• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 #include "blk.h"
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
49 };
50 #undef BV
51 
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
bio_find_or_create_slab(unsigned int extra_size)72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab, *new_bio_slabs;
77 	unsigned int new_bio_slab_max;
78 	unsigned int i, entry = -1;
79 
80 	mutex_lock(&bio_slab_lock);
81 
82 	i = 0;
83 	while (i < bio_slab_nr) {
84 		bslab = &bio_slabs[i];
85 
86 		if (!bslab->slab && entry == -1)
87 			entry = i;
88 		else if (bslab->slab_size == sz) {
89 			slab = bslab->slab;
90 			bslab->slab_ref++;
91 			break;
92 		}
93 		i++;
94 	}
95 
96 	if (slab)
97 		goto out_unlock;
98 
99 	if (bio_slab_nr == bio_slab_max && entry == -1) {
100 		new_bio_slab_max = bio_slab_max << 1;
101 		new_bio_slabs = krealloc(bio_slabs,
102 					 new_bio_slab_max * sizeof(struct bio_slab),
103 					 GFP_KERNEL);
104 		if (!new_bio_slabs)
105 			goto out_unlock;
106 		bio_slab_max = new_bio_slab_max;
107 		bio_slabs = new_bio_slabs;
108 	}
109 	if (entry == -1)
110 		entry = bio_slab_nr++;
111 
112 	bslab = &bio_slabs[entry];
113 
114 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 				 SLAB_HWCACHE_ALIGN, NULL);
117 	if (!slab)
118 		goto out_unlock;
119 
120 	bslab->slab = slab;
121 	bslab->slab_ref = 1;
122 	bslab->slab_size = sz;
123 out_unlock:
124 	mutex_unlock(&bio_slab_lock);
125 	return slab;
126 }
127 
bio_put_slab(struct bio_set * bs)128 static void bio_put_slab(struct bio_set *bs)
129 {
130 	struct bio_slab *bslab = NULL;
131 	unsigned int i;
132 
133 	mutex_lock(&bio_slab_lock);
134 
135 	for (i = 0; i < bio_slab_nr; i++) {
136 		if (bs->bio_slab == bio_slabs[i].slab) {
137 			bslab = &bio_slabs[i];
138 			break;
139 		}
140 	}
141 
142 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 		goto out;
144 
145 	WARN_ON(!bslab->slab_ref);
146 
147 	if (--bslab->slab_ref)
148 		goto out;
149 
150 	kmem_cache_destroy(bslab->slab);
151 	bslab->slab = NULL;
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
bvec_nr_vecs(unsigned short idx)157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 	return bvec_slabs[--idx].nr_vecs;
160 }
161 
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned int idx)162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 	if (!idx)
165 		return;
166 	idx--;
167 
168 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
169 
170 	if (idx == BVEC_POOL_MAX) {
171 		mempool_free(bv, pool);
172 	} else {
173 		struct biovec_slab *bvs = bvec_slabs + idx;
174 
175 		kmem_cache_free(bvs->slab, bv);
176 	}
177 }
178 
bvec_alloc(gfp_t gfp_mask,int nr,unsigned long * idx,mempool_t * pool)179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 			   mempool_t *pool)
181 {
182 	struct bio_vec *bvl;
183 
184 	/*
185 	 * see comment near bvec_array define!
186 	 */
187 	switch (nr) {
188 	case 1:
189 		*idx = 0;
190 		break;
191 	case 2 ... 4:
192 		*idx = 1;
193 		break;
194 	case 5 ... 16:
195 		*idx = 2;
196 		break;
197 	case 17 ... 64:
198 		*idx = 3;
199 		break;
200 	case 65 ... 128:
201 		*idx = 4;
202 		break;
203 	case 129 ... BIO_MAX_PAGES:
204 		*idx = 5;
205 		break;
206 	default:
207 		return NULL;
208 	}
209 
210 	/*
211 	 * idx now points to the pool we want to allocate from. only the
212 	 * 1-vec entry pool is mempool backed.
213 	 */
214 	if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 		bvl = mempool_alloc(pool, gfp_mask);
217 	} else {
218 		struct biovec_slab *bvs = bvec_slabs + *idx;
219 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220 
221 		/*
222 		 * Make this allocation restricted and don't dump info on
223 		 * allocation failures, since we'll fallback to the mempool
224 		 * in case of failure.
225 		 */
226 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227 
228 		/*
229 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 		 * is set, retry with the 1-entry mempool
231 		 */
232 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 			*idx = BVEC_POOL_MAX;
235 			goto fallback;
236 		}
237 	}
238 
239 	(*idx)++;
240 	return bvl;
241 }
242 
bio_uninit(struct bio * bio)243 void bio_uninit(struct bio *bio)
244 {
245 	bio_disassociate_task(bio);
246 }
247 EXPORT_SYMBOL(bio_uninit);
248 
bio_free(struct bio * bio)249 static void bio_free(struct bio *bio)
250 {
251 	struct bio_set *bs = bio->bi_pool;
252 	void *p;
253 
254 	bio_uninit(bio);
255 
256 	if (bs) {
257 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
258 
259 		/*
260 		 * If we have front padding, adjust the bio pointer before freeing
261 		 */
262 		p = bio;
263 		p -= bs->front_pad;
264 
265 		mempool_free(p, bs->bio_pool);
266 	} else {
267 		/* Bio was allocated by bio_kmalloc() */
268 		kfree(bio);
269 	}
270 }
271 
272 /*
273  * Users of this function have their own bio allocation. Subsequently,
274  * they must remember to pair any call to bio_init() with bio_uninit()
275  * when IO has completed, or when the bio is released.
276  */
bio_init(struct bio * bio,struct bio_vec * table,unsigned short max_vecs)277 void bio_init(struct bio *bio, struct bio_vec *table,
278 	      unsigned short max_vecs)
279 {
280 	memset(bio, 0, sizeof(*bio));
281 	atomic_set(&bio->__bi_remaining, 1);
282 	atomic_set(&bio->__bi_cnt, 1);
283 
284 	bio->bi_io_vec = table;
285 	bio->bi_max_vecs = max_vecs;
286 }
287 EXPORT_SYMBOL(bio_init);
288 
289 /**
290  * bio_reset - reinitialize a bio
291  * @bio:	bio to reset
292  *
293  * Description:
294  *   After calling bio_reset(), @bio will be in the same state as a freshly
295  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
296  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
297  *   comment in struct bio.
298  */
bio_reset(struct bio * bio)299 void bio_reset(struct bio *bio)
300 {
301 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302 
303 	bio_uninit(bio);
304 
305 	memset(bio, 0, BIO_RESET_BYTES);
306 	bio->bi_flags = flags;
307 	atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310 
__bio_chain_endio(struct bio * bio)311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 	struct bio *parent = bio->bi_private;
314 
315 	if (!parent->bi_status)
316 		parent->bi_status = bio->bi_status;
317 	bio_put(bio);
318 	return parent;
319 }
320 
bio_chain_endio(struct bio * bio)321 static void bio_chain_endio(struct bio *bio)
322 {
323 	bio_endio(__bio_chain_endio(bio));
324 }
325 
326 /**
327  * bio_chain - chain bio completions
328  * @bio: the target bio
329  * @parent: the @bio's parent bio
330  *
331  * The caller won't have a bi_end_io called when @bio completes - instead,
332  * @parent's bi_end_io won't be called until both @parent and @bio have
333  * completed; the chained bio will also be freed when it completes.
334  *
335  * The caller must not set bi_private or bi_end_io in @bio.
336  */
bio_chain(struct bio * bio,struct bio * parent)337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 	BUG_ON(bio->bi_private || bio->bi_end_io);
340 
341 	bio->bi_private = parent;
342 	bio->bi_end_io	= bio_chain_endio;
343 	bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346 
bio_alloc_rescue(struct work_struct * work)347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 	struct bio *bio;
351 
352 	while (1) {
353 		spin_lock(&bs->rescue_lock);
354 		bio = bio_list_pop(&bs->rescue_list);
355 		spin_unlock(&bs->rescue_lock);
356 
357 		if (!bio)
358 			break;
359 
360 		generic_make_request(bio);
361 	}
362 }
363 
punt_bios_to_rescuer(struct bio_set * bs)364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 	struct bio_list punt, nopunt;
367 	struct bio *bio;
368 
369 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 		return;
371 	/*
372 	 * In order to guarantee forward progress we must punt only bios that
373 	 * were allocated from this bio_set; otherwise, if there was a bio on
374 	 * there for a stacking driver higher up in the stack, processing it
375 	 * could require allocating bios from this bio_set, and doing that from
376 	 * our own rescuer would be bad.
