• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/uaccess.h>
19 
20 #include <asm/page.h>
21 
22 /*
23  * bitmaps provide an array of bits, implemented using an an
24  * array of unsigned longs.  The number of valid bits in a
25  * given bitmap does _not_ need to be an exact multiple of
26  * BITS_PER_LONG.
27  *
28  * The possible unused bits in the last, partially used word
29  * of a bitmap are 'don't care'.  The implementation makes
30  * no particular effort to keep them zero.  It ensures that
31  * their value will not affect the results of any operation.
32  * The bitmap operations that return Boolean (bitmap_empty,
33  * for example) or scalar (bitmap_weight, for example) results
34  * carefully filter out these unused bits from impacting their
35  * results.
36  *
37  * These operations actually hold to a slightly stronger rule:
38  * if you don't input any bitmaps to these ops that have some
39  * unused bits set, then they won't output any set unused bits
40  * in output bitmaps.
41  *
42  * The byte ordering of bitmaps is more natural on little
43  * endian architectures.  See the big-endian headers
44  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
45  * for the best explanations of this ordering.
46  */
47 
__bitmap_equal(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)48 int __bitmap_equal(const unsigned long *bitmap1,
49 		const unsigned long *bitmap2, unsigned int bits)
50 {
51 	unsigned int k, lim = bits/BITS_PER_LONG;
52 	for (k = 0; k < lim; ++k)
53 		if (bitmap1[k] != bitmap2[k])
54 			return 0;
55 
56 	if (bits % BITS_PER_LONG)
57 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
58 			return 0;
59 
60 	return 1;
61 }
62 EXPORT_SYMBOL(__bitmap_equal);
63 
__bitmap_complement(unsigned long * dst,const unsigned long * src,unsigned int bits)64 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
65 {
66 	unsigned int k, lim = bits/BITS_PER_LONG;
67 	for (k = 0; k < lim; ++k)
68 		dst[k] = ~src[k];
69 
70 	if (bits % BITS_PER_LONG)
71 		dst[k] = ~src[k];
72 }
73 EXPORT_SYMBOL(__bitmap_complement);
74 
75 /**
76  * __bitmap_shift_right - logical right shift of the bits in a bitmap
77  *   @dst : destination bitmap
78  *   @src : source bitmap
79  *   @shift : shift by this many bits
80  *   @nbits : bitmap size, in bits
81  *
82  * Shifting right (dividing) means moving bits in the MS -> LS bit
83  * direction.  Zeros are fed into the vacated MS positions and the
84  * LS bits shifted off the bottom are lost.
85  */
__bitmap_shift_right(unsigned long * dst,const unsigned long * src,unsigned shift,unsigned nbits)86 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
87 			unsigned shift, unsigned nbits)
88 {
89 	unsigned k, lim = BITS_TO_LONGS(nbits);
90 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
91 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
92 	for (k = 0; off + k < lim; ++k) {
93 		unsigned long upper, lower;
94 
95 		/*
96 		 * If shift is not word aligned, take lower rem bits of
97 		 * word above and make them the top rem bits of result.
98 		 */
99 		if (!rem || off + k + 1 >= lim)
100 			upper = 0;
101 		else {
102 			upper = src[off + k + 1];
103 			if (off + k + 1 == lim - 1)
104 				upper &= mask;
105 			upper <<= (BITS_PER_LONG - rem);
106 		}
107 		lower = src[off + k];
108 		if (off + k == lim - 1)
109 			lower &= mask;
110 		lower >>= rem;
111 		dst[k] = lower | upper;
112 	}
113 	if (off)
114 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
115 }
116 EXPORT_SYMBOL(__bitmap_shift_right);
117 
118 
119 /**
120  * __bitmap_shift_left - logical left shift of the bits in a bitmap
121  *   @dst : destination bitmap
122  *   @src : source bitmap
123  *   @shift : shift by this many bits
124  *   @nbits : bitmap size, in bits
125  *
126  * Shifting left (multiplying) means moving bits in the LS -> MS
127  * direction.  Zeros are fed into the vacated LS bit positions
128  * and those MS bits shifted off the top are lost.
129  */
130 
__bitmap_shift_left(unsigned long * dst,const unsigned long * src,unsigned int shift,unsigned int nbits)131 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
132 			unsigned int shift, unsigned int nbits)
133 {
134 	int k;
135 	unsigned int lim = BITS_TO_LONGS(nbits);
136 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
137 	for (k = lim - off - 1; k >= 0; --k) {
138 		unsigned long upper, lower;
139 
140 		/*
141 		 * If shift is not word aligned, take upper rem bits of
142 		 * word below and make them the bottom rem bits of result.
