• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 *   This program is free software; you can redistribute it and/or
5 *   modify it under the terms of the GNU General Public License
6 *   as published by the Free Software Foundation, version 2.
7 *
8 *   This program is distributed in the hope that it will be useful, but
9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 *   NON INFRINGEMENT.  See the GNU General Public License for
12 *   more details.
13 *
14 * Linux interrupt vectors.
15 */
16
17#include <linux/linkage.h>
18#include <linux/errno.h>
19#include <linux/init.h>
20#include <linux/unistd.h>
21#include <asm/ptrace.h>
22#include <asm/thread_info.h>
23#include <asm/irqflags.h>
24#include <asm/atomic_32.h>
25#include <asm/asm-offsets.h>
26#include <hv/hypervisor.h>
27#include <arch/abi.h>
28#include <arch/interrupts.h>
29#include <arch/spr_def.h>
30
31#define PTREGS_PTR(reg, ptreg) addli reg, sp, C_ABI_SAVE_AREA_SIZE + (ptreg)
32
33#define PTREGS_OFFSET_SYSCALL PTREGS_OFFSET_REG(TREG_SYSCALL_NR)
34
35	.macro  push_reg reg, ptr=sp, delta=-4
36	{
37	 sw     \ptr, \reg
38	 addli  \ptr, \ptr, \delta
39	}
40	.endm
41
42	.macro  pop_reg reg, ptr=sp, delta=4
43	{
44	 lw     \reg, \ptr
45	 addli  \ptr, \ptr, \delta
46	}
47	.endm
48
49	.macro  pop_reg_zero reg, zreg, ptr=sp, delta=4
50	{
51	 move   \zreg, zero
52	 lw     \reg, \ptr
53	 addi   \ptr, \ptr, \delta
54	}
55	.endm
56
57	.macro  push_extra_callee_saves reg
58	PTREGS_PTR(\reg, PTREGS_OFFSET_REG(51))
59	push_reg r51, \reg
60	push_reg r50, \reg
61	push_reg r49, \reg
62	push_reg r48, \reg
63	push_reg r47, \reg
64	push_reg r46, \reg
65	push_reg r45, \reg
66	push_reg r44, \reg
67	push_reg r43, \reg
68	push_reg r42, \reg
69	push_reg r41, \reg
70	push_reg r40, \reg
71	push_reg r39, \reg
72	push_reg r38, \reg
73	push_reg r37, \reg
74	push_reg r36, \reg
75	push_reg r35, \reg
76	push_reg r34, \reg, PTREGS_OFFSET_BASE - PTREGS_OFFSET_REG(34)
77	.endm
78
79	.macro  panic str
80	.pushsection .rodata, "a"
811:
82	.asciz  "\str"
83	.popsection
84	{
85	 moveli r0, lo16(1b)
86	}
87	{
88	 auli   r0, r0, ha16(1b)
89	 jal    panic
90	}
91	.endm
92
93#ifdef __COLLECT_LINKER_FEEDBACK__
94	.pushsection .text.intvec_feedback,"ax"
95intvec_feedback:
96	.popsection
97#endif
98
99	/*
100	 * Default interrupt handler.
101	 *
102	 * vecnum is where we'll put this code.
103	 * c_routine is the C routine we'll call.
104	 *
105	 * The C routine is passed two arguments:
106	 * - A pointer to the pt_regs state.
107	 * - The interrupt vector number.
108	 *
109	 * The "processing" argument specifies the code for processing
110	 * the interrupt. Defaults to "handle_interrupt".
111	 */
112	.macro  int_hand vecnum, vecname, c_routine, processing=handle_interrupt
113	.org    (\vecnum << 8)
114intvec_\vecname:
115	.ifc    \vecnum, INT_SWINT_1
116	blz     TREG_SYSCALL_NR_NAME, sys_cmpxchg
117	.endif
118
119	/* Temporarily save a register so we have somewhere to work. */
120
121	mtspr   SPR_SYSTEM_SAVE_K_1, r0
122	mfspr   r0, SPR_EX_CONTEXT_K_1
123
124	/* The cmpxchg code clears sp to force us to reset it here on fault. */
125	{
126	 bz     sp, 2f
127	 andi   r0, r0, SPR_EX_CONTEXT_1_1__PL_MASK  /* mask off ICS */
128	}
129
130	.ifc    \vecnum, INT_DOUBLE_FAULT
131	/*
132	 * For double-faults from user-space, fall through to the normal
133	 * register save and stack setup path.  Otherwise, it's the
134	 * hypervisor giving us one last chance to dump diagnostics, and we
135	 * branch to the kernel_double_fault routine to do so.
136	 */
137	bz      r0, 1f
138	j       _kernel_double_fault
1391:
140	.else
141	/*
142	 * If we're coming from user-space, then set sp to the top of
143	 * the kernel stack.  Otherwise, assume sp is already valid.
144	 */
145	{
146	 bnz    r0, 0f
147	 move   r0, sp
148	}
149	.endif
150
151	.ifc    \c_routine, do_page_fault
152	/*
153	 * The page_fault handler may be downcalled directly by the
154	 * hypervisor even when Linux is running and has ICS set.
155	 *
156	 * In this case the contents of EX_CONTEXT_K_1 reflect the
157	 * previous fault and can't be relied on to choose whether or
158	 * not to reinitialize the stack pointer.  So we add a test
159	 * to see whether SYSTEM_SAVE_K_2 has the high bit set,
160	 * and if so we don't reinitialize sp, since we must be coming
161	 * from Linux.  (In fact the precise case is !(val & ~1),
162	 * but any Linux PC has to have the high bit set.)
163	 *
164	 * Note that the hypervisor *always* sets SYSTEM_SAVE_K_2 for
165	 * any path that turns into a downcall to one of our TLB handlers.
166	 */
167	mfspr   r0, SPR_SYSTEM_SAVE_K_2
168	{
169	 blz    r0, 0f    /* high bit in S_S_1_2 is for a PC to use */
170	 move   r0, sp
171	}
172	.endif
173
1742:
175	/*
176	 * SYSTEM_SAVE_K_0 holds the cpu number in the low bits, and
177	 * the current stack top in the higher bits.  So we recover
178	 * our stack top by just masking off the low bits, then
179	 * point sp at the top aligned address on the actual stack page.
180	 */
181	mfspr   r0, SPR_SYSTEM_SAVE_K_0
182	mm      r0, r0, zero, LOG2_NR_CPU_IDS, 31
183
1840:
185	/*
186	 * Align the stack mod 64 so we can properly predict what
187	 * cache lines we need to write-hint to reduce memory fetch
188	 * latency as we enter the kernel.  The layout of memory is
189	 * as follows, with cache line 0 at the lowest VA, and cache
190	 * line 4 just below the r0 value this "andi" computes.
191	 * Note that we never write to cache line 4, and we skip
192	 * cache line 1 for syscalls.
193	 *
194	 *    cache line 4: ptregs padding (two words)
195	 *    cache line 3: r46...lr, pc, ex1, faultnum, orig_r0, flags, pad
196	 *    cache line 2: r30...r45
197	 *    cache line 1: r14...r29
198	 *    cache line 0: 2 x frame, r0..r13
199	 */
200#if STACK_TOP_DELTA != 64
201#error STACK_TOP_DELTA must be 64 for assumptions here and in task_pt_regs()
202#endif
203	andi    r0, r0, -64
204
205	/*
206	 * Push the first four registers on the stack, so that we can set
207	 * them to vector-unique values before we jump to the common code.
208	 *
209	 * Registers are pushed on the stack as a struct pt_regs,
210	 * with the sp initially just above the struct, and when we're
211	 * done, sp points to the base of the struct, minus
212	 * C_ABI_SAVE_AREA_SIZE, so we can directly jal to C code.
213	 *
214	 * This routine saves just the first four registers, plus the
215	 * stack context so we can do proper backtracing right away,
216	 * and defers to handle_interrupt to save the rest.
217	 * The backtracer needs pc, ex1, lr, sp, r52, and faultnum.
218	 */
219	addli   r0, r0, PTREGS_OFFSET_LR - (PTREGS_SIZE + KSTK_PTREGS_GAP)
220	wh64    r0    /* cache line 3 */
221	{
222	 sw     r0, lr
223	 addli  r0, r0, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
224	}
225	{
226	 sw     r0, sp
227	 addli  sp, r0, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_SP
228	}
229	{
230	 sw     sp, r52
231	 addli  sp, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(52)
232	}
233	wh64    sp    /* cache line 0 */
234	{
235	 sw     sp, r1
236	 addli  sp, sp, PTREGS_OFFSET_REG(2) - PTREGS_OFFSET_REG(1)
237	}
238	{
239	 sw     sp, r2
240	 addli  sp, sp, PTREGS_OFFSET_REG(3) - PTREGS_OFFSET_REG(2)
241	}
242	{
243	 sw     sp, r3
244	 addli  sp, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(3)
245	}
246	mfspr   r0, SPR_EX_CONTEXT_K_0
247	.ifc \processing,handle_syscall
248	/*
249	 * Bump the saved PC by one bundle so that when we return, we won't
250	 * execute the same swint instruction again.  We need to do this while
251	 * we're in the critical section.