377 	 *
378 	 * Since bio lists are singly linked, pop them all instead of trying to
379 	 * remove from the middle of the list:
380 	 */
381 
382 	bio_list_init(&punt);
383 	bio_list_init(&nopunt);
384 
385 	while ((bio = bio_list_pop(&current->bio_list[0])))
386 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 	current->bio_list[0] = nopunt;
388 
389 	bio_list_init(&nopunt);
390 	while ((bio = bio_list_pop(&current->bio_list[1])))
391 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 	current->bio_list[1] = nopunt;
393 
394 	spin_lock(&bs->rescue_lock);
395 	bio_list_merge(&bs->rescue_list, &punt);
396 	spin_unlock(&bs->rescue_lock);
397 
398 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400 
401 /**
402  * bio_alloc_bioset - allocate a bio for I/O
403  * @gfp_mask:   the GFP_ mask given to the slab allocator
404  * @nr_iovecs:	number of iovecs to pre-allocate
405  * @bs:		the bio_set to allocate from.
406  *
407  * Description:
408  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409  *   backed by the @bs's mempool.
410  *
411  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412  *   always be able to allocate a bio. This is due to the mempool guarantees.
413  *   To make this work, callers must never allocate more than 1 bio at a time
414  *   from this pool. Callers that need to allocate more than 1 bio must always
415  *   submit the previously allocated bio for IO before attempting to allocate
416  *   a new one. Failure to do so can cause deadlocks under memory pressure.
417  *
418  *   Note that when running under generic_make_request() (i.e. any block
419  *   driver), bios are not submitted until after you return - see the code in
420  *   generic_make_request() that converts recursion into iteration, to prevent
421  *   stack overflows.
422  *
423  *   This would normally mean allocating multiple bios under
424  *   generic_make_request() would be susceptible to deadlocks, but we have
425  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
426  *   thread.
427  *
428  *   However, we do not guarantee forward progress for allocations from other
429  *   mempools. Doing multiple allocations from the same mempool under
430  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
431  *   for per bio allocations.
432  *
433  *   RETURNS:
434  *   Pointer to new bio on success, NULL on failure.
435  */
bio_alloc_bioset(gfp_t gfp_mask,unsigned int nr_iovecs,struct bio_set * bs)436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 			     struct bio_set *bs)
438 {
439 	gfp_t saved_gfp = gfp_mask;
440 	unsigned front_pad;
441 	unsigned inline_vecs;
442 	struct bio_vec *bvl = NULL;
443 	struct bio *bio;
444 	void *p;
445 
446 	if (!bs) {
447 		if (nr_iovecs > UIO_MAXIOV)
448 			return NULL;
449 
450 		p = kmalloc(sizeof(struct bio) +
451 			    nr_iovecs * sizeof(struct bio_vec),
452 			    gfp_mask);
453 		front_pad = 0;
454 		inline_vecs = nr_iovecs;
455 	} else {
456 		/* should not use nobvec bioset for nr_iovecs > 0 */
457 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 			return NULL;
459 		/*
460 		 * generic_make_request() converts recursion to iteration; this
461 		 * means if we're running beneath it, any bios we allocate and
462 		 * submit will not be submitted (and thus freed) until after we
463 		 * return.
464 		 *
465 		 * This exposes us to a potential deadlock if we allocate
466 		 * multiple bios from the same bio_set() while running
467 		 * underneath generic_make_request(). If we were to allocate
468 		 * multiple bios (say a stacking block driver that was splitting
469 		 * bios), we would deadlock if we exhausted the mempool's
470 		 * reserve.
471 		 *
472 		 * We solve this, and guarantee forward progress, with a rescuer
473 		 * workqueue per bio_set. If we go to allocate and there are
474 		 * bios on current->bio_list, we first try the allocation
475 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 		 * bios we would be blocking to the rescuer workqueue before
477 		 * we retry with the original gfp_flags.
478 		 */
479 
480 		if (current->bio_list &&
481 		    (!bio_list_empty(&current->bio_list[0]) ||
482 		     !bio_list_empty(&current->bio_list[1])) &&
483 		    bs->rescue_workqueue)
484 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485 
486 		p = mempool_alloc(bs->bio_pool, gfp_mask);
487 		if (!p && gfp_mask != saved_gfp) {
488 			punt_bios_to_rescuer(bs);
489 			gfp_mask = saved_gfp;
490 			p = mempool_alloc(bs->bio_pool, gfp_mask);
491 		}
492 
493 		front_pad = bs->front_pad;
494 		inline_vecs = BIO_INLINE_VECS;
495 	}
496 
497 	if (unlikely(!p))
498 		return NULL;
499 
500 	bio = p + front_pad;
501 	bio_init(bio, NULL, 0);
502 
503 	if (nr_iovecs > inline_vecs) {
504 		unsigned long idx = 0;
505 
506 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 		if (!bvl && gfp_mask != saved_gfp) {
508 			punt_bios_to_rescuer(bs);
509 			gfp_mask = saved_gfp;
510 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
511 		}
512 
513 		if (unlikely(!bvl))
514 			goto err_free;
515 
516 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 	} else if (nr_iovecs) {
518 		bvl = bio->bi_inline_vecs;
519 	}
520 
521 	bio->bi_pool = bs;
522 	bio->bi_max_vecs = nr_iovecs;
523 	bio->bi_io_vec = bvl;
524 	return bio;
525 
526 err_free:
527 	mempool_free(p, bs->bio_pool);
528 	return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531 
zero_fill_bio(struct bio * bio)532 void zero_fill_bio(struct bio *bio)
533 {
534 	unsigned long flags;
535 	struct bio_vec bv;
536 	struct bvec_iter iter;
537 
538 	bio_for_each_segment(bv, bio, iter) {
539 		char *data = bvec_kmap_irq(&bv, &flags);
540 		memset(data, 0, bv.bv_len);
541 		flush_dcache_page(bv.bv_page);
542 		bvec_kunmap_irq(data, &flags);
543 	}
544 }
545 EXPORT_SYMBOL(zero_fill_bio);
546 
547 /**
548  * bio_put - release a reference to a bio
549  * @bio:   bio to release reference to
550  *
551  * Description:
552  *   Put a reference to a &struct bio, either one you have gotten with
553  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
554  **/
bio_put(struct bio * bio)555 void bio_put(struct bio *bio)
556 {
557 	if (!bio_flagged(bio, BIO_REFFED))
558 		bio_free(bio);
559 	else {
560 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561 
562 		/*
563 		 * last put frees it
564 		 */
565 		if (atomic_dec_and_test(&bio->__bi_cnt))
566 			bio_free(bio);
567 	}
568 }
569 EXPORT_SYMBOL(bio_put);
570 
bio_phys_segments(struct request_queue * q,struct bio * bio)571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
572 {
573 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 		blk_recount_segments(q, bio);
575 
576 	return bio->bi_phys_segments;
577 }
578 EXPORT_SYMBOL(bio_phys_segments);
579 
580 /**
581  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
582  * 	@bio: destination bio
583  * 	@bio_src: bio to clone
584  *
585  *	Clone a &bio. Caller will own the returned bio, but not
586  *	the actual data it points to. Reference count of returned
587  * 	bio will be one.
588  *
589  * 	Caller must ensure that @bio_src is not freed before @bio.
590  */
__bio_clone_fast(struct bio * bio,struct bio * bio_src)591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592 {
593 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
594 
595 	/*
596 	 * most users will be overriding ->bi_disk with a new target,
597 	 * so we don't set nor calculate new physical/hw segment counts here
598 	 */
599 	bio->bi_disk = bio_src->bi_disk;
600 	bio->bi_partno = bio_src->bi_partno;
601 	bio_set_flag(bio, BIO_CLONED);
602 	if (bio_flagged(bio_src, BIO_THROTTLED))
603 		bio_set_flag(bio, BIO_THROTTLED);
604 	bio->bi_opf = bio_src->bi_opf;
605 	bio->bi_write_hint = bio_src->bi_write_hint;
606 	bio->bi_iter = bio_src->bi_iter;
607 	bio->bi_io_vec = bio_src->bi_io_vec;
608 
609 	bio_clone_blkcg_association(bio, bio_src);
610 }
611 EXPORT_SYMBOL(__bio_clone_fast);
612 
613 /**
614  *	bio_clone_fast - clone a bio that shares the original bio's biovec
615  *	@bio: bio to clone
616  *	@gfp_mask: allocation priority
617  *	@bs: bio_set to allocate from
618  *
619  * 	Like __bio_clone_fast, only also allocates the returned bio
620  */
bio_clone_fast(struct bio * bio,gfp_t gfp_mask,struct bio_set * bs)621 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
622 {
623 	struct bio *b;
624 
625 	b = bio_alloc_bioset(gfp_mask, 0, bs);
626 	if (!b)
627 		return NULL;
628 
629 	__bio_clone_fast(b, bio);
630 
631 	if (bio_integrity(bio)) {
632 		int ret;
633 
634 		ret = bio_integrity_clone(b, bio, gfp_mask);
635 
636 		if (ret < 0) {
637 			bio_put(b);
638 			return NULL;
639 		}
640 	}
641 
642 	return b;
643 }
644 EXPORT_SYMBOL(bio_clone_fast);
645 
646 /**
647  * 	bio_clone_bioset - clone a bio
648  * 	@bio_src: bio to clone
649  *	@gfp_mask: allocation priority
650  *	@bs: bio_set to allocate from
651  *
652  *	Clone bio. Caller will own the returned bio, but not the actual data it
653  *	points to. Reference count of returned bio will be one.