143 		 */
144 		if (rem && k > 0)
145 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
146 		else
147 			lower = 0;
148 		upper = src[k] << rem;
149 		dst[k + off] = lower | upper;
150 	}
151 	if (off)
152 		memset(dst, 0, off*sizeof(unsigned long));
153 }
154 EXPORT_SYMBOL(__bitmap_shift_left);
155 
__bitmap_and(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)156 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
157 				const unsigned long *bitmap2, unsigned int bits)
158 {
159 	unsigned int k;
160 	unsigned int lim = bits/BITS_PER_LONG;
161 	unsigned long result = 0;
162 
163 	for (k = 0; k < lim; k++)
164 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
165 	if (bits % BITS_PER_LONG)
166 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
167 			   BITMAP_LAST_WORD_MASK(bits));
168 	return result != 0;
169 }
170 EXPORT_SYMBOL(__bitmap_and);
171 
__bitmap_or(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)172 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
173 				const unsigned long *bitmap2, unsigned int bits)
174 {
175 	unsigned int k;
176 	unsigned int nr = BITS_TO_LONGS(bits);
177 
178 	for (k = 0; k < nr; k++)
179 		dst[k] = bitmap1[k] | bitmap2[k];
180 }
181 EXPORT_SYMBOL(__bitmap_or);
182 
__bitmap_xor(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)183 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
184 				const unsigned long *bitmap2, unsigned int bits)
185 {
186 	unsigned int k;
187 	unsigned int nr = BITS_TO_LONGS(bits);
188 
189 	for (k = 0; k < nr; k++)
190 		dst[k] = bitmap1[k] ^ bitmap2[k];
191 }
192 EXPORT_SYMBOL(__bitmap_xor);
193 
__bitmap_andnot(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)194 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
195 				const unsigned long *bitmap2, unsigned int bits)
196 {
197 	unsigned int k;
198 	unsigned int lim = bits/BITS_PER_LONG;
199 	unsigned long result = 0;
200 
201 	for (k = 0; k < lim; k++)
202 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
203 	if (bits % BITS_PER_LONG)
204 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
205 			   BITMAP_LAST_WORD_MASK(bits));
206 	return result != 0;
207 }
208 EXPORT_SYMBOL(__bitmap_andnot);
209 
__bitmap_intersects(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)210 int __bitmap_intersects(const unsigned long *bitmap1,
211 			const unsigned long *bitmap2, unsigned int bits)
212 {
213 	unsigned int k, lim = bits/BITS_PER_LONG;
214 	for (k = 0; k < lim; ++k)
215 		if (bitmap1[k] & bitmap2[k])
216 			return 1;
217 
218 	if (bits % BITS_PER_LONG)
219 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
220 			return 1;
221 	return 0;
222 }
223 EXPORT_SYMBOL(__bitmap_intersects);
224 
__bitmap_subset(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)225 int __bitmap_subset(const unsigned long *bitmap1,
226 		    const unsigned long *bitmap2, unsigned int bits)
227 {
228 	unsigned int k, lim = bits/BITS_PER_LONG;
229 	for (k = 0; k < lim; ++k)
230 		if (bitmap1[k] & ~bitmap2[k])
231 			return 0;
232 
233 	if (bits % BITS_PER_LONG)
234 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
235 			return 0;
236 	return 1;
237 }
238 EXPORT_SYMBOL(__bitmap_subset);
239 
__bitmap_weight(const unsigned long * bitmap,unsigned int bits)240 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
241 {
242 	unsigned int k, lim = bits/BITS_PER_LONG;
243 	int w = 0;
244 
245 	for (k = 0; k < lim; k++)
246 		w += hweight_long(bitmap[k]);
247 
248 	if (bits % BITS_PER_LONG)
249 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
250 
251 	return w;
252 }
253 EXPORT_SYMBOL(__bitmap_weight);
254 
__bitmap_set(unsigned long * map,unsigned int start,int len)255 void __bitmap_set(unsigned long *map, unsigned int start, int len)
256 {
257 	unsigned long *p = map + BIT_WORD(start);
258 	const unsigned int size = start + len;
259 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
260 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
261 
262 	while (len - bits_to_set >= 0) {
263 		*p |= mask_to_set;
264 		len -= bits_to_set;
265 		bits_to_set = BITS_PER_LONG;
266 		mask_to_set = ~0UL;
267 		p++;
268 	}
269 	if (len) {
270 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
271 		*p |= mask_to_set;
272 	}
273 }
274 EXPORT_SYMBOL(__bitmap_set);
275 
__bitmap_clear(unsigned long * map,unsigned int start,int len)276 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
277 {
278 	unsigned long *p = map + BIT_WORD(start);
279 	const unsigned int size = start + len;
280 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
281 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
282 
283 	while (len - bits_to_clear >= 0) {
284 		*p &= ~mask_to_clear;
285 		len -= bits_to_clear;
286 		bits_to_clear = BITS_PER_LONG;
287 		mask_to_clear = ~0UL;
288 		p++;
289 	}
290 	if (len) {
291 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
292 		*p &= ~mask_to_clear;
293 	}
294 }
295 EXPORT_SYMBOL(__bitmap_clear);
296 
297 /**
298  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
299  * @map: The address to base the search on
300  * @size: The bitmap size in bits
301  * @start: The bitnumber to start searching at
302  * @nr: The number of zeroed bits we're looking for
303  * @align_mask: Alignment mask for zero area
304  * @align_offset: Alignment offset for zero area.
305  *
306  * The @align_mask should be one less than a power of 2; the effect is that
307  * the bit offset of all zero areas this function finds plus @align_offset
308  * is multiple of that power of 2.
309  */
bitmap_find_next_zero_area_off(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,unsigned long align_mask,unsigned long align_offset)310 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
311 					     unsigned long size,
312 					     unsigned long start,
313 					     unsigned int nr,
314 					     unsigned long align_mask,
315 					     unsigned long align_offset)
316 {
317 	unsigned long index, end, i;
318 again:
319 	index = find_next_zero_bit(map, size, start);
320 
321 	/* Align allocation */
322 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
323 
324 	end = index + nr;
325 	if (end > size)
326 		return end;
327 	i = find_next_bit(map, end, index);
328 	if (i < end) {
329 		start = i + 1;
330 		goto again;
331 	}
332 	return index;
333 }
334 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
335 
336 /*
337  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
338  * second version by Paul Jackson, third by Joe Korty.
339  */
340 
341 #define CHUNKSZ				32
342 #define nbits_to_hold_value(val)	fls(val)
343 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
344 
345 /**
346  * __bitmap_parse - convert an ASCII hex string into a bitmap.
