1 /*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/module.h>
10 #include <linux/device-mapper.h>
11 #include <linux/dm-io.h>
12 #include <linux/vmalloc.h>
13 #include <linux/sort.h>
14 #include <linux/rbtree.h>
15 #include <linux/delay.h>
16 #include <linux/random.h>
17 #include <crypto/hash.h>
18 #include <crypto/skcipher.h>
19 #include <linux/async_tx.h>
20 #include "dm-bufio.h"
21
22 #define DM_MSG_PREFIX "integrity"
23
24 #define DEFAULT_INTERLEAVE_SECTORS 32768
25 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
26 #define DEFAULT_BUFFER_SECTORS 128
27 #define DEFAULT_JOURNAL_WATERMARK 50
28 #define DEFAULT_SYNC_MSEC 10000
29 #define DEFAULT_MAX_JOURNAL_SECTORS 131072
30 #define MIN_LOG2_INTERLEAVE_SECTORS 3
31 #define MAX_LOG2_INTERLEAVE_SECTORS 31
32 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
33
34 /*
35 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
36 * so it should not be enabled in the official kernel
37 */
38 //#define DEBUG_PRINT
39 //#define INTERNAL_VERIFY
40
41 /*
42 * On disk structures
43 */
44
45 #define SB_MAGIC "integrt"
46 #define SB_VERSION 1
47 #define SB_SECTORS 8
48 #define MAX_SECTORS_PER_BLOCK 8
49
50 struct superblock {
51 __u8 magic[8];
52 __u8 version;
53 __u8 log2_interleave_sectors;
54 __u16 integrity_tag_size;
55 __u32 journal_sections;
56 __u64 provided_data_sectors; /* userspace uses this value */
57 __u32 flags;
58 __u8 log2_sectors_per_block;
59 };
60
61 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
62
63 #define JOURNAL_ENTRY_ROUNDUP 8
64
65 typedef __u64 commit_id_t;
66 #define JOURNAL_MAC_PER_SECTOR 8
67
68 struct journal_entry {
69 union {
70 struct {
71 __u32 sector_lo;
72 __u32 sector_hi;
73 } s;
74 __u64 sector;
75 } u;
76 commit_id_t last_bytes[0];
77 /* __u8 tag[0]; */
78 };
79
80 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
81
82 #if BITS_PER_LONG == 64
83 #define journal_entry_set_sector(je, x) do { smp_wmb(); ACCESS_ONCE((je)->u.sector) = cpu_to_le64(x); } while (0)
84 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
85 #elif defined(CONFIG_LBDAF)
86 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); ACCESS_ONCE((je)->u.s.sector_hi) = cpu_to_le32((x) >> 32); } while (0)
87 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
88 #else
89 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); ACCESS_ONCE((je)->u.s.sector_hi) = cpu_to_le32(0); } while (0)
90 #define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo)
91 #endif
92 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
93 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
94 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
95 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
96
97 #define JOURNAL_BLOCK_SECTORS 8
98 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
99 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
100
101 struct journal_sector {
102 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
103 __u8 mac[JOURNAL_MAC_PER_SECTOR];
104 commit_id_t commit_id;
105 };
106
107 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
108
109 #define METADATA_PADDING_SECTORS 8
110
111 #define N_COMMIT_IDS 4
112
prev_commit_seq(unsigned char seq)113 static unsigned char prev_commit_seq(unsigned char seq)
114 {
115 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
116 }
117
next_commit_seq(unsigned char seq)118 static unsigned char next_commit_seq(unsigned char seq)
119 {
120 return (seq + 1) % N_COMMIT_IDS;
121 }
122
123 /*
124 * In-memory structures
125 */
126
127 struct journal_node {
128 struct rb_node node;
129 sector_t sector;
130 };
131
132 struct alg_spec {
133 char *alg_string;
134 char *key_string;
135 __u8 *key;
136 unsigned key_size;
137 };
138
139 struct dm_integrity_c {
140 struct dm_dev *dev;
141 unsigned tag_size;
142 __s8 log2_tag_size;
143 sector_t start;
144 mempool_t *journal_io_mempool;
145 struct dm_io_client *io;
146 struct dm_bufio_client *bufio;
147 struct workqueue_struct *metadata_wq;
148 struct superblock *sb;
149 unsigned journal_pages;
150 struct page_list *journal;
151 struct page_list *journal_io;
152 struct page_list *journal_xor;
153
154 struct crypto_skcipher *journal_crypt;
155 struct scatterlist **journal_scatterlist;
156 struct scatterlist **journal_io_scatterlist;
157 struct skcipher_request **sk_requests;
158
159 struct crypto_shash *journal_mac;
160
161 struct journal_node *journal_tree;
162 struct rb_root journal_tree_root;
163
164 sector_t provided_data_sectors;
165
166 unsigned short journal_entry_size;
167 unsigned char journal_entries_per_sector;
168 unsigned char journal_section_entries;
169 unsigned short journal_section_sectors;
170 unsigned journal_sections;
171 unsigned journal_entries;
172 sector_t device_sectors;
173 unsigned initial_sectors;
174 unsigned metadata_run;
175 __s8 log2_metadata_run;
176 __u8 log2_buffer_sectors;
177 __u8 sectors_per_block;
178
179 unsigned char mode;
180 int suspending;
181
182 int failed;
183
184 struct crypto_shash *internal_hash;
185
186 /* these variables are locked with endio_wait.lock */
187 struct rb_root in_progress;
188 wait_queue_head_t endio_wait;
189 struct workqueue_struct *wait_wq;
190 struct workqueue_struct *offload_wq;
191
192 unsigned char commit_seq;
193 commit_id_t commit_ids[N_COMMIT_IDS];
194
195 unsigned committed_section;
196 unsigned n_committed_sections;
197
198 unsigned uncommitted_section;
199 unsigned n_uncommitted_sections;
200
201 unsigned free_section;
202 unsigned char free_section_entry;
203 unsigned free_sectors;
204
205 unsigned free_sectors_threshold;
206
207 struct workqueue_struct *commit_wq;
208 struct work_struct commit_work;
209
210 struct workqueue_struct *writer_wq;
211 struct work_struct writer_work;
212
213 struct bio_list flush_bio_list;
214
215 unsigned long autocommit_jiffies;
216 struct timer_list autocommit_timer;
217 unsigned autocommit_msec;
218
219 wait_queue_head_t copy_to_journal_wait;
220
221 struct completion crypto_backoff;
222
223 bool journal_uptodate;
224 bool just_formatted;
225
226 struct alg_spec internal_hash_alg;
227 struct alg_spec journal_crypt_alg;
228 struct alg_spec journal_mac_alg;
229
230 atomic64_t number_of_mismatches;
231 };
232
233 struct dm_integrity_range {
234 sector_t logical_sector;
235 unsigned n_sectors;
236 struct rb_node node;
237 };
238
239 struct dm_integrity_io {
240 struct work_struct work;
241
242 struct dm_integrity_c *ic;
243 bool write;
244 bool fua;
245
246 struct dm_integrity_range range;
247
248 sector_t metadata_block;
249 unsigned metadata_offset;
250
251 atomic_t in_flight;
252 blk_status_t bi_status;
253
254 struct completion *completion;
255
256 struct gendisk *orig_bi_disk;
257 u8 orig_bi_partno;
258 bio_end_io_t *orig_bi_end_io;
259 struct bio_integrity_payload *orig_bi_integrity;
260 struct bvec_iter orig_bi_iter;
261 };
262
263 struct journal_completion {
264 struct dm_integrity_c *ic;
265 atomic_t in_flight;
266 struct completion comp;
267 };
268
269 struct journal_io {
270 struct dm_integrity_range range;
271 struct journal_completion *comp;
272 };
273
274 static struct kmem_cache *journal_io_cache;
275
276 #define JOURNAL_IO_MEMPOOL 32
277
278 #ifdef DEBUG_PRINT
279 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
__DEBUG_bytes(__u8 * bytes,size_t len,const char * msg,...)280 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
281 {
282 va_list args;
283 va_start(args, msg);
284 vprintk(msg, args);
285 va_end(args);
286 if (len)
287 pr_cont(":");
288 while (len) {
289 pr_cont(" %02x", *bytes);
290 bytes++;
291 len--;
292 }
293 pr_cont("\n");
294 }
295 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
296 #else
297 #define DEBUG_print(x, ...) do { } while (0)
298 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
299 #endif
300
301 /*
302 * DM Integrity profile, protection is performed layer above (dm-crypt)
303 */
304 static const struct blk_integrity_profile dm_integrity_profile = {
305 .name = "DM-DIF-EXT-TAG",
306 .generate_fn = NULL,
307 .verify_fn = NULL,
308 };
309
310 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
311 static void integrity_bio_wait(struct work_struct *w);
312 static void dm_integrity_dtr(struct dm_target *ti);
313
dm_integrity_io_error(struct dm_integrity_c * ic,const char * msg,int err)314 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
315 {
316 if (err == -EILSEQ)
317 atomic64_inc(&ic->number_of_mismatches);
318 if (!cmpxchg(&ic->failed, 0, err))
319 DMERR("Error on %s: %d", msg, err);
320 }
321
dm_integrity_failed(struct dm_integrity_c * ic)322 static int dm_integrity_failed(struct dm_integrity_c *ic)
323 {
324 return ACCESS_ONCE(ic->failed);
325 }
326
dm_integrity_commit_id(struct dm_integrity_c * ic,unsigned i,unsigned j,unsigned char seq)327 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
328 unsigned j, unsigned char seq)
329 {
330 /*
331 * Xor the number with section and sector, so that if a piece of
332 * journal is written at wrong place, it is detected.