252	 */
253	addi    r0, r0, 8
254	.endif
255	{
256	 sw     sp, r0
257	 addli  sp, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
258	}
259	mfspr   r0, SPR_EX_CONTEXT_K_1
260	{
261	 sw     sp, r0
262	 addi   sp, sp, PTREGS_OFFSET_FAULTNUM - PTREGS_OFFSET_EX1
263	/*
264	 * Use r0 for syscalls so it's a temporary; use r1 for interrupts
265	 * so that it gets passed through unchanged to the handler routine.
266	 * Note that the .if conditional confusingly spans bundles.
267	 */
268	 .ifc \processing,handle_syscall
269	 movei  r0, \vecnum
270	}
271	{
272	 sw     sp, r0
273	 .else
274	 movei  r1, \vecnum
275	}
276	{
277	 sw     sp, r1
278	 .endif
279	 addli  sp, sp, PTREGS_OFFSET_REG(0) - PTREGS_OFFSET_FAULTNUM
280	}
281	mfspr   r0, SPR_SYSTEM_SAVE_K_1    /* Original r0 */
282	{
283	 sw     sp, r0
284	 addi   sp, sp, -PTREGS_OFFSET_REG(0) - 4
285	}
286	{
287	 sw     sp, zero        /* write zero into "Next SP" frame pointer */
288	 addi   sp, sp, -4      /* leave SP pointing at bottom of frame */
289	}
290	.ifc \processing,handle_syscall
291	j       handle_syscall
292	.else
293	/*
294	 * Capture per-interrupt SPR context to registers.
295	 * We overload the meaning of r3 on this path such that if its bit 31
296	 * is set, we have to mask all interrupts including NMIs before
297	 * clearing the interrupt critical section bit.
298	 * See discussion below at "finish_interrupt_save".
299	 */
300	.ifc \c_routine, do_page_fault
301	mfspr   r2, SPR_SYSTEM_SAVE_K_3   /* address of page fault */
302	mfspr   r3, SPR_SYSTEM_SAVE_K_2   /* info about page fault */
303	.else
304	.ifc \vecnum, INT_DOUBLE_FAULT
305	{
306	 mfspr  r2, SPR_SYSTEM_SAVE_K_2   /* double fault info from HV */
307	 movei  r3, 0
308	}
309	.else
310	.ifc \c_routine, do_trap
311	{
312	 mfspr  r2, GPV_REASON
313	 movei  r3, 0
314	}
315	.else
316	.ifc \c_routine, handle_perf_interrupt
317	{
318	 mfspr  r2, PERF_COUNT_STS
319	 movei  r3, -1   /* not used, but set for consistency */
320	}
321	.else
322	.ifc \c_routine, handle_perf_interrupt
323	{
324	 mfspr  r2, AUX_PERF_COUNT_STS
325	 movei  r3, -1   /* not used, but set for consistency */
326	}
327	.else
328	movei   r3, 0
329	.endif
330	.endif
331	.endif
332	.endif
333	.endif
334	/* Put function pointer in r0 */
335	moveli  r0, lo16(\c_routine)
336	{
337	 auli   r0, r0, ha16(\c_routine)
338	 j       \processing
339	}
340	.endif
341	ENDPROC(intvec_\vecname)
342
343#ifdef __COLLECT_LINKER_FEEDBACK__
344	.pushsection .text.intvec_feedback,"ax"
345	.org    (\vecnum << 5)
346	FEEDBACK_ENTER_EXPLICIT(intvec_\vecname, .intrpt, 1 << 8)
347	jrp     lr
348	.popsection
349#endif
350
351	.endm
352
353
354	/*
355	 * Save the rest of the registers that we didn't save in the actual
356	 * vector itself.  We can't use r0-r10 inclusive here.
357	 */
358	.macro  finish_interrupt_save, function
359
360	/* If it's a syscall, save a proper orig_r0, otherwise just zero. */
361	PTREGS_PTR(r52, PTREGS_OFFSET_ORIG_R0)
362	{
363	 .ifc \function,handle_syscall
364	 sw     r52, r0
365	 .else
366	 sw     r52, zero
367	 .endif
368	 PTREGS_PTR(r52, PTREGS_OFFSET_TP)
369	}
370
371	/*
372	 * For ordinary syscalls, we save neither caller- nor callee-
373	 * save registers, since the syscall invoker doesn't expect the
374	 * caller-saves to be saved, and the called kernel functions will
375	 * take care of saving the callee-saves for us.
376	 *
377	 * For interrupts we save just the caller-save registers.  Saving
378	 * them is required (since the "caller" can't save them).  Again,
379	 * the called kernel functions will restore the callee-save
380	 * registers for us appropriately.
381	 *
382	 * On return, we normally restore nothing special for syscalls,
383	 * and just the caller-save registers for interrupts.
384	 *
385	 * However, there are some important caveats to all this:
386	 *
387	 * - We always save a few callee-save registers to give us
388	 *   some scratchpad registers to carry across function calls.
389	 *
390	 * - fork/vfork/etc require us to save all the callee-save
391	 *   registers, which we do in PTREGS_SYSCALL_ALL_REGS, below.
392	 *
393	 * - We always save r0..r5 and r10 for syscalls, since we need
394	 *   to reload them a bit later for the actual kernel call, and
395	 *   since we might need them for -ERESTARTNOINTR, etc.
396	 *
397	 * - Before invoking a signal handler, we save the unsaved
398	 *   callee-save registers so they are visible to the
399	 *   signal handler or any ptracer.
400	 *
401	 * - If the unsaved callee-save registers are modified, we set
402	 *   a bit in pt_regs so we know to reload them from pt_regs
403	 *   and not just rely on the kernel function unwinding.
404	 *   (Done for ptrace register writes and SA_SIGINFO handler.)
405	 */
406	{
407	 sw     r52, tp
408	 PTREGS_PTR(r52, PTREGS_OFFSET_REG(33))
409	}
410	wh64    r52    /* cache line 2 */
411	push_reg r33, r52
412	push_reg r32, r52
413	push_reg r31, r52
414	.ifc \function,handle_syscall
415	push_reg r30, r52, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(30)
416	push_reg TREG_SYSCALL_NR_NAME, r52, \
417	  PTREGS_OFFSET_REG(5) - PTREGS_OFFSET_SYSCALL
418	.else
419
420	push_reg r30, r52, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(30)
421	wh64    r52    /* cache line 1 */
422	push_reg r29, r52
423	push_reg r28, r52
424	push_reg r27, r52
425	push_reg r26, r52
426	push_reg r25, r52
427	push_reg r24, r52
428	push_reg r23, r52
429	push_reg r22, r52
430	push_reg r21, r52
431	push_reg r20, r52
432	push_reg r19, r52
433	push_reg r18, r52
434	push_reg r17, r52
435	push_reg r16, r52
436	push_reg r15, r52
437	push_reg r14, r52
438	push_reg r13, r52
439	push_reg r12, r52
440	push_reg r11, r52
441	push_reg r10, r52
442	push_reg r9, r52
443	push_reg r8, r52
444	push_reg r7, r52
445	push_reg r6, r52
446
447	.endif
448
449	push_reg r5, r52
450	sw      r52, r4
451
452	/* Load tp with our per-cpu offset. */
453#ifdef CONFIG_SMP
454	{
455	 mfspr  r20, SPR_SYSTEM_SAVE_K_0
456	 moveli r21, lo16(__per_cpu_offset)
457	}
458	{
459	 auli   r21, r21, ha16(__per_cpu_offset)
460	 mm     r20, r20, zero, 0, LOG2_NR_CPU_IDS-1
461	}
462	s2a     r20, r20, r21
463	lw      tp, r20
464#else
465	move    tp, zero
466#endif
467
468	/*
469	 * If we will be returning to the kernel, we will need to
470	 * reset the interrupt masks to the state they had before.
471	 * Set DISABLE_IRQ in flags iff we came from PL1 with irqs disabled.
472	 * We load flags in r32 here so we can jump to .Lrestore_regs
473	 * directly after do_page_fault_ics() if necessary.
474	 */
475	mfspr   r32, SPR_EX_CONTEXT_K_1
476	{
477	 andi   r32, r32, SPR_EX_CONTEXT_1_1__PL_MASK  /* mask off ICS */
478	 PTREGS_PTR(r21, PTREGS_OFFSET_FLAGS)
479	}
480	bzt     r32, 1f       /* zero if from user space */
481	IRQS_DISABLED(r32)    /* zero if irqs enabled */
482#if PT_FLAGS_DISABLE_IRQ != 1
483# error Value of IRQS_DISABLED used to set PT_FLAGS_DISABLE_IRQ; fix
484#endif
4851:
486	.ifnc \function,handle_syscall
487	/* Record the fact that we saved the caller-save registers above. */
488	ori     r32, r32, PT_FLAGS_CALLER_SAVES
489	.endif
490	sw      r21, r32
491
492#ifdef __COLLECT_LINKER_FEEDBACK__
493	/*
494	 * Notify the feedback routines that we were in the
495	 * appropriate fixed interrupt vector area.  Note that we
496	 * still have ICS set at this point, so we can't invoke any
497	 * atomic operations or we will panic.  The feedback
498	 * routines internally preserve r0..r10 and r30 up.