347  * @buf: pointer to buffer containing string.
348  * @buflen: buffer size in bytes.  If string is smaller than this
349  *    then it must be terminated with a \0.
350  * @is_user: location of buffer, 0 indicates kernel space
351  * @maskp: pointer to bitmap array that will contain result.
352  * @nmaskbits: size of bitmap, in bits.
353  *
354  * Commas group hex digits into chunks.  Each chunk defines exactly 32
355  * bits of the resultant bitmask.  No chunk may specify a value larger
356  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
357  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
358  * characters and for grouping errors such as "1,,5", ",44", "," and "".
359  * Leading and trailing whitespace accepted, but not embedded whitespace.
360  */
__bitmap_parse(const char * buf,unsigned int buflen,int is_user,unsigned long * maskp,int nmaskbits)361 int __bitmap_parse(const char *buf, unsigned int buflen,
362 		int is_user, unsigned long *maskp,
363 		int nmaskbits)
364 {
365 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
366 	u32 chunk;
367 	const char __user __force *ubuf = (const char __user __force *)buf;
368 
369 	bitmap_zero(maskp, nmaskbits);
370 
371 	nchunks = nbits = totaldigits = c = 0;
372 	do {
373 		chunk = 0;
374 		ndigits = totaldigits;
375 
376 		/* Get the next chunk of the bitmap */
377 		while (buflen) {
378 			old_c = c;
379 			if (is_user) {
380 				if (__get_user(c, ubuf++))
381 					return -EFAULT;
382 			}
383 			else
384 				c = *buf++;
385 			buflen--;
386 			if (isspace(c))
387 				continue;
388 
389 			/*
390 			 * If the last character was a space and the current
391 			 * character isn't '\0', we've got embedded whitespace.
392 			 * This is a no-no, so throw an error.
393 			 */
394 			if (totaldigits && c && isspace(old_c))
395 				return -EINVAL;
396 
397 			/* A '\0' or a ',' signal the end of the chunk */
398 			if (c == '\0' || c == ',')
399 				break;
400 
401 			if (!isxdigit(c))
402 				return -EINVAL;
403 
404 			/*
405 			 * Make sure there are at least 4 free bits in 'chunk'.
406 			 * If not, this hexdigit will overflow 'chunk', so
407 			 * throw an error.
408 			 */
409 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
410 				return -EOVERFLOW;
411 
412 			chunk = (chunk << 4) | hex_to_bin(c);
413 			totaldigits++;
414 		}
415 		if (ndigits == totaldigits)
416 			return -EINVAL;
417 		if (nchunks == 0 && chunk == 0)
418 			continue;
419 
420 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
421 		*maskp |= chunk;
422 		nchunks++;
423 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
424 		if (nbits > nmaskbits)
425 			return -EOVERFLOW;
426 	} while (buflen && c == ',');
427 
428 	return 0;
429 }
430 EXPORT_SYMBOL(__bitmap_parse);
431 
432 /**
433  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
434  *
435  * @ubuf: pointer to user buffer containing string.
436  * @ulen: buffer size in bytes.  If string is smaller than this
437  *    then it must be terminated with a \0.
438  * @maskp: pointer to bitmap array that will contain result.
439  * @nmaskbits: size of bitmap, in bits.
440  *
441  * Wrapper for __bitmap_parse(), providing it with user buffer.
442  *
443  * We cannot have this as an inline function in bitmap.h because it needs
444  * linux/uaccess.h to get the access_ok() declaration and this causes
445  * cyclic dependencies.
446  */
bitmap_parse_user(const char __user * ubuf,unsigned int ulen,unsigned long * maskp,int nmaskbits)447 int bitmap_parse_user(const char __user *ubuf,
448 			unsigned int ulen, unsigned long *maskp,
449 			int nmaskbits)
450 {
451 	if (!access_ok(VERIFY_READ, ubuf, ulen))
452 		return -EFAULT;
453 	return __bitmap_parse((const char __force *)ubuf,
454 				ulen, 1, maskp, nmaskbits);
455 
456 }
457 EXPORT_SYMBOL(bitmap_parse_user);
458 
459 /**
460  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
461  * @list: indicates whether the bitmap must be list
462  * @buf: page aligned buffer into which string is placed
463  * @maskp: pointer to bitmap to convert
464  * @nmaskbits: size of bitmap, in bits
465  *
466  * Output format is a comma-separated list of decimal numbers and
467  * ranges if list is specified or hex digits grouped into comma-separated
468  * sets of 8 digits/set. Returns the number of characters written to buf.
469  *
470  * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
471  * sufficient storage remains at @buf to accommodate the
472  * bitmap_print_to_pagebuf() output.
473  */
bitmap_print_to_pagebuf(bool list,char * buf,const unsigned long * maskp,int nmaskbits)474 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
475 			    int nmaskbits)
476 {
477 	ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
478 	int n = 0;
479 
480 	if (len > 1)
481 		n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
482 			   scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
483 	return n;
484 }
485 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
486 
487 /**
488  * __bitmap_parselist - convert list format ASCII string to bitmap
489  * @buf: read nul-terminated user string from this buffer
490  * @buflen: buffer size in bytes.  If string is smaller than this
491  *    then it must be terminated with a \0.
492  * @is_user: location of buffer, 0 indicates kernel space
493  * @maskp: write resulting mask here
494  * @nmaskbits: number of bits in mask to be written
495  *
496  * Input format is a comma-separated list of decimal numbers and
497  * ranges.  Consecutively set bits are shown as two hyphen-separated
498  * decimal numbers, the smallest and largest bit numbers set in
499  * the range.