333 */
334 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
335 }
336
get_area_and_offset(struct dm_integrity_c * ic,sector_t data_sector,sector_t * area,sector_t * offset)337 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
338 sector_t *area, sector_t *offset)
339 {
340 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
341
342 *area = data_sector >> log2_interleave_sectors;
343 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
344 }
345
346 #define sector_to_block(ic, n) \
347 do { \
348 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
349 (n) >>= (ic)->sb->log2_sectors_per_block; \
350 } while (0)
351
get_metadata_sector_and_offset(struct dm_integrity_c * ic,sector_t area,sector_t offset,unsigned * metadata_offset)352 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
353 sector_t offset, unsigned *metadata_offset)
354 {
355 __u64 ms;
356 unsigned mo;
357
358 ms = area << ic->sb->log2_interleave_sectors;
359 if (likely(ic->log2_metadata_run >= 0))
360 ms += area << ic->log2_metadata_run;
361 else
362 ms += area * ic->metadata_run;
363 ms >>= ic->log2_buffer_sectors;
364
365 sector_to_block(ic, offset);
366
367 if (likely(ic->log2_tag_size >= 0)) {
368 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
369 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
370 } else {
371 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
372 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
373 }
374 *metadata_offset = mo;
375 return ms;
376 }
377
get_data_sector(struct dm_integrity_c * ic,sector_t area,sector_t offset)378 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
379 {
380 sector_t result;
381
382 result = area << ic->sb->log2_interleave_sectors;
383 if (likely(ic->log2_metadata_run >= 0))
384 result += (area + 1) << ic->log2_metadata_run;
385 else
386 result += (area + 1) * ic->metadata_run;
387
388 result += (sector_t)ic->initial_sectors + offset;
389 return result;
390 }
391
wraparound_section(struct dm_integrity_c * ic,unsigned * sec_ptr)392 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
393 {
394 if (unlikely(*sec_ptr >= ic->journal_sections))
395 *sec_ptr -= ic->journal_sections;
396 }
397
sync_rw_sb(struct dm_integrity_c * ic,int op,int op_flags)398 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
399 {
400 struct dm_io_request io_req;
401 struct dm_io_region io_loc;
402
403 io_req.bi_op = op;
404 io_req.bi_op_flags = op_flags;
405 io_req.mem.type = DM_IO_KMEM;
406 io_req.mem.ptr.addr = ic->sb;
407 io_req.notify.fn = NULL;
408 io_req.client = ic->io;
409 io_loc.bdev = ic->dev->bdev;
410 io_loc.sector = ic->start;
411 io_loc.count = SB_SECTORS;
412
413 return dm_io(&io_req, 1, &io_loc, NULL);
414 }
415
access_journal_check(struct dm_integrity_c * ic,unsigned section,unsigned offset,bool e,const char * function)416 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
417 bool e, const char *function)
418 {
419 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
420 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
421
422 if (unlikely(section >= ic->journal_sections) ||
423 unlikely(offset >= limit)) {
424 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
425 function, section, offset, ic->journal_sections, limit);
426 BUG();
427 }
428 #endif
429 }
430
page_list_location(struct dm_integrity_c * ic,unsigned section,unsigned offset,unsigned * pl_index,unsigned * pl_offset)431 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
432 unsigned *pl_index, unsigned *pl_offset)
433 {
434 unsigned sector;
435
436 access_journal_check(ic, section, offset, false, "page_list_location");
437
438 sector = section * ic->journal_section_sectors + offset;
439
440 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
441 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
442 }
443
access_page_list(struct dm_integrity_c * ic,struct page_list * pl,unsigned section,unsigned offset,unsigned * n_sectors)444 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
445 unsigned section, unsigned offset, unsigned *n_sectors)
446 {
447 unsigned pl_index, pl_offset;
448 char *va;
449
450 page_list_location(ic, section, offset, &pl_index, &pl_offset);
451
452 if (n_sectors)
453 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
454
455 va = lowmem_page_address(pl[pl_index].page);
456
457 return (struct journal_sector *)(va + pl_offset);
458 }
459
access_journal(struct dm_integrity_c * ic,unsigned section,unsigned offset)460 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
461 {
462 return access_page_list(ic, ic->journal, section, offset, NULL);
463 }
464
access_journal_entry(struct dm_integrity_c * ic,unsigned section,unsigned n)465 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
466 {
467 unsigned rel_sector, offset;
468 struct journal_sector *js;
469
470 access_journal_check(ic, section, n, true, "access_journal_entry");
471
472 rel_sector = n % JOURNAL_BLOCK_SECTORS;
473 offset = n / JOURNAL_BLOCK_SECTORS;
474
475 js = access_journal(ic, section, rel_sector);
476 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
477 }
478
access_journal_data(struct dm_integrity_c * ic,unsigned section,unsigned n)479 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
480 {
481 n <<= ic->sb->log2_sectors_per_block;
482
483 n += JOURNAL_BLOCK_SECTORS;
484
485 access_journal_check(ic, section, n, false, "access_journal_data");
486
487 return access_journal(ic, section, n);
488 }
489
section_mac(struct dm_integrity_c * ic,unsigned section,__u8 result[JOURNAL_MAC_SIZE])490 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
491 {
492 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
493 int r;
494 unsigned j, size;
495
496 desc->tfm = ic->journal_mac;
497 desc->flags = 0;
498
499 r = crypto_shash_init(desc);
500 if (unlikely(r)) {
501 dm_integrity_io_error(ic, "crypto_shash_init", r);
502 goto err;
503 }
504
505 for (j = 0; j < ic->journal_section_entries; j++) {
506 struct journal_entry *je = access_journal_entry(ic, section, j);
507 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
508 if (unlikely(r)) {
509 dm_integrity_io_error(ic, "crypto_shash_update", r);
510 goto err;
511 }
512 }
513
514 size = crypto_shash_digestsize(ic->journal_mac);
515
516 if (likely(size <= JOURNAL_MAC_SIZE)) {
517 r = crypto_shash_final(desc, result);
518 if (unlikely(r)) {
519 dm_integrity_io_error(ic, "crypto_shash_final", r);
520 goto err;
521 }
522 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
523 } else {
524 __u8 digest[size];
525 r = crypto_shash_final(desc, digest);
526 if (unlikely(r)) {
527 dm_integrity_io_error(ic, "crypto_shash_final", r);
528 goto err;
529 }
530 memcpy(result, digest, JOURNAL_MAC_SIZE);
531 }
532
533 return;
534 err:
535 memset(result, 0, JOURNAL_MAC_SIZE);
536 }
537
rw_section_mac(struct dm_integrity_c * ic,unsigned section,bool wr)538 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
539 {
540 __u8 result[JOURNAL_MAC_SIZE];
541 unsigned j;
542
543 if (!ic->journal_mac)
544 return;
545
546 section_mac(ic, section, result);
547
548 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
549 struct journal_sector *js = access_journal(ic, section, j);
550
551 if (likely(wr))
552 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
553 else {
554 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
555 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
556 }
557 }
558 }
559
complete_journal_op(void * context)560 static void complete_journal_op(void *context)
561 {
562 struct journal_completion *comp = context;
563 BUG_ON(!atomic_read(&comp->in_flight));
564 if (likely(atomic_dec_and_test(&comp->in_flight)))
565 complete(&comp->comp);
566 }
567
xor_journal(struct dm_integrity_c * ic,bool encrypt,unsigned section,unsigned n_sections,struct journal_completion * comp)568 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
569 unsigned n_sections, struct journal_completion *comp)
570 {
571 struct async_submit_ctl submit;
572 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
573 unsigned pl_index, pl_offset, section_index;
574 struct page_list *source_pl, *target_pl;
575
576 if (likely(encrypt)) {
577 source_pl = ic->journal;
578 target_pl = ic->journal_io;
579 } else {
580 source_pl = ic->journal_io;
581 target_pl = ic->journal;
582 }
583
584 page_list_location(ic, section, 0, &pl_index, &pl_offset);
585
586 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
587
588 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
589
590 section_index = pl_index;
591
592 do {
593 size_t this_step;
594 struct page *src_pages[2];
595 struct page *dst_page;
596
597 while (unlikely(pl_index == section_index)) {
598 unsigned dummy;
599 if (likely(encrypt))
600 rw_section_mac(ic, section, true);
601 section++;
602 n_sections--;
603 if (!n_sections)
604 break;
605 page_list_location(ic, section, 0, §ion_index, &dummy);
606 }
607
608 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
609 dst_page = target_pl[pl_index].page;
610 src_pages[0] = source_pl[pl_index].page;
611 src_pages[1] = ic->journal_xor[pl_index].page;
612
613 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
614
615 pl_index++;
616 pl_offset = 0;
617 n_bytes -= this_step;
618 } while (n_bytes);
619
620 BUG_ON(n_sections);
621
622 async_tx_issue_pending_all();
623 }
624
complete_journal_encrypt(struct crypto_async_request * req,int err)625 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
626 {
627 struct journal_completion *comp = req->data;
628 if (unlikely(err)) {
629 if (likely(err == -EINPROGRESS)) {
630 complete(&comp->ic->crypto_backoff);
631 return;
632 }
633 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
634 }
635 complete_journal_op(comp);
636 }
637
do_crypt(bool encrypt,struct skcipher_request * req,struct journal_completion * comp)638 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
639 {
640 int r;
641 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
642 complete_journal_encrypt, comp);
643 if (likely(encrypt))
644 r = crypto_skcipher_encrypt(req);
645 else
646 r = crypto_skcipher_decrypt(req);
647 if (likely(!r))
648 return false;
649 if (likely(r == -EINPROGRESS))
650 return true;
651 if (likely(r == -EBUSY)) {
652 wait_for_completion(&comp->ic->crypto_backoff);
653 reinit_completion(&comp->ic->crypto_backoff);
654 return true;
655 }
656 dm_integrity_io_error(comp->ic, "encrypt", r);
657 return false;
658 }
659
crypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned section,unsigned n_sections,struct journal_completion * comp)660 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
661 unsigned n_sections, struct journal_completion *comp)
662 {
663 struct scatterlist **source_sg;
664 struct scatterlist **target_sg;
665
666 atomic_add(2, &comp->in_flight);
667
668 if (likely(encrypt)) {
669 source_sg = ic->journal_scatterlist;
670 target_sg = ic->journal_io_scatterlist;
671 } else {
672 source_sg = ic->journal_io_scatterlist;
673 target_sg = ic->journal_scatterlist;
674 }
675
676 do {
677 struct skcipher_request *req;
678 unsigned ivsize;
679 char *iv;
680
681 if (likely(encrypt))
682 rw_section_mac(ic, section, true);
683
684 req = ic->sk_requests[section];
685 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
686 iv = req->iv;
687
688 memcpy(iv, iv + ivsize, ivsize);
689
690 req->src = source_sg[section];
691 req->dst = target_sg[section];
692
693 if (unlikely(do_crypt(encrypt, req, comp)))
694 atomic_inc(&comp->in_flight);
695
696 section++;
697 n_sections--;
698 } while (n_sections);
699
700 atomic_dec(&comp->in_flight);
701 complete_journal_op(comp);
702 }
703
encrypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned section,unsigned n_sections,struct journal_completion * comp)704 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
705 unsigned n_sections, struct journal_completion *comp)
706 {
707 if (ic->journal_xor)
708 return xor_journal(ic, encrypt, section, n_sections, comp);
709 else
710 return crypt_journal(ic, encrypt, section, n_sections, comp);
711 }
712
complete_journal_io(unsigned long error,void * context)713 static void complete_journal_io(unsigned long error, void *context)
714 {
715 struct journal_completion *comp = context;
716 if (unlikely(error != 0))
717 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
718 complete_journal_op(comp);
719 }
720
rw_journal(struct dm_integrity_c * ic,int op,int op_flags,unsigned section,unsigned n_sections,struct journal_completion * comp)721 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
722 unsigned n_sections, struct journal_completion *comp)
723 {
724 struct dm_io_request io_req;
725 struct dm_io_region io_loc;
726 unsigned sector, n_sectors, pl_index, pl_offset;
727 int r;
728
729 if (unlikely(dm_integrity_failed(ic))) {
730 if (comp)
731 complete_journal_io(-1UL, comp);
732 return;
733 }
734
735 sector = section * ic->journal_section_sectors;
736 n_sectors = n_sections * ic->journal_section_sectors;
737
738 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
739 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
740
741 io_req.bi_op = op;
742 io_req.bi_op_flags = op_flags;
743 io_req.mem.type = DM_IO_PAGE_LIST;
744 if (ic->journal_io)
745 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
746 else
747 io_req.mem.ptr.pl = &ic->journal[pl_index];
748 io_req.mem.offset = pl_offset;
749 if (likely(comp != NULL)) {
750 io_req.notify.fn = complete_journal_io;
751 io_req.notify.context = comp;
752 } else {
753 io_req.notify.fn = NULL;
754 }
755 io_req.client = ic->io;
756 io_loc.bdev = ic->dev->bdev;
757 io_loc.sector = ic->start + SB_SECTORS + sector;
758 io_loc.count = n_sectors;
759
760 r = dm_io(&io_req, 1, &io_loc, NULL);
761 if (unlikely(r)) {
762 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
763 if (comp) {
764 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
765 complete_journal_io(-1UL, comp);
766 }
767 }
768 }
769
write_journal(struct dm_integrity_c * ic,unsigned commit_start,unsigned commit_sections)770 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
771 {
772 struct journal_completion io_comp;
773 struct journal_completion crypt_comp_1;
774 struct journal_completion crypt_comp_2;
775 unsigned i;
776
777 io_comp.ic = ic;
778 init_completion(&io_comp.comp);
779
780 if (commit_start + commit_sections <= ic->journal_sections) {
781 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
782 if (ic->journal_io) {
783 crypt_comp_1.ic = ic;
784 init_completion(&crypt_comp_1.comp);
785 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
786 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
787 wait_for_completion_io(&crypt_comp_1.comp);
788 } else {
789 for (i = 0; i < commit_sections; i++)
790 rw_section_mac(ic, commit_start + i, true);
791 }
792 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
793 commit_sections, &io_comp);
794 } else {
795 unsigned to_end;
796 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
797 to_end = ic->journal_sections - commit_start;
798 if (ic->journal_io) {
799 crypt_comp_1.ic = ic;
800 init_completion(&crypt_comp_1.comp);
801 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
802 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
803 if (try_wait_for_completion(&crypt_comp_1.comp)) {
804 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
805 reinit_completion(&crypt_comp_1.comp);
806 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
807 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
808 wait_for_completion_io(&crypt_comp_1.comp);
809 } else {
810 crypt_comp_2.ic = ic;
811 init_completion(&crypt_comp_2.comp);
812 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
813 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
814 wait_for_completion_io(&crypt_comp_1.comp);
815 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
816 wait_for_completion_io(&crypt_comp_2.comp);
817 }
818 } else {
819 for (i = 0; i < to_end; i++)
820 rw_section_mac(ic, commit_start + i, true);
821 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
822 for (i = 0; i < commit_sections - to_end; i++)
823 rw_section_mac(ic, i, true);
824 }
825 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
826 }
827
828 wait_for_completion_io(&io_comp.comp);
829 }
