1 /* bnx2x_main.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h> /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION \
73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
76 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
80
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT (5*HZ)
83
84 static char version[] =
85 "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
86 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
87
88 MODULE_AUTHOR("Eliezer Tamir");
89 MODULE_DESCRIPTION("QLogic "
90 "BCM57710/57711/57711E/"
91 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
92 "57840/57840_MF Driver");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_MODULE_VERSION);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
97 MODULE_FIRMWARE(FW_FILE_NAME_E2);
98
99 int bnx2x_num_queues;
100 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
101 MODULE_PARM_DESC(num_queues,
102 " Set number of queues (default is as a number of CPUs)");
103
104 static int disable_tpa;
105 module_param(disable_tpa, int, S_IRUGO);
106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
107
108 static int int_mode;
109 module_param(int_mode, int, S_IRUGO);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111 "(1 INT#x; 2 MSI)");
112
113 static int dropless_fc;
114 module_param(dropless_fc, int, S_IRUGO);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116
117 static int mrrs = -1;
118 module_param(mrrs, int, S_IRUGO);
119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
120
121 static int debug;
122 module_param(debug, int, S_IRUGO);
123 MODULE_PARM_DESC(debug, " Default debug msglevel");
124
125 static struct workqueue_struct *bnx2x_wq;
126 struct workqueue_struct *bnx2x_iov_wq;
127
128 struct bnx2x_mac_vals {
129 u32 xmac_addr;
130 u32 xmac_val;
131 u32 emac_addr;
132 u32 emac_val;
133 u32 umac_addr[2];
134 u32 umac_val[2];
135 u32 bmac_addr;
136 u32 bmac_val[2];
137 };
138
139 enum bnx2x_board_type {
140 BCM57710 = 0,
141 BCM57711,
142 BCM57711E,
143 BCM57712,
144 BCM57712_MF,
145 BCM57712_VF,
146 BCM57800,
147 BCM57800_MF,
148 BCM57800_VF,
149 BCM57810,
150 BCM57810_MF,
151 BCM57810_VF,
152 BCM57840_4_10,
153 BCM57840_2_20,
154 BCM57840_MF,
155 BCM57840_VF,
156 BCM57811,
157 BCM57811_MF,
158 BCM57840_O,
159 BCM57840_MFO,
160 BCM57811_VF
161 };
162
163 /* indexed by board_type, above */
164 static struct {
165 char *name;
166 } board_info[] = {
167 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
168 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" },
169 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" },
170 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" },
171 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
172 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
173 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" },
174 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
175 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
176 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" },
177 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
178 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
179 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
180 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
181 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
183 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" },
184 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
185 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
186 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
187 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
188 };
189
190 #ifndef PCI_DEVICE_ID_NX2_57710
191 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57711
194 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57711E
197 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57712
200 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712_MF
203 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57712_VF
206 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57800
209 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800_MF
212 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57800_VF
215 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57810
218 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57810_MF
221 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57840_O
224 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57810_VF
227 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
230 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
233 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
236 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_MF
239 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57840_VF
242 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57811
245 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811_MF
248 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
249 #endif
250 #ifndef PCI_DEVICE_ID_NX2_57811_VF
251 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
252 #endif
253
254 static const struct pci_device_id bnx2x_pci_tbl[] = {
255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
268 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
273 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
275 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
278 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
279 { 0 }
280 };
281
282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
283
284 /* Global resources for unloading a previously loaded device */
285 #define BNX2X_PREV_WAIT_NEEDED 1
286 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
287 static LIST_HEAD(bnx2x_prev_list);
288
289 /* Forward declaration */
290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
293
294 /****************************************************************************
295 * General service functions
296 ****************************************************************************/
297
298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
299
__storm_memset_dma_mapping(struct bnx2x * bp,u32 addr,dma_addr_t mapping)300 static void __storm_memset_dma_mapping(struct bnx2x *bp,
301 u32 addr, dma_addr_t mapping)
302 {
303 REG_WR(bp, addr, U64_LO(mapping));
304 REG_WR(bp, addr + 4, U64_HI(mapping));
305 }
306
storm_memset_spq_addr(struct bnx2x * bp,dma_addr_t mapping,u16 abs_fid)307 static void storm_memset_spq_addr(struct bnx2x *bp,
308 dma_addr_t mapping, u16 abs_fid)
309 {
310 u32 addr = XSEM_REG_FAST_MEMORY +
311 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
312
313 __storm_memset_dma_mapping(bp, addr, mapping);
314 }
315
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
317 u16 pf_id)
318 {
319 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
320 pf_id);
321 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
322 pf_id);
323 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
324 pf_id);
325 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
326 pf_id);
327 }
328
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
330 u8 enable)
331 {
332 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
333 enable);
334 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
335 enable);
336 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
337 enable);
338 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
339 enable);
340 }
341
storm_memset_eq_data(struct bnx2x * bp,struct event_ring_data * eq_data,u16 pfid)342 static void storm_memset_eq_data(struct bnx2x *bp,
343 struct event_ring_data *eq_data,
344 u16 pfid)
345 {
346 size_t size = sizeof(struct event_ring_data);
347
348 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
349
350 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
351 }
352
storm_memset_eq_prod(struct bnx2x * bp,u16 eq_prod,u16 pfid)353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
354 u16 pfid)
355 {
356 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
357 REG_WR16(bp, addr, eq_prod);
358 }
359
360 /* used only at init
361 * locking is done by mcp
362 */
bnx2x_reg_wr_ind(struct bnx2x * bp,u32 addr,u32 val)363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
364 {
365 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
366 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
367 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
368 PCICFG_VENDOR_ID_OFFSET);
369 }
370
bnx2x_reg_rd_ind(struct bnx2x * bp,u32 addr)371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
372 {
373 u32 val;
374
375 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
376 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
377 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
378 PCICFG_VENDOR_ID_OFFSET);
379
380 return val;
381 }
382
383 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
384 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
385 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
386 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
387 #define DMAE_DP_DST_NONE "dst_addr [none]"
388
bnx2x_dp_dmae(struct bnx2x * bp,struct dmae_command * dmae,int msglvl)389 static void bnx2x_dp_dmae(struct bnx2x *bp,
390 struct dmae_command *dmae, int msglvl)
391 {
392 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
393 int i;
394
395 switch (dmae->opcode & DMAE_COMMAND_DST) {
396 case DMAE_CMD_DST_PCI:
397 if (src_type == DMAE_CMD_SRC_PCI)
398 DP(msglvl, "DMAE: opcode 0x%08x\n"
399 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
400 "comp_addr [%x:%08x], comp_val 0x%08x\n",
401 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
402 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403 dmae->comp_addr_hi, dmae->comp_addr_lo,
404 dmae->comp_val);
405 else
406 DP(msglvl, "DMAE: opcode 0x%08x\n"
407 "src [%08x], len [%d*4], dst [%x:%08x]\n"
408 "comp_addr [%x:%08x], comp_val 0x%08x\n",
409 dmae->opcode, dmae->src_addr_lo >> 2,
410 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
411 dmae->comp_addr_hi, dmae->comp_addr_lo,
412 dmae->comp_val);
413 break;
414 case DMAE_CMD_DST_GRC:
415 if (src_type == DMAE_CMD_SRC_PCI)
416 DP(msglvl, "DMAE: opcode 0x%08x\n"
417 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
418 "comp_addr [%x:%08x], comp_val 0x%08x\n",
419 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
420 dmae->len, dmae->dst_addr_lo >> 2,
421 dmae->comp_addr_hi, dmae->comp_addr_lo,
422 dmae->comp_val);
423 else
424 DP(msglvl, "DMAE: opcode 0x%08x\n"
425 "src [%08x], len [%d*4], dst [%08x]\n"
426 "comp_addr [%x:%08x], comp_val 0x%08x\n",
427 dmae->opcode, dmae->src_addr_lo >> 2,
428 dmae->len, dmae->dst_addr_lo >> 2,
429 dmae->comp_addr_hi, dmae->comp_addr_lo,
430 dmae->comp_val);
431 break;
432 default:
433 if (src_type == DMAE_CMD_SRC_PCI)
434 DP(msglvl, "DMAE: opcode 0x%08x\n"
435 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
436 "comp_addr [%x:%08x] comp_val 0x%08x\n",
437 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
438 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439 dmae->comp_val);
440 else
441 DP(msglvl, "DMAE: opcode 0x%08x\n"
442 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
443 "comp_addr [%x:%08x] comp_val 0x%08x\n",
444 dmae->opcode, dmae->src_addr_lo >> 2,
445 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
446 dmae->comp_val);
447 break;
448 }
449
450 for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
451 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
452 i, *(((u32 *)dmae) + i));
453 }
454
455 /* copy command into DMAE command memory and set DMAE command go */
bnx2x_post_dmae(struct bnx2x * bp,struct dmae_command * dmae,int idx)456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
457 {
458 u32 cmd_offset;
459 int i;
460
461 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
462 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
463 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
464 }
465 REG_WR(bp, dmae_reg_go_c[idx], 1);
466 }
467
bnx2x_dmae_opcode_add_comp(u32 opcode,u8 comp_type)468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
469 {
470 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
471 DMAE_CMD_C_ENABLE);
472 }
473
bnx2x_dmae_opcode_clr_src_reset(u32 opcode)474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
475 {
476 return opcode & ~DMAE_CMD_SRC_RESET;
477 }
478
bnx2x_dmae_opcode(struct bnx2x * bp,u8 src_type,u8 dst_type,bool with_comp,u8 comp_type)479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
480 bool with_comp, u8 comp_type)
481 {
482 u32 opcode = 0;
483
484 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
485 (dst_type << DMAE_COMMAND_DST_SHIFT));
486
487 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
488
489 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
490 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
491 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
492 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
493
494 #ifdef __BIG_ENDIAN
495 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
496 #else
497 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
498 #endif
499 if (with_comp)
500 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
501 return opcode;
502 }
503
bnx2x_prep_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u8 src_type,u8 dst_type)504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
505 struct dmae_command *dmae,
506 u8 src_type, u8 dst_type)
507 {
508 memset(dmae, 0, sizeof(struct dmae_command));
509
510 /* set the opcode */
511 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
512 true, DMAE_COMP_PCI);
513
514 /* fill in the completion parameters */
515 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
516 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
517 dmae->comp_val = DMAE_COMP_VAL;
518 }
519
520 /* issue a dmae command over the init-channel and wait for completion */
bnx2x_issue_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u32 * comp)521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
522 u32 *comp)
523 {
524 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
525 int rc = 0;
526
527 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
528
529 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
530 * as long as this code is called both from syscall context and
531 * from ndo_set_rx_mode() flow that may be called from BH.
