• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45 
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49 
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55 
56 DEFINE_IDA(blk_queue_ida);
57 
58 /*
59  * For the allocated request tables
60  */
61 struct kmem_cache *request_cachep;
62 
63 /*
64  * For queue allocation
65  */
66 struct kmem_cache *blk_requestq_cachep;
67 
68 /*
69  * Controlling structure to kblockd
70  */
71 static struct workqueue_struct *kblockd_workqueue;
72 
blk_clear_congested(struct request_list * rl,int sync)73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 	clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 	/*
79 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 	 * flip its congestion state for events on other blkcgs.
81 	 */
82 	if (rl == &rl->q->root_rl)
83 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86 
blk_set_congested(struct request_list * rl,int sync)87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 	set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 	/* see blk_clear_congested() */
93 	if (rl == &rl->q->root_rl)
94 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97 
blk_queue_congestion_threshold(struct request_queue * q)98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 	int nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 	if (nr > q->nr_requests)
104 		nr = q->nr_requests;
105 	q->nr_congestion_on = nr;
106 
107 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 	if (nr < 1)
109 		nr = 1;
110 	q->nr_congestion_off = nr;
111 }
112 
blk_rq_init(struct request_queue * q,struct request * rq)113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 	memset(rq, 0, sizeof(*rq));
116 
117 	INIT_LIST_HEAD(&rq->queuelist);
118 	INIT_LIST_HEAD(&rq->timeout_list);
119 	rq->cpu = -1;
120 	rq->q = q;
121 	rq->__sector = (sector_t) -1;
122 	INIT_HLIST_NODE(&rq->hash);
123 	RB_CLEAR_NODE(&rq->rb_node);
124 	rq->tag = -1;
125 	rq->internal_tag = -1;
126 	rq->start_time = jiffies;
127 	set_start_time_ns(rq);
128 	rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131 
132 static const struct {
133 	int		errno;
134 	const char	*name;
135 } blk_errors[] = {
136 	[BLK_STS_OK]		= { 0,		"" },
137 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
138 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
139 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
140 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
141 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
142 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
143 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
144 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
145 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
146 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
147 
148 	/* device mapper special case, should not leak out: */
149 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
150 
151 	/* everything else not covered above: */
152 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
153 };
154 
errno_to_blk_status(int errno)155 blk_status_t errno_to_blk_status(int errno)
156 {
157 	int i;
158 
159 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 		if (blk_errors[i].errno == errno)
161 			return (__force blk_status_t)i;
162 	}
163 
164 	return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167 
blk_status_to_errno(blk_status_t status)168 int blk_status_to_errno(blk_status_t status)
169 {
170 	int idx = (__force int)status;
171 
172 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 		return -EIO;
174 	return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177 
print_req_error(struct request * req,blk_status_t status)178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 	int idx = (__force int)status;
181 
182 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 		return;
184 
185 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 			   __func__, blk_errors[idx].name, req->rq_disk ?
187 			   req->rq_disk->disk_name : "?",
188 			   (unsigned long long)blk_rq_pos(req));
189 }
190 
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 			  unsigned int nbytes, blk_status_t error)
193 {
194 	if (error)
195 		bio->bi_status = error;
196 
197 	if (unlikely(rq->rq_flags & RQF_QUIET))
198 		bio_set_flag(bio, BIO_QUIET);
199 
200 	bio_advance(bio, nbytes);
201 
202 	/* don't actually finish bio if it's part of flush sequence */
203 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 		bio_endio(bio);
205 }
206 
blk_dump_rq_flags(struct request * rq,char * msg)207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 		(unsigned long long) rq->cmd_flags);
212 
213 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
214 	       (unsigned long long)blk_rq_pos(rq),
215 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
217 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220 
blk_delay_work(struct work_struct * work)221 static void blk_delay_work(struct work_struct *work)
222 {
223 	struct request_queue *q;
224 
225 	q = container_of(work, struct request_queue, delay_work.work);
226 	spin_lock_irq(q->queue_lock);
227 	__blk_run_queue(q);
228 	spin_unlock_irq(q->queue_lock);
229 }
230 
231 /**
232  * blk_delay_queue - restart queueing after defined interval
233  * @q:		The &struct request_queue in question
234  * @msecs:	Delay in msecs
235  *
236  * Description:
237  *   Sometimes queueing needs to be postponed for a little while, to allow
238  *   resources to come back. This function will make sure that queueing is
239  *   restarted around the specified time.
240  */
blk_delay_queue(struct request_queue * q,unsigned long msecs)241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 	lockdep_assert_held(q->queue_lock);
244 	WARN_ON_ONCE(q->mq_ops);
245 
246 	if (likely(!blk_queue_dead(q)))
247 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 				   msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251 
252 /**
253  * blk_start_queue_async - asynchronously restart a previously stopped queue
254  * @q:    The &struct request_queue in question
255  *
256  * Description:
257  *   blk_start_queue_async() will clear the stop flag on the queue, and
258  *   ensure that the request_fn for the queue is run from an async
259  *   context.
260  **/
blk_start_queue_async(struct request_queue * q)261 void blk_start_queue_async(struct request_queue *q)
262 {
263 	lockdep_assert_held(q->queue_lock);
264 	WARN_ON_ONCE(q->mq_ops);
265 
266 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 	blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270 
271 /**
272  * blk_start_queue - restart a previously stopped queue
273  * @q:    The &struct request_queue in question
274  *
275  * Description:
276  *   blk_start_queue() will clear the stop flag on the queue, and call
277  *   the request_fn for the queue if it was in a stopped state when
278  *   entered. Also see blk_stop_queue().
279  **/
blk_start_queue(struct request_queue * q)280 void blk_start_queue(struct request_queue *q)
281 {
282 	lockdep_assert_held(q->queue_lock);
283 	WARN_ON(!in_interrupt() && !irqs_disabled());
284 	WARN_ON_ONCE(q->mq_ops);
285 
286 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 	__blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290 
291 /**
292  * blk_stop_queue - stop a queue
293  * @q:    The &struct request_queue in question
294  *
295  * Description:
296  *   The Linux block layer assumes that a block driver will consume all
297  *   entries on the request queue when the request_fn strategy is called.
298  *   Often this will not happen, because of hardware limitations (queue
299  *   depth settings). If a device driver gets a 'queue full' response,
300  *   or if it simply chooses not to queue more I/O at one point, it can
301  *   call this function to prevent the request_fn from being called until
302  *   the driver has signalled it's ready to go again. This happens by calling
303  *   blk_start_queue() to restart queue operations.
304  **/
blk_stop_queue(struct request_queue * q)305 void blk_stop_queue(struct request_queue *q)
306 {
307 	lockdep_assert_held(q->queue_lock);
308 	WARN_ON_ONCE(q->mq_ops);
309 
310 	cancel_delayed_work(&q->delay_work);
311 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314 
315 /**
316  * blk_sync_queue - cancel any pending callbacks on a queue
317  * @q: the queue
318  *
319  * Description:
320  *     The block layer may perform asynchronous callback activity
321  *     on a queue, such as calling the unplug function after a timeout.
322  *     A block device may call blk_sync_queue to ensure that any
323  *     such activity is cancelled, thus allowing it to release resources
324  *     that the callbacks might use. The caller must already have made sure
325  *     that its ->make_request_fn will not re-add plugging prior to calling
326  *     this function.
327  *
328  *     This function does not cancel any asynchronous activity arising
329  *     out of elevator or throttling code. That would require elevator_exit()
330  *     and blkcg_exit_queue() to be called with queue lock initialized.
331  *
332  */
blk_sync_queue(struct request_queue * q)333 void blk_sync_queue(struct request_queue *q)
334 {
335 	del_timer_sync(&q->timeout);
336 	cancel_work_sync(&q->timeout_work);
337 
338 	if (q->mq_ops) {
339 		struct blk_mq_hw_ctx *hctx;
340 		int i;
341 
342 		queue_for_each_hw_ctx(q, hctx, i)
343 			cancel_delayed_work_sync(&hctx->run_work);
344 	} else {
345 		cancel_delayed_work_sync(&q->delay_work);
346 	}
347 }
348 EXPORT_SYMBOL(blk_sync_queue);
349 
350 /**
351  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
352  * @q:	The queue to run
353  *
354  * Description:
355  *    Invoke request handling on a queue if there are any pending requests.
356  *    May be used to restart request handling after a request has completed.
357  *    This variant runs the queue whether or not the queue has been
358  *    stopped. Must be called with the queue lock held and interrupts
359  *    disabled. See also @blk_run_queue.
360  */
__blk_run_queue_uncond(struct request_queue * q)361 inline void __blk_run_queue_uncond(struct request_queue *q)
362 {
363 	lockdep_assert_held(q->queue_lock);
364 	WARN_ON_ONCE(q->mq_ops);
365 
366 	if (unlikely(blk_queue_dead(q)))
367 		return;
368 
369 	/*
370 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
371 	 * the queue lock internally. As a result multiple threads may be
372 	 * running such a request function concurrently. Keep track of the
373 	 * number of active request_fn invocations such that blk_drain_queue()
374 	 * can wait until all these request_fn calls have finished.
375 	 */
376 	q->request_fn_active++;
377 	q->request_fn(q);
378 	q->request_fn_active--;
379 }
380 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
381 
382 /**
383  * __blk_run_queue - run a single device queue
384  * @q:	The queue to run
385  *
386  * Description:
387  *    See @blk_run_queue.
388  */
__blk_run_queue(struct request_queue * q)389 void __blk_run_queue(struct request_queue *q)
390 {
391 	lockdep_assert_held(q->queue_lock);
392 	WARN_ON_ONCE(q->mq_ops);
393 
394 	if (unlikely(blk_queue_stopped(q)))
395 		return;
396 
397 	__blk_run_queue_uncond(q);
398 }
399 EXPORT_SYMBOL(__blk_run_queue);
400 
401 /**
402  * blk_run_queue_async - run a single device queue in workqueue context
403  * @q:	The queue to run
404  *
405  * Description:
406  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
407  *    of us.
408  *
409  * Note:
410  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
411  *    has canceled q->delay_work, callers must hold the queue lock to avoid
412  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
413  */
blk_run_queue_async(struct request_queue * q)414 void blk_run_queue_async(struct request_queue *q)
415 {
416 	lockdep_assert_held(q->queue_lock);
417 	WARN_ON_ONCE(q->mq_ops);
418 
419 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
420 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
421 }
422 EXPORT_SYMBOL(blk_run_queue_async);
423 
424 /**
425  * blk_run_queue - run a single device queue
426  * @q: The queue to run
427  *
428  * Description:
429  *    Invoke request handling on this queue, if it has pending work to do.
430  *    May be used to restart queueing when a request has completed.
431  */
blk_run_queue(struct request_queue * q)432 void blk_run_queue(struct request_queue *q)
433 {
434 	unsigned long flags;
435 
436 	WARN_ON_ONCE(q->mq_ops);
437 
438 	spin_lock_irqsave(q->queue_lock, flags);
439 	__blk_run_queue(q);
440 	spin_unlock_irqrestore(q->queue_lock, flags);
441 }
442 EXPORT_SYMBOL(blk_run_queue);
443 
blk_put_queue(struct request_queue * q)444 void blk_put_queue(struct request_queue *q)
445 {
446 	kobject_put(&q->kobj);
447 }
448 EXPORT_SYMBOL(blk_put_queue);
449 
450 /**
451  * __blk_drain_queue - drain requests from request_queue
452  * @q: queue to drain
453  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
454  *
455  * Drain requests from @q.  If @drain_all is set, all requests are drained.
456  * If not, only ELVPRIV requests are drained.  The caller is responsible
457  * for ensuring that no new requests which need to be drained are queued.
458  */
__blk_drain_queue(struct request_queue * q,bool drain_all)459 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
460 	__releases(q->queue_lock)
461 	__acquires(q->queue_lock)
462 {
463 	int i;
464 
465 	lockdep_assert_held(q->queue_lock);
466 	WARN_ON_ONCE(q->mq_ops);
467 
468 	while (true) {
469 		bool drain = false;
470 
471 		/*
472 		 * The caller might be trying to drain @q before its
473 		 * elevator is initialized.
474 		 */
475 		if (q->elevator)
476 			elv_drain_elevator(q);
477 
478 		blkcg_drain_queue(q);
479 
480 		/*
481 		 * This function might be called on a queue which failed
482 		 * driver init after queue creation or is not yet fully
483 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
484 		 * in such cases.  Kick queue iff dispatch queue has
485 		 * something on it and @q has request_fn set.
486 		 */
487 		if (!list_empty(&q->queue_head) && q->request_fn)
488 			__blk_run_queue(q);
489 
490 		drain |= q->nr_rqs_elvpriv;
491 		drain |= q->request_fn_active;
492 
493 		/*
494 		 * Unfortunately, requests are queued at and tracked from
495 		 * multiple places and there's no single counter which can
496 		 * be drained.  Check all the queues and counters.
497 		 */
498 		if (drain_all) {
499 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
500 			drain |= !list_empty(&q->queue_head);
501 			for (i = 0; i < 2; i++) {
502 				drain |= q->nr_rqs[i];
503 				drain |= q->in_flight[i];
504 				if (fq)
505 				    drain |= !list_empty(&fq->flush_queue[i]);
506 			}
507 		}
508 
509 		if (!drain)
510 			break;
511 
512 		spin_unlock_irq(q->queue_lock);
513 
514 		msleep(10);
515 
516 		spin_lock_irq(q->queue_lock);
517 	}
518 
519 	/*
520 	 * With queue marked dead, any woken up waiter will fail the
521 	 * allocation path, so the wakeup chaining is lost and we're
522 	 * left with hung waiters. We need to wake up those waiters.
523 	 */
524 	if (q->request_fn) {
525 		struct request_list *rl;
526 
527 		blk_queue_for_each_rl(rl, q)
528 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
529 				wake_up_all(&rl->wait[i]);
530 	}
531 }
532 
blk_drain_queue(struct request_queue * q)533 void blk_drain_queue(struct request_queue *q)
534 {
535 	spin_lock_irq(q->queue_lock);
536 	__blk_drain_queue(q, true);
537 	spin_unlock_irq(q->queue_lock);
538 }
539 
540 /**
541  * blk_queue_bypass_start - enter queue bypass mode
542  * @q: queue of interest
543  *
544  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
545  * function makes @q enter bypass mode and drains all requests which were
546  * throttled or issued before.  On return, it's guaranteed that no request
547  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
548  * inside queue or RCU read lock.
549  */
blk_queue_bypass_start(struct request_queue * q)550 void blk_queue_bypass_start(struct request_queue *q)
551 {
552 	WARN_ON_ONCE(q->mq_ops);
553 
554 	spin_lock_irq(q->queue_lock);
555 	q->bypass_depth++;
556 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
557 	spin_unlock_irq(q->queue_lock);
558 
559 	/*
560 	 * Queues start drained.  Skip actual draining till init is
561 	 * complete.  This avoids lenghty delays during queue init which
562 	 * can happen many times during boot.