830
copy_from_journal(struct dm_integrity_c * ic,unsigned section,unsigned offset,unsigned n_sectors,sector_t target,io_notify_fn fn,void * data)831 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
832 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
833 {
834 struct dm_io_request io_req;
835 struct dm_io_region io_loc;
836 int r;
837 unsigned sector, pl_index, pl_offset;
838
839 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
840
841 if (unlikely(dm_integrity_failed(ic))) {
842 fn(-1UL, data);
843 return;
844 }
845
846 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
847
848 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
849 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
850
851 io_req.bi_op = REQ_OP_WRITE;
852 io_req.bi_op_flags = 0;
853 io_req.mem.type = DM_IO_PAGE_LIST;
854 io_req.mem.ptr.pl = &ic->journal[pl_index];
855 io_req.mem.offset = pl_offset;
856 io_req.notify.fn = fn;
857 io_req.notify.context = data;
858 io_req.client = ic->io;
859 io_loc.bdev = ic->dev->bdev;
860 io_loc.sector = ic->start + target;
861 io_loc.count = n_sectors;
862
863 r = dm_io(&io_req, 1, &io_loc, NULL);
864 if (unlikely(r)) {
865 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
866 fn(-1UL, data);
867 }
868 }
869
add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)870 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
871 {
872 struct rb_node **n = &ic->in_progress.rb_node;
873 struct rb_node *parent;
874
875 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
876
877 parent = NULL;
878
879 while (*n) {
880 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
881
882 parent = *n;
883 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
884 n = &range->node.rb_left;
885 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
886 n = &range->node.rb_right;
887 } else {
888 return false;
889 }
890 }
891
892 rb_link_node(&new_range->node, parent, n);
893 rb_insert_color(&new_range->node, &ic->in_progress);
894
895 return true;
896 }
897
remove_range_unlocked(struct dm_integrity_c * ic,struct dm_integrity_range * range)898 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
899 {
900 rb_erase(&range->node, &ic->in_progress);
901 wake_up_locked(&ic->endio_wait);
902 }
903
remove_range(struct dm_integrity_c * ic,struct dm_integrity_range * range)904 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
905 {
906 unsigned long flags;
907
908 spin_lock_irqsave(&ic->endio_wait.lock, flags);
909 remove_range_unlocked(ic, range);
910 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
911 }
912
init_journal_node(struct journal_node * node)913 static void init_journal_node(struct journal_node *node)
914 {
915 RB_CLEAR_NODE(&node->node);
916 node->sector = (sector_t)-1;
917 }
918
add_journal_node(struct dm_integrity_c * ic,struct journal_node * node,sector_t sector)919 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
920 {
921 struct rb_node **link;
922 struct rb_node *parent;
923
924 node->sector = sector;
925 BUG_ON(!RB_EMPTY_NODE(&node->node));
926
927 link = &ic->journal_tree_root.rb_node;
928 parent = NULL;
929
930 while (*link) {
931 struct journal_node *j;
932 parent = *link;
933 j = container_of(parent, struct journal_node, node);
934 if (sector < j->sector)
935 link = &j->node.rb_left;
936 else
937 link = &j->node.rb_right;
938 }
939
940 rb_link_node(&node->node, parent, link);
941 rb_insert_color(&node->node, &ic->journal_tree_root);
942 }
943
remove_journal_node(struct dm_integrity_c * ic,struct journal_node * node)944 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
945 {
946 BUG_ON(RB_EMPTY_NODE(&node->node));
947 rb_erase(&node->node, &ic->journal_tree_root);
948 init_journal_node(node);
949 }
950
951 #define NOT_FOUND (-1U)
952
find_journal_node(struct dm_integrity_c * ic,sector_t sector,sector_t * next_sector)953 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
954 {
955 struct rb_node *n = ic->journal_tree_root.rb_node;
956 unsigned found = NOT_FOUND;
957 *next_sector = (sector_t)-1;
958 while (n) {
959 struct journal_node *j = container_of(n, struct journal_node, node);
960 if (sector == j->sector) {
961 found = j - ic->journal_tree;
962 }
963 if (sector < j->sector) {
964 *next_sector = j->sector;
965 n = j->node.rb_left;
966 } else {
967 n = j->node.rb_right;
968 }
969 }
970
971 return found;
972 }
973
test_journal_node(struct dm_integrity_c * ic,unsigned pos,sector_t sector)974 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
975 {
976 struct journal_node *node, *next_node;
977 struct rb_node *next;
978
979 if (unlikely(pos >= ic->journal_entries))
980 return false;
981 node = &ic->journal_tree[pos];
982 if (unlikely(RB_EMPTY_NODE(&node->node)))
983 return false;
984 if (unlikely(node->sector != sector))
985 return false;
986
987 next = rb_next(&node->node);
988 if (unlikely(!next))
989 return true;
990
991 next_node = container_of(next, struct journal_node, node);
992 return next_node->sector != sector;
993 }
994
find_newer_committed_node(struct dm_integrity_c * ic,struct journal_node * node)995 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
996 {
997 struct rb_node *next;
998 struct journal_node *next_node;
999 unsigned next_section;
1000
1001 BUG_ON(RB_EMPTY_NODE(&node->node));
1002
1003 next = rb_next(&node->node);
1004 if (unlikely(!next))
1005 return false;
1006
1007 next_node = container_of(next, struct journal_node, node);
1008
1009 if (next_node->sector != node->sector)
1010 return false;
1011
1012 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1013 if (next_section >= ic->committed_section &&
1014 next_section < ic->committed_section + ic->n_committed_sections)
1015 return true;
1016 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1017 return true;
1018
1019 return false;
1020 }
1021
1022 #define TAG_READ 0
1023 #define TAG_WRITE 1
1024 #define TAG_CMP 2
1025
dm_integrity_rw_tag(struct dm_integrity_c * ic,unsigned char * tag,sector_t * metadata_block,unsigned * metadata_offset,unsigned total_size,int op)1026 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1027 unsigned *metadata_offset, unsigned total_size, int op)
1028 {
1029 do {
1030 unsigned char *data, *dp;
1031 struct dm_buffer *b;
1032 unsigned to_copy;
1033 int r;
1034
1035 r = dm_integrity_failed(ic);
1036 if (unlikely(r))
1037 return r;
1038
1039 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1040 if (unlikely(IS_ERR(data)))
1041 return PTR_ERR(data);
1042
1043 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1044 dp = data + *metadata_offset;
1045 if (op == TAG_READ) {
1046 memcpy(tag, dp, to_copy);
1047 } else if (op == TAG_WRITE) {
1048 memcpy(dp, tag, to_copy);
1049 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1050 } else {
1051 /* e.g.: op == TAG_CMP */
1052 if (unlikely(memcmp(dp, tag, to_copy))) {
1053 unsigned i;
1054
1055 for (i = 0; i < to_copy; i++) {
1056 if (dp[i] != tag[i])
1057 break;
1058 total_size--;
1059 }
1060 dm_bufio_release(b);
1061 return total_size;
1062 }
1063 }
1064 dm_bufio_release(b);
1065
1066 tag += to_copy;
1067 *metadata_offset += to_copy;
1068 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1069 (*metadata_block)++;
1070 *metadata_offset = 0;
1071 }
1072 total_size -= to_copy;
1073 } while (unlikely(total_size));
1074
1075 return 0;
1076 }
1077
dm_integrity_flush_buffers(struct dm_integrity_c * ic)1078 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1079 {
1080 int r;
1081 r = dm_bufio_write_dirty_buffers(ic->bufio);
1082 if (unlikely(r))
1083 dm_integrity_io_error(ic, "writing tags", r);
1084 }
1085
sleep_on_endio_wait(struct dm_integrity_c * ic)1086 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1087 {
1088 DECLARE_WAITQUEUE(wait, current);
1089 __add_wait_queue(&ic->endio_wait, &wait);
1090 __set_current_state(TASK_UNINTERRUPTIBLE);
1091 spin_unlock_irq(&ic->endio_wait.lock);
1092 io_schedule();
1093 spin_lock_irq(&ic->endio_wait.lock);
1094 __remove_wait_queue(&ic->endio_wait, &wait);
1095 }
1096
autocommit_fn(unsigned long data)1097 static void autocommit_fn(unsigned long data)
1098 {
1099 struct dm_integrity_c *ic = (struct dm_integrity_c *)data;
1100
1101 if (likely(!dm_integrity_failed(ic)))
1102 queue_work(ic->commit_wq, &ic->commit_work);
1103 }
1104
schedule_autocommit(struct dm_integrity_c * ic)1105 static void schedule_autocommit(struct dm_integrity_c *ic)
1106 {
1107 if (!timer_pending(&ic->autocommit_timer))
1108 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1109 }
1110
submit_flush_bio(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1111 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1112 {
1113 struct bio *bio;
1114 unsigned long flags;
1115
1116 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1117 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1118 bio_list_add(&ic->flush_bio_list, bio);
1119 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1120
1121 queue_work(ic->commit_wq, &ic->commit_work);
1122 }
1123
do_endio(struct dm_integrity_c * ic,struct bio * bio)1124 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1125 {
1126 int r = dm_integrity_failed(ic);
1127 if (unlikely(r) && !bio->bi_status)
1128 bio->bi_status = errno_to_blk_status(r);
1129 bio_endio(bio);
1130 }
1131
do_endio_flush(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1132 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1133 {
1134 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1135
1136 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1137 submit_flush_bio(ic, dio);
1138 else
1139 do_endio(ic, bio);
1140 }
1141
dec_in_flight(struct dm_integrity_io * dio)1142 static void dec_in_flight(struct dm_integrity_io *dio)
1143 {
1144 if (atomic_dec_and_test(&dio->in_flight)) {
1145 struct dm_integrity_c *ic = dio->ic;
1146 struct bio *bio;
1147
1148 remove_range(ic, &dio->range);
1149
1150 if (unlikely(dio->write))
1151 schedule_autocommit(ic);
1152
1153 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1154
1155 if (unlikely(dio->bi_status) && !bio->bi_status)
1156 bio->bi_status = dio->bi_status;
1157 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1158 dio->range.logical_sector += dio->range.n_sectors;
1159 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1160 INIT_WORK(&dio->work, integrity_bio_wait);
1161 queue_work(ic->offload_wq, &dio->work);
1162 return;
1163 }
1164 do_endio_flush(ic, dio);
1165 }
1166 }
1167
integrity_end_io(struct bio * bio)1168 static void integrity_end_io(struct bio *bio)
1169 {
1170 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1171
1172 bio->bi_iter = dio->orig_bi_iter;
1173 bio->bi_disk = dio->orig_bi_disk;
1174 bio->bi_partno = dio->orig_bi_partno;
1175 if (dio->orig_bi_integrity) {
1176 bio->bi_integrity = dio->orig_bi_integrity;
1177 bio->bi_opf |= REQ_INTEGRITY;
1178 }
1179 bio->bi_end_io = dio->orig_bi_end_io;
1180
1181 if (dio->completion)
1182 complete(dio->completion);
1183
1184 dec_in_flight(dio);
1185 }
1186
integrity_sector_checksum(struct dm_integrity_c * ic,sector_t sector,const char * data,char * result)1187 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1188 const char *data, char *result)
1189 {
1190 __u64 sector_le = cpu_to_le64(sector);
1191 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1192 int r;
1193 unsigned digest_size;
1194
1195 req->tfm = ic->internal_hash;
1196 req->flags = 0;
1197
1198 r = crypto_shash_init(req);
1199 if (unlikely(r < 0)) {
1200 dm_integrity_io_error(ic, "crypto_shash_init", r);
1201 goto failed;
1202 }
1203
1204 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le);
1205 if (unlikely(r < 0)) {
1206 dm_integrity_io_error(ic, "crypto_shash_update", r);
1207 goto failed;
1208 }
1209
1210 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1211 if (unlikely(r < 0)) {
1212 dm_integrity_io_error(ic, "crypto_shash_update", r);
1213 goto failed;
1214 }
1215
1216 r = crypto_shash_final(req, result);
1217 if (unlikely(r < 0)) {
1218 dm_integrity_io_error(ic, "crypto_shash_final", r);
1219 goto failed;
1220 }
1221
1222 digest_size = crypto_shash_digestsize(ic->internal_hash);
1223 if (unlikely(digest_size < ic->tag_size))
1224 memset(result + digest_size, 0, ic->tag_size - digest_size);
1225
1226 return;
1227
1228 failed:
1229 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1230 get_random_bytes(result, ic->tag_size);
1231 }
1232
integrity_metadata(struct work_struct * w)1233 static void integrity_metadata(struct work_struct *w)
1234 {
1235 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1236 struct dm_integrity_c *ic = dio->ic;
1237
1238 int r;
1239
1240 if (ic->internal_hash) {
1241 struct bvec_iter iter;
1242 struct bio_vec bv;
1243 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1244 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1245 char *checksums;
1246 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1247 char checksums_onstack[ic->tag_size + extra_space];
1248 unsigned sectors_to_process = dio->range.n_sectors;
1249 sector_t sector = dio->range.logical_sector;
1250
1251 if (unlikely(ic->mode == 'R'))
1252 goto skip_io;
1253
1254 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1255 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1256 if (!checksums)
1257 checksums = checksums_onstack;
1258
1259 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1260 unsigned pos;
1261 char *mem, *checksums_ptr;
1262
1263 again:
1264 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1265 pos = 0;
1266 checksums_ptr = checksums;
1267 do {
1268 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1269 checksums_ptr += ic->tag_size;
1270 sectors_to_process -= ic->sectors_per_block;
1271 pos += ic->sectors_per_block << SECTOR_SHIFT;
1272 sector += ic->sectors_per_block;
1273 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1274 kunmap_atomic(mem);
1275
1276 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1277 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1278 if (unlikely(r)) {
1279 if (r > 0) {
1280 DMERR_LIMIT("Checksum failed at sector 0x%llx",
1281 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1282 r = -EILSEQ;
1283 atomic64_inc(&ic->number_of_mismatches);
1284 }
1285 if (likely(checksums != checksums_onstack))
1286 kfree(checksums);
1287 goto error;
1288 }
1289
1290 if (!sectors_to_process)
1291 break;
1292
1293 if (unlikely(pos < bv.bv_len)) {
1294 bv.bv_offset += pos;
1295 bv.bv_len -= pos;
1296 goto again;
1297 }
1298 }
1299
1300 if (likely(checksums != checksums_onstack))
1301 kfree(checksums);
1302 } else {
1303 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1304
1305 if (bip) {
1306 struct bio_vec biv;
1307 struct bvec_iter iter;
1308 unsigned data_to_process = dio->range.n_sectors;
1309 sector_to_block(ic, data_to_process);
1310 data_to_process *= ic->tag_size;
1311
1312 bip_for_each_vec(biv, bip, iter) {
1313 unsigned char *tag;
1314 unsigned this_len;
1315
1316 BUG_ON(PageHighMem(biv.bv_page));
1317 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1318 this_len = min(biv.bv_len, data_to_process);
1319 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1320 this_len, !dio->write ? TAG_READ : TAG_WRITE);
1321 if (unlikely(r))
1322 goto error;
1323 data_to_process -= this_len;
1324 if (!data_to_process)
1325 break;
1326 }
1327 }
1328 }
1329 skip_io:
1330 dec_in_flight(dio);
1331 return;
1332 error:
1333 dio->bi_status = errno_to_blk_status(r);
1334 dec_in_flight(dio);
1335 }
1336
dm_integrity_map(struct dm_target * ti,struct bio * bio)1337 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1338 {
1339 struct dm_integrity_c *ic = ti->private;
1340 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1341 struct bio_integrity_payload *bip;
1342
1343 sector_t area, offset;
1344
1345 dio->ic = ic;
1346 dio->bi_status = 0;
1347
1348 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1349 submit_flush_bio(ic, dio);
1350 return DM_MAPIO_SUBMITTED;
1351 }
1352
1353 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1354 dio->write = bio_op(bio) == REQ_OP_WRITE;
1355 dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1356 if (unlikely(dio->fua)) {
1357 /*
1358 * Don't pass down the FUA flag because we have to flush
1359 * disk cache anyway.