499	 */
500	.ifnc \function,handle_syscall
501	shli    r20, r1, 5
502	.else
503	moveli  r20, INT_SWINT_1 << 5
504	.endif
505	addli   r20, r20, lo16(intvec_feedback)
506	auli    r20, r20, ha16(intvec_feedback)
507	jalr    r20
508
509	/* And now notify the feedback routines that we are here. */
510	FEEDBACK_ENTER(\function)
511#endif
512
513	/*
514	 * we've captured enough state to the stack (including in
515	 * particular our EX_CONTEXT state) that we can now release
516	 * the interrupt critical section and replace it with our
517	 * standard "interrupts disabled" mask value.  This allows
518	 * synchronous interrupts (and profile interrupts) to punch
519	 * through from this point onwards.
520	 *
521	 * If bit 31 of r3 is set during a non-NMI interrupt, we know we
522	 * are on the path where the hypervisor has punched through our
523	 * ICS with a page fault, so we call out to do_page_fault_ics()
524	 * to figure out what to do with it.  If the fault was in
525	 * an atomic op, we unlock the atomic lock, adjust the
526	 * saved register state a little, and return "zero" in r4,
527	 * falling through into the normal page-fault interrupt code.
528	 * If the fault was in a kernel-space atomic operation, then
529	 * do_page_fault_ics() resolves it itself, returns "one" in r4,
530	 * and as a result goes directly to restoring registers and iret,
531	 * without trying to adjust the interrupt masks at all.
532	 * The do_page_fault_ics() API involves passing and returning
533	 * a five-word struct (in registers) to avoid writing the
534	 * save and restore code here.
535	 */
536	.ifc \function,handle_nmi
537	IRQ_DISABLE_ALL(r20)
538	.else
539	.ifnc \function,handle_syscall
540	bgezt   r3, 1f
541	{
542	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
543	 jal    do_page_fault_ics
544	}
545	FEEDBACK_REENTER(\function)
546	bzt     r4, 1f
547	j       .Lrestore_regs
5481:
549	.endif
550	IRQ_DISABLE(r20, r21)
551	.endif
552	mtspr   INTERRUPT_CRITICAL_SECTION, zero
553
554	/*
555	 * Prepare the first 256 stack bytes to be rapidly accessible
556	 * without having to fetch the background data.  We don't really
557	 * know how far to write-hint, but kernel stacks generally
558	 * aren't that big, and write-hinting here does take some time.
559	 */
560	addi    r52, sp, -64
561	{
562	 wh64   r52
563	 addi   r52, r52, -64
564	}
565	{
566	 wh64   r52
567	 addi   r52, r52, -64
568	}
569	{
570	 wh64   r52
571	 addi   r52, r52, -64
572	}
573	wh64    r52
574
575#if defined(CONFIG_TRACE_IRQFLAGS) || defined(CONFIG_CONTEXT_TRACKING)
576	.ifnc \function,handle_nmi
577	/*
578	 * We finally have enough state set up to notify the irq
579	 * tracing code that irqs were disabled on entry to the handler.
580	 * The TRACE_IRQS_OFF call clobbers registers r0-r29.
581	 * For syscalls, we already have the register state saved away
582	 * on the stack, so we don't bother to do any register saves here,
583	 * and later we pop the registers back off the kernel stack.
584	 * For interrupt handlers, save r0-r3 in callee-saved registers.
585	 */
586	.ifnc \function,handle_syscall
587	{ move r30, r0; move r31, r1 }
588	{ move r32, r2; move r33, r3 }
589	.endif
590	TRACE_IRQS_OFF
591#ifdef CONFIG_CONTEXT_TRACKING
592	jal     context_tracking_user_exit
593#endif
594	.ifnc \function,handle_syscall
595	{ move r0, r30; move r1, r31 }
596	{ move r2, r32; move r3, r33 }
597	.endif
598	.endif
599#endif
600
601	.endm
602
603	.macro  check_single_stepping, kind, not_single_stepping
604	/*
605	 * Check for single stepping in user-level priv
606	 *   kind can be "normal", "ill", or "syscall"
607	 * At end, if fall-thru
608	 *   r29: thread_info->step_state
609	 *   r28: &pt_regs->pc
610	 *   r27: pt_regs->pc
611	 *   r26: thread_info->step_state->buffer
612	 */
613
614	/* Check for single stepping */
615	GET_THREAD_INFO(r29)
616	{
617	 /* Get pointer to field holding step state */
618	 addi   r29, r29, THREAD_INFO_STEP_STATE_OFFSET
619
620	 /* Get pointer to EX1 in register state */
621	 PTREGS_PTR(r27, PTREGS_OFFSET_EX1)
622	}
623	{
624	 /* Get pointer to field holding PC */
625	 PTREGS_PTR(r28, PTREGS_OFFSET_PC)
626
627	 /* Load the pointer to the step state */
628	 lw     r29, r29
629	}
630	/* Load EX1 */
631	lw      r27, r27
632	{
633	 /* Points to flags */
634	 addi   r23, r29, SINGLESTEP_STATE_FLAGS_OFFSET
635
636	 /* No single stepping if there is no step state structure */
637	 bzt    r29, \not_single_stepping
638	}
639	{
640	 /* mask off ICS and any other high bits */
641	 andi   r27, r27, SPR_EX_CONTEXT_1_1__PL_MASK
642
643	 /* Load pointer to single step instruction buffer */
644	 lw     r26, r29
645	}
646	/* Check priv state */
647	bnz     r27, \not_single_stepping
648
649	/* Get flags */
650	lw      r22, r23
651	{
652	 /* Branch if single-step mode not enabled */
653	 bbnst  r22, \not_single_stepping
654
655	 /* Clear enabled flag */
656	 andi   r22, r22, ~SINGLESTEP_STATE_MASK_IS_ENABLED
657	}
658	.ifc \kind,normal
659	{
660	 /* Load PC */
661	 lw     r27, r28
662
663	 /* Point to the entry containing the original PC */
664	 addi   r24, r29, SINGLESTEP_STATE_ORIG_PC_OFFSET
665	}
666	{
667	 /* Disable single stepping flag */
668	 sw     r23, r22
669	}
670	{
671	 /* Get the original pc */
672	 lw     r24, r24
673
674	 /* See if the PC is at the start of the single step buffer */
675	 seq    r25, r26, r27
676	}
677	/*
678	 * NOTE: it is really expected that the PC be in the single step buffer
679	 *       at this point
680	 */
681	bzt     r25, \not_single_stepping
682
683	/* Restore the original PC */
684	sw      r28, r24
685	.else
686	.ifc \kind,syscall
687	{
688	 /* Load PC */
689	 lw     r27, r28
690
691	 /* Point to the entry containing the next PC */
692	 addi   r24, r29, SINGLESTEP_STATE_NEXT_PC_OFFSET
693	}
694	{
695	 /* Increment the stopped PC by the bundle size */
696	 addi   r26, r26, 8
697
698	 /* Disable single stepping flag */
699	 sw     r23, r22
700	}
701	{
702	 /* Get the next pc */
703	 lw     r24, r24
704
705	 /*
706	  * See if the PC is one bundle past the start of the
707	  * single step buffer
708	  */
709	 seq    r25, r26, r27
710	}
711	{
712	 /*
713	  * NOTE: it is really expected that the PC be in the
714	  * single step buffer at this point
715	  */
716	 bzt    r25, \not_single_stepping
717	}
718	/* Set to the next PC */
719	sw      r28, r24
720	.else
721	{
722	 /* Point to 3rd bundle in buffer */
723	 addi   r25, r26, 16
724
725	 /* Load PC */
726	 lw      r27, r28
727	}
728	{
729	 /* Disable single stepping flag */
730	 sw      r23, r22
731
732	 /* See if the PC is in the single step buffer */
733	 slte_u  r24, r26, r27
734	}
735	{
736	 slte_u r25, r27, r25
737
738	 /*
739	  * NOTE: it is really expected that the PC be in the
740	  * single step buffer at this point
741	  */
742	 bzt    r24, \not_single_stepping
743	}
744	bzt     r25, \not_single_stepping
745	.endif
746	.endif
747	.endm
748
749	/*
750	 * Redispatch a downcall.
751	 */
752	.macro  dc_dispatch vecnum, vecname
753	.org    (\vecnum << 8)
754intvec_\vecname:
755	j       _hv_downcall_dispatch
756	ENDPROC(intvec_\vecname)
757	.endm
758
759	/*
760	 * Common code for most interrupts.  The C function we're eventually
761	 * going to is in r0, and the faultnum is in r1; the original
762	 * values for those registers are on the stack.
763	 */
764	.pushsection .text.handle_interrupt,"ax"
765handle_interrupt:
766	finish_interrupt_save handle_interrupt
767
768	/*
769	 * Check for if we are single stepping in user level. If so, then
770	 * we need to restore the PC.