563 	 */
564 	if (blk_queue_init_done(q)) {
565 		spin_lock_irq(q->queue_lock);
566 		__blk_drain_queue(q, false);
567 		spin_unlock_irq(q->queue_lock);
568 
569 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
570 		synchronize_rcu();
571 	}
572 }
573 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
574 
575 /**
576  * blk_queue_bypass_end - leave queue bypass mode
577  * @q: queue of interest
578  *
579  * Leave bypass mode and restore the normal queueing behavior.
580  *
581  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
582  * this function is called for both blk-sq and blk-mq queues.
583  */
blk_queue_bypass_end(struct request_queue * q)584 void blk_queue_bypass_end(struct request_queue *q)
585 {
586 	spin_lock_irq(q->queue_lock);
587 	if (!--q->bypass_depth)
588 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
589 	WARN_ON_ONCE(q->bypass_depth < 0);
590 	spin_unlock_irq(q->queue_lock);
591 }
592 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
593 
blk_set_queue_dying(struct request_queue * q)594 void blk_set_queue_dying(struct request_queue *q)
595 {
596 	spin_lock_irq(q->queue_lock);
597 	queue_flag_set(QUEUE_FLAG_DYING, q);
598 	spin_unlock_irq(q->queue_lock);
599 
600 	/*
601 	 * When queue DYING flag is set, we need to block new req
602 	 * entering queue, so we call blk_freeze_queue_start() to
603 	 * prevent I/O from crossing blk_queue_enter().
604 	 */
605 	blk_freeze_queue_start(q);
606 
607 	if (q->mq_ops)
608 		blk_mq_wake_waiters(q);
609 	else {
610 		struct request_list *rl;
611 
612 		spin_lock_irq(q->queue_lock);
613 		blk_queue_for_each_rl(rl, q) {
614 			if (rl->rq_pool) {
615 				wake_up_all(&rl->wait[BLK_RW_SYNC]);
616 				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
617 			}
618 		}
619 		spin_unlock_irq(q->queue_lock);
620 	}
621 }
622 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
623 
624 /**
625  * blk_cleanup_queue - shutdown a request queue
626  * @q: request queue to shutdown
627  *
628  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
629  * put it.  All future requests will be failed immediately with -ENODEV.
630  */
blk_cleanup_queue(struct request_queue * q)631 void blk_cleanup_queue(struct request_queue *q)
632 {
633 	spinlock_t *lock = q->queue_lock;
634 
635 	/* mark @q DYING, no new request or merges will be allowed afterwards */
636 	mutex_lock(&q->sysfs_lock);
637 	blk_set_queue_dying(q);
638 	spin_lock_irq(lock);
639 
640 	/*
641 	 * A dying queue is permanently in bypass mode till released.  Note
642 	 * that, unlike blk_queue_bypass_start(), we aren't performing
643 	 * synchronize_rcu() after entering bypass mode to avoid the delay
644 	 * as some drivers create and destroy a lot of queues while
645 	 * probing.  This is still safe because blk_release_queue() will be
646 	 * called only after the queue refcnt drops to zero and nothing,
647 	 * RCU or not, would be traversing the queue by then.
648 	 */
649 	q->bypass_depth++;
650 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
651 
652 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
653 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
654 	queue_flag_set(QUEUE_FLAG_DYING, q);
655 	spin_unlock_irq(lock);
656 	mutex_unlock(&q->sysfs_lock);
657 
658 	/*
659 	 * Drain all requests queued before DYING marking. Set DEAD flag to
660 	 * prevent that q->request_fn() gets invoked after draining finished.
661 	 */
662 	blk_freeze_queue(q);
663 	spin_lock_irq(lock);
664 	queue_flag_set(QUEUE_FLAG_DEAD, q);
665 	spin_unlock_irq(lock);
666 
667 	/*
668 	 * make sure all in-progress dispatch are completed because
669 	 * blk_freeze_queue() can only complete all requests, and
670 	 * dispatch may still be in-progress since we dispatch requests
671 	 * from more than one contexts.
672 	 *
673 	 * We rely on driver to deal with the race in case that queue
674 	 * initialization isn't done.
675 	 */
676 	if (q->mq_ops && blk_queue_init_done(q))
677 		blk_mq_quiesce_queue(q);
678 
679 	/* for synchronous bio-based driver finish in-flight integrity i/o */
680 	blk_flush_integrity();
681 
682 	/* @q won't process any more request, flush async actions */
683 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
684 	blk_sync_queue(q);
685 
686 	if (q->mq_ops)
687 		blk_mq_free_queue(q);
688 	percpu_ref_exit(&q->q_usage_counter);
689 
690 	spin_lock_irq(lock);
691 	if (q->queue_lock != &q->__queue_lock)
692 		q->queue_lock = &q->__queue_lock;
693 	spin_unlock_irq(lock);
694 
695 	/* @q is and will stay empty, shutdown and put */
696 	blk_put_queue(q);
697 }
698 EXPORT_SYMBOL(blk_cleanup_queue);
699 
700 /* Allocate memory local to the request queue */
alloc_request_simple(gfp_t gfp_mask,void * data)701 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
702 {
703 	struct request_queue *q = data;
704 
705 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
706 }
707 
free_request_simple(void * element,void * data)708 static void free_request_simple(void *element, void *data)
709 {
710 	kmem_cache_free(request_cachep, element);
711 }
712 
alloc_request_size(gfp_t gfp_mask,void * data)713 static void *alloc_request_size(gfp_t gfp_mask, void *data)
714 {
715 	struct request_queue *q = data;
716 	struct request *rq;
717 
718 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
719 			q->node);
720 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
721 		kfree(rq);
722 		rq = NULL;
723 	}
724 	return rq;
725 }
726 
free_request_size(void * element,void * data)727 static void free_request_size(void *element, void *data)
728 {
729 	struct request_queue *q = data;
730 
731 	if (q->exit_rq_fn)
732 		q->exit_rq_fn(q, element);
733 	kfree(element);
734 }
735 
blk_init_rl(struct request_list * rl,struct request_queue * q,gfp_t gfp_mask)736 int blk_init_rl(struct request_list *rl, struct request_queue *q,
737 		gfp_t gfp_mask)
738 {
739 	if (unlikely(rl->rq_pool))
740 		return 0;
741 
742 	rl->q = q;
743 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
744 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
745 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
746 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
747 
748 	if (q->cmd_size) {
749 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
750 				alloc_request_size, free_request_size,
751 				q, gfp_mask, q->node);
752 	} else {
753 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
754 				alloc_request_simple, free_request_simple,
755 				q, gfp_mask, q->node);
756 	}
757 	if (!rl->rq_pool)
758 		return -ENOMEM;
759 
760 	if (rl != &q->root_rl)
761 		WARN_ON_ONCE(!blk_get_queue(q));
762 
763 	return 0;
764 }
765 
blk_exit_rl(struct request_queue * q,struct request_list * rl)766 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
767 {
768 	if (rl->rq_pool) {
769 		mempool_destroy(rl->rq_pool);
770 		if (rl != &q->root_rl)
771 			blk_put_queue(q);
772 	}
773 }
774 
blk_alloc_queue(gfp_t gfp_mask)775 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
776 {
777 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
778 }
779 EXPORT_SYMBOL(blk_alloc_queue);
780 
blk_queue_enter(struct request_queue * q,bool nowait)781 int blk_queue_enter(struct request_queue *q, bool nowait)
782 {
783 	while (true) {
784 
785 		if (percpu_ref_tryget_live(&q->q_usage_counter))
786 			return 0;
787 
788 		if (nowait)
789 			return -EBUSY;
790 
791 		/*
792 		 * read pair of barrier in blk_freeze_queue_start(),
793 		 * we need to order reading __PERCPU_REF_DEAD flag of
794 		 * .q_usage_counter and reading .mq_freeze_depth or
795 		 * queue dying flag, otherwise the following wait may
796 		 * never return if the two reads are reordered.
797 		 */
798 		smp_rmb();
799 
800 		wait_event(q->mq_freeze_wq,
801 			   !atomic_read(&q->mq_freeze_depth) ||
802 			   blk_queue_dying(q));
803 		if (blk_queue_dying(q))
804 			return -ENODEV;
805 	}
806 }
807 
blk_queue_exit(struct request_queue * q)808 void blk_queue_exit(struct request_queue *q)
809 {
810 	percpu_ref_put(&q->q_usage_counter);
811 }
812 
blk_queue_usage_counter_release(struct percpu_ref * ref)813 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
814 {
815 	struct request_queue *q =
816 		container_of(ref, struct request_queue, q_usage_counter);
817 
818 	wake_up_all(&q->mq_freeze_wq);
819 }
820 
blk_rq_timed_out_timer(unsigned long data)821 static void blk_rq_timed_out_timer(unsigned long data)
822 {
823 	struct request_queue *q = (struct request_queue *)data;
824 
825 	kblockd_schedule_work(&q->timeout_work);
826 }
827 
blk_alloc_queue_node(gfp_t gfp_mask,int node_id)828 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
829 {
830 	struct request_queue *q;
831 
832 	q = kmem_cache_alloc_node(blk_requestq_cachep,
833 				gfp_mask | __GFP_ZERO, node_id);
834 	if (!q)
835 		return NULL;
836 
837 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
838 	if (q->id < 0)
839 		goto fail_q;
840 
841 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
842 	if (!q->bio_split)
843 		goto fail_id;
844 
845 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
846 	if (!q->backing_dev_info)
847 		goto fail_split;
848 
849 	q->stats = blk_alloc_queue_stats();
850 	if (!q->stats)
851 		goto fail_stats;
852 
853 	q->backing_dev_info->ra_pages =
854 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
855 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
856 	q->backing_dev_info->name = "block";
857 	q->node = node_id;
858 
859 	setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
860 		    laptop_mode_timer_fn, (unsigned long) q);
861 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
862 	INIT_WORK(&q->timeout_work, NULL);
863 	INIT_LIST_HEAD(&q->queue_head);
864 	INIT_LIST_HEAD(&q->timeout_list);
865 	INIT_LIST_HEAD(&q->icq_list);
866 #ifdef CONFIG_BLK_CGROUP
867 	INIT_LIST_HEAD(&q->blkg_list);
868 #endif
869 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
870 
871 	kobject_init(&q->kobj, &blk_queue_ktype);
872 
873 #ifdef CONFIG_BLK_DEV_IO_TRACE
874 	mutex_init(&q->blk_trace_mutex);
875 #endif
876 	mutex_init(&q->sysfs_lock);
877 	spin_lock_init(&q->__queue_lock);
878 
879 	/*
880 	 * By default initialize queue_lock to internal lock and driver can
881 	 * override it later if need be.
882 	 */
883 	q->queue_lock = &q->__queue_lock;
884 
885 	/*
886 	 * A queue starts its life with bypass turned on to avoid
887 	 * unnecessary bypass on/off overhead and nasty surprises during
888 	 * init.  The initial bypass will be finished when the queue is
889 	 * registered by blk_register_queue().
890 	 */
891 	q->bypass_depth = 1;
892 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
893 
894 	init_waitqueue_head(&q->mq_freeze_wq);
895 
896 	/*
897 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
898 	 * See blk_register_queue() for details.
899 	 */
900 	if (percpu_ref_init(&q->q_usage_counter,
901 				blk_queue_usage_counter_release,
902 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
903 		goto fail_bdi;
904 
905 	if (blkcg_init_queue(q))
906 		goto fail_ref;
907 
908 	return q;
909 
910 fail_ref:
911 	percpu_ref_exit(&q->q_usage_counter);
912 fail_bdi:
913 	blk_free_queue_stats(q->stats);
914 fail_stats:
915 	bdi_put(q->backing_dev_info);
916 fail_split:
917 	bioset_free(q->bio_split);
918 fail_id:
919 	ida_simple_remove(&blk_queue_ida, q->id);
920 fail_q:
921 	kmem_cache_free(blk_requestq_cachep, q);
922 	return NULL;
923 }
924 EXPORT_SYMBOL(blk_alloc_queue_node);
925 
926 /**
927  * blk_init_queue  - prepare a request queue for use with a block device
928  * @rfn:  The function to be called to process requests that have been
929  *        placed on the queue.
930  * @lock: Request queue spin lock
931  *
932  * Description:
933  *    If a block device wishes to use the standard request handling procedures,
934  *    which sorts requests and coalesces adjacent requests, then it must
935  *    call blk_init_queue().  The function @rfn will be called when there
936  *    are requests on the queue that need to be processed.  If the device
937  *    supports plugging, then @rfn may not be called immediately when requests
938  *    are available on the queue, but may be called at some time later instead.
939  *    Plugged queues are generally unplugged when a buffer belonging to one
940  *    of the requests on the queue is needed, or due to memory pressure.
941  *
942  *    @rfn is not required, or even expected, to remove all requests off the
943  *    queue, but only as many as it can handle at a time.  If it does leave
944  *    requests on the queue, it is responsible for arranging that the requests
945  *    get dealt with eventually.
946  *
947  *    The queue spin lock must be held while manipulating the requests on the
948  *    request queue; this lock will be taken also from interrupt context, so irq
949  *    disabling is needed for it.
950  *
951  *    Function returns a pointer to the initialized request queue, or %NULL if
952  *    it didn't succeed.
953  *
954  * Note:
955  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
956  *    when the block device is deactivated (such as at module unload).
957  **/
958 
blk_init_queue(request_fn_proc * rfn,spinlock_t * lock)959 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
960 {
961 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
962 }
963 EXPORT_SYMBOL(blk_init_queue);
964 
965 struct request_queue *
blk_init_queue_node(request_fn_proc * rfn,spinlock_t * lock,int node_id)966 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
967 {
968 	struct request_queue *q;
969 
970 	q = blk_alloc_queue_node(GFP_KERNEL, node_id);
971 	if (!q)
972 		return NULL;
973 
974 	q->request_fn = rfn;
975 	if (lock)
976 		q->queue_lock = lock;
977 	if (blk_init_allocated_queue(q) < 0) {
978 		blk_cleanup_queue(q);
979 		return NULL;
980 	}
981 
982 	return q;
983 }
984 EXPORT_SYMBOL(blk_init_queue_node);
985 
986 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
987 
988 
blk_init_allocated_queue(struct request_queue * q)989 int blk_init_allocated_queue(struct request_queue *q)
990 {
991 	WARN_ON_ONCE(q->mq_ops);
992 
993 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
994 	if (!q->fq)
995 		return -ENOMEM;
996 
997 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
998 		goto out_free_flush_queue;
999 
1000 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1001 		goto out_exit_flush_rq;
1002 
1003 	INIT_WORK(&q->timeout_work, blk_timeout_work);
1004 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
1005 
1006 	/*
1007 	 * This also sets hw/phys segments, boundary and size
1008 	 */
1009 	blk_queue_make_request(q, blk_queue_bio);
1010 
1011 	q->sg_reserved_size = INT_MAX;
1012 
1013 	/* Protect q->elevator from elevator_change */
1014 	mutex_lock(&q->sysfs_lock);
1015 
1016 	/* init elevator */
1017 	if (elevator_init(q, NULL)) {
1018 		mutex_unlock(&q->sysfs_lock);
1019 		goto out_exit_flush_rq;
1020 	}
1021 
1022 	mutex_unlock(&q->sysfs_lock);
1023 	return 0;
1024 
1025 out_exit_flush_rq:
1026 	if (q->exit_rq_fn)
1027 		q->exit_rq_fn(q, q->fq->flush_rq);
1028 out_free_flush_queue:
1029 	blk_free_flush_queue(q->fq);
1030 	q->fq = NULL;
1031 	return -ENOMEM;
1032 }
1033 EXPORT_SYMBOL(blk_init_allocated_queue);
1034 
blk_get_queue(struct request_queue * q)1035 bool blk_get_queue(struct request_queue *q)
1036 {
1037 	if (likely(!blk_queue_dying(q))) {
1038 		__blk_get_queue(q);
1039 		return true;
1040 	}
1041 
1042 	return false;
1043 }
1044 EXPORT_SYMBOL(blk_get_queue);
1045 
blk_free_request(struct request_list * rl,struct request * rq)1046 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1047 {
1048 	if (rq->rq_flags & RQF_ELVPRIV) {
1049 		elv_put_request(rl->q, rq);
1050 		if (rq->elv.icq)
1051 			put_io_context(rq->elv.icq->ioc);
1052 	}
1053 
1054 	mempool_free(rq, rl->rq_pool);
1055 }
1056 
1057 /*
1058  * ioc_batching returns true if the ioc is a valid batching request and
1059  * should be given priority access to a request.