532 */
533
534 spin_lock_bh(&bp->dmae_lock);
535
536 /* reset completion */
537 *comp = 0;
538
539 /* post the command on the channel used for initializations */
540 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
541
542 /* wait for completion */
543 udelay(5);
544 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
545
546 if (!cnt ||
547 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
548 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
549 BNX2X_ERR("DMAE timeout!\n");
550 rc = DMAE_TIMEOUT;
551 goto unlock;
552 }
553 cnt--;
554 udelay(50);
555 }
556 if (*comp & DMAE_PCI_ERR_FLAG) {
557 BNX2X_ERR("DMAE PCI error!\n");
558 rc = DMAE_PCI_ERROR;
559 }
560
561 unlock:
562
563 spin_unlock_bh(&bp->dmae_lock);
564
565 return rc;
566 }
567
bnx2x_write_dmae(struct bnx2x * bp,dma_addr_t dma_addr,u32 dst_addr,u32 len32)568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
569 u32 len32)
570 {
571 int rc;
572 struct dmae_command dmae;
573
574 if (!bp->dmae_ready) {
575 u32 *data = bnx2x_sp(bp, wb_data[0]);
576
577 if (CHIP_IS_E1(bp))
578 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
579 else
580 bnx2x_init_str_wr(bp, dst_addr, data, len32);
581 return;
582 }
583
584 /* set opcode and fixed command fields */
585 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
586
587 /* fill in addresses and len */
588 dmae.src_addr_lo = U64_LO(dma_addr);
589 dmae.src_addr_hi = U64_HI(dma_addr);
590 dmae.dst_addr_lo = dst_addr >> 2;
591 dmae.dst_addr_hi = 0;
592 dmae.len = len32;
593
594 /* issue the command and wait for completion */
595 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
596 if (rc) {
597 BNX2X_ERR("DMAE returned failure %d\n", rc);
598 #ifdef BNX2X_STOP_ON_ERROR
599 bnx2x_panic();
600 #endif
601 }
602 }
603
bnx2x_read_dmae(struct bnx2x * bp,u32 src_addr,u32 len32)604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
605 {
606 int rc;
607 struct dmae_command dmae;
608
609 if (!bp->dmae_ready) {
610 u32 *data = bnx2x_sp(bp, wb_data[0]);
611 int i;
612
613 if (CHIP_IS_E1(bp))
614 for (i = 0; i < len32; i++)
615 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
616 else
617 for (i = 0; i < len32; i++)
618 data[i] = REG_RD(bp, src_addr + i*4);
619
620 return;
621 }
622
623 /* set opcode and fixed command fields */
624 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
625
626 /* fill in addresses and len */
627 dmae.src_addr_lo = src_addr >> 2;
628 dmae.src_addr_hi = 0;
629 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
630 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
631 dmae.len = len32;
632
633 /* issue the command and wait for completion */
634 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
635 if (rc) {
636 BNX2X_ERR("DMAE returned failure %d\n", rc);
637 #ifdef BNX2X_STOP_ON_ERROR
638 bnx2x_panic();
639 #endif
640 }
641 }
642
bnx2x_write_dmae_phys_len(struct bnx2x * bp,dma_addr_t phys_addr,u32 addr,u32 len)643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
644 u32 addr, u32 len)
645 {
646 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
647 int offset = 0;
648
649 while (len > dmae_wr_max) {
650 bnx2x_write_dmae(bp, phys_addr + offset,
651 addr + offset, dmae_wr_max);
652 offset += dmae_wr_max * 4;
653 len -= dmae_wr_max;
654 }
655
656 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
657 }
658
659 enum storms {
660 XSTORM,
661 TSTORM,
662 CSTORM,
663 USTORM,
664 MAX_STORMS
665 };
666
667 #define STORMS_NUM 4
668 #define REGS_IN_ENTRY 4
669
bnx2x_get_assert_list_entry(struct bnx2x * bp,enum storms storm,int entry)670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
671 enum storms storm,
672 int entry)
673 {
674 switch (storm) {
675 case XSTORM:
676 return XSTORM_ASSERT_LIST_OFFSET(entry);
677 case TSTORM:
678 return TSTORM_ASSERT_LIST_OFFSET(entry);
679 case CSTORM:
680 return CSTORM_ASSERT_LIST_OFFSET(entry);
681 case USTORM:
682 return USTORM_ASSERT_LIST_OFFSET(entry);
683 case MAX_STORMS:
684 default:
685 BNX2X_ERR("unknown storm\n");
686 }
687 return -EINVAL;
688 }
689
bnx2x_mc_assert(struct bnx2x * bp)690 static int bnx2x_mc_assert(struct bnx2x *bp)
691 {
692 char last_idx;
693 int i, j, rc = 0;
694 enum storms storm;
695 u32 regs[REGS_IN_ENTRY];
696 u32 bar_storm_intmem[STORMS_NUM] = {
697 BAR_XSTRORM_INTMEM,
698 BAR_TSTRORM_INTMEM,
699 BAR_CSTRORM_INTMEM,
700 BAR_USTRORM_INTMEM
701 };
702 u32 storm_assert_list_index[STORMS_NUM] = {
703 XSTORM_ASSERT_LIST_INDEX_OFFSET,
704 TSTORM_ASSERT_LIST_INDEX_OFFSET,
705 CSTORM_ASSERT_LIST_INDEX_OFFSET,
706 USTORM_ASSERT_LIST_INDEX_OFFSET
707 };
708 char *storms_string[STORMS_NUM] = {
709 "XSTORM",
710 "TSTORM",
711 "CSTORM",
712 "USTORM"
713 };
714
715 for (storm = XSTORM; storm < MAX_STORMS; storm++) {
716 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
717 storm_assert_list_index[storm]);
718 if (last_idx)
719 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
720 storms_string[storm], last_idx);
721
722 /* print the asserts */
723 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
724 /* read a single assert entry */
725 for (j = 0; j < REGS_IN_ENTRY; j++)
726 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
727 bnx2x_get_assert_list_entry(bp,
728 storm,
729 i) +
730 sizeof(u32) * j);
731
732 /* log entry if it contains a valid assert */
733 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
734 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
735 storms_string[storm], i, regs[3],
736 regs[2], regs[1], regs[0]);
737 rc++;
738 } else {
739 break;
740 }
741 }
742 }
743
744 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
745 CHIP_IS_E1(bp) ? "everest1" :
746 CHIP_IS_E1H(bp) ? "everest1h" :
747 CHIP_IS_E2(bp) ? "everest2" : "everest3",
748 BCM_5710_FW_MAJOR_VERSION,
749 BCM_5710_FW_MINOR_VERSION,
750 BCM_5710_FW_REVISION_VERSION);
751
752 return rc;
753 }
754
755 #define MCPR_TRACE_BUFFER_SIZE (0x800)
756 #define SCRATCH_BUFFER_SIZE(bp) \
757 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
758
bnx2x_fw_dump_lvl(struct bnx2x * bp,const char * lvl)759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
760 {
761 u32 addr, val;
762 u32 mark, offset;
763 __be32 data[9];
764 int word;
765 u32 trace_shmem_base;
766 if (BP_NOMCP(bp)) {
767 BNX2X_ERR("NO MCP - can not dump\n");
768 return;
769 }
770 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
771 (bp->common.bc_ver & 0xff0000) >> 16,
772 (bp->common.bc_ver & 0xff00) >> 8,
773 (bp->common.bc_ver & 0xff));
774
775 if (pci_channel_offline(bp->pdev)) {
776 BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
777 return;
778 }
779
780 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
781 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
782 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
783
784 if (BP_PATH(bp) == 0)
785 trace_shmem_base = bp->common.shmem_base;
786 else
787 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
788
789 /* sanity */
790 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
791 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
792 SCRATCH_BUFFER_SIZE(bp)) {
793 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
794 trace_shmem_base);
795 return;
796 }
797
798 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
799
800 /* validate TRCB signature */