771	 */
772
773	check_single_stepping normal, .Ldispatch_interrupt
774.Ldispatch_interrupt:
775
776	/* Jump to the C routine; it should enable irqs as soon as possible. */
777	{
778	 jalr   r0
779	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
780	}
781	FEEDBACK_REENTER(handle_interrupt)
782	{
783	 movei  r30, 0   /* not an NMI */
784	 j      interrupt_return
785	}
786	STD_ENDPROC(handle_interrupt)
787
788/*
789 * This routine takes a boolean in r30 indicating if this is an NMI.
790 * If so, we also expect a boolean in r31 indicating whether to
791 * re-enable the oprofile interrupts.
792 *
793 * Note that .Lresume_userspace is jumped to directly in several
794 * places, and we need to make sure r30 is set correctly in those
795 * callers as well.
796 */
797STD_ENTRY(interrupt_return)
798	/* If we're resuming to kernel space, don't check thread flags. */
799	{
800	 bnz    r30, .Lrestore_all  /* NMIs don't special-case user-space */
801	 PTREGS_PTR(r29, PTREGS_OFFSET_EX1)
802	}
803	lw      r29, r29
804	andi    r29, r29, SPR_EX_CONTEXT_1_1__PL_MASK  /* mask off ICS */
805	bzt     r29, .Lresume_userspace
806
807#ifdef CONFIG_PREEMPT
808	/* Returning to kernel space. Check if we need preemption. */
809	GET_THREAD_INFO(r29)
810	addli   r28, r29, THREAD_INFO_FLAGS_OFFSET
811	{
812	 lw     r28, r28
813	 addli  r29, r29, THREAD_INFO_PREEMPT_COUNT_OFFSET
814	}
815	{
816	 andi   r28, r28, _TIF_NEED_RESCHED
817	 lw     r29, r29
818	}
819	bzt     r28, 1f
820	bnz     r29, 1f
821	/* Disable interrupts explicitly for preemption. */
822	IRQ_DISABLE(r20,r21)
823	TRACE_IRQS_OFF
824	jal     preempt_schedule_irq
825	FEEDBACK_REENTER(interrupt_return)
8261:
827#endif
828
829	/* If we're resuming to _cpu_idle_nap, bump PC forward by 8. */
830	{
831	 PTREGS_PTR(r29, PTREGS_OFFSET_PC)
832	 moveli r27, lo16(_cpu_idle_nap)
833	}
834	{
835	 lw     r28, r29
836	 auli   r27, r27, ha16(_cpu_idle_nap)
837	}
838	{
839	 seq    r27, r27, r28
840	}
841	{
842	 bbns   r27, .Lrestore_all
843	 addi   r28, r28, 8
844	}
845	sw      r29, r28
846	j       .Lrestore_all
847
848.Lresume_userspace:
849	FEEDBACK_REENTER(interrupt_return)
850
851	/*
852	 * Disable interrupts so as to make sure we don't
853	 * miss an interrupt that sets any of the thread flags (like
854	 * need_resched or sigpending) between sampling and the iret.
855	 * Routines like schedule() or do_signal() may re-enable
856	 * interrupts before returning.
857	 */
858	IRQ_DISABLE(r20, r21)
859	TRACE_IRQS_OFF  /* Note: clobbers registers r0-r29 */
860
861	/*
862	 * See if there are any work items (including single-shot items)
863	 * to do.  If so, save the callee-save registers to pt_regs
864	 * and then dispatch to C code.
865	 */
866	GET_THREAD_INFO(r21)
867	{
868	 addi   r22, r21, THREAD_INFO_FLAGS_OFFSET
869	 moveli r20, lo16(_TIF_ALLWORK_MASK)
870	}
871	{
872	 lw     r22, r22
873	 auli   r20, r20, ha16(_TIF_ALLWORK_MASK)
874	}
875	and     r1, r22, r20
876	{
877	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
878	 bzt    r1, .Lrestore_all
879	}
880	push_extra_callee_saves r0
881	jal     prepare_exit_to_usermode
882
883	/*
884	 * In the NMI case we
885	 * omit the call to single_process_check_nohz, which normally checks
886	 * to see if we should start or stop the scheduler tick, because
887	 * we can't call arbitrary Linux code from an NMI context.
888	 * We always call the homecache TLB deferral code to re-trigger
889	 * the deferral mechanism.
890	 *
891	 * The other chunk of responsibility this code has is to reset the
892	 * interrupt masks appropriately to reset irqs and NMIs.  We have
893	 * to call TRACE_IRQS_OFF and TRACE_IRQS_ON to support all the
894	 * lockdep-type stuff, but we can't set ICS until afterwards, since
895	 * ICS can only be used in very tight chunks of code to avoid
896	 * tripping over various assertions that it is off.
897	 *
898	 * (There is what looks like a window of vulnerability here since
899	 * we might take a profile interrupt between the two SPR writes
900	 * that set the mask, but since we write the low SPR word first,
901	 * and our interrupt entry code checks the low SPR word, any
902	 * profile interrupt will actually disable interrupts in both SPRs
903	 * before returning, which is OK.)
904	 */
905.Lrestore_all:
906	PTREGS_PTR(r0, PTREGS_OFFSET_EX1)
907	{
908	 lw     r0, r0
909	 PTREGS_PTR(r32, PTREGS_OFFSET_FLAGS)
910	}
911	{
912	 andi   r0, r0, SPR_EX_CONTEXT_1_1__PL_MASK
913	 lw     r32, r32
914	}
915	bnz    r0, 1f
916	j       2f
917#if PT_FLAGS_DISABLE_IRQ != 1
918# error Assuming PT_FLAGS_DISABLE_IRQ == 1 so we can use bbnst below
919#endif
9201:	bbnst   r32, 2f
921	IRQ_DISABLE(r20,r21)
922	TRACE_IRQS_OFF
923	movei   r0, 1
924	mtspr   INTERRUPT_CRITICAL_SECTION, r0
925	bzt     r30, .Lrestore_regs
926	j       3f
9272:	TRACE_IRQS_ON
928	movei   r0, 1
929	mtspr   INTERRUPT_CRITICAL_SECTION, r0
930	IRQ_ENABLE(r20, r21)
931	bzt     r30, .Lrestore_regs
9323:
933
934	/* We are relying on INT_PERF_COUNT at 33, and AUX_PERF_COUNT at 48 */
935	{
936	 moveli r0, lo16(1 << (INT_PERF_COUNT - 32))
937	 bz     r31, .Lrestore_regs
938	}
939	auli    r0, r0, ha16(1 << (INT_AUX_PERF_COUNT - 32))
940	mtspr   SPR_INTERRUPT_MASK_RESET_K_1, r0
941
942	/*
943	 * We now commit to returning from this interrupt, since we will be
944	 * doing things like setting EX_CONTEXT SPRs and unwinding the stack
945	 * frame.  No calls should be made to any other code after this point.
946	 * This code should only be entered with ICS set.
947	 * r32 must still be set to ptregs.flags.
948	 * We launch loads to each cache line separately first, so we can
949	 * get some parallelism out of the memory subsystem.
950	 * We start zeroing caller-saved registers throughout, since
951	 * that will save some cycles if this turns out to be a syscall.
952	 */
953.Lrestore_regs:
954	FEEDBACK_REENTER(interrupt_return)   /* called from elsewhere */
955
956	/*
957	 * Rotate so we have one high bit and one low bit to test.
958	 * - low bit says whether to restore all the callee-saved registers,
959	 *   or just r30-r33, and r52 up.
960	 * - high bit (i.e. sign bit) says whether to restore all the
961	 *   caller-saved registers, or just r0.
962	 */
963#if PT_FLAGS_CALLER_SAVES != 2 || PT_FLAGS_RESTORE_REGS != 4
964# error Rotate trick does not work :-)
965#endif
966	{
967	 rli    r20, r32, 30
968	 PTREGS_PTR(sp, PTREGS_OFFSET_REG(0))
969	}
970
971	/*
972	 * Load cache lines 0, 2, and 3 in that order, then use
973	 * the last loaded value, which makes it likely that the other
974	 * cache lines have also loaded, at which point we should be
975	 * able to safely read all the remaining words on those cache
976	 * lines without waiting for the memory subsystem.
977	 */
978	pop_reg_zero r0, r28, sp, PTREGS_OFFSET_REG(30) - PTREGS_OFFSET_REG(0)
979	pop_reg_zero r30, r2, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(30)
980	pop_reg_zero r21, r3, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
981	pop_reg_zero lr, r4, sp, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_EX1
982	{
983	 mtspr  SPR_EX_CONTEXT_K_0, r21
984	 move   r5, zero
985	}
986	{
987	 mtspr  SPR_EX_CONTEXT_K_1, lr
988	 andi   lr, lr, SPR_EX_CONTEXT_1_1__PL_MASK  /* mask off ICS */
989	}
990
991	/* Restore callee-saveds that we actually use. */
992	pop_reg_zero r52, r6, sp, PTREGS_OFFSET_REG(31) - PTREGS_OFFSET_REG(52)
993	pop_reg_zero r31, r7
994	pop_reg_zero r32, r8
995	pop_reg_zero r33, r9, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(33)
996
997	/*
998	 * If we modified other callee-saveds, restore them now.
999	 * This is rare, but could be via ptrace or signal handler.