1060  */
ioc_batching(struct request_queue * q,struct io_context * ioc)1061 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1062 {
1063 	if (!ioc)
1064 		return 0;
1065 
1066 	/*
1067 	 * Make sure the process is able to allocate at least 1 request
1068 	 * even if the batch times out, otherwise we could theoretically
1069 	 * lose wakeups.
1070 	 */
1071 	return ioc->nr_batch_requests == q->nr_batching ||
1072 		(ioc->nr_batch_requests > 0
1073 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1074 }
1075 
1076 /*
1077  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1078  * will cause the process to be a "batcher" on all queues in the system. This
1079  * is the behaviour we want though - once it gets a wakeup it should be given
1080  * a nice run.
1081  */
ioc_set_batching(struct request_queue * q,struct io_context * ioc)1082 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1083 {
1084 	if (!ioc || ioc_batching(q, ioc))
1085 		return;
1086 
1087 	ioc->nr_batch_requests = q->nr_batching;
1088 	ioc->last_waited = jiffies;
1089 }
1090 
__freed_request(struct request_list * rl,int sync)1091 static void __freed_request(struct request_list *rl, int sync)
1092 {
1093 	struct request_queue *q = rl->q;
1094 
1095 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1096 		blk_clear_congested(rl, sync);
1097 
1098 	if (rl->count[sync] + 1 <= q->nr_requests) {
1099 		if (waitqueue_active(&rl->wait[sync]))
1100 			wake_up(&rl->wait[sync]);
1101 
1102 		blk_clear_rl_full(rl, sync);
1103 	}
1104 }
1105 
1106 /*
1107  * A request has just been released.  Account for it, update the full and
1108  * congestion status, wake up any waiters.   Called under q->queue_lock.
1109  */
freed_request(struct request_list * rl,bool sync,req_flags_t rq_flags)1110 static void freed_request(struct request_list *rl, bool sync,
1111 		req_flags_t rq_flags)
1112 {
1113 	struct request_queue *q = rl->q;
1114 
1115 	q->nr_rqs[sync]--;
1116 	rl->count[sync]--;
1117 	if (rq_flags & RQF_ELVPRIV)
1118 		q->nr_rqs_elvpriv--;
1119 
1120 	__freed_request(rl, sync);
1121 
1122 	if (unlikely(rl->starved[sync ^ 1]))
1123 		__freed_request(rl, sync ^ 1);
1124 }
1125 
blk_update_nr_requests(struct request_queue * q,unsigned int nr)1126 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1127 {
1128 	struct request_list *rl;
1129 	int on_thresh, off_thresh;
1130 
1131 	WARN_ON_ONCE(q->mq_ops);
1132 
1133 	spin_lock_irq(q->queue_lock);
1134 	q->nr_requests = nr;
1135 	blk_queue_congestion_threshold(q);
1136 	on_thresh = queue_congestion_on_threshold(q);
1137 	off_thresh = queue_congestion_off_threshold(q);
1138 
1139 	blk_queue_for_each_rl(rl, q) {
1140 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1141 			blk_set_congested(rl, BLK_RW_SYNC);
1142 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1143 			blk_clear_congested(rl, BLK_RW_SYNC);
1144 
1145 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1146 			blk_set_congested(rl, BLK_RW_ASYNC);
1147 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1148 			blk_clear_congested(rl, BLK_RW_ASYNC);
1149 
1150 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1151 			blk_set_rl_full(rl, BLK_RW_SYNC);
1152 		} else {
1153 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1154 			wake_up(&rl->wait[BLK_RW_SYNC]);
1155 		}
1156 
1157 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1158 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1159 		} else {
1160 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1161 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1162 		}
1163 	}
1164 
1165 	spin_unlock_irq(q->queue_lock);
1166 	return 0;
1167 }
1168 
1169 /**
1170  * __get_request - get a free request
1171  * @rl: request list to allocate from
1172  * @op: operation and flags
1173  * @bio: bio to allocate request for (can be %NULL)
1174  * @gfp_mask: allocation mask
1175  *
1176  * Get a free request from @q.  This function may fail under memory
1177  * pressure or if @q is dead.
1178  *
1179  * Must be called with @q->queue_lock held and,
1180  * Returns ERR_PTR on failure, with @q->queue_lock held.
1181  * Returns request pointer on success, with @q->queue_lock *not held*.
1182  */
__get_request(struct request_list * rl,unsigned int op,struct bio * bio,gfp_t gfp_mask)1183 static struct request *__get_request(struct request_list *rl, unsigned int op,
1184 		struct bio *bio, gfp_t gfp_mask)
1185 {
1186 	struct request_queue *q = rl->q;
1187 	struct request *rq;
1188 	struct elevator_type *et = q->elevator->type;
1189 	struct io_context *ioc = rq_ioc(bio);
1190 	struct io_cq *icq = NULL;
1191 	const bool is_sync = op_is_sync(op);
1192 	int may_queue;
1193 	req_flags_t rq_flags = RQF_ALLOCED;
1194 
1195 	lockdep_assert_held(q->queue_lock);
1196 
1197 	if (unlikely(blk_queue_dying(q)))
1198 		return ERR_PTR(-ENODEV);
1199 
1200 	may_queue = elv_may_queue(q, op);
1201 	if (may_queue == ELV_MQUEUE_NO)
1202 		goto rq_starved;
1203 
1204 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1205 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1206 			/*
1207 			 * The queue will fill after this allocation, so set
1208 			 * it as full, and mark this process as "batching".
1209 			 * This process will be allowed to complete a batch of
1210 			 * requests, others will be blocked.
1211 			 */
1212 			if (!blk_rl_full(rl, is_sync)) {
1213 				ioc_set_batching(q, ioc);
1214 				blk_set_rl_full(rl, is_sync);
1215 			} else {
1216 				if (may_queue != ELV_MQUEUE_MUST
1217 						&& !ioc_batching(q, ioc)) {
1218 					/*
1219 					 * The queue is full and the allocating
1220 					 * process is not a "batcher", and not
1221 					 * exempted by the IO scheduler
1222 					 */
1223 					return ERR_PTR(-ENOMEM);
1224 				}
1225 			}
1226 		}
1227 		blk_set_congested(rl, is_sync);
1228 	}
1229 
1230 	/*
1231 	 * Only allow batching queuers to allocate up to 50% over the defined
1232 	 * limit of requests, otherwise we could have thousands of requests
1233 	 * allocated with any setting of ->nr_requests
1234 	 */
1235 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1236 		return ERR_PTR(-ENOMEM);
1237 
1238 	q->nr_rqs[is_sync]++;
1239 	rl->count[is_sync]++;
1240 	rl->starved[is_sync] = 0;
1241 
1242 	/*
1243 	 * Decide whether the new request will be managed by elevator.  If
1244 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1245 	 * prevent the current elevator from being destroyed until the new
1246 	 * request is freed.  This guarantees icq's won't be destroyed and
1247 	 * makes creating new ones safe.
1248 	 *
1249 	 * Flush requests do not use the elevator so skip initialization.
1250 	 * This allows a request to share the flush and elevator data.
1251 	 *
1252 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1253 	 * it will be created after releasing queue_lock.
1254 	 */
1255 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1256 		rq_flags |= RQF_ELVPRIV;
1257 		q->nr_rqs_elvpriv++;
1258 		if (et->icq_cache && ioc)
1259 			icq = ioc_lookup_icq(ioc, q);
1260 	}
1261 
1262 	if (blk_queue_io_stat(q))
1263 		rq_flags |= RQF_IO_STAT;
1264 	spin_unlock_irq(q->queue_lock);
1265 
1266 	/* allocate and init request */
1267 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1268 	if (!rq)
1269 		goto fail_alloc;
1270 
1271 	blk_rq_init(q, rq);
1272 	blk_rq_set_rl(rq, rl);
1273 	rq->cmd_flags = op;
1274 	rq->rq_flags = rq_flags;
1275 
1276 	/* init elvpriv */
1277 	if (rq_flags & RQF_ELVPRIV) {
1278 		if (unlikely(et->icq_cache && !icq)) {
1279 			if (ioc)
1280 				icq = ioc_create_icq(ioc, q, gfp_mask);
1281 			if (!icq)
1282 				goto fail_elvpriv;
1283 		}
1284 
1285 		rq->elv.icq = icq;
1286 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1287 			goto fail_elvpriv;
1288 
1289 		/* @rq->elv.icq holds io_context until @rq is freed */
1290 		if (icq)
1291 			get_io_context(icq->ioc);
1292 	}
1293 out:
1294 	/*
1295 	 * ioc may be NULL here, and ioc_batching will be false. That's
1296 	 * OK, if the queue is under the request limit then requests need
1297 	 * not count toward the nr_batch_requests limit. There will always
1298 	 * be some limit enforced by BLK_BATCH_TIME.
1299 	 */
1300 	if (ioc_batching(q, ioc))
1301 		ioc->nr_batch_requests--;
1302 
1303 	trace_block_getrq(q, bio, op);
1304 	return rq;
1305 
1306 fail_elvpriv:
1307 	/*
1308 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1309 	 * and may fail indefinitely under memory pressure and thus
1310 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1311 	 * disturb iosched and blkcg but weird is bettern than dead.
1312 	 */
1313 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1314 			   __func__, dev_name(q->backing_dev_info->dev));
1315 
1316 	rq->rq_flags &= ~RQF_ELVPRIV;
1317 	rq->elv.icq = NULL;
1318 
1319 	spin_lock_irq(q->queue_lock);
1320 	q->nr_rqs_elvpriv--;
1321 	spin_unlock_irq(q->queue_lock);
1322 	goto out;
1323 
1324 fail_alloc:
1325 	/*
1326 	 * Allocation failed presumably due to memory. Undo anything we
1327 	 * might have messed up.
1328 	 *
1329 	 * Allocating task should really be put onto the front of the wait
1330 	 * queue, but this is pretty rare.
1331 	 */
1332 	spin_lock_irq(q->queue_lock);
1333 	freed_request(rl, is_sync, rq_flags);
1334 
1335 	/*
1336 	 * in the very unlikely event that allocation failed and no
1337 	 * requests for this direction was pending, mark us starved so that
1338 	 * freeing of a request in the other direction will notice
1339 	 * us. another possible fix would be to split the rq mempool into
1340 	 * READ and WRITE
1341 	 */
1342 rq_starved:
1343 	if (unlikely(rl->count[is_sync] == 0))
1344 		rl->starved[is_sync] = 1;
1345 	return ERR_PTR(-ENOMEM);
1346 }
1347 
1348 /**
1349  * get_request - get a free request
1350  * @q: request_queue to allocate request from
1351  * @op: operation and flags
1352  * @bio: bio to allocate request for (can be %NULL)
1353  * @gfp_mask: allocation mask
1354  *
1355  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1356  * this function keeps retrying under memory pressure and fails iff @q is dead.
1357  *
1358  * Must be called with @q->queue_lock held and,
1359  * Returns ERR_PTR on failure, with @q->queue_lock held.
1360  * Returns request pointer on success, with @q->queue_lock *not held*.
1361  */
get_request(struct request_queue * q,unsigned int op,struct bio * bio,gfp_t gfp_mask)1362 static struct request *get_request(struct request_queue *q, unsigned int op,
1363 		struct bio *bio, gfp_t gfp_mask)
1364 {
1365 	const bool is_sync = op_is_sync(op);
1366 	DEFINE_WAIT(wait);
1367 	struct request_list *rl;
1368 	struct request *rq;
1369 
1370 	lockdep_assert_held(q->queue_lock);
1371 	WARN_ON_ONCE(q->mq_ops);
1372 
1373 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1374 retry:
1375 	rq = __get_request(rl, op, bio, gfp_mask);
1376 	if (!IS_ERR(rq))
1377 		return rq;
1378 
1379 	if (op & REQ_NOWAIT) {
1380 		blk_put_rl(rl);
1381 		return ERR_PTR(-EAGAIN);
1382 	}
1383 
1384 	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1385 		blk_put_rl(rl);
1386 		return rq;
1387 	}
1388 
1389 	/* wait on @rl and retry */
1390 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1391 				  TASK_UNINTERRUPTIBLE);
1392 
1393 	trace_block_sleeprq(q, bio, op);
1394 
1395 	spin_unlock_irq(q->queue_lock);
1396 	io_schedule();
1397 
1398 	/*
1399 	 * After sleeping, we become a "batching" process and will be able
1400 	 * to allocate at least one request, and up to a big batch of them
1401 	 * for a small period time.  See ioc_batching, ioc_set_batching
1402 	 */
1403 	ioc_set_batching(q, current->io_context);
1404 
1405 	spin_lock_irq(q->queue_lock);
1406 	finish_wait(&rl->wait[is_sync], &wait);
1407 
1408 	goto retry;
1409 }
1410 
blk_old_get_request(struct request_queue * q,unsigned int op,gfp_t gfp_mask)1411 static struct request *blk_old_get_request(struct request_queue *q,
1412 					   unsigned int op, gfp_t gfp_mask)
1413 {
1414 	struct request *rq;
1415 
1416 	WARN_ON_ONCE(q->mq_ops);
1417 
1418 	/* create ioc upfront */
1419 	create_io_context(gfp_mask, q->node);
1420 
1421 	spin_lock_irq(q->queue_lock);
1422 	rq = get_request(q, op, NULL, gfp_mask);
1423 	if (IS_ERR(rq)) {
1424 		spin_unlock_irq(q->queue_lock);
1425 		return rq;
1426 	}
1427 
1428 	/* q->queue_lock is unlocked at this point */
1429 	rq->__data_len = 0;
1430 	rq->__sector = (sector_t) -1;
1431 	rq->bio = rq->biotail = NULL;
1432 	return rq;
1433 }
1434 
blk_get_request(struct request_queue * q,unsigned int op,gfp_t gfp_mask)1435 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1436 				gfp_t gfp_mask)
1437 {
1438 	struct request *req;
1439 
1440 	if (q->mq_ops) {
1441 		req = blk_mq_alloc_request(q, op,
1442 			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1443 				0 : BLK_MQ_REQ_NOWAIT);
1444 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1445 			q->mq_ops->initialize_rq_fn(req);
1446 	} else {
1447 		req = blk_old_get_request(q, op, gfp_mask);
1448 		if (!IS_ERR(req) && q->initialize_rq_fn)
1449 			q->initialize_rq_fn(req);
1450 	}
1451 
1452 	return req;
1453 }
1454 EXPORT_SYMBOL(blk_get_request);
1455 
1456 /**
1457  * blk_requeue_request - put a request back on queue
1458  * @q:		request queue where request should be inserted
1459  * @rq:		request to be inserted
1460  *
1461  * Description:
1462  *    Drivers often keep queueing requests until the hardware cannot accept
1463  *    more, when that condition happens we need to put the request back
1464  *    on the queue. Must be called with queue lock held.