801 mark = REG_RD(bp, addr);
802 if (mark != MFW_TRACE_SIGNATURE) {
803 BNX2X_ERR("Trace buffer signature is missing.");
804 return ;
805 }
806
807 /* read cyclic buffer pointer */
808 addr += 4;
809 mark = REG_RD(bp, addr);
810 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
811 if (mark >= trace_shmem_base || mark < addr + 4) {
812 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
813 return;
814 }
815 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
816
817 printk("%s", lvl);
818
819 /* dump buffer after the mark */
820 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
821 for (word = 0; word < 8; word++)
822 data[word] = htonl(REG_RD(bp, offset + 4*word));
823 data[8] = 0x0;
824 pr_cont("%s", (char *)data);
825 }
826
827 /* dump buffer before the mark */
828 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
829 for (word = 0; word < 8; word++)
830 data[word] = htonl(REG_RD(bp, offset + 4*word));
831 data[8] = 0x0;
832 pr_cont("%s", (char *)data);
833 }
834 printk("%s" "end of fw dump\n", lvl);
835 }
836
bnx2x_fw_dump(struct bnx2x * bp)837 static void bnx2x_fw_dump(struct bnx2x *bp)
838 {
839 bnx2x_fw_dump_lvl(bp, KERN_ERR);
840 }
841
bnx2x_hc_int_disable(struct bnx2x * bp)842 static void bnx2x_hc_int_disable(struct bnx2x *bp)
843 {
844 int port = BP_PORT(bp);
845 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
846 u32 val = REG_RD(bp, addr);
847
848 /* in E1 we must use only PCI configuration space to disable
849 * MSI/MSIX capability
850 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
851 */
852 if (CHIP_IS_E1(bp)) {
853 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
854 * Use mask register to prevent from HC sending interrupts
855 * after we exit the function
856 */
857 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
858
859 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
860 HC_CONFIG_0_REG_INT_LINE_EN_0 |
861 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
862 } else
863 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
864 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
865 HC_CONFIG_0_REG_INT_LINE_EN_0 |
866 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
867
868 DP(NETIF_MSG_IFDOWN,
869 "write %x to HC %d (addr 0x%x)\n",
870 val, port, addr);
871
872 /* flush all outstanding writes */
873 mmiowb();
874
875 REG_WR(bp, addr, val);
876 if (REG_RD(bp, addr) != val)
877 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
878 }
879
bnx2x_igu_int_disable(struct bnx2x * bp)880 static void bnx2x_igu_int_disable(struct bnx2x *bp)
881 {
882 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
883
884 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
885 IGU_PF_CONF_INT_LINE_EN |
886 IGU_PF_CONF_ATTN_BIT_EN);
887
888 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
889
890 /* flush all outstanding writes */
891 mmiowb();
892
893 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
894 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
895 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
896 }
897
bnx2x_int_disable(struct bnx2x * bp)898 static void bnx2x_int_disable(struct bnx2x *bp)
899 {
900 if (bp->common.int_block == INT_BLOCK_HC)
901 bnx2x_hc_int_disable(bp);
902 else
903 bnx2x_igu_int_disable(bp);
904 }
905
bnx2x_panic_dump(struct bnx2x * bp,bool disable_int)906 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
907 {
908 int i;
909 u16 j;
910 struct hc_sp_status_block_data sp_sb_data;
911 int func = BP_FUNC(bp);
912 #ifdef BNX2X_STOP_ON_ERROR
913 u16 start = 0, end = 0;
914 u8 cos;
915 #endif
916 if (IS_PF(bp) && disable_int)
917 bnx2x_int_disable(bp);
918
919 bp->stats_state = STATS_STATE_DISABLED;
920 bp->eth_stats.unrecoverable_error++;
921 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
922
923 BNX2X_ERR("begin crash dump -----------------\n");
924
925 /* Indices */
926 /* Common */
927 if (IS_PF(bp)) {
928 struct host_sp_status_block *def_sb = bp->def_status_blk;
929 int data_size, cstorm_offset;
930
931 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
932 bp->def_idx, bp->def_att_idx, bp->attn_state,
933 bp->spq_prod_idx, bp->stats_counter);
934 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
935 def_sb->atten_status_block.attn_bits,
936 def_sb->atten_status_block.attn_bits_ack,
937 def_sb->atten_status_block.status_block_id,
938 def_sb->atten_status_block.attn_bits_index);
939 BNX2X_ERR(" def (");
940 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
941 pr_cont("0x%x%s",
942 def_sb->sp_sb.index_values[i],
943 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
944
945 data_size = sizeof(struct hc_sp_status_block_data) /
946 sizeof(u32);
947 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
948 for (i = 0; i < data_size; i++)
949 *((u32 *)&sp_sb_data + i) =
950 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
951 i * sizeof(u32));
952
953 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
954 sp_sb_data.igu_sb_id,
955 sp_sb_data.igu_seg_id,
956 sp_sb_data.p_func.pf_id,
957 sp_sb_data.p_func.vnic_id,
958 sp_sb_data.p_func.vf_id,
959 sp_sb_data.p_func.vf_valid,
960 sp_sb_data.state);
961 }
962
963 for_each_eth_queue(bp, i) {
964 struct bnx2x_fastpath *fp = &bp->fp[i];
965 int loop;
966 struct hc_status_block_data_e2 sb_data_e2;
967 struct hc_status_block_data_e1x sb_data_e1x;
968 struct hc_status_block_sm *hc_sm_p =
969 CHIP_IS_E1x(bp) ?
970 sb_data_e1x.common.state_machine :
971 sb_data_e2.common.state_machine;
972 struct hc_index_data *hc_index_p =
973 CHIP_IS_E1x(bp) ?
974 sb_data_e1x.index_data :
975 sb_data_e2.index_data;
976 u8 data_size, cos;
977 u32 *sb_data_p;
978 struct bnx2x_fp_txdata txdata;
979
980 if (!bp->fp)
981 break;
982
983 if (!fp->rx_cons_sb)
984 continue;
985
986 /* Rx */
987 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
988 i, fp->rx_bd_prod, fp->rx_bd_cons,
989 fp->rx_comp_prod,
990 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
991 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
992 fp->rx_sge_prod, fp->last_max_sge,
993 le16_to_cpu(fp->fp_hc_idx));
994
995 /* Tx */
996 for_each_cos_in_tx_queue(fp, cos)
997 {
998 if (!fp->txdata_ptr[cos])
999 break;
1000
1001 txdata = *fp->txdata_ptr[cos];
1002
1003 if (!txdata.tx_cons_sb)
1004 continue;
1005
1006 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
1007 i, txdata.tx_pkt_prod,
1008 txdata.tx_pkt_cons, txdata.tx_bd_prod,
1009 txdata.tx_bd_cons,
1010 le16_to_cpu(*txdata.tx_cons_sb));
1011 }
1012
1013 loop = CHIP_IS_E1x(bp) ?
1014 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1015
1016 /* host sb data */
1017
1018 if (IS_FCOE_FP(fp))
1019 continue;
1020
1021 BNX2X_ERR(" run indexes (");
1022 for (j = 0; j < HC_SB_MAX_SM; j++)
1023 pr_cont("0x%x%s",
1024 fp->sb_running_index[j],
1025 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1026
1027 BNX2X_ERR(" indexes (");
1028 for (j = 0; j < loop; j++)
1029 pr_cont("0x%x%s",
1030 fp->sb_index_values[j],
1031 (j == loop - 1) ? ")" : " ");
1032
1033 /* VF cannot access FW refelection for status block */
1034 if (IS_VF(bp))
1035 continue;
1036
1037 /* fw sb data */
1038 data_size = CHIP_IS_E1x(bp) ?
1039 sizeof(struct hc_status_block_data_e1x) :
1040 sizeof(struct hc_status_block_data_e2);
1041 data_size /= sizeof(u32);
1042 sb_data_p = CHIP_IS_E1x(bp) ?