500  * Optionally each range can be postfixed to denote that only parts of it
501  * should be set. The range will divided to groups of specific size.
502  * From each group will be used only defined amount of bits.
503  * Syntax: range:used_size/group_size
504  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
505  *
506  * Returns: 0 on success, -errno on invalid input strings. Error values:
507  *
508  *   - ``-EINVAL``: second number in range smaller than first
509  *   - ``-EINVAL``: invalid character in string
510  *   - ``-ERANGE``: bit number specified too large for mask
511  */
__bitmap_parselist(const char * buf,unsigned int buflen,int is_user,unsigned long * maskp,int nmaskbits)512 static int __bitmap_parselist(const char *buf, unsigned int buflen,
513 		int is_user, unsigned long *maskp,
514 		int nmaskbits)
515 {
516 	unsigned int a, b, old_a, old_b;
517 	unsigned int group_size, used_size, off;
518 	int c, old_c, totaldigits, ndigits;
519 	const char __user __force *ubuf = (const char __user __force *)buf;
520 	int at_start, in_range, in_partial_range;
521 
522 	totaldigits = c = 0;
523 	old_a = old_b = 0;
524 	group_size = used_size = 0;
525 	bitmap_zero(maskp, nmaskbits);
526 	do {
527 		at_start = 1;
528 		in_range = 0;
529 		in_partial_range = 0;
530 		a = b = 0;
531 		ndigits = totaldigits;
532 
533 		/* Get the next cpu# or a range of cpu#'s */
534 		while (buflen) {
535 			old_c = c;
536 			if (is_user) {
537 				if (__get_user(c, ubuf++))
538 					return -EFAULT;
539 			} else
540 				c = *buf++;
541 			buflen--;
542 			if (isspace(c))
543 				continue;
544 
545 			/* A '\0' or a ',' signal the end of a cpu# or range */
546 			if (c == '\0' || c == ',')
547 				break;
548 			/*
549 			* whitespaces between digits are not allowed,
550 			* but it's ok if whitespaces are on head or tail.
551 			* when old_c is whilespace,
552 			* if totaldigits == ndigits, whitespace is on head.
553 			* if whitespace is on tail, it should not run here.
554 			* as c was ',' or '\0',
555 			* the last code line has broken the current loop.
556 			*/
557 			if ((totaldigits != ndigits) && isspace(old_c))
558 				return -EINVAL;
559 
560 			if (c == '/') {
561 				used_size = a;
562 				at_start = 1;
563 				in_range = 0;
564 				a = b = 0;
565 				continue;
566 			}
567 
568 			if (c == ':') {
569 				old_a = a;
570 				old_b = b;
571 				at_start = 1;
572 				in_range = 0;
573 				in_partial_range = 1;
574 				a = b = 0;
575 				continue;
576 			}
577 
578 			if (c == '-') {
579 				if (at_start || in_range)
580 					return -EINVAL;
581 				b = 0;
582 				in_range = 1;
583 				at_start = 1;
584 				continue;
585 			}
586 
587 			if (!isdigit(c))
588 				return -EINVAL;
589 
590 			b = b * 10 + (c - '0');
591 			if (!in_range)
592 				a = b;
593 			at_start = 0;
594 			totaldigits++;
595 		}
596 		if (ndigits == totaldigits)
597 			continue;
598 		if (in_partial_range) {
599 			group_size = a;
600 			a = old_a;
601 			b = old_b;
602 			old_a = old_b = 0;
603 		} else {
604 			used_size = group_size = b - a + 1;
605 		}
606 		/* if no digit is after '-', it's wrong*/
607 		if (at_start && in_range)
608 			return -EINVAL;
609 		if (!(a <= b) || group_size == 0 || !(used_size <= group_size))
610 			return -EINVAL;
611 		if (b >= nmaskbits)
612 			return -ERANGE;
613 		while (a <= b) {
614 			off = min(b - a + 1, used_size);
615 			bitmap_set(maskp, a, off);
616 			a += group_size;
617 		}
618 	} while (buflen && c == ',');
619 	return 0;
620 }
621 
bitmap_parselist(const char * bp,unsigned long * maskp,int nmaskbits)622 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
623 {
624 	char *nl  = strchrnul(bp, '\n');
625 	int len = nl - bp;
626 
627 	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
628 }
629 EXPORT_SYMBOL(bitmap_parselist);
630 
631 
632 /**
633  * bitmap_parselist_user()
634  *
635  * @ubuf: pointer to user buffer containing string.
636  * @ulen: buffer size in bytes.  If string is smaller than this
637  *    then it must be terminated with a \0.
638  * @maskp: pointer to bitmap array that will contain result.
639  * @nmaskbits: size of bitmap, in bits.
640  *
641  * Wrapper for bitmap_parselist(), providing it with user buffer.
642  *
643  * We cannot have this as an inline function in bitmap.h because it needs
644  * linux/uaccess.h to get the access_ok() declaration and this causes
645  * cyclic dependencies.
646  */
bitmap_parselist_user(const char __user * ubuf,unsigned int ulen,unsigned long * maskp,int nmaskbits)647 int bitmap_parselist_user(const char __user *ubuf,
648 			unsigned int ulen, unsigned long *maskp,
649 			int nmaskbits)
650 {
651 	if (!access_ok(VERIFY_READ, ubuf, ulen))
652 		return -EFAULT;
653 	return __bitmap_parselist((const char __force *)ubuf,
654 					ulen, 1, maskp, nmaskbits);
655 }
656 EXPORT_SYMBOL(bitmap_parselist_user);
657 
658 
659 /**
660  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
661  *	@buf: pointer to a bitmap
662  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
663  *	@nbits: number of valid bit positions in @buf
664  *
665  * Map the bit at position @pos in @buf (of length @nbits) to the
666  * ordinal of which set bit it is.  If it is not set or if @pos
667  * is not a valid bit position, map to -1.