1000	 */
1001	{
1002	 move   r10, zero
1003	 bbs    r20, .Lrestore_callees
1004	}
1005.Lcontinue_restore_regs:
1006
1007	/* Check if we're returning from a syscall. */
1008	{
1009	 move   r11, zero
1010	 blzt   r20, 1f  /* no, so go restore callee-save registers */
1011	}
1012
1013	/*
1014	 * Check if we're returning to userspace.
1015	 * Note that if we're not, we don't worry about zeroing everything.
1016	 */
1017	{
1018	 addli  sp, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(29)
1019	 bnz    lr, .Lkernel_return
1020	}
1021
1022	/*
1023	 * On return from syscall, we've restored r0 from pt_regs, but we
1024	 * clear the remainder of the caller-saved registers.  We could
1025	 * restore the syscall arguments, but there's not much point,
1026	 * and it ensures user programs aren't trying to use the
1027	 * caller-saves if we clear them, as well as avoiding leaking
1028	 * kernel pointers into userspace.
1029	 */
1030	pop_reg_zero lr, r12, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1031	pop_reg_zero tp, r13, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1032	{
1033	 lw     sp, sp
1034	 move   r14, zero
1035	 move   r15, zero
1036	}
1037	{ move r16, zero; move r17, zero }
1038	{ move r18, zero; move r19, zero }
1039	{ move r20, zero; move r21, zero }
1040	{ move r22, zero; move r23, zero }
1041	{ move r24, zero; move r25, zero }
1042	{ move r26, zero; move r27, zero }
1043
1044	/* Set r1 to errno if we are returning an error, otherwise zero. */
1045	{
1046	 moveli r29, 4096
1047	 sub    r1, zero, r0
1048	}
1049	slt_u   r29, r1, r29
1050	{
1051	 mnz    r1, r29, r1
1052	 move   r29, zero
1053	}
1054	iret
1055
1056	/*
1057	 * Not a syscall, so restore caller-saved registers.
1058	 * First kick off a load for cache line 1, which we're touching
1059	 * for the first time here.
1060	 */
1061	.align 64
10621:	pop_reg r29, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(29)
1063	pop_reg r1
1064	pop_reg r2
1065	pop_reg r3
1066	pop_reg r4
1067	pop_reg r5
1068	pop_reg r6
1069	pop_reg r7
1070	pop_reg r8
1071	pop_reg r9
1072	pop_reg r10
1073	pop_reg r11
1074	pop_reg r12
1075	pop_reg r13
1076	pop_reg r14
1077	pop_reg r15
1078	pop_reg r16
1079	pop_reg r17
1080	pop_reg r18
1081	pop_reg r19
1082	pop_reg r20
1083	pop_reg r21
1084	pop_reg r22
1085	pop_reg r23
1086	pop_reg r24
1087	pop_reg r25
1088	pop_reg r26
1089	pop_reg r27
1090	pop_reg r28, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(28)
1091	/* r29 already restored above */
1092	bnz     lr, .Lkernel_return
1093	pop_reg lr, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1094	pop_reg tp, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1095	lw      sp, sp
1096	iret
1097
1098	/*
1099	 * We can't restore tp when in kernel mode, since a thread might
1100	 * have migrated from another cpu and brought a stale tp value.
1101	 */
1102.Lkernel_return:
1103	pop_reg lr, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
1104	lw      sp, sp
1105	iret
1106
1107	/* Restore callee-saved registers from r34 to r51. */
1108.Lrestore_callees:
1109	addli  sp, sp, PTREGS_OFFSET_REG(34) - PTREGS_OFFSET_REG(29)
1110	pop_reg r34
1111	pop_reg r35
1112	pop_reg r36
1113	pop_reg r37
1114	pop_reg r38
1115	pop_reg r39
1116	pop_reg r40
1117	pop_reg r41
1118	pop_reg r42
1119	pop_reg r43
1120	pop_reg r44
1121	pop_reg r45
1122	pop_reg r46
1123	pop_reg r47
1124	pop_reg r48
1125	pop_reg r49
1126	pop_reg r50
1127	pop_reg r51, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(51)
1128	j .Lcontinue_restore_regs
1129	STD_ENDPROC(interrupt_return)
1130
1131	/*
1132	 * Some interrupts don't check for single stepping
1133	 */
1134	.pushsection .text.handle_interrupt_no_single_step,"ax"
1135handle_interrupt_no_single_step:
1136	finish_interrupt_save handle_interrupt_no_single_step
1137	{
1138	 jalr   r0
1139	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1140	}
1141	FEEDBACK_REENTER(handle_interrupt_no_single_step)
1142	{
1143	 movei  r30, 0   /* not an NMI */
1144	 j      interrupt_return
1145	}
1146	STD_ENDPROC(handle_interrupt_no_single_step)
1147
1148	/*
1149	 * "NMI" interrupts mask ALL interrupts before calling the
1150	 * handler, and don't check thread flags, etc., on the way
1151	 * back out.  In general, the only things we do here for NMIs
1152	 * are the register save/restore, fixing the PC if we were
1153	 * doing single step, and the dataplane kernel-TLB management.
1154	 * We don't (for example) deal with start/stop of the sched tick.
1155	 */
1156	.pushsection .text.handle_nmi,"ax"
1157handle_nmi:
1158	finish_interrupt_save handle_nmi
1159	check_single_stepping normal, .Ldispatch_nmi
1160.Ldispatch_nmi:
1161	{
1162	 jalr   r0
1163	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1164	}
1165	FEEDBACK_REENTER(handle_nmi)
1166	{
1167	 movei  r30, 1
1168	 seq    r31, r0, zero
1169	}
1170	j       interrupt_return
1171	STD_ENDPROC(handle_nmi)
1172
1173	/*
1174	 * Parallel code for syscalls to handle_interrupt.
1175	 */
1176	.pushsection .text.handle_syscall,"ax"
1177handle_syscall:
1178	finish_interrupt_save handle_syscall
1179
1180	/*
1181	 * Check for if we are single stepping in user level. If so, then
1182	 * we need to restore the PC.
1183	 */
1184	check_single_stepping syscall, .Ldispatch_syscall
1185.Ldispatch_syscall:
1186
1187	/* Enable irqs. */
1188	TRACE_IRQS_ON
1189	IRQ_ENABLE(r20, r21)
1190
1191	/* Bump the counter for syscalls made on this tile. */
1192	moveli  r20, lo16(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1193	auli    r20, r20, ha16(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1194	add     r20, r20, tp
1195	lw      r21, r20
1196	addi    r21, r21, 1
1197	{
1198	 sw     r20, r21
1199	 GET_THREAD_INFO(r31)
1200	}
1201
1202	/* Trace syscalls, if requested. */
1203	addi	r31, r31, THREAD_INFO_FLAGS_OFFSET
1204	lw	r30, r31
1205	andi    r30, r30, _TIF_SYSCALL_TRACE
1206	bzt	r30, .Lrestore_syscall_regs
1207	{
1208	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1209	 jal    do_syscall_trace_enter
1210	}
1211	FEEDBACK_REENTER(handle_syscall)
1212	blz     r0, .Lsyscall_sigreturn_skip
1213
1214	/*
1215	 * We always reload our registers from the stack at this
1216	 * point.  They might be valid, if we didn't build with
1217	 * TRACE_IRQFLAGS, and this isn't a dataplane tile, and we're not
1218	 * doing syscall tracing, but there are enough cases now that it
1219	 * seems simplest just to do the reload unconditionally.
1220	 */
1221.Lrestore_syscall_regs:
1222	PTREGS_PTR(r11, PTREGS_OFFSET_REG(0))
1223	pop_reg r0, r11
1224	pop_reg r1, r11
1225	pop_reg r2, r11
1226	pop_reg r3, r11
1227	pop_reg r4, r11
1228	pop_reg r5, r11, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(5)
1229	pop_reg TREG_SYSCALL_NR_NAME, r11
1230
1231	/* Ensure that the syscall number is within the legal range. */
1232	moveli  r21, __NR_syscalls
1233	{
1234	 slt_u  r21, TREG_SYSCALL_NR_NAME, r21
1235	 moveli r20, lo16(sys_call_table)
1236	}
1237	{
1238	 bbns   r21, .Linvalid_syscall
1239	 auli   r20, r20, ha16(sys_call_table)
1240	}
1241	s2a     r20, TREG_SYSCALL_NR_NAME, r20
1242	lw      r20, r20
1243
1244	/* Jump to syscall handler. */
1245	jalr    r20
1246.Lhandle_syscall_link: /* value of "lr" after "jalr r20" above */
1247
1248	/*
1249	 * Write our r0 onto the stack so it gets restored instead
1250	 * of whatever the user had there before.
