1 /* bnx2x_cmn.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <net/busy_poll.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
34 #include "bnx2x_sp.h"
35
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
39 static int bnx2x_poll(struct napi_struct *napi, int budget);
40
bnx2x_add_all_napi_cnic(struct bnx2x * bp)41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
42 {
43 int i;
44
45 /* Add NAPI objects */
46 for_each_rx_queue_cnic(bp, i) {
47 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
48 bnx2x_poll, NAPI_POLL_WEIGHT);
49 }
50 }
51
bnx2x_add_all_napi(struct bnx2x * bp)52 static void bnx2x_add_all_napi(struct bnx2x *bp)
53 {
54 int i;
55
56 /* Add NAPI objects */
57 for_each_eth_queue(bp, i) {
58 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
59 bnx2x_poll, NAPI_POLL_WEIGHT);
60 }
61 }
62
bnx2x_calc_num_queues(struct bnx2x * bp)63 static int bnx2x_calc_num_queues(struct bnx2x *bp)
64 {
65 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
66
67 /* Reduce memory usage in kdump environment by using only one queue */
68 if (is_kdump_kernel())
69 nq = 1;
70
71 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
72 return nq;
73 }
74
75 /**
76 * bnx2x_move_fp - move content of the fastpath structure.
77 *
78 * @bp: driver handle
79 * @from: source FP index
80 * @to: destination FP index
81 *
82 * Makes sure the contents of the bp->fp[to].napi is kept
83 * intact. This is done by first copying the napi struct from
84 * the target to the source, and then mem copying the entire
85 * source onto the target. Update txdata pointers and related
86 * content.
87 */
bnx2x_move_fp(struct bnx2x * bp,int from,int to)88 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
89 {
90 struct bnx2x_fastpath *from_fp = &bp->fp[from];
91 struct bnx2x_fastpath *to_fp = &bp->fp[to];
92 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
93 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
94 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
95 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
96 int old_max_eth_txqs, new_max_eth_txqs;
97 int old_txdata_index = 0, new_txdata_index = 0;
98 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
99
100 /* Copy the NAPI object as it has been already initialized */
101 from_fp->napi = to_fp->napi;
102
103 /* Move bnx2x_fastpath contents */
104 memcpy(to_fp, from_fp, sizeof(*to_fp));
105 to_fp->index = to;
106
107 /* Retain the tpa_info of the original `to' version as we don't want
108 * 2 FPs to contain the same tpa_info pointer.
109 */
110 to_fp->tpa_info = old_tpa_info;
111
112 /* move sp_objs contents as well, as their indices match fp ones */
113 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
114
115 /* move fp_stats contents as well, as their indices match fp ones */
116 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
117
118 /* Update txdata pointers in fp and move txdata content accordingly:
119 * Each fp consumes 'max_cos' txdata structures, so the index should be
120 * decremented by max_cos x delta.
121 */
122
123 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
124 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
125 (bp)->max_cos;
126 if (from == FCOE_IDX(bp)) {
127 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
129 }
130
131 memcpy(&bp->bnx2x_txq[new_txdata_index],
132 &bp->bnx2x_txq[old_txdata_index],
133 sizeof(struct bnx2x_fp_txdata));
134 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
135 }
136
137 /**
138 * bnx2x_fill_fw_str - Fill buffer with FW version string.
139 *
140 * @bp: driver handle
141 * @buf: character buffer to fill with the fw name
142 * @buf_len: length of the above buffer
143 *
144 */
bnx2x_fill_fw_str(struct bnx2x * bp,char * buf,size_t buf_len)145 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
146 {
147 if (IS_PF(bp)) {
148 u8 phy_fw_ver[PHY_FW_VER_LEN];
149
150 phy_fw_ver[0] = '\0';
151 bnx2x_get_ext_phy_fw_version(&bp->link_params,
152 phy_fw_ver, PHY_FW_VER_LEN);
153 strlcpy(buf, bp->fw_ver, buf_len);
154 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
155 "bc %d.%d.%d%s%s",
156 (bp->common.bc_ver & 0xff0000) >> 16,
157 (bp->common.bc_ver & 0xff00) >> 8,
158 (bp->common.bc_ver & 0xff),
159 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
160 } else {
161 bnx2x_vf_fill_fw_str(bp, buf, buf_len);
162 }
163 }
164
165 /**
166 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
167 *
168 * @bp: driver handle
169 * @delta: number of eth queues which were not allocated
170 */
bnx2x_shrink_eth_fp(struct bnx2x * bp,int delta)171 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
172 {
173 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
174
175 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
176 * backward along the array could cause memory to be overridden
177 */
178 for (cos = 1; cos < bp->max_cos; cos++) {
179 for (i = 0; i < old_eth_num - delta; i++) {
180 struct bnx2x_fastpath *fp = &bp->fp[i];
181 int new_idx = cos * (old_eth_num - delta) + i;
182
183 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
184 sizeof(struct bnx2x_fp_txdata));
185 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
186 }
187 }
188 }
189
190 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
191
192 /* free skb in the packet ring at pos idx
193 * return idx of last bd freed
194 */
bnx2x_free_tx_pkt(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,u16 idx,unsigned int * pkts_compl,unsigned int * bytes_compl)195 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
196 u16 idx, unsigned int *pkts_compl,
197 unsigned int *bytes_compl)
198 {
199 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
200 struct eth_tx_start_bd *tx_start_bd;
201 struct eth_tx_bd *tx_data_bd;
202 struct sk_buff *skb = tx_buf->skb;
203 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
204 int nbd;
205 u16 split_bd_len = 0;
206
207 /* prefetch skb end pointer to speedup dev_kfree_skb() */
208 prefetch(&skb->end);
209
210 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
211 txdata->txq_index, idx, tx_buf, skb);
212
213 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
214
215 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
216 #ifdef BNX2X_STOP_ON_ERROR
217 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
218 BNX2X_ERR("BAD nbd!\n");
219 bnx2x_panic();
220 }
221 #endif
222 new_cons = nbd + tx_buf->first_bd;
223
224 /* Get the next bd */
225 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
226
227 /* Skip a parse bd... */
228 --nbd;
229 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
230
231 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
232 /* Skip second parse bd... */
233 --nbd;
234 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
235 }
236
237 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
238 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
239 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
240 split_bd_len = BD_UNMAP_LEN(tx_data_bd);
241 --nbd;
242 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
243 }
244
245 /* unmap first bd */
246 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
247 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
248 DMA_TO_DEVICE);
249
250 /* now free frags */
251 while (nbd > 0) {
252
253 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
254 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
255 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
256 if (--nbd)
257 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
258 }
259
260 /* release skb */
261 WARN_ON(!skb);
262 if (likely(skb)) {
263 (*pkts_compl)++;
264 (*bytes_compl) += skb->len;
265 dev_kfree_skb_any(skb);
266 }
267
268 tx_buf->first_bd = 0;
269 tx_buf->skb = NULL;
270
271 return new_cons;
272 }
273
bnx2x_tx_int(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata)274 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
275 {
276 struct netdev_queue *txq;
277 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
278 unsigned int pkts_compl = 0, bytes_compl = 0;
279
280 #ifdef BNX2X_STOP_ON_ERROR
281 if (unlikely(bp->panic))
282 return -1;
283 #endif
284
285 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
286 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
287 sw_cons = txdata->tx_pkt_cons;
288
289 /* Ensure subsequent loads occur after hw_cons */
290 smp_rmb();
291
292 while (sw_cons != hw_cons) {
293 u16 pkt_cons;
294
295 pkt_cons = TX_BD(sw_cons);
296
297 DP(NETIF_MSG_TX_DONE,
298 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
299 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
300
301 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
302 &pkts_compl, &bytes_compl);
303
304 sw_cons++;
305 }
306
307 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
308
309 txdata->tx_pkt_cons = sw_cons;
310 txdata->tx_bd_cons = bd_cons;
311
312 /* Need to make the tx_bd_cons update visible to start_xmit()
313 * before checking for netif_tx_queue_stopped(). Without the
314 * memory barrier, there is a small possibility that
315 * start_xmit() will miss it and cause the queue to be stopped
316 * forever.
317 * On the other hand we need an rmb() here to ensure the proper
318 * ordering of bit testing in the following
319 * netif_tx_queue_stopped(txq) call.
320 */
321 smp_mb();
322
323 if (unlikely(netif_tx_queue_stopped(txq))) {
324 /* Taking tx_lock() is needed to prevent re-enabling the queue
325 * while it's empty. This could have happen if rx_action() gets
326 * suspended in bnx2x_tx_int() after the condition before
327 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
328 *
329 * stops the queue->sees fresh tx_bd_cons->releases the queue->
330 * sends some packets consuming the whole queue again->
331 * stops the queue
332 */
333
334 __netif_tx_lock(txq, smp_processor_id());
335
336 if ((netif_tx_queue_stopped(txq)) &&
337 (bp->state == BNX2X_STATE_OPEN) &&
338 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
339 netif_tx_wake_queue(txq);
340
341 __netif_tx_unlock(txq);
342 }
343 return 0;
344 }
345
bnx2x_update_last_max_sge(struct bnx2x_fastpath * fp,u16 idx)346 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
347 u16 idx)
348 {
349 u16 last_max = fp->last_max_sge;
350
351 if (SUB_S16(idx, last_max) > 0)
352 fp->last_max_sge = idx;
353 }
354
bnx2x_update_sge_prod(struct bnx2x_fastpath * fp,u16 sge_len,struct eth_end_agg_rx_cqe * cqe)355 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
356 u16 sge_len,
357 struct eth_end_agg_rx_cqe *cqe)
358 {
359 struct bnx2x *bp = fp->bp;
360 u16 last_max, last_elem, first_elem;
361 u16 delta = 0;
362 u16 i;
363
364 if (!sge_len)
365 return;
366
367 /* First mark all used pages */
368 for (i = 0; i < sge_len; i++)
369 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
370 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
371
372 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
373 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
374
375 /* Here we assume that the last SGE index is the biggest */
376 prefetch((void *)(fp->sge_mask));
377 bnx2x_update_last_max_sge(fp,
378 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
379
380 last_max = RX_SGE(fp->last_max_sge);
381 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
382 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
383
384 /* If ring is not full */
385 if (last_elem + 1 != first_elem)
386 last_elem++;
387
388 /* Now update the prod */
389 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
390 if (likely(fp->sge_mask[i]))
391 break;
392
393 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
394 delta += BIT_VEC64_ELEM_SZ;
395 }
396
397 if (delta > 0) {
398 fp->rx_sge_prod += delta;
399 /* clear page-end entries */
400 bnx2x_clear_sge_mask_next_elems(fp);
401 }
402
403 DP(NETIF_MSG_RX_STATUS,
404 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
405 fp->last_max_sge, fp->rx_sge_prod);
406 }
407
408 /* Get Toeplitz hash value in the skb using the value from the
409 * CQE (calculated by HW).
410 */
bnx2x_get_rxhash(const struct bnx2x * bp,const struct eth_fast_path_rx_cqe * cqe,enum pkt_hash_types * rxhash_type)411 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
412 const struct eth_fast_path_rx_cqe *cqe,
413 enum pkt_hash_types *rxhash_type)
414 {
415 /* Get Toeplitz hash from CQE */
416 if ((bp->dev->features & NETIF_F_RXHASH) &&
417 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
418 enum eth_rss_hash_type htype;
419
420 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
421 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
422 (htype == TCP_IPV6_HASH_TYPE)) ?
423 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
424
425 return le32_to_cpu(cqe->rss_hash_result);
426 }
427 *rxhash_type = PKT_HASH_TYPE_NONE;
428 return 0;
429 }
430
bnx2x_tpa_start(struct bnx2x_fastpath * fp,u16 queue,u16 cons,u16 prod,struct eth_fast_path_rx_cqe * cqe)431 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
432 u16 cons, u16 prod,
433 struct eth_fast_path_rx_cqe *cqe)
434 {
435 struct bnx2x *bp = fp->bp;
436 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
437 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
438 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
439 dma_addr_t mapping;
440 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
441 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
442
443 /* print error if current state != stop */
444 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
445 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
446
447 /* Try to map an empty data buffer from the aggregation info */
448 mapping = dma_map_single(&bp->pdev->dev,
449 first_buf->data + NET_SKB_PAD,
450 fp->rx_buf_size, DMA_FROM_DEVICE);
451 /*
452 * ...if it fails - move the skb from the consumer to the producer
453 * and set the current aggregation state as ERROR to drop it
454 * when TPA_STOP arrives.
455 */
456
457 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
458 /* Move the BD from the consumer to the producer */
459 bnx2x_reuse_rx_data(fp, cons, prod);
460 tpa_info->tpa_state = BNX2X_TPA_ERROR;
461 return;
462 }
463
464 /* move empty data from pool to prod */
465 prod_rx_buf->data = first_buf->data;
466 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
467 /* point prod_bd to new data */
468 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
469 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
470
471 /* move partial skb from cons to pool (don't unmap yet) */
472 *first_buf = *cons_rx_buf;
473
474 /* mark bin state as START */
475 tpa_info->parsing_flags =
476 le16_to_cpu(cqe->pars_flags.flags);
477 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
478 tpa_info->tpa_state = BNX2X_TPA_START;
479 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
480 tpa_info->placement_offset = cqe->placement_offset;
481 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
482 if (fp->mode == TPA_MODE_GRO) {
483 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
484 tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
485 tpa_info->gro_size = gro_size;
486 }
487
488 #ifdef BNX2X_STOP_ON_ERROR
489 fp->tpa_queue_used |= (1 << queue);
490 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
491 fp->tpa_queue_used);
492 #endif
493 }
494
495 /* Timestamp option length allowed for TPA aggregation:
496 *
497 * nop nop kind length echo val
498 */
499 #define TPA_TSTAMP_OPT_LEN 12
500 /**
501 * bnx2x_set_gro_params - compute GRO values
502 *
503 * @skb: packet skb
504 * @parsing_flags: parsing flags from the START CQE
505 * @len_on_bd: total length of the first packet for the
506 * aggregation.
507 * @pkt_len: length of all segments
508 *
509 * Approximate value of the MSS for this aggregation calculated using
510 * the first packet of it.
511 * Compute number of aggregated segments, and gso_type.
512 */
bnx2x_set_gro_params(struct sk_buff * skb,u16 parsing_flags,u16 len_on_bd,unsigned int pkt_len,u16 num_of_coalesced_segs)513 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
514 u16 len_on_bd, unsigned int pkt_len,
515 u16 num_of_coalesced_segs)
516 {
517 /* TPA aggregation won't have either IP options or TCP options
518 * other than timestamp or IPv6 extension headers.
519 */
520 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
521
522 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
523 PRS_FLAG_OVERETH_IPV6) {
524 hdrs_len += sizeof(struct ipv6hdr);
525 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
526 } else {
527 hdrs_len += sizeof(struct iphdr);
528 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
529 }
530
531 /* Check if there was a TCP timestamp, if there is it's will
532 * always be 12 bytes length: nop nop kind length echo val.
533 *
534 * Otherwise FW would close the aggregation.
535 */
536 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
537 hdrs_len += TPA_TSTAMP_OPT_LEN;
538
539 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
540
541 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
542 * to skb_shinfo(skb)->gso_segs
543 */
544 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
545 }
546
bnx2x_alloc_rx_sge(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)547 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
548 u16 index, gfp_t gfp_mask)
549 {
550 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
551 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
552 struct bnx2x_alloc_pool *pool = &fp->page_pool;
553 dma_addr_t mapping;
554
555 if (!pool->page) {
556 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
557 if (unlikely(!pool->page))
558 return -ENOMEM;
559
560 pool->offset = 0;
561 }
562
563 mapping = dma_map_page(&bp->pdev->dev, pool->page,
564 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
565 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
566 BNX2X_ERR("Can't map sge\n");
567 return -ENOMEM;
568 }
569
570 sw_buf->page = pool->page;
571 sw_buf->offset = pool->offset;
572
573 dma_unmap_addr_set(sw_buf, mapping, mapping);
574
575 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
576 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
577
578 pool->offset += SGE_PAGE_SIZE;
579 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
580 get_page(pool->page);
581 else
582 pool->page = NULL;
583 return 0;
584 }
585
bnx2x_fill_frag_skb(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct sk_buff * skb,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)586 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
587 struct bnx2x_agg_info *tpa_info,
588 u16 pages,
589 struct sk_buff *skb,
590 struct eth_end_agg_rx_cqe *cqe,
591 u16 cqe_idx)
592 {
593 struct sw_rx_page *rx_pg, old_rx_pg;
594 u32 i, frag_len, frag_size;
595 int err, j, frag_id = 0;
596 u16 len_on_bd = tpa_info->len_on_bd;
597 u16 full_page = 0, gro_size = 0;
598
599 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
600
601 if (fp->mode == TPA_MODE_GRO) {
602 gro_size = tpa_info->gro_size;
603 full_page = tpa_info->full_page;
604 }
605
606 /* This is needed in order to enable forwarding support */
607 if (frag_size)
608 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
609 le16_to_cpu(cqe->pkt_len),
610 le16_to_cpu(cqe->num_of_coalesced_segs));
611
612 #ifdef BNX2X_STOP_ON_ERROR
613 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
614 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
615 pages, cqe_idx);
616 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
617 bnx2x_panic();
618 return -EINVAL;
619 }
620 #endif
621
622 /* Run through the SGL and compose the fragmented skb */
623 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
624 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
625
626 /* FW gives the indices of the SGE as if the ring is an array
627 (meaning that "next" element will consume 2 indices) */
628 if (fp->mode == TPA_MODE_GRO)
629 frag_len = min_t(u32, frag_size, (u32)full_page);
630 else /* LRO */
631 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
632
633 rx_pg = &fp->rx_page_ring[sge_idx];
634 old_rx_pg = *rx_pg;
635
636 /* If we fail to allocate a substitute page, we simply stop
637 where we are and drop the whole packet */
638 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
639 if (unlikely(err)) {
640 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
641 return err;
642 }
643
644 dma_unmap_page(&bp->pdev->dev,
645 dma_unmap_addr(&old_rx_pg, mapping),
646 SGE_PAGE_SIZE, DMA_FROM_DEVICE);
647 /* Add one frag and update the appropriate fields in the skb */
648 if (fp->mode == TPA_MODE_LRO)
649 skb_fill_page_desc(skb, j, old_rx_pg.page,
650 old_rx_pg.offset, frag_len);
651 else { /* GRO */
652 int rem;
653 int offset = 0;
654 for (rem = frag_len; rem > 0; rem -= gro_size) {
655 int len = rem > gro_size ? gro_size : rem;
656 skb_fill_page_desc(skb, frag_id++,
657 old_rx_pg.page,
658 old_rx_pg.offset + offset,
659 len);
660 if (offset)
661 get_page(old_rx_pg.page);
662 offset += len;
663 }
664 }
665
666 skb->data_len += frag_len;
667 skb->truesize += SGE_PAGES;
668 skb->len += frag_len;
669
670 frag_size -= frag_len;
671 }
672
673 return 0;
674 }
675
bnx2x_frag_free(const struct bnx2x_fastpath * fp,void * data)676 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
677 {
678 if (fp->rx_frag_size)
679 skb_free_frag(data);
680 else
681 kfree(data);
682 }
683
bnx2x_frag_alloc(const struct bnx2x_fastpath * fp,gfp_t gfp_mask)684 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
685 {
686 if (fp->rx_frag_size) {
687 /* GFP_KERNEL allocations are used only during initialization */
688 if (unlikely(gfpflags_allow_blocking(gfp_mask)))
689 return (void *)__get_free_page(gfp_mask);
690
691 return netdev_alloc_frag(fp->rx_frag_size);
692 }
693
694 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
695 }
696
697 #ifdef CONFIG_INET
bnx2x_gro_ip_csum(struct bnx2x * bp,struct sk_buff * skb)698 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
699 {
700 const struct iphdr *iph = ip_hdr(skb);
701 struct tcphdr *th;
702
703 skb_set_transport_header(skb, sizeof(struct iphdr));
704 th = tcp_hdr(skb);
705
706 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
707 iph->saddr, iph->daddr, 0);
708 }
709
bnx2x_gro_ipv6_csum(struct bnx2x * bp,struct sk_buff * skb)710 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
711 {
712 struct ipv6hdr *iph = ipv6_hdr(skb);
713 struct tcphdr *th;
714
715 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
716 th = tcp_hdr(skb);
717
718 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
719 &iph->saddr, &iph->daddr, 0);
720 }
721
bnx2x_gro_csum(struct bnx2x * bp,struct sk_buff * skb,void (* gro_func)(struct bnx2x *,struct sk_buff *))722 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
723 void (*gro_func)(struct bnx2x*, struct sk_buff*))
724 {
725 skb_reset_network_header(skb);
726 gro_func(bp, skb);
727 tcp_gro_complete(skb);
728 }
729 #endif
730
bnx2x_gro_receive(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct sk_buff * skb)731 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
732 struct sk_buff *skb)
733 {
734 #ifdef CONFIG_INET
735 if (skb_shinfo(skb)->gso_size) {
736 switch (be16_to_cpu(skb->protocol)) {
737 case ETH_P_IP:
738 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
739 break;
740 case ETH_P_IPV6:
741 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
742 break;
743 default:
744 WARN_ONCE(1, "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
745 be16_to_cpu(skb->protocol));
746 }
747 }
748 #endif
749 skb_record_rx_queue(skb, fp->rx_queue);
750 napi_gro_receive(&fp->napi, skb);
751 }
752
bnx2x_tpa_stop(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)753 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
754 struct bnx2x_agg_info *tpa_info,
755 u16 pages,
756 struct eth_end_agg_rx_cqe *cqe,
757 u16 cqe_idx)
758 {
759 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
760 u8 pad = tpa_info->placement_offset;
761 u16 len = tpa_info->len_on_bd;
762 struct sk_buff *skb = NULL;
763 u8 *new_data, *data = rx_buf->data;
764 u8 old_tpa_state = tpa_info->tpa_state;
765
766 tpa_info->tpa_state = BNX2X_TPA_STOP;
767
768 /* If we there was an error during the handling of the TPA_START -
769 * drop this aggregation.