1465  */
blk_requeue_request(struct request_queue * q,struct request * rq)1466 void blk_requeue_request(struct request_queue *q, struct request *rq)
1467 {
1468 	lockdep_assert_held(q->queue_lock);
1469 	WARN_ON_ONCE(q->mq_ops);
1470 
1471 	blk_delete_timer(rq);
1472 	blk_clear_rq_complete(rq);
1473 	trace_block_rq_requeue(q, rq);
1474 	wbt_requeue(q->rq_wb, &rq->issue_stat);
1475 
1476 	if (rq->rq_flags & RQF_QUEUED)
1477 		blk_queue_end_tag(q, rq);
1478 
1479 	BUG_ON(blk_queued_rq(rq));
1480 
1481 	elv_requeue_request(q, rq);
1482 }
1483 EXPORT_SYMBOL(blk_requeue_request);
1484 
add_acct_request(struct request_queue * q,struct request * rq,int where)1485 static void add_acct_request(struct request_queue *q, struct request *rq,
1486 			     int where)
1487 {
1488 	blk_account_io_start(rq, true);
1489 	__elv_add_request(q, rq, where);
1490 }
1491 
part_round_stats_single(struct request_queue * q,int cpu,struct hd_struct * part,unsigned long now,unsigned int inflight)1492 static void part_round_stats_single(struct request_queue *q, int cpu,
1493 				    struct hd_struct *part, unsigned long now,
1494 				    unsigned int inflight)
1495 {
1496 	if (inflight) {
1497 		__part_stat_add(cpu, part, time_in_queue,
1498 				inflight * (now - part->stamp));
1499 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1500 	}
1501 	part->stamp = now;
1502 }
1503 
1504 /**
1505  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1506  * @q: target block queue
1507  * @cpu: cpu number for stats access
1508  * @part: target partition
1509  *
1510  * The average IO queue length and utilisation statistics are maintained
1511  * by observing the current state of the queue length and the amount of
1512  * time it has been in this state for.
1513  *
1514  * Normally, that accounting is done on IO completion, but that can result
1515  * in more than a second's worth of IO being accounted for within any one
1516  * second, leading to >100% utilisation.  To deal with that, we call this
1517  * function to do a round-off before returning the results when reading
1518  * /proc/diskstats.  This accounts immediately for all queue usage up to
1519  * the current jiffies and restarts the counters again.
1520  */
part_round_stats(struct request_queue * q,int cpu,struct hd_struct * part)1521 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1522 {
1523 	struct hd_struct *part2 = NULL;
1524 	unsigned long now = jiffies;
1525 	unsigned int inflight[2];
1526 	int stats = 0;
1527 
1528 	if (part->stamp != now)
1529 		stats |= 1;
1530 
1531 	if (part->partno) {
1532 		part2 = &part_to_disk(part)->part0;
1533 		if (part2->stamp != now)
1534 			stats |= 2;
1535 	}
1536 
1537 	if (!stats)
1538 		return;
1539 
1540 	part_in_flight(q, part, inflight);
1541 
1542 	if (stats & 2)
1543 		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1544 	if (stats & 1)
1545 		part_round_stats_single(q, cpu, part, now, inflight[0]);
1546 }
1547 EXPORT_SYMBOL_GPL(part_round_stats);
1548 
1549 #ifdef CONFIG_PM
blk_pm_put_request(struct request * rq)1550 static void blk_pm_put_request(struct request *rq)
1551 {
1552 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1553 		pm_runtime_mark_last_busy(rq->q->dev);
1554 }
1555 #else
blk_pm_put_request(struct request * rq)1556 static inline void blk_pm_put_request(struct request *rq) {}
1557 #endif
1558 
__blk_put_request(struct request_queue * q,struct request * req)1559 void __blk_put_request(struct request_queue *q, struct request *req)
1560 {
1561 	req_flags_t rq_flags = req->rq_flags;
1562 
1563 	if (unlikely(!q))
1564 		return;
1565 
1566 	if (q->mq_ops) {
1567 		blk_mq_free_request(req);
1568 		return;
1569 	}
1570 
1571 	lockdep_assert_held(q->queue_lock);
1572 
1573 	blk_pm_put_request(req);
1574 
1575 	elv_completed_request(q, req);
1576 
1577 	/* this is a bio leak */
1578 	WARN_ON(req->bio != NULL);
1579 
1580 	wbt_done(q->rq_wb, &req->issue_stat);
1581 
1582 	/*
1583 	 * Request may not have originated from ll_rw_blk. if not,
1584 	 * it didn't come out of our reserved rq pools
1585 	 */
1586 	if (rq_flags & RQF_ALLOCED) {
1587 		struct request_list *rl = blk_rq_rl(req);
1588 		bool sync = op_is_sync(req->cmd_flags);
1589 
1590 		BUG_ON(!list_empty(&req->queuelist));
1591 		BUG_ON(ELV_ON_HASH(req));
1592 
1593 		blk_free_request(rl, req);
1594 		freed_request(rl, sync, rq_flags);
1595 		blk_put_rl(rl);
1596 	}
1597 }
1598 EXPORT_SYMBOL_GPL(__blk_put_request);
1599 
blk_put_request(struct request * req)1600 void blk_put_request(struct request *req)
1601 {
1602 	struct request_queue *q = req->q;
1603 
1604 	if (q->mq_ops)
1605 		blk_mq_free_request(req);
1606 	else {
1607 		unsigned long flags;
1608 
1609 		spin_lock_irqsave(q->queue_lock, flags);
1610 		__blk_put_request(q, req);
1611 		spin_unlock_irqrestore(q->queue_lock, flags);
1612 	}
1613 }
1614 EXPORT_SYMBOL(blk_put_request);
1615 
bio_attempt_back_merge(struct request_queue * q,struct request * req,struct bio * bio)1616 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1617 			    struct bio *bio)
1618 {
1619 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1620 
1621 	if (!ll_back_merge_fn(q, req, bio))
1622 		return false;
1623 
1624 	trace_block_bio_backmerge(q, req, bio);
1625 
1626 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1627 		blk_rq_set_mixed_merge(req);
1628 
1629 	req->biotail->bi_next = bio;
1630 	req->biotail = bio;
1631 	req->__data_len += bio->bi_iter.bi_size;
1632 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1633 
1634 	blk_account_io_start(req, false);
1635 	return true;
1636 }
1637 
bio_attempt_front_merge(struct request_queue * q,struct request * req,struct bio * bio)1638 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1639 			     struct bio *bio)
1640 {
1641 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1642 
1643 	if (!ll_front_merge_fn(q, req, bio))
1644 		return false;
1645 
1646 	trace_block_bio_frontmerge(q, req, bio);
1647 
1648 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1649 		blk_rq_set_mixed_merge(req);
1650 
1651 	bio->bi_next = req->bio;
1652 	req->bio = bio;
1653 
1654 	req->__sector = bio->bi_iter.bi_sector;
1655 	req->__data_len += bio->bi_iter.bi_size;
1656 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1657 
1658 	blk_account_io_start(req, false);
1659 	return true;
1660 }
1661 
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)1662 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1663 		struct bio *bio)
1664 {
1665 	unsigned short segments = blk_rq_nr_discard_segments(req);
1666 
1667 	if (segments >= queue_max_discard_segments(q))
1668 		goto no_merge;
1669 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1670 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1671 		goto no_merge;
1672 
1673 	req->biotail->bi_next = bio;
1674 	req->biotail = bio;
1675 	req->__data_len += bio->bi_iter.bi_size;
1676 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1677 	req->nr_phys_segments = segments + 1;
1678 
1679 	blk_account_io_start(req, false);
1680 	return true;
1681 no_merge:
1682 	req_set_nomerge(q, req);
1683 	return false;
1684 }
1685 
1686 /**
1687  * blk_attempt_plug_merge - try to merge with %current's plugged list
1688  * @q: request_queue new bio is being queued at
1689  * @bio: new bio being queued
1690  * @request_count: out parameter for number of traversed plugged requests
1691  * @same_queue_rq: pointer to &struct request that gets filled in when
1692  * another request associated with @q is found on the plug list
1693  * (optional, may be %NULL)
1694  *
1695  * Determine whether @bio being queued on @q can be merged with a request
1696  * on %current's plugged list.  Returns %true if merge was successful,
1697  * otherwise %false.
1698  *
1699  * Plugging coalesces IOs from the same issuer for the same purpose without
1700  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1701  * than scheduling, and the request, while may have elvpriv data, is not
1702  * added on the elevator at this point.  In addition, we don't have
1703  * reliable access to the elevator outside queue lock.  Only check basic
1704  * merging parameters without querying the elevator.
1705  *
1706  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1707  */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int * request_count,struct request ** same_queue_rq)1708 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1709 			    unsigned int *request_count,
1710 			    struct request **same_queue_rq)
1711 {
1712 	struct blk_plug *plug;
1713 	struct request *rq;
1714 	struct list_head *plug_list;
1715 
1716 	plug = current->plug;
1717 	if (!plug)
1718 		return false;
1719 	*request_count = 0;
1720 
1721 	if (q->mq_ops)
1722 		plug_list = &plug->mq_list;
1723 	else
1724 		plug_list = &plug->list;
1725 
1726 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1727 		bool merged = false;
1728 
1729 		if (rq->q == q) {
1730 			(*request_count)++;
1731 			/*
1732 			 * Only blk-mq multiple hardware queues case checks the
1733 			 * rq in the same queue, there should be only one such
1734 			 * rq in a queue
1735 			 **/
1736 			if (same_queue_rq)
1737 				*same_queue_rq = rq;
1738 		}
1739 
1740 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1741 			continue;
1742 
1743 		switch (blk_try_merge(rq, bio)) {
1744 		case ELEVATOR_BACK_MERGE:
1745 			merged = bio_attempt_back_merge(q, rq, bio);
1746 			break;
1747 		case ELEVATOR_FRONT_MERGE:
1748 			merged = bio_attempt_front_merge(q, rq, bio);
1749 			break;
1750 		case ELEVATOR_DISCARD_MERGE:
1751 			merged = bio_attempt_discard_merge(q, rq, bio);
1752 			break;
1753 		default:
1754 			break;
1755 		}
1756 
1757 		if (merged)
1758 			return true;
1759 	}
1760 
1761 	return false;
1762 }
1763 
blk_plug_queued_count(struct request_queue * q)1764 unsigned int blk_plug_queued_count(struct request_queue *q)
1765 {
1766 	struct blk_plug *plug;
1767 	struct request *rq;
1768 	struct list_head *plug_list;
1769 	unsigned int ret = 0;
1770 
1771 	plug = current->plug;
1772 	if (!plug)
1773 		goto out;
1774 
1775 	if (q->mq_ops)
1776 		plug_list = &plug->mq_list;
1777 	else
1778 		plug_list = &plug->list;
1779 
1780 	list_for_each_entry(rq, plug_list, queuelist) {
1781 		if (rq->q == q)
1782 			ret++;
1783 	}
1784 out:
1785 	return ret;
1786 }
1787 
blk_init_request_from_bio(struct request * req,struct bio * bio)1788 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1789 {
1790 	struct io_context *ioc = rq_ioc(bio);
1791 
1792 	if (bio->bi_opf & REQ_RAHEAD)
1793 		req->cmd_flags |= REQ_FAILFAST_MASK;
1794 
1795 	req->__sector = bio->bi_iter.bi_sector;
1796 	if (ioprio_valid(bio_prio(bio)))
1797 		req->ioprio = bio_prio(bio);
1798 	else if (ioc)
1799 		req->ioprio = ioc->ioprio;
1800 	else
1801 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1802 	req->write_hint = bio->bi_write_hint;
1803 	blk_rq_bio_prep(req->q, req, bio);
1804 }
1805 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1806 
blk_queue_bio(struct request_queue * q,struct bio * bio)1807 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1808 {
1809 	struct blk_plug *plug;
1810 	int where = ELEVATOR_INSERT_SORT;
1811 	struct request *req, *free;
1812 	unsigned int request_count = 0;
1813 	unsigned int wb_acct;
1814 
1815 	/*
1816 	 * low level driver can indicate that it wants pages above a
1817 	 * certain limit bounced to low memory (ie for highmem, or even
1818 	 * ISA dma in theory)
1819 	 */
1820 	blk_queue_bounce(q, &bio);
1821 
1822 	blk_queue_split(q, &bio);
1823 
1824 	if (!bio_integrity_prep(bio))
1825 		return BLK_QC_T_NONE;
1826 
1827 	if (op_is_flush(bio->bi_opf)) {
1828 		spin_lock_irq(q->queue_lock);
1829 		where = ELEVATOR_INSERT_FLUSH;
1830 		goto get_rq;
1831 	}
1832 
1833 	/*
1834 	 * Check if we can merge with the plugged list before grabbing
1835 	 * any locks.
1836 	 */
1837 	if (!blk_queue_nomerges(q)) {
1838 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1839 			return BLK_QC_T_NONE;
1840 	} else
1841 		request_count = blk_plug_queued_count(q);
1842 
1843 	spin_lock_irq(q->queue_lock);
1844 
1845 	switch (elv_merge(q, &req, bio)) {
1846 	case ELEVATOR_BACK_MERGE:
1847 		if (!bio_attempt_back_merge(q, req, bio))
1848 			break;
1849 		elv_bio_merged(q, req, bio);
1850 		free = attempt_back_merge(q, req);
1851 		if (free)
1852 			__blk_put_request(q, free);
1853 		else
1854 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1855 		goto out_unlock;
1856 	case ELEVATOR_FRONT_MERGE:
1857 		if (!bio_attempt_front_merge(q, req, bio))
1858 			break;
1859 		elv_bio_merged(q, req, bio);
1860 		free = attempt_front_merge(q, req);
1861 		if (free)
1862 			__blk_put_request(q, free);
1863 		else
1864 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1865 		goto out_unlock;
1866 	default:
1867 		break;
1868 	}
1869 
1870 get_rq:
1871 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1872 
1873 	/*
1874 	 * Grab a free request. This is might sleep but can not fail.