668  *
669  * If for example, just bits 4 through 7 are set in @buf, then @pos
670  * values 4 through 7 will get mapped to 0 through 3, respectively,
671  * and other @pos values will get mapped to -1.  When @pos value 7
672  * gets mapped to (returns) @ord value 3 in this example, that means
673  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
674  *
675  * The bit positions 0 through @bits are valid positions in @buf.
676  */
bitmap_pos_to_ord(const unsigned long * buf,unsigned int pos,unsigned int nbits)677 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
678 {
679 	if (pos >= nbits || !test_bit(pos, buf))
680 		return -1;
681 
682 	return __bitmap_weight(buf, pos);
683 }
684 
685 /**
686  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
687  *	@buf: pointer to bitmap
688  *	@ord: ordinal bit position (n-th set bit, n >= 0)
689  *	@nbits: number of valid bit positions in @buf
690  *
691  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
692  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
693  * >= weight(buf), returns @nbits.
694  *
695  * If for example, just bits 4 through 7 are set in @buf, then @ord
696  * values 0 through 3 will get mapped to 4 through 7, respectively,
697  * and all other @ord values returns @nbits.  When @ord value 3
698  * gets mapped to (returns) @pos value 7 in this example, that means
699  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
700  *
701  * The bit positions 0 through @nbits-1 are valid positions in @buf.
702  */
bitmap_ord_to_pos(const unsigned long * buf,unsigned int ord,unsigned int nbits)703 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
704 {
705 	unsigned int pos;
706 
707 	for (pos = find_first_bit(buf, nbits);
708 	     pos < nbits && ord;
709 	     pos = find_next_bit(buf, nbits, pos + 1))
710 		ord--;
711 
712 	return pos;
713 }
714 
715 /**
716  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
717  *	@dst: remapped result
718  *	@src: subset to be remapped
719  *	@old: defines domain of map
720  *	@new: defines range of map
721  *	@nbits: number of bits in each of these bitmaps
722  *
723  * Let @old and @new define a mapping of bit positions, such that
724  * whatever position is held by the n-th set bit in @old is mapped
725  * to the n-th set bit in @new.  In the more general case, allowing
726  * for the possibility that the weight 'w' of @new is less than the
727  * weight of @old, map the position of the n-th set bit in @old to
728  * the position of the m-th set bit in @new, where m == n % w.
729  *
730  * If either of the @old and @new bitmaps are empty, or if @src and
731  * @dst point to the same location, then this routine copies @src
732  * to @dst.
733  *
734  * The positions of unset bits in @old are mapped to themselves
735  * (the identify map).
736  *
737  * Apply the above specified mapping to @src, placing the result in
738  * @dst, clearing any bits previously set in @dst.
739  *
740  * For example, lets say that @old has bits 4 through 7 set, and
741  * @new has bits 12 through 15 set.  This defines the mapping of bit
742  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
743  * bit positions unchanged.  So if say @src comes into this routine
744  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
745  * 13 and 15 set.
746  */
bitmap_remap(unsigned long * dst,const unsigned long * src,const unsigned long * old,const unsigned long * new,unsigned int nbits)747 void bitmap_remap(unsigned long *dst, const unsigned long *src,
748 		const unsigned long *old, const unsigned long *new,
749 		unsigned int nbits)
750 {
751 	unsigned int oldbit, w;
752 
753 	if (dst == src)		/* following doesn't handle inplace remaps */
754 		return;
755 	bitmap_zero(dst, nbits);
756 
757 	w = bitmap_weight(new, nbits);
758 	for_each_set_bit(oldbit, src, nbits) {
759 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
760 
761 		if (n < 0 || w == 0)
762 			set_bit(oldbit, dst);	/* identity map */
763 		else
764 			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
765 	}
766 }
767 EXPORT_SYMBOL(bitmap_remap);
768 
769 /**
770  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
771  *	@oldbit: bit position to be mapped
772  *	@old: defines domain of map
773  *	@new: defines range of map
774  *	@bits: number of bits in each of these bitmaps
775  *
776  * Let @old and @new define a mapping of bit positions, such that
777  * whatever position is held by the n-th set bit in @old is mapped
778  * to the n-th set bit in @new.  In the more general case, allowing
779  * for the possibility that the weight 'w' of @new is less than the
780  * weight of @old, map the position of the n-th set bit in @old to
781  * the position of the m-th set bit in @new, where m == n % w.
782  *
783  * The positions of unset bits in @old are mapped to themselves
784  * (the identify map).
785  *
786  * Apply the above specified mapping to bit position @oldbit, returning
787  * the new bit position.
788  *
789  * For example, lets say that @old has bits 4 through 7 set, and
790  * @new has bits 12 through 15 set.  This defines the mapping of bit
791  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
792  * bit positions unchanged.  So if say @oldbit is 5, then this routine
793  * returns 13.
794  */
bitmap_bitremap(int oldbit,const unsigned long * old,const unsigned long * new,int bits)795 int bitmap_bitremap(int oldbit, const unsigned long *old,
796 				const unsigned long *new, int bits)
797 {
798 	int w = bitmap_weight(new, bits);
799 	int n = bitmap_pos_to_ord(old, oldbit, bits);
800 	if (n < 0 || w == 0)
801 		return oldbit;
802 	else
803 		return bitmap_ord_to_pos(new, n % w, bits);
804 }
805 EXPORT_SYMBOL(bitmap_bitremap);
806 
807 /**
808  * bitmap_onto - translate one bitmap relative to another
809  *	@dst: resulting translated bitmap
810  * 	@orig: original untranslated bitmap
811  * 	@relmap: bitmap relative to which translated
812  *	@bits: number of bits in each of these bitmaps
813  *
814  * Set the n-th bit of @dst iff there exists some m such that the
815  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
816  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
817  * (If you understood the previous sentence the first time your
818  * read it, you're overqualified for your current job.)