770 */
771 if (old_tpa_state == BNX2X_TPA_ERROR)
772 goto drop;
773
774 /* Try to allocate the new data */
775 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
776 /* Unmap skb in the pool anyway, as we are going to change
777 pool entry status to BNX2X_TPA_STOP even if new skb allocation
778 fails. */
779 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
780 fp->rx_buf_size, DMA_FROM_DEVICE);
781 if (likely(new_data))
782 skb = build_skb(data, fp->rx_frag_size);
783
784 if (likely(skb)) {
785 #ifdef BNX2X_STOP_ON_ERROR
786 if (pad + len > fp->rx_buf_size) {
787 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
788 pad, len, fp->rx_buf_size);
789 bnx2x_panic();
790 return;
791 }
792 #endif
793
794 skb_reserve(skb, pad + NET_SKB_PAD);
795 skb_put(skb, len);
796 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
797
798 skb->protocol = eth_type_trans(skb, bp->dev);
799 skb->ip_summed = CHECKSUM_UNNECESSARY;
800
801 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
802 skb, cqe, cqe_idx)) {
803 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
804 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
805 bnx2x_gro_receive(bp, fp, skb);
806 } else {
807 DP(NETIF_MSG_RX_STATUS,
808 "Failed to allocate new pages - dropping packet!\n");
809 dev_kfree_skb_any(skb);
810 }
811
812 /* put new data in bin */
813 rx_buf->data = new_data;
814
815 return;
816 }
817 if (new_data)
818 bnx2x_frag_free(fp, new_data);
819 drop:
820 /* drop the packet and keep the buffer in the bin */
821 DP(NETIF_MSG_RX_STATUS,
822 "Failed to allocate or map a new skb - dropping packet!\n");
823 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
824 }
825
bnx2x_alloc_rx_data(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)826 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
827 u16 index, gfp_t gfp_mask)
828 {
829 u8 *data;
830 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
831 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
832 dma_addr_t mapping;
833
834 data = bnx2x_frag_alloc(fp, gfp_mask);
835 if (unlikely(data == NULL))
836 return -ENOMEM;
837
838 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
839 fp->rx_buf_size,
840 DMA_FROM_DEVICE);
841 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
842 bnx2x_frag_free(fp, data);
843 BNX2X_ERR("Can't map rx data\n");
844 return -ENOMEM;
845 }
846
847 rx_buf->data = data;
848 dma_unmap_addr_set(rx_buf, mapping, mapping);
849
850 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
851 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
852
853 return 0;
854 }
855
856 static
bnx2x_csum_validate(struct sk_buff * skb,union eth_rx_cqe * cqe,struct bnx2x_fastpath * fp,struct bnx2x_eth_q_stats * qstats)857 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
858 struct bnx2x_fastpath *fp,
859 struct bnx2x_eth_q_stats *qstats)
860 {
861 /* Do nothing if no L4 csum validation was done.
862 * We do not check whether IP csum was validated. For IPv4 we assume
863 * that if the card got as far as validating the L4 csum, it also
864 * validated the IP csum. IPv6 has no IP csum.
865 */
866 if (cqe->fast_path_cqe.status_flags &
867 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
868 return;
869
870 /* If L4 validation was done, check if an error was found. */
871
872 if (cqe->fast_path_cqe.type_error_flags &
873 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
874 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
875 qstats->hw_csum_err++;
876 else
877 skb->ip_summed = CHECKSUM_UNNECESSARY;
878 }
879
bnx2x_rx_int(struct bnx2x_fastpath * fp,int budget)880 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
881 {
882 struct bnx2x *bp = fp->bp;
883 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
884 u16 sw_comp_cons, sw_comp_prod;
885 int rx_pkt = 0;
886 union eth_rx_cqe *cqe;
887 struct eth_fast_path_rx_cqe *cqe_fp;
888
889 #ifdef BNX2X_STOP_ON_ERROR
890 if (unlikely(bp->panic))
891 return 0;
892 #endif
893 if (budget <= 0)
894 return rx_pkt;
895
896 bd_cons = fp->rx_bd_cons;
897 bd_prod = fp->rx_bd_prod;
898 bd_prod_fw = bd_prod;
899 sw_comp_cons = fp->rx_comp_cons;
900 sw_comp_prod = fp->rx_comp_prod;
901
902 comp_ring_cons = RCQ_BD(sw_comp_cons);
903 cqe = &fp->rx_comp_ring[comp_ring_cons];
904 cqe_fp = &cqe->fast_path_cqe;
905
906 DP(NETIF_MSG_RX_STATUS,
907 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
908
909 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
910 struct sw_rx_bd *rx_buf = NULL;
911 struct sk_buff *skb;
912 u8 cqe_fp_flags;
913 enum eth_rx_cqe_type cqe_fp_type;
914 u16 len, pad, queue;
915 u8 *data;
916 u32 rxhash;
917 enum pkt_hash_types rxhash_type;
918
919 #ifdef BNX2X_STOP_ON_ERROR
920 if (unlikely(bp->panic))
921 return 0;
922 #endif
923
924 bd_prod = RX_BD(bd_prod);
925 bd_cons = RX_BD(bd_cons);
926
927 /* A rmb() is required to ensure that the CQE is not read
928 * before it is written by the adapter DMA. PCI ordering
929 * rules will make sure the other fields are written before
930 * the marker at the end of struct eth_fast_path_rx_cqe
931 * but without rmb() a weakly ordered processor can process
932 * stale data. Without the barrier TPA state-machine might
933 * enter inconsistent state and kernel stack might be
934 * provided with incorrect packet description - these lead
935 * to various kernel crashed.
936 */
937 rmb();
938
939 cqe_fp_flags = cqe_fp->type_error_flags;
940 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
941
942 DP(NETIF_MSG_RX_STATUS,
943 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
944 CQE_TYPE(cqe_fp_flags),
945 cqe_fp_flags, cqe_fp->status_flags,
946 le32_to_cpu(cqe_fp->rss_hash_result),
947 le16_to_cpu(cqe_fp->vlan_tag),
948 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
949
950 /* is this a slowpath msg? */
951 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
952 bnx2x_sp_event(fp, cqe);
953 goto next_cqe;
954 }
955
956 rx_buf = &fp->rx_buf_ring[bd_cons];
957 data = rx_buf->data;
958
959 if (!CQE_TYPE_FAST(cqe_fp_type)) {
960 struct bnx2x_agg_info *tpa_info;
961 u16 frag_size, pages;
962 #ifdef BNX2X_STOP_ON_ERROR
963 /* sanity check */
964 if (fp->mode == TPA_MODE_DISABLED &&
965 (CQE_TYPE_START(cqe_fp_type) ||
966 CQE_TYPE_STOP(cqe_fp_type)))
967 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
968 CQE_TYPE(cqe_fp_type));
969 #endif
970
971 if (CQE_TYPE_START(cqe_fp_type)) {
972 u16 queue = cqe_fp->queue_index;
973 DP(NETIF_MSG_RX_STATUS,
974 "calling tpa_start on queue %d\n",
975 queue);
976
977 bnx2x_tpa_start(fp, queue,
978 bd_cons, bd_prod,
979 cqe_fp);
980
981 goto next_rx;
982 }
983 queue = cqe->end_agg_cqe.queue_index;
984 tpa_info = &fp->tpa_info[queue];
985 DP(NETIF_MSG_RX_STATUS,
986 "calling tpa_stop on queue %d\n",
987 queue);
988
989 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
990 tpa_info->len_on_bd;
991
992 if (fp->mode == TPA_MODE_GRO)
993 pages = (frag_size + tpa_info->full_page - 1) /
994 tpa_info->full_page;
995 else
996 pages = SGE_PAGE_ALIGN(frag_size) >>
997 SGE_PAGE_SHIFT;
998
999 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1000 &cqe->end_agg_cqe, comp_ring_cons);
1001 #ifdef BNX2X_STOP_ON_ERROR
1002 if (bp->panic)
1003 return 0;
1004 #endif
1005
1006 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1007 goto next_cqe;
1008 }
1009 /* non TPA */
1010 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1011 pad = cqe_fp->placement_offset;
1012 dma_sync_single_for_cpu(&bp->pdev->dev,
1013 dma_unmap_addr(rx_buf, mapping),
1014 pad + RX_COPY_THRESH,
1015 DMA_FROM_DEVICE);
1016 pad += NET_SKB_PAD;
1017 prefetch(data + pad); /* speedup eth_type_trans() */
1018 /* is this an error packet? */
1019 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1020 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1021 "ERROR flags %x rx packet %u\n",
1022 cqe_fp_flags, sw_comp_cons);
1023 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1024 goto reuse_rx;
1025 }
1026
1027 /* Since we don't have a jumbo ring
1028 * copy small packets if mtu > 1500
1029 */
1030 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1031 (len <= RX_COPY_THRESH)) {
1032 skb = napi_alloc_skb(&fp->napi, len);
1033 if (skb == NULL) {
1034 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1035 "ERROR packet dropped because of alloc failure\n");
1036 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1037 goto reuse_rx;
1038 }
1039 memcpy(skb->data, data + pad, len);
1040 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1041 } else {
1042 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1043 GFP_ATOMIC) == 0)) {
1044 dma_unmap_single(&bp->pdev->dev,
1045 dma_unmap_addr(rx_buf, mapping),
1046 fp->rx_buf_size,
1047 DMA_FROM_DEVICE);
1048 skb = build_skb(data, fp->rx_frag_size);
1049 if (unlikely(!skb)) {
1050 bnx2x_frag_free(fp, data);
1051 bnx2x_fp_qstats(bp, fp)->
1052 rx_skb_alloc_failed++;
1053 goto next_rx;
1054 }
1055 skb_reserve(skb, pad);
1056 } else {
1057 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1058 "ERROR packet dropped because of alloc failure\n");
1059 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1060 reuse_rx:
1061 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1062 goto next_rx;
1063 }
1064 }
1065
1066 skb_put(skb, len);
1067 skb->protocol = eth_type_trans(skb, bp->dev);
1068
1069 /* Set Toeplitz hash for a none-LRO skb */
1070 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1071 skb_set_hash(skb, rxhash, rxhash_type);
1072
1073 skb_checksum_none_assert(skb);
1074
1075 if (bp->dev->features & NETIF_F_RXCSUM)
1076 bnx2x_csum_validate(skb, cqe, fp,
1077 bnx2x_fp_qstats(bp, fp));
1078
1079 skb_record_rx_queue(skb, fp->rx_queue);
1080
1081 /* Check if this packet was timestamped */
1082 if (unlikely(cqe->fast_path_cqe.type_error_flags &
1083 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1084 bnx2x_set_rx_ts(bp, skb);
1085
1086 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1087 PARSING_FLAGS_VLAN)
1088 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1089 le16_to_cpu(cqe_fp->vlan_tag));
1090
1091 napi_gro_receive(&fp->napi, skb);
1092 next_rx:
1093 rx_buf->data = NULL;
1094
1095 bd_cons = NEXT_RX_IDX(bd_cons);
1096 bd_prod = NEXT_RX_IDX(bd_prod);
1097 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1098 rx_pkt++;
1099 next_cqe:
1100 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1101 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1102
1103 /* mark CQE as free */
1104 BNX2X_SEED_CQE(cqe_fp);
1105
1106 if (rx_pkt == budget)
1107 break;
1108
1109 comp_ring_cons = RCQ_BD(sw_comp_cons);
1110 cqe = &fp->rx_comp_ring[comp_ring_cons];
1111 cqe_fp = &cqe->fast_path_cqe;
1112 } /* while */
1113
1114 fp->rx_bd_cons = bd_cons;
1115 fp->rx_bd_prod = bd_prod_fw;
1116 fp->rx_comp_cons = sw_comp_cons;
1117 fp->rx_comp_prod = sw_comp_prod;
1118
1119 /* Update producers */
1120 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1121 fp->rx_sge_prod);
1122
1123 return rx_pkt;
1124 }
1125
bnx2x_msix_fp_int(int irq,void * fp_cookie)1126 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1127 {
1128 struct bnx2x_fastpath *fp = fp_cookie;
1129 struct bnx2x *bp = fp->bp;
1130 u8 cos;
1131
1132 DP(NETIF_MSG_INTR,
1133 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1134 fp->index, fp->fw_sb_id, fp->igu_sb_id);
1135
1136 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1137
1138 #ifdef BNX2X_STOP_ON_ERROR
1139 if (unlikely(bp->panic))
1140 return IRQ_HANDLED;
1141 #endif
1142
1143 /* Handle Rx and Tx according to MSI-X vector */
1144 for_each_cos_in_tx_queue(fp, cos)
1145 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1146
1147 prefetch(&fp->sb_running_index[SM_RX_ID]);
1148 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1149
1150 return IRQ_HANDLED;
1151 }
1152
1153 /* HW Lock for shared dual port PHYs */
bnx2x_acquire_phy_lock(struct bnx2x * bp)1154 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1155 {
1156 mutex_lock(&bp->port.phy_mutex);
1157
1158 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1159 }
1160
bnx2x_release_phy_lock(struct bnx2x * bp)1161 void bnx2x_release_phy_lock(struct bnx2x *bp)
1162 {
1163 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1164
1165 mutex_unlock(&bp->port.phy_mutex);
1166 }
1167
1168 /* calculates MF speed according to current linespeed and MF configuration */
bnx2x_get_mf_speed(struct bnx2x * bp)1169 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1170 {
1171 u16 line_speed = bp->link_vars.line_speed;
1172 if (IS_MF(bp)) {
1173 u16 maxCfg = bnx2x_extract_max_cfg(bp,
1174 bp->mf_config[BP_VN(bp)]);
1175
1176 /* Calculate the current MAX line speed limit for the MF
1177 * devices
1178 */
1179 if (IS_MF_PERCENT_BW(bp))
1180 line_speed = (line_speed * maxCfg) / 100;
1181 else { /* SD mode */
1182 u16 vn_max_rate = maxCfg * 100;
1183
1184 if (vn_max_rate < line_speed)
1185 line_speed = vn_max_rate;
1186 }
1187 }
1188
1189 return line_speed;
1190 }
1191
1192 /**
1193 * bnx2x_fill_report_data - fill link report data to report
1194 *
1195 * @bp: driver handle
1196 * @data: link state to update
1197 *
1198 * It uses a none-atomic bit operations because is called under the mutex.
1199 */
bnx2x_fill_report_data(struct bnx2x * bp,struct bnx2x_link_report_data * data)1200 static void bnx2x_fill_report_data(struct bnx2x *bp,
1201 struct bnx2x_link_report_data *data)
1202 {
1203 memset(data, 0, sizeof(*data));
1204
1205 if (IS_PF(bp)) {
1206 /* Fill the report data: effective line speed */
1207 data->line_speed = bnx2x_get_mf_speed(bp);
1208
1209 /* Link is down */
1210 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1211 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1212 &data->link_report_flags);
1213
1214 if (!BNX2X_NUM_ETH_QUEUES(bp))
1215 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1216 &data->link_report_flags);
1217
1218 /* Full DUPLEX */
1219 if (bp->link_vars.duplex == DUPLEX_FULL)
1220 __set_bit(BNX2X_LINK_REPORT_FD,
1221 &data->link_report_flags);
1222
1223 /* Rx Flow Control is ON */
1224 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1225 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1226 &data->link_report_flags);
1227
1228 /* Tx Flow Control is ON */
1229 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1230 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1231 &data->link_report_flags);
1232 } else { /* VF */
1233 *data = bp->vf_link_vars;
1234 }
1235 }
1236
1237 /**
1238 * bnx2x_link_report - report link status to OS.
1239 *
1240 * @bp: driver handle
1241 *
1242 * Calls the __bnx2x_link_report() under the same locking scheme
1243 * as a link/PHY state managing code to ensure a consistent link
1244 * reporting.
1245 */
1246
bnx2x_link_report(struct bnx2x * bp)1247 void bnx2x_link_report(struct bnx2x *bp)
1248 {
1249 bnx2x_acquire_phy_lock(bp);
1250 __bnx2x_link_report(bp);
1251 bnx2x_release_phy_lock(bp);
1252 }
1253
1254 /**
1255 * __bnx2x_link_report - report link status to OS.
1256 *
1257 * @bp: driver handle
1258 *
1259 * None atomic implementation.
1260 * Should be called under the phy_lock.
1261 */
__bnx2x_link_report(struct bnx2x * bp)1262 void __bnx2x_link_report(struct bnx2x *bp)
1263 {
1264 struct bnx2x_link_report_data cur_data;
1265
1266 if (bp->force_link_down) {
1267 bp->link_vars.link_up = 0;
1268 return;
1269 }
1270
1271 /* reread mf_cfg */
1272 if (IS_PF(bp) && !CHIP_IS_E1(bp))
1273 bnx2x_read_mf_cfg(bp);
1274
1275 /* Read the current link report info */
1276 bnx2x_fill_report_data(bp, &cur_data);
1277
1278 /* Don't report link down or exactly the same link status twice */
1279 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1280 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1281 &bp->last_reported_link.link_report_flags) &&
1282 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1283 &cur_data.link_report_flags)))
1284 return;
1285
1286 bp->link_cnt++;
1287
1288 /* We are going to report a new link parameters now -
1289 * remember the current data for the next time.