1360 */
1361 bio->bi_opf &= ~REQ_FUA;
1362 }
1363 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1364 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1365 (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1366 (unsigned long long)ic->provided_data_sectors);
1367 return DM_MAPIO_KILL;
1368 }
1369 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1370 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1371 ic->sectors_per_block,
1372 (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1373 return DM_MAPIO_KILL;
1374 }
1375
1376 if (ic->sectors_per_block > 1) {
1377 struct bvec_iter iter;
1378 struct bio_vec bv;
1379 bio_for_each_segment(bv, bio, iter) {
1380 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1381 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1382 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1383 return DM_MAPIO_KILL;
1384 }
1385 }
1386 }
1387
1388 bip = bio_integrity(bio);
1389 if (!ic->internal_hash) {
1390 if (bip) {
1391 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1392 if (ic->log2_tag_size >= 0)
1393 wanted_tag_size <<= ic->log2_tag_size;
1394 else
1395 wanted_tag_size *= ic->tag_size;
1396 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1397 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1398 return DM_MAPIO_KILL;
1399 }
1400 }
1401 } else {
1402 if (unlikely(bip != NULL)) {
1403 DMERR("Unexpected integrity data when using internal hash");
1404 return DM_MAPIO_KILL;
1405 }
1406 }
1407
1408 if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1409 return DM_MAPIO_KILL;
1410
1411 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1412 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1413 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1414
1415 dm_integrity_map_continue(dio, true);
1416 return DM_MAPIO_SUBMITTED;
1417 }
1418
__journal_read_write(struct dm_integrity_io * dio,struct bio * bio,unsigned journal_section,unsigned journal_entry)1419 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1420 unsigned journal_section, unsigned journal_entry)
1421 {
1422 struct dm_integrity_c *ic = dio->ic;
1423 sector_t logical_sector;
1424 unsigned n_sectors;
1425
1426 logical_sector = dio->range.logical_sector;
1427 n_sectors = dio->range.n_sectors;
1428 do {
1429 struct bio_vec bv = bio_iovec(bio);
1430 char *mem;
1431
1432 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1433 bv.bv_len = n_sectors << SECTOR_SHIFT;
1434 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1435 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1436 retry_kmap:
1437 mem = kmap_atomic(bv.bv_page);
1438 if (likely(dio->write))
1439 flush_dcache_page(bv.bv_page);
1440
1441 do {
1442 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1443
1444 if (unlikely(!dio->write)) {
1445 struct journal_sector *js;
1446 char *mem_ptr;
1447 unsigned s;
1448
1449 if (unlikely(journal_entry_is_inprogress(je))) {
1450 flush_dcache_page(bv.bv_page);
1451 kunmap_atomic(mem);
1452
1453 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1454 goto retry_kmap;
1455 }
1456 smp_rmb();
1457 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1458 js = access_journal_data(ic, journal_section, journal_entry);
1459 mem_ptr = mem + bv.bv_offset;
1460 s = 0;
1461 do {
1462 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1463 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1464 js++;
1465 mem_ptr += 1 << SECTOR_SHIFT;
1466 } while (++s < ic->sectors_per_block);
1467 #ifdef INTERNAL_VERIFY
1468 if (ic->internal_hash) {
1469 char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1470
1471 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1472 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1473 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1474 (unsigned long long)logical_sector);
1475 }
1476 }
1477 #endif
1478 }
1479
1480 if (!ic->internal_hash) {
1481 struct bio_integrity_payload *bip = bio_integrity(bio);
1482 unsigned tag_todo = ic->tag_size;
1483 char *tag_ptr = journal_entry_tag(ic, je);
1484
1485 if (bip) do {
1486 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1487 unsigned tag_now = min(biv.bv_len, tag_todo);
1488 char *tag_addr;
1489 BUG_ON(PageHighMem(biv.bv_page));
1490 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1491 if (likely(dio->write))
1492 memcpy(tag_ptr, tag_addr, tag_now);
1493 else
1494 memcpy(tag_addr, tag_ptr, tag_now);
1495 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1496 tag_ptr += tag_now;
1497 tag_todo -= tag_now;
1498 } while (unlikely(tag_todo)); else {
1499 if (likely(dio->write))
1500 memset(tag_ptr, 0, tag_todo);
1501 }
1502 }
1503
1504 if (likely(dio->write)) {
1505 struct journal_sector *js;
1506 unsigned s;
1507
1508 js = access_journal_data(ic, journal_section, journal_entry);
1509 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1510
1511 s = 0;
1512 do {
1513 je->last_bytes[s] = js[s].commit_id;
1514 } while (++s < ic->sectors_per_block);
1515
1516 if (ic->internal_hash) {
1517 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1518 if (unlikely(digest_size > ic->tag_size)) {
1519 char checksums_onstack[digest_size];
1520 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1521 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1522 } else
1523 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1524 }
1525
1526 journal_entry_set_sector(je, logical_sector);
1527 }
1528 logical_sector += ic->sectors_per_block;
1529
1530 journal_entry++;
1531 if (unlikely(journal_entry == ic->journal_section_entries)) {
1532 journal_entry = 0;
1533 journal_section++;
1534 wraparound_section(ic, &journal_section);
1535 }
1536
1537 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1538 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1539
1540 if (unlikely(!dio->write))
1541 flush_dcache_page(bv.bv_page);
1542 kunmap_atomic(mem);
1543 } while (n_sectors);
1544
1545 if (likely(dio->write)) {
1546 smp_mb();
1547 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1548 wake_up(&ic->copy_to_journal_wait);
1549 if (ACCESS_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1550 queue_work(ic->commit_wq, &ic->commit_work);
1551 } else {
1552 schedule_autocommit(ic);
1553 }
1554 } else {
1555 remove_range(ic, &dio->range);
1556 }
1557
1558 if (unlikely(bio->bi_iter.bi_size)) {
1559 sector_t area, offset;
1560
1561 dio->range.logical_sector = logical_sector;
1562 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1563 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1564 return true;
1565 }
1566
1567 return false;
1568 }
1569
dm_integrity_map_continue(struct dm_integrity_io * dio,bool from_map)1570 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1571 {
1572 struct dm_integrity_c *ic = dio->ic;
1573 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1574 unsigned journal_section, journal_entry;
1575 unsigned journal_read_pos;
1576 struct completion read_comp;
1577 bool need_sync_io = ic->internal_hash && !dio->write;
1578
1579 if (need_sync_io && from_map) {
1580 INIT_WORK(&dio->work, integrity_bio_wait);
1581 queue_work(ic->offload_wq, &dio->work);
1582 return;
1583 }
1584
1585 lock_retry:
1586 spin_lock_irq(&ic->endio_wait.lock);
1587 retry:
1588 if (unlikely(dm_integrity_failed(ic))) {
1589 spin_unlock_irq(&ic->endio_wait.lock);
1590 do_endio(ic, bio);
1591 return;
1592 }
1593 dio->range.n_sectors = bio_sectors(bio);
1594 journal_read_pos = NOT_FOUND;
1595 if (likely(ic->mode == 'J')) {
1596 if (dio->write) {
1597 unsigned next_entry, i, pos;
1598 unsigned ws, we, range_sectors;
1599
1600 dio->range.n_sectors = min(dio->range.n_sectors,
1601 ic->free_sectors << ic->sb->log2_sectors_per_block);
1602 if (unlikely(!dio->range.n_sectors))
1603 goto sleep;
1604 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1605 ic->free_sectors -= range_sectors;
1606 journal_section = ic->free_section;
1607 journal_entry = ic->free_section_entry;
1608
1609 next_entry = ic->free_section_entry + range_sectors;
1610 ic->free_section_entry = next_entry % ic->journal_section_entries;
1611 ic->free_section += next_entry / ic->journal_section_entries;
1612 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1613 wraparound_section(ic, &ic->free_section);
1614
1615 pos = journal_section * ic->journal_section_entries + journal_entry;
1616 ws = journal_section;
1617 we = journal_entry;
1618 i = 0;
1619 do {
1620 struct journal_entry *je;
1621
1622 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1623 pos++;
1624 if (unlikely(pos >= ic->journal_entries))
1625 pos = 0;
1626
1627 je = access_journal_entry(ic, ws, we);
1628 BUG_ON(!journal_entry_is_unused(je));
1629 journal_entry_set_inprogress(je);
1630 we++;
1631 if (unlikely(we == ic->journal_section_entries)) {
1632 we = 0;
1633 ws++;
1634 wraparound_section(ic, &ws);
1635 }
1636 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1637
1638 spin_unlock_irq(&ic->endio_wait.lock);
1639 goto journal_read_write;
1640 } else {
1641 sector_t next_sector;
1642 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1643 if (likely(journal_read_pos == NOT_FOUND)) {
1644 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1645 dio->range.n_sectors = next_sector - dio->range.logical_sector;
1646 } else {
1647 unsigned i;
1648 unsigned jp = journal_read_pos + 1;
1649 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1650 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1651 break;
1652 }
1653 dio->range.n_sectors = i;
1654 }
1655 }
1656 }
1657 if (unlikely(!add_new_range(ic, &dio->range))) {
1658 /*
1659 * We must not sleep in the request routine because it could
1660 * stall bios on current->bio_list.
1661 * So, we offload the bio to a workqueue if we have to sleep.