1251	 */
1252	PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1253	sw      r29, r0
1254
1255.Lsyscall_sigreturn_skip:
1256	FEEDBACK_REENTER(handle_syscall)
1257
1258	/* Do syscall trace again, if requested. */
1259	lw	r30, r31
1260	andi    r30, r30, _TIF_SYSCALL_TRACE
1261	bzt     r30, 1f
1262	{
1263	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1264	 jal    do_syscall_trace_exit
1265	}
1266	FEEDBACK_REENTER(handle_syscall)
12671:	{
1268	 movei  r30, 0               /* not an NMI */
1269	 j      .Lresume_userspace   /* jump into middle of interrupt_return */
1270	}
1271
1272.Linvalid_syscall:
1273	/* Report an invalid syscall back to the user program */
1274	{
1275	 PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1276	 movei  r28, -ENOSYS
1277	}
1278	sw      r29, r28
1279	{
1280	 movei  r30, 0               /* not an NMI */
1281	 j      .Lresume_userspace   /* jump into middle of interrupt_return */
1282	}
1283	STD_ENDPROC(handle_syscall)
1284
1285	/* Return the address for oprofile to suppress in backtraces. */
1286STD_ENTRY_SECTION(handle_syscall_link_address, .text.handle_syscall)
1287	lnk     r0
1288	{
1289	 addli  r0, r0, .Lhandle_syscall_link - .
1290	 jrp    lr
1291	}
1292	STD_ENDPROC(handle_syscall_link_address)
1293
1294STD_ENTRY(ret_from_fork)
1295	jal     sim_notify_fork
1296	jal     schedule_tail
1297	FEEDBACK_REENTER(ret_from_fork)
1298	{
1299	 movei  r30, 0               /* not an NMI */
1300	 j      .Lresume_userspace   /* jump into middle of interrupt_return */
1301	}
1302	STD_ENDPROC(ret_from_fork)
1303
1304STD_ENTRY(ret_from_kernel_thread)
1305	jal     sim_notify_fork
1306	jal     schedule_tail
1307	FEEDBACK_REENTER(ret_from_fork)
1308	{
1309	 move   r0, r31
1310	 jalr   r30
1311	}
1312	FEEDBACK_REENTER(ret_from_kernel_thread)
1313	{
1314	 movei  r30, 0               /* not an NMI */
1315	 j      interrupt_return
1316	}
1317	STD_ENDPROC(ret_from_kernel_thread)
1318
1319	/*
1320	 * Code for ill interrupt.
1321	 */
1322	.pushsection .text.handle_ill,"ax"
1323handle_ill:
1324	finish_interrupt_save handle_ill
1325
1326	/*
1327	 * Check for if we are single stepping in user level. If so, then
1328	 * we need to restore the PC.
1329	 */
1330	check_single_stepping ill, .Ldispatch_normal_ill
1331
1332	{
1333	 /* See if the PC is the 1st bundle in the buffer */
1334	 seq    r25, r27, r26
1335
1336	 /* Point to the 2nd bundle in the buffer */
1337	 addi   r26, r26, 8
1338	}
1339	{
1340	 /* Point to the original pc */
1341	 addi   r24, r29, SINGLESTEP_STATE_ORIG_PC_OFFSET
1342
1343	 /* Branch if the PC is the 1st bundle in the buffer */
1344	 bnz    r25, 3f
1345	}
1346	{
1347	 /* See if the PC is the 2nd bundle of the buffer */
1348	 seq    r25, r27, r26
1349
1350	 /* Set PC to next instruction */
1351	 addi   r24, r29, SINGLESTEP_STATE_NEXT_PC_OFFSET
1352	}
1353	{
1354	 /* Point to flags */
1355	 addi   r25, r29, SINGLESTEP_STATE_FLAGS_OFFSET
1356
1357	 /* Branch if PC is in the second bundle */
1358	 bz     r25, 2f
1359	}
1360	/* Load flags */
1361	lw      r25, r25
1362	{
1363	 /*
1364	  * Get the offset for the register to restore
1365	  * Note: the lower bound is 2, so we have implicit scaling by 4.
1366	  *  No multiplication of the register number by the size of a register
1367	  *  is needed.
1368	  */
1369	 mm     r27, r25, zero, SINGLESTEP_STATE_TARGET_LB, \
1370		SINGLESTEP_STATE_TARGET_UB
1371
1372	 /* Mask Rewrite_LR */
1373	 andi   r25, r25, SINGLESTEP_STATE_MASK_UPDATE
1374	}
1375	{
1376	 addi   r29, r29, SINGLESTEP_STATE_UPDATE_VALUE_OFFSET
1377
1378	 /* Don't rewrite temp register */
1379	 bz     r25, 3f
1380	}
1381	{
1382	 /* Get the temp value */
1383	 lw     r29, r29
1384
1385	 /* Point to where the register is stored */
1386	 add    r27, r27, sp
1387	}
1388
1389	/* Add in the C ABI save area size to the register offset */
1390	addi    r27, r27, C_ABI_SAVE_AREA_SIZE
1391
1392	/* Restore the user's register with the temp value */
1393	sw      r27, r29
1394	j       3f
1395
13962:
1397	/* Must be in the third bundle */
1398	addi    r24, r29, SINGLESTEP_STATE_BRANCH_NEXT_PC_OFFSET
1399
14003:
1401	/* set PC and continue */
1402	lw      r26, r24
1403	{
1404	 sw     r28, r26
1405	 GET_THREAD_INFO(r0)
1406	}
1407
1408	/*
1409	 * Clear TIF_SINGLESTEP to prevent recursion if we execute an ill.
1410	 * The normal non-arch flow redundantly clears TIF_SINGLESTEP, but we
1411	 * need to clear it here and can't really impose on all other arches.
1412	 * So what's another write between friends?
1413	 */
1414
1415	addi    r1, r0, THREAD_INFO_FLAGS_OFFSET
1416	{
1417	 lw     r2, r1
1418	 addi   r0, r0, THREAD_INFO_TASK_OFFSET  /* currently a no-op */
1419	}
1420	andi    r2, r2, ~_TIF_SINGLESTEP
1421	sw      r1, r2
1422
1423	/* Issue a sigtrap */
1424	{
1425	 lw     r0, r0          /* indirect thru thread_info to get task_info*/
1426	 addi   r1, sp, C_ABI_SAVE_AREA_SIZE  /* put ptregs pointer into r1 */
1427	}
1428
1429	jal     send_sigtrap    /* issue a SIGTRAP */
1430	FEEDBACK_REENTER(handle_ill)
1431	{
1432	 movei  r30, 0               /* not an NMI */
1433	 j      .Lresume_userspace   /* jump into middle of interrupt_return */
1434	}
1435
1436.Ldispatch_normal_ill:
1437	{
1438	 jalr   r0
1439	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1440	}
1441	FEEDBACK_REENTER(handle_ill)
1442	{
1443	 movei  r30, 0   /* not an NMI */
1444	 j      interrupt_return
1445	}
1446	STD_ENDPROC(handle_ill)
1447
1448/* Various stub interrupt handlers and syscall handlers */
1449
1450STD_ENTRY_LOCAL(_kernel_double_fault)
1451	mfspr   r1, SPR_EX_CONTEXT_K_0
1452	move    r2, lr
1453	move    r3, sp
1454	move    r4, r52
1455	addi    sp, sp, -C_ABI_SAVE_AREA_SIZE
1456	j       kernel_double_fault
1457	STD_ENDPROC(_kernel_double_fault)
1458
1459STD_ENTRY_LOCAL(bad_intr)
1460	mfspr   r2, SPR_EX_CONTEXT_K_0
1461	panic   "Unhandled interrupt %#x: PC %#lx"
1462	STD_ENDPROC(bad_intr)
1463
1464/*
1465 * Special-case sigreturn to not write r0 to the stack on return.
1466 * This is technically more efficient, but it also avoids difficulties
1467 * in the 64-bit OS when handling 32-bit compat code, since we must not
1468 * sign-extend r0 for the sigreturn return-value case.
1469 */
1470#define PTREGS_SYSCALL_SIGRETURN(x, reg)                \
1471	STD_ENTRY(_##x);                                \
1472	addli   lr, lr, .Lsyscall_sigreturn_skip - .Lhandle_syscall_link; \
1473	{                                               \
1474	 PTREGS_PTR(reg, PTREGS_OFFSET_BASE);           \
1475	 j      x                                       \
1476	};                                              \
1477	STD_ENDPROC(_##x)
1478
1479PTREGS_SYSCALL_SIGRETURN(sys_rt_sigreturn, r0)
1480
1481/* Save additional callee-saves to pt_regs and jump to standard function. */
1482STD_ENTRY(_sys_clone)
1483	push_extra_callee_saves r4
1484	j       sys_clone
1485	STD_ENDPROC(_sys_clone)
1486
1487/*
1488 * This entrypoint is taken for the cmpxchg and atomic_update fast
1489 * swints.  We may wish to generalize it to other fast swints at some
1490 * point, but for now there are just two very similar ones, which
1491 * makes it faster.
1492 *
1493 * The fast swint code is designed to have a small footprint.  It does
1494 * not save or restore any GPRs, counting on the caller-save registers
1495 * to be available to it on entry.  It does not modify any callee-save
1496 * registers (including "lr").  It does not check what PL it is being
1497 * called at, so you'd better not call it other than at PL0.
1498 * The <atomic.h> wrapper assumes it only clobbers r20-r29, so if
1499 * it ever is necessary to use more registers, be aware.
1500 *
1501 * It does not use the stack, but since it might be re-interrupted by
1502 * a page fault which would assume the stack was valid, it does
1503 * save/restore the stack pointer and zero it out to make sure it gets reset.
1504 * Since we always keep interrupts disabled, the hypervisor won't
1505 * clobber our EX_CONTEXT_K_x registers, so we don't save/restore them
1506 * (other than to advance the PC on return).