819  *
820  * In other words, @orig is mapped onto (surjectively) @dst,
821  * using the map { <n, m> | the n-th bit of @relmap is the
822  * m-th set bit of @relmap }.
823  *
824  * Any set bits in @orig above bit number W, where W is the
825  * weight of (number of set bits in) @relmap are mapped nowhere.
826  * In particular, if for all bits m set in @orig, m >= W, then
827  * @dst will end up empty.  In situations where the possibility
828  * of such an empty result is not desired, one way to avoid it is
829  * to use the bitmap_fold() operator, below, to first fold the
830  * @orig bitmap over itself so that all its set bits x are in the
831  * range 0 <= x < W.  The bitmap_fold() operator does this by
832  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
833  *
834  * Example [1] for bitmap_onto():
835  *  Let's say @relmap has bits 30-39 set, and @orig has bits
836  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
837  *  @dst will have bits 31, 33, 35, 37 and 39 set.
838  *
839  *  When bit 0 is set in @orig, it means turn on the bit in
840  *  @dst corresponding to whatever is the first bit (if any)
841  *  that is turned on in @relmap.  Since bit 0 was off in the
842  *  above example, we leave off that bit (bit 30) in @dst.
843  *
844  *  When bit 1 is set in @orig (as in the above example), it
845  *  means turn on the bit in @dst corresponding to whatever
846  *  is the second bit that is turned on in @relmap.  The second
847  *  bit in @relmap that was turned on in the above example was
848  *  bit 31, so we turned on bit 31 in @dst.
849  *
850  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
851  *  because they were the 4th, 6th, 8th and 10th set bits
852  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
853  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
854  *
855  *  When bit 11 is set in @orig, it means turn on the bit in
856  *  @dst corresponding to whatever is the twelfth bit that is
857  *  turned on in @relmap.  In the above example, there were
858  *  only ten bits turned on in @relmap (30..39), so that bit
859  *  11 was set in @orig had no affect on @dst.
860  *
861  * Example [2] for bitmap_fold() + bitmap_onto():
862  *  Let's say @relmap has these ten bits set::
863  *
864  *		40 41 42 43 45 48 53 61 74 95
865  *
866  *  (for the curious, that's 40 plus the first ten terms of the
867  *  Fibonacci sequence.)
868  *
869  *  Further lets say we use the following code, invoking
870  *  bitmap_fold() then bitmap_onto, as suggested above to
871  *  avoid the possibility of an empty @dst result::
872  *
873  *	unsigned long *tmp;	// a temporary bitmap's bits
874  *
875  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
876  *	bitmap_onto(dst, tmp, relmap, bits);
877  *
878  *  Then this table shows what various values of @dst would be, for
879  *  various @orig's.  I list the zero-based positions of each set bit.
880  *  The tmp column shows the intermediate result, as computed by
881  *  using bitmap_fold() to fold the @orig bitmap modulo ten
882  *  (the weight of @relmap):
883  *
884  *      =============== ============== =================
885  *      @orig           tmp            @dst
886  *      0                0             40
887  *      1                1             41
888  *      9                9             95
889  *      10               0             40 [#f1]_
890  *      1 3 5 7          1 3 5 7       41 43 48 61
891  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
892  *      0 9 18 27        0 9 8 7       40 61 74 95
893  *      0 10 20 30       0             40
894  *      0 11 22 33       0 1 2 3       40 41 42 43
895  *      0 12 24 36       0 2 4 6       40 42 45 53
896  *      78 102 211       1 2 8         41 42 74 [#f1]_
897  *      =============== ============== =================
898  *
899  * .. [#f1]
900  *
901  *     For these marked lines, if we hadn't first done bitmap_fold()
902  *     into tmp, then the @dst result would have been empty.
903  *
904  * If either of @orig or @relmap is empty (no set bits), then @dst
905  * will be returned empty.
906  *
907  * If (as explained above) the only set bits in @orig are in positions
908  * m where m >= W, (where W is the weight of @relmap) then @dst will
909  * once again be returned empty.
910  *
911  * All bits in @dst not set by the above rule are cleared.
912  */
bitmap_onto(unsigned long * dst,const unsigned long * orig,const unsigned long * relmap,unsigned int bits)913 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
914 			const unsigned long *relmap, unsigned int bits)
915 {
916 	unsigned int n, m;	/* same meaning as in above comment */
917 
918 	if (dst == orig)	/* following doesn't handle inplace mappings */
919 		return;
920 	bitmap_zero(dst, bits);
921 
922 	/*
923 	 * The following code is a more efficient, but less
924 	 * obvious, equivalent to the loop:
925 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
926 	 *		n = bitmap_ord_to_pos(orig, m, bits);
927 	 *		if (test_bit(m, orig))
928 	 *			set_bit(n, dst);
929 	 *	}
930 	 */
931 
932 	m = 0;
933 	for_each_set_bit(n, relmap, bits) {
934 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
935 		if (test_bit(m, orig))
936 			set_bit(n, dst);
937 		m++;
938 	}
939 }
940 EXPORT_SYMBOL(bitmap_onto);
941 
942 /**
943  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
944  *	@dst: resulting smaller bitmap
945  *	@orig: original larger bitmap
946  *	@sz: specified size
947  *	@nbits: number of bits in each of these bitmaps
948  *
949  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
950  * Clear all other bits in @dst.  See further the comment and
951  * Example [2] for bitmap_onto() for why and how to use this.