1290 */
1291 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1292
1293 /* propagate status to VFs */
1294 if (IS_PF(bp))
1295 bnx2x_iov_link_update(bp);
1296
1297 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1298 &cur_data.link_report_flags)) {
1299 netif_carrier_off(bp->dev);
1300 netdev_err(bp->dev, "NIC Link is Down\n");
1301 return;
1302 } else {
1303 const char *duplex;
1304 const char *flow;
1305
1306 netif_carrier_on(bp->dev);
1307
1308 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1309 &cur_data.link_report_flags))
1310 duplex = "full";
1311 else
1312 duplex = "half";
1313
1314 /* Handle the FC at the end so that only these flags would be
1315 * possibly set. This way we may easily check if there is no FC
1316 * enabled.
1317 */
1318 if (cur_data.link_report_flags) {
1319 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1320 &cur_data.link_report_flags)) {
1321 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1322 &cur_data.link_report_flags))
1323 flow = "ON - receive & transmit";
1324 else
1325 flow = "ON - receive";
1326 } else {
1327 flow = "ON - transmit";
1328 }
1329 } else {
1330 flow = "none";
1331 }
1332 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1333 cur_data.line_speed, duplex, flow);
1334 }
1335 }
1336
bnx2x_set_next_page_sgl(struct bnx2x_fastpath * fp)1337 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1338 {
1339 int i;
1340
1341 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1342 struct eth_rx_sge *sge;
1343
1344 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1345 sge->addr_hi =
1346 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1347 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1348
1349 sge->addr_lo =
1350 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1351 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1352 }
1353 }
1354
bnx2x_free_tpa_pool(struct bnx2x * bp,struct bnx2x_fastpath * fp,int last)1355 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1356 struct bnx2x_fastpath *fp, int last)
1357 {
1358 int i;
1359
1360 for (i = 0; i < last; i++) {
1361 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1362 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1363 u8 *data = first_buf->data;
1364
1365 if (data == NULL) {
1366 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1367 continue;
1368 }
1369 if (tpa_info->tpa_state == BNX2X_TPA_START)
1370 dma_unmap_single(&bp->pdev->dev,
1371 dma_unmap_addr(first_buf, mapping),
1372 fp->rx_buf_size, DMA_FROM_DEVICE);
1373 bnx2x_frag_free(fp, data);
1374 first_buf->data = NULL;
1375 }
1376 }
1377
bnx2x_init_rx_rings_cnic(struct bnx2x * bp)1378 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1379 {
1380 int j;
1381
1382 for_each_rx_queue_cnic(bp, j) {
1383 struct bnx2x_fastpath *fp = &bp->fp[j];
1384
1385 fp->rx_bd_cons = 0;
1386
1387 /* Activate BD ring */
1388 /* Warning!
1389 * this will generate an interrupt (to the TSTORM)
1390 * must only be done after chip is initialized
1391 */
1392 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1393 fp->rx_sge_prod);
1394 }
1395 }
1396
bnx2x_init_rx_rings(struct bnx2x * bp)1397 void bnx2x_init_rx_rings(struct bnx2x *bp)
1398 {
1399 int func = BP_FUNC(bp);
1400 u16 ring_prod;
1401 int i, j;
1402
1403 /* Allocate TPA resources */
1404 for_each_eth_queue(bp, j) {
1405 struct bnx2x_fastpath *fp = &bp->fp[j];
1406
1407 DP(NETIF_MSG_IFUP,
1408 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1409
1410 if (fp->mode != TPA_MODE_DISABLED) {
1411 /* Fill the per-aggregation pool */
1412 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1413 struct bnx2x_agg_info *tpa_info =
1414 &fp->tpa_info[i];
1415 struct sw_rx_bd *first_buf =
1416 &tpa_info->first_buf;
1417
1418 first_buf->data =
1419 bnx2x_frag_alloc(fp, GFP_KERNEL);
1420 if (!first_buf->data) {
1421 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1422 j);
1423 bnx2x_free_tpa_pool(bp, fp, i);
1424 fp->mode = TPA_MODE_DISABLED;
1425 break;
1426 }
1427 dma_unmap_addr_set(first_buf, mapping, 0);
1428 tpa_info->tpa_state = BNX2X_TPA_STOP;
1429 }
1430
1431 /* "next page" elements initialization */
1432 bnx2x_set_next_page_sgl(fp);
1433
1434 /* set SGEs bit mask */
1435 bnx2x_init_sge_ring_bit_mask(fp);
1436
1437 /* Allocate SGEs and initialize the ring elements */
1438 for (i = 0, ring_prod = 0;
1439 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1440
1441 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1442 GFP_KERNEL) < 0) {
1443 BNX2X_ERR("was only able to allocate %d rx sges\n",
1444 i);
1445 BNX2X_ERR("disabling TPA for queue[%d]\n",
1446 j);
1447 /* Cleanup already allocated elements */
1448 bnx2x_free_rx_sge_range(bp, fp,
1449 ring_prod);
1450 bnx2x_free_tpa_pool(bp, fp,
1451 MAX_AGG_QS(bp));
1452 fp->mode = TPA_MODE_DISABLED;
1453 ring_prod = 0;
1454 break;
1455 }
1456 ring_prod = NEXT_SGE_IDX(ring_prod);
1457 }
1458
1459 fp->rx_sge_prod = ring_prod;
1460 }
1461 }
1462
1463 for_each_eth_queue(bp, j) {
1464 struct bnx2x_fastpath *fp = &bp->fp[j];
1465
1466 fp->rx_bd_cons = 0;
1467
1468 /* Activate BD ring */
1469 /* Warning!
1470 * this will generate an interrupt (to the TSTORM)
1471 * must only be done after chip is initialized
1472 */
1473 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1474 fp->rx_sge_prod);
1475
1476 if (j != 0)
1477 continue;
1478
1479 if (CHIP_IS_E1(bp)) {
1480 REG_WR(bp, BAR_USTRORM_INTMEM +
1481 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1482 U64_LO(fp->rx_comp_mapping));
1483 REG_WR(bp, BAR_USTRORM_INTMEM +
1484 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1485 U64_HI(fp->rx_comp_mapping));
1486 }
1487 }
1488 }
1489
bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath * fp)1490 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1491 {
1492 u8 cos;
1493 struct bnx2x *bp = fp->bp;
1494
1495 for_each_cos_in_tx_queue(fp, cos) {
1496 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1497 unsigned pkts_compl = 0, bytes_compl = 0;
1498
1499 u16 sw_prod = txdata->tx_pkt_prod;
1500 u16 sw_cons = txdata->tx_pkt_cons;
1501
1502 while (sw_cons != sw_prod) {
1503 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1504 &pkts_compl, &bytes_compl);
1505 sw_cons++;
1506 }
1507
1508 netdev_tx_reset_queue(
1509 netdev_get_tx_queue(bp->dev,
1510 txdata->txq_index));
1511 }
1512 }
1513
bnx2x_free_tx_skbs_cnic(struct bnx2x * bp)1514 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1515 {
1516 int i;
1517
1518 for_each_tx_queue_cnic(bp, i) {
1519 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1520 }
1521 }
1522
bnx2x_free_tx_skbs(struct bnx2x * bp)1523 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1524 {
1525 int i;
1526
1527 for_each_eth_queue(bp, i) {
1528 bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1529 }
1530 }
1531
bnx2x_free_rx_bds(struct bnx2x_fastpath * fp)1532 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1533 {
1534 struct bnx2x *bp = fp->bp;
1535 int i;
1536
1537 /* ring wasn't allocated */
1538 if (fp->rx_buf_ring == NULL)
1539 return;
1540
1541 for (i = 0; i < NUM_RX_BD; i++) {
1542 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1543 u8 *data = rx_buf->data;
1544
1545 if (data == NULL)
1546 continue;
1547 dma_unmap_single(&bp->pdev->dev,
1548 dma_unmap_addr(rx_buf, mapping),
1549 fp->rx_buf_size, DMA_FROM_DEVICE);
1550
1551 rx_buf->data = NULL;
1552 bnx2x_frag_free(fp, data);
1553 }
1554 }
1555
bnx2x_free_rx_skbs_cnic(struct bnx2x * bp)1556 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1557 {
1558 int j;
1559
1560 for_each_rx_queue_cnic(bp, j) {
1561 bnx2x_free_rx_bds(&bp->fp[j]);
1562 }
1563 }
1564
bnx2x_free_rx_skbs(struct bnx2x * bp)1565 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1566 {
1567 int j;
1568
1569 for_each_eth_queue(bp, j) {
1570 struct bnx2x_fastpath *fp = &bp->fp[j];
1571
1572 bnx2x_free_rx_bds(fp);
1573
1574 if (fp->mode != TPA_MODE_DISABLED)
1575 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1576 }
1577 }
1578
bnx2x_free_skbs_cnic(struct bnx2x * bp)1579 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1580 {
1581 bnx2x_free_tx_skbs_cnic(bp);
1582 bnx2x_free_rx_skbs_cnic(bp);
1583 }
1584
bnx2x_free_skbs(struct bnx2x * bp)1585 void bnx2x_free_skbs(struct bnx2x *bp)
1586 {
1587 bnx2x_free_tx_skbs(bp);
1588 bnx2x_free_rx_skbs(bp);
1589 }
1590
bnx2x_update_max_mf_config(struct bnx2x * bp,u32 value)1591 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1592 {
1593 /* load old values */
1594 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1595
1596 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1597 /* leave all but MAX value */
1598 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1599
1600 /* set new MAX value */
1601 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1602 & FUNC_MF_CFG_MAX_BW_MASK;
1603
1604 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1605 }
1606 }
1607
1608 /**
1609 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1610 *
1611 * @bp: driver handle
1612 * @nvecs: number of vectors to be released
1613 */
bnx2x_free_msix_irqs(struct bnx2x * bp,int nvecs)1614 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1615 {
1616 int i, offset = 0;
1617
1618 if (nvecs == offset)
1619 return;
1620
1621 /* VFs don't have a default SB */
1622 if (IS_PF(bp)) {
1623 free_irq(bp->msix_table[offset].vector, bp->dev);
1624 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1625 bp->msix_table[offset].vector);
1626 offset++;
1627 }
1628
1629 if (CNIC_SUPPORT(bp)) {
1630 if (nvecs == offset)
1631 return;
1632 offset++;
1633 }
1634
1635 for_each_eth_queue(bp, i) {
1636 if (nvecs == offset)
1637 return;
1638 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1639 i, bp->msix_table[offset].vector);
1640
1641 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1642 }
1643 }
1644
bnx2x_free_irq(struct bnx2x * bp)1645 void bnx2x_free_irq(struct bnx2x *bp)
1646 {
1647 if (bp->flags & USING_MSIX_FLAG &&
1648 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1649 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1650
1651 /* vfs don't have a default status block */
1652 if (IS_PF(bp))
1653 nvecs++;
1654
1655 bnx2x_free_msix_irqs(bp, nvecs);
1656 } else {
1657 free_irq(bp->dev->irq, bp->dev);
1658 }
1659 }
1660
bnx2x_enable_msix(struct bnx2x * bp)1661 int bnx2x_enable_msix(struct bnx2x *bp)
1662 {
1663 int msix_vec = 0, i, rc;
1664
1665 /* VFs don't have a default status block */
1666 if (IS_PF(bp)) {
1667 bp->msix_table[msix_vec].entry = msix_vec;
1668 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1669 bp->msix_table[0].entry);
1670 msix_vec++;
1671 }
1672
1673 /* Cnic requires an msix vector for itself */
1674 if (CNIC_SUPPORT(bp)) {
1675 bp->msix_table[msix_vec].entry = msix_vec;
1676 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1677 msix_vec, bp->msix_table[msix_vec].entry);
1678 msix_vec++;
1679 }
1680
1681 /* We need separate vectors for ETH queues only (not FCoE) */
1682 for_each_eth_queue(bp, i) {
1683 bp->msix_table[msix_vec].entry = msix_vec;
1684 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1685 msix_vec, msix_vec, i);
1686 msix_vec++;
1687 }
1688
1689 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1690 msix_vec);
1691
1692 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1693 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1694 /*
1695 * reconfigure number of tx/rx queues according to available
1696 * MSI-X vectors
1697 */
1698 if (rc == -ENOSPC) {
1699 /* Get by with single vector */
1700 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1701 if (rc < 0) {
1702 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1703 rc);
1704 goto no_msix;
1705 }
1706
1707 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1708 bp->flags |= USING_SINGLE_MSIX_FLAG;
1709
1710 BNX2X_DEV_INFO("set number of queues to 1\n");
1711 bp->num_ethernet_queues = 1;
1712 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1713 } else if (rc < 0) {
1714 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1715 goto no_msix;
1716 } else if (rc < msix_vec) {
1717 /* how less vectors we will have? */
1718 int diff = msix_vec - rc;
1719
1720 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1721
1722 /*
1723 * decrease number of queues by number of unallocated entries
1724 */
1725 bp->num_ethernet_queues -= diff;
1726 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1727
1728 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1729 bp->num_queues);
1730 }
1731
1732 bp->flags |= USING_MSIX_FLAG;
1733
1734 return 0;
1735
1736 no_msix:
1737 /* fall to INTx if not enough memory */
1738 if (rc == -ENOMEM)
1739 bp->flags |= DISABLE_MSI_FLAG;
1740
1741 return rc;
1742 }
1743
bnx2x_req_msix_irqs(struct bnx2x * bp)1744 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1745 {
1746 int i, rc, offset = 0;
1747
1748 /* no default status block for vf */
1749 if (IS_PF(bp)) {
1750 rc = request_irq(bp->msix_table[offset++].vector,
1751 bnx2x_msix_sp_int, 0,
1752 bp->dev->name, bp->dev);
1753 if (rc) {
1754 BNX2X_ERR("request sp irq failed\n");
1755 return -EBUSY;
1756 }
1757 }
1758
1759 if (CNIC_SUPPORT(bp))
1760 offset++;
1761
1762 for_each_eth_queue(bp, i) {
1763 struct bnx2x_fastpath *fp = &bp->fp[i];
1764 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1765 bp->dev->name, i);
1766
1767 rc = request_irq(bp->msix_table[offset].vector,
1768 bnx2x_msix_fp_int, 0, fp->name, fp);
1769 if (rc) {
1770 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1771 bp->msix_table[offset].vector, rc);
1772 bnx2x_free_msix_irqs(bp, offset);
1773 return -EBUSY;
1774 }
1775
1776 offset++;
1777 }
1778
1779 i = BNX2X_NUM_ETH_QUEUES(bp);
1780 if (IS_PF(bp)) {
1781 offset = 1 + CNIC_SUPPORT(bp);
1782 netdev_info(bp->dev,
1783 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1784 bp->msix_table[0].vector,
1785 0, bp->msix_table[offset].vector,
1786 i - 1, bp->msix_table[offset + i - 1].vector);
1787 } else {
1788 offset = CNIC_SUPPORT(bp);
1789 netdev_info(bp->dev,
1790 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1791 0, bp->msix_table[offset].vector,
1792 i - 1, bp->msix_table[offset + i - 1].vector);
1793 }
1794 return 0;
1795 }
1796
bnx2x_enable_msi(struct bnx2x * bp)1797 int bnx2x_enable_msi(struct bnx2x *bp)
1798 {
1799 int rc;
1800
1801 rc = pci_enable_msi(bp->pdev);
1802 if (rc) {
1803 BNX2X_DEV_INFO("MSI is not attainable\n");
1804 return -1;
1805 }
1806 bp->flags |= USING_MSI_FLAG;
1807
1808 return 0;
1809 }
1810
bnx2x_req_irq(struct bnx2x * bp)1811 static int bnx2x_req_irq(struct bnx2x *bp)
1812 {
1813 unsigned long flags;
1814 unsigned int irq;
1815
1816 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1817 flags = 0;
1818 else
1819 flags = IRQF_SHARED;
1820
1821 if (bp->flags & USING_MSIX_FLAG)
1822 irq = bp->msix_table[0].vector;
1823 else
1824 irq = bp->pdev->irq;
1825
1826 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1827 }
1828
bnx2x_setup_irqs(struct bnx2x * bp)1829 static int bnx2x_setup_irqs(struct bnx2x *bp)
1830 {
1831 int rc = 0;
1832 if (bp->flags & USING_MSIX_FLAG &&
1833 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1834 rc = bnx2x_req_msix_irqs(bp);
1835 if (rc)
1836 return rc;
1837 } else {
1838 rc = bnx2x_req_irq(bp);
1839 if (rc) {
1840 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1841 return rc;
1842 }
1843 if (bp->flags & USING_MSI_FLAG) {
1844 bp->dev->irq = bp->pdev->irq;
1845 netdev_info(bp->dev, "using MSI IRQ %d\n",
1846 bp->dev->irq);
1847 }
1848 if (bp->flags & USING_MSIX_FLAG) {
1849 bp->dev->irq = bp->msix_table[0].vector;
1850 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1851 bp->dev->irq);
1852 }
1853 }
1854
1855 return 0;
1856 }
1857
bnx2x_napi_enable_cnic(struct bnx2x * bp)1858 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1859 {
1860 int i;
1861
1862 for_each_rx_queue_cnic(bp, i) {
1863 napi_enable(&bnx2x_fp(bp, i, napi));
1864 }
1865 }
1866
bnx2x_napi_enable(struct bnx2x * bp)1867 static void bnx2x_napi_enable(struct bnx2x *bp)
1868 {
1869 int i;
1870
1871 for_each_eth_queue(bp, i) {
1872 napi_enable(&bnx2x_fp(bp, i, napi));
1873 }
1874 }
1875
bnx2x_napi_disable_cnic(struct bnx2x * bp)1876 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1877 {
1878 int i;
1879
1880 for_each_rx_queue_cnic(bp, i) {
1881 napi_disable(&bnx2x_fp(bp, i, napi));
1882 }
1883 }
1884
bnx2x_napi_disable(struct bnx2x * bp)1885 static void bnx2x_napi_disable(struct bnx2x *bp)
1886 {
1887 int i;
1888
1889 for_each_eth_queue(bp, i) {
1890 napi_disable(&bnx2x_fp(bp, i, napi));
1891 }
1892 }
1893
bnx2x_netif_start(struct bnx2x * bp)1894 void bnx2x_netif_start(struct bnx2x *bp)
1895 {
1896 if (netif_running(bp->dev)) {
1897 bnx2x_napi_enable(bp);
1898 if (CNIC_LOADED(bp))
1899 bnx2x_napi_enable_cnic(bp);
1900 bnx2x_int_enable(bp);
1901 if (bp->state == BNX2X_STATE_OPEN)
1902 netif_tx_wake_all_queues(bp->dev);
1903 }
1904 }
1905
bnx2x_netif_stop(struct bnx2x * bp,int disable_hw)1906 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1907 {
1908 bnx2x_int_disable_sync(bp, disable_hw);
1909 bnx2x_napi_disable(bp);
1910 if (CNIC_LOADED(bp))
1911 bnx2x_napi_disable_cnic(bp);
1912 }
1913
bnx2x_select_queue(struct net_device * dev,struct sk_buff * skb,void * accel_priv,select_queue_fallback_t fallback)1914 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1915 void *accel_priv, select_queue_fallback_t fallback)
1916 {
1917 struct bnx2x *bp = netdev_priv(dev);
1918
1919 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1920 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1921 u16 ether_type = ntohs(hdr->h_proto);
1922
1923 /* Skip VLAN tag if present */
1924 if (ether_type == ETH_P_8021Q) {
1925 struct vlan_ethhdr *vhdr =
1926 (struct vlan_ethhdr *)skb->data;
1927
1928 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1929 }
1930
1931 /* If ethertype is FCoE or FIP - use FCoE ring */
1932 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1933 return bnx2x_fcoe_tx(bp, txq_index);
1934 }
1935
1936 /* select a non-FCoE queue */
1937 return fallback(dev, skb) % (BNX2X_NUM_ETH_QUEUES(bp));
1938 }
1939
bnx2x_set_num_queues(struct bnx2x * bp)1940 void bnx2x_set_num_queues(struct bnx2x *bp)
1941 {
1942 /* RSS queues */
1943 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1944
1945 /* override in STORAGE SD modes */
1946 if (IS_MF_STORAGE_ONLY(bp))
1947 bp->num_ethernet_queues = 1;
1948
1949 /* Add special queues */
1950 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1951 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1952
1953 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1954 }
1955
1956 /**
1957 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1958 *
1959 * @bp: Driver handle
1960 *
1961 * We currently support for at most 16 Tx queues for each CoS thus we will
1962 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1963 * bp->max_cos.