1043 (u32 *)&sb_data_e1x :
1044 (u32 *)&sb_data_e2;
1045 /* copy sb data in here */
1046 for (j = 0; j < data_size; j++)
1047 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1048 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1049 j * sizeof(u32));
1050
1051 if (!CHIP_IS_E1x(bp)) {
1052 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1053 sb_data_e2.common.p_func.pf_id,
1054 sb_data_e2.common.p_func.vf_id,
1055 sb_data_e2.common.p_func.vf_valid,
1056 sb_data_e2.common.p_func.vnic_id,
1057 sb_data_e2.common.same_igu_sb_1b,
1058 sb_data_e2.common.state);
1059 } else {
1060 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1061 sb_data_e1x.common.p_func.pf_id,
1062 sb_data_e1x.common.p_func.vf_id,
1063 sb_data_e1x.common.p_func.vf_valid,
1064 sb_data_e1x.common.p_func.vnic_id,
1065 sb_data_e1x.common.same_igu_sb_1b,
1066 sb_data_e1x.common.state);
1067 }
1068
1069 /* SB_SMs data */
1070 for (j = 0; j < HC_SB_MAX_SM; j++) {
1071 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1072 j, hc_sm_p[j].__flags,
1073 hc_sm_p[j].igu_sb_id,
1074 hc_sm_p[j].igu_seg_id,
1075 hc_sm_p[j].time_to_expire,
1076 hc_sm_p[j].timer_value);
1077 }
1078
1079 /* Indices data */
1080 for (j = 0; j < loop; j++) {
1081 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1082 hc_index_p[j].flags,
1083 hc_index_p[j].timeout);
1084 }
1085 }
1086
1087 #ifdef BNX2X_STOP_ON_ERROR
1088 if (IS_PF(bp)) {
1089 /* event queue */
1090 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1091 for (i = 0; i < NUM_EQ_DESC; i++) {
1092 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1093
1094 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1095 i, bp->eq_ring[i].message.opcode,
1096 bp->eq_ring[i].message.error);
1097 BNX2X_ERR("data: %x %x %x\n",
1098 data[0], data[1], data[2]);
1099 }
1100 }
1101
1102 /* Rings */
1103 /* Rx */
1104 for_each_valid_rx_queue(bp, i) {
1105 struct bnx2x_fastpath *fp = &bp->fp[i];
1106
1107 if (!bp->fp)
1108 break;
1109
1110 if (!fp->rx_cons_sb)
1111 continue;
1112
1113 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1114 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1115 for (j = start; j != end; j = RX_BD(j + 1)) {
1116 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1117 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1118
1119 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1120 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1121 }
1122
1123 start = RX_SGE(fp->rx_sge_prod);
1124 end = RX_SGE(fp->last_max_sge);
1125 for (j = start; j != end; j = RX_SGE(j + 1)) {
1126 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1127 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1128
1129 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1130 i, j, rx_sge[1], rx_sge[0], sw_page->page);
1131 }
1132
1133 start = RCQ_BD(fp->rx_comp_cons - 10);
1134 end = RCQ_BD(fp->rx_comp_cons + 503);
1135 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1136 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1137
1138 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1139 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1140 }
1141 }
1142
1143 /* Tx */
1144 for_each_valid_tx_queue(bp, i) {
1145 struct bnx2x_fastpath *fp = &bp->fp[i];
1146
1147 if (!bp->fp)
1148 break;
1149
1150 for_each_cos_in_tx_queue(fp, cos) {
1151 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1152
1153 if (!fp->txdata_ptr[cos])
1154 break;
1155
1156 if (!txdata->tx_cons_sb)
1157 continue;
1158
1159 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1160 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1161 for (j = start; j != end; j = TX_BD(j + 1)) {
1162 struct sw_tx_bd *sw_bd =
1163 &txdata->tx_buf_ring[j];
1164
1165 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1166 i, cos, j, sw_bd->skb,
1167 sw_bd->first_bd);
1168 }
1169
1170 start = TX_BD(txdata->tx_bd_cons - 10);
1171 end = TX_BD(txdata->tx_bd_cons + 254);
1172 for (j = start; j != end; j = TX_BD(j + 1)) {
1173 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1174
1175 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1176 i, cos, j, tx_bd[0], tx_bd[1],
1177 tx_bd[2], tx_bd[3]);
1178 }
1179 }
1180 }
1181 #endif
1182 if (IS_PF(bp)) {
1183 bnx2x_fw_dump(bp);
1184 bnx2x_mc_assert(bp);
1185 }
1186 BNX2X_ERR("end crash dump -----------------\n");
1187 }
1188
1189 /*
1190 * FLR Support for E2
1191 *
1192 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1193 * initialization.
1194 */
1195 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1196 #define FLR_WAIT_INTERVAL 50 /* usec */
1197 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1198
1199 struct pbf_pN_buf_regs {
1200 int pN;
1201 u32 init_crd;
1202 u32 crd;
1203 u32 crd_freed;
1204 };
1205
1206 struct pbf_pN_cmd_regs {
1207 int pN;
1208 u32 lines_occup;
1209 u32 lines_freed;
1210 };
1211
bnx2x_pbf_pN_buf_flushed(struct bnx2x * bp,struct pbf_pN_buf_regs * regs,u32 poll_count)1212 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1213 struct pbf_pN_buf_regs *regs,
1214 u32 poll_count)
1215 {
1216 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1217 u32 cur_cnt = poll_count;
1218
1219 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1220 crd = crd_start = REG_RD(bp, regs->crd);
1221 init_crd = REG_RD(bp, regs->init_crd);
1222
1223 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1224 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1225 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1226
1227 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1228 (init_crd - crd_start))) {
1229 if (cur_cnt--) {
1230 udelay(FLR_WAIT_INTERVAL);
1231 crd = REG_RD(bp, regs->crd);
1232 crd_freed = REG_RD(bp, regs->crd_freed);
1233 } else {
1234 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1235 regs->pN);
1236 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1237 regs->pN, crd);
1238 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1239 regs->pN, crd_freed);
1240 break;
1241 }
1242 }
1243 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1244 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1245 }
1246
bnx2x_pbf_pN_cmd_flushed(struct bnx2x * bp,struct pbf_pN_cmd_regs * regs,u32 poll_count)1247 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1248 struct pbf_pN_cmd_regs *regs,
1249 u32 poll_count)
1250 {
1251 u32 occup, to_free, freed, freed_start;
1252 u32 cur_cnt = poll_count;
1253
1254 occup = to_free = REG_RD(bp, regs->lines_occup);
1255 freed = freed_start = REG_RD(bp, regs->lines_freed);
1256
1257 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1258 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1259
1260 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1261 if (cur_cnt--) {
1262 udelay(FLR_WAIT_INTERVAL);
1263 occup = REG_RD(bp, regs->lines_occup);
1264 freed = REG_RD(bp, regs->lines_freed);
1265 } else {
1266 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1267 regs->pN);
1268 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1269 regs->pN, occup);
1270 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1271 regs->pN, freed);
1272 break;
1273 }
1274 }
1275 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1276 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1277 }
1278
bnx2x_flr_clnup_reg_poll(struct bnx2x * bp,u32 reg,u32 expected,u32 poll_count)1279 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1280 u32 expected, u32 poll_count)
1281 {
1282 u32 cur_cnt = poll_count;
1283 u32 val;
1284
1285 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1286 udelay(FLR_WAIT_INTERVAL);
1287
1288 return val;
1289 }
1290
bnx2x_flr_clnup_poll_hw_counter(struct bnx2x * bp,u32 reg,char * msg,u32 poll_cnt)1291 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1292 char *msg, u32 poll_cnt)
1293 {
1294 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1295 if (val != 0) {
1296 BNX2X_ERR("%s usage count=%d\n", msg, val);
1297 return 1;
1298 }
1299 return 0;
1300 }
1301
1302 /* Common routines with VF FLR cleanup */
bnx2x_flr_clnup_poll_count(struct bnx2x * bp)1303 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1304 {
1305 /* adjust polling timeout */
1306 if (CHIP_REV_IS_EMUL(bp))
1307 return FLR_POLL_CNT * 2000;
1308
1309 if (CHIP_REV_IS_FPGA(bp))
1310 return FLR_POLL_CNT * 120;
1311
1312 return FLR_POLL_CNT;
1313 }
1314
bnx2x_tx_hw_flushed(struct bnx2x * bp,u32 poll_count)1315 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1316 {
1317 struct pbf_pN_cmd_regs cmd_regs[] = {
1318 {0, (CHIP_IS_E3B0(bp)) ?
1319 PBF_REG_TQ_OCCUPANCY_Q0 :
1320 PBF_REG_P0_TQ_OCCUPANCY,
1321 (CHIP_IS_E3B0(bp)) ?
1322 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1323 PBF_REG_P0_TQ_LINES_FREED_CNT},
1324 {1, (CHIP_IS_E3B0(bp)) ?