1662 */
1663 sleep:
1664 if (from_map) {
1665 spin_unlock_irq(&ic->endio_wait.lock);
1666 INIT_WORK(&dio->work, integrity_bio_wait);
1667 queue_work(ic->wait_wq, &dio->work);
1668 return;
1669 } else {
1670 sleep_on_endio_wait(ic);
1671 goto retry;
1672 }
1673 }
1674 spin_unlock_irq(&ic->endio_wait.lock);
1675
1676 if (unlikely(journal_read_pos != NOT_FOUND)) {
1677 journal_section = journal_read_pos / ic->journal_section_entries;
1678 journal_entry = journal_read_pos % ic->journal_section_entries;
1679 goto journal_read_write;
1680 }
1681
1682 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1683
1684 if (need_sync_io) {
1685 init_completion(&read_comp);
1686 dio->completion = &read_comp;
1687 } else
1688 dio->completion = NULL;
1689
1690 dio->orig_bi_iter = bio->bi_iter;
1691
1692 dio->orig_bi_disk = bio->bi_disk;
1693 dio->orig_bi_partno = bio->bi_partno;
1694 bio_set_dev(bio, ic->dev->bdev);
1695
1696 dio->orig_bi_integrity = bio_integrity(bio);
1697 bio->bi_integrity = NULL;
1698 bio->bi_opf &= ~REQ_INTEGRITY;
1699
1700 dio->orig_bi_end_io = bio->bi_end_io;
1701 bio->bi_end_io = integrity_end_io;
1702
1703 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1704 bio->bi_iter.bi_sector += ic->start;
1705 generic_make_request(bio);
1706
1707 if (need_sync_io) {
1708 wait_for_completion_io(&read_comp);
1709 if (likely(!bio->bi_status))
1710 integrity_metadata(&dio->work);
1711 else
1712 dec_in_flight(dio);
1713
1714 } else {
1715 INIT_WORK(&dio->work, integrity_metadata);
1716 queue_work(ic->metadata_wq, &dio->work);
1717 }
1718
1719 return;
1720
1721 journal_read_write:
1722 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1723 goto lock_retry;
1724
1725 do_endio_flush(ic, dio);
1726 }
1727
1728
integrity_bio_wait(struct work_struct * w)1729 static void integrity_bio_wait(struct work_struct *w)
1730 {
1731 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1732
1733 dm_integrity_map_continue(dio, false);
1734 }
1735
pad_uncommitted(struct dm_integrity_c * ic)1736 static void pad_uncommitted(struct dm_integrity_c *ic)
1737 {
1738 if (ic->free_section_entry) {
1739 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1740 ic->free_section_entry = 0;
1741 ic->free_section++;
1742 wraparound_section(ic, &ic->free_section);
1743 ic->n_uncommitted_sections++;
1744 }
1745 WARN_ON(ic->journal_sections * ic->journal_section_entries !=
1746 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
1747 }
1748
integrity_commit(struct work_struct * w)1749 static void integrity_commit(struct work_struct *w)
1750 {
1751 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1752 unsigned commit_start, commit_sections;
1753 unsigned i, j, n;
1754 struct bio *flushes;
1755
1756 del_timer(&ic->autocommit_timer);
1757
1758 spin_lock_irq(&ic->endio_wait.lock);
1759 flushes = bio_list_get(&ic->flush_bio_list);
1760 if (unlikely(ic->mode != 'J')) {
1761 spin_unlock_irq(&ic->endio_wait.lock);
1762 dm_integrity_flush_buffers(ic);
1763 goto release_flush_bios;
1764 }
1765
1766 pad_uncommitted(ic);
1767 commit_start = ic->uncommitted_section;
1768 commit_sections = ic->n_uncommitted_sections;
1769 spin_unlock_irq(&ic->endio_wait.lock);
1770
1771 if (!commit_sections)
1772 goto release_flush_bios;
1773
1774 i = commit_start;
1775 for (n = 0; n < commit_sections; n++) {
1776 for (j = 0; j < ic->journal_section_entries; j++) {
1777 struct journal_entry *je;
1778 je = access_journal_entry(ic, i, j);
1779 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1780 }
1781 for (j = 0; j < ic->journal_section_sectors; j++) {
1782 struct journal_sector *js;
1783 js = access_journal(ic, i, j);
1784 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1785 }
1786 i++;
1787 if (unlikely(i >= ic->journal_sections))
1788 ic->commit_seq = next_commit_seq(ic->commit_seq);
1789 wraparound_section(ic, &i);
1790 }
1791 smp_rmb();
1792
1793 write_journal(ic, commit_start, commit_sections);
1794
1795 spin_lock_irq(&ic->endio_wait.lock);
1796 ic->uncommitted_section += commit_sections;
1797 wraparound_section(ic, &ic->uncommitted_section);
1798 ic->n_uncommitted_sections -= commit_sections;
1799 ic->n_committed_sections += commit_sections;
1800 spin_unlock_irq(&ic->endio_wait.lock);
1801
1802 if (ACCESS_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1803 queue_work(ic->writer_wq, &ic->writer_work);
1804
1805 release_flush_bios:
1806 while (flushes) {
1807 struct bio *next = flushes->bi_next;
1808 flushes->bi_next = NULL;
1809 do_endio(ic, flushes);
1810 flushes = next;
1811 }
1812 }
1813
complete_copy_from_journal(unsigned long error,void * context)1814 static void complete_copy_from_journal(unsigned long error, void *context)
1815 {
1816 struct journal_io *io = context;
1817 struct journal_completion *comp = io->comp;
1818 struct dm_integrity_c *ic = comp->ic;
1819 remove_range(ic, &io->range);
1820 mempool_free(io, ic->journal_io_mempool);
1821 if (unlikely(error != 0))
1822 dm_integrity_io_error(ic, "copying from journal", -EIO);
1823 complete_journal_op(comp);
1824 }
1825
restore_last_bytes(struct dm_integrity_c * ic,struct journal_sector * js,struct journal_entry * je)1826 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1827 struct journal_entry *je)
1828 {
1829 unsigned s = 0;
1830 do {
1831 js->commit_id = je->last_bytes[s];
1832 js++;
1833 } while (++s < ic->sectors_per_block);
1834 }
1835
do_journal_write(struct dm_integrity_c * ic,unsigned write_start,unsigned write_sections,bool from_replay)1836 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1837 unsigned write_sections, bool from_replay)
1838 {
1839 unsigned i, j, n;
1840 struct journal_completion comp;
1841 struct blk_plug plug;
1842
1843 blk_start_plug(&plug);
1844
1845 comp.ic = ic;
1846 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1847 init_completion(&comp.comp);
1848
1849 i = write_start;
1850 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1851 #ifndef INTERNAL_VERIFY
1852 if (unlikely(from_replay))
1853 #endif
1854 rw_section_mac(ic, i, false);
1855 for (j = 0; j < ic->journal_section_entries; j++) {
1856 struct journal_entry *je = access_journal_entry(ic, i, j);
1857 sector_t sec, area, offset;
1858 unsigned k, l, next_loop;
1859 sector_t metadata_block;
1860 unsigned metadata_offset;
1861 struct journal_io *io;
1862
1863 if (journal_entry_is_unused(je))
1864 continue;
1865 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1866 sec = journal_entry_get_sector(je);
1867 if (unlikely(from_replay)) {
1868 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1869 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1870 sec &= ~(sector_t)(ic->sectors_per_block - 1);
1871 }
1872 }
1873 get_area_and_offset(ic, sec, &area, &offset);
1874 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1875 for (k = j + 1; k < ic->journal_section_entries; k++) {
1876 struct journal_entry *je2 = access_journal_entry(ic, i, k);
1877 sector_t sec2, area2, offset2;
1878 if (journal_entry_is_unused(je2))
1879 break;
1880 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1881 sec2 = journal_entry_get_sector(je2);
1882 get_area_and_offset(ic, sec2, &area2, &offset2);
1883 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1884 break;
1885 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1886 }
1887 next_loop = k - 1;
1888
1889 io = mempool_alloc(ic->journal_io_mempool, GFP_NOIO);
1890 io->comp = ∁
1891 io->range.logical_sector = sec;
1892 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1893
1894 spin_lock_irq(&ic->endio_wait.lock);
1895 while (unlikely(!add_new_range(ic, &io->range)))
1896 sleep_on_endio_wait(ic);
1897
1898 if (likely(!from_replay)) {
1899 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1900
1901 /* don't write if there is newer committed sector */
1902 while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
1903 struct journal_entry *je2 = access_journal_entry(ic, i, j);
1904
1905 journal_entry_set_unused(je2);
1906 remove_journal_node(ic, §ion_node[j]);
1907 j++;
1908 sec += ic->sectors_per_block;
1909 offset += ic->sectors_per_block;
1910 }
1911 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
1912 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
1913
1914 journal_entry_set_unused(je2);
1915 remove_journal_node(ic, §ion_node[k - 1]);
1916 k--;
1917 }
1918 if (j == k) {
1919 remove_range_unlocked(ic, &io->range);
1920 spin_unlock_irq(&ic->endio_wait.lock);
1921 mempool_free(io, ic->journal_io_mempool);
1922 goto skip_io;
1923 }
1924 for (l = j; l < k; l++) {
1925 remove_journal_node(ic, §ion_node[l]);
1926 }
1927 }
1928 spin_unlock_irq(&ic->endio_wait.lock);
1929
1930 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
1931 for (l = j; l < k; l++) {
1932 int r;
1933 struct journal_entry *je2 = access_journal_entry(ic, i, l);
1934
1935 if (
1936 #ifndef INTERNAL_VERIFY
1937 unlikely(from_replay) &&
1938 #endif
1939 ic->internal_hash) {
1940 char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1941
1942 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
1943 (char *)access_journal_data(ic, i, l), test_tag);
1944 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
1945 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
1946 }
1947
1948 journal_entry_set_unused(je2);
1949 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
1950 ic->tag_size, TAG_WRITE);
1951 if (unlikely(r)) {
1952 dm_integrity_io_error(ic, "reading tags", r);
1953 }
1954 }
1955
1956 atomic_inc(&comp.in_flight);
1957 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
1958 (k - j) << ic->sb->log2_sectors_per_block,
1959 get_data_sector(ic, area, offset),
1960 complete_copy_from_journal, io);
1961 skip_io:
1962 j = next_loop;
1963 }
1964 }
1965
1966 dm_bufio_write_dirty_buffers_async(ic->bufio);
1967
1968 blk_finish_plug(&plug);
1969
1970 complete_journal_op(&comp);
1971 wait_for_completion_io(&comp.comp);
1972
1973 dm_integrity_flush_buffers(ic);
1974 }
1975
integrity_writer(struct work_struct * w)1976 static void integrity_writer(struct work_struct *w)
1977 {
1978 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
1979 unsigned write_start, write_sections;
1980
1981 unsigned prev_free_sectors;
1982
1983 /* the following test is not needed, but it tests the replay code */
1984 if (ACCESS_ONCE(ic->suspending))
1985 return;
1986
1987 spin_lock_irq(&ic->endio_wait.lock);
1988 write_start = ic->committed_section;
1989 write_sections = ic->n_committed_sections;
1990 spin_unlock_irq(&ic->endio_wait.lock);
1991
1992 if (!write_sections)
1993 return;
1994
1995 do_journal_write(ic, write_start, write_sections, false);
1996
1997 spin_lock_irq(&ic->endio_wait.lock);
1998
1999 ic->committed_section += write_sections;
2000 wraparound_section(ic, &ic->committed_section);
2001 ic->n_committed_sections -= write_sections;
2002
2003 prev_free_sectors = ic->free_sectors;
2004 ic->free_sectors += write_sections * ic->journal_section_entries;
2005 if (unlikely(!prev_free_sectors))
2006 wake_up_locked(&ic->endio_wait);
2007
2008 spin_unlock_irq(&ic->endio_wait.lock);
2009 }
2010
init_journal(struct dm_integrity_c * ic,unsigned start_section,unsigned n_sections,unsigned char commit_seq)2011 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2012 unsigned n_sections, unsigned char commit_seq)
2013 {
2014 unsigned i, j, n;
2015
2016 if (!n_sections)
2017 return;
2018
2019 for (n = 0; n < n_sections; n++) {
2020 i = start_section + n;
2021 wraparound_section(ic, &i);
2022 for (j = 0; j < ic->journal_section_sectors; j++) {
2023 struct journal_sector *js = access_journal(ic, i, j);
2024 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2025 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2026 }
2027 for (j = 0; j < ic->journal_section_entries; j++) {
2028 struct journal_entry *je = access_journal_entry(ic, i, j);
2029 journal_entry_set_unused(je);
2030 }
2031 }
2032
2033 write_journal(ic, start_section, n_sections);
2034 }
2035
find_commit_seq(struct dm_integrity_c * ic,unsigned i,unsigned j,commit_id_t id)2036 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2037 {
2038 unsigned char k;
2039 for (k = 0; k < N_COMMIT_IDS; k++) {
2040 if (dm_integrity_commit_id(ic, i, j, k) == id)
2041 return k;
2042 }
2043 dm_integrity_io_error(ic, "journal commit id", -EIO);
2044 return -EIO;
2045 }
2046
replay_journal(struct dm_integrity_c * ic)2047 static void replay_journal(struct dm_integrity_c *ic)
2048 {
2049 unsigned i, j;
2050 bool used_commit_ids[N_COMMIT_IDS];
2051 unsigned max_commit_id_sections[N_COMMIT_IDS];
2052 unsigned write_start, write_sections;
2053 unsigned continue_section;
2054 bool journal_empty;
2055 unsigned char unused, last_used, want_commit_seq;
2056
2057 if (ic->mode == 'R')
2058 return;
2059
2060 if (ic->journal_uptodate)
2061 return;
2062
2063 last_used = 0;
2064 write_start = 0;
2065
2066 if (!ic->just_formatted) {
2067 DEBUG_print("reading journal\n");
2068 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2069 if (ic->journal_io)
2070 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2071 if (ic->journal_io) {
2072 struct journal_completion crypt_comp;
2073 crypt_comp.ic = ic;
2074 init_completion(&crypt_comp.comp);
2075 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2076 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2077 wait_for_completion(&crypt_comp.comp);
2078 }
2079 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2080 }
2081
2082 if (dm_integrity_failed(ic))
2083 goto clear_journal;
2084
2085 journal_empty = true;
2086 memset(used_commit_ids, 0, sizeof used_commit_ids);
2087 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2088 for (i = 0; i < ic->journal_sections; i++) {
2089 for (j = 0; j < ic->journal_section_sectors; j++) {
2090 int k;
2091 struct journal_sector *js = access_journal(ic, i, j);
2092 k = find_commit_seq(ic, i, j, js->commit_id);
2093 if (k < 0)
2094 goto clear_journal;
2095 used_commit_ids[k] = true;
2096 max_commit_id_sections[k] = i;
2097 }
2098 if (journal_empty) {
2099 for (j = 0; j < ic->journal_section_entries; j++) {
2100 struct journal_entry *je = access_journal_entry(ic, i, j);
2101 if (!journal_entry_is_unused(je)) {
2102 journal_empty = false;
2103 break;
2104 }
2105 }
2106 }
2107 }
2108
2109 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2110 unused = N_COMMIT_IDS - 1;
2111 while (unused && !used_commit_ids[unused - 1])
2112 unused--;
2113 } else {
2114 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2115 if (!used_commit_ids[unused])
2116 break;
2117 if (unused == N_COMMIT_IDS) {
2118 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2119 goto clear_journal;
2120 }
2121 }
2122 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2123 unused, used_commit_ids[0], used_commit_ids[1],
2124 used_commit_ids[2], used_commit_ids[3]);
2125
2126 last_used = prev_commit_seq(unused);
2127 want_commit_seq = prev_commit_seq(last_used);
2128
2129 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2130 journal_empty = true;
2131
2132 write_start = max_commit_id_sections[last_used] + 1;
2133 if (unlikely(write_start >= ic->journal_sections))
2134 want_commit_seq = next_commit_seq(want_commit_seq);
2135 wraparound_section(ic, &write_start);
2136
2137 i = write_start;
2138 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2139 for (j = 0; j < ic->journal_section_sectors; j++) {
2140 struct journal_sector *js = access_journal(ic, i, j);
2141
2142 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2143 /*
2144 * This could be caused by crash during writing.