654  */
bio_clone_bioset(struct bio * bio_src,gfp_t gfp_mask,struct bio_set * bs)655 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
656 			     struct bio_set *bs)
657 {
658 	struct bvec_iter iter;
659 	struct bio_vec bv;
660 	struct bio *bio;
661 
662 	/*
663 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
664 	 * bio_src->bi_io_vec to bio->bi_io_vec.
665 	 *
666 	 * We can't do that anymore, because:
667 	 *
668 	 *  - The point of cloning the biovec is to produce a bio with a biovec
669 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
670 	 *
671 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
672 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
673 	 *    But the clone should succeed as long as the number of biovecs we
674 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
675 	 *
676 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
677 	 *    that does not own the bio - reason being drivers don't use it for
678 	 *    iterating over the biovec anymore, so expecting it to be kept up
679 	 *    to date (i.e. for clones that share the parent biovec) is just
680 	 *    asking for trouble and would force extra work on
681 	 *    __bio_clone_fast() anyways.
682 	 */
683 
684 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
685 	if (!bio)
686 		return NULL;
687 	bio->bi_disk		= bio_src->bi_disk;
688 	bio->bi_opf		= bio_src->bi_opf;
689 	bio->bi_write_hint	= bio_src->bi_write_hint;
690 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
691 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
692 
693 	switch (bio_op(bio)) {
694 	case REQ_OP_DISCARD:
695 	case REQ_OP_SECURE_ERASE:
696 	case REQ_OP_WRITE_ZEROES:
697 		break;
698 	case REQ_OP_WRITE_SAME:
699 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
700 		break;
701 	default:
702 		bio_for_each_segment(bv, bio_src, iter)
703 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
704 		break;
705 	}
706 
707 	if (bio_integrity(bio_src)) {
708 		int ret;
709 
710 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
711 		if (ret < 0) {
712 			bio_put(bio);
713 			return NULL;
714 		}
715 	}
716 
717 	bio_clone_blkcg_association(bio, bio_src);
718 
719 	return bio;
720 }
721 EXPORT_SYMBOL(bio_clone_bioset);
722 
723 /**
724  *	bio_add_pc_page	-	attempt to add page to bio
725  *	@q: the target queue
726  *	@bio: destination bio
727  *	@page: page to add
728  *	@len: vec entry length
729  *	@offset: vec entry offset
730  *
731  *	Attempt to add a page to the bio_vec maplist. This can fail for a
732  *	number of reasons, such as the bio being full or target block device
733  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
734  *	so it is always possible to add a single page to an empty bio.
735  *
736  *	This should only be used by REQ_PC bios.
737  */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)738 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
739 		    *page, unsigned int len, unsigned int offset)
740 {
741 	int retried_segments = 0;
742 	struct bio_vec *bvec;
743 
744 	/*
745 	 * cloned bio must not modify vec list
746 	 */
747 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
748 		return 0;
749 
750 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
751 		return 0;
752 
753 	/*
754 	 * For filesystems with a blocksize smaller than the pagesize
755 	 * we will often be called with the same page as last time and
756 	 * a consecutive offset.  Optimize this special case.
757 	 */
758 	if (bio->bi_vcnt > 0) {
759 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
760 
761 		if (page == prev->bv_page &&
762 		    offset == prev->bv_offset + prev->bv_len) {
763 			prev->bv_len += len;
764 			bio->bi_iter.bi_size += len;
765 			goto done;
766 		}
767 
768 		/*
769 		 * If the queue doesn't support SG gaps and adding this
770 		 * offset would create a gap, disallow it.
771 		 */
772 		if (bvec_gap_to_prev(q, prev, offset))
773 			return 0;
774 	}
775 
776 	if (bio_full(bio))
777 		return 0;
778 
779 	/*
780 	 * setup the new entry, we might clear it again later if we
781 	 * cannot add the page
782 	 */
783 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
784 	bvec->bv_page = page;
785 	bvec->bv_len = len;
786 	bvec->bv_offset = offset;
787 	bio->bi_vcnt++;
788 	bio->bi_phys_segments++;
789 	bio->bi_iter.bi_size += len;
790 
791 	/*
792 	 * Perform a recount if the number of segments is greater
793 	 * than queue_max_segments(q).
794 	 */
795 
796 	while (bio->bi_phys_segments > queue_max_segments(q)) {
797 
798 		if (retried_segments)
799 			goto failed;
800 
801 		retried_segments = 1;
802 		blk_recount_segments(q, bio);
803 	}
804 
805 	/* If we may be able to merge these biovecs, force a recount */
806 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
807 		bio_clear_flag(bio, BIO_SEG_VALID);
808 
809  done:
810 	return len;
811 
812  failed:
813 	bvec->bv_page = NULL;
814 	bvec->bv_len = 0;
815 	bvec->bv_offset = 0;
816 	bio->bi_vcnt--;
817 	bio->bi_iter.bi_size -= len;
818 	blk_recount_segments(q, bio);
819 	return 0;
820 }
821 EXPORT_SYMBOL(bio_add_pc_page);
822 
823 /**
824  * __bio_try_merge_page - try appending data to an existing bvec.
825  * @bio: destination bio
826  * @page: page to add
827  * @len: length of the data to add
828  * @off: offset of the data in @page
829  *
830  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
831  * a useful optimisation for file systems with a block size smaller than the
832  * page size.
833  *
834  * Return %true on success or %false on failure.
835  */
__bio_try_merge_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)836 bool __bio_try_merge_page(struct bio *bio, struct page *page,
837 		unsigned int len, unsigned int off)
838 {
839 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
840 		return false;
841 
842 	if (bio->bi_vcnt > 0) {
843 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
844 
845 		if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
846 			bv->bv_len += len;
847 			bio->bi_iter.bi_size += len;
848 			return true;
849 		}
850 	}
851 	return false;
852 }
853 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
854 
855 /**
856  * __bio_add_page - add page to a bio in a new segment
857  * @bio: destination bio
858  * @page: page to add
859  * @len: length of the data to add
860  * @off: offset of the data in @page
861  *
862  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
863  * that @bio has space for another bvec.
864  */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)865 void __bio_add_page(struct bio *bio, struct page *page,
866 		unsigned int len, unsigned int off)
867 {
868 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
869 
870 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
871 	WARN_ON_ONCE(bio_full(bio));
872 
873 	bv->bv_page = page;
874 	bv->bv_offset = off;
875 	bv->bv_len = len;
876 
877 	bio->bi_iter.bi_size += len;
878 	bio->bi_vcnt++;
879 }
880 EXPORT_SYMBOL_GPL(__bio_add_page);
881 
882 /**
883  *	bio_add_page	-	attempt to add page to bio
884  *	@bio: destination bio
885  *	@page: page to add
886  *	@len: vec entry length
887  *	@offset: vec entry offset
888  *
889  *	Attempt to add a page to the bio_vec maplist. This will only fail
890  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
891  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)892 int bio_add_page(struct bio *bio, struct page *page,
893 		 unsigned int len, unsigned int offset)
894 {
895 	if (!__bio_try_merge_page(bio, page, len, offset)) {
896 		if (bio_full(bio))
897 			return 0;
898 		__bio_add_page(bio, page, len, offset);
899 	}
900 	return len;
901 }
902 EXPORT_SYMBOL(bio_add_page);
903 
904 /**
905  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
906  * @bio: bio to add pages to
907  * @iter: iov iterator describing the region to be mapped
908  *
909  * Pins pages from *iter and appends them to @bio's bvec array. The
910  * pages will have to be released using put_page() when done.