1325 PBF_REG_TQ_OCCUPANCY_Q1 :
1326 PBF_REG_P1_TQ_OCCUPANCY,
1327 (CHIP_IS_E3B0(bp)) ?
1328 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1329 PBF_REG_P1_TQ_LINES_FREED_CNT},
1330 {4, (CHIP_IS_E3B0(bp)) ?
1331 PBF_REG_TQ_OCCUPANCY_LB_Q :
1332 PBF_REG_P4_TQ_OCCUPANCY,
1333 (CHIP_IS_E3B0(bp)) ?
1334 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1335 PBF_REG_P4_TQ_LINES_FREED_CNT}
1336 };
1337
1338 struct pbf_pN_buf_regs buf_regs[] = {
1339 {0, (CHIP_IS_E3B0(bp)) ?
1340 PBF_REG_INIT_CRD_Q0 :
1341 PBF_REG_P0_INIT_CRD ,
1342 (CHIP_IS_E3B0(bp)) ?
1343 PBF_REG_CREDIT_Q0 :
1344 PBF_REG_P0_CREDIT,
1345 (CHIP_IS_E3B0(bp)) ?
1346 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1347 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1348 {1, (CHIP_IS_E3B0(bp)) ?
1349 PBF_REG_INIT_CRD_Q1 :
1350 PBF_REG_P1_INIT_CRD,
1351 (CHIP_IS_E3B0(bp)) ?
1352 PBF_REG_CREDIT_Q1 :
1353 PBF_REG_P1_CREDIT,
1354 (CHIP_IS_E3B0(bp)) ?
1355 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1356 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1357 {4, (CHIP_IS_E3B0(bp)) ?
1358 PBF_REG_INIT_CRD_LB_Q :
1359 PBF_REG_P4_INIT_CRD,
1360 (CHIP_IS_E3B0(bp)) ?
1361 PBF_REG_CREDIT_LB_Q :
1362 PBF_REG_P4_CREDIT,
1363 (CHIP_IS_E3B0(bp)) ?
1364 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1365 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1366 };
1367
1368 int i;
1369
1370 /* Verify the command queues are flushed P0, P1, P4 */
1371 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1372 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1373
1374 /* Verify the transmission buffers are flushed P0, P1, P4 */
1375 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1376 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1377 }
1378
1379 #define OP_GEN_PARAM(param) \
1380 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1381
1382 #define OP_GEN_TYPE(type) \
1383 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1384
1385 #define OP_GEN_AGG_VECT(index) \
1386 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1387
bnx2x_send_final_clnup(struct bnx2x * bp,u8 clnup_func,u32 poll_cnt)1388 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1389 {
1390 u32 op_gen_command = 0;
1391 u32 comp_addr = BAR_CSTRORM_INTMEM +
1392 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1393 int ret = 0;
1394
1395 if (REG_RD(bp, comp_addr)) {
1396 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1397 return 1;
1398 }
1399
1400 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1401 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1402 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1403 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1404
1405 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1406 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1407
1408 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1409 BNX2X_ERR("FW final cleanup did not succeed\n");
1410 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1411 (REG_RD(bp, comp_addr)));
1412 bnx2x_panic();
1413 return 1;
1414 }
1415 /* Zero completion for next FLR */
1416 REG_WR(bp, comp_addr, 0);
1417
1418 return ret;
1419 }
1420
bnx2x_is_pcie_pending(struct pci_dev * dev)1421 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1422 {
1423 u16 status;
1424
1425 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1426 return status & PCI_EXP_DEVSTA_TRPND;
1427 }
1428
1429 /* PF FLR specific routines
1430 */
bnx2x_poll_hw_usage_counters(struct bnx2x * bp,u32 poll_cnt)1431 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1432 {
1433 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1434 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1435 CFC_REG_NUM_LCIDS_INSIDE_PF,
1436 "CFC PF usage counter timed out",
1437 poll_cnt))
1438 return 1;
1439
1440 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1441 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1442 DORQ_REG_PF_USAGE_CNT,
1443 "DQ PF usage counter timed out",
1444 poll_cnt))
1445 return 1;
1446
1447 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1448 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1449 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1450 "QM PF usage counter timed out",
1451 poll_cnt))
1452 return 1;
1453
1454 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1455 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1456 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1457 "Timers VNIC usage counter timed out",
1458 poll_cnt))
1459 return 1;
1460 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1461 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1462 "Timers NUM_SCANS usage counter timed out",
1463 poll_cnt))
1464 return 1;
1465
1466 /* Wait DMAE PF usage counter to zero */
1467 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1468 dmae_reg_go_c[INIT_DMAE_C(bp)],
1469 "DMAE command register timed out",
1470 poll_cnt))
1471 return 1;
1472
1473 return 0;
1474 }
1475
bnx2x_hw_enable_status(struct bnx2x * bp)1476 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1477 {
1478 u32 val;
1479
1480 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1481 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1482
1483 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1484 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1485
1486 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1487 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1488
1489 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1490 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1491
1492 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1493 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1494
1495 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1496 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1497
1498 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1499 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1500
1501 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1502 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1503 val);
1504 }
1505
bnx2x_pf_flr_clnup(struct bnx2x * bp)1506 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1507 {
1508 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1509
1510 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1511
1512 /* Re-enable PF target read access */
1513 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1514
1515 /* Poll HW usage counters */
1516 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1517 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1518 return -EBUSY;
1519
1520 /* Zero the igu 'trailing edge' and 'leading edge' */
1521
1522 /* Send the FW cleanup command */
1523 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1524 return -EBUSY;
1525
1526 /* ATC cleanup */
1527
1528 /* Verify TX hw is flushed */
1529 bnx2x_tx_hw_flushed(bp, poll_cnt);
1530
1531 /* Wait 100ms (not adjusted according to platform) */
1532 msleep(100);
1533
1534 /* Verify no pending pci transactions */
1535 if (bnx2x_is_pcie_pending(bp->pdev))
1536 BNX2X_ERR("PCIE Transactions still pending\n");
1537
1538 /* Debug */
1539 bnx2x_hw_enable_status(bp);
1540
1541 /*
1542 * Master enable - Due to WB DMAE writes performed before this
1543 * register is re-initialized as part of the regular function init
1544 */
1545 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1546
1547 return 0;
1548 }
1549
bnx2x_hc_int_enable(struct bnx2x * bp)1550 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1551 {
1552 int port = BP_PORT(bp);
1553 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1554 u32 val = REG_RD(bp, addr);
1555 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1556 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1557 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1558
1559 if (msix) {
1560 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1561 HC_CONFIG_0_REG_INT_LINE_EN_0);
1562 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1563 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1564 if (single_msix)
1565 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1566 } else if (msi) {
1567 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1568 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1569 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1570 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1571 } else {
1572 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1573 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1574 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1575 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1576
1577 if (!CHIP_IS_E1(bp)) {
1578 DP(NETIF_MSG_IFUP,
1579 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1580
1581 REG_WR(bp, addr, val);
1582
1583 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1584 }
1585 }
1586
1587 if (CHIP_IS_E1(bp))
1588 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1589
1590 DP(NETIF_MSG_IFUP,
1591 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1592 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1593
1594 REG_WR(bp, addr, val);
1595 /*
1596 * Ensure that HC_CONFIG is written before leading/trailing edge config
1597 */
1598 mmiowb();
1599 barrier();
1600
1601 if (!CHIP_IS_E1(bp)) {
1602 /* init leading/trailing edge */
1603 if (IS_MF(bp)) {
1604 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1605 if (bp->port.pmf)
1606 /* enable nig and gpio3 attention */
1607 val |= 0x1100;
1608 } else
1609 val = 0xffff;
1610
1611 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1612 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1613 }
1614
1615 /* Make sure that interrupts are indeed enabled from here on */
1616 mmiowb();
1617 }
1618
bnx2x_igu_int_enable(struct bnx2x * bp)1619 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1620 {
1621 u32 val;
1622 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1623 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1624 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1625
1626 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1627
1628 if (msix) {
1629 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1630 IGU_PF_CONF_SINGLE_ISR_EN);
1631 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1632 IGU_PF_CONF_ATTN_BIT_EN);
1633
1634 if (single_msix)
1635 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1636 } else if (msi) {
1637 val &= ~IGU_PF_CONF_INT_LINE_EN;