952  */
bitmap_fold(unsigned long * dst,const unsigned long * orig,unsigned int sz,unsigned int nbits)953 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
954 			unsigned int sz, unsigned int nbits)
955 {
956 	unsigned int oldbit;
957 
958 	if (dst == orig)	/* following doesn't handle inplace mappings */
959 		return;
960 	bitmap_zero(dst, nbits);
961 
962 	for_each_set_bit(oldbit, orig, nbits)
963 		set_bit(oldbit % sz, dst);
964 }
965 EXPORT_SYMBOL(bitmap_fold);
966 
967 /*
968  * Common code for bitmap_*_region() routines.
969  *	bitmap: array of unsigned longs corresponding to the bitmap
970  *	pos: the beginning of the region
971  *	order: region size (log base 2 of number of bits)
972  *	reg_op: operation(s) to perform on that region of bitmap
973  *
974  * Can set, verify and/or release a region of bits in a bitmap,
975  * depending on which combination of REG_OP_* flag bits is set.
976  *
977  * A region of a bitmap is a sequence of bits in the bitmap, of
978  * some size '1 << order' (a power of two), aligned to that same
979  * '1 << order' power of two.
980  *
981  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
982  * Returns 0 in all other cases and reg_ops.
983  */
984 
985 enum {
986 	REG_OP_ISFREE,		/* true if region is all zero bits */
987 	REG_OP_ALLOC,		/* set all bits in region */
988 	REG_OP_RELEASE,		/* clear all bits in region */
989 };
990 
__reg_op(unsigned long * bitmap,unsigned int pos,int order,int reg_op)991 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
992 {
993 	int nbits_reg;		/* number of bits in region */
994 	int index;		/* index first long of region in bitmap */
995 	int offset;		/* bit offset region in bitmap[index] */
996 	int nlongs_reg;		/* num longs spanned by region in bitmap */
997 	int nbitsinlong;	/* num bits of region in each spanned long */
998 	unsigned long mask;	/* bitmask for one long of region */
999 	int i;			/* scans bitmap by longs */
1000 	int ret = 0;		/* return value */
1001 
1002 	/*
1003 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1004 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1005 	 */
1006 	nbits_reg = 1 << order;
1007 	index = pos / BITS_PER_LONG;
1008 	offset = pos - (index * BITS_PER_LONG);
1009 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1010 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1011 
1012 	/*
1013 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1014 	 * overflows if nbitsinlong == BITS_PER_LONG.
1015 	 */
1016 	mask = (1UL << (nbitsinlong - 1));
1017 	mask += mask - 1;
1018 	mask <<= offset;
1019 
1020 	switch (reg_op) {
1021 	case REG_OP_ISFREE:
1022 		for (i = 0; i < nlongs_reg; i++) {
1023 			if (bitmap[index + i] & mask)
1024 				goto done;
1025 		}
1026 		ret = 1;	/* all bits in region free (zero) */
1027 		break;
1028 
1029 	case REG_OP_ALLOC:
1030 		for (i = 0; i < nlongs_reg; i++)
1031 			bitmap[index + i] |= mask;
1032 		break;
1033 
1034 	case REG_OP_RELEASE:
1035 		for (i = 0; i < nlongs_reg; i++)
1036 			bitmap[index + i] &= ~mask;
1037 		break;
1038 	}
1039 done:
1040 	return ret;
1041 }
1042 
1043 /**
1044  * bitmap_find_free_region - find a contiguous aligned mem region
1045  *	@bitmap: array of unsigned longs corresponding to the bitmap
1046  *	@bits: number of bits in the bitmap
1047  *	@order: region size (log base 2 of number of bits) to find
1048  *
1049  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1050  * allocate them (set them to one).  Only consider regions of length
1051  * a power (@order) of two, aligned to that power of two, which
1052  * makes the search algorithm much faster.
1053  *
1054  * Return the bit offset in bitmap of the allocated region,
1055  * or -errno on failure.
1056  */
bitmap_find_free_region(unsigned long * bitmap,unsigned int bits,int order)1057 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1058 {
1059 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1060 
1061 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1062 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1063 			continue;
1064 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1065 		return pos;
1066 	}
1067 	return -ENOMEM;
1068 }
1069 EXPORT_SYMBOL(bitmap_find_free_region);
1070 
1071 /**
1072  * bitmap_release_region - release allocated bitmap region
1073  *	@bitmap: array of unsigned longs corresponding to the bitmap
1074  *	@pos: beginning of bit region to release
1075  *	@order: region size (log base 2 of number of bits) to release
1076  *
1077  * This is the complement to __bitmap_find_free_region() and releases
1078  * the found region (by clearing it in the bitmap).
1079  *
1080  * No return value.
1081  */
bitmap_release_region(unsigned long * bitmap,unsigned int pos,int order)1082 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1083 {
1084 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1085 }
1086 EXPORT_SYMBOL(bitmap_release_region);
1087 
1088 /**
1089  * bitmap_allocate_region - allocate bitmap region
1090  *	@bitmap: array of unsigned longs corresponding to the bitmap
1091  *	@pos: beginning of bit region to allocate
1092  *	@order: region size (log base 2 of number of bits) to allocate
1093  *
1094  * Allocate (set bits in) a specified region of a bitmap.
1095  *
1096  * Return 0 on success, or %-EBUSY if specified region wasn't
1097  * free (not all bits were zero).