1875 	 * Returns with the queue unlocked.
1876 	 */
1877 	req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1878 	if (IS_ERR(req)) {
1879 		__wbt_done(q->rq_wb, wb_acct);
1880 		if (PTR_ERR(req) == -ENOMEM)
1881 			bio->bi_status = BLK_STS_RESOURCE;
1882 		else
1883 			bio->bi_status = BLK_STS_IOERR;
1884 		bio_endio(bio);
1885 		goto out_unlock;
1886 	}
1887 
1888 	wbt_track(&req->issue_stat, wb_acct);
1889 
1890 	/*
1891 	 * After dropping the lock and possibly sleeping here, our request
1892 	 * may now be mergeable after it had proven unmergeable (above).
1893 	 * We don't worry about that case for efficiency. It won't happen
1894 	 * often, and the elevators are able to handle it.
1895 	 */
1896 	blk_init_request_from_bio(req, bio);
1897 
1898 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1899 		req->cpu = raw_smp_processor_id();
1900 
1901 	plug = current->plug;
1902 	if (plug) {
1903 		/*
1904 		 * If this is the first request added after a plug, fire
1905 		 * of a plug trace.
1906 		 *
1907 		 * @request_count may become stale because of schedule
1908 		 * out, so check plug list again.
1909 		 */
1910 		if (!request_count || list_empty(&plug->list))
1911 			trace_block_plug(q);
1912 		else {
1913 			struct request *last = list_entry_rq(plug->list.prev);
1914 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
1915 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1916 				blk_flush_plug_list(plug, false);
1917 				trace_block_plug(q);
1918 			}
1919 		}
1920 		list_add_tail(&req->queuelist, &plug->list);
1921 		blk_account_io_start(req, true);
1922 	} else {
1923 		spin_lock_irq(q->queue_lock);
1924 		add_acct_request(q, req, where);
1925 		__blk_run_queue(q);
1926 out_unlock:
1927 		spin_unlock_irq(q->queue_lock);
1928 	}
1929 
1930 	return BLK_QC_T_NONE;
1931 }
1932 
handle_bad_sector(struct bio * bio)1933 static void handle_bad_sector(struct bio *bio)
1934 {
1935 	char b[BDEVNAME_SIZE];
1936 
1937 	printk(KERN_INFO "attempt to access beyond end of device\n");
1938 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1939 			bio_devname(bio, b), bio->bi_opf,
1940 			(unsigned long long)bio_end_sector(bio),
1941 			(long long)get_capacity(bio->bi_disk));
1942 }
1943 
1944 #ifdef CONFIG_FAIL_MAKE_REQUEST
1945 
1946 static DECLARE_FAULT_ATTR(fail_make_request);
1947 
setup_fail_make_request(char * str)1948 static int __init setup_fail_make_request(char *str)
1949 {
1950 	return setup_fault_attr(&fail_make_request, str);
1951 }
1952 __setup("fail_make_request=", setup_fail_make_request);
1953 
should_fail_request(struct hd_struct * part,unsigned int bytes)1954 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1955 {
1956 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1957 }
1958 
fail_make_request_debugfs(void)1959 static int __init fail_make_request_debugfs(void)
1960 {
1961 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1962 						NULL, &fail_make_request);
1963 
1964 	return PTR_ERR_OR_ZERO(dir);
1965 }
1966 
1967 late_initcall(fail_make_request_debugfs);
1968 
1969 #else /* CONFIG_FAIL_MAKE_REQUEST */
1970 
should_fail_request(struct hd_struct * part,unsigned int bytes)1971 static inline bool should_fail_request(struct hd_struct *part,
1972 					unsigned int bytes)
1973 {
1974 	return false;
1975 }
1976 
1977 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1978 
1979 /*
1980  * Remap block n of partition p to block n+start(p) of the disk.
1981  */
blk_partition_remap(struct bio * bio)1982 static inline int blk_partition_remap(struct bio *bio)
1983 {
1984 	struct hd_struct *p;
1985 	int ret = 0;
1986 
1987 	/*
1988 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
1989 	 * Include a test for the reset op code and perform the remap if needed.
1990 	 */
1991 	if (!bio->bi_partno ||
1992 	    (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
1993 		return 0;
1994 
1995 	rcu_read_lock();
1996 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
1997 	if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
1998 		bio->bi_iter.bi_sector += p->start_sect;
1999 		bio->bi_partno = 0;
2000 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2001 				bio->bi_iter.bi_sector - p->start_sect);
2002 	} else {
2003 		printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2004 		ret = -EIO;
2005 	}
2006 	rcu_read_unlock();
2007 
2008 	return ret;
2009 }
2010 
2011 /*
2012  * Check whether this bio extends beyond the end of the device.
2013  */
bio_check_eod(struct bio * bio,unsigned int nr_sectors)2014 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2015 {
2016 	sector_t maxsector;
2017 
2018 	if (!nr_sectors)
2019 		return 0;
2020 
2021 	/* Test device or partition size, when known. */
2022 	maxsector = get_capacity(bio->bi_disk);
2023 	if (maxsector) {
2024 		sector_t sector = bio->bi_iter.bi_sector;
2025 
2026 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2027 			/*
2028 			 * This may well happen - the kernel calls bread()
2029 			 * without checking the size of the device, e.g., when
2030 			 * mounting a device.
2031 			 */
2032 			handle_bad_sector(bio);
2033 			return 1;
2034 		}
2035 	}
2036 
2037 	return 0;
2038 }
2039 
2040 static noinline_for_stack bool
generic_make_request_checks(struct bio * bio)2041 generic_make_request_checks(struct bio *bio)
2042 {
2043 	struct request_queue *q;
2044 	int nr_sectors = bio_sectors(bio);
2045 	blk_status_t status = BLK_STS_IOERR;
2046 	char b[BDEVNAME_SIZE];
2047 
2048 	might_sleep();
2049 
2050 	if (bio_check_eod(bio, nr_sectors))
2051 		goto end_io;
2052 
2053 	q = bio->bi_disk->queue;
2054 	if (unlikely(!q)) {
2055 		printk(KERN_ERR
2056 		       "generic_make_request: Trying to access "
2057 			"nonexistent block-device %s (%Lu)\n",
2058 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2059 		goto end_io;
2060 	}
2061 
2062 	/*
2063 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2064 	 * if queue is not a request based queue.
2065 	 */
2066 
2067 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2068 		goto not_supported;
2069 
2070 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2071 		goto end_io;
2072 
2073 	if (blk_partition_remap(bio))
2074 		goto end_io;
2075 
2076 	if (bio_check_eod(bio, nr_sectors))
2077 		goto end_io;
2078 
2079 	/*
2080 	 * Filter flush bio's early so that make_request based
2081 	 * drivers without flush support don't have to worry
2082 	 * about them.
2083 	 */
2084 	if (op_is_flush(bio->bi_opf) &&
2085 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2086 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2087 		if (!nr_sectors) {
2088 			status = BLK_STS_OK;
2089 			goto end_io;
2090 		}
2091 	}
2092 
2093 	switch (bio_op(bio)) {
2094 	case REQ_OP_DISCARD:
2095 		if (!blk_queue_discard(q))
2096 			goto not_supported;
2097 		break;
2098 	case REQ_OP_SECURE_ERASE:
2099 		if (!blk_queue_secure_erase(q))
2100 			goto not_supported;
2101 		break;
2102 	case REQ_OP_WRITE_SAME:
2103 		if (!q->limits.max_write_same_sectors)
2104 			goto not_supported;
2105 		break;
2106 	case REQ_OP_ZONE_REPORT:
2107 	case REQ_OP_ZONE_RESET:
2108 		if (!blk_queue_is_zoned(q))
2109 			goto not_supported;
2110 		break;
2111 	case REQ_OP_WRITE_ZEROES:
2112 		if (!q->limits.max_write_zeroes_sectors)
2113 			goto not_supported;
2114 		break;
2115 	default:
2116 		break;
2117 	}
2118 
2119 	/*
2120 	 * Various block parts want %current->io_context and lazy ioc
2121 	 * allocation ends up trading a lot of pain for a small amount of
2122 	 * memory.  Just allocate it upfront.  This may fail and block
2123 	 * layer knows how to live with it.
2124 	 */
2125 	create_io_context(GFP_ATOMIC, q->node);
2126 
2127 	if (!blkcg_bio_issue_check(q, bio))
2128 		return false;
2129 
2130 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2131 		trace_block_bio_queue(q, bio);
2132 		/* Now that enqueuing has been traced, we need to trace
2133 		 * completion as well.
2134 		 */
2135 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2136 	}
2137 	return true;
2138 
2139 not_supported:
2140 	status = BLK_STS_NOTSUPP;
2141 end_io:
2142 	bio->bi_status = status;
2143 	bio_endio(bio);
2144 	return false;
2145 }
2146 
2147 /**
2148  * generic_make_request - hand a buffer to its device driver for I/O
2149  * @bio:  The bio describing the location in memory and on the device.
2150  *
2151  * generic_make_request() is used to make I/O requests of block
2152  * devices. It is passed a &struct bio, which describes the I/O that needs
2153  * to be done.
2154  *
2155  * generic_make_request() does not return any status.  The
2156  * success/failure status of the request, along with notification of
2157  * completion, is delivered asynchronously through the bio->bi_end_io
2158  * function described (one day) else where.
2159  *
2160  * The caller of generic_make_request must make sure that bi_io_vec
2161  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2162  * set to describe the device address, and the
2163  * bi_end_io and optionally bi_private are set to describe how
2164  * completion notification should be signaled.
2165  *
2166  * generic_make_request and the drivers it calls may use bi_next if this
2167  * bio happens to be merged with someone else, and may resubmit the bio to
2168  * a lower device by calling into generic_make_request recursively, which
2169  * means the bio should NOT be touched after the call to ->make_request_fn.
2170  */
generic_make_request(struct bio * bio)2171 blk_qc_t generic_make_request(struct bio *bio)
2172 {
2173 	/*
2174 	 * bio_list_on_stack[0] contains bios submitted by the current
2175 	 * make_request_fn.
2176 	 * bio_list_on_stack[1] contains bios that were submitted before
2177 	 * the current make_request_fn, but that haven't been processed
2178 	 * yet.
2179 	 */
2180 	struct bio_list bio_list_on_stack[2];
2181 	blk_qc_t ret = BLK_QC_T_NONE;
2182 
2183 	if (!generic_make_request_checks(bio))
2184 		goto out;
2185 
2186 	/*
2187 	 * We only want one ->make_request_fn to be active at a time, else
2188 	 * stack usage with stacked devices could be a problem.  So use
2189 	 * current->bio_list to keep a list of requests submited by a
2190 	 * make_request_fn function.  current->bio_list is also used as a
2191 	 * flag to say if generic_make_request is currently active in this
2192 	 * task or not.  If it is NULL, then no make_request is active.  If
2193 	 * it is non-NULL, then a make_request is active, and new requests
2194 	 * should be added at the tail
2195 	 */
2196 	if (current->bio_list) {
2197 		bio_list_add(&current->bio_list[0], bio);
2198 		goto out;
2199 	}
2200 
2201 	/* following loop may be a bit non-obvious, and so deserves some
2202 	 * explanation.
2203 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2204 	 * ensure that) so we have a list with a single bio.
2205 	 * We pretend that we have just taken it off a longer list, so
2206 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2207 	 * thus initialising the bio_list of new bios to be
2208 	 * added.  ->make_request() may indeed add some more bios
2209 	 * through a recursive call to generic_make_request.  If it
2210 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2211 	 * from the top.  In this case we really did just take the bio
2212 	 * of the top of the list (no pretending) and so remove it from
2213 	 * bio_list, and call into ->make_request() again.
2214 	 */
2215 	BUG_ON(bio->bi_next);
2216 	bio_list_init(&bio_list_on_stack[0]);
2217 	current->bio_list = bio_list_on_stack;
2218 	do {
2219 		struct request_queue *q = bio->bi_disk->queue;
2220 
2221 		if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
2222 			struct bio_list lower, same;
2223 
2224 			/* Create a fresh bio_list for all subordinate requests */
2225 			bio_list_on_stack[1] = bio_list_on_stack[0];
2226 			bio_list_init(&bio_list_on_stack[0]);
2227 			ret = q->make_request_fn(q, bio);
2228 
2229 			blk_queue_exit(q);
2230 
2231 			/* sort new bios into those for a lower level
2232 			 * and those for the same level
2233 			 */
2234 			bio_list_init(&lower);
2235 			bio_list_init(&same);
2236 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2237 				if (q == bio->bi_disk->queue)
2238 					bio_list_add(&same, bio);
2239 				else
2240 					bio_list_add(&lower, bio);
2241 			/* now assemble so we handle the lowest level first */
2242 			bio_list_merge(&bio_list_on_stack[0], &lower);
2243 			bio_list_merge(&bio_list_on_stack[0], &same);
2244 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2245 		} else {
2246 			if (unlikely(!blk_queue_dying(q) &&
2247 					(bio->bi_opf & REQ_NOWAIT)))
2248 				bio_wouldblock_error(bio);
2249 			else
2250 				bio_io_error(bio);
2251 		}
2252 		bio = bio_list_pop(&bio_list_on_stack[0]);
2253 	} while (bio);
2254 	current->bio_list = NULL; /* deactivate */
2255 
2256 out:
2257 	return ret;
2258 }
2259 EXPORT_SYMBOL(generic_make_request);
2260 
2261 /**
2262  * submit_bio - submit a bio to the block device layer for I/O
2263  * @bio: The &struct bio which describes the I/O
2264  *
2265  * submit_bio() is very similar in purpose to generic_make_request(), and
2266  * uses that function to do most of the work. Both are fairly rough
2267  * interfaces; @bio must be presetup and ready for I/O.
2268  *
2269  */
submit_bio(struct bio * bio)2270 blk_qc_t submit_bio(struct bio *bio)
2271 {
2272 	/*
2273 	 * If it's a regular read/write or a barrier with data attached,
2274 	 * go through the normal accounting stuff before submission.
2275 	 */
2276 	if (bio_has_data(bio)) {
2277 		unsigned int count;
2278 
2279 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2280 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2281 		else
2282 			count = bio_sectors(bio);
2283 
2284 		if (op_is_write(bio_op(bio))) {
2285 			count_vm_events(PGPGOUT, count);
2286 		} else {
2287 			task_io_account_read(bio->bi_iter.bi_size);
2288 			count_vm_events(PGPGIN, count);
2289 		}
2290 
2291 		if (unlikely(block_dump)) {
2292 			char b[BDEVNAME_SIZE];
2293 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2294 			current->comm, task_pid_nr(current),
2295 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2296 				(unsigned long long)bio->bi_iter.bi_sector,
2297 				bio_devname(bio, b), count);
2298 		}
2299 	}
2300 
2301 	return generic_make_request(bio);
2302 }
2303 EXPORT_SYMBOL(submit_bio);
2304 
2305 /**
2306  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2307  *                              for new the queue limits
2308  * @q:  the queue
2309  * @rq: the request being checked
2310  *
2311  * Description:
2312  *    @rq may have been made based on weaker limitations of upper-level queues
2313  *    in request stacking drivers, and it may violate the limitation of @q.