1638 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1639 IGU_PF_CONF_ATTN_BIT_EN |
1640 IGU_PF_CONF_SINGLE_ISR_EN);
1641 } else {
1642 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1643 val |= (IGU_PF_CONF_INT_LINE_EN |
1644 IGU_PF_CONF_ATTN_BIT_EN |
1645 IGU_PF_CONF_SINGLE_ISR_EN);
1646 }
1647
1648 /* Clean previous status - need to configure igu prior to ack*/
1649 if ((!msix) || single_msix) {
1650 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1651 bnx2x_ack_int(bp);
1652 }
1653
1654 val |= IGU_PF_CONF_FUNC_EN;
1655
1656 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1657 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1658
1659 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1660
1661 if (val & IGU_PF_CONF_INT_LINE_EN)
1662 pci_intx(bp->pdev, true);
1663
1664 barrier();
1665
1666 /* init leading/trailing edge */
1667 if (IS_MF(bp)) {
1668 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1669 if (bp->port.pmf)
1670 /* enable nig and gpio3 attention */
1671 val |= 0x1100;
1672 } else
1673 val = 0xffff;
1674
1675 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1676 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1677
1678 /* Make sure that interrupts are indeed enabled from here on */
1679 mmiowb();
1680 }
1681
bnx2x_int_enable(struct bnx2x * bp)1682 void bnx2x_int_enable(struct bnx2x *bp)
1683 {
1684 if (bp->common.int_block == INT_BLOCK_HC)
1685 bnx2x_hc_int_enable(bp);
1686 else
1687 bnx2x_igu_int_enable(bp);
1688 }
1689
bnx2x_int_disable_sync(struct bnx2x * bp,int disable_hw)1690 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1691 {
1692 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1693 int i, offset;
1694
1695 if (disable_hw)
1696 /* prevent the HW from sending interrupts */
1697 bnx2x_int_disable(bp);
1698
1699 /* make sure all ISRs are done */
1700 if (msix) {
1701 synchronize_irq(bp->msix_table[0].vector);
1702 offset = 1;
1703 if (CNIC_SUPPORT(bp))
1704 offset++;
1705 for_each_eth_queue(bp, i)
1706 synchronize_irq(bp->msix_table[offset++].vector);
1707 } else
1708 synchronize_irq(bp->pdev->irq);
1709
1710 /* make sure sp_task is not running */
1711 cancel_delayed_work(&bp->sp_task);
1712 cancel_delayed_work(&bp->period_task);
1713 flush_workqueue(bnx2x_wq);
1714 }
1715
1716 /* fast path */
1717
1718 /*
1719 * General service functions
1720 */
1721
1722 /* Return true if succeeded to acquire the lock */
bnx2x_trylock_hw_lock(struct bnx2x * bp,u32 resource)1723 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1724 {
1725 u32 lock_status;
1726 u32 resource_bit = (1 << resource);
1727 int func = BP_FUNC(bp);
1728 u32 hw_lock_control_reg;
1729
1730 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731 "Trying to take a lock on resource %d\n", resource);
1732
1733 /* Validating that the resource is within range */
1734 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1735 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1736 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1737 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1738 return false;
1739 }
1740
1741 if (func <= 5)
1742 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1743 else
1744 hw_lock_control_reg =
1745 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1746
1747 /* Try to acquire the lock */
1748 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1749 lock_status = REG_RD(bp, hw_lock_control_reg);
1750 if (lock_status & resource_bit)
1751 return true;
1752
1753 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1754 "Failed to get a lock on resource %d\n", resource);
1755 return false;
1756 }
1757
1758 /**
1759 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1760 *
1761 * @bp: driver handle
1762 *
1763 * Returns the recovery leader resource id according to the engine this function
1764 * belongs to. Currently only only 2 engines is supported.
1765 */
bnx2x_get_leader_lock_resource(struct bnx2x * bp)1766 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1767 {
1768 if (BP_PATH(bp))
1769 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1770 else
1771 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1772 }
1773
1774 /**
1775 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1776 *
1777 * @bp: driver handle
1778 *
1779 * Tries to acquire a leader lock for current engine.
1780 */
bnx2x_trylock_leader_lock(struct bnx2x * bp)1781 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1782 {
1783 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1784 }
1785
1786 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1787
1788 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
bnx2x_schedule_sp_task(struct bnx2x * bp)1789 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1790 {
1791 /* Set the interrupt occurred bit for the sp-task to recognize it
1792 * must ack the interrupt and transition according to the IGU
1793 * state machine.
1794 */
1795 atomic_set(&bp->interrupt_occurred, 1);
1796
1797 /* The sp_task must execute only after this bit
1798 * is set, otherwise we will get out of sync and miss all
1799 * further interrupts. Hence, the barrier.
1800 */
1801 smp_wmb();
1802
1803 /* schedule sp_task to workqueue */
1804 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1805 }
1806
bnx2x_sp_event(struct bnx2x_fastpath * fp,union eth_rx_cqe * rr_cqe)1807 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1808 {
1809 struct bnx2x *bp = fp->bp;
1810 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1811 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1812 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1813 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1814
1815 DP(BNX2X_MSG_SP,
1816 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1817 fp->index, cid, command, bp->state,
1818 rr_cqe->ramrod_cqe.ramrod_type);
1819
1820 /* If cid is within VF range, replace the slowpath object with the
1821 * one corresponding to this VF
1822 */
1823 if (cid >= BNX2X_FIRST_VF_CID &&
1824 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1825 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1826
1827 switch (command) {
1828 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1829 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1830 drv_cmd = BNX2X_Q_CMD_UPDATE;
1831 break;
1832
1833 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1834 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1835 drv_cmd = BNX2X_Q_CMD_SETUP;
1836 break;
1837
1838 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1839 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1840 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1841 break;
1842
1843 case (RAMROD_CMD_ID_ETH_HALT):
1844 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1845 drv_cmd = BNX2X_Q_CMD_HALT;
1846 break;
1847
1848 case (RAMROD_CMD_ID_ETH_TERMINATE):
1849 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1850 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1851 break;
1852
1853 case (RAMROD_CMD_ID_ETH_EMPTY):
1854 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1855 drv_cmd = BNX2X_Q_CMD_EMPTY;
1856 break;
1857
1858 case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1859 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1860 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1861 break;
1862
1863 default:
1864 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1865 command, fp->index);
1866 return;
1867 }
1868
1869 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1870 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1871 /* q_obj->complete_cmd() failure means that this was
1872 * an unexpected completion.
1873 *
1874 * In this case we don't want to increase the bp->spq_left
1875 * because apparently we haven't sent this command the first
1876 * place.
1877 */
1878 #ifdef BNX2X_STOP_ON_ERROR
1879 bnx2x_panic();
1880 #else
1881 return;
1882 #endif
1883
1884 smp_mb__before_atomic();
1885 atomic_inc(&bp->cq_spq_left);
1886 /* push the change in bp->spq_left and towards the memory */
1887 smp_mb__after_atomic();
1888
1889 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1890
1891 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1892 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1893 /* if Q update ramrod is completed for last Q in AFEX vif set
1894 * flow, then ACK MCP at the end
1895 *
1896 * mark pending ACK to MCP bit.
1897 * prevent case that both bits are cleared.
1898 * At the end of load/unload driver checks that
1899 * sp_state is cleared, and this order prevents
1900 * races
1901 */
1902 smp_mb__before_atomic();
1903 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1904 wmb();
1905 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1906 smp_mb__after_atomic();
1907
1908 /* schedule the sp task as mcp ack is required */
1909 bnx2x_schedule_sp_task(bp);
1910 }
1911
1912 return;
1913 }
1914
bnx2x_interrupt(int irq,void * dev_instance)1915 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1916 {
1917 struct bnx2x *bp = netdev_priv(dev_instance);
1918 u16 status = bnx2x_ack_int(bp);
1919 u16 mask;
1920 int i;
1921 u8 cos;
1922
1923 /* Return here if interrupt is shared and it's not for us */
1924 if (unlikely(status == 0)) {
1925 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1926 return IRQ_NONE;
1927 }
1928 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1929
1930 #ifdef BNX2X_STOP_ON_ERROR
1931 if (unlikely(bp->panic))
1932 return IRQ_HANDLED;
1933 #endif
1934
1935 for_each_eth_queue(bp, i) {
1936 struct bnx2x_fastpath *fp = &bp->fp[i];
1937
1938 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1939 if (status & mask) {
1940 /* Handle Rx or Tx according to SB id */
1941 for_each_cos_in_tx_queue(fp, cos)
1942 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1943 prefetch(&fp->sb_running_index[SM_RX_ID]);
1944 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1945 status &= ~mask;
1946 }
1947 }
1948
1949 if (CNIC_SUPPORT(bp)) {
1950 mask = 0x2;
1951 if (status & (mask | 0x1)) {
1952 struct cnic_ops *c_ops = NULL;
1953
1954 rcu_read_lock();
1955 c_ops = rcu_dereference(bp->cnic_ops);
1956 if (c_ops && (bp->cnic_eth_dev.drv_state &
1957 CNIC_DRV_STATE_HANDLES_IRQ))
1958 c_ops->cnic_handler(bp->cnic_data, NULL);
1959 rcu_read_unlock();
1960
1961 status &= ~mask;
1962 }
1963 }
1964
1965 if (unlikely(status & 0x1)) {
1966
1967 /* schedule sp task to perform default status block work, ack
1968 * attentions and enable interrupts.