1507 *
1508 * We have to manually validate the user vs kernel address range
1509 * (since at PL1 we can read/write both), and for performance reasons
1510 * we don't allow cmpxchg on the fc000000 memory region, since we only
1511 * validate that the user address is below PAGE_OFFSET.
1512 *
1513 * We place it in the __HEAD section to ensure it is relatively
1514 * near to the intvec_SWINT_1 code (reachable by a conditional branch).
1515 *
1516 * Our use of ATOMIC_LOCK_REG here must match do_page_fault_ics().
1517 *
1518 * As we do in lib/atomic_asm_32.S, we bypass a store if the value we
1519 * would store is the same as the value we just loaded.
1520 */
1521	__HEAD
1522	.align 64
1523	/* Align much later jump on the start of a cache line. */
1524	nop
1525#if PAGE_SIZE >= 0x10000
1526	nop
1527#endif
1528ENTRY(sys_cmpxchg)
1529
1530	/*
1531	 * Save "sp" and set it zero for any possible page fault.
1532	 *
1533	 * HACK: We want to both zero sp and check r0's alignment,
1534	 * so we do both at once. If "sp" becomes nonzero we
1535	 * know r0 is unaligned and branch to the error handler that
1536	 * restores sp, so this is OK.
1537	 *
1538	 * ICS is disabled right now so having a garbage but nonzero
1539	 * sp is OK, since we won't execute any faulting instructions
1540	 * when it is nonzero.
1541	 */
1542	{
1543	 move   r27, sp
1544	 andi	sp, r0, 3
1545	}
1546
1547	/*
1548	 * Get the lock address in ATOMIC_LOCK_REG, and also validate that the
1549	 * address is less than PAGE_OFFSET, since that won't trap at PL1.
1550	 * We only use bits less than PAGE_SHIFT to avoid having to worry
1551	 * about aliasing among multiple mappings of the same physical page,
1552	 * and we ignore the low 3 bits so we have one lock that covers
1553	 * both a cmpxchg64() and a cmpxchg() on either its low or high word.
1554	 * NOTE: this must match __atomic_hashed_lock() in lib/atomic_32.c.
1555	 */
1556
1557#if (PAGE_OFFSET & 0xffff) != 0
1558# error Code here assumes PAGE_OFFSET can be loaded with just hi16()
1559#endif
1560
1561	{
1562	 /* Check for unaligned input. */
1563	 bnz    sp, .Lcmpxchg_badaddr
1564	 auli   r23, zero, hi16(PAGE_OFFSET)  /* hugepage-aligned */
1565	}
1566	{
1567	 /*
1568	  * Slide bits into position for 'mm'. We want to ignore
1569	  * the low 3 bits of r0, and consider only the next
1570	  * ATOMIC_HASH_SHIFT bits.
1571	  * Because of C pointer arithmetic, we want to compute this:
1572	  *
1573	  * ((char*)atomic_locks +
1574	  *  (((r0 >> 3) & ((1 << ATOMIC_HASH_SHIFT) - 1)) << 2))
1575	  *
1576	  * Instead of two shifts we just ">> 1", and use 'mm'
1577	  * to ignore the low and high bits we don't want.
1578	  */
1579	 shri	r25, r0, 1
1580
1581	 slt_u  r23, r0, r23
1582
1583	 /*
1584	  * Ensure that the TLB is loaded before we take out the lock.
1585	  * This will start fetching the value all the way into our L1
1586	  * as well (and if it gets modified before we grab the lock,
1587	  * it will be invalidated from our cache before we reload it).
1588	  */
1589	 lw	r26, r0
1590	}
1591	{
1592	 auli	r21, zero, ha16(atomic_locks)
1593
1594	 bbns   r23, .Lcmpxchg_badaddr
1595	}
1596#if PAGE_SIZE < 0x10000
1597	/* atomic_locks is page-aligned so for big pages we don't need this. */
1598	addli   r21, r21, lo16(atomic_locks)
1599#endif
1600	{
1601	 /*
1602	  * Insert the hash bits into the page-aligned pointer.
1603	  * ATOMIC_HASH_SHIFT is so big that we don't actually hash
1604	  * the unmasked address bits, as that may cause unnecessary
1605	  * collisions.
1606	  */
1607	 mm	ATOMIC_LOCK_REG_NAME, r25, r21, 2, (ATOMIC_HASH_SHIFT + 2) - 1
1608
1609	 seqi	r23, TREG_SYSCALL_NR_NAME, __NR_FAST_cmpxchg64
1610	}
1611	{
1612	 /* Branch away at this point if we're doing a 64-bit cmpxchg. */
1613	 bbs    r23, .Lcmpxchg64
1614	 andi   r23, r0, 7       /* Precompute alignment for cmpxchg64. */
1615	}
1616	{
1617	 /*
1618	  * We very carefully align the code that actually runs with
1619	  * the lock held (twelve bundles) so that we know it is all in
1620	  * the icache when we start.  This instruction (the jump) is
1621	  * at the start of the first cache line, address zero mod 64;
1622	  * we jump to the very end of the second cache line to get that
1623	  * line loaded in the icache, then fall through to issue the tns
1624	  * in the third cache line, at which point it's all cached.
1625	  * Note that is for performance, not correctness.
1626	  */
1627	 j      .Lcmpxchg32_tns
1628	}
1629
1630/* Symbol for do_page_fault_ics() to use to compare against the PC. */
1631.global __sys_cmpxchg_grab_lock
1632__sys_cmpxchg_grab_lock:
1633
1634	/*
1635	 * Perform the actual cmpxchg or atomic_update.
1636	 */
1637.Ldo_cmpxchg32:
1638	{
1639	 lw     r21, r0
1640	 seqi	r23, TREG_SYSCALL_NR_NAME, __NR_FAST_atomic_update
1641	 move	r24, r2
1642	}
1643	{
1644	 seq    r22, r21, r1     /* See if cmpxchg matches. */
1645	 and	r25, r21, r1     /* If atomic_update, compute (*mem & mask) */
1646	}
1647	{
1648	 or	r22, r22, r23    /* Skip compare branch for atomic_update. */
1649	 add	r25, r25, r2     /* Compute (*mem & mask) + addend. */
1650	}
1651	{
1652	 mvnz	r24, r23, r25    /* Use atomic_update value if appropriate. */
1653	 bbns   r22, .Lcmpxchg32_nostore
1654	}
1655	seq     r22, r24, r21    /* Are we storing the value we loaded? */
1656	bbs     r22, .Lcmpxchg32_nostore
1657	sw      r0, r24
1658
1659	/* The following instruction is the start of the second cache line. */
1660	/* Do slow mtspr here so the following "mf" waits less. */
1661	{
1662	 move   sp, r27
1663	 mtspr  SPR_EX_CONTEXT_K_0, r28
1664	}
1665	mf
1666
1667	{
1668	 move   r0, r21
1669	 sw     ATOMIC_LOCK_REG_NAME, zero
1670	}
1671	iret
1672
1673	/* Duplicated code here in the case where we don't overlap "mf" */
1674.Lcmpxchg32_nostore:
1675	{
1676	 move   r0, r21
1677	 sw     ATOMIC_LOCK_REG_NAME, zero
1678	}
1679	{
1680	 move   sp, r27
1681	 mtspr  SPR_EX_CONTEXT_K_0, r28
1682	}
1683	iret
1684
1685	/*
1686	 * The locking code is the same for 32-bit cmpxchg/atomic_update,
1687	 * and for 64-bit cmpxchg.  We provide it as a macro and put
1688	 * it into both versions.  We can't share the code literally
1689	 * since it depends on having the right branch-back address.
1690	 */
1691	.macro  cmpxchg_lock, bitwidth
1692
1693	/* Lock; if we succeed, jump back up to the read-modify-write. */
1694#ifdef CONFIG_SMP
1695	tns     r21, ATOMIC_LOCK_REG_NAME
1696#else
1697	/*
1698	 * Non-SMP preserves all the lock infrastructure, to keep the
1699	 * code simpler for the interesting (SMP) case.  However, we do
1700	 * one small optimization here and in atomic_asm.S, which is
1701	 * to fake out acquiring the actual lock in the atomic_lock table.
1702	 */
1703	movei	r21, 0
1704#endif
1705
1706	/* Issue the slow SPR here while the tns result is in flight. */
1707	mfspr   r28, SPR_EX_CONTEXT_K_0
1708
1709	{
1710	 addi   r28, r28, 8    /* return to the instruction after the swint1 */
1711	 bzt    r21, .Ldo_cmpxchg\bitwidth
1712	}
1713	/*
1714	 * The preceding instruction is the last thing that must be
1715	 * hot in the icache before we do the "tns" above.
1716	 */
1717
1718#ifdef CONFIG_SMP
1719	/*
1720	 * We failed to acquire the tns lock on our first try.  Now use
1721	 * bounded exponential backoff to retry, like __atomic_spinlock().