911  * For multi-segment *iter, this function only adds pages from the
912  * the next non-empty segment of the iov iterator.
913  */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)914 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
915 {
916 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt, idx;
917 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
918 	struct page **pages = (struct page **)bv;
919 	size_t offset;
920 	ssize_t size;
921 
922 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
923 	if (unlikely(size <= 0))
924 		return size ? size : -EFAULT;
925 	idx = nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
926 
927 	/*
928 	 * Deep magic below:  We need to walk the pinned pages backwards
929 	 * because we are abusing the space allocated for the bio_vecs
930 	 * for the page array.  Because the bio_vecs are larger than the
931 	 * page pointers by definition this will always work.  But it also
932 	 * means we can't use bio_add_page, so any changes to it's semantics
933 	 * need to be reflected here as well.
934 	 */
935 	bio->bi_iter.bi_size += size;
936 	bio->bi_vcnt += nr_pages;
937 
938 	while (idx--) {
939 		bv[idx].bv_page = pages[idx];
940 		bv[idx].bv_len = PAGE_SIZE;
941 		bv[idx].bv_offset = 0;
942 	}
943 
944 	bv[0].bv_offset += offset;
945 	bv[0].bv_len -= offset;
946 	bv[nr_pages - 1].bv_len -= nr_pages * PAGE_SIZE - offset - size;
947 
948 	iov_iter_advance(iter, size);
949 	return 0;
950 }
951 
952 /**
953  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
954  * @bio: bio to add pages to
955  * @iter: iov iterator describing the region to be mapped
956  *
957  * Pins pages from *iter and appends them to @bio's bvec array. The
958  * pages will have to be released using put_page() when done.
959  * The function tries, but does not guarantee, to pin as many pages as
960  * fit into the bio, or are requested in *iter, whatever is smaller.
961  * If MM encounters an error pinning the requested pages, it stops.
962  * Error is returned only if 0 pages could be pinned.
963  */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)964 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
965 {
966 	unsigned short orig_vcnt = bio->bi_vcnt;
967 
968 	do {
969 		int ret = __bio_iov_iter_get_pages(bio, iter);
970 
971 		if (unlikely(ret))
972 			return bio->bi_vcnt > orig_vcnt ? 0 : ret;
973 
974 	} while (iov_iter_count(iter) && !bio_full(bio));
975 
976 	return 0;
977 }
978 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
979 
980 struct submit_bio_ret {
981 	struct completion event;
982 	int error;
983 };
984 
submit_bio_wait_endio(struct bio * bio)985 static void submit_bio_wait_endio(struct bio *bio)
986 {
987 	struct submit_bio_ret *ret = bio->bi_private;
988 
989 	ret->error = blk_status_to_errno(bio->bi_status);
990 	complete(&ret->event);
991 }
992 
993 /**
994  * submit_bio_wait - submit a bio, and wait until it completes
995  * @bio: The &struct bio which describes the I/O
996  *
997  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
998  * bio_endio() on failure.
999  *
1000  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1001  * result in bio reference to be consumed. The caller must drop the reference
1002  * on his own.
1003  */
submit_bio_wait(struct bio * bio)1004 int submit_bio_wait(struct bio *bio)
1005 {
1006 	struct submit_bio_ret ret;
1007 
1008 	init_completion(&ret.event);
1009 	bio->bi_private = &ret;
1010 	bio->bi_end_io = submit_bio_wait_endio;
1011 	bio->bi_opf |= REQ_SYNC;
1012 	submit_bio(bio);
1013 	wait_for_completion_io(&ret.event);
1014 
1015 	return ret.error;
1016 }
1017 EXPORT_SYMBOL(submit_bio_wait);
1018 
1019 /**
1020  * bio_advance - increment/complete a bio by some number of bytes
1021  * @bio:	bio to advance
1022  * @bytes:	number of bytes to complete
1023  *
1024  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1025  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1026  * be updated on the last bvec as well.
1027  *
1028  * @bio will then represent the remaining, uncompleted portion of the io.
1029  */
bio_advance(struct bio * bio,unsigned bytes)1030 void bio_advance(struct bio *bio, unsigned bytes)
1031 {
1032 	if (bio_integrity(bio))
1033 		bio_integrity_advance(bio, bytes);
1034 
1035 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1036 }
1037 EXPORT_SYMBOL(bio_advance);
1038 
1039 /**
1040  * bio_alloc_pages - allocates a single page for each bvec in a bio
1041  * @bio: bio to allocate pages for
1042  * @gfp_mask: flags for allocation
1043  *
1044  * Allocates pages up to @bio->bi_vcnt.
1045  *
1046  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
1047  * freed.
1048  */
bio_alloc_pages(struct bio * bio,gfp_t gfp_mask)1049 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
1050 {
1051 	int i;
1052 	struct bio_vec *bv;
1053 
1054 	bio_for_each_segment_all(bv, bio, i) {
1055 		bv->bv_page = alloc_page(gfp_mask);
1056 		if (!bv->bv_page) {
1057 			while (--bv >= bio->bi_io_vec)
1058 				__free_page(bv->bv_page);
1059 			return -ENOMEM;
1060 		}
1061 	}
1062 
1063 	return 0;
1064 }
1065 EXPORT_SYMBOL(bio_alloc_pages);
1066 
1067 /**
1068  * bio_copy_data - copy contents of data buffers from one chain of bios to
1069  * another
1070  * @src: source bio list
1071  * @dst: destination bio list
1072  *
1073  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1074  * @src and @dst as linked lists of bios.
1075  *
1076  * Stops when it reaches the end of either @src or @dst - that is, copies
1077  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1078  */
bio_copy_data(struct bio * dst,struct bio * src)1079 void bio_copy_data(struct bio *dst, struct bio *src)
1080 {
1081 	struct bvec_iter src_iter, dst_iter;
1082 	struct bio_vec src_bv, dst_bv;
1083 	void *src_p, *dst_p;
1084 	unsigned bytes;
1085 
1086 	src_iter = src->bi_iter;
1087 	dst_iter = dst->bi_iter;
1088 
1089 	while (1) {
1090 		if (!src_iter.bi_size) {
1091 			src = src->bi_next;
1092 			if (!src)
1093 				break;
1094 
1095 			src_iter = src->bi_iter;
1096 		}
1097 
1098 		if (!dst_iter.bi_size) {
1099 			dst = dst->bi_next;
1100 			if (!dst)
1101 				break;
1102 
1103 			dst_iter = dst->bi_iter;
1104 		}
1105 
1106 		src_bv = bio_iter_iovec(src, src_iter);
1107 		dst_bv = bio_iter_iovec(dst, dst_iter);
1108 
1109 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1110 
1111 		src_p = kmap_atomic(src_bv.bv_page);
1112 		dst_p = kmap_atomic(dst_bv.bv_page);
1113 
1114 		memcpy(dst_p + dst_bv.bv_offset,
1115 		       src_p + src_bv.bv_offset,
1116 		       bytes);
1117 
1118 		kunmap_atomic(dst_p);
1119 		kunmap_atomic(src_p);
1120 
1121 		bio_advance_iter(src, &src_iter, bytes);
1122 		bio_advance_iter(dst, &dst_iter, bytes);
1123 	}
1124 }
1125 EXPORT_SYMBOL(bio_copy_data);
1126 
1127 struct bio_map_data {
1128 	int is_our_pages;
1129 	struct iov_iter iter;
1130 	struct iovec iov[];
1131 };
1132 
bio_alloc_map_data(unsigned int iov_count,gfp_t gfp_mask)1133 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1134 					       gfp_t gfp_mask)
1135 {
1136 	if (iov_count > UIO_MAXIOV)
1137 		return NULL;
1138 
1139 	return kmalloc(sizeof(struct bio_map_data) +
1140 		       sizeof(struct iovec) * iov_count, gfp_mask);
1141 }
1142 
1143 /**
1144  * bio_copy_from_iter - copy all pages from iov_iter to bio
1145  * @bio: The &struct bio which describes the I/O as destination
1146  * @iter: iov_iter as source
1147  *
1148  * Copy all pages from iov_iter to bio.
1149  * Returns 0 on success, or error on failure.
1150  */
bio_copy_from_iter(struct bio * bio,struct iov_iter iter)1151 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1152 {
1153 	int i;
1154 	struct bio_vec *bvec;
1155 
1156 	bio_for_each_segment_all(bvec, bio, i) {
1157 		ssize_t ret;
1158 
1159 		ret = copy_page_from_iter(bvec->bv_page,
1160 					  bvec->bv_offset,
1161 					  bvec->bv_len,
1162 					  &iter);
1163 
1164 		if (!iov_iter_count(&iter))
1165 			break;
1166 
1167 		if (ret < bvec->bv_len)
1168 			return -EFAULT;
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 /**
1175  * bio_copy_to_iter - copy all pages from bio to iov_iter
1176  * @bio: The &struct bio which describes the I/O as source
1177  * @iter: iov_iter as destination
1178  *
1179  * Copy all pages from bio to iov_iter.