2145 * We won't replay the inconsistent part of the
2146 * journal.
2147 */
2148 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2149 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2150 goto brk;
2151 }
2152 }
2153 i++;
2154 if (unlikely(i >= ic->journal_sections))
2155 want_commit_seq = next_commit_seq(want_commit_seq);
2156 wraparound_section(ic, &i);
2157 }
2158 brk:
2159
2160 if (!journal_empty) {
2161 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2162 write_sections, write_start, want_commit_seq);
2163 do_journal_write(ic, write_start, write_sections, true);
2164 }
2165
2166 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2167 continue_section = write_start;
2168 ic->commit_seq = want_commit_seq;
2169 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2170 } else {
2171 unsigned s;
2172 unsigned char erase_seq;
2173 clear_journal:
2174 DEBUG_print("clearing journal\n");
2175
2176 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2177 s = write_start;
2178 init_journal(ic, s, 1, erase_seq);
2179 s++;
2180 wraparound_section(ic, &s);
2181 if (ic->journal_sections >= 2) {
2182 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2183 s += ic->journal_sections - 2;
2184 wraparound_section(ic, &s);
2185 init_journal(ic, s, 1, erase_seq);
2186 }
2187
2188 continue_section = 0;
2189 ic->commit_seq = next_commit_seq(erase_seq);
2190 }
2191
2192 ic->committed_section = continue_section;
2193 ic->n_committed_sections = 0;
2194
2195 ic->uncommitted_section = continue_section;
2196 ic->n_uncommitted_sections = 0;
2197
2198 ic->free_section = continue_section;
2199 ic->free_section_entry = 0;
2200 ic->free_sectors = ic->journal_entries;
2201
2202 ic->journal_tree_root = RB_ROOT;
2203 for (i = 0; i < ic->journal_entries; i++)
2204 init_journal_node(&ic->journal_tree[i]);
2205 }
2206
dm_integrity_postsuspend(struct dm_target * ti)2207 static void dm_integrity_postsuspend(struct dm_target *ti)
2208 {
2209 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2210
2211 del_timer_sync(&ic->autocommit_timer);
2212
2213 WRITE_ONCE(ic->suspending, 1);
2214
2215 queue_work(ic->commit_wq, &ic->commit_work);
2216 drain_workqueue(ic->commit_wq);
2217
2218 if (ic->mode == 'J') {
2219 drain_workqueue(ic->writer_wq);
2220 dm_integrity_flush_buffers(ic);
2221 }
2222
2223 WRITE_ONCE(ic->suspending, 0);
2224
2225 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2226
2227 ic->journal_uptodate = true;
2228 }
2229
dm_integrity_resume(struct dm_target * ti)2230 static void dm_integrity_resume(struct dm_target *ti)
2231 {
2232 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2233
2234 replay_journal(ic);
2235 }
2236
dm_integrity_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)2237 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2238 unsigned status_flags, char *result, unsigned maxlen)
2239 {
2240 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2241 unsigned arg_count;
2242 size_t sz = 0;
2243
2244 switch (type) {
2245 case STATUSTYPE_INFO:
2246 DMEMIT("%llu", (unsigned long long)atomic64_read(&ic->number_of_mismatches));
2247 break;
2248
2249 case STATUSTYPE_TABLE: {
2250 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2251 watermark_percentage += ic->journal_entries / 2;
2252 do_div(watermark_percentage, ic->journal_entries);
2253 arg_count = 5;
2254 arg_count += ic->sectors_per_block != 1;
2255 arg_count += !!ic->internal_hash_alg.alg_string;
2256 arg_count += !!ic->journal_crypt_alg.alg_string;
2257 arg_count += !!ic->journal_mac_alg.alg_string;
2258 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2259 ic->tag_size, ic->mode, arg_count);
2260 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2261 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2262 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2263 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2264 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2265 if (ic->sectors_per_block != 1)
2266 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2267
2268 #define EMIT_ALG(a, n) \
2269 do { \
2270 if (ic->a.alg_string) { \
2271 DMEMIT(" %s:%s", n, ic->a.alg_string); \
2272 if (ic->a.key_string) \
2273 DMEMIT(":%s", ic->a.key_string);\
2274 } \
2275 } while (0)
2276 EMIT_ALG(internal_hash_alg, "internal_hash");
2277 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2278 EMIT_ALG(journal_mac_alg, "journal_mac");
2279 break;
2280 }
2281 }
2282 }
2283
dm_integrity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)2284 static int dm_integrity_iterate_devices(struct dm_target *ti,
2285 iterate_devices_callout_fn fn, void *data)
2286 {
2287 struct dm_integrity_c *ic = ti->private;
2288
2289 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2290 }
2291
dm_integrity_io_hints(struct dm_target * ti,struct queue_limits * limits)2292 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2293 {
2294 struct dm_integrity_c *ic = ti->private;
2295
2296 if (ic->sectors_per_block > 1) {
2297 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2298 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2299 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2300 }
2301 }
2302
calculate_journal_section_size(struct dm_integrity_c * ic)2303 static void calculate_journal_section_size(struct dm_integrity_c *ic)
2304 {
2305 unsigned sector_space = JOURNAL_SECTOR_DATA;
2306
2307 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2308 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2309 JOURNAL_ENTRY_ROUNDUP);
2310
2311 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2312 sector_space -= JOURNAL_MAC_PER_SECTOR;
2313 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2314 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2315 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2316 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2317 }
2318
calculate_device_limits(struct dm_integrity_c * ic)2319 static int calculate_device_limits(struct dm_integrity_c *ic)
2320 {
2321 __u64 initial_sectors;
2322 sector_t last_sector, last_area, last_offset;
2323
2324 calculate_journal_section_size(ic);
2325 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2326 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->device_sectors || initial_sectors > UINT_MAX)
2327 return -EINVAL;
2328 ic->initial_sectors = initial_sectors;
2329
2330 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2331 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2332 if (!(ic->metadata_run & (ic->metadata_run - 1)))
2333 ic->log2_metadata_run = __ffs(ic->metadata_run);
2334 else
2335 ic->log2_metadata_run = -1;
2336
2337 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2338 last_sector = get_data_sector(ic, last_area, last_offset);
2339
2340 if (ic->start + last_sector < last_sector || ic->start + last_sector >= ic->device_sectors)
2341 return -EINVAL;
2342
2343 return 0;
2344 }
2345
initialize_superblock(struct dm_integrity_c * ic,unsigned journal_sectors,unsigned interleave_sectors)2346 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2347 {
2348 unsigned journal_sections;
2349 int test_bit;
2350
2351 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2352 memcpy(ic->sb->magic, SB_MAGIC, 8);
2353 ic->sb->version = SB_VERSION;
2354 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2355 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2356 if (ic->journal_mac_alg.alg_string)
2357 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2358
2359 calculate_journal_section_size(ic);
2360 journal_sections = journal_sectors / ic->journal_section_sectors;
2361 if (!journal_sections)
2362 journal_sections = 1;
2363 ic->sb->journal_sections = cpu_to_le32(journal_sections);
2364
2365 if (!interleave_sectors)
2366 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2367 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2368 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2369 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2370
2371 ic->provided_data_sectors = 0;
2372 for (test_bit = fls64(ic->device_sectors) - 1; test_bit >= 3; test_bit--) {
2373 __u64 prev_data_sectors = ic->provided_data_sectors;
2374
2375 ic->provided_data_sectors |= (sector_t)1 << test_bit;
2376 if (calculate_device_limits(ic))
2377 ic->provided_data_sectors = prev_data_sectors;
2378 }
2379
2380 if (!ic->provided_data_sectors)
2381 return -EINVAL;
2382
2383 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2384
2385 return 0;
2386 }
2387
dm_integrity_set(struct dm_target * ti,struct dm_integrity_c * ic)2388 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2389 {
2390 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2391 struct blk_integrity bi;
2392
2393 memset(&bi, 0, sizeof(bi));
2394 bi.profile = &dm_integrity_profile;
2395 bi.tuple_size = ic->tag_size;
2396 bi.tag_size = bi.tuple_size;
2397 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2398
2399 blk_integrity_register(disk, &bi);
2400 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2401 }
2402
dm_integrity_free_page_list(struct dm_integrity_c * ic,struct page_list * pl)2403 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2404 {
2405 unsigned i;
2406
2407 if (!pl)
2408 return;
2409 for (i = 0; i < ic->journal_pages; i++)
2410 if (pl[i].page)
2411 __free_page(pl[i].page);
2412 kvfree(pl);
2413 }
2414
dm_integrity_alloc_page_list(struct dm_integrity_c * ic)2415 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2416 {
2417 size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2418 struct page_list *pl;
2419 unsigned i;
2420
2421 pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2422 if (!pl)
2423 return NULL;
2424
2425 for (i = 0; i < ic->journal_pages; i++) {
2426 pl[i].page = alloc_page(GFP_KERNEL);
2427 if (!pl[i].page) {
2428 dm_integrity_free_page_list(ic, pl);
2429 return NULL;
2430 }
2431 if (i)
2432 pl[i - 1].next = &pl[i];
2433 }
2434
2435 return pl;
2436 }
2437
dm_integrity_free_journal_scatterlist(struct dm_integrity_c * ic,struct scatterlist ** sl)2438 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2439 {
2440 unsigned i;
2441 for (i = 0; i < ic->journal_sections; i++)
2442 kvfree(sl[i]);
2443 kvfree(sl);
2444 }
2445
dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c * ic,struct page_list * pl)2446 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2447 {
2448 struct scatterlist **sl;
2449 unsigned i;
2450
2451 sl = kvmalloc(ic->journal_sections * sizeof(struct scatterlist *), GFP_KERNEL | __GFP_ZERO);
2452 if (!sl)
2453 return NULL;
2454
2455 for (i = 0; i < ic->journal_sections; i++) {
2456 struct scatterlist *s;
2457 unsigned start_index, start_offset;
2458 unsigned end_index, end_offset;
2459 unsigned n_pages;
2460 unsigned idx;
2461
2462 page_list_location(ic, i, 0, &start_index, &start_offset);
2463 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2464
2465 n_pages = (end_index - start_index + 1);
2466
2467 s = kvmalloc(n_pages * sizeof(struct scatterlist), GFP_KERNEL);
2468 if (!s) {
2469 dm_integrity_free_journal_scatterlist(ic, sl);
2470 return NULL;
2471 }
2472
2473 sg_init_table(s, n_pages);
2474 for (idx = start_index; idx <= end_index; idx++) {
2475 char *va = lowmem_page_address(pl[idx].page);
2476 unsigned start = 0, end = PAGE_SIZE;
2477 if (idx == start_index)
2478 start = start_offset;
2479 if (idx == end_index)
2480 end = end_offset + (1 << SECTOR_SHIFT);
2481 sg_set_buf(&s[idx - start_index], va + start, end - start);
2482 }
2483
2484 sl[i] = s;
2485 }
2486
2487 return sl;
2488 }
2489
free_alg(struct alg_spec * a)2490 static void free_alg(struct alg_spec *a)
2491 {
2492 kzfree(a->alg_string);
2493 kzfree(a->key);
2494 memset(a, 0, sizeof *a);
2495 }
2496
get_alg_and_key(const char * arg,struct alg_spec * a,char ** error,char * error_inval)2497 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2498 {
2499 char *k;
2500
2501 free_alg(a);
2502
2503 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2504 if (!a->alg_string)
2505 goto nomem;
2506
2507 k = strchr(a->alg_string, ':');
2508 if (k) {
2509 *k = 0;
2510 a->key_string = k + 1;
2511 if (strlen(a->key_string) & 1)
2512 goto inval;
2513
2514 a->key_size = strlen(a->key_string) / 2;
2515 a->key = kmalloc(a->key_size, GFP_KERNEL);
2516 if (!a->key)
2517 goto nomem;
2518 if (hex2bin(a->key, a->key_string, a->key_size))
2519 goto inval;
2520 }
2521
2522 return 0;
2523 inval:
2524 *error = error_inval;
2525 return -EINVAL;
2526 nomem:
2527 *error = "Out of memory for an argument";
2528 return -ENOMEM;
2529 }
2530
get_mac(struct crypto_shash ** hash,struct alg_spec * a,char ** error,char * error_alg,char * error_key)2531 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2532 char *error_alg, char *error_key)
2533 {
2534 int r;
2535
2536 if (a->alg_string) {
2537 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC);
2538 if (IS_ERR(*hash)) {
2539 *error = error_alg;
2540 r = PTR_ERR(*hash);
2541 *hash = NULL;
2542 return r;
2543 }
2544
2545 if (a->key) {
2546 r = crypto_shash_setkey(*hash, a->key, a->key_size);
2547 if (r) {
2548 *error = error_key;
2549 return r;
2550 }
2551 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
2552 *error = error_key;
2553 return -ENOKEY;
2554 }
2555 }
2556
2557 return 0;
2558 }
2559