1964 *
1965 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1966 * index after all ETH L2 indices.
1967 *
1968 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1969 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1970 * 16..31,...) with indices that are not coupled with any real Tx queue.
1971 *
1972 * The proper configuration of skb->queue_mapping is handled by
1973 * bnx2x_select_queue() and __skb_tx_hash().
1974 *
1975 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1976 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1977 */
bnx2x_set_real_num_queues(struct bnx2x * bp,int include_cnic)1978 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1979 {
1980 int rc, tx, rx;
1981
1982 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1983 rx = BNX2X_NUM_ETH_QUEUES(bp);
1984
1985 /* account for fcoe queue */
1986 if (include_cnic && !NO_FCOE(bp)) {
1987 rx++;
1988 tx++;
1989 }
1990
1991 rc = netif_set_real_num_tx_queues(bp->dev, tx);
1992 if (rc) {
1993 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1994 return rc;
1995 }
1996 rc = netif_set_real_num_rx_queues(bp->dev, rx);
1997 if (rc) {
1998 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1999 return rc;
2000 }
2001
2002 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2003 tx, rx);
2004
2005 return rc;
2006 }
2007
bnx2x_set_rx_buf_size(struct bnx2x * bp)2008 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2009 {
2010 int i;
2011
2012 for_each_queue(bp, i) {
2013 struct bnx2x_fastpath *fp = &bp->fp[i];
2014 u32 mtu;
2015
2016 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2017 if (IS_FCOE_IDX(i))
2018 /*
2019 * Although there are no IP frames expected to arrive to
2020 * this ring we still want to add an
2021 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2022 * overrun attack.
2023 */
2024 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2025 else
2026 mtu = bp->dev->mtu;
2027 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2028 IP_HEADER_ALIGNMENT_PADDING +
2029 ETH_OVERHEAD +
2030 mtu +
2031 BNX2X_FW_RX_ALIGN_END;
2032 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2033 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2034 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2035 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2036 else
2037 fp->rx_frag_size = 0;
2038 }
2039 }
2040
bnx2x_init_rss(struct bnx2x * bp)2041 static int bnx2x_init_rss(struct bnx2x *bp)
2042 {
2043 int i;
2044 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2045
2046 /* Prepare the initial contents for the indirection table if RSS is
2047 * enabled
2048 */
2049 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2050 bp->rss_conf_obj.ind_table[i] =
2051 bp->fp->cl_id +
2052 ethtool_rxfh_indir_default(i, num_eth_queues);
2053
2054 /*
2055 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2056 * per-port, so if explicit configuration is needed , do it only
2057 * for a PMF.
2058 *
2059 * For 57712 and newer on the other hand it's a per-function
2060 * configuration.
2061 */
2062 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2063 }
2064
bnx2x_rss(struct bnx2x * bp,struct bnx2x_rss_config_obj * rss_obj,bool config_hash,bool enable)2065 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2066 bool config_hash, bool enable)
2067 {
2068 struct bnx2x_config_rss_params params = {NULL};
2069
2070 /* Although RSS is meaningless when there is a single HW queue we
2071 * still need it enabled in order to have HW Rx hash generated.
2072 *
2073 * if (!is_eth_multi(bp))
2074 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2075 */
2076
2077 params.rss_obj = rss_obj;
2078
2079 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags);
2080
2081 if (enable) {
2082 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags);
2083
2084 /* RSS configuration */
2085 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags);
2086 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags);
2087 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags);
2088 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags);
2089 if (rss_obj->udp_rss_v4)
2090 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags);
2091 if (rss_obj->udp_rss_v6)
2092 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags);
2093
2094 if (!CHIP_IS_E1x(bp)) {
2095 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2096 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags);
2097 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags);
2098
2099 /* valid only for TUNN_MODE_GRE tunnel mode */
2100 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags);
2101 }
2102 } else {
2103 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags);
2104 }
2105
2106 /* Hash bits */
2107 params.rss_result_mask = MULTI_MASK;
2108
2109 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2110
2111 if (config_hash) {
2112 /* RSS keys */
2113 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2114 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags);
2115 }
2116
2117 if (IS_PF(bp))
2118 return bnx2x_config_rss(bp, ¶ms);
2119 else
2120 return bnx2x_vfpf_config_rss(bp, ¶ms);
2121 }
2122
bnx2x_init_hw(struct bnx2x * bp,u32 load_code)2123 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2124 {
2125 struct bnx2x_func_state_params func_params = {NULL};
2126
2127 /* Prepare parameters for function state transitions */
2128 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2129
2130 func_params.f_obj = &bp->func_obj;
2131 func_params.cmd = BNX2X_F_CMD_HW_INIT;
2132
2133 func_params.params.hw_init.load_phase = load_code;
2134
2135 return bnx2x_func_state_change(bp, &func_params);
2136 }
2137
2138 /*
2139 * Cleans the object that have internal lists without sending
2140 * ramrods. Should be run when interrupts are disabled.
2141 */
bnx2x_squeeze_objects(struct bnx2x * bp)2142 void bnx2x_squeeze_objects(struct bnx2x *bp)
2143 {
2144 int rc;
2145 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2146 struct bnx2x_mcast_ramrod_params rparam = {NULL};
2147 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2148
2149 /***************** Cleanup MACs' object first *************************/
2150
2151 /* Wait for completion of requested */
2152 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2153 /* Perform a dry cleanup */
2154 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2155
2156 /* Clean ETH primary MAC */
2157 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2158 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2159 &ramrod_flags);
2160 if (rc != 0)
2161 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2162
2163 /* Cleanup UC list */
2164 vlan_mac_flags = 0;
2165 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2166 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2167 &ramrod_flags);
2168 if (rc != 0)
2169 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2170
2171 /***************** Now clean mcast object *****************************/
2172 rparam.mcast_obj = &bp->mcast_obj;
2173 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2174
2175 /* Add a DEL command... - Since we're doing a driver cleanup only,
2176 * we take a lock surrounding both the initial send and the CONTs,
2177 * as we don't want a true completion to disrupt us in the middle.
2178 */
2179 netif_addr_lock_bh(bp->dev);
2180 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2181 if (rc < 0)
2182 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2183 rc);
2184
2185 /* ...and wait until all pending commands are cleared */
2186 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2187 while (rc != 0) {
2188 if (rc < 0) {
2189 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2190 rc);
2191 netif_addr_unlock_bh(bp->dev);
2192 return;
2193 }
2194
2195 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2196 }
2197 netif_addr_unlock_bh(bp->dev);
2198 }
2199
2200 #ifndef BNX2X_STOP_ON_ERROR
2201 #define LOAD_ERROR_EXIT(bp, label) \
2202 do { \
2203 (bp)->state = BNX2X_STATE_ERROR; \
2204 goto label; \
2205 } while (0)
2206
2207 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2208 do { \
2209 bp->cnic_loaded = false; \
2210 goto label; \
2211 } while (0)
2212 #else /*BNX2X_STOP_ON_ERROR*/
2213 #define LOAD_ERROR_EXIT(bp, label) \
2214 do { \
2215 (bp)->state = BNX2X_STATE_ERROR; \
2216 (bp)->panic = 1; \
2217 return -EBUSY; \
2218 } while (0)
2219 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2220 do { \
2221 bp->cnic_loaded = false; \
2222 (bp)->panic = 1; \
2223 return -EBUSY; \
2224 } while (0)
2225 #endif /*BNX2X_STOP_ON_ERROR*/
2226
bnx2x_free_fw_stats_mem(struct bnx2x * bp)2227 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2228 {
2229 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2230 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2231 return;
2232 }
2233
bnx2x_alloc_fw_stats_mem(struct bnx2x * bp)2234 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2235 {
2236 int num_groups, vf_headroom = 0;
2237 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2238
2239 /* number of queues for statistics is number of eth queues + FCoE */
2240 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2241
2242 /* Total number of FW statistics requests =
2243 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2244 * and fcoe l2 queue) stats + num of queues (which includes another 1
2245 * for fcoe l2 queue if applicable)
2246 */
2247 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2248
2249 /* vf stats appear in the request list, but their data is allocated by
2250 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2251 * it is used to determine where to place the vf stats queries in the
2252 * request struct
2253 */
2254 if (IS_SRIOV(bp))
2255 vf_headroom = bnx2x_vf_headroom(bp);
2256
2257 /* Request is built from stats_query_header and an array of
2258 * stats_query_cmd_group each of which contains
2259 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2260 * configured in the stats_query_header.
2261 */
2262 num_groups =
2263 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2264 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2265 1 : 0));
2266
2267 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2268 bp->fw_stats_num, vf_headroom, num_groups);
2269 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2270 num_groups * sizeof(struct stats_query_cmd_group);
2271
2272 /* Data for statistics requests + stats_counter
2273 * stats_counter holds per-STORM counters that are incremented
2274 * when STORM has finished with the current request.
2275 * memory for FCoE offloaded statistics are counted anyway,
2276 * even if they will not be sent.
2277 * VF stats are not accounted for here as the data of VF stats is stored
2278 * in memory allocated by the VF, not here.
2279 */
2280 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2281 sizeof(struct per_pf_stats) +
2282 sizeof(struct fcoe_statistics_params) +
2283 sizeof(struct per_queue_stats) * num_queue_stats +
2284 sizeof(struct stats_counter);
2285
2286 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2287 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2288 if (!bp->fw_stats)
2289 goto alloc_mem_err;
2290
2291 /* Set shortcuts */
2292 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2293 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2294 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2295 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2296 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2297 bp->fw_stats_req_sz;
2298
2299 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2300 U64_HI(bp->fw_stats_req_mapping),
2301 U64_LO(bp->fw_stats_req_mapping));
2302 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2303 U64_HI(bp->fw_stats_data_mapping),
2304 U64_LO(bp->fw_stats_data_mapping));
2305 return 0;
2306
2307 alloc_mem_err:
2308 bnx2x_free_fw_stats_mem(bp);
2309 BNX2X_ERR("Can't allocate FW stats memory\n");
2310 return -ENOMEM;
2311 }
2312
2313 /* send load request to mcp and analyze response */
bnx2x_nic_load_request(struct bnx2x * bp,u32 * load_code)2314 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2315 {
2316 u32 param;
2317
2318 /* init fw_seq */
2319 bp->fw_seq =
2320 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2321 DRV_MSG_SEQ_NUMBER_MASK);
2322 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2323
2324 /* Get current FW pulse sequence */
2325 bp->fw_drv_pulse_wr_seq =
2326 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2327 DRV_PULSE_SEQ_MASK);
2328 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2329
2330 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2331
2332 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2333 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2334
2335 /* load request */
2336 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2337
2338 /* if mcp fails to respond we must abort */
2339 if (!(*load_code)) {
2340 BNX2X_ERR("MCP response failure, aborting\n");
2341 return -EBUSY;
2342 }
2343
2344 /* If mcp refused (e.g. other port is in diagnostic mode) we
2345 * must abort
2346 */
2347 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2348 BNX2X_ERR("MCP refused load request, aborting\n");
2349 return -EBUSY;
2350 }
2351 return 0;
2352 }
2353
2354 /* check whether another PF has already loaded FW to chip. In
2355 * virtualized environments a pf from another VM may have already
2356 * initialized the device including loading FW
2357 */
bnx2x_compare_fw_ver(struct bnx2x * bp,u32 load_code,bool print_err)2358 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2359 {
2360 /* is another pf loaded on this engine? */
2361 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2362 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2363 /* build my FW version dword */
2364 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2365 (BCM_5710_FW_MINOR_VERSION << 8) +
2366 (BCM_5710_FW_REVISION_VERSION << 16) +
2367 (BCM_5710_FW_ENGINEERING_VERSION << 24);
2368
2369 /* read loaded FW from chip */
2370 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2371
2372 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2373 loaded_fw, my_fw);
2374
2375 /* abort nic load if version mismatch */
2376 if (my_fw != loaded_fw) {
2377 if (print_err)
2378 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2379 loaded_fw, my_fw);
2380 else
2381 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2382 loaded_fw, my_fw);
2383 return -EBUSY;
2384 }
2385 }
2386 return 0;
2387 }
2388
2389 /* returns the "mcp load_code" according to global load_count array */
bnx2x_nic_load_no_mcp(struct bnx2x * bp,int port)2390 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2391 {
2392 int path = BP_PATH(bp);
2393
2394 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2395 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2396 bnx2x_load_count[path][2]);
2397 bnx2x_load_count[path][0]++;
2398 bnx2x_load_count[path][1 + port]++;
2399 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2400 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2401 bnx2x_load_count[path][2]);
2402 if (bnx2x_load_count[path][0] == 1)
2403 return FW_MSG_CODE_DRV_LOAD_COMMON;
2404 else if (bnx2x_load_count[path][1 + port] == 1)
2405 return FW_MSG_CODE_DRV_LOAD_PORT;
2406 else
2407 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2408 }
2409
2410 /* mark PMF if applicable */
bnx2x_nic_load_pmf(struct bnx2x * bp,u32 load_code)2411 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2412 {
2413 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2414 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2415 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2416 bp->port.pmf = 1;
2417 /* We need the barrier to ensure the ordering between the
2418 * writing to bp->port.pmf here and reading it from the
2419 * bnx2x_periodic_task().
2420 */
2421 smp_mb();
2422 } else {
2423 bp->port.pmf = 0;
2424 }
2425
2426 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2427 }
2428
bnx2x_nic_load_afex_dcc(struct bnx2x * bp,int load_code)2429 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2430 {
2431 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2432 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2433 (bp->common.shmem2_base)) {
2434 if (SHMEM2_HAS(bp, dcc_support))
2435 SHMEM2_WR(bp, dcc_support,
2436 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2437 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2438 if (SHMEM2_HAS(bp, afex_driver_support))
2439 SHMEM2_WR(bp, afex_driver_support,
2440 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2441 }
2442
2443 /* Set AFEX default VLAN tag to an invalid value */
2444 bp->afex_def_vlan_tag = -1;
2445 }
2446
2447 /**
2448 * bnx2x_bz_fp - zero content of the fastpath structure.
2449 *
2450 * @bp: driver handle
2451 * @index: fastpath index to be zeroed
2452 *
2453 * Makes sure the contents of the bp->fp[index].napi is kept
2454 * intact.
2455 */
bnx2x_bz_fp(struct bnx2x * bp,int index)2456 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2457 {
2458 struct bnx2x_fastpath *fp = &bp->fp[index];
2459 int cos;
2460 struct napi_struct orig_napi = fp->napi;
2461 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2462
2463 /* bzero bnx2x_fastpath contents */
2464 if (fp->tpa_info)
2465 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2466 sizeof(struct bnx2x_agg_info));
2467 memset(fp, 0, sizeof(*fp));
2468
2469 /* Restore the NAPI object as it has been already initialized */
2470 fp->napi = orig_napi;
2471 fp->tpa_info = orig_tpa_info;
2472 fp->bp = bp;
2473 fp->index = index;
2474 if (IS_ETH_FP(fp))
2475 fp->max_cos = bp->max_cos;
2476 else
2477 /* Special queues support only one CoS */
2478 fp->max_cos = 1;
2479
2480 /* Init txdata pointers */
2481 if (IS_FCOE_FP(fp))
2482 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2483 if (IS_ETH_FP(fp))
2484 for_each_cos_in_tx_queue(fp, cos)
2485 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2486 BNX2X_NUM_ETH_QUEUES(bp) + index];
2487
2488 /* set the tpa flag for each queue. The tpa flag determines the queue
2489 * minimal size so it must be set prior to queue memory allocation
2490 */
2491 if (bp->dev->features & NETIF_F_LRO)
2492 fp->mode = TPA_MODE_LRO;
2493 else if (bp->dev->features & NETIF_F_GRO &&
2494 bnx2x_mtu_allows_gro(bp->dev->mtu))
2495 fp->mode = TPA_MODE_GRO;
2496 else
2497 fp->mode = TPA_MODE_DISABLED;
2498
2499 /* We don't want TPA if it's disabled in bp
2500 * or if this is an FCoE L2 ring.
2501 */
2502 if (bp->disable_tpa || IS_FCOE_FP(fp))
2503 fp->mode = TPA_MODE_DISABLED;
2504 }
2505
bnx2x_set_os_driver_state(struct bnx2x * bp,u32 state)2506 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2507 {
2508 u32 cur;
2509
2510 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2511 return;
2512
2513 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2514 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2515 cur, state);
2516
2517 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2518 }
2519
bnx2x_load_cnic(struct bnx2x * bp)2520 int bnx2x_load_cnic(struct bnx2x *bp)
2521 {
2522 int i, rc, port = BP_PORT(bp);
2523
2524 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2525
2526 mutex_init(&bp->cnic_mutex);
2527
2528 if (IS_PF(bp)) {
2529 rc = bnx2x_alloc_mem_cnic(bp);
2530 if (rc) {
2531 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2532 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2533 }
2534 }
2535
2536 rc = bnx2x_alloc_fp_mem_cnic(bp);
2537 if (rc) {
2538 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2539 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2540 }
2541
2542 /* Update the number of queues with the cnic queues */
2543 rc = bnx2x_set_real_num_queues(bp, 1);
2544 if (rc) {
2545 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2546 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2547 }
2548
2549 /* Add all CNIC NAPI objects */
2550 bnx2x_add_all_napi_cnic(bp);
2551 DP(NETIF_MSG_IFUP, "cnic napi added\n");
2552 bnx2x_napi_enable_cnic(bp);
2553
2554 rc = bnx2x_init_hw_func_cnic(bp);
2555 if (rc)
2556 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2557
2558 bnx2x_nic_init_cnic(bp);
2559
2560 if (IS_PF(bp)) {
2561 /* Enable Timer scan */
2562 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2563
2564 /* setup cnic queues */
2565 for_each_cnic_queue(bp, i) {
2566 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2567 if (rc) {
2568 BNX2X_ERR("Queue setup failed\n");
2569 LOAD_ERROR_EXIT(bp, load_error_cnic2);
2570 }
2571 }
2572 }
2573
2574 /* Initialize Rx filter. */
2575 bnx2x_set_rx_mode_inner(bp);
2576
2577 /* re-read iscsi info */
2578 bnx2x_get_iscsi_info(bp);
2579 bnx2x_setup_cnic_irq_info(bp);
2580 bnx2x_setup_cnic_info(bp);
2581 bp->cnic_loaded = true;
2582 if (bp->state == BNX2X_STATE_OPEN)
2583 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2584
2585 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2586
2587 return 0;
2588
2589 #ifndef BNX2X_STOP_ON_ERROR
2590 load_error_cnic2:
2591 /* Disable Timer scan */
2592 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2593
2594 load_error_cnic1:
2595 bnx2x_napi_disable_cnic(bp);
2596 /* Update the number of queues without the cnic queues */
2597 if (bnx2x_set_real_num_queues(bp, 0))
2598 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2599 load_error_cnic0:
2600 BNX2X_ERR("CNIC-related load failed\n");
2601 bnx2x_free_fp_mem_cnic(bp);
2602 bnx2x_free_mem_cnic(bp);
2603 return rc;
2604 #endif /* ! BNX2X_STOP_ON_ERROR */
2605 }
2606
2607 /* must be called with rtnl_lock */
bnx2x_nic_load(struct bnx2x * bp,int load_mode)2608 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2609 {
2610 int port = BP_PORT(bp);
2611 int i, rc = 0, load_code = 0;
2612
2613 DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2614 DP(NETIF_MSG_IFUP,
2615 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2616
2617 #ifdef BNX2X_STOP_ON_ERROR
2618 if (unlikely(bp->panic)) {
2619 BNX2X_ERR("Can't load NIC when there is panic\n");
2620 return -EPERM;
2621 }
2622 #endif
2623
2624 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2625
2626 /* zero the structure w/o any lock, before SP handler is initialized */
2627 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2628 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2629 &bp->last_reported_link.link_report_flags);
2630
2631 if (IS_PF(bp))
2632 /* must be called before memory allocation and HW init */
2633 bnx2x_ilt_set_info(bp);
2634
2635 /*
2636 * Zero fastpath structures preserving invariants like napi, which are
2637 * allocated only once, fp index, max_cos, bp pointer.