2314  *    Since the block layer and the underlying device driver trust @rq
2315  *    after it is inserted to @q, it should be checked against @q before
2316  *    the insertion using this generic function.
2317  *
2318  *    Request stacking drivers like request-based dm may change the queue
2319  *    limits when retrying requests on other queues. Those requests need
2320  *    to be checked against the new queue limits again during dispatch.
2321  */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)2322 static int blk_cloned_rq_check_limits(struct request_queue *q,
2323 				      struct request *rq)
2324 {
2325 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2326 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2327 		return -EIO;
2328 	}
2329 
2330 	/*
2331 	 * queue's settings related to segment counting like q->bounce_pfn
2332 	 * may differ from that of other stacking queues.
2333 	 * Recalculate it to check the request correctly on this queue's
2334 	 * limitation.
2335 	 */
2336 	blk_recalc_rq_segments(rq);
2337 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2338 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2339 		return -EIO;
2340 	}
2341 
2342 	return 0;
2343 }
2344 
2345 /**
2346  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2347  * @q:  the queue to submit the request
2348  * @rq: the request being queued
2349  */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)2350 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2351 {
2352 	unsigned long flags;
2353 	int where = ELEVATOR_INSERT_BACK;
2354 
2355 	if (blk_cloned_rq_check_limits(q, rq))
2356 		return BLK_STS_IOERR;
2357 
2358 	if (rq->rq_disk &&
2359 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2360 		return BLK_STS_IOERR;
2361 
2362 	if (q->mq_ops) {
2363 		if (blk_queue_io_stat(q))
2364 			blk_account_io_start(rq, true);
2365 		/*
2366 		 * Since we have a scheduler attached on the top device,
2367 		 * bypass a potential scheduler on the bottom device for
2368 		 * insert.
2369 		 */
2370 		blk_mq_request_bypass_insert(rq);
2371 		return BLK_STS_OK;
2372 	}
2373 
2374 	spin_lock_irqsave(q->queue_lock, flags);
2375 	if (unlikely(blk_queue_dying(q))) {
2376 		spin_unlock_irqrestore(q->queue_lock, flags);
2377 		return BLK_STS_IOERR;
2378 	}
2379 
2380 	/*
2381 	 * Submitting request must be dequeued before calling this function
2382 	 * because it will be linked to another request_queue
2383 	 */
2384 	BUG_ON(blk_queued_rq(rq));
2385 
2386 	if (op_is_flush(rq->cmd_flags))
2387 		where = ELEVATOR_INSERT_FLUSH;
2388 
2389 	add_acct_request(q, rq, where);
2390 	if (where == ELEVATOR_INSERT_FLUSH)
2391 		__blk_run_queue(q);
2392 	spin_unlock_irqrestore(q->queue_lock, flags);
2393 
2394 	return BLK_STS_OK;
2395 }
2396 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2397 
2398 /**
2399  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2400  * @rq: request to examine
2401  *
2402  * Description:
2403  *     A request could be merge of IOs which require different failure
2404  *     handling.  This function determines the number of bytes which
2405  *     can be failed from the beginning of the request without
2406  *     crossing into area which need to be retried further.
2407  *
2408  * Return:
2409  *     The number of bytes to fail.
2410  */
blk_rq_err_bytes(const struct request * rq)2411 unsigned int blk_rq_err_bytes(const struct request *rq)
2412 {
2413 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2414 	unsigned int bytes = 0;
2415 	struct bio *bio;
2416 
2417 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2418 		return blk_rq_bytes(rq);
2419 
2420 	/*
2421 	 * Currently the only 'mixing' which can happen is between
2422 	 * different fastfail types.  We can safely fail portions
2423 	 * which have all the failfast bits that the first one has -
2424 	 * the ones which are at least as eager to fail as the first
2425 	 * one.
2426 	 */
2427 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2428 		if ((bio->bi_opf & ff) != ff)
2429 			break;
2430 		bytes += bio->bi_iter.bi_size;
2431 	}
2432 
2433 	/* this could lead to infinite loop */
2434 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2435 	return bytes;
2436 }
2437 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2438 
blk_account_io_completion(struct request * req,unsigned int bytes)2439 void blk_account_io_completion(struct request *req, unsigned int bytes)
2440 {
2441 	if (blk_do_io_stat(req)) {
2442 		const int rw = rq_data_dir(req);
2443 		struct hd_struct *part;
2444 		int cpu;
2445 
2446 		cpu = part_stat_lock();
2447 		part = req->part;
2448 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2449 		part_stat_unlock();
2450 	}
2451 }
2452 
blk_account_io_done(struct request * req)2453 void blk_account_io_done(struct request *req)
2454 {
2455 	/*
2456 	 * Account IO completion.  flush_rq isn't accounted as a
2457 	 * normal IO on queueing nor completion.  Accounting the
2458 	 * containing request is enough.
2459 	 */
2460 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2461 		unsigned long duration = jiffies - req->start_time;
2462 		const int rw = rq_data_dir(req);
2463 		struct hd_struct *part;
2464 		int cpu;
2465 
2466 		cpu = part_stat_lock();
2467 		part = req->part;
2468 
2469 		part_stat_inc(cpu, part, ios[rw]);
2470 		part_stat_add(cpu, part, ticks[rw], duration);
2471 		part_round_stats(req->q, cpu, part);
2472 		part_dec_in_flight(req->q, part, rw);
2473 
2474 		hd_struct_put(part);
2475 		part_stat_unlock();
2476 	}
2477 }
2478 
2479 #ifdef CONFIG_PM
2480 /*
2481  * Don't process normal requests when queue is suspended
2482  * or in the process of suspending/resuming
2483  */
blk_pm_peek_request(struct request_queue * q,struct request * rq)2484 static struct request *blk_pm_peek_request(struct request_queue *q,
2485 					   struct request *rq)
2486 {
2487 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2488 	    (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2489 		return NULL;
2490 	else
2491 		return rq;
2492 }
2493 #else
blk_pm_peek_request(struct request_queue * q,struct request * rq)2494 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2495 						  struct request *rq)
2496 {
2497 	return rq;
2498 }
2499 #endif
2500 
blk_account_io_start(struct request * rq,bool new_io)2501 void blk_account_io_start(struct request *rq, bool new_io)
2502 {
2503 	struct hd_struct *part;
2504 	int rw = rq_data_dir(rq);
2505 	int cpu;
2506 
2507 	if (!blk_do_io_stat(rq))
2508 		return;
2509 
2510 	cpu = part_stat_lock();
2511 
2512 	if (!new_io) {
2513 		part = rq->part;
2514 		part_stat_inc(cpu, part, merges[rw]);
2515 	} else {
2516 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2517 		if (!hd_struct_try_get(part)) {
2518 			/*
2519 			 * The partition is already being removed,
2520 			 * the request will be accounted on the disk only
2521 			 *
2522 			 * We take a reference on disk->part0 although that
2523 			 * partition will never be deleted, so we can treat
2524 			 * it as any other partition.
2525 			 */
2526 			part = &rq->rq_disk->part0;
2527 			hd_struct_get(part);
2528 		}
2529 		part_round_stats(rq->q, cpu, part);
2530 		part_inc_in_flight(rq->q, part, rw);
2531 		rq->part = part;
2532 	}
2533 
2534 	part_stat_unlock();
2535 }
2536 
2537 /**
2538  * blk_peek_request - peek at the top of a request queue
2539  * @q: request queue to peek at
2540  *
2541  * Description:
2542  *     Return the request at the top of @q.  The returned request
2543  *     should be started using blk_start_request() before LLD starts
2544  *     processing it.
2545  *
2546  * Return:
2547  *     Pointer to the request at the top of @q if available.  Null
2548  *     otherwise.
2549  */
blk_peek_request(struct request_queue * q)2550 struct request *blk_peek_request(struct request_queue *q)
2551 {
2552 	struct request *rq;
2553 	int ret;
2554 
2555 	lockdep_assert_held(q->queue_lock);
2556 	WARN_ON_ONCE(q->mq_ops);
2557 
2558 	while ((rq = __elv_next_request(q)) != NULL) {
2559 
2560 		rq = blk_pm_peek_request(q, rq);
2561 		if (!rq)
2562 			break;
2563 
2564 		if (!(rq->rq_flags & RQF_STARTED)) {
2565 			/*
2566 			 * This is the first time the device driver
2567 			 * sees this request (possibly after
2568 			 * requeueing).  Notify IO scheduler.
2569 			 */
2570 			if (rq->rq_flags & RQF_SORTED)
2571 				elv_activate_rq(q, rq);
2572 
2573 			/*
2574 			 * just mark as started even if we don't start
2575 			 * it, a request that has been delayed should
2576 			 * not be passed by new incoming requests
2577 			 */
2578 			rq->rq_flags |= RQF_STARTED;
2579 			trace_block_rq_issue(q, rq);
2580 		}
2581 
2582 		if (!q->boundary_rq || q->boundary_rq == rq) {
2583 			q->end_sector = rq_end_sector(rq);
2584 			q->boundary_rq = NULL;
2585 		}
2586 
2587 		if (rq->rq_flags & RQF_DONTPREP)
2588 			break;
2589 
2590 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2591 			/*
2592 			 * make sure space for the drain appears we
2593 			 * know we can do this because max_hw_segments
2594 			 * has been adjusted to be one fewer than the
2595 			 * device can handle
2596 			 */
2597 			rq->nr_phys_segments++;
2598 		}
2599 
2600 		if (!q->prep_rq_fn)
2601 			break;
2602 
2603 		ret = q->prep_rq_fn(q, rq);
2604 		if (ret == BLKPREP_OK) {
2605 			break;
2606 		} else if (ret == BLKPREP_DEFER) {
2607 			/*
2608 			 * the request may have been (partially) prepped.
2609 			 * we need to keep this request in the front to
2610 			 * avoid resource deadlock.  RQF_STARTED will
2611 			 * prevent other fs requests from passing this one.
2612 			 */
2613 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2614 			    !(rq->rq_flags & RQF_DONTPREP)) {
2615 				/*
2616 				 * remove the space for the drain we added
2617 				 * so that we don't add it again
2618 				 */
2619 				--rq->nr_phys_segments;
2620 			}
2621 
2622 			rq = NULL;
2623 			break;
2624 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2625 			rq->rq_flags |= RQF_QUIET;
2626 			/*
2627 			 * Mark this request as started so we don't trigger
2628 			 * any debug logic in the end I/O path.
2629 			 */
2630 			blk_start_request(rq);
2631 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2632 					BLK_STS_TARGET : BLK_STS_IOERR);
2633 		} else {
2634 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2635 			break;
2636 		}
2637 	}
2638 
2639 	return rq;
2640 }
2641 EXPORT_SYMBOL(blk_peek_request);
2642 
blk_dequeue_request(struct request * rq)2643 static void blk_dequeue_request(struct request *rq)
2644 {
2645 	struct request_queue *q = rq->q;
2646 
2647 	BUG_ON(list_empty(&rq->queuelist));
2648 	BUG_ON(ELV_ON_HASH(rq));
2649 
2650 	list_del_init(&rq->queuelist);
2651 
2652 	/*
2653 	 * the time frame between a request being removed from the lists
2654 	 * and to it is freed is accounted as io that is in progress at
2655 	 * the driver side.
2656 	 */
2657 	if (blk_account_rq(rq)) {
2658 		q->in_flight[rq_is_sync(rq)]++;
2659 		set_io_start_time_ns(rq);
2660 	}
2661 }
2662 
2663 /**
2664  * blk_start_request - start request processing on the driver
2665  * @req: request to dequeue
2666  *
2667  * Description:
2668  *     Dequeue @req and start timeout timer on it.  This hands off the
2669  *     request to the driver.
2670  */
blk_start_request(struct request * req)2671 void blk_start_request(struct request *req)
2672 {
2673 	lockdep_assert_held(req->q->queue_lock);
2674 	WARN_ON_ONCE(req->q->mq_ops);
2675 
2676 	blk_dequeue_request(req);
2677 
2678 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2679 		blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2680 		req->rq_flags |= RQF_STATS;
2681 		wbt_issue(req->q->rq_wb, &req->issue_stat);
2682 	}
2683 
2684 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2685 	blk_add_timer(req);
2686 }
2687 EXPORT_SYMBOL(blk_start_request);
2688 
2689 /**
2690  * blk_fetch_request - fetch a request from a request queue
2691  * @q: request queue to fetch a request from
2692  *
2693  * Description:
2694  *     Return the request at the top of @q.  The request is started on
2695  *     return and LLD can start processing it immediately.
2696  *
2697  * Return:
2698  *     Pointer to the request at the top of @q if available.  Null
2699  *     otherwise.
2700  */
blk_fetch_request(struct request_queue * q)2701 struct request *blk_fetch_request(struct request_queue *q)
2702 {
2703 	struct request *rq;
2704 
2705 	lockdep_assert_held(q->queue_lock);
2706 	WARN_ON_ONCE(q->mq_ops);
2707 
2708 	rq = blk_peek_request(q);
2709 	if (rq)
2710 		blk_start_request(rq);
2711 	return rq;
2712 }
2713 EXPORT_SYMBOL(blk_fetch_request);
2714 
2715 /**
2716  * blk_update_request - Special helper function for request stacking drivers
2717  * @req:      the request being processed
2718  * @error:    block status code
2719  * @nr_bytes: number of bytes to complete @req
2720  *
2721  * Description:
2722  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2723  *     the request structure even if @req doesn't have leftover.
2724  *     If @req has leftover, sets it up for the next range of segments.
2725  *
2726  *     This special helper function is only for request stacking drivers
2727  *     (e.g. request-based dm) so that they can handle partial completion.
2728  *     Actual device drivers should use blk_end_request instead.
2729  *
2730  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2731  *     %false return from this function.
2732  *
2733  * Return:
2734  *     %false - this request doesn't have any more data
2735  *     %true  - this request has more data
2736  **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)2737 bool blk_update_request(struct request *req, blk_status_t error,
2738 		unsigned int nr_bytes)
2739 {
2740 	int total_bytes;
2741 
2742 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2743 
2744 	if (!req->bio)
2745 		return false;
2746 
2747 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
2748 		     !(req->rq_flags & RQF_QUIET)))
2749 		print_req_error(req, error);
2750 
2751 	blk_account_io_completion(req, nr_bytes);
2752 
2753 	total_bytes = 0;
2754 	while (req->bio) {
2755 		struct bio *bio = req->bio;
2756 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2757 
2758 		if (bio_bytes == bio->bi_iter.bi_size)
2759 			req->bio = bio->bi_next;
2760 
2761 		/* Completion has already been traced */
2762 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2763 		req_bio_endio(req, bio, bio_bytes, error);
2764 
2765 		total_bytes += bio_bytes;
2766 		nr_bytes -= bio_bytes;
2767 
2768 		if (!nr_bytes)
2769 			break;
2770 	}
2771 
2772 	/*
2773 	 * completely done
2774 	 */
2775 	if (!req->bio) {
2776 		/*
2777 		 * Reset counters so that the request stacking driver
2778 		 * can find how many bytes remain in the request
2779 		 * later.