1098  */
bitmap_allocate_region(unsigned long * bitmap,unsigned int pos,int order)1099 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1100 {
1101 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1102 		return -EBUSY;
1103 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1104 }
1105 EXPORT_SYMBOL(bitmap_allocate_region);
1106 
1107 /**
1108  * bitmap_from_u32array - copy the contents of a u32 array of bits to bitmap
1109  *	@bitmap: array of unsigned longs, the destination bitmap, non NULL
1110  *	@nbits: number of bits in @bitmap
1111  *	@buf: array of u32 (in host byte order), the source bitmap, non NULL
1112  *	@nwords: number of u32 words in @buf
1113  *
1114  * copy min(nbits, 32*nwords) bits from @buf to @bitmap, remaining
1115  * bits between nword and nbits in @bitmap (if any) are cleared. In
1116  * last word of @bitmap, the bits beyond nbits (if any) are kept
1117  * unchanged.
1118  *
1119  * Return the number of bits effectively copied.
1120  */
1121 unsigned int
bitmap_from_u32array(unsigned long * bitmap,unsigned int nbits,const u32 * buf,unsigned int nwords)1122 bitmap_from_u32array(unsigned long *bitmap, unsigned int nbits,
1123 		     const u32 *buf, unsigned int nwords)
1124 {
1125 	unsigned int dst_idx, src_idx;
1126 
1127 	for (src_idx = dst_idx = 0; dst_idx < BITS_TO_LONGS(nbits); ++dst_idx) {
1128 		unsigned long part = 0;
1129 
1130 		if (src_idx < nwords)
1131 			part = buf[src_idx++];
1132 
1133 #if BITS_PER_LONG == 64
1134 		if (src_idx < nwords)
1135 			part |= ((unsigned long) buf[src_idx++]) << 32;
1136 #endif
1137 
1138 		if (dst_idx < nbits/BITS_PER_LONG)
1139 			bitmap[dst_idx] = part;
1140 		else {
1141 			unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1142 
1143 			bitmap[dst_idx] = (bitmap[dst_idx] & ~mask)
1144 				| (part & mask);
1145 		}
1146 	}
1147 
1148 	return min_t(unsigned int, nbits, 32*nwords);
1149 }
1150 EXPORT_SYMBOL(bitmap_from_u32array);
1151 
1152 /**
1153  * bitmap_to_u32array - copy the contents of bitmap to a u32 array of bits
1154  *	@buf: array of u32 (in host byte order), the dest bitmap, non NULL
1155  *	@nwords: number of u32 words in @buf
1156  *	@bitmap: array of unsigned longs, the source bitmap, non NULL
1157  *	@nbits: number of bits in @bitmap
1158  *
1159  * copy min(nbits, 32*nwords) bits from @bitmap to @buf. Remaining
1160  * bits after nbits in @buf (if any) are cleared.
1161  *
1162  * Return the number of bits effectively copied.
1163  */
1164 unsigned int
bitmap_to_u32array(u32 * buf,unsigned int nwords,const unsigned long * bitmap,unsigned int nbits)1165 bitmap_to_u32array(u32 *buf, unsigned int nwords,
1166 		   const unsigned long *bitmap, unsigned int nbits)
1167 {
1168 	unsigned int dst_idx = 0, src_idx = 0;
1169 
1170 	while (dst_idx < nwords) {
1171 		unsigned long part = 0;
1172 
1173 		if (src_idx < BITS_TO_LONGS(nbits)) {
1174 			part = bitmap[src_idx];
1175 			if (src_idx >= nbits/BITS_PER_LONG)
1176 				part &= BITMAP_LAST_WORD_MASK(nbits);
1177 			src_idx++;
1178 		}
1179 
1180 		buf[dst_idx++] = part & 0xffffffffUL;
1181 
1182 #if BITS_PER_LONG == 64
1183 		if (dst_idx < nwords) {
1184 			part >>= 32;
1185 			buf[dst_idx++] = part & 0xffffffffUL;
1186 		}
1187 #endif
1188 	}
1189 
1190 	return min_t(unsigned int, nbits, 32*nwords);
1191 }
1192 EXPORT_SYMBOL(bitmap_to_u32array);
1193 
1194 /**
1195  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1196  * @dst:   destination buffer
1197  * @src:   bitmap to copy
1198  * @nbits: number of bits in the bitmap
1199  *
1200  * Require nbits % BITS_PER_LONG == 0.
1201  */
1202 #ifdef __BIG_ENDIAN
bitmap_copy_le(unsigned long * dst,const unsigned long * src,unsigned int nbits)1203 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1204 {
1205 	unsigned int i;
1206 
1207 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1208 		if (BITS_PER_LONG == 64)
1209 			dst[i] = cpu_to_le64(src[i]);
1210 		else
1211 			dst[i] = cpu_to_le32(src[i]);
1212 	}
1213 }
1214 EXPORT_SYMBOL(bitmap_copy_le);
1215 #endif
1216 
bitmap_alloc(unsigned int nbits,gfp_t flags)1217 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1218 {
1219 	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1220 			     flags);
1221 }
1222 EXPORT_SYMBOL(bitmap_alloc);
1223 
bitmap_zalloc(unsigned int nbits,gfp_t flags)1224 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1225 {
1226 	return bitmap_alloc(nbits, flags | __GFP_ZERO);
1227 }
1228 EXPORT_SYMBOL(bitmap_zalloc);
1229 
bitmap_free(const unsigned long * bitmap)1230 void bitmap_free(const unsigned long *bitmap)
1231 {
1232 	kfree(bitmap);
1233 }
1234 EXPORT_SYMBOL(bitmap_free);
1235