2638 * Also set fp->mode and txdata_ptr.
2639 */
2640 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2641 for_each_queue(bp, i)
2642 bnx2x_bz_fp(bp, i);
2643 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2644 bp->num_cnic_queues) *
2645 sizeof(struct bnx2x_fp_txdata));
2646
2647 bp->fcoe_init = false;
2648
2649 /* Set the receive queues buffer size */
2650 bnx2x_set_rx_buf_size(bp);
2651
2652 if (IS_PF(bp)) {
2653 rc = bnx2x_alloc_mem(bp);
2654 if (rc) {
2655 BNX2X_ERR("Unable to allocate bp memory\n");
2656 return rc;
2657 }
2658 }
2659
2660 /* need to be done after alloc mem, since it's self adjusting to amount
2661 * of memory available for RSS queues
2662 */
2663 rc = bnx2x_alloc_fp_mem(bp);
2664 if (rc) {
2665 BNX2X_ERR("Unable to allocate memory for fps\n");
2666 LOAD_ERROR_EXIT(bp, load_error0);
2667 }
2668
2669 /* Allocated memory for FW statistics */
2670 if (bnx2x_alloc_fw_stats_mem(bp))
2671 LOAD_ERROR_EXIT(bp, load_error0);
2672
2673 /* request pf to initialize status blocks */
2674 if (IS_VF(bp)) {
2675 rc = bnx2x_vfpf_init(bp);
2676 if (rc)
2677 LOAD_ERROR_EXIT(bp, load_error0);
2678 }
2679
2680 /* As long as bnx2x_alloc_mem() may possibly update
2681 * bp->num_queues, bnx2x_set_real_num_queues() should always
2682 * come after it. At this stage cnic queues are not counted.
2683 */
2684 rc = bnx2x_set_real_num_queues(bp, 0);
2685 if (rc) {
2686 BNX2X_ERR("Unable to set real_num_queues\n");
2687 LOAD_ERROR_EXIT(bp, load_error0);
2688 }
2689
2690 /* configure multi cos mappings in kernel.
2691 * this configuration may be overridden by a multi class queue
2692 * discipline or by a dcbx negotiation result.
2693 */
2694 bnx2x_setup_tc(bp->dev, bp->max_cos);
2695
2696 /* Add all NAPI objects */
2697 bnx2x_add_all_napi(bp);
2698 DP(NETIF_MSG_IFUP, "napi added\n");
2699 bnx2x_napi_enable(bp);
2700
2701 if (IS_PF(bp)) {
2702 /* set pf load just before approaching the MCP */
2703 bnx2x_set_pf_load(bp);
2704
2705 /* if mcp exists send load request and analyze response */
2706 if (!BP_NOMCP(bp)) {
2707 /* attempt to load pf */
2708 rc = bnx2x_nic_load_request(bp, &load_code);
2709 if (rc)
2710 LOAD_ERROR_EXIT(bp, load_error1);
2711
2712 /* what did mcp say? */
2713 rc = bnx2x_compare_fw_ver(bp, load_code, true);
2714 if (rc) {
2715 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2716 LOAD_ERROR_EXIT(bp, load_error2);
2717 }
2718 } else {
2719 load_code = bnx2x_nic_load_no_mcp(bp, port);
2720 }
2721
2722 /* mark pmf if applicable */
2723 bnx2x_nic_load_pmf(bp, load_code);
2724
2725 /* Init Function state controlling object */
2726 bnx2x__init_func_obj(bp);
2727
2728 /* Initialize HW */
2729 rc = bnx2x_init_hw(bp, load_code);
2730 if (rc) {
2731 BNX2X_ERR("HW init failed, aborting\n");
2732 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2733 LOAD_ERROR_EXIT(bp, load_error2);
2734 }
2735 }
2736
2737 bnx2x_pre_irq_nic_init(bp);
2738
2739 /* Connect to IRQs */
2740 rc = bnx2x_setup_irqs(bp);
2741 if (rc) {
2742 BNX2X_ERR("setup irqs failed\n");
2743 if (IS_PF(bp))
2744 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2745 LOAD_ERROR_EXIT(bp, load_error2);
2746 }
2747
2748 /* Init per-function objects */
2749 if (IS_PF(bp)) {
2750 /* Setup NIC internals and enable interrupts */
2751 bnx2x_post_irq_nic_init(bp, load_code);
2752
2753 bnx2x_init_bp_objs(bp);
2754 bnx2x_iov_nic_init(bp);
2755
2756 /* Set AFEX default VLAN tag to an invalid value */
2757 bp->afex_def_vlan_tag = -1;
2758 bnx2x_nic_load_afex_dcc(bp, load_code);
2759 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2760 rc = bnx2x_func_start(bp);
2761 if (rc) {
2762 BNX2X_ERR("Function start failed!\n");
2763 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2764
2765 LOAD_ERROR_EXIT(bp, load_error3);
2766 }
2767
2768 /* Send LOAD_DONE command to MCP */
2769 if (!BP_NOMCP(bp)) {
2770 load_code = bnx2x_fw_command(bp,
2771 DRV_MSG_CODE_LOAD_DONE, 0);
2772 if (!load_code) {
2773 BNX2X_ERR("MCP response failure, aborting\n");
2774 rc = -EBUSY;
2775 LOAD_ERROR_EXIT(bp, load_error3);
2776 }
2777 }
2778
2779 /* initialize FW coalescing state machines in RAM */
2780 bnx2x_update_coalesce(bp);
2781 }
2782
2783 /* setup the leading queue */
2784 rc = bnx2x_setup_leading(bp);
2785 if (rc) {
2786 BNX2X_ERR("Setup leading failed!\n");
2787 LOAD_ERROR_EXIT(bp, load_error3);
2788 }
2789
2790 /* set up the rest of the queues */
2791 for_each_nondefault_eth_queue(bp, i) {
2792 if (IS_PF(bp))
2793 rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2794 else /* VF */
2795 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2796 if (rc) {
2797 BNX2X_ERR("Queue %d setup failed\n", i);
2798 LOAD_ERROR_EXIT(bp, load_error3);
2799 }
2800 }
2801
2802 /* setup rss */
2803 rc = bnx2x_init_rss(bp);
2804 if (rc) {
2805 BNX2X_ERR("PF RSS init failed\n");
2806 LOAD_ERROR_EXIT(bp, load_error3);
2807 }
2808
2809 /* Now when Clients are configured we are ready to work */
2810 bp->state = BNX2X_STATE_OPEN;
2811
2812 /* Configure a ucast MAC */
2813 if (IS_PF(bp))
2814 rc = bnx2x_set_eth_mac(bp, true);
2815 else /* vf */
2816 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2817 true);
2818 if (rc) {
2819 BNX2X_ERR("Setting Ethernet MAC failed\n");
2820 LOAD_ERROR_EXIT(bp, load_error3);
2821 }
2822
2823 if (IS_PF(bp) && bp->pending_max) {
2824 bnx2x_update_max_mf_config(bp, bp->pending_max);
2825 bp->pending_max = 0;
2826 }
2827
2828 bp->force_link_down = false;
2829 if (bp->port.pmf) {
2830 rc = bnx2x_initial_phy_init(bp, load_mode);
2831 if (rc)
2832 LOAD_ERROR_EXIT(bp, load_error3);
2833 }
2834 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2835
2836 /* Start fast path */
2837
2838 /* Re-configure vlan filters */
2839 rc = bnx2x_vlan_reconfigure_vid(bp);
2840 if (rc)
2841 LOAD_ERROR_EXIT(bp, load_error3);
2842
2843 /* Initialize Rx filter. */
2844 bnx2x_set_rx_mode_inner(bp);
2845
2846 if (bp->flags & PTP_SUPPORTED) {
2847 bnx2x_init_ptp(bp);
2848 bnx2x_configure_ptp_filters(bp);
2849 }
2850 /* Start Tx */
2851 switch (load_mode) {
2852 case LOAD_NORMAL:
2853 /* Tx queue should be only re-enabled */
2854 netif_tx_wake_all_queues(bp->dev);
2855 break;
2856
2857 case LOAD_OPEN:
2858 netif_tx_start_all_queues(bp->dev);
2859 smp_mb__after_atomic();
2860 break;
2861
2862 case LOAD_DIAG:
2863 case LOAD_LOOPBACK_EXT:
2864 bp->state = BNX2X_STATE_DIAG;
2865 break;
2866
2867 default:
2868 break;
2869 }
2870
2871 if (bp->port.pmf)
2872 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2873 else
2874 bnx2x__link_status_update(bp);
2875
2876 /* start the timer */
2877 mod_timer(&bp->timer, jiffies + bp->current_interval);
2878
2879 if (CNIC_ENABLED(bp))
2880 bnx2x_load_cnic(bp);
2881
2882 if (IS_PF(bp))
2883 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2884
2885 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2886 /* mark driver is loaded in shmem2 */
2887 u32 val;
2888 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2889 val &= ~DRV_FLAGS_MTU_MASK;
2890 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2891 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2892 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2893 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2894 }
2895
2896 /* Wait for all pending SP commands to complete */
2897 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2898 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2899 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2900 return -EBUSY;
2901 }
2902
2903 /* Update driver data for On-Chip MFW dump. */
2904 if (IS_PF(bp))
2905 bnx2x_update_mfw_dump(bp);
2906
2907 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2908 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2909 bnx2x_dcbx_init(bp, false);
2910
2911 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2912 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2913
2914 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2915
2916 return 0;
2917
2918 #ifndef BNX2X_STOP_ON_ERROR
2919 load_error3:
2920 if (IS_PF(bp)) {
2921 bnx2x_int_disable_sync(bp, 1);
2922
2923 /* Clean queueable objects */
2924 bnx2x_squeeze_objects(bp);
2925 }
2926
2927 /* Free SKBs, SGEs, TPA pool and driver internals */
2928 bnx2x_free_skbs(bp);
2929 for_each_rx_queue(bp, i)
2930 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2931
2932 /* Release IRQs */
2933 bnx2x_free_irq(bp);
2934 load_error2:
2935 if (IS_PF(bp) && !BP_NOMCP(bp)) {
2936 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2937 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2938 }
2939
2940 bp->port.pmf = 0;
2941 load_error1:
2942 bnx2x_napi_disable(bp);
2943 bnx2x_del_all_napi(bp);
2944
2945 /* clear pf_load status, as it was already set */
2946 if (IS_PF(bp))
2947 bnx2x_clear_pf_load(bp);
2948 load_error0:
2949 bnx2x_free_fw_stats_mem(bp);
2950 bnx2x_free_fp_mem(bp);
2951 bnx2x_free_mem(bp);
2952
2953 return rc;
2954 #endif /* ! BNX2X_STOP_ON_ERROR */
2955 }
2956
bnx2x_drain_tx_queues(struct bnx2x * bp)2957 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2958 {
2959 u8 rc = 0, cos, i;
2960
2961 /* Wait until tx fastpath tasks complete */
2962 for_each_tx_queue(bp, i) {
2963 struct bnx2x_fastpath *fp = &bp->fp[i];
2964
2965 for_each_cos_in_tx_queue(fp, cos)
2966 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2967 if (rc)
2968 return rc;
2969 }
2970 return 0;
2971 }
2972
2973 /* must be called with rtnl_lock */
bnx2x_nic_unload(struct bnx2x * bp,int unload_mode,bool keep_link)2974 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2975 {
2976 int i;
2977 bool global = false;
2978
2979 DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2980
2981 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2982 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2983
2984 /* mark driver is unloaded in shmem2 */
2985 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2986 u32 val;
2987 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2988 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2989 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2990 }
2991
2992 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2993 (bp->state == BNX2X_STATE_CLOSED ||
2994 bp->state == BNX2X_STATE_ERROR)) {
2995 /* We can get here if the driver has been unloaded
2996 * during parity error recovery and is either waiting for a
2997 * leader to complete or for other functions to unload and
2998 * then ifdown has been issued. In this case we want to
2999 * unload and let other functions to complete a recovery
3000 * process.
3001 */
3002 bp->recovery_state = BNX2X_RECOVERY_DONE;
3003 bp->is_leader = 0;
3004 bnx2x_release_leader_lock(bp);
3005 smp_mb();
3006
3007 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3008 BNX2X_ERR("Can't unload in closed or error state\n");
3009 return -EINVAL;
3010 }
3011
3012 /* Nothing to do during unload if previous bnx2x_nic_load()
3013 * have not completed successfully - all resources are released.
3014 *
3015 * we can get here only after unsuccessful ndo_* callback, during which
3016 * dev->IFF_UP flag is still on.
3017 */
3018 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3019 return 0;
3020
3021 /* It's important to set the bp->state to the value different from
3022 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3023 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3024 */
3025 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3026 smp_mb();
3027
3028 /* indicate to VFs that the PF is going down */
3029 bnx2x_iov_channel_down(bp);
3030
3031 if (CNIC_LOADED(bp))
3032 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3033
3034 /* Stop Tx */
3035 bnx2x_tx_disable(bp);
3036 netdev_reset_tc(bp->dev);
3037
3038 bp->rx_mode = BNX2X_RX_MODE_NONE;
3039
3040 del_timer_sync(&bp->timer);
3041
3042 if (IS_PF(bp) && !BP_NOMCP(bp)) {
3043 /* Set ALWAYS_ALIVE bit in shmem */
3044 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3045 bnx2x_drv_pulse(bp);
3046 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3047 bnx2x_save_statistics(bp);
3048 }
3049
3050 /* wait till consumers catch up with producers in all queues.
3051 * If we're recovering, FW can't write to host so no reason
3052 * to wait for the queues to complete all Tx.
3053 */
3054 if (unload_mode != UNLOAD_RECOVERY)
3055 bnx2x_drain_tx_queues(bp);
3056
3057 /* if VF indicate to PF this function is going down (PF will delete sp
3058 * elements and clear initializations
3059 */
3060 if (IS_VF(bp)) {
3061 bnx2x_clear_vlan_info(bp);
3062 bnx2x_vfpf_close_vf(bp);
3063 } else if (unload_mode != UNLOAD_RECOVERY) {
3064 /* if this is a normal/close unload need to clean up chip*/
3065 bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3066 } else {
3067 /* Send the UNLOAD_REQUEST to the MCP */
3068 bnx2x_send_unload_req(bp, unload_mode);
3069
3070 /* Prevent transactions to host from the functions on the
3071 * engine that doesn't reset global blocks in case of global
3072 * attention once global blocks are reset and gates are opened
3073 * (the engine which leader will perform the recovery
3074 * last).
3075 */
3076 if (!CHIP_IS_E1x(bp))
3077 bnx2x_pf_disable(bp);
3078
3079 /* Disable HW interrupts, NAPI */
3080 bnx2x_netif_stop(bp, 1);
3081 /* Delete all NAPI objects */
3082 bnx2x_del_all_napi(bp);
3083 if (CNIC_LOADED(bp))
3084 bnx2x_del_all_napi_cnic(bp);
3085 /* Release IRQs */
3086 bnx2x_free_irq(bp);
3087
3088 /* Report UNLOAD_DONE to MCP */
3089 bnx2x_send_unload_done(bp, false);
3090 }
3091
3092 /*
3093 * At this stage no more interrupts will arrive so we may safely clean
3094 * the queueable objects here in case they failed to get cleaned so far.
3095 */
3096 if (IS_PF(bp))
3097 bnx2x_squeeze_objects(bp);
3098
3099 /* There should be no more pending SP commands at this stage */
3100 bp->sp_state = 0;
3101
3102 bp->port.pmf = 0;
3103
3104 /* clear pending work in rtnl task */
3105 bp->sp_rtnl_state = 0;
3106 smp_mb();
3107
3108 /* Free SKBs, SGEs, TPA pool and driver internals */
3109 bnx2x_free_skbs(bp);
3110 if (CNIC_LOADED(bp))
3111 bnx2x_free_skbs_cnic(bp);
3112 for_each_rx_queue(bp, i)
3113 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3114
3115 bnx2x_free_fp_mem(bp);
3116 if (CNIC_LOADED(bp))
3117 bnx2x_free_fp_mem_cnic(bp);
3118
3119 if (IS_PF(bp)) {
3120 if (CNIC_LOADED(bp))
3121 bnx2x_free_mem_cnic(bp);
3122 }
3123 bnx2x_free_mem(bp);
3124
3125 bp->state = BNX2X_STATE_CLOSED;
3126 bp->cnic_loaded = false;
3127
3128 /* Clear driver version indication in shmem */
3129 if (IS_PF(bp) && !BP_NOMCP(bp))
3130 bnx2x_update_mng_version(bp);
3131
3132 /* Check if there are pending parity attentions. If there are - set
3133 * RECOVERY_IN_PROGRESS.
3134 */
3135 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3136 bnx2x_set_reset_in_progress(bp);
3137
3138 /* Set RESET_IS_GLOBAL if needed */
3139 if (global)
3140 bnx2x_set_reset_global(bp);
3141 }
3142
3143 /* The last driver must disable a "close the gate" if there is no
3144 * parity attention or "process kill" pending.
3145 */
3146 if (IS_PF(bp) &&
3147 !bnx2x_clear_pf_load(bp) &&
3148 bnx2x_reset_is_done(bp, BP_PATH(bp)))
3149 bnx2x_disable_close_the_gate(bp);
3150
3151 DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3152
3153 return 0;
3154 }
3155
bnx2x_set_power_state(struct bnx2x * bp,pci_power_t state)3156 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3157 {
3158 u16 pmcsr;
3159
3160 /* If there is no power capability, silently succeed */
3161 if (!bp->pdev->pm_cap) {
3162 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3163 return 0;
3164 }
3165
3166 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3167
3168 switch (state) {
3169 case PCI_D0:
3170 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3171 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3172 PCI_PM_CTRL_PME_STATUS));
3173
3174 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3175 /* delay required during transition out of D3hot */
3176 msleep(20);
3177 break;
3178
3179 case PCI_D3hot:
3180 /* If there are other clients above don't
3181 shut down the power */
3182 if (atomic_read(&bp->pdev->enable_cnt) != 1)
3183 return 0;
3184 /* Don't shut down the power for emulation and FPGA */
3185 if (CHIP_REV_IS_SLOW(bp))
3186 return 0;
3187
3188 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3189 pmcsr |= 3;
3190
3191 if (bp->wol)
3192 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3193
3194 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3195 pmcsr);
3196
3197 /* No more memory access after this point until
3198 * device is brought back to D0.
3199 */
3200 break;
3201
3202 default:
3203 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3204 return -EINVAL;
3205 }
3206 return 0;
3207 }
3208
3209 /*
3210 * net_device service functions
3211 */
bnx2x_poll(struct napi_struct * napi,int budget)3212 static int bnx2x_poll(struct napi_struct *napi, int budget)
3213 {
3214 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3215 napi);
3216 struct bnx2x *bp = fp->bp;
3217 int rx_work_done;
3218 u8 cos;
3219
3220 #ifdef BNX2X_STOP_ON_ERROR
3221 if (unlikely(bp->panic)) {
3222 napi_complete(napi);
3223 return 0;
3224 }
3225 #endif
3226 for_each_cos_in_tx_queue(fp, cos)
3227 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3228 bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3229
3230 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3231
3232 if (rx_work_done < budget) {
3233 /* No need to update SB for FCoE L2 ring as long as
3234 * it's connected to the default SB and the SB
3235 * has been updated when NAPI was scheduled.