1969 */
1970 bnx2x_schedule_sp_task(bp);
1971
1972 status &= ~0x1;
1973 if (!status)
1974 return IRQ_HANDLED;
1975 }
1976
1977 if (unlikely(status))
1978 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1979 status);
1980
1981 return IRQ_HANDLED;
1982 }
1983
1984 /* Link */
1985
1986 /*
1987 * General service functions
1988 */
1989
bnx2x_acquire_hw_lock(struct bnx2x * bp,u32 resource)1990 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1991 {
1992 u32 lock_status;
1993 u32 resource_bit = (1 << resource);
1994 int func = BP_FUNC(bp);
1995 u32 hw_lock_control_reg;
1996 int cnt;
1997
1998 /* Validating that the resource is within range */
1999 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2000 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2001 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2002 return -EINVAL;
2003 }
2004
2005 if (func <= 5) {
2006 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2007 } else {
2008 hw_lock_control_reg =
2009 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2010 }
2011
2012 /* Validating that the resource is not already taken */
2013 lock_status = REG_RD(bp, hw_lock_control_reg);
2014 if (lock_status & resource_bit) {
2015 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
2016 lock_status, resource_bit);
2017 return -EEXIST;
2018 }
2019
2020 /* Try for 5 second every 5ms */
2021 for (cnt = 0; cnt < 1000; cnt++) {
2022 /* Try to acquire the lock */
2023 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2024 lock_status = REG_RD(bp, hw_lock_control_reg);
2025 if (lock_status & resource_bit)
2026 return 0;
2027
2028 usleep_range(5000, 10000);
2029 }
2030 BNX2X_ERR("Timeout\n");
2031 return -EAGAIN;
2032 }
2033
bnx2x_release_leader_lock(struct bnx2x * bp)2034 int bnx2x_release_leader_lock(struct bnx2x *bp)
2035 {
2036 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2037 }
2038
bnx2x_release_hw_lock(struct bnx2x * bp,u32 resource)2039 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2040 {
2041 u32 lock_status;
2042 u32 resource_bit = (1 << resource);
2043 int func = BP_FUNC(bp);
2044 u32 hw_lock_control_reg;
2045
2046 /* Validating that the resource is within range */
2047 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2048 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2049 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2050 return -EINVAL;
2051 }
2052
2053 if (func <= 5) {
2054 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2055 } else {
2056 hw_lock_control_reg =
2057 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2058 }
2059
2060 /* Validating that the resource is currently taken */
2061 lock_status = REG_RD(bp, hw_lock_control_reg);
2062 if (!(lock_status & resource_bit)) {
2063 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2064 lock_status, resource_bit);
2065 return -EFAULT;
2066 }
2067
2068 REG_WR(bp, hw_lock_control_reg, resource_bit);
2069 return 0;
2070 }
2071
bnx2x_get_gpio(struct bnx2x * bp,int gpio_num,u8 port)2072 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2073 {
2074 /* The GPIO should be swapped if swap register is set and active */
2075 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2076 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2077 int gpio_shift = gpio_num +
2078 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2079 u32 gpio_mask = (1 << gpio_shift);
2080 u32 gpio_reg;
2081 int value;
2082
2083 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2084 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2085 return -EINVAL;
2086 }
2087
2088 /* read GPIO value */
2089 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2090
2091 /* get the requested pin value */
2092 if ((gpio_reg & gpio_mask) == gpio_mask)
2093 value = 1;
2094 else
2095 value = 0;
2096
2097 return value;
2098 }
2099
bnx2x_set_gpio(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2100 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2101 {
2102 /* The GPIO should be swapped if swap register is set and active */
2103 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2104 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2105 int gpio_shift = gpio_num +
2106 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2107 u32 gpio_mask = (1 << gpio_shift);
2108 u32 gpio_reg;
2109
2110 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2111 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2112 return -EINVAL;
2113 }
2114
2115 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2116 /* read GPIO and mask except the float bits */
2117 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2118
2119 switch (mode) {
2120 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2121 DP(NETIF_MSG_LINK,
2122 "Set GPIO %d (shift %d) -> output low\n",
2123 gpio_num, gpio_shift);
2124 /* clear FLOAT and set CLR */
2125 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2126 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2127 break;
2128
2129 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2130 DP(NETIF_MSG_LINK,
2131 "Set GPIO %d (shift %d) -> output high\n",
2132 gpio_num, gpio_shift);
2133 /* clear FLOAT and set SET */
2134 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2136 break;
2137
2138 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2139 DP(NETIF_MSG_LINK,
2140 "Set GPIO %d (shift %d) -> input\n",
2141 gpio_num, gpio_shift);
2142 /* set FLOAT */
2143 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2144 break;
2145
2146 default:
2147 break;
2148 }
2149
2150 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2151 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2152
2153 return 0;
2154 }
2155
bnx2x_set_mult_gpio(struct bnx2x * bp,u8 pins,u32 mode)2156 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2157 {
2158 u32 gpio_reg = 0;
2159 int rc = 0;
2160
2161 /* Any port swapping should be handled by caller. */
2162
2163 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2164 /* read GPIO and mask except the float bits */
2165 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2166 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2167 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2168 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2169
2170 switch (mode) {
2171 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2172 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2173 /* set CLR */
2174 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2175 break;
2176
2177 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2178 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2179 /* set SET */
2180 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2181 break;
2182
2183 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2184 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2185 /* set FLOAT */
2186 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2187 break;
2188
2189 default:
2190 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2191 rc = -EINVAL;
2192 break;
2193 }
2194
2195 if (rc == 0)
2196 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2197
2198 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2199
2200 return rc;
2201 }
2202
bnx2x_set_gpio_int(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2203 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2204 {
2205 /* The GPIO should be swapped if swap register is set and active */
2206 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2207 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2208 int gpio_shift = gpio_num +
2209 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2210 u32 gpio_mask = (1 << gpio_shift);
2211 u32 gpio_reg;
2212
2213 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2214 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2215 return -EINVAL;
2216 }
2217
2218 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2219 /* read GPIO int */
2220 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2221
2222 switch (mode) {
2223 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2224 DP(NETIF_MSG_LINK,
2225 "Clear GPIO INT %d (shift %d) -> output low\n",
2226 gpio_num, gpio_shift);
2227 /* clear SET and set CLR */
2228 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2229 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2230 break;
2231
2232 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2233 DP(NETIF_MSG_LINK,
2234 "Set GPIO INT %d (shift %d) -> output high\n",
2235 gpio_num, gpio_shift);
2236 /* clear CLR and set SET */
2237 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2238 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2239 break;
2240
2241 default:
2242 break;
2243 }
2244
2245 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2246 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2247
2248 return 0;
2249 }
2250
bnx2x_set_spio(struct bnx2x * bp,int spio,u32 mode)2251 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2252 {
2253 u32 spio_reg;
2254
2255 /* Only 2 SPIOs are configurable */
2256 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2257 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2258 return -EINVAL;
2259 }
2260
2261 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2262 /* read SPIO and mask except the float bits */
2263 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2264
2265 switch (mode) {
2266 case MISC_SPIO_OUTPUT_LOW:
2267 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2268 /* clear FLOAT and set CLR */
2269 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2270 spio_reg |= (spio << MISC_SPIO_CLR_POS);
2271 break;
2272
2273 case MISC_SPIO_OUTPUT_HIGH:
2274 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2275 /* clear FLOAT and set SET */
2276 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2277 spio_reg |= (spio << MISC_SPIO_SET_POS);
2278 break;
2279
2280 case MISC_SPIO_INPUT_HI_Z:
2281 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2282 /* set FLOAT */
2283 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2284 break;
2285
2286 default:
2287 break;
2288 }
2289
2290 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2291 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2292
2293 return 0;