create_journal(struct dm_integrity_c * ic,char ** error)2560 static int create_journal(struct dm_integrity_c *ic, char **error)
2561 {
2562 int r = 0;
2563 unsigned i;
2564 __u64 journal_pages, journal_desc_size, journal_tree_size;
2565 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
2566 struct skcipher_request *req = NULL;
2567
2568 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2569 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2570 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2571 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2572
2573 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2574 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2575 journal_desc_size = journal_pages * sizeof(struct page_list);
2576 if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) {
2577 *error = "Journal doesn't fit into memory";
2578 r = -ENOMEM;
2579 goto bad;
2580 }
2581 ic->journal_pages = journal_pages;
2582
2583 ic->journal = dm_integrity_alloc_page_list(ic);
2584 if (!ic->journal) {
2585 *error = "Could not allocate memory for journal";
2586 r = -ENOMEM;
2587 goto bad;
2588 }
2589 if (ic->journal_crypt_alg.alg_string) {
2590 unsigned ivsize, blocksize;
2591 struct journal_completion comp;
2592
2593 comp.ic = ic;
2594 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2595 if (IS_ERR(ic->journal_crypt)) {
2596 *error = "Invalid journal cipher";
2597 r = PTR_ERR(ic->journal_crypt);
2598 ic->journal_crypt = NULL;
2599 goto bad;
2600 }
2601 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2602 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2603
2604 if (ic->journal_crypt_alg.key) {
2605 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2606 ic->journal_crypt_alg.key_size);
2607 if (r) {
2608 *error = "Error setting encryption key";
2609 goto bad;
2610 }
2611 }
2612 DEBUG_print("cipher %s, block size %u iv size %u\n",
2613 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2614
2615 ic->journal_io = dm_integrity_alloc_page_list(ic);
2616 if (!ic->journal_io) {
2617 *error = "Could not allocate memory for journal io";
2618 r = -ENOMEM;
2619 goto bad;
2620 }
2621
2622 if (blocksize == 1) {
2623 struct scatterlist *sg;
2624
2625 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2626 if (!req) {
2627 *error = "Could not allocate crypt request";
2628 r = -ENOMEM;
2629 goto bad;
2630 }
2631
2632 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2633 if (!crypt_iv) {
2634 *error = "Could not allocate iv";
2635 r = -ENOMEM;
2636 goto bad;
2637 }
2638
2639 ic->journal_xor = dm_integrity_alloc_page_list(ic);
2640 if (!ic->journal_xor) {
2641 *error = "Could not allocate memory for journal xor";
2642 r = -ENOMEM;
2643 goto bad;
2644 }
2645
2646 sg = kvmalloc((ic->journal_pages + 1) * sizeof(struct scatterlist), GFP_KERNEL);
2647 if (!sg) {
2648 *error = "Unable to allocate sg list";
2649 r = -ENOMEM;
2650 goto bad;
2651 }
2652 sg_init_table(sg, ic->journal_pages + 1);
2653 for (i = 0; i < ic->journal_pages; i++) {
2654 char *va = lowmem_page_address(ic->journal_xor[i].page);
2655 clear_page(va);
2656 sg_set_buf(&sg[i], va, PAGE_SIZE);
2657 }
2658 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2659 memset(crypt_iv, 0x00, ivsize);
2660
2661 skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
2662 init_completion(&comp.comp);
2663 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2664 if (do_crypt(true, req, &comp))
2665 wait_for_completion(&comp.comp);
2666 kvfree(sg);
2667 r = dm_integrity_failed(ic);
2668 if (r) {
2669 *error = "Unable to encrypt journal";
2670 goto bad;
2671 }
2672 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2673
2674 crypto_free_skcipher(ic->journal_crypt);
2675 ic->journal_crypt = NULL;
2676 } else {
2677 unsigned crypt_len = roundup(ivsize, blocksize);
2678
2679 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2680 if (!req) {
2681 *error = "Could not allocate crypt request";
2682 r = -ENOMEM;
2683 goto bad;
2684 }
2685
2686 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2687 if (!crypt_iv) {
2688 *error = "Could not allocate iv";
2689 r = -ENOMEM;
2690 goto bad;
2691 }
2692
2693 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2694 if (!crypt_data) {
2695 *error = "Unable to allocate crypt data";
2696 r = -ENOMEM;
2697 goto bad;
2698 }
2699
2700 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2701 if (!ic->journal_scatterlist) {
2702 *error = "Unable to allocate sg list";
2703 r = -ENOMEM;
2704 goto bad;
2705 }
2706 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2707 if (!ic->journal_io_scatterlist) {
2708 *error = "Unable to allocate sg list";
2709 r = -ENOMEM;
2710 goto bad;
2711 }
2712 ic->sk_requests = kvmalloc(ic->journal_sections * sizeof(struct skcipher_request *), GFP_KERNEL | __GFP_ZERO);
2713 if (!ic->sk_requests) {
2714 *error = "Unable to allocate sk requests";
2715 r = -ENOMEM;
2716 goto bad;
2717 }
2718 for (i = 0; i < ic->journal_sections; i++) {
2719 struct scatterlist sg;
2720 struct skcipher_request *section_req;
2721 __u32 section_le = cpu_to_le32(i);
2722
2723 memset(crypt_iv, 0x00, ivsize);
2724 memset(crypt_data, 0x00, crypt_len);
2725 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le)));
2726
2727 sg_init_one(&sg, crypt_data, crypt_len);
2728 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
2729 init_completion(&comp.comp);
2730 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2731 if (do_crypt(true, req, &comp))
2732 wait_for_completion(&comp.comp);
2733
2734 r = dm_integrity_failed(ic);
2735 if (r) {
2736 *error = "Unable to generate iv";
2737 goto bad;
2738 }
2739
2740 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2741 if (!section_req) {
2742 *error = "Unable to allocate crypt request";
2743 r = -ENOMEM;
2744 goto bad;
2745 }
2746 section_req->iv = kmalloc(ivsize * 2, GFP_KERNEL);
2747 if (!section_req->iv) {
2748 skcipher_request_free(section_req);
2749 *error = "Unable to allocate iv";
2750 r = -ENOMEM;
2751 goto bad;
2752 }
2753 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
2754 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
2755 ic->sk_requests[i] = section_req;
2756 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
2757 }
2758 }
2759 }
2760
2761 for (i = 0; i < N_COMMIT_IDS; i++) {
2762 unsigned j;
2763 retest_commit_id:
2764 for (j = 0; j < i; j++) {
2765 if (ic->commit_ids[j] == ic->commit_ids[i]) {
2766 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
2767 goto retest_commit_id;
2768 }
2769 }
2770 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
2771 }
2772
2773 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
2774 if (journal_tree_size > ULONG_MAX) {
2775 *error = "Journal doesn't fit into memory";
2776 r = -ENOMEM;
2777 goto bad;
2778 }
2779 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
2780 if (!ic->journal_tree) {
2781 *error = "Could not allocate memory for journal tree";
2782 r = -ENOMEM;
2783 }
2784 bad:
2785 kfree(crypt_data);
2786 kfree(crypt_iv);
2787 skcipher_request_free(req);
2788
2789 return r;
2790 }
2791
2792 /*
2793 * Construct a integrity mapping
2794 *
2795 * Arguments:
2796 * device
2797 * offset from the start of the device
2798 * tag size
2799 * D - direct writes, J - journal writes, R - recovery mode
2800 * number of optional arguments
2801 * optional arguments:
2802 * journal_sectors
2803 * interleave_sectors
2804 * buffer_sectors
2805 * journal_watermark
2806 * commit_time
2807 * internal_hash
2808 * journal_crypt
2809 * journal_mac
2810 * block_size
2811 */
dm_integrity_ctr(struct dm_target * ti,unsigned argc,char ** argv)2812 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
2813 {
2814 struct dm_integrity_c *ic;
2815 char dummy;
2816 int r;
2817 unsigned extra_args;
2818 struct dm_arg_set as;
2819 static const struct dm_arg _args[] = {
2820 {0, 9, "Invalid number of feature args"},
2821 };
2822 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
2823 bool should_write_sb;
2824 __u64 threshold;
2825 unsigned long long start;
2826
2827 #define DIRECT_ARGUMENTS 4
2828
2829 if (argc <= DIRECT_ARGUMENTS) {
2830 ti->error = "Invalid argument count";
2831 return -EINVAL;
2832 }
2833
2834 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
2835 if (!ic) {
2836 ti->error = "Cannot allocate integrity context";
2837 return -ENOMEM;
2838 }
2839 ti->private = ic;
2840 ti->per_io_data_size = sizeof(struct dm_integrity_io);
2841
2842 ic->in_progress = RB_ROOT;
2843 init_waitqueue_head(&ic->endio_wait);
2844 bio_list_init(&ic->flush_bio_list);
2845 init_waitqueue_head(&ic->copy_to_journal_wait);
2846 init_completion(&ic->crypto_backoff);
2847 atomic64_set(&ic->number_of_mismatches, 0);
2848
2849 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
2850 if (r) {
2851 ti->error = "Device lookup failed";
2852 goto bad;
2853 }
2854
2855 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
2856 ti->error = "Invalid starting offset";
2857 r = -EINVAL;
2858 goto bad;
2859 }
2860 ic->start = start;
2861
2862 if (strcmp(argv[2], "-")) {
2863 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
2864 ti->error = "Invalid tag size";
2865 r = -EINVAL;
2866 goto bad;
2867 }
2868 }
2869
2870 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
2871 ic->mode = argv[3][0];
2872 else {
2873 ti->error = "Invalid mode (expecting J, D, R)";
2874 r = -EINVAL;
2875 goto bad;
2876 }
2877
2878 ic->device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
2879 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
2880 ic->device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
2881 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2882 buffer_sectors = DEFAULT_BUFFER_SECTORS;
2883 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
2884 sync_msec = DEFAULT_SYNC_MSEC;
2885 ic->sectors_per_block = 1;
2886
2887 as.argc = argc - DIRECT_ARGUMENTS;
2888 as.argv = argv + DIRECT_ARGUMENTS;
2889 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
2890 if (r)
2891 goto bad;
2892
2893 while (extra_args--) {
2894 const char *opt_string;
2895 unsigned val;
2896 opt_string = dm_shift_arg(&as);
2897 if (!opt_string) {
2898 r = -EINVAL;
2899 ti->error = "Not enough feature arguments";
2900 goto bad;
2901 }
2902 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
2903 journal_sectors = val;
2904 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
2905 interleave_sectors = val;
2906 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
2907 buffer_sectors = val;
2908 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
2909 journal_watermark = val;
2910 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
2911 sync_msec = val;
2912 else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
2913 if (val < 1 << SECTOR_SHIFT ||
2914 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
2915 (val & (val -1))) {
2916 r = -EINVAL;
2917 ti->error = "Invalid block_size argument";
2918 goto bad;
2919 }
2920 ic->sectors_per_block = val >> SECTOR_SHIFT;
2921 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
2922 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
2923 "Invalid internal_hash argument");
2924 if (r)
2925 goto bad;
2926 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
2927 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
2928 "Invalid journal_crypt argument");
2929 if (r)
2930 goto bad;
2931 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
2932 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
2933 "Invalid journal_mac argument");
2934 if (r)
2935 goto bad;
2936 } else {
2937 r = -EINVAL;
2938 ti->error = "Invalid argument";
2939 goto bad;
2940 }
2941 }
2942
2943 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
2944 "Invalid internal hash", "Error setting internal hash key");
2945 if (r)
2946 goto bad;
2947
2948 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
2949 "Invalid journal mac", "Error setting journal mac key");
2950 if (r)
2951 goto bad;
2952
2953 if (!ic->tag_size) {
2954 if (!ic->internal_hash) {
2955 ti->error = "Unknown tag size";
2956 r = -EINVAL;
2957 goto bad;
2958 }
2959 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
2960 }
2961 if (ic->tag_size > MAX_TAG_SIZE) {
2962 ti->error = "Too big tag size";
2963 r = -EINVAL;
2964 goto bad;
2965 }
2966 if (!(ic->tag_size & (ic->tag_size - 1)))
2967 ic->log2_tag_size = __ffs(ic->tag_size);
2968 else
2969 ic->log2_tag_size = -1;
2970
2971 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
2972 ic->autocommit_msec = sync_msec;
2973 setup_timer(&ic->autocommit_timer, autocommit_fn, (unsigned long)ic);
2974
2975 ic->io = dm_io_client_create();
2976 if (IS_ERR(ic->io)) {
2977 r = PTR_ERR(ic->io);
2978 ic->io = NULL;
2979 ti->error = "Cannot allocate dm io";
2980 goto bad;
2981 }
2982
2983 ic->journal_io_mempool = mempool_create_slab_pool(JOURNAL_IO_MEMPOOL, journal_io_cache);
2984 if (!ic->journal_io_mempool) {
2985 r = -ENOMEM;
2986 ti->error = "Cannot allocate mempool";
2987 goto bad;
2988 }
2989
2990 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
2991 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
2992 if (!ic->metadata_wq) {
2993 ti->error = "Cannot allocate workqueue";
2994 r = -ENOMEM;
2995 goto bad;
2996 }
2997
2998 /*
2999 * If this workqueue were percpu, it would cause bio reordering
3000 * and reduced performance.