2780 		 */
2781 		req->__data_len = 0;
2782 		return false;
2783 	}
2784 
2785 	req->__data_len -= total_bytes;
2786 
2787 	/* update sector only for requests with clear definition of sector */
2788 	if (!blk_rq_is_passthrough(req))
2789 		req->__sector += total_bytes >> 9;
2790 
2791 	/* mixed attributes always follow the first bio */
2792 	if (req->rq_flags & RQF_MIXED_MERGE) {
2793 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2794 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2795 	}
2796 
2797 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2798 		/*
2799 		 * If total number of sectors is less than the first segment
2800 		 * size, something has gone terribly wrong.
2801 		 */
2802 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2803 			blk_dump_rq_flags(req, "request botched");
2804 			req->__data_len = blk_rq_cur_bytes(req);
2805 		}
2806 
2807 		/* recalculate the number of segments */
2808 		blk_recalc_rq_segments(req);
2809 	}
2810 
2811 	return true;
2812 }
2813 EXPORT_SYMBOL_GPL(blk_update_request);
2814 
blk_update_bidi_request(struct request * rq,blk_status_t error,unsigned int nr_bytes,unsigned int bidi_bytes)2815 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2816 				    unsigned int nr_bytes,
2817 				    unsigned int bidi_bytes)
2818 {
2819 	if (blk_update_request(rq, error, nr_bytes))
2820 		return true;
2821 
2822 	/* Bidi request must be completed as a whole */
2823 	if (unlikely(blk_bidi_rq(rq)) &&
2824 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2825 		return true;
2826 
2827 	if (blk_queue_add_random(rq->q))
2828 		add_disk_randomness(rq->rq_disk);
2829 
2830 	return false;
2831 }
2832 
2833 /**
2834  * blk_unprep_request - unprepare a request
2835  * @req:	the request
2836  *
2837  * This function makes a request ready for complete resubmission (or
2838  * completion).  It happens only after all error handling is complete,
2839  * so represents the appropriate moment to deallocate any resources
2840  * that were allocated to the request in the prep_rq_fn.  The queue
2841  * lock is held when calling this.
2842  */
blk_unprep_request(struct request * req)2843 void blk_unprep_request(struct request *req)
2844 {
2845 	struct request_queue *q = req->q;
2846 
2847 	req->rq_flags &= ~RQF_DONTPREP;
2848 	if (q->unprep_rq_fn)
2849 		q->unprep_rq_fn(q, req);
2850 }
2851 EXPORT_SYMBOL_GPL(blk_unprep_request);
2852 
blk_finish_request(struct request * req,blk_status_t error)2853 void blk_finish_request(struct request *req, blk_status_t error)
2854 {
2855 	struct request_queue *q = req->q;
2856 
2857 	lockdep_assert_held(req->q->queue_lock);
2858 	WARN_ON_ONCE(q->mq_ops);
2859 
2860 	if (req->rq_flags & RQF_STATS)
2861 		blk_stat_add(req);
2862 
2863 	if (req->rq_flags & RQF_QUEUED)
2864 		blk_queue_end_tag(q, req);
2865 
2866 	BUG_ON(blk_queued_rq(req));
2867 
2868 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2869 		laptop_io_completion(req->q->backing_dev_info);
2870 
2871 	blk_delete_timer(req);
2872 
2873 	if (req->rq_flags & RQF_DONTPREP)
2874 		blk_unprep_request(req);
2875 
2876 	blk_account_io_done(req);
2877 
2878 	if (req->end_io) {
2879 		wbt_done(req->q->rq_wb, &req->issue_stat);
2880 		req->end_io(req, error);
2881 	} else {
2882 		if (blk_bidi_rq(req))
2883 			__blk_put_request(req->next_rq->q, req->next_rq);
2884 
2885 		__blk_put_request(q, req);
2886 	}
2887 }
2888 EXPORT_SYMBOL(blk_finish_request);
2889 
2890 /**
2891  * blk_end_bidi_request - Complete a bidi request
2892  * @rq:         the request to complete
2893  * @error:      block status code
2894  * @nr_bytes:   number of bytes to complete @rq
2895  * @bidi_bytes: number of bytes to complete @rq->next_rq
2896  *
2897  * Description:
2898  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2899  *     Drivers that supports bidi can safely call this member for any
2900  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2901  *     just ignored.
2902  *
2903  * Return:
2904  *     %false - we are done with this request
2905  *     %true  - still buffers pending for this request
2906  **/
blk_end_bidi_request(struct request * rq,blk_status_t error,unsigned int nr_bytes,unsigned int bidi_bytes)2907 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
2908 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2909 {
2910 	struct request_queue *q = rq->q;
2911 	unsigned long flags;
2912 
2913 	WARN_ON_ONCE(q->mq_ops);
2914 
2915 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2916 		return true;
2917 
2918 	spin_lock_irqsave(q->queue_lock, flags);
2919 	blk_finish_request(rq, error);
2920 	spin_unlock_irqrestore(q->queue_lock, flags);
2921 
2922 	return false;
2923 }
2924 
2925 /**
2926  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2927  * @rq:         the request to complete
2928  * @error:      block status code
2929  * @nr_bytes:   number of bytes to complete @rq
2930  * @bidi_bytes: number of bytes to complete @rq->next_rq
2931  *
2932  * Description:
2933  *     Identical to blk_end_bidi_request() except that queue lock is
2934  *     assumed to be locked on entry and remains so on return.
2935  *
2936  * Return:
2937  *     %false - we are done with this request
2938  *     %true  - still buffers pending for this request
2939  **/
__blk_end_bidi_request(struct request * rq,blk_status_t error,unsigned int nr_bytes,unsigned int bidi_bytes)2940 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
2941 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2942 {
2943 	lockdep_assert_held(rq->q->queue_lock);
2944 	WARN_ON_ONCE(rq->q->mq_ops);
2945 
2946 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2947 		return true;
2948 
2949 	blk_finish_request(rq, error);
2950 
2951 	return false;
2952 }
2953 
2954 /**
2955  * blk_end_request - Helper function for drivers to complete the request.
2956  * @rq:       the request being processed
2957  * @error:    block status code
2958  * @nr_bytes: number of bytes to complete
2959  *
2960  * Description:
2961  *     Ends I/O on a number of bytes attached to @rq.
2962  *     If @rq has leftover, sets it up for the next range of segments.
2963  *
2964  * Return:
2965  *     %false - we are done with this request
2966  *     %true  - still buffers pending for this request
2967  **/
blk_end_request(struct request * rq,blk_status_t error,unsigned int nr_bytes)2968 bool blk_end_request(struct request *rq, blk_status_t error,
2969 		unsigned int nr_bytes)
2970 {
2971 	WARN_ON_ONCE(rq->q->mq_ops);
2972 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2973 }
2974 EXPORT_SYMBOL(blk_end_request);
2975 
2976 /**
2977  * blk_end_request_all - Helper function for drives to finish the request.
2978  * @rq: the request to finish
2979  * @error: block status code
2980  *
2981  * Description:
2982  *     Completely finish @rq.
2983  */
blk_end_request_all(struct request * rq,blk_status_t error)2984 void blk_end_request_all(struct request *rq, blk_status_t error)
2985 {
2986 	bool pending;
2987 	unsigned int bidi_bytes = 0;
2988 
2989 	if (unlikely(blk_bidi_rq(rq)))
2990 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2991 
2992 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2993 	BUG_ON(pending);
2994 }
2995 EXPORT_SYMBOL(blk_end_request_all);
2996 
2997 /**
2998  * __blk_end_request - Helper function for drivers to complete the request.
2999  * @rq:       the request being processed
3000  * @error:    block status code
3001  * @nr_bytes: number of bytes to complete
3002  *
3003  * Description:
3004  *     Must be called with queue lock held unlike blk_end_request().
3005  *
3006  * Return:
3007  *     %false - we are done with this request
3008  *     %true  - still buffers pending for this request
3009  **/
__blk_end_request(struct request * rq,blk_status_t error,unsigned int nr_bytes)3010 bool __blk_end_request(struct request *rq, blk_status_t error,
3011 		unsigned int nr_bytes)
3012 {
3013 	lockdep_assert_held(rq->q->queue_lock);
3014 	WARN_ON_ONCE(rq->q->mq_ops);
3015 
3016 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3017 }
3018 EXPORT_SYMBOL(__blk_end_request);
3019 
3020 /**
3021  * __blk_end_request_all - Helper function for drives to finish the request.
3022  * @rq: the request to finish
3023  * @error:    block status code
3024  *
3025  * Description:
3026  *     Completely finish @rq.  Must be called with queue lock held.
3027  */
__blk_end_request_all(struct request * rq,blk_status_t error)3028 void __blk_end_request_all(struct request *rq, blk_status_t error)
3029 {
3030 	bool pending;
3031 	unsigned int bidi_bytes = 0;
3032 
3033 	lockdep_assert_held(rq->q->queue_lock);
3034 	WARN_ON_ONCE(rq->q->mq_ops);
3035 
3036 	if (unlikely(blk_bidi_rq(rq)))
3037 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3038 
3039 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3040 	BUG_ON(pending);
3041 }
3042 EXPORT_SYMBOL(__blk_end_request_all);
3043 
3044 /**
3045  * __blk_end_request_cur - Helper function to finish the current request chunk.
3046  * @rq: the request to finish the current chunk for
3047  * @error:    block status code
3048  *
3049  * Description:
3050  *     Complete the current consecutively mapped chunk from @rq.  Must
3051  *     be called with queue lock held.
3052  *
3053  * Return:
3054  *     %false - we are done with this request
3055  *     %true  - still buffers pending for this request
3056  */
__blk_end_request_cur(struct request * rq,blk_status_t error)3057 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3058 {
3059 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3060 }
3061 EXPORT_SYMBOL(__blk_end_request_cur);
3062 
blk_rq_bio_prep(struct request_queue * q,struct request * rq,struct bio * bio)3063 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3064 		     struct bio *bio)
3065 {
3066 	if (bio_has_data(bio))
3067 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3068 	else if (bio_op(bio) == REQ_OP_DISCARD)
3069 		rq->nr_phys_segments = 1;
3070 
3071 	rq->__data_len = bio->bi_iter.bi_size;
3072 	rq->bio = rq->biotail = bio;
3073 
3074 	if (bio->bi_disk)
3075 		rq->rq_disk = bio->bi_disk;
3076 }
3077 
3078 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3079 /**
3080  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3081  * @rq: the request to be flushed
3082  *
3083  * Description:
3084  *     Flush all pages in @rq.
3085  */
rq_flush_dcache_pages(struct request * rq)3086 void rq_flush_dcache_pages(struct request *rq)
3087 {
3088 	struct req_iterator iter;
3089 	struct bio_vec bvec;
3090 
3091 	rq_for_each_segment(bvec, rq, iter)
3092 		flush_dcache_page(bvec.bv_page);
3093 }
3094 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3095 #endif
3096 
3097 /**
3098  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3099  * @q : the queue of the device being checked
3100  *
3101  * Description:
3102  *    Check if underlying low-level drivers of a device are busy.
3103  *    If the drivers want to export their busy state, they must set own
3104  *    exporting function using blk_queue_lld_busy() first.
3105  *
3106  *    Basically, this function is used only by request stacking drivers
3107  *    to stop dispatching requests to underlying devices when underlying
3108  *    devices are busy.  This behavior helps more I/O merging on the queue
3109  *    of the request stacking driver and prevents I/O throughput regression
3110  *    on burst I/O load.
3111  *
3112  * Return:
3113  *    0 - Not busy (The request stacking driver should dispatch request)
3114  *    1 - Busy (The request stacking driver should stop dispatching request)
3115  */
blk_lld_busy(struct request_queue * q)3116 int blk_lld_busy(struct request_queue *q)
3117 {
3118 	if (q->lld_busy_fn)
3119 		return q->lld_busy_fn(q);
3120 
3121 	return 0;
3122 }
3123 EXPORT_SYMBOL_GPL(blk_lld_busy);
3124 
3125 /**
3126  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3127  * @rq: the clone request to be cleaned up
3128  *
3129  * Description:
3130  *     Free all bios in @rq for a cloned request.
3131  */
blk_rq_unprep_clone(struct request * rq)3132 void blk_rq_unprep_clone(struct request *rq)
3133 {
3134 	struct bio *bio;
3135 
3136 	while ((bio = rq->bio) != NULL) {
3137 		rq->bio = bio->bi_next;
3138 
3139 		bio_put(bio);
3140 	}
3141 }
3142 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3143 
3144 /*
3145  * Copy attributes of the original request to the clone request.
3146  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3147  */
__blk_rq_prep_clone(struct request * dst,struct request * src)3148 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3149 {
3150 	dst->cpu = src->cpu;
3151 	dst->__sector = blk_rq_pos(src);
3152 	dst->__data_len = blk_rq_bytes(src);
3153 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3154 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3155 		dst->special_vec = src->special_vec;
3156 	}
3157 	dst->nr_phys_segments = src->nr_phys_segments;
3158 	dst->ioprio = src->ioprio;
3159 	dst->extra_len = src->extra_len;
3160 }
3161 
3162 /**
3163  * blk_rq_prep_clone - Helper function to setup clone request
3164  * @rq: the request to be setup
3165  * @rq_src: original request to be cloned
3166  * @bs: bio_set that bios for clone are allocated from
3167  * @gfp_mask: memory allocation mask for bio
3168  * @bio_ctr: setup function to be called for each clone bio.
3169  *           Returns %0 for success, non %0 for failure.
3170  * @data: private data to be passed to @bio_ctr
3171  *
3172  * Description:
3173  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3174  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3175  *     are not copied, and copying such parts is the caller's responsibility.
3176  *     Also, pages which the original bios are pointing to are not copied
3177  *     and the cloned bios just point same pages.
3178  *     So cloned bios must be completed before original bios, which means
3179  *     the caller must complete @rq before @rq_src.