1180  * Returns 0 on success, or error on failure.
1181  */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)1182 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1183 {
1184 	int i;
1185 	struct bio_vec *bvec;
1186 
1187 	bio_for_each_segment_all(bvec, bio, i) {
1188 		ssize_t ret;
1189 
1190 		ret = copy_page_to_iter(bvec->bv_page,
1191 					bvec->bv_offset,
1192 					bvec->bv_len,
1193 					&iter);
1194 
1195 		if (!iov_iter_count(&iter))
1196 			break;
1197 
1198 		if (ret < bvec->bv_len)
1199 			return -EFAULT;
1200 	}
1201 
1202 	return 0;
1203 }
1204 
bio_free_pages(struct bio * bio)1205 void bio_free_pages(struct bio *bio)
1206 {
1207 	struct bio_vec *bvec;
1208 	int i;
1209 
1210 	bio_for_each_segment_all(bvec, bio, i)
1211 		__free_page(bvec->bv_page);
1212 }
1213 EXPORT_SYMBOL(bio_free_pages);
1214 
1215 /**
1216  *	bio_uncopy_user	-	finish previously mapped bio
1217  *	@bio: bio being terminated
1218  *
1219  *	Free pages allocated from bio_copy_user_iov() and write back data
1220  *	to user space in case of a read.
1221  */
bio_uncopy_user(struct bio * bio)1222 int bio_uncopy_user(struct bio *bio)
1223 {
1224 	struct bio_map_data *bmd = bio->bi_private;
1225 	int ret = 0;
1226 
1227 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1228 		/*
1229 		 * if we're in a workqueue, the request is orphaned, so
1230 		 * don't copy into a random user address space, just free
1231 		 * and return -EINTR so user space doesn't expect any data.
1232 		 */
1233 		if (!current->mm)
1234 			ret = -EINTR;
1235 		else if (bio_data_dir(bio) == READ)
1236 			ret = bio_copy_to_iter(bio, bmd->iter);
1237 		if (bmd->is_our_pages)
1238 			bio_free_pages(bio);
1239 	}
1240 	kfree(bmd);
1241 	bio_put(bio);
1242 	return ret;
1243 }
1244 
1245 /**
1246  *	bio_copy_user_iov	-	copy user data to bio
1247  *	@q:		destination block queue
1248  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1249  *	@iter:		iovec iterator
1250  *	@gfp_mask:	memory allocation flags
1251  *
1252  *	Prepares and returns a bio for indirect user io, bouncing data
1253  *	to/from kernel pages as necessary. Must be paired with
1254  *	call bio_uncopy_user() on io completion.
1255  */
bio_copy_user_iov(struct request_queue * q,struct rq_map_data * map_data,const struct iov_iter * iter,gfp_t gfp_mask)1256 struct bio *bio_copy_user_iov(struct request_queue *q,
1257 			      struct rq_map_data *map_data,
1258 			      const struct iov_iter *iter,
1259 			      gfp_t gfp_mask)
1260 {
1261 	struct bio_map_data *bmd;
1262 	struct page *page;
1263 	struct bio *bio;
1264 	int i, ret;
1265 	int nr_pages = 0;
1266 	unsigned int len = iter->count;
1267 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1268 
1269 	for (i = 0; i < iter->nr_segs; i++) {
1270 		unsigned long uaddr;
1271 		unsigned long end;
1272 		unsigned long start;
1273 
1274 		uaddr = (unsigned long) iter->iov[i].iov_base;
1275 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1276 			>> PAGE_SHIFT;
1277 		start = uaddr >> PAGE_SHIFT;
1278 
1279 		/*
1280 		 * Overflow, abort
1281 		 */
1282 		if (end < start)
1283 			return ERR_PTR(-EINVAL);
1284 
1285 		nr_pages += end - start;
1286 	}
1287 
1288 	if (offset)
1289 		nr_pages++;
1290 
1291 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1292 	if (!bmd)
1293 		return ERR_PTR(-ENOMEM);
1294 
1295 	/*
1296 	 * We need to do a deep copy of the iov_iter including the iovecs.
1297 	 * The caller provided iov might point to an on-stack or otherwise
1298 	 * shortlived one.
1299 	 */
1300 	bmd->is_our_pages = map_data ? 0 : 1;
1301 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1302 	bmd->iter = *iter;
1303 	bmd->iter.iov = bmd->iov;
1304 
1305 	ret = -ENOMEM;
1306 	bio = bio_kmalloc(gfp_mask, nr_pages);
1307 	if (!bio)
1308 		goto out_bmd;
1309 
1310 	ret = 0;
1311 
1312 	if (map_data) {
1313 		nr_pages = 1 << map_data->page_order;
1314 		i = map_data->offset / PAGE_SIZE;
1315 	}
1316 	while (len) {
1317 		unsigned int bytes = PAGE_SIZE;
1318 
1319 		bytes -= offset;
1320 
1321 		if (bytes > len)
1322 			bytes = len;
1323 
1324 		if (map_data) {
1325 			if (i == map_data->nr_entries * nr_pages) {
1326 				ret = -ENOMEM;
1327 				break;
1328 			}
1329 
1330 			page = map_data->pages[i / nr_pages];
1331 			page += (i % nr_pages);
1332 
1333 			i++;
1334 		} else {
1335 			page = alloc_page(q->bounce_gfp | gfp_mask);
1336 			if (!page) {
1337 				ret = -ENOMEM;
1338 				break;
1339 			}
1340 		}
1341 
1342 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1343 			if (!map_data)
1344 				__free_page(page);
1345 			break;
1346 		}
1347 
1348 		len -= bytes;
1349 		offset = 0;
1350 	}
1351 
1352 	if (ret)
1353 		goto cleanup;
1354 
1355 	/*
1356 	 * success
1357 	 */
1358 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1359 	    (map_data && map_data->from_user)) {
1360 		ret = bio_copy_from_iter(bio, *iter);
1361 		if (ret)
1362 			goto cleanup;
1363 	}
1364 
1365 	bio->bi_private = bmd;
1366 	return bio;
1367 cleanup:
1368 	if (!map_data)
1369 		bio_free_pages(bio);
1370 	bio_put(bio);
1371 out_bmd:
1372 	kfree(bmd);
1373 	return ERR_PTR(ret);
1374 }
1375 
1376 /**
1377  *	bio_map_user_iov - map user iovec into bio
1378  *	@q:		the struct request_queue for the bio
1379  *	@iter:		iovec iterator
1380  *	@gfp_mask:	memory allocation flags
1381  *
1382  *	Map the user space address into a bio suitable for io to a block
1383  *	device. Returns an error pointer in case of error.
1384  */
bio_map_user_iov(struct request_queue * q,const struct iov_iter * iter,gfp_t gfp_mask)1385 struct bio *bio_map_user_iov(struct request_queue *q,
1386 			     const struct iov_iter *iter,
1387 			     gfp_t gfp_mask)
1388 {
1389 	int j;
1390 	int nr_pages = 0;
1391 	struct page **pages;
1392 	struct bio *bio;
1393 	int cur_page = 0;
1394 	int ret, offset;
1395 	struct iov_iter i;
1396 	struct iovec iov;
1397 	struct bio_vec *bvec;
1398 
1399 	iov_for_each(iov, i, *iter) {
1400 		unsigned long uaddr = (unsigned long) iov.iov_base;
1401 		unsigned long len = iov.iov_len;
1402 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1403 		unsigned long start = uaddr >> PAGE_SHIFT;
1404 
1405 		/*
1406 		 * Overflow, abort
1407 		 */
1408 		if (end < start)
1409 			return ERR_PTR(-EINVAL);
1410 
1411 		nr_pages += end - start;
1412 		/*
1413 		 * buffer must be aligned to at least logical block size for now
1414 		 */
1415 		if (uaddr & queue_dma_alignment(q))
1416 			return ERR_PTR(-EINVAL);
1417 	}
1418 
1419 	if (!nr_pages)
1420 		return ERR_PTR(-EINVAL);
1421 
1422 	bio = bio_kmalloc(gfp_mask, nr_pages);
1423 	if (!bio)
1424 		return ERR_PTR(-ENOMEM);
1425 
1426 	ret = -ENOMEM;
1427 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1428 	if (!pages)
1429 		goto out;
1430 
1431 	iov_for_each(iov, i, *iter) {
1432 		unsigned long uaddr = (unsigned long) iov.iov_base;
1433 		unsigned long len = iov.iov_len;
1434 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1435 		unsigned long start = uaddr >> PAGE_SHIFT;
1436 		const int local_nr_pages = end - start;
1437 		const int page_limit = cur_page + local_nr_pages;
1438 
1439 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1440 				(iter->type & WRITE) != WRITE,
1441 				&pages[cur_page]);
1442 		if (unlikely(ret < local_nr_pages)) {
1443 			for (j = cur_page; j < page_limit; j++) {
1444 				if (!pages[j])
1445 					break;
1446 				put_page(pages[j]);
1447 			}
1448 			ret = -EFAULT;
1449 			goto out_unmap;
1450 		}
1451 
1452 		offset = offset_in_page(uaddr);
1453 		for (j = cur_page; j < page_limit; j++) {
1454 			unsigned int bytes = PAGE_SIZE - offset;
1455 			unsigned short prev_bi_vcnt = bio->bi_vcnt;
1456 
1457 			if (len <= 0)
1458 				break;
1459 
1460 			if (bytes > len)
1461 				bytes = len;
1462 
1463 			/*
1464 			 * sorry...