3236 */
3237 if (IS_FCOE_FP(fp)) {
3238 napi_complete_done(napi, rx_work_done);
3239 } else {
3240 bnx2x_update_fpsb_idx(fp);
3241 /* bnx2x_has_rx_work() reads the status block,
3242 * thus we need to ensure that status block indices
3243 * have been actually read (bnx2x_update_fpsb_idx)
3244 * prior to this check (bnx2x_has_rx_work) so that
3245 * we won't write the "newer" value of the status block
3246 * to IGU (if there was a DMA right after
3247 * bnx2x_has_rx_work and if there is no rmb, the memory
3248 * reading (bnx2x_update_fpsb_idx) may be postponed
3249 * to right before bnx2x_ack_sb). In this case there
3250 * will never be another interrupt until there is
3251 * another update of the status block, while there
3252 * is still unhandled work.
3253 */
3254 rmb();
3255
3256 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3257 if (napi_complete_done(napi, rx_work_done)) {
3258 /* Re-enable interrupts */
3259 DP(NETIF_MSG_RX_STATUS,
3260 "Update index to %d\n", fp->fp_hc_idx);
3261 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3262 le16_to_cpu(fp->fp_hc_idx),
3263 IGU_INT_ENABLE, 1);
3264 }
3265 } else {
3266 rx_work_done = budget;
3267 }
3268 }
3269 }
3270
3271 return rx_work_done;
3272 }
3273
3274 /* we split the first BD into headers and data BDs
3275 * to ease the pain of our fellow microcode engineers
3276 * we use one mapping for both BDs
3277 */
bnx2x_tx_split(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,struct sw_tx_bd * tx_buf,struct eth_tx_start_bd ** tx_bd,u16 hlen,u16 bd_prod)3278 static u16 bnx2x_tx_split(struct bnx2x *bp,
3279 struct bnx2x_fp_txdata *txdata,
3280 struct sw_tx_bd *tx_buf,
3281 struct eth_tx_start_bd **tx_bd, u16 hlen,
3282 u16 bd_prod)
3283 {
3284 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3285 struct eth_tx_bd *d_tx_bd;
3286 dma_addr_t mapping;
3287 int old_len = le16_to_cpu(h_tx_bd->nbytes);
3288
3289 /* first fix first BD */
3290 h_tx_bd->nbytes = cpu_to_le16(hlen);
3291
3292 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n",
3293 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3294
3295 /* now get a new data BD
3296 * (after the pbd) and fill it */
3297 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3298 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3299
3300 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3301 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3302
3303 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3304 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3305 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3306
3307 /* this marks the BD as one that has no individual mapping */
3308 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3309
3310 DP(NETIF_MSG_TX_QUEUED,
3311 "TSO split data size is %d (%x:%x)\n",
3312 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3313
3314 /* update tx_bd */
3315 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3316
3317 return bd_prod;
3318 }
3319
3320 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3321 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
bnx2x_csum_fix(unsigned char * t_header,u16 csum,s8 fix)3322 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3323 {
3324 __sum16 tsum = (__force __sum16) csum;
3325
3326 if (fix > 0)
3327 tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3328 csum_partial(t_header - fix, fix, 0)));
3329
3330 else if (fix < 0)
3331 tsum = ~csum_fold(csum_add((__force __wsum) csum,
3332 csum_partial(t_header, -fix, 0)));
3333
3334 return bswab16(tsum);
3335 }
3336
bnx2x_xmit_type(struct bnx2x * bp,struct sk_buff * skb)3337 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3338 {
3339 u32 rc;
3340 __u8 prot = 0;
3341 __be16 protocol;
3342
3343 if (skb->ip_summed != CHECKSUM_PARTIAL)
3344 return XMIT_PLAIN;
3345
3346 protocol = vlan_get_protocol(skb);
3347 if (protocol == htons(ETH_P_IPV6)) {
3348 rc = XMIT_CSUM_V6;
3349 prot = ipv6_hdr(skb)->nexthdr;
3350 } else {
3351 rc = XMIT_CSUM_V4;
3352 prot = ip_hdr(skb)->protocol;
3353 }
3354
3355 if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3356 if (inner_ip_hdr(skb)->version == 6) {
3357 rc |= XMIT_CSUM_ENC_V6;
3358 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3359 rc |= XMIT_CSUM_TCP;
3360 } else {
3361 rc |= XMIT_CSUM_ENC_V4;
3362 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3363 rc |= XMIT_CSUM_TCP;
3364 }
3365 }
3366 if (prot == IPPROTO_TCP)
3367 rc |= XMIT_CSUM_TCP;
3368
3369 if (skb_is_gso(skb)) {
3370 if (skb_is_gso_v6(skb)) {
3371 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3372 if (rc & XMIT_CSUM_ENC)
3373 rc |= XMIT_GSO_ENC_V6;
3374 } else {
3375 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3376 if (rc & XMIT_CSUM_ENC)
3377 rc |= XMIT_GSO_ENC_V4;
3378 }
3379 }
3380
3381 return rc;
3382 }
3383
3384 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3385 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3386
3387 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3388 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3389
3390 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3391 /* check if packet requires linearization (packet is too fragmented)
3392 no need to check fragmentation if page size > 8K (there will be no
3393 violation to FW restrictions) */
bnx2x_pkt_req_lin(struct bnx2x * bp,struct sk_buff * skb,u32 xmit_type)3394 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3395 u32 xmit_type)
3396 {
3397 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3398 int to_copy = 0, hlen = 0;
3399
3400 if (xmit_type & XMIT_GSO_ENC)
3401 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3402
3403 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3404 if (xmit_type & XMIT_GSO) {
3405 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3406 int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3407 /* Number of windows to check */
3408 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3409 int wnd_idx = 0;
3410 int frag_idx = 0;
3411 u32 wnd_sum = 0;
3412
3413 /* Headers length */
3414 if (xmit_type & XMIT_GSO_ENC)
3415 hlen = (int)(skb_inner_transport_header(skb) -
3416 skb->data) +
3417 inner_tcp_hdrlen(skb);
3418 else
3419 hlen = (int)(skb_transport_header(skb) -
3420 skb->data) + tcp_hdrlen(skb);
3421
3422 /* Amount of data (w/o headers) on linear part of SKB*/
3423 first_bd_sz = skb_headlen(skb) - hlen;
3424
3425 wnd_sum = first_bd_sz;
3426
3427 /* Calculate the first sum - it's special */
3428 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3429 wnd_sum +=
3430 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3431
3432 /* If there was data on linear skb data - check it */
3433 if (first_bd_sz > 0) {
3434 if (unlikely(wnd_sum < lso_mss)) {
3435 to_copy = 1;
3436 goto exit_lbl;
3437 }
3438
3439 wnd_sum -= first_bd_sz;
3440 }
3441
3442 /* Others are easier: run through the frag list and
3443 check all windows */
3444 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3445 wnd_sum +=
3446 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3447
3448 if (unlikely(wnd_sum < lso_mss)) {
3449 to_copy = 1;
3450 break;
3451 }
3452 wnd_sum -=
3453 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3454 }
3455 } else {
3456 /* in non-LSO too fragmented packet should always
3457 be linearized */
3458 to_copy = 1;
3459 }
3460 }
3461
3462 exit_lbl:
3463 if (unlikely(to_copy))
3464 DP(NETIF_MSG_TX_QUEUED,
3465 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3466 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3467 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3468
3469 return to_copy;
3470 }
3471 #endif
3472
3473 /**
3474 * bnx2x_set_pbd_gso - update PBD in GSO case.
3475 *
3476 * @skb: packet skb
3477 * @pbd: parse BD
3478 * @xmit_type: xmit flags
3479 */
bnx2x_set_pbd_gso(struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3480 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3481 struct eth_tx_parse_bd_e1x *pbd,
3482 u32 xmit_type)
3483 {
3484 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3485 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3486 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3487
3488 if (xmit_type & XMIT_GSO_V4) {
3489 pbd->ip_id = bswab16(ip_hdr(skb)->id);
3490 pbd->tcp_pseudo_csum =
3491 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3492 ip_hdr(skb)->daddr,
3493 0, IPPROTO_TCP, 0));
3494 } else {
3495 pbd->tcp_pseudo_csum =
3496 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3497 &ipv6_hdr(skb)->daddr,
3498 0, IPPROTO_TCP, 0));
3499 }
3500
3501 pbd->global_data |=
3502 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3503 }
3504
3505 /**
3506 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3507 *
3508 * @bp: driver handle
3509 * @skb: packet skb
3510 * @parsing_data: data to be updated
3511 * @xmit_type: xmit flags
3512 *
3513 * 57712/578xx related, when skb has encapsulation
3514 */
bnx2x_set_pbd_csum_enc(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3515 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3516 u32 *parsing_data, u32 xmit_type)
3517 {
3518 *parsing_data |=
3519 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3520 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3521 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3522
3523 if (xmit_type & XMIT_CSUM_TCP) {
3524 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3525 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3526 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3527
3528 return skb_inner_transport_header(skb) +
3529 inner_tcp_hdrlen(skb) - skb->data;
3530 }
3531
3532 /* We support checksum offload for TCP and UDP only.
3533 * No need to pass the UDP header length - it's a constant.
3534 */
3535 return skb_inner_transport_header(skb) +
3536 sizeof(struct udphdr) - skb->data;
3537 }
3538
3539 /**
3540 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3541 *
3542 * @bp: driver handle
3543 * @skb: packet skb
3544 * @parsing_data: data to be updated
3545 * @xmit_type: xmit flags
3546 *
3547 * 57712/578xx related
3548 */
bnx2x_set_pbd_csum_e2(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3549 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3550 u32 *parsing_data, u32 xmit_type)
3551 {
3552 *parsing_data |=
3553 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3554 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3555 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3556
3557 if (xmit_type & XMIT_CSUM_TCP) {
3558 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3559 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3560 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3561
3562 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3563 }
3564 /* We support checksum offload for TCP and UDP only.
3565 * No need to pass the UDP header length - it's a constant.
3566 */
3567 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3568 }
3569
3570 /* set FW indication according to inner or outer protocols if tunneled */
bnx2x_set_sbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_start_bd * tx_start_bd,u32 xmit_type)3571 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3572 struct eth_tx_start_bd *tx_start_bd,
3573 u32 xmit_type)
3574 {
3575 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3576
3577 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3578 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3579
3580 if (!(xmit_type & XMIT_CSUM_TCP))
3581 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3582 }
3583
3584 /**
3585 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3586 *
3587 * @bp: driver handle
3588 * @skb: packet skb
3589 * @pbd: parse BD to be updated
3590 * @xmit_type: xmit flags
3591 */
bnx2x_set_pbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3592 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3593 struct eth_tx_parse_bd_e1x *pbd,
3594 u32 xmit_type)
3595 {
3596 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3597
3598 /* for now NS flag is not used in Linux */
3599 pbd->global_data =
3600 cpu_to_le16(hlen |
3601 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3602 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3603
3604 pbd->ip_hlen_w = (skb_transport_header(skb) -
3605 skb_network_header(skb)) >> 1;
3606
3607 hlen += pbd->ip_hlen_w;
3608
3609 /* We support checksum offload for TCP and UDP only */
3610 if (xmit_type & XMIT_CSUM_TCP)
3611 hlen += tcp_hdrlen(skb) / 2;
3612 else
3613 hlen += sizeof(struct udphdr) / 2;
3614
3615 pbd->total_hlen_w = cpu_to_le16(hlen);
3616 hlen = hlen*2;
3617
3618 if (xmit_type & XMIT_CSUM_TCP) {
3619 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3620
3621 } else {
3622 s8 fix = SKB_CS_OFF(skb); /* signed! */
3623
3624 DP(NETIF_MSG_TX_QUEUED,
3625 "hlen %d fix %d csum before fix %x\n",
3626 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3627
3628 /* HW bug: fixup the CSUM */
3629 pbd->tcp_pseudo_csum =
3630 bnx2x_csum_fix(skb_transport_header(skb),
3631 SKB_CS(skb), fix);
3632
3633 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3634 pbd->tcp_pseudo_csum);
3635 }
3636
3637 return hlen;
3638 }
3639
bnx2x_update_pbds_gso_enc(struct sk_buff * skb,struct eth_tx_parse_bd_e2 * pbd_e2,struct eth_tx_parse_2nd_bd * pbd2,u16 * global_data,u32 xmit_type)3640 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3641 struct eth_tx_parse_bd_e2 *pbd_e2,
3642 struct eth_tx_parse_2nd_bd *pbd2,
3643 u16 *global_data,
3644 u32 xmit_type)
3645 {
3646 u16 hlen_w = 0;
3647 u8 outerip_off, outerip_len = 0;
3648
3649 /* from outer IP to transport */
3650 hlen_w = (skb_inner_transport_header(skb) -
3651 skb_network_header(skb)) >> 1;
3652
3653 /* transport len */
3654 hlen_w += inner_tcp_hdrlen(skb) >> 1;
3655
3656 pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3657
3658 /* outer IP header info */
3659 if (xmit_type & XMIT_CSUM_V4) {
3660 struct iphdr *iph = ip_hdr(skb);
3661 u32 csum = (__force u32)(~iph->check) -
3662 (__force u32)iph->tot_len -
3663 (__force u32)iph->frag_off;
3664
3665 outerip_len = iph->ihl << 1;
3666
3667 pbd2->fw_ip_csum_wo_len_flags_frag =
3668 bswab16(csum_fold((__force __wsum)csum));
3669 } else {
3670 pbd2->fw_ip_hdr_to_payload_w =
3671 hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3672 pbd_e2->data.tunnel_data.flags |=
3673 ETH_TUNNEL_DATA_IPV6_OUTER;
3674 }
3675
3676 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3677
3678 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3679
3680 /* inner IP header info */
3681 if (xmit_type & XMIT_CSUM_ENC_V4) {
3682 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3683
3684 pbd_e2->data.tunnel_data.pseudo_csum =
3685 bswab16(~csum_tcpudp_magic(
3686 inner_ip_hdr(skb)->saddr,
3687 inner_ip_hdr(skb)->daddr,
3688 0, IPPROTO_TCP, 0));
3689 } else {
3690 pbd_e2->data.tunnel_data.pseudo_csum =
3691 bswab16(~csum_ipv6_magic(
3692 &inner_ipv6_hdr(skb)->saddr,
3693 &inner_ipv6_hdr(skb)->daddr,
3694 0, IPPROTO_TCP, 0));
3695 }
3696
3697 outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3698
3699 *global_data |=
3700 outerip_off |
3701 (outerip_len <<
3702 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3703 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3704 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3705
3706 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3707 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3708 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3709 }
3710 }
3711
bnx2x_set_ipv6_ext_e2(struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3712 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3713 u32 xmit_type)
3714 {
3715 struct ipv6hdr *ipv6;
3716
3717 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3718 return;
3719
3720 if (xmit_type & XMIT_GSO_ENC_V6)
3721 ipv6 = inner_ipv6_hdr(skb);
3722 else /* XMIT_GSO_V6 */
3723 ipv6 = ipv6_hdr(skb);
3724
3725 if (ipv6->nexthdr == NEXTHDR_IPV6)
3726 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3727 }
3728
3729 /* called with netif_tx_lock
3730 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3731 * netif_wake_queue()
3732 */
bnx2x_start_xmit(struct sk_buff * skb,struct net_device * dev)3733 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3734 {
3735 struct bnx2x *bp = netdev_priv(dev);
3736
3737 struct netdev_queue *txq;
3738 struct bnx2x_fp_txdata *txdata;
3739 struct sw_tx_bd *tx_buf;
3740 struct eth_tx_start_bd *tx_start_bd, *first_bd;
3741 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3742 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3743 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3744 struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3745 u32 pbd_e2_parsing_data = 0;
3746 u16 pkt_prod, bd_prod;
3747 int nbd, txq_index;
3748 dma_addr_t mapping;
3749 u32 xmit_type = bnx2x_xmit_type(bp, skb);
3750 int i;
3751 u8 hlen = 0;
3752 __le16 pkt_size = 0;
3753 struct ethhdr *eth;
3754 u8 mac_type = UNICAST_ADDRESS;
3755
3756 #ifdef BNX2X_STOP_ON_ERROR
3757 if (unlikely(bp->panic))
3758 return NETDEV_TX_BUSY;
3759 #endif
3760
3761 txq_index = skb_get_queue_mapping(skb);
3762 txq = netdev_get_tx_queue(dev, txq_index);
3763
3764 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3765
3766 txdata = &bp->bnx2x_txq[txq_index];
3767
3768 /* enable this debug print to view the transmission queue being used
3769 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3770 txq_index, fp_index, txdata_index); */
3771
3772 /* enable this debug print to view the transmission details
3773 DP(NETIF_MSG_TX_QUEUED,
3774 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3775 txdata->cid, fp_index, txdata_index, txdata, fp); */
3776
3777 if (unlikely(bnx2x_tx_avail(bp, txdata) <
3778 skb_shinfo(skb)->nr_frags +
3779 BDS_PER_TX_PKT +
3780 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3781 /* Handle special storage cases separately */
3782 if (txdata->tx_ring_size == 0) {
3783 struct bnx2x_eth_q_stats *q_stats =
3784 bnx2x_fp_qstats(bp, txdata->parent_fp);
3785 q_stats->driver_filtered_tx_pkt++;
3786 dev_kfree_skb(skb);
3787 return NETDEV_TX_OK;
3788 }
3789 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3790 netif_tx_stop_queue(txq);
3791 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3792
3793 return NETDEV_TX_BUSY;
3794 }
3795
3796 DP(NETIF_MSG_TX_QUEUED,
3797 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3798 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3799 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3800 skb->len);
3801
3802 eth = (struct ethhdr *)skb->data;
3803
3804 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3805 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3806 if (is_broadcast_ether_addr(eth->h_dest))
3807 mac_type = BROADCAST_ADDRESS;
3808 else
3809 mac_type = MULTICAST_ADDRESS;
3810 }
3811
3812 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3813 /* First, check if we need to linearize the skb (due to FW
3814 restrictions). No need to check fragmentation if page size > 8K
3815 (there will be no violation to FW restrictions) */
3816 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3817 /* Statistics of linearization */
3818 bp->lin_cnt++;
3819 if (skb_linearize(skb) != 0) {
3820 DP(NETIF_MSG_TX_QUEUED,
3821 "SKB linearization failed - silently dropping this SKB\n");
3822 dev_kfree_skb_any(skb);
3823 return NETDEV_TX_OK;
3824 }
3825 }
3826 #endif
3827 /* Map skb linear data for DMA */
3828 mapping = dma_map_single(&bp->pdev->dev, skb->data,
3829 skb_headlen(skb), DMA_TO_DEVICE);
3830 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3831 DP(NETIF_MSG_TX_QUEUED,
3832 "SKB mapping failed - silently dropping this SKB\n");
3833 dev_kfree_skb_any(skb);
3834 return NETDEV_TX_OK;
3835 }
3836 /*
3837 Please read carefully. First we use one BD which we mark as start,
3838 then we have a parsing info BD (used for TSO or xsum),
3839 and only then we have the rest of the TSO BDs.
3840 (don't forget to mark the last one as last,
3841 and to unmap only AFTER you write to the BD ...)