1722	 */
1723	{
1724	 moveli r23, 2048       /* maximum backoff time in cycles */
1725	 moveli r25, 32         /* starting backoff time in cycles */
1726	}
17271:	mfspr   r26, CYCLE_LOW  /* get start point for this backoff */
17282:	mfspr   r22, CYCLE_LOW  /* test to see if we've backed off enough */
1729	sub     r22, r22, r26
1730	slt     r22, r22, r25
1731	bbst    r22, 2b
1732	{
1733	 shli   r25, r25, 1     /* double the backoff; retry the tns */
1734	 tns    r21, ATOMIC_LOCK_REG_NAME
1735	}
1736	slt     r26, r23, r25   /* is the proposed backoff too big? */
1737	{
1738	 mvnz   r25, r26, r23
1739	 bzt    r21, .Ldo_cmpxchg\bitwidth
1740	}
1741	j       1b
1742#endif /* CONFIG_SMP */
1743	.endm
1744
1745.Lcmpxchg32_tns:
1746	/*
1747	 * This is the last instruction on the second cache line.
1748	 * The nop here loads the second line, then we fall through
1749	 * to the tns to load the third line before we take the lock.
1750	 */
1751	nop
1752	cmpxchg_lock 32
1753
1754	/*
1755	 * This code is invoked from sys_cmpxchg after most of the
1756	 * preconditions have been checked.  We still need to check
1757	 * that r0 is 8-byte aligned, since if it's not we won't
1758	 * actually be atomic.  However, ATOMIC_LOCK_REG has the atomic
1759	 * lock pointer and r27/r28 have the saved SP/PC.
1760	 * r23 is holding "r0 & 7" so we can test for alignment.
1761	 * The compare value is in r2/r3; the new value is in r4/r5.
1762	 * On return, we must put the old value in r0/r1.
1763	 */
1764	.align 64
1765.Lcmpxchg64:
1766	{
1767	 bzt     r23, .Lcmpxchg64_tns
1768	}
1769	j       .Lcmpxchg_badaddr
1770
1771.Ldo_cmpxchg64:
1772	{
1773	 lw     r21, r0
1774	 addi   r25, r0, 4
1775	}
1776	{
1777	 lw     r1, r25
1778	}
1779	seq     r26, r21, r2
1780	{
1781	 bz     r26, .Lcmpxchg64_mismatch
1782	 seq    r26, r1, r3
1783	}
1784	{
1785	 bz     r26, .Lcmpxchg64_mismatch
1786	}
1787	sw      r0, r4
1788	sw      r25, r5
1789
1790	/*
1791	 * The 32-bit path provides optimized "match" and "mismatch"
1792	 * iret paths, but we don't have enough bundles in this cache line
1793	 * to do that, so we just make even the "mismatch" path do an "mf".
1794	 */
1795.Lcmpxchg64_mismatch:
1796	{
1797	 move   sp, r27
1798	 mtspr  SPR_EX_CONTEXT_K_0, r28
1799	}
1800	mf
1801	{
1802	 move   r0, r21
1803	 sw     ATOMIC_LOCK_REG_NAME, zero
1804	}
1805	iret
1806
1807.Lcmpxchg64_tns:
1808	cmpxchg_lock 64
1809
1810
1811	/*
1812	 * Reset sp and revector to sys_cmpxchg_badaddr(), which will
1813	 * just raise the appropriate signal and exit.  Doing it this
1814	 * way means we don't have to duplicate the code in intvec.S's
1815	 * int_hand macro that locates the top of the stack.
1816	 */
1817.Lcmpxchg_badaddr:
1818	{
1819	 moveli TREG_SYSCALL_NR_NAME, __NR_cmpxchg_badaddr
1820	 move   sp, r27
1821	}
1822	j       intvec_SWINT_1
1823	ENDPROC(sys_cmpxchg)
1824	ENTRY(__sys_cmpxchg_end)
1825
1826
1827/* The single-step support may need to read all the registers. */
1828int_unalign:
1829	push_extra_callee_saves r0
1830	j       do_trap
1831
1832/* Include .intrpt array of interrupt vectors */
1833	.section ".intrpt", "ax"
1834
1835#ifndef CONFIG_USE_PMC
1836#define handle_perf_interrupt bad_intr
1837#endif
1838
1839#ifndef CONFIG_HARDWALL
1840#define do_hardwall_trap bad_intr
1841#endif
1842
1843	int_hand     INT_ITLB_MISS, ITLB_MISS, \
1844		     do_page_fault, handle_interrupt_no_single_step
1845	int_hand     INT_MEM_ERROR, MEM_ERROR, bad_intr
1846	int_hand     INT_ILL, ILL, do_trap, handle_ill
1847	int_hand     INT_GPV, GPV, do_trap
1848	int_hand     INT_SN_ACCESS, SN_ACCESS, do_trap
1849	int_hand     INT_IDN_ACCESS, IDN_ACCESS, do_trap
1850	int_hand     INT_UDN_ACCESS, UDN_ACCESS, do_trap
1851	int_hand     INT_IDN_REFILL, IDN_REFILL, bad_intr
1852	int_hand     INT_UDN_REFILL, UDN_REFILL, bad_intr
1853	int_hand     INT_IDN_COMPLETE, IDN_COMPLETE, bad_intr
1854	int_hand     INT_UDN_COMPLETE, UDN_COMPLETE, bad_intr
1855	int_hand     INT_SWINT_3, SWINT_3, do_trap
1856	int_hand     INT_SWINT_2, SWINT_2, do_trap
1857	int_hand     INT_SWINT_1, SWINT_1, SYSCALL, handle_syscall
1858	int_hand     INT_SWINT_0, SWINT_0, do_trap
1859	int_hand     INT_UNALIGN_DATA, UNALIGN_DATA, int_unalign
1860	int_hand     INT_DTLB_MISS, DTLB_MISS, do_page_fault
1861	int_hand     INT_DTLB_ACCESS, DTLB_ACCESS, do_page_fault
1862	int_hand     INT_DMATLB_MISS, DMATLB_MISS, do_page_fault
1863	int_hand     INT_DMATLB_ACCESS, DMATLB_ACCESS, do_page_fault
1864	int_hand     INT_SNITLB_MISS, SNITLB_MISS, do_page_fault
1865	int_hand     INT_SN_NOTIFY, SN_NOTIFY, bad_intr
1866	int_hand     INT_SN_FIREWALL, SN_FIREWALL, do_hardwall_trap
1867	int_hand     INT_IDN_FIREWALL, IDN_FIREWALL, bad_intr
1868	int_hand     INT_UDN_FIREWALL, UDN_FIREWALL, do_hardwall_trap
1869	int_hand     INT_TILE_TIMER, TILE_TIMER, do_timer_interrupt
1870	int_hand     INT_IDN_TIMER, IDN_TIMER, bad_intr
1871	int_hand     INT_UDN_TIMER, UDN_TIMER, bad_intr
1872	int_hand     INT_DMA_NOTIFY, DMA_NOTIFY, bad_intr
1873	int_hand     INT_IDN_CA, IDN_CA, bad_intr
1874	int_hand     INT_UDN_CA, UDN_CA, bad_intr
1875	int_hand     INT_IDN_AVAIL, IDN_AVAIL, bad_intr
1876	int_hand     INT_UDN_AVAIL, UDN_AVAIL, bad_intr
1877	int_hand     INT_PERF_COUNT, PERF_COUNT, \
1878		     handle_perf_interrupt, handle_nmi
1879	int_hand     INT_INTCTRL_3, INTCTRL_3, bad_intr
1880#if CONFIG_KERNEL_PL == 2
1881	dc_dispatch  INT_INTCTRL_2, INTCTRL_2
1882	int_hand     INT_INTCTRL_1, INTCTRL_1, bad_intr
1883#else
1884	int_hand     INT_INTCTRL_2, INTCTRL_2, bad_intr
1885	dc_dispatch  INT_INTCTRL_1, INTCTRL_1
1886#endif
1887	int_hand     INT_INTCTRL_0, INTCTRL_0, bad_intr
1888	int_hand     INT_MESSAGE_RCV_DWNCL, MESSAGE_RCV_DWNCL, \
1889		     hv_message_intr
1890	int_hand     INT_DEV_INTR_DWNCL, DEV_INTR_DWNCL, \
1891		     tile_dev_intr
1892	int_hand     INT_I_ASID, I_ASID, bad_intr
1893	int_hand     INT_D_ASID, D_ASID, bad_intr
1894	int_hand     INT_DMATLB_MISS_DWNCL, DMATLB_MISS_DWNCL, \
1895		     do_page_fault
1896	int_hand     INT_SNITLB_MISS_DWNCL, SNITLB_MISS_DWNCL, \
1897		     do_page_fault
1898	int_hand     INT_DMATLB_ACCESS_DWNCL, DMATLB_ACCESS_DWNCL, \
1899		     do_page_fault
1900	int_hand     INT_SN_CPL, SN_CPL, bad_intr
1901	int_hand     INT_DOUBLE_FAULT, DOUBLE_FAULT, do_trap
1902	int_hand     INT_AUX_PERF_COUNT, AUX_PERF_COUNT, \
1903		     handle_perf_interrupt, handle_nmi
1904
1905	/* Synthetic interrupt delivered only by the simulator */
1906	int_hand     INT_BREAKPOINT, BREAKPOINT, do_breakpoint
1907