1465 			 */
1466 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1467 					    bytes)
1468 				break;
1469 
1470 			/*
1471 			 * check if vector was merged with previous
1472 			 * drop page reference if needed
1473 			 */
1474 			if (bio->bi_vcnt == prev_bi_vcnt)
1475 				put_page(pages[j]);
1476 
1477 			len -= bytes;
1478 			offset = 0;
1479 		}
1480 
1481 		cur_page = j;
1482 		/*
1483 		 * release the pages we didn't map into the bio, if any
1484 		 */
1485 		while (j < page_limit)
1486 			put_page(pages[j++]);
1487 	}
1488 
1489 	kfree(pages);
1490 
1491 	bio_set_flag(bio, BIO_USER_MAPPED);
1492 
1493 	/*
1494 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1495 	 * it would normally disappear when its bi_end_io is run.
1496 	 * however, we need it for the unmap, so grab an extra
1497 	 * reference to it
1498 	 */
1499 	bio_get(bio);
1500 	return bio;
1501 
1502  out_unmap:
1503 	bio_for_each_segment_all(bvec, bio, j) {
1504 		put_page(bvec->bv_page);
1505 	}
1506  out:
1507 	kfree(pages);
1508 	bio_put(bio);
1509 	return ERR_PTR(ret);
1510 }
1511 
__bio_unmap_user(struct bio * bio)1512 static void __bio_unmap_user(struct bio *bio)
1513 {
1514 	struct bio_vec *bvec;
1515 	int i;
1516 
1517 	/*
1518 	 * make sure we dirty pages we wrote to
1519 	 */
1520 	bio_for_each_segment_all(bvec, bio, i) {
1521 		if (bio_data_dir(bio) == READ)
1522 			set_page_dirty_lock(bvec->bv_page);
1523 
1524 		put_page(bvec->bv_page);
1525 	}
1526 
1527 	bio_put(bio);
1528 }
1529 
1530 /**
1531  *	bio_unmap_user	-	unmap a bio
1532  *	@bio:		the bio being unmapped
1533  *
1534  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1535  *	process context.
1536  *
1537  *	bio_unmap_user() may sleep.
1538  */
bio_unmap_user(struct bio * bio)1539 void bio_unmap_user(struct bio *bio)
1540 {
1541 	__bio_unmap_user(bio);
1542 	bio_put(bio);
1543 }
1544 
bio_map_kern_endio(struct bio * bio)1545 static void bio_map_kern_endio(struct bio *bio)
1546 {
1547 	bio_put(bio);
1548 }
1549 
1550 /**
1551  *	bio_map_kern	-	map kernel address into bio
1552  *	@q: the struct request_queue for the bio
1553  *	@data: pointer to buffer to map
1554  *	@len: length in bytes
1555  *	@gfp_mask: allocation flags for bio allocation
1556  *
1557  *	Map the kernel address into a bio suitable for io to a block
1558  *	device. Returns an error pointer in case of error.
1559  */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1560 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1561 			 gfp_t gfp_mask)
1562 {
1563 	unsigned long kaddr = (unsigned long)data;
1564 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1565 	unsigned long start = kaddr >> PAGE_SHIFT;
1566 	const int nr_pages = end - start;
1567 	int offset, i;
1568 	struct bio *bio;
1569 
1570 	bio = bio_kmalloc(gfp_mask, nr_pages);
1571 	if (!bio)
1572 		return ERR_PTR(-ENOMEM);
1573 
1574 	offset = offset_in_page(kaddr);
1575 	for (i = 0; i < nr_pages; i++) {
1576 		unsigned int bytes = PAGE_SIZE - offset;
1577 
1578 		if (len <= 0)
1579 			break;
1580 
1581 		if (bytes > len)
1582 			bytes = len;
1583 
1584 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1585 				    offset) < bytes) {
1586 			/* we don't support partial mappings */
1587 			bio_put(bio);
1588 			return ERR_PTR(-EINVAL);
1589 		}
1590 
1591 		data += bytes;
1592 		len -= bytes;
1593 		offset = 0;
1594 	}
1595 
1596 	bio->bi_end_io = bio_map_kern_endio;
1597 	return bio;
1598 }
1599 EXPORT_SYMBOL(bio_map_kern);
1600 
bio_copy_kern_endio(struct bio * bio)1601 static void bio_copy_kern_endio(struct bio *bio)
1602 {
1603 	bio_free_pages(bio);
1604 	bio_put(bio);
1605 }
1606 
bio_copy_kern_endio_read(struct bio * bio)1607 static void bio_copy_kern_endio_read(struct bio *bio)
1608 {
1609 	char *p = bio->bi_private;
1610 	struct bio_vec *bvec;
1611 	int i;
1612 
1613 	bio_for_each_segment_all(bvec, bio, i) {
1614 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1615 		p += bvec->bv_len;
1616 	}
1617 
1618 	bio_copy_kern_endio(bio);
1619 }
1620 
1621 /**
1622  *	bio_copy_kern	-	copy kernel address into bio
1623  *	@q: the struct request_queue for the bio
1624  *	@data: pointer to buffer to copy
1625  *	@len: length in bytes
1626  *	@gfp_mask: allocation flags for bio and page allocation
1627  *	@reading: data direction is READ
1628  *
1629  *	copy the kernel address into a bio suitable for io to a block
1630  *	device. Returns an error pointer in case of error.
1631  */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)1632 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1633 			  gfp_t gfp_mask, int reading)
1634 {
1635 	unsigned long kaddr = (unsigned long)data;
1636 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1637 	unsigned long start = kaddr >> PAGE_SHIFT;
1638 	struct bio *bio;
1639 	void *p = data;
1640 	int nr_pages = 0;
1641 
1642 	/*
1643 	 * Overflow, abort
1644 	 */
1645 	if (end < start)
1646 		return ERR_PTR(-EINVAL);
1647 
1648 	nr_pages = end - start;
1649 	bio = bio_kmalloc(gfp_mask, nr_pages);
1650 	if (!bio)
1651 		return ERR_PTR(-ENOMEM);
1652 
1653 	while (len) {
1654 		struct page *page;
1655 		unsigned int bytes = PAGE_SIZE;
1656 
1657 		if (bytes > len)
1658 			bytes = len;
1659 
1660 		page = alloc_page(q->bounce_gfp | gfp_mask);
1661 		if (!page)
1662 			goto cleanup;
1663 
1664 		if (!reading)
1665 			memcpy(page_address(page), p, bytes);
1666 
1667 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1668 			break;
1669 
1670 		len -= bytes;
1671 		p += bytes;
1672 	}
1673 
1674 	if (reading) {
1675 		bio->bi_end_io = bio_copy_kern_endio_read;
1676 		bio->bi_private = data;
1677 	} else {
1678 		bio->bi_end_io = bio_copy_kern_endio;
1679 	}
1680 
1681 	return bio;
1682 
1683 cleanup:
1684 	bio_free_pages(bio);
1685 	bio_put(bio);
1686 	return ERR_PTR(-ENOMEM);
1687 }
1688 
1689 /*
1690  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1691  * for performing direct-IO in BIOs.
1692  *
1693  * The problem is that we cannot run set_page_dirty() from interrupt context
1694  * because the required locks are not interrupt-safe.  So what we can do is to
1695  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1696  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1697  * in process context.
