 
bfq_strict_guarantees_store(struct elevator_queue * e,const char * page,size_t count)4982 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
4983 				     const char *page, size_t count)
4984 {
4985 	struct bfq_data *bfqd = e->elevator_data;
4986 	unsigned long __data;
4987 	int ret;
4988 
4989 	ret = bfq_var_store(&__data, (page));
4990 	if (ret)
4991 		return ret;
4992 
4993 	if (__data > 1)
4994 		__data = 1;
4995 	if (!bfqd->strict_guarantees && __data == 1
4996 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
4997 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
4998 
4999 	bfqd->strict_guarantees = __data;
5000 
5001 	return count;
5002 }
5003 
bfq_low_latency_store(struct elevator_queue * e,const char * page,size_t count)5004 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5005 				     const char *page, size_t count)
5006 {
5007 	struct bfq_data *bfqd = e->elevator_data;
5008 	unsigned long __data;
5009 	int ret;
5010 
5011 	ret = bfq_var_store(&__data, (page));
5012 	if (ret)
5013 		return ret;
5014 
5015 	if (__data > 1)
5016 		__data = 1;
5017 	if (__data == 0 && bfqd->low_latency != 0)
5018 		bfq_end_wr(bfqd);
5019 	bfqd->low_latency = __data;
5020 
5021 	return count;
5022 }
5023 
5024 #define BFQ_ATTR(name) \
5025 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5026 
5027 static struct elv_fs_entry bfq_attrs[] = {
5028 	BFQ_ATTR(fifo_expire_sync),
5029 	BFQ_ATTR(fifo_expire_async),
5030 	BFQ_ATTR(back_seek_max),
5031 	BFQ_ATTR(back_seek_penalty),
5032 	BFQ_ATTR(slice_idle),
5033 	BFQ_ATTR(slice_idle_us),
5034 	BFQ_ATTR(max_budget),
5035 	BFQ_ATTR(timeout_sync),
5036 	BFQ_ATTR(strict_guarantees),
5037 	BFQ_ATTR(low_latency),
5038 	__ATTR_NULL
5039 };
5040 
5041 static struct elevator_type iosched_bfq_mq = {
5042 	.ops.mq = {
5043 		.prepare_request	= bfq_prepare_request,
5044 		.finish_request		= bfq_finish_request,
5045 		.exit_icq		= bfq_exit_icq,
5046 		.insert_requests	= bfq_insert_requests,
5047 		.dispatch_request	= bfq_dispatch_request,
5048 		.next_request		= elv_rb_latter_request,
5049 		.former_request		= elv_rb_former_request,
5050 		.allow_merge		= bfq_allow_bio_merge,
5051 		.bio_merge		= bfq_bio_merge,
5052 		.request_merge		= bfq_request_merge,
5053 		.requests_merged	= bfq_requests_merged,
5054 		.request_merged		= bfq_request_merged,
5055 		.has_work		= bfq_has_work,
5056 		.init_sched		= bfq_init_queue,
5057 		.exit_sched		= bfq_exit_queue,
5058 	},
5059 
5060 	.uses_mq =		true,
5061 	.icq_size =		sizeof(struct bfq_io_cq),
5062 	.icq_align =		__alignof__(struct bfq_io_cq),
5063 	.elevator_attrs =	bfq_attrs,
5064 	.elevator_name =	"bfq",
5065 	.elevator_owner =	THIS_MODULE,
5066 };
5067 MODULE_ALIAS("bfq-iosched");
5068 
bfq_init(void)5069 static int __init bfq_init(void)
5070 {
5071 	int ret;
5072 
5073 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5074 	ret = blkcg_policy_register(&blkcg_policy_bfq);
5075 	if (ret)
5076 		return ret;
5077 #endif
5078 
5079 	ret = -ENOMEM;
5080 	if (bfq_slab_setup())
5081 		goto err_pol_unreg;
5082 
5083 	/*
5084 	 * Times to load large popular applications for the typical
5085 	 * systems installed on the reference devices (see the
5086 	 * comments before the definitions of the next two
5087 	 * arrays). Actually, we use slightly slower values, as the
5088 	 * estimated peak rate tends to be smaller than the actual
5089 	 * peak rate.  The reason for this last fact is that estimates
5090 	 * are computed over much shorter time intervals than the long
5091 	 * intervals typically used for benchmarking. Why? First, to
5092 	 * adapt more quickly to variations. Second, because an I/O
5093 	 * scheduler cannot rely on a peak-rate-evaluation workload to
5094 	 * be run for a long time.
5095 	 */
5096 	T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */
5097 	T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */
5098 	T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5099 	T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5100 
5101 	/*
5102 	 * Thresholds that determine the switch between speed classes
5103 	 * (see the comments before the definition of the array
5104 	 * device_speed_thresh). These thresholds are biased towards
5105 	 * transitions to the fast class. This is safer than the
5106 	 * opposite bias. In fact, a wrong transition to the slow
5107 	 * class results in short weight-raising periods, because the
5108 	 * speed of the device then tends to be higher that the
5109 	 * reference peak rate. On the opposite end, a wrong
5110 	 * transition to the fast class tends to increase
5111 	 * weight-raising periods, because of the opposite reason.
5112 	 */
5113 	device_speed_thresh[0] = (4 * R_slow[0]) / 3;
5114 	device_speed_thresh[1] = (4 * R_slow[1]) / 3;
5115 
5116 	ret = elv_register(&iosched_bfq_mq);
5117 	if (ret)
5118 		goto slab_kill;
5119 
5120 	return 0;
5121 
5122 slab_kill:
5123 	bfq_slab_kill();
5124 err_pol_unreg:
5125 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5126 	blkcg_policy_unregister(&blkcg_policy_bfq);
5127 #endif
5128 	return ret;
5129 }
5130 
bfq_exit(void)5131 static void __exit bfq_exit(void)
5132 {
5133 	elv_unregister(&iosched_bfq_mq);
5134 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5135 	blkcg_policy_unregister(&blkcg_policy_bfq);
5136 #endif
5137 	bfq_slab_kill();
5138 }
5139 
5140 module_init(bfq_init);
5141 module_exit(bfq_exit);
5142 
5143 MODULE_AUTHOR("Paolo Valente");
5144 MODULE_LICENSE("GPL");
5145 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
5146