3842 And above all, all pdb sizes are in words - NOT DWORDS!
3843 */
3844
3845 /* get current pkt produced now - advance it just before sending packet
3846 * since mapping of pages may fail and cause packet to be dropped
3847 */
3848 pkt_prod = txdata->tx_pkt_prod;
3849 bd_prod = TX_BD(txdata->tx_bd_prod);
3850
3851 /* get a tx_buf and first BD
3852 * tx_start_bd may be changed during SPLIT,
3853 * but first_bd will always stay first
3854 */
3855 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3856 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3857 first_bd = tx_start_bd;
3858
3859 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3860
3861 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3862 if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3863 bp->eth_stats.ptp_skip_tx_ts++;
3864 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3865 } else if (bp->ptp_tx_skb) {
3866 bp->eth_stats.ptp_skip_tx_ts++;
3867 dev_err_once(&bp->dev->dev,
3868 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3869 } else {
3870 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3871 /* schedule check for Tx timestamp */
3872 bp->ptp_tx_skb = skb_get(skb);
3873 bp->ptp_tx_start = jiffies;
3874 schedule_work(&bp->ptp_task);
3875 }
3876 }
3877
3878 /* header nbd: indirectly zero other flags! */
3879 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3880
3881 /* remember the first BD of the packet */
3882 tx_buf->first_bd = txdata->tx_bd_prod;
3883 tx_buf->skb = skb;
3884 tx_buf->flags = 0;
3885
3886 DP(NETIF_MSG_TX_QUEUED,
3887 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3888 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3889
3890 if (skb_vlan_tag_present(skb)) {
3891 tx_start_bd->vlan_or_ethertype =
3892 cpu_to_le16(skb_vlan_tag_get(skb));
3893 tx_start_bd->bd_flags.as_bitfield |=
3894 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3895 } else {
3896 /* when transmitting in a vf, start bd must hold the ethertype
3897 * for fw to enforce it
3898 */
3899 u16 vlan_tci = 0;
3900 #ifndef BNX2X_STOP_ON_ERROR
3901 if (IS_VF(bp)) {
3902 #endif
3903 /* Still need to consider inband vlan for enforced */
3904 if (__vlan_get_tag(skb, &vlan_tci)) {
3905 tx_start_bd->vlan_or_ethertype =
3906 cpu_to_le16(ntohs(eth->h_proto));
3907 } else {
3908 tx_start_bd->bd_flags.as_bitfield |=
3909 (X_ETH_INBAND_VLAN <<
3910 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3911 tx_start_bd->vlan_or_ethertype =
3912 cpu_to_le16(vlan_tci);
3913 }
3914 #ifndef BNX2X_STOP_ON_ERROR
3915 } else {
3916 /* used by FW for packet accounting */
3917 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3918 }
3919 #endif
3920 }
3921
3922 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3923
3924 /* turn on parsing and get a BD */
3925 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3926
3927 if (xmit_type & XMIT_CSUM)
3928 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3929
3930 if (!CHIP_IS_E1x(bp)) {
3931 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3932 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3933
3934 if (xmit_type & XMIT_CSUM_ENC) {
3935 u16 global_data = 0;
3936
3937 /* Set PBD in enc checksum offload case */
3938 hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3939 &pbd_e2_parsing_data,
3940 xmit_type);
3941
3942 /* turn on 2nd parsing and get a BD */
3943 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3944
3945 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3946
3947 memset(pbd2, 0, sizeof(*pbd2));
3948
3949 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3950 (skb_inner_network_header(skb) -
3951 skb->data) >> 1;
3952
3953 if (xmit_type & XMIT_GSO_ENC)
3954 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3955 &global_data,
3956 xmit_type);
3957
3958 pbd2->global_data = cpu_to_le16(global_data);
3959
3960 /* add addition parse BD indication to start BD */
3961 SET_FLAG(tx_start_bd->general_data,
3962 ETH_TX_START_BD_PARSE_NBDS, 1);
3963 /* set encapsulation flag in start BD */
3964 SET_FLAG(tx_start_bd->general_data,
3965 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3966
3967 tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3968
3969 nbd++;
3970 } else if (xmit_type & XMIT_CSUM) {
3971 /* Set PBD in checksum offload case w/o encapsulation */
3972 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3973 &pbd_e2_parsing_data,
3974 xmit_type);
3975 }
3976
3977 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3978 /* Add the macs to the parsing BD if this is a vf or if
3979 * Tx Switching is enabled.
3980 */
3981 if (IS_VF(bp)) {
3982 /* override GRE parameters in BD */
3983 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3984 &pbd_e2->data.mac_addr.src_mid,
3985 &pbd_e2->data.mac_addr.src_lo,
3986 eth->h_source);
3987
3988 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3989 &pbd_e2->data.mac_addr.dst_mid,
3990 &pbd_e2->data.mac_addr.dst_lo,
3991 eth->h_dest);
3992 } else {
3993 if (bp->flags & TX_SWITCHING)
3994 bnx2x_set_fw_mac_addr(
3995 &pbd_e2->data.mac_addr.dst_hi,
3996 &pbd_e2->data.mac_addr.dst_mid,
3997 &pbd_e2->data.mac_addr.dst_lo,
3998 eth->h_dest);
3999 #ifdef BNX2X_STOP_ON_ERROR
4000 /* Enforce security is always set in Stop on Error -
4001 * source mac should be present in the parsing BD
4002 */
4003 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4004 &pbd_e2->data.mac_addr.src_mid,
4005 &pbd_e2->data.mac_addr.src_lo,
4006 eth->h_source);
4007 #endif
4008 }
4009
4010 SET_FLAG(pbd_e2_parsing_data,
4011 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4012 } else {
4013 u16 global_data = 0;
4014 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4015 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4016 /* Set PBD in checksum offload case */
4017 if (xmit_type & XMIT_CSUM)
4018 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4019
4020 SET_FLAG(global_data,
4021 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4022 pbd_e1x->global_data |= cpu_to_le16(global_data);
4023 }
4024
4025 /* Setup the data pointer of the first BD of the packet */
4026 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4027 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4028 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4029 pkt_size = tx_start_bd->nbytes;
4030
4031 DP(NETIF_MSG_TX_QUEUED,
4032 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4033 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4034 le16_to_cpu(tx_start_bd->nbytes),
4035 tx_start_bd->bd_flags.as_bitfield,
4036 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4037
4038 if (xmit_type & XMIT_GSO) {
4039
4040 DP(NETIF_MSG_TX_QUEUED,
4041 "TSO packet len %d hlen %d total len %d tso size %d\n",
4042 skb->len, hlen, skb_headlen(skb),
4043 skb_shinfo(skb)->gso_size);
4044
4045 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4046
4047 if (unlikely(skb_headlen(skb) > hlen)) {
4048 nbd++;
4049 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4050 &tx_start_bd, hlen,
4051 bd_prod);
4052 }
4053 if (!CHIP_IS_E1x(bp))
4054 pbd_e2_parsing_data |=
4055 (skb_shinfo(skb)->gso_size <<
4056 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4057 ETH_TX_PARSE_BD_E2_LSO_MSS;
4058 else
4059 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4060 }
4061
4062 /* Set the PBD's parsing_data field if not zero
4063 * (for the chips newer than 57711).
4064 */
4065 if (pbd_e2_parsing_data)
4066 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4067
4068 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4069
4070 /* Handle fragmented skb */
4071 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4072 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4073
4074 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4075 skb_frag_size(frag), DMA_TO_DEVICE);
4076 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4077 unsigned int pkts_compl = 0, bytes_compl = 0;
4078
4079 DP(NETIF_MSG_TX_QUEUED,
4080 "Unable to map page - dropping packet...\n");
4081
4082 /* we need unmap all buffers already mapped
4083 * for this SKB;
4084 * first_bd->nbd need to be properly updated
4085 * before call to bnx2x_free_tx_pkt
4086 */
4087 first_bd->nbd = cpu_to_le16(nbd);
4088 bnx2x_free_tx_pkt(bp, txdata,
4089 TX_BD(txdata->tx_pkt_prod),
4090 &pkts_compl, &bytes_compl);
4091 return NETDEV_TX_OK;
4092 }
4093
4094 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4095 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4096 if (total_pkt_bd == NULL)
4097 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4098
4099 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4100 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4101 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4102 le16_add_cpu(&pkt_size, skb_frag_size(frag));
4103 nbd++;
4104
4105 DP(NETIF_MSG_TX_QUEUED,
4106 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4107 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4108 le16_to_cpu(tx_data_bd->nbytes));
4109 }
4110
4111 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4112
4113 /* update with actual num BDs */
4114 first_bd->nbd = cpu_to_le16(nbd);
4115
4116 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4117
4118 /* now send a tx doorbell, counting the next BD
4119 * if the packet contains or ends with it
4120 */
4121 if (TX_BD_POFF(bd_prod) < nbd)
4122 nbd++;
4123
4124 /* total_pkt_bytes should be set on the first data BD if
4125 * it's not an LSO packet and there is more than one
4126 * data BD. In this case pkt_size is limited by an MTU value.
4127 * However we prefer to set it for an LSO packet (while we don't
4128 * have to) in order to save some CPU cycles in a none-LSO
4129 * case, when we much more care about them.
4130 */
4131 if (total_pkt_bd != NULL)
4132 total_pkt_bd->total_pkt_bytes = pkt_size;
4133
4134 if (pbd_e1x)
4135 DP(NETIF_MSG_TX_QUEUED,
4136 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4137 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4138 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4139 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4140 le16_to_cpu(pbd_e1x->total_hlen_w));
4141 if (pbd_e2)
4142 DP(NETIF_MSG_TX_QUEUED,
4143 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4144 pbd_e2,
4145 pbd_e2->data.mac_addr.dst_hi,
4146 pbd_e2->data.mac_addr.dst_mid,
4147 pbd_e2->data.mac_addr.dst_lo,
4148 pbd_e2->data.mac_addr.src_hi,
4149 pbd_e2->data.mac_addr.src_mid,
4150 pbd_e2->data.mac_addr.src_lo,
4151 pbd_e2->parsing_data);
4152 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
4153
4154 netdev_tx_sent_queue(txq, skb->len);
4155
4156 skb_tx_timestamp(skb);
4157
4158 txdata->tx_pkt_prod++;
4159 /*
4160 * Make sure that the BD data is updated before updating the producer
4161 * since FW might read the BD right after the producer is updated.
4162 * This is only applicable for weak-ordered memory model archs such
4163 * as IA-64. The following barrier is also mandatory since FW will
4164 * assumes packets must have BDs.
4165 */
4166 wmb();
4167
4168 txdata->tx_db.data.prod += nbd;
4169 barrier();
4170
4171 DOORBELL(bp, txdata->cid, txdata->tx_db.raw);
4172
4173 mmiowb();
4174
4175 txdata->tx_bd_prod += nbd;
4176
4177 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4178 netif_tx_stop_queue(txq);
4179
4180 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4181 * ordering of set_bit() in netif_tx_stop_queue() and read of
4182 * fp->bd_tx_cons */
4183 smp_mb();
4184
4185 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4186 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4187 netif_tx_wake_queue(txq);
4188 }
4189 txdata->tx_pkt++;
4190
4191 return NETDEV_TX_OK;
4192 }
4193
bnx2x_get_c2s_mapping(struct bnx2x * bp,u8 * c2s_map,u8 * c2s_default)4194 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4195 {
4196 int mfw_vn = BP_FW_MB_IDX(bp);
4197 u32 tmp;
4198
4199 /* If the shmem shouldn't affect configuration, reflect */
4200 if (!IS_MF_BD(bp)) {
4201 int i;
4202
4203 for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4204 c2s_map[i] = i;
4205 *c2s_default = 0;
4206
4207 return;
4208 }
4209
4210 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4211 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4212 c2s_map[0] = tmp & 0xff;
4213 c2s_map[1] = (tmp >> 8) & 0xff;
4214 c2s_map[2] = (tmp >> 16) & 0xff;
4215 c2s_map[3] = (tmp >> 24) & 0xff;
4216
4217 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4218 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4219 c2s_map[4] = tmp & 0xff;
4220 c2s_map[5] = (tmp >> 8) & 0xff;
4221 c2s_map[6] = (tmp >> 16) & 0xff;
4222 c2s_map[7] = (tmp >> 24) & 0xff;
4223
4224 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4225 tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4226 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4227 }
4228
4229 /**
4230 * bnx2x_setup_tc - routine to configure net_device for multi tc
4231 *
4232 * @netdev: net device to configure
4233 * @tc: number of traffic classes to enable
4234 *
4235 * callback connected to the ndo_setup_tc function pointer
4236 */
bnx2x_setup_tc(struct net_device * dev,u8 num_tc)4237 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4238 {
4239 struct bnx2x *bp = netdev_priv(dev);
4240 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4241 int cos, prio, count, offset;
4242
4243 /* setup tc must be called under rtnl lock */
4244 ASSERT_RTNL();
4245
4246 /* no traffic classes requested. Aborting */
4247 if (!num_tc) {
4248 netdev_reset_tc(dev);
4249 return 0;
4250 }
4251
4252 /* requested to support too many traffic classes */
4253 if (num_tc > bp->max_cos) {
4254 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4255 num_tc, bp->max_cos);
4256 return -EINVAL;
4257 }
4258
4259 /* declare amount of supported traffic classes */
4260 if (netdev_set_num_tc(dev, num_tc)) {
4261 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4262 return -EINVAL;
4263 }
4264
4265 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4266
4267 /* configure priority to traffic class mapping */
4268 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4269 int outer_prio = c2s_map[prio];
4270
4271 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4272 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4273 "mapping priority %d to tc %d\n",
4274 outer_prio, bp->prio_to_cos[outer_prio]);
4275 }
4276
4277 /* Use this configuration to differentiate tc0 from other COSes
4278 This can be used for ets or pfc, and save the effort of setting
4279 up a multio class queue disc or negotiating DCBX with a switch
4280 netdev_set_prio_tc_map(dev, 0, 0);
4281 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4282 for (prio = 1; prio < 16; prio++) {
4283 netdev_set_prio_tc_map(dev, prio, 1);
4284 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4285 } */
4286
4287 /* configure traffic class to transmission queue mapping */
4288 for (cos = 0; cos < bp->max_cos; cos++) {
4289 count = BNX2X_NUM_ETH_QUEUES(bp);
4290 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4291 netdev_set_tc_queue(dev, cos, count, offset);
4292 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4293 "mapping tc %d to offset %d count %d\n",
4294 cos, offset, count);
4295 }
4296
4297 return 0;
4298 }
4299
__bnx2x_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)4300 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4301 void *type_data)
4302 {
4303 struct tc_mqprio_qopt *mqprio = type_data;
4304
4305 if (type != TC_SETUP_MQPRIO)
4306 return -EOPNOTSUPP;
4307
4308 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4309
4310 return bnx2x_setup_tc(dev, mqprio->num_tc);
4311 }
4312
4313 /* called with rtnl_lock */
bnx2x_change_mac_addr(struct net_device * dev,void * p)4314 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4315 {
4316 struct sockaddr *addr = p;
4317 struct bnx2x *bp = netdev_priv(dev);
4318 int rc = 0;
4319
4320 if (!is_valid_ether_addr(addr->sa_data)) {
4321 BNX2X_ERR("Requested MAC address is not valid\n");
4322 return -EINVAL;
4323 }
4324
4325 if (IS_MF_STORAGE_ONLY(bp)) {
4326 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4327 return -EINVAL;
4328 }
4329
4330 if (netif_running(dev)) {
4331 rc = bnx2x_set_eth_mac(bp, false);
4332 if (rc)
4333 return rc;
4334 }
4335
4336 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4337
4338 if (netif_running(dev))
4339 rc = bnx2x_set_eth_mac(bp, true);
4340
4341 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4342 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4343
4344 return rc;
4345 }
4346
bnx2x_free_fp_mem_at(struct bnx2x * bp,int fp_index)4347 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4348 {
4349 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4350 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4351 u8 cos;
4352
4353 /* Common */
4354
4355 if (IS_FCOE_IDX(fp_index)) {
4356 memset(sb, 0, sizeof(union host_hc_status_block));
4357 fp->status_blk_mapping = 0;
4358 } else {
4359 /* status blocks */
4360 if (!CHIP_IS_E1x(bp))
4361 BNX2X_PCI_FREE(sb->e2_sb,
4362 bnx2x_fp(bp, fp_index,
4363 status_blk_mapping),
4364 sizeof(struct host_hc_status_block_e2));
4365 else
4366 BNX2X_PCI_FREE(sb->e1x_sb,
4367 bnx2x_fp(bp, fp_index,
4368 status_blk_mapping),
4369 sizeof(struct host_hc_status_block_e1x));
4370 }
4371
4372 /* Rx */
4373 if (!skip_rx_queue(bp, fp_index)) {
4374 bnx2x_free_rx_bds(fp);
4375
4376 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4377 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4378 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4379 bnx2x_fp(bp, fp_index, rx_desc_mapping),
4380 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4381
4382 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4383 bnx2x_fp(bp, fp_index, rx_comp_mapping),
4384 sizeof(struct eth_fast_path_rx_cqe) *
4385 NUM_RCQ_BD);
4386
4387 /* SGE ring */
4388 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4389 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4390 bnx2x_fp(bp, fp_index, rx_sge_mapping),
4391 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4392 }
4393
4394 /* Tx */
4395 if (!skip_tx_queue(bp, fp_index)) {
4396 /* fastpath tx rings: tx_buf tx_desc */
4397 for_each_cos_in_tx_queue(fp, cos) {
4398 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4399
4400 DP(NETIF_MSG_IFDOWN,
4401 "freeing tx memory of fp %d cos %d cid %d\n",
4402 fp_index, cos, txdata->cid);
4403
4404 BNX2X_FREE(txdata->tx_buf_ring);
4405 BNX2X_PCI_FREE(txdata->tx_desc_ring,
4406 txdata->tx_desc_mapping,
4407 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4408 }
4409 }
4410 /* end of fastpath */
4411 }
4412
bnx2x_free_fp_mem_cnic(struct bnx2x * bp)4413 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4414 {
4415 int i;
4416 for_each_cnic_queue(bp, i)
4417 bnx2x_free_fp_mem_at(bp, i);
4418 }
4419
bnx2x_free_fp_mem(struct bnx2x * bp)4420 void bnx2x_free_fp_mem(struct bnx2x *bp)
4421 {
4422 int i;
4423 for_each_eth_queue(bp, i)
4424 bnx2x_free_fp_mem_at(bp, i);
4425 }
4426
set_sb_shortcuts(struct bnx2x * bp,int index)4427 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4428 {
4429 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4430 if (!CHIP_IS_E1x(bp)) {
4431 bnx2x_fp(bp, index, sb_index_values) =
4432 (__le16 *)status_blk.e2_sb->sb.index_values;
4433 bnx2x_fp(bp, index, sb_running_index) =
4434 (__le16 *)status_blk.e2_sb->sb.running_index;
4435 } else {
4436 bnx2x_fp(bp, index, sb_index_values) =
4437 (__le16 *)status_blk.e1x_sb->sb.index_values;
4438 bnx2x_fp(bp, index, sb_running_index) =
4439 (__le16 *)status_blk.e1x_sb->sb.running_index;
4440 }
4441 }
4442
4443 /* Returns the number of actually allocated BDs */
bnx2x_alloc_rx_bds(struct bnx2x_fastpath * fp,int rx_ring_size)4444 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4445 int rx_ring_size)
4446 {
4447 struct bnx2x *bp = fp->bp;
4448 u16 ring_prod, cqe_ring_prod;
4449 int i, failure_cnt = 0;
4450
4451 fp->rx_comp_cons = 0;
4452 cqe_ring_prod = ring_prod = 0;
4453
4454 /* This routine is called only during fo init so
4455 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4456 */
4457 for (i = 0; i < rx_ring_size; i++) {
4458 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4459 failure_cnt++;
4460 continue;
4461 }
4462 ring_prod = NEXT_RX_IDX(ring_prod);
4463 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4464 WARN_ON(ring_prod <= (i - failure_cnt));
4465 }
4466
4467 if (failure_cnt)
4468 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4469 i - failure_cnt, fp->index);
4470
4471 fp->rx_bd_prod = ring_prod;
4472 /* Limit the CQE producer by the CQE ring size */
4473 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4474 cqe_ring_prod);
4475
4476 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4477
4478 return i - failure_cnt;
4479 }
4480
bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath * fp)4481 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4482 {
4483 int i;
4484
4485 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4486 struct eth_rx_cqe_next_page *nextpg;
4487
4488 nextpg = (struct eth_rx_cqe_next_page *)
4489 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4490 nextpg->addr_hi =
4491 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4492 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4493 nextpg->addr_lo =
4494 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4495 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4496 }
4497 }
4498
bnx2x_alloc_fp_mem_at(struct bnx2x * bp,int index)4499 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4500 {
4501 union host_hc_status_block *sb;
4502 struct bnx2x_fastpath *fp = &bp->fp[index];
4503 int ring_size = 0;
4504 u8 cos;
4505 int rx_ring_size = 0;
4506
4507 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4508 rx_ring_size = MIN_RX_SIZE_NONTPA;
4509 bp->rx_ring_size = rx_ring_size;
4510 } else if (!bp->rx_ring_size) {
4511 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4512
4513 if (CHIP_IS_E3(bp)) {
4514 u32 cfg = SHMEM_RD(bp,
4515 dev_info.port_hw_config[BP_PORT(bp)].