3001 */
3002 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3003 if (!ic->wait_wq) {
3004 ti->error = "Cannot allocate workqueue";
3005 r = -ENOMEM;
3006 goto bad;
3007 }
3008
3009 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
3010 METADATA_WORKQUEUE_MAX_ACTIVE);
3011 if (!ic->offload_wq) {
3012 ti->error = "Cannot allocate workqueue";
3013 r = -ENOMEM;
3014 goto bad;
3015 }
3016
3017 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3018 if (!ic->commit_wq) {
3019 ti->error = "Cannot allocate workqueue";
3020 r = -ENOMEM;
3021 goto bad;
3022 }
3023 INIT_WORK(&ic->commit_work, integrity_commit);
3024
3025 if (ic->mode == 'J') {
3026 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3027 if (!ic->writer_wq) {
3028 ti->error = "Cannot allocate workqueue";
3029 r = -ENOMEM;
3030 goto bad;
3031 }
3032 INIT_WORK(&ic->writer_work, integrity_writer);
3033 }
3034
3035 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3036 if (!ic->sb) {
3037 r = -ENOMEM;
3038 ti->error = "Cannot allocate superblock area";
3039 goto bad;
3040 }
3041
3042 r = sync_rw_sb(ic, REQ_OP_READ, 0);
3043 if (r) {
3044 ti->error = "Error reading superblock";
3045 goto bad;
3046 }
3047 should_write_sb = false;
3048 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3049 if (ic->mode != 'R') {
3050 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3051 r = -EINVAL;
3052 ti->error = "The device is not initialized";
3053 goto bad;
3054 }
3055 }
3056
3057 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3058 if (r) {
3059 ti->error = "Could not initialize superblock";
3060 goto bad;
3061 }
3062 if (ic->mode != 'R')
3063 should_write_sb = true;
3064 }
3065
3066 if (ic->sb->version != SB_VERSION) {
3067 r = -EINVAL;
3068 ti->error = "Unknown version";
3069 goto bad;
3070 }
3071 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3072 r = -EINVAL;
3073 ti->error = "Tag size doesn't match the information in superblock";
3074 goto bad;
3075 }
3076 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3077 r = -EINVAL;
3078 ti->error = "Block size doesn't match the information in superblock";
3079 goto bad;
3080 }
3081 if (!le32_to_cpu(ic->sb->journal_sections)) {
3082 r = -EINVAL;
3083 ti->error = "Corrupted superblock, journal_sections is 0";
3084 goto bad;
3085 }
3086 /* make sure that ti->max_io_len doesn't overflow */
3087 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3088 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3089 r = -EINVAL;
3090 ti->error = "Invalid interleave_sectors in the superblock";
3091 goto bad;
3092 }
3093 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3094 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3095 /* test for overflow */
3096 r = -EINVAL;
3097 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3098 goto bad;
3099 }
3100 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3101 r = -EINVAL;
3102 ti->error = "Journal mac mismatch";
3103 goto bad;
3104 }
3105 r = calculate_device_limits(ic);
3106 if (r) {
3107 ti->error = "The device is too small";
3108 goto bad;
3109 }
3110 if (ti->len > ic->provided_data_sectors) {
3111 r = -EINVAL;
3112 ti->error = "Not enough provided sectors for requested mapping size";
3113 goto bad;
3114 }
3115
3116 if (!buffer_sectors)
3117 buffer_sectors = 1;
3118 ic->log2_buffer_sectors = min3((int)__fls(buffer_sectors), (int)__ffs(ic->metadata_run), 31 - SECTOR_SHIFT);
3119
3120 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3121 threshold += 50;
3122 do_div(threshold, 100);
3123 ic->free_sectors_threshold = threshold;
3124
3125 DEBUG_print("initialized:\n");
3126 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3127 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
3128 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3129 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
3130 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
3131 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3132 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
3133 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3134 DEBUG_print(" device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors);
3135 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
3136 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
3137 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
3138 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3139 (unsigned long long)ic->provided_data_sectors);
3140 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3141
3142 ic->bufio = dm_bufio_client_create(ic->dev->bdev, 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors),
3143 1, 0, NULL, NULL);
3144 if (IS_ERR(ic->bufio)) {
3145 r = PTR_ERR(ic->bufio);
3146 ti->error = "Cannot initialize dm-bufio";
3147 ic->bufio = NULL;
3148 goto bad;
3149 }
3150 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
3151
3152 if (ic->mode != 'R') {
3153 r = create_journal(ic, &ti->error);
3154 if (r)
3155 goto bad;
3156 }
3157
3158 if (should_write_sb) {
3159 int r;
3160
3161 init_journal(ic, 0, ic->journal_sections, 0);
3162 r = dm_integrity_failed(ic);
3163 if (unlikely(r)) {
3164 ti->error = "Error initializing journal";
3165 goto bad;
3166 }
3167 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3168 if (r) {
3169 ti->error = "Error initializing superblock";
3170 goto bad;
3171 }
3172 ic->just_formatted = true;
3173 }
3174
3175 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
3176 if (r)
3177 goto bad;
3178
3179 if (!ic->internal_hash)
3180 dm_integrity_set(ti, ic);
3181
3182 ti->num_flush_bios = 1;
3183 ti->flush_supported = true;
3184
3185 return 0;
3186 bad:
3187 dm_integrity_dtr(ti);
3188 return r;
3189 }
3190
dm_integrity_dtr(struct dm_target * ti)3191 static void dm_integrity_dtr(struct dm_target *ti)
3192 {
3193 struct dm_integrity_c *ic = ti->private;
3194
3195 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3196
3197 if (ic->metadata_wq)
3198 destroy_workqueue(ic->metadata_wq);
3199 if (ic->wait_wq)
3200 destroy_workqueue(ic->wait_wq);
3201 if (ic->offload_wq)
3202 destroy_workqueue(ic->offload_wq);
3203 if (ic->commit_wq)
3204 destroy_workqueue(ic->commit_wq);
3205 if (ic->writer_wq)
3206 destroy_workqueue(ic->writer_wq);
3207 if (ic->bufio)
3208 dm_bufio_client_destroy(ic->bufio);
3209 mempool_destroy(ic->journal_io_mempool);
3210 if (ic->io)
3211 dm_io_client_destroy(ic->io);
3212 if (ic->dev)
3213 dm_put_device(ti, ic->dev);
3214 dm_integrity_free_page_list(ic, ic->journal);
3215 dm_integrity_free_page_list(ic, ic->journal_io);
3216 dm_integrity_free_page_list(ic, ic->journal_xor);
3217 if (ic->journal_scatterlist)
3218 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
3219 if (ic->journal_io_scatterlist)
3220 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
3221 if (ic->sk_requests) {
3222 unsigned i;
3223
3224 for (i = 0; i < ic->journal_sections; i++) {
3225 struct skcipher_request *req = ic->sk_requests[i];
3226 if (req) {
3227 kzfree(req->iv);
3228 skcipher_request_free(req);
3229 }
3230 }
3231 kvfree(ic->sk_requests);
3232 }
3233 kvfree(ic->journal_tree);
3234 if (ic->sb)
3235 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
3236
3237 if (ic->internal_hash)
3238 crypto_free_shash(ic->internal_hash);
3239 free_alg(&ic->internal_hash_alg);
3240
3241 if (ic->journal_crypt)
3242 crypto_free_skcipher(ic->journal_crypt);
3243 free_alg(&ic->journal_crypt_alg);
3244
3245 if (ic->journal_mac)
3246 crypto_free_shash(ic->journal_mac);
3247 free_alg(&ic->journal_mac_alg);
3248
3249 kfree(ic);
3250 }
3251
3252 static struct target_type integrity_target = {
3253 .name = "integrity",
3254 .version = {1, 1, 0},
3255 .module = THIS_MODULE,
3256 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
3257 .ctr = dm_integrity_ctr,
3258 .dtr = dm_integrity_dtr,
3259 .map = dm_integrity_map,
3260 .postsuspend = dm_integrity_postsuspend,
3261 .resume = dm_integrity_resume,
3262 .status = dm_integrity_status,
3263 .iterate_devices = dm_integrity_iterate_devices,
3264 .io_hints = dm_integrity_io_hints,
3265 };
3266
dm_integrity_init(void)3267 int __init dm_integrity_init(void)
3268 {
3269 int r;
3270
3271 journal_io_cache = kmem_cache_create("integrity_journal_io",
3272 sizeof(struct journal_io), 0, 0, NULL);
3273 if (!journal_io_cache) {
3274 DMERR("can't allocate journal io cache");
3275 return -ENOMEM;
3276 }
3277
3278 r = dm_register_target(&integrity_target);
3279
3280 if (r < 0)
3281 DMERR("register failed %d", r);
3282
3283 return r;
3284 }
3285
dm_integrity_exit(void)3286 void dm_integrity_exit(void)
3287 {
3288 dm_unregister_target(&integrity_target);
3289 kmem_cache_destroy(journal_io_cache);
3290 }
3291
3292 module_init(dm_integrity_init);
3293 module_exit(dm_integrity_exit);
3294
3295 MODULE_AUTHOR("Milan Broz");
3296 MODULE_AUTHOR("Mikulas Patocka");
3297 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
3298 MODULE_LICENSE("GPL");
3299