1698  *
1699  * We special-case compound pages here: normally this means reads into hugetlb
1700  * pages.  The logic in here doesn't really work right for compound pages
1701  * because the VM does not uniformly chase down the head page in all cases.
1702  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1703  * handle them at all.  So we skip compound pages here at an early stage.
1704  *
1705  * Note that this code is very hard to test under normal circumstances because
1706  * direct-io pins the pages with get_user_pages().  This makes
1707  * is_page_cache_freeable return false, and the VM will not clean the pages.
1708  * But other code (eg, flusher threads) could clean the pages if they are mapped
1709  * pagecache.
1710  *
1711  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1712  * deferred bio dirtying paths.
1713  */
1714 
1715 /*
1716  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1717  */
bio_set_pages_dirty(struct bio * bio)1718 void bio_set_pages_dirty(struct bio *bio)
1719 {
1720 	struct bio_vec *bvec;
1721 	int i;
1722 
1723 	bio_for_each_segment_all(bvec, bio, i) {
1724 		struct page *page = bvec->bv_page;
1725 
1726 		if (page && !PageCompound(page))
1727 			set_page_dirty_lock(page);
1728 	}
1729 }
1730 
bio_release_pages(struct bio * bio)1731 static void bio_release_pages(struct bio *bio)
1732 {
1733 	struct bio_vec *bvec;
1734 	int i;
1735 
1736 	bio_for_each_segment_all(bvec, bio, i) {
1737 		struct page *page = bvec->bv_page;
1738 
1739 		if (page)
1740 			put_page(page);
1741 	}
1742 }
1743 
1744 /*
1745  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1746  * If they are, then fine.  If, however, some pages are clean then they must
1747  * have been written out during the direct-IO read.  So we take another ref on
1748  * the BIO and the offending pages and re-dirty the pages in process context.
1749  *
1750  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1751  * here on.  It will run one put_page() against each page and will run one
1752  * bio_put() against the BIO.
1753  */
1754 
1755 static void bio_dirty_fn(struct work_struct *work);
1756 
1757 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1758 static DEFINE_SPINLOCK(bio_dirty_lock);
1759 static struct bio *bio_dirty_list;
1760 
1761 /*
1762  * This runs in process context
1763  */
bio_dirty_fn(struct work_struct * work)1764 static void bio_dirty_fn(struct work_struct *work)
1765 {
1766 	unsigned long flags;
1767 	struct bio *bio;
1768 
1769 	spin_lock_irqsave(&bio_dirty_lock, flags);
1770 	bio = bio_dirty_list;
1771 	bio_dirty_list = NULL;
1772 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1773 
1774 	while (bio) {
1775 		struct bio *next = bio->bi_private;
1776 
1777 		bio_set_pages_dirty(bio);
1778 		bio_release_pages(bio);
1779 		bio_put(bio);
1780 		bio = next;
1781 	}
1782 }
1783 
bio_check_pages_dirty(struct bio * bio)1784 void bio_check_pages_dirty(struct bio *bio)
1785 {
1786 	struct bio_vec *bvec;
1787 	int nr_clean_pages = 0;
1788 	int i;
1789 
1790 	bio_for_each_segment_all(bvec, bio, i) {
1791 		struct page *page = bvec->bv_page;
1792 
1793 		if (PageDirty(page) || PageCompound(page)) {
1794 			put_page(page);
1795 			bvec->bv_page = NULL;
1796 		} else {
1797 			nr_clean_pages++;
1798 		}
1799 	}
1800 
1801 	if (nr_clean_pages) {
1802 		unsigned long flags;
1803 
1804 		spin_lock_irqsave(&bio_dirty_lock, flags);
1805 		bio->bi_private = bio_dirty_list;
1806 		bio_dirty_list = bio;
1807 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1808 		schedule_work(&bio_dirty_work);
1809 	} else {
1810 		bio_put(bio);
1811 	}
1812 }
1813 
generic_start_io_acct(struct request_queue * q,int rw,unsigned long sectors,struct hd_struct * part)1814 void generic_start_io_acct(struct request_queue *q, int rw,
1815 			   unsigned long sectors, struct hd_struct *part)
1816 {
1817 	int cpu = part_stat_lock();
1818 
1819 	part_round_stats(q, cpu, part);
1820 	part_stat_inc(cpu, part, ios[rw]);
1821 	part_stat_add(cpu, part, sectors[rw], sectors);
1822 	part_inc_in_flight(q, part, rw);
1823 
1824 	part_stat_unlock();
1825 }
1826 EXPORT_SYMBOL(generic_start_io_acct);
1827 
generic_end_io_acct(struct request_queue * q,int rw,struct hd_struct * part,unsigned long start_time)1828 void generic_end_io_acct(struct request_queue *q, int rw,
1829 			 struct hd_struct *part, unsigned long start_time)
1830 {
1831 	unsigned long duration = jiffies - start_time;
1832 	int cpu = part_stat_lock();
1833 
1834 	part_stat_add(cpu, part, ticks[rw], duration);
1835 	part_round_stats(q, cpu, part);
1836 	part_dec_in_flight(q, part, rw);
1837 
1838 	part_stat_unlock();
1839 }
1840 EXPORT_SYMBOL(generic_end_io_acct);
1841 
1842 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
bio_flush_dcache_pages(struct bio * bi)1843 void bio_flush_dcache_pages(struct bio *bi)
1844 {
1845 	struct bio_vec bvec;
1846 	struct bvec_iter iter;
1847 
1848 	bio_for_each_segment(bvec, bi, iter)
1849 		flush_dcache_page(bvec.bv_page);
1850 }
1851 EXPORT_SYMBOL(bio_flush_dcache_pages);
1852 #endif
1853 
bio_remaining_done(struct bio * bio)1854 static inline bool bio_remaining_done(struct bio *bio)
1855 {
1856 	/*
1857 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1858 	 * we always end io on the first invocation.
1859 	 */
1860 	if (!bio_flagged(bio, BIO_CHAIN))
1861 		return true;
1862 
1863 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1864 
1865 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1866 		bio_clear_flag(bio, BIO_CHAIN);
1867 		return true;
1868 	}
1869 
1870 	return false;
1871 }
1872 
1873 /**
1874  * bio_endio - end I/O on a bio
1875  * @bio:	bio
1876  *
1877  * Description:
1878  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1879  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1880  *   bio unless they own it and thus know that it has an end_io function.
1881  *
1882  *   bio_endio() can be called several times on a bio that has been chained
1883  *   using bio_chain().  The ->bi_end_io() function will only be called the
1884  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1885  *   generated if BIO_TRACE_COMPLETION is set.
1886  **/
bio_endio(struct bio * bio)1887 void bio_endio(struct bio *bio)
1888 {
1889 again:
1890 	if (!bio_remaining_done(bio))
1891 		return;
1892 	if (!bio_integrity_endio(bio))
1893 		return;
1894 
1895 	/*
1896 	 * Need to have a real endio function for chained bios, otherwise
1897 	 * various corner cases will break (like stacking block devices that
1898 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1899 	 * recursion and blowing the stack. Tail call optimization would
1900 	 * handle this, but compiling with frame pointers also disables
1901 	 * gcc's sibling call optimization.
1902 	 */
1903 	if (bio->bi_end_io == bio_chain_endio) {
1904 		bio = __bio_chain_endio(bio);
1905 		goto again;
1906 	}
1907 
1908 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1909 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1910 					 blk_status_to_errno(bio->bi_status));
1911 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1912 	}
1913 
1914 	blk_throtl_bio_endio(bio);
1915 	/* release cgroup info */
1916 	bio_uninit(bio);
1917 	if (bio->bi_end_io)
1918 		bio->bi_end_io(bio);
1919 }
1920 EXPORT_SYMBOL(bio_endio);
1921 
1922 /**
1923  * bio_split - split a bio
1924  * @bio:	bio to split
1925  * @sectors:	number of sectors to split from the front of @bio
1926  * @gfp:	gfp mask
1927  * @bs:		bio set to allocate from
1928  *
1929  * Allocates and returns a new bio which represents @sectors from the start of
1930  * @bio, and updates @bio to represent the remaining sectors.
1931  *
1932  * Unless this is a discard request the newly allocated bio will point
1933  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1934  * @bio is not freed before the split.