2294 }
2295
bnx2x_calc_fc_adv(struct bnx2x * bp)2296 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2297 {
2298 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2299
2300 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2301 ADVERTISED_Pause);
2302 switch (bp->link_vars.ieee_fc &
2303 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2304 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2305 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2306 ADVERTISED_Pause);
2307 break;
2308
2309 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2310 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2311 break;
2312
2313 default:
2314 break;
2315 }
2316 }
2317
bnx2x_set_requested_fc(struct bnx2x * bp)2318 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2319 {
2320 /* Initialize link parameters structure variables
2321 * It is recommended to turn off RX FC for jumbo frames
2322 * for better performance
2323 */
2324 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2325 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2326 else
2327 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2328 }
2329
bnx2x_init_dropless_fc(struct bnx2x * bp)2330 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2331 {
2332 u32 pause_enabled = 0;
2333
2334 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2335 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2336 pause_enabled = 1;
2337
2338 REG_WR(bp, BAR_USTRORM_INTMEM +
2339 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2340 pause_enabled);
2341 }
2342
2343 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2344 pause_enabled ? "enabled" : "disabled");
2345 }
2346
bnx2x_initial_phy_init(struct bnx2x * bp,int load_mode)2347 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2348 {
2349 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2350 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2351
2352 if (!BP_NOMCP(bp)) {
2353 bnx2x_set_requested_fc(bp);
2354 bnx2x_acquire_phy_lock(bp);
2355
2356 if (load_mode == LOAD_DIAG) {
2357 struct link_params *lp = &bp->link_params;
2358 lp->loopback_mode = LOOPBACK_XGXS;
2359 /* Prefer doing PHY loopback at highest speed */
2360 if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2361 if (lp->speed_cap_mask[cfx_idx] &
2362 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2363 lp->req_line_speed[cfx_idx] =
2364 SPEED_20000;
2365 else if (lp->speed_cap_mask[cfx_idx] &
2366 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2367 lp->req_line_speed[cfx_idx] =
2368 SPEED_10000;
2369 else
2370 lp->req_line_speed[cfx_idx] =
2371 SPEED_1000;
2372 }
2373 }
2374
2375 if (load_mode == LOAD_LOOPBACK_EXT) {
2376 struct link_params *lp = &bp->link_params;
2377 lp->loopback_mode = LOOPBACK_EXT;
2378 }
2379
2380 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2381
2382 bnx2x_release_phy_lock(bp);
2383
2384 bnx2x_init_dropless_fc(bp);
2385
2386 bnx2x_calc_fc_adv(bp);
2387
2388 if (bp->link_vars.link_up) {
2389 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2390 bnx2x_link_report(bp);
2391 }
2392 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2393 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2394 return rc;
2395 }
2396 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2397 return -EINVAL;
2398 }
2399
bnx2x_link_set(struct bnx2x * bp)2400 void bnx2x_link_set(struct bnx2x *bp)
2401 {
2402 if (!BP_NOMCP(bp)) {
2403 bnx2x_acquire_phy_lock(bp);
2404 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2405 bnx2x_release_phy_lock(bp);
2406
2407 bnx2x_init_dropless_fc(bp);
2408
2409 bnx2x_calc_fc_adv(bp);
2410 } else
2411 BNX2X_ERR("Bootcode is missing - can not set link\n");
2412 }
2413
bnx2x__link_reset(struct bnx2x * bp)2414 static void bnx2x__link_reset(struct bnx2x *bp)
2415 {
2416 if (!BP_NOMCP(bp)) {
2417 bnx2x_acquire_phy_lock(bp);
2418 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2419 bnx2x_release_phy_lock(bp);
2420 } else
2421 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2422 }
2423
bnx2x_force_link_reset(struct bnx2x * bp)2424 void bnx2x_force_link_reset(struct bnx2x *bp)
2425 {
2426 bnx2x_acquire_phy_lock(bp);
2427 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2428 bnx2x_release_phy_lock(bp);
2429 }
2430
bnx2x_link_test(struct bnx2x * bp,u8 is_serdes)2431 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2432 {
2433 u8 rc = 0;
2434
2435 if (!BP_NOMCP(bp)) {
2436 bnx2x_acquire_phy_lock(bp);
2437 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2438 is_serdes);
2439 bnx2x_release_phy_lock(bp);
2440 } else
2441 BNX2X_ERR("Bootcode is missing - can not test link\n");
2442
2443 return rc;
2444 }
2445
2446 /* Calculates the sum of vn_min_rates.
2447 It's needed for further normalizing of the min_rates.
2448 Returns:
2449 sum of vn_min_rates.
2450 or
2451 0 - if all the min_rates are 0.
2452 In the later case fairness algorithm should be deactivated.
2453 If not all min_rates are zero then those that are zeroes will be set to 1.
2454 */
bnx2x_calc_vn_min(struct bnx2x * bp,struct cmng_init_input * input)2455 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2456 struct cmng_init_input *input)
2457 {
2458 int all_zero = 1;
2459 int vn;
2460
2461 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2462 u32 vn_cfg = bp->mf_config[vn];
2463 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2464 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2465
2466 /* Skip hidden vns */
2467 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2468 vn_min_rate = 0;
2469 /* If min rate is zero - set it to 1 */
2470 else if (!vn_min_rate)
2471 vn_min_rate = DEF_MIN_RATE;
2472 else
2473 all_zero = 0;
2474
2475 input->vnic_min_rate[vn] = vn_min_rate;
2476 }
2477
2478 /* if ETS or all min rates are zeros - disable fairness */
2479 if (BNX2X_IS_ETS_ENABLED(bp)) {
2480 input->flags.cmng_enables &=
2481 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2483 } else if (all_zero) {
2484 input->flags.cmng_enables &=
2485 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2486 DP(NETIF_MSG_IFUP,
2487 "All MIN values are zeroes fairness will be disabled\n");
2488 } else
2489 input->flags.cmng_enables |=
2490 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2491 }
2492
bnx2x_calc_vn_max(struct bnx2x * bp,int vn,struct cmng_init_input * input)2493 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2494 struct cmng_init_input *input)
2495 {
2496 u16 vn_max_rate;
2497 u32 vn_cfg = bp->mf_config[vn];
2498
2499 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2500 vn_max_rate = 0;
2501 else {
2502 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2503
2504 if (IS_MF_PERCENT_BW(bp)) {
2505 /* maxCfg in percents of linkspeed */
2506 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2507 } else /* SD modes */
2508 /* maxCfg is absolute in 100Mb units */
2509 vn_max_rate = maxCfg * 100;
2510 }
2511
2512 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2513
2514 input->vnic_max_rate[vn] = vn_max_rate;
2515 }
2516
bnx2x_get_cmng_fns_mode(struct bnx2x * bp)2517 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2518 {
2519 if (CHIP_REV_IS_SLOW(bp))
2520 return CMNG_FNS_NONE;
2521 if (IS_MF(bp))
2522 return CMNG_FNS_MINMAX;
2523
2524 return CMNG_FNS_NONE;
2525 }
2526
bnx2x_read_mf_cfg(struct bnx2x * bp)2527 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2528 {
2529 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2530
2531 if (BP_NOMCP(bp))
2532 return; /* what should be the default value in this case */
2533
2534 /* For 2 port configuration the absolute function number formula
2535 * is:
2536 * abs_func = 2 * vn + BP_PORT + BP_PATH
2537 *
2538 * and there are 4 functions per port
2539 *
2540 * For 4 port configuration it is
2541 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2542 *
2543 * and there are 2 functions per port
2544 */
2545 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2546 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2547
2548 if (func >= E1H_FUNC_MAX)
2549 break;
2550
2551 bp->mf_config[vn] =
2552 MF_CFG_RD(bp, func_mf_config[func].config);
2553 }
2554 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2555 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2556 bp->flags |= MF_FUNC_DIS;
2557 } else {
2558 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2559 bp->flags &= ~MF_FUNC_DIS;
2560 }
2561 }
2562
bnx2x_cmng_fns_init(struct bnx2x * bp,u8 read_cfg,u8 cmng_type)2563 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2564 {
2565 struct cmng_init_input input;
2566 memset(&input, 0, sizeof(struct cmng_init_input));
2567
2568 input.port_rate = bp->link_vars.line_speed;
2569
2570 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2571 int vn;
2572
2573 /* read mf conf from shmem */
2574 if (read_cfg)
2575 bnx2x_read_mf_cfg(bp);
2576
2577 /* vn_weight_sum and enable fairness if not 0 */
2578 bnx2x_calc_vn_min(bp, &input);
2579
2580 /* calculate and set min-max rate for each vn */
2581 if (bp->port.pmf)
2582 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2583 bnx2x_calc_vn_max(bp, vn, &input);
2584
2585 /* always enable rate shaping and fairness */
2586 input.flags.cmng_enables |=
2587 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2588
2589 bnx2x_init_cmng(&input, &bp->cmng);
2590 return;
2591 }
2592
2593 /* rate shaping and fairness are disabled */
2594 DP(NETIF_MSG_IFUP,
2595 "rate shaping and fairness are disabled\n");
2596 }
2597
storm_memset_cmng(struct bnx2x * bp,struct cmng_init * cmng,u8 port)2598 static void storm_memset_cmng(struct bnx2x *bp,
2599 struct cmng_init *cmng,
2600 u8 port)
2601 {
2602 int vn;
2603 size_t size = sizeof(struct cmng_struct_per_port);
2604
2605 u32 addr = BAR_XSTRORM_INTMEM +
2606 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2607
2608 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2609
2610 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2611 int func = func_by_vn(bp, vn);
2612
2613 addr = BAR_XSTRORM_INTMEM +
2614 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2615 size = sizeof(struct rate_shaping_vars_per_vn);
2616 __storm_memset_struct(bp, addr, size,
2617 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