4516 default_cfg);
4517
4518 /* Decrease ring size for 1G functions */
4519 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4520 PORT_HW_CFG_NET_SERDES_IF_SGMII)
4521 rx_ring_size /= 10;
4522 }
4523
4524 /* allocate at least number of buffers required by FW */
4525 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4526 MIN_RX_SIZE_TPA, rx_ring_size);
4527
4528 bp->rx_ring_size = rx_ring_size;
4529 } else /* if rx_ring_size specified - use it */
4530 rx_ring_size = bp->rx_ring_size;
4531
4532 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4533
4534 /* Common */
4535 sb = &bnx2x_fp(bp, index, status_blk);
4536
4537 if (!IS_FCOE_IDX(index)) {
4538 /* status blocks */
4539 if (!CHIP_IS_E1x(bp)) {
4540 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4541 sizeof(struct host_hc_status_block_e2));
4542 if (!sb->e2_sb)
4543 goto alloc_mem_err;
4544 } else {
4545 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4546 sizeof(struct host_hc_status_block_e1x));
4547 if (!sb->e1x_sb)
4548 goto alloc_mem_err;
4549 }
4550 }
4551
4552 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4553 * set shortcuts for it.
4554 */
4555 if (!IS_FCOE_IDX(index))
4556 set_sb_shortcuts(bp, index);
4557
4558 /* Tx */
4559 if (!skip_tx_queue(bp, index)) {
4560 /* fastpath tx rings: tx_buf tx_desc */
4561 for_each_cos_in_tx_queue(fp, cos) {
4562 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4563
4564 DP(NETIF_MSG_IFUP,
4565 "allocating tx memory of fp %d cos %d\n",
4566 index, cos);
4567
4568 txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4569 sizeof(struct sw_tx_bd),
4570 GFP_KERNEL);
4571 if (!txdata->tx_buf_ring)
4572 goto alloc_mem_err;
4573 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4574 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4575 if (!txdata->tx_desc_ring)
4576 goto alloc_mem_err;
4577 }
4578 }
4579
4580 /* Rx */
4581 if (!skip_rx_queue(bp, index)) {
4582 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4583 bnx2x_fp(bp, index, rx_buf_ring) =
4584 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4585 if (!bnx2x_fp(bp, index, rx_buf_ring))
4586 goto alloc_mem_err;
4587 bnx2x_fp(bp, index, rx_desc_ring) =
4588 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4589 sizeof(struct eth_rx_bd) * NUM_RX_BD);
4590 if (!bnx2x_fp(bp, index, rx_desc_ring))
4591 goto alloc_mem_err;
4592
4593 /* Seed all CQEs by 1s */
4594 bnx2x_fp(bp, index, rx_comp_ring) =
4595 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4596 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4597 if (!bnx2x_fp(bp, index, rx_comp_ring))
4598 goto alloc_mem_err;
4599
4600 /* SGE ring */
4601 bnx2x_fp(bp, index, rx_page_ring) =
4602 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4603 GFP_KERNEL);
4604 if (!bnx2x_fp(bp, index, rx_page_ring))
4605 goto alloc_mem_err;
4606 bnx2x_fp(bp, index, rx_sge_ring) =
4607 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4608 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4609 if (!bnx2x_fp(bp, index, rx_sge_ring))
4610 goto alloc_mem_err;
4611 /* RX BD ring */
4612 bnx2x_set_next_page_rx_bd(fp);
4613
4614 /* CQ ring */
4615 bnx2x_set_next_page_rx_cq(fp);
4616
4617 /* BDs */
4618 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4619 if (ring_size < rx_ring_size)
4620 goto alloc_mem_err;
4621 }
4622
4623 return 0;
4624
4625 /* handles low memory cases */
4626 alloc_mem_err:
4627 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4628 index, ring_size);
4629 /* FW will drop all packets if queue is not big enough,
4630 * In these cases we disable the queue
4631 * Min size is different for OOO, TPA and non-TPA queues
4632 */
4633 if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4634 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4635 /* release memory allocated for this queue */
4636 bnx2x_free_fp_mem_at(bp, index);
4637 return -ENOMEM;
4638 }
4639 return 0;
4640 }
4641
bnx2x_alloc_fp_mem_cnic(struct bnx2x * bp)4642 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4643 {
4644 if (!NO_FCOE(bp))
4645 /* FCoE */
4646 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4647 /* we will fail load process instead of mark
4648 * NO_FCOE_FLAG
4649 */
4650 return -ENOMEM;
4651
4652 return 0;
4653 }
4654
bnx2x_alloc_fp_mem(struct bnx2x * bp)4655 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4656 {
4657 int i;
4658
4659 /* 1. Allocate FP for leading - fatal if error
4660 * 2. Allocate RSS - fix number of queues if error
4661 */
4662
4663 /* leading */
4664 if (bnx2x_alloc_fp_mem_at(bp, 0))
4665 return -ENOMEM;
4666
4667 /* RSS */
4668 for_each_nondefault_eth_queue(bp, i)
4669 if (bnx2x_alloc_fp_mem_at(bp, i))
4670 break;
4671
4672 /* handle memory failures */
4673 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4674 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4675
4676 WARN_ON(delta < 0);
4677 bnx2x_shrink_eth_fp(bp, delta);
4678 if (CNIC_SUPPORT(bp))
4679 /* move non eth FPs next to last eth FP
4680 * must be done in that order
4681 * FCOE_IDX < FWD_IDX < OOO_IDX
4682 */
4683
4684 /* move FCoE fp even NO_FCOE_FLAG is on */
4685 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4686 bp->num_ethernet_queues -= delta;
4687 bp->num_queues = bp->num_ethernet_queues +
4688 bp->num_cnic_queues;
4689 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4690 bp->num_queues + delta, bp->num_queues);
4691 }
4692
4693 return 0;
4694 }
4695
bnx2x_free_mem_bp(struct bnx2x * bp)4696 void bnx2x_free_mem_bp(struct bnx2x *bp)
4697 {
4698 int i;
4699
4700 for (i = 0; i < bp->fp_array_size; i++)
4701 kfree(bp->fp[i].tpa_info);
4702 kfree(bp->fp);
4703 kfree(bp->sp_objs);
4704 kfree(bp->fp_stats);
4705 kfree(bp->bnx2x_txq);
4706 kfree(bp->msix_table);
4707 kfree(bp->ilt);
4708 }
4709
bnx2x_alloc_mem_bp(struct bnx2x * bp)4710 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4711 {
4712 struct bnx2x_fastpath *fp;
4713 struct msix_entry *tbl;
4714 struct bnx2x_ilt *ilt;
4715 int msix_table_size = 0;
4716 int fp_array_size, txq_array_size;
4717 int i;
4718
4719 /*
4720 * The biggest MSI-X table we might need is as a maximum number of fast
4721 * path IGU SBs plus default SB (for PF only).
4722 */
4723 msix_table_size = bp->igu_sb_cnt;
4724 if (IS_PF(bp))
4725 msix_table_size++;
4726 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4727
4728 /* fp array: RSS plus CNIC related L2 queues */
4729 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4730 bp->fp_array_size = fp_array_size;
4731 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4732
4733 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4734 if (!fp)
4735 goto alloc_err;
4736 for (i = 0; i < bp->fp_array_size; i++) {
4737 fp[i].tpa_info =
4738 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4739 sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4740 if (!(fp[i].tpa_info))
4741 goto alloc_err;
4742 }
4743
4744 bp->fp = fp;
4745
4746 /* allocate sp objs */
4747 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4748 GFP_KERNEL);
4749 if (!bp->sp_objs)
4750 goto alloc_err;
4751
4752 /* allocate fp_stats */
4753 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4754 GFP_KERNEL);
4755 if (!bp->fp_stats)
4756 goto alloc_err;
4757
4758 /* Allocate memory for the transmission queues array */
4759 txq_array_size =
4760 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4761 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4762
4763 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4764 GFP_KERNEL);
4765 if (!bp->bnx2x_txq)
4766 goto alloc_err;
4767
4768 /* msix table */
4769 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4770 if (!tbl)
4771 goto alloc_err;
4772 bp->msix_table = tbl;
4773
4774 /* ilt */
4775 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4776 if (!ilt)
4777 goto alloc_err;
4778 bp->ilt = ilt;
4779
4780 return 0;
4781 alloc_err:
4782 bnx2x_free_mem_bp(bp);
4783 return -ENOMEM;
4784 }
4785
bnx2x_reload_if_running(struct net_device * dev)4786 int bnx2x_reload_if_running(struct net_device *dev)
4787 {
4788 struct bnx2x *bp = netdev_priv(dev);
4789
4790 if (unlikely(!netif_running(dev)))
4791 return 0;
4792
4793 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4794 return bnx2x_nic_load(bp, LOAD_NORMAL);
4795 }
4796
bnx2x_get_cur_phy_idx(struct bnx2x * bp)4797 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4798 {
4799 u32 sel_phy_idx = 0;
4800 if (bp->link_params.num_phys <= 1)
4801 return INT_PHY;
4802
4803 if (bp->link_vars.link_up) {
4804 sel_phy_idx = EXT_PHY1;
4805 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4806 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4807 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4808 sel_phy_idx = EXT_PHY2;
4809 } else {
4810
4811 switch (bnx2x_phy_selection(&bp->link_params)) {
4812 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4813 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4814 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4815 sel_phy_idx = EXT_PHY1;
4816 break;
4817 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4818 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4819 sel_phy_idx = EXT_PHY2;
4820 break;
4821 }
4822 }
4823
4824 return sel_phy_idx;
4825 }
bnx2x_get_link_cfg_idx(struct bnx2x * bp)4826 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4827 {
4828 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4829 /*
4830 * The selected activated PHY is always after swapping (in case PHY
4831 * swapping is enabled). So when swapping is enabled, we need to reverse
4832 * the configuration
4833 */
4834
4835 if (bp->link_params.multi_phy_config &
4836 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4837 if (sel_phy_idx == EXT_PHY1)
4838 sel_phy_idx = EXT_PHY2;
4839 else if (sel_phy_idx == EXT_PHY2)
4840 sel_phy_idx = EXT_PHY1;
4841 }
4842 return LINK_CONFIG_IDX(sel_phy_idx);
4843 }
4844
4845 #ifdef NETDEV_FCOE_WWNN
bnx2x_fcoe_get_wwn(struct net_device * dev,u64 * wwn,int type)4846 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4847 {
4848 struct bnx2x *bp = netdev_priv(dev);
4849 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4850
4851 switch (type) {
4852 case NETDEV_FCOE_WWNN:
4853 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4854 cp->fcoe_wwn_node_name_lo);
4855 break;
4856 case NETDEV_FCOE_WWPN:
4857 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4858 cp->fcoe_wwn_port_name_lo);
4859 break;
4860 default:
4861 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4862 return -EINVAL;
4863 }
4864
4865 return 0;
4866 }
4867 #endif
4868
4869 /* called with rtnl_lock */
bnx2x_change_mtu(struct net_device * dev,int new_mtu)4870 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4871 {
4872 struct bnx2x *bp = netdev_priv(dev);
4873
4874 if (pci_num_vf(bp->pdev)) {
4875 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4876 return -EPERM;
4877 }
4878
4879 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4880 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4881 return -EAGAIN;
4882 }
4883
4884 /* This does not race with packet allocation
4885 * because the actual alloc size is
4886 * only updated as part of load
4887 */
4888 dev->mtu = new_mtu;
4889
4890 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4891 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4892
4893 return bnx2x_reload_if_running(dev);
4894 }
4895
bnx2x_fix_features(struct net_device * dev,netdev_features_t features)4896 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4897 netdev_features_t features)
4898 {
4899 struct bnx2x *bp = netdev_priv(dev);
4900
4901 if (pci_num_vf(bp->pdev)) {
4902 netdev_features_t changed = dev->features ^ features;
4903
4904 /* Revert the requested changes in features if they
4905 * would require internal reload of PF in bnx2x_set_features().
4906 */
4907 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4908 features &= ~NETIF_F_RXCSUM;
4909 features |= dev->features & NETIF_F_RXCSUM;
4910 }
4911
4912 if (changed & NETIF_F_LOOPBACK) {
4913 features &= ~NETIF_F_LOOPBACK;
4914 features |= dev->features & NETIF_F_LOOPBACK;
4915 }
4916 }
4917
4918 /* TPA requires Rx CSUM offloading */
4919 if (!(features & NETIF_F_RXCSUM)) {
4920 features &= ~NETIF_F_LRO;
4921 features &= ~NETIF_F_GRO;
4922 }
4923
4924 return features;
4925 }
4926
bnx2x_set_features(struct net_device * dev,netdev_features_t features)4927 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4928 {
4929 struct bnx2x *bp = netdev_priv(dev);
4930 netdev_features_t changes = features ^ dev->features;
4931 bool bnx2x_reload = false;
4932 int rc;
4933
4934 /* VFs or non SRIOV PFs should be able to change loopback feature */
4935 if (!pci_num_vf(bp->pdev)) {
4936 if (features & NETIF_F_LOOPBACK) {
4937 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4938 bp->link_params.loopback_mode = LOOPBACK_BMAC;
4939 bnx2x_reload = true;
4940 }
4941 } else {
4942 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4943 bp->link_params.loopback_mode = LOOPBACK_NONE;
4944 bnx2x_reload = true;
4945 }
4946 }
4947 }
4948
4949 /* if GRO is changed while LRO is enabled, don't force a reload */
4950 if ((changes & NETIF_F_GRO) && (features & NETIF_F_LRO))
4951 changes &= ~NETIF_F_GRO;
4952
4953 /* if GRO is changed while HW TPA is off, don't force a reload */
4954 if ((changes & NETIF_F_GRO) && bp->disable_tpa)
4955 changes &= ~NETIF_F_GRO;
4956
4957 if (changes)
4958 bnx2x_reload = true;
4959
4960 if (bnx2x_reload) {
4961 if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4962 dev->features = features;
4963 rc = bnx2x_reload_if_running(dev);
4964 return rc ? rc : 1;
4965 }
4966 /* else: bnx2x_nic_load() will be called at end of recovery */
4967 }
4968
4969 return 0;
4970 }
4971
bnx2x_tx_timeout(struct net_device * dev)4972 void bnx2x_tx_timeout(struct net_device *dev)
4973 {
4974 struct bnx2x *bp = netdev_priv(dev);
4975
4976 #ifdef BNX2X_STOP_ON_ERROR
4977 if (!bp->panic)
4978 bnx2x_panic();
4979 #endif
4980
4981 /* This allows the netif to be shutdown gracefully before resetting */
4982 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4983 }
4984
bnx2x_suspend(struct pci_dev * pdev,pm_message_t state)4985 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4986 {
4987 struct net_device *dev = pci_get_drvdata(pdev);
4988 struct bnx2x *bp;
4989
4990 if (!dev) {
4991 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4992 return -ENODEV;
4993 }
4994 bp = netdev_priv(dev);
4995
4996 rtnl_lock();
4997
4998 pci_save_state(pdev);
4999
5000 if (!netif_running(dev)) {
5001 rtnl_unlock();
5002 return 0;
5003 }
5004
5005 netif_device_detach(dev);
5006
5007 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5008
5009 bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
5010
5011 rtnl_unlock();
5012
5013 return 0;
5014 }
5015
bnx2x_resume(struct pci_dev * pdev)5016 int bnx2x_resume(struct pci_dev *pdev)
5017 {
5018 struct net_device *dev = pci_get_drvdata(pdev);
5019 struct bnx2x *bp;
5020 int rc;
5021
5022 if (!dev) {
5023 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5024 return -ENODEV;
5025 }
5026 bp = netdev_priv(dev);
5027
5028 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5029 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5030 return -EAGAIN;
5031 }
5032
5033 rtnl_lock();
5034
5035 pci_restore_state(pdev);
5036
5037 if (!netif_running(dev)) {
5038 rtnl_unlock();
5039 return 0;
5040 }
5041
5042 bnx2x_set_power_state(bp, PCI_D0);
5043 netif_device_attach(dev);
5044
5045 rc = bnx2x_nic_load(bp, LOAD_OPEN);
5046
5047 rtnl_unlock();
5048
5049 return rc;
5050 }
5051
bnx2x_set_ctx_validation(struct bnx2x * bp,struct eth_context * cxt,u32 cid)5052 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5053 u32 cid)
5054 {
5055 if (!cxt) {
5056 BNX2X_ERR("bad context pointer %p\n", cxt);
5057 return;
5058 }
5059
5060 /* ustorm cxt validation */
5061 cxt->ustorm_ag_context.cdu_usage =
5062 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5063 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5064 /* xcontext validation */
5065 cxt->xstorm_ag_context.cdu_reserved =
5066 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5067 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5068 }
5069
storm_memset_hc_timeout(struct bnx2x * bp,u8 port,u8 fw_sb_id,u8 sb_index,u8 ticks)5070 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5071 u8 fw_sb_id, u8 sb_index,
5072 u8 ticks)
5073 {
5074 u32 addr = BAR_CSTRORM_INTMEM +
5075 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5076 REG_WR8(bp, addr, ticks);
5077 DP(NETIF_MSG_IFUP,
5078 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5079 port, fw_sb_id, sb_index, ticks);
5080 }
5081
storm_memset_hc_disable(struct bnx2x * bp,u8 port,u16 fw_sb_id,u8 sb_index,u8 disable)5082 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5083 u16 fw_sb_id, u8 sb_index,
5084 u8 disable)
5085 {
5086 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5087 u32 addr = BAR_CSTRORM_INTMEM +
5088 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5089 u8 flags = REG_RD8(bp, addr);
5090 /* clear and set */
5091 flags &= ~HC_INDEX_DATA_HC_ENABLED;
5092 flags |= enable_flag;
5093 REG_WR8(bp, addr, flags);
5094 DP(NETIF_MSG_IFUP,
5095 "port %x fw_sb_id %d sb_index %d disable %d\n",
5096 port, fw_sb_id, sb_index, disable);
5097 }
5098
bnx2x_update_coalesce_sb_index(struct bnx2x * bp,u8 fw_sb_id,u8 sb_index,u8 disable,u16 usec)5099 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5100 u8 sb_index, u8 disable, u16 usec)
5101 {
5102 int port = BP_PORT(bp);
5103 u8 ticks = usec / BNX2X_BTR;
5104
5105 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5106
5107 disable = disable ? 1 : (usec ? 0 : 1);
5108 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5109 }
5110
bnx2x_schedule_sp_rtnl(struct bnx2x * bp,enum sp_rtnl_flag flag,u32 verbose)5111 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5112 u32 verbose)
5113 {
5114 smp_mb__before_atomic();
5115 set_bit(flag, &bp->sp_rtnl_state);
5116 smp_mb__after_atomic();
5117 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5118 flag);
5119 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5120 }
5121