1935  */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1936 struct bio *bio_split(struct bio *bio, int sectors,
1937 		      gfp_t gfp, struct bio_set *bs)
1938 {
1939 	struct bio *split = NULL;
1940 
1941 	BUG_ON(sectors <= 0);
1942 	BUG_ON(sectors >= bio_sectors(bio));
1943 
1944 	split = bio_clone_fast(bio, gfp, bs);
1945 	if (!split)
1946 		return NULL;
1947 
1948 	split->bi_iter.bi_size = sectors << 9;
1949 
1950 	if (bio_integrity(split))
1951 		bio_integrity_trim(split);
1952 
1953 	bio_advance(bio, split->bi_iter.bi_size);
1954 	bio->bi_iter.bi_done = 0;
1955 
1956 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1957 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1958 
1959 	return split;
1960 }
1961 EXPORT_SYMBOL(bio_split);
1962 
1963 /**
1964  * bio_trim - trim a bio
1965  * @bio:	bio to trim
1966  * @offset:	number of sectors to trim from the front of @bio
1967  * @size:	size we want to trim @bio to, in sectors
1968  */
bio_trim(struct bio * bio,int offset,int size)1969 void bio_trim(struct bio *bio, int offset, int size)
1970 {
1971 	/* 'bio' is a cloned bio which we need to trim to match
1972 	 * the given offset and size.
1973 	 */
1974 
1975 	size <<= 9;
1976 	if (offset == 0 && size == bio->bi_iter.bi_size)
1977 		return;
1978 
1979 	bio_clear_flag(bio, BIO_SEG_VALID);
1980 
1981 	bio_advance(bio, offset << 9);
1982 
1983 	bio->bi_iter.bi_size = size;
1984 
1985 	if (bio_integrity(bio))
1986 		bio_integrity_trim(bio);
1987 
1988 }
1989 EXPORT_SYMBOL_GPL(bio_trim);
1990 
1991 /*
1992  * create memory pools for biovec's in a bio_set.
1993  * use the global biovec slabs created for general use.
1994  */
biovec_create_pool(int pool_entries)1995 mempool_t *biovec_create_pool(int pool_entries)
1996 {
1997 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1998 
1999 	return mempool_create_slab_pool(pool_entries, bp->slab);
2000 }
2001 
bioset_free(struct bio_set * bs)2002 void bioset_free(struct bio_set *bs)
2003 {
2004 	if (bs->rescue_workqueue)
2005 		destroy_workqueue(bs->rescue_workqueue);
2006 
2007 	if (bs->bio_pool)
2008 		mempool_destroy(bs->bio_pool);
2009 
2010 	if (bs->bvec_pool)
2011 		mempool_destroy(bs->bvec_pool);
2012 
2013 	bioset_integrity_free(bs);
2014 	bio_put_slab(bs);
2015 
2016 	kfree(bs);
2017 }
2018 EXPORT_SYMBOL(bioset_free);
2019 
2020 /**
2021  * bioset_create  - Create a bio_set
2022  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
2023  * @front_pad:	Number of bytes to allocate in front of the returned bio
2024  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
2025  *              and %BIOSET_NEED_RESCUER
2026  *
2027  * Description:
2028  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
2029  *    to ask for a number of bytes to be allocated in front of the bio.
2030  *    Front pad allocation is useful for embedding the bio inside
2031  *    another structure, to avoid allocating extra data to go with the bio.
2032  *    Note that the bio must be embedded at the END of that structure always,
2033  *    or things will break badly.
2034  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
2035  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
2036  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
2037  *    dispatch queued requests when the mempool runs out of space.
2038  *
2039  */
bioset_create(unsigned int pool_size,unsigned int front_pad,int flags)2040 struct bio_set *bioset_create(unsigned int pool_size,
2041 			      unsigned int front_pad,
2042 			      int flags)
2043 {
2044 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
2045 	struct bio_set *bs;
2046 
2047 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
2048 	if (!bs)
2049 		return NULL;
2050 
2051 	bs->front_pad = front_pad;
2052 
2053 	spin_lock_init(&bs->rescue_lock);
2054 	bio_list_init(&bs->rescue_list);
2055 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2056 
2057 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2058 	if (!bs->bio_slab) {
2059 		kfree(bs);
2060 		return NULL;
2061 	}
2062 
2063 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
2064 	if (!bs->bio_pool)
2065 		goto bad;
2066 
2067 	if (flags & BIOSET_NEED_BVECS) {
2068 		bs->bvec_pool = biovec_create_pool(pool_size);
2069 		if (!bs->bvec_pool)
2070 			goto bad;
2071 	}
2072 
2073 	if (!(flags & BIOSET_NEED_RESCUER))
2074 		return bs;
2075 
2076 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2077 	if (!bs->rescue_workqueue)
2078 		goto bad;
2079 
2080 	return bs;
2081 bad:
2082 	bioset_free(bs);
2083 	return NULL;
2084 }
2085 EXPORT_SYMBOL(bioset_create);
2086 
2087 #ifdef CONFIG_BLK_CGROUP
2088 
2089 /**
2090  * bio_associate_blkcg - associate a bio with the specified blkcg
2091  * @bio: target bio
2092  * @blkcg_css: css of the blkcg to associate
2093  *
2094  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
2095  * treat @bio as if it were issued by a task which belongs to the blkcg.
2096  *
2097  * This function takes an extra reference of @blkcg_css which will be put
2098  * when @bio is released.  The caller must own @bio and is responsible for
2099  * synchronizing calls to this function.
2100  */
bio_associate_blkcg(struct bio * bio,struct cgroup_subsys_state * blkcg_css)2101 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2102 {
2103 	if (unlikely(bio->bi_css))
2104 		return -EBUSY;
2105 	css_get(blkcg_css);
2106 	bio->bi_css = blkcg_css;
2107 	return 0;
2108 }
2109 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2110 
2111 /**
2112  * bio_associate_current - associate a bio with %current
2113  * @bio: target bio
2114  *
2115  * Associate @bio with %current if it hasn't been associated yet.  Block
2116  * layer will treat @bio as if it were issued by %current no matter which
2117  * task actually issues it.
2118  *
2119  * This function takes an extra reference of @task's io_context and blkcg
2120  * which will be put when @bio is released.  The caller must own @bio,
2121  * ensure %current->io_context exists, and is responsible for synchronizing
2122  * calls to this function.
2123  */
bio_associate_current(struct bio * bio)2124 int bio_associate_current(struct bio *bio)
2125 {
2126 	struct io_context *ioc;
2127 
2128 	if (bio->bi_css)
2129 		return -EBUSY;
2130 
2131 	ioc = current->io_context;
2132 	if (!ioc)
2133 		return -ENOENT;
2134 
2135 	get_io_context_active(ioc);
2136 	bio->bi_ioc = ioc;
2137 	bio->bi_css = task_get_css(current, io_cgrp_id);
2138 	return 0;
2139 }
2140 EXPORT_SYMBOL_GPL(bio_associate_current);
2141 
2142 /**
2143  * bio_disassociate_task - undo bio_associate_current()
2144  * @bio: target bio
2145  */
bio_disassociate_task(struct bio * bio)2146 void bio_disassociate_task(struct bio *bio)
2147 {
2148 	if (bio->bi_ioc) {
2149 		put_io_context(bio->bi_ioc);
2150 		bio->bi_ioc = NULL;
2151 	}
2152 	if (bio->bi_css) {
2153 		css_put(bio->bi_css);
2154 		bio->bi_css = NULL;
2155 	}
2156 }
2157 
2158 /**
2159  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2160  * @dst: destination bio
2161  * @src: source bio
2162  */
bio_clone_blkcg_association(struct bio * dst,struct bio * src)2163 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2164 {
2165 	if (src->bi_css)
2166 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2167 }
2168 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
2169 #endif /* CONFIG_BLK_CGROUP */
2170 
biovec_init_slabs(void)2171 static void __init biovec_init_slabs(void)
2172 {
2173 	int i;
2174 
2175 	for (i = 0; i < BVEC_POOL_NR; i++) {
2176 		int size;
2177 		struct biovec_slab *bvs = bvec_slabs + i;
2178 
2179 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2180 			bvs->slab = NULL;
2181 			continue;
2182 		}
2183 
2184 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2185 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2186                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2187 	}
2188 }
2189 
init_bio(void)2190 static int __init init_bio(void)
2191 {
2192 	bio_slab_max = 2;
2193 	bio_slab_nr = 0;
2194 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2195 	if (!bio_slabs)
2196 		panic("bio: can't allocate bios\n");
2197 
2198 	bio_integrity_init();
2199 	biovec_init_slabs();
2200 
2201 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2202 	if (!fs_bio_set)
2203 		panic("bio: can't allocate bios\n");
2204 
2205 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2206 		panic("bio: can't create integrity pool\n");
2207 
2208 	return 0;
2209 }
2210 subsys_initcall(init_bio);
2211