3180  */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3181 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3182 		      struct bio_set *bs, gfp_t gfp_mask,
3183 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3184 		      void *data)
3185 {
3186 	struct bio *bio, *bio_src;
3187 
3188 	if (!bs)
3189 		bs = fs_bio_set;
3190 
3191 	__rq_for_each_bio(bio_src, rq_src) {
3192 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3193 		if (!bio)
3194 			goto free_and_out;
3195 
3196 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3197 			goto free_and_out;
3198 
3199 		if (rq->bio) {
3200 			rq->biotail->bi_next = bio;
3201 			rq->biotail = bio;
3202 		} else
3203 			rq->bio = rq->biotail = bio;
3204 	}
3205 
3206 	__blk_rq_prep_clone(rq, rq_src);
3207 
3208 	return 0;
3209 
3210 free_and_out:
3211 	if (bio)
3212 		bio_put(bio);
3213 	blk_rq_unprep_clone(rq);
3214 
3215 	return -ENOMEM;
3216 }
3217 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3218 
kblockd_schedule_work(struct work_struct * work)3219 int kblockd_schedule_work(struct work_struct *work)
3220 {
3221 	return queue_work(kblockd_workqueue, work);
3222 }
3223 EXPORT_SYMBOL(kblockd_schedule_work);
3224 
kblockd_schedule_work_on(int cpu,struct work_struct * work)3225 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3226 {
3227 	return queue_work_on(cpu, kblockd_workqueue, work);
3228 }
3229 EXPORT_SYMBOL(kblockd_schedule_work_on);
3230 
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)3231 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3232 				unsigned long delay)
3233 {
3234 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3235 }
3236 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3237 
kblockd_schedule_delayed_work(struct delayed_work * dwork,unsigned long delay)3238 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3239 				  unsigned long delay)
3240 {
3241 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3242 }
3243 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3244 
kblockd_schedule_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)3245 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3246 				     unsigned long delay)
3247 {
3248 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3249 }
3250 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3251 
3252 /**
3253  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3254  * @plug:	The &struct blk_plug that needs to be initialized
3255  *
3256  * Description:
3257  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3258  *   pending I/O should the task end up blocking between blk_start_plug() and
3259  *   blk_finish_plug(). This is important from a performance perspective, but
3260  *   also ensures that we don't deadlock. For instance, if the task is blocking
3261  *   for a memory allocation, memory reclaim could end up wanting to free a
3262  *   page belonging to that request that is currently residing in our private
3263  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3264  *   this kind of deadlock.
3265  */
blk_start_plug(struct blk_plug * plug)3266 void blk_start_plug(struct blk_plug *plug)
3267 {
3268 	struct task_struct *tsk = current;
3269 
3270 	/*
3271 	 * If this is a nested plug, don't actually assign it.
3272 	 */
3273 	if (tsk->plug)
3274 		return;
3275 
3276 	INIT_LIST_HEAD(&plug->list);
3277 	INIT_LIST_HEAD(&plug->mq_list);
3278 	INIT_LIST_HEAD(&plug->cb_list);
3279 	/*
3280 	 * Store ordering should not be needed here, since a potential
3281 	 * preempt will imply a full memory barrier
3282 	 */
3283 	tsk->plug = plug;
3284 }
3285 EXPORT_SYMBOL(blk_start_plug);
3286 
plug_rq_cmp(void * priv,struct list_head * a,struct list_head * b)3287 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3288 {
3289 	struct request *rqa = container_of(a, struct request, queuelist);
3290 	struct request *rqb = container_of(b, struct request, queuelist);
3291 
3292 	return !(rqa->q < rqb->q ||
3293 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3294 }
3295 
3296 /*
3297  * If 'from_schedule' is true, then postpone the dispatch of requests
3298  * until a safe kblockd context. We due this to avoid accidental big
3299  * additional stack usage in driver dispatch, in places where the originally
3300  * plugger did not intend it.
3301  */
queue_unplugged(struct request_queue * q,unsigned int depth,bool from_schedule)3302 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3303 			    bool from_schedule)
3304 	__releases(q->queue_lock)
3305 {
3306 	lockdep_assert_held(q->queue_lock);
3307 
3308 	trace_block_unplug(q, depth, !from_schedule);
3309 
3310 	if (from_schedule)
3311 		blk_run_queue_async(q);
3312 	else
3313 		__blk_run_queue(q);
3314 	spin_unlock(q->queue_lock);
3315 }
3316 
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)3317 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3318 {
3319 	LIST_HEAD(callbacks);
3320 
3321 	while (!list_empty(&plug->cb_list)) {
3322 		list_splice_init(&plug->cb_list, &callbacks);
3323 
3324 		while (!list_empty(&callbacks)) {
3325 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3326 							  struct blk_plug_cb,
3327 							  list);
3328 			list_del(&cb->list);
3329 			cb->callback(cb, from_schedule);
3330 		}
3331 	}
3332 }
3333 
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)3334 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3335 				      int size)
3336 {
3337 	struct blk_plug *plug = current->plug;
3338 	struct blk_plug_cb *cb;
3339 
3340 	if (!plug)
3341 		return NULL;
3342 
3343 	list_for_each_entry(cb, &plug->cb_list, list)
3344 		if (cb->callback == unplug && cb->data == data)
3345 			return cb;
3346 
3347 	/* Not currently on the callback list */
3348 	BUG_ON(size < sizeof(*cb));
3349 	cb = kzalloc(size, GFP_ATOMIC);
3350 	if (cb) {
3351 		cb->data = data;
3352 		cb->callback = unplug;
3353 		list_add(&cb->list, &plug->cb_list);
3354 	}
3355 	return cb;
3356 }
3357 EXPORT_SYMBOL(blk_check_plugged);
3358 
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)3359 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3360 {
3361 	struct request_queue *q;
3362 	unsigned long flags;
3363 	struct request *rq;
3364 	LIST_HEAD(list);
3365 	unsigned int depth;
3366 
3367 	flush_plug_callbacks(plug, from_schedule);
3368 
3369 	if (!list_empty(&plug->mq_list))
3370 		blk_mq_flush_plug_list(plug, from_schedule);
3371 
3372 	if (list_empty(&plug->list))
3373 		return;
3374 
3375 	list_splice_init(&plug->list, &list);
3376 
3377 	list_sort(NULL, &list, plug_rq_cmp);
3378 
3379 	q = NULL;
3380 	depth = 0;
3381 
3382 	/*
3383 	 * Save and disable interrupts here, to avoid doing it for every
3384 	 * queue lock we have to take.
3385 	 */
3386 	local_irq_save(flags);
3387 	while (!list_empty(&list)) {
3388 		rq = list_entry_rq(list.next);
3389 		list_del_init(&rq->queuelist);
3390 		BUG_ON(!rq->q);
3391 		if (rq->q != q) {
3392 			/*
3393 			 * This drops the queue lock
3394 			 */
3395 			if (q)
3396 				queue_unplugged(q, depth, from_schedule);
3397 			q = rq->q;
3398 			depth = 0;
3399 			spin_lock(q->queue_lock);
3400 		}
3401 
3402 		/*
3403 		 * Short-circuit if @q is dead
3404 		 */
3405 		if (unlikely(blk_queue_dying(q))) {
3406 			__blk_end_request_all(rq, BLK_STS_IOERR);
3407 			continue;
3408 		}
3409 
3410 		/*
3411 		 * rq is already accounted, so use raw insert
3412 		 */
3413 		if (op_is_flush(rq->cmd_flags))
3414 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3415 		else
3416 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3417 
3418 		depth++;
3419 	}
3420 
3421 	/*
3422 	 * This drops the queue lock
3423 	 */
3424 	if (q)
3425 		queue_unplugged(q, depth, from_schedule);
3426 
3427 	local_irq_restore(flags);
3428 }
3429 
blk_finish_plug(struct blk_plug * plug)3430 void blk_finish_plug(struct blk_plug *plug)
3431 {
3432 	if (plug != current->plug)
3433 		return;
3434 	blk_flush_plug_list(plug, false);
3435 
3436 	current->plug = NULL;
3437 }
3438 EXPORT_SYMBOL(blk_finish_plug);
3439 
3440 #ifdef CONFIG_PM
3441 /**
3442  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3443  * @q: the queue of the device
3444  * @dev: the device the queue belongs to
3445  *
3446  * Description:
3447  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3448  *    @dev. Drivers that want to take advantage of request-based runtime PM
3449  *    should call this function after @dev has been initialized, and its
3450  *    request queue @q has been allocated, and runtime PM for it can not happen
3451  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3452  *    cases, driver should call this function before any I/O has taken place.
3453  *
3454  *    This function takes care of setting up using auto suspend for the device,
3455  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3456  *    until an updated value is either set by user or by driver. Drivers do
3457  *    not need to touch other autosuspend settings.
3458  *
3459  *    The block layer runtime PM is request based, so only works for drivers
3460  *    that use request as their IO unit instead of those directly use bio's.
3461  */
blk_pm_runtime_init(struct request_queue * q,struct device * dev)3462 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3463 {
3464 	/* Don't enable runtime PM for blk-mq until it is ready */
3465 	if (q->mq_ops) {
3466 		pm_runtime_disable(dev);
3467 		return;
3468 	}
3469 
3470 	q->dev = dev;
3471 	q->rpm_status = RPM_ACTIVE;
3472 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3473 	pm_runtime_use_autosuspend(q->dev);
3474 }
3475 EXPORT_SYMBOL(blk_pm_runtime_init);
3476 
3477 /**
3478  * blk_pre_runtime_suspend - Pre runtime suspend check
3479  * @q: the queue of the device
3480  *
3481  * Description:
3482  *    This function will check if runtime suspend is allowed for the device
3483  *    by examining if there are any requests pending in the queue. If there
3484  *    are requests pending, the device can not be runtime suspended; otherwise,
3485  *    the queue's status will be updated to SUSPENDING and the driver can
3486  *    proceed to suspend the device.
3487  *
3488  *    For the not allowed case, we mark last busy for the device so that
3489  *    runtime PM core will try to autosuspend it some time later.
3490  *
3491  *    This function should be called near the start of the device's
3492  *    runtime_suspend callback.
3493  *
3494  * Return:
3495  *    0		- OK to runtime suspend the device
3496  *    -EBUSY	- Device should not be runtime suspended
3497  */
blk_pre_runtime_suspend(struct request_queue * q)3498 int blk_pre_runtime_suspend(struct request_queue *q)
3499 {
3500 	int ret = 0;
3501 
3502 	if (!q->dev)
3503 		return ret;
3504 
3505 	spin_lock_irq(q->queue_lock);
3506 	if (q->nr_pending) {
3507 		ret = -EBUSY;
3508 		pm_runtime_mark_last_busy(q->dev);
3509 	} else {
3510 		q->rpm_status = RPM_SUSPENDING;
3511 	}
3512 	spin_unlock_irq(q->queue_lock);
3513 	return ret;
3514 }
3515 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3516 
3517 /**
3518  * blk_post_runtime_suspend - Post runtime suspend processing
3519  * @q: the queue of the device
3520  * @err: return value of the device's runtime_suspend function
3521  *
3522  * Description:
3523  *    Update the queue's runtime status according to the return value of the
3524  *    device's runtime suspend function and mark last busy for the device so
3525  *    that PM core will try to auto suspend the device at a later time.
3526  *
3527  *    This function should be called near the end of the device's
3528  *    runtime_suspend callback.
3529  */
blk_post_runtime_suspend(struct request_queue * q,int err)3530 void blk_post_runtime_suspend(struct request_queue *q, int err)
3531 {
3532 	if (!q->dev)
3533 		return;
3534 
3535 	spin_lock_irq(q->queue_lock);
3536 	if (!err) {
3537 		q->rpm_status = RPM_SUSPENDED;
3538 	} else {
3539 		q->rpm_status = RPM_ACTIVE;
3540 		pm_runtime_mark_last_busy(q->dev);
3541 	}
3542 	spin_unlock_irq(q->queue_lock);
3543 }
3544 EXPORT_SYMBOL(blk_post_runtime_suspend);
3545 
3546 /**
3547  * blk_pre_runtime_resume - Pre runtime resume processing
3548  * @q: the queue of the device
3549  *
3550  * Description:
3551  *    Update the queue's runtime status to RESUMING in preparation for the
3552  *    runtime resume of the device.
3553  *
3554  *    This function should be called near the start of the device's
3555  *    runtime_resume callback.
3556  */
blk_pre_runtime_resume(struct request_queue * q)3557 void blk_pre_runtime_resume(struct request_queue *q)
3558 {
3559 	if (!q->dev)
3560 		return;
3561 
3562 	spin_lock_irq(q->queue_lock);
3563 	q->rpm_status = RPM_RESUMING;
3564 	spin_unlock_irq(q->queue_lock);
3565 }
3566 EXPORT_SYMBOL(blk_pre_runtime_resume);
3567 
3568 /**
3569  * blk_post_runtime_resume - Post runtime resume processing
3570  * @q: the queue of the device
3571  * @err: return value of the device's runtime_resume function
3572  *
3573  * Description:
3574  *    Update the queue's runtime status according to the return value of the
3575  *    device's runtime_resume function. If it is successfully resumed, process
3576  *    the requests that are queued into the device's queue when it is resuming
3577  *    and then mark last busy and initiate autosuspend for it.
3578  *
3579  *    This function should be called near the end of the device's
3580  *    runtime_resume callback.
3581  */
blk_post_runtime_resume(struct request_queue * q,int err)3582 void blk_post_runtime_resume(struct request_queue *q, int err)
3583 {
3584 	if (!q->dev)
3585 		return;
3586 
3587 	spin_lock_irq(q->queue_lock);
3588 	if (!err) {
3589 		q->rpm_status = RPM_ACTIVE;
3590 		__blk_run_queue(q);
3591 		pm_runtime_mark_last_busy(q->dev);
3592 		pm_request_autosuspend(q->dev);
3593 	} else {
3594 		q->rpm_status = RPM_SUSPENDED;
3595 	}
3596 	spin_unlock_irq(q->queue_lock);
3597 }
3598 EXPORT_SYMBOL(blk_post_runtime_resume);
3599 
3600 /**
3601  * blk_set_runtime_active - Force runtime status of the queue to be active
3602  * @q: the queue of the device
3603  *
3604  * If the device is left runtime suspended during system suspend the resume
3605  * hook typically resumes the device and corrects runtime status
3606  * accordingly. However, that does not affect the queue runtime PM status
3607  * which is still "suspended". This prevents processing requests from the
3608  * queue.
3609  *
3610  * This function can be used in driver's resume hook to correct queue
3611  * runtime PM status and re-enable peeking requests from the queue. It
3612  * should be called before first request is added to the queue.
3613  */
blk_set_runtime_active(struct request_queue * q)3614 void blk_set_runtime_active(struct request_queue *q)
3615 {
3616 	spin_lock_irq(q->queue_lock);
3617 	q->rpm_status = RPM_ACTIVE;
3618 	pm_runtime_mark_last_busy(q->dev);
3619 	pm_request_autosuspend(q->dev);
3620 	spin_unlock_irq(q->queue_lock);
3621 }
3622 EXPORT_SYMBOL(blk_set_runtime_active);
3623 #endif
3624 
blk_dev_init(void)3625 int __init blk_dev_init(void)
3626 {
3627 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3628 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3629 			FIELD_SIZEOF(struct request, cmd_flags));
3630 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3631 			FIELD_SIZEOF(struct bio, bi_opf));
3632 
3633 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3634 	kblockd_workqueue = alloc_workqueue("kblockd",
3635 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3636 	if (!kblockd_workqueue)
3637 		panic("Failed to create kblockd\n");
3638 
3639 	request_cachep = kmem_cache_create("blkdev_requests",
3640 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3641 
3642 	blk_requestq_cachep = kmem_cache_create("request_queue",
3643 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3644 
3645 #ifdef CONFIG_DEBUG_FS
3646 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3647 #endif
3648 
3649 	return 0;
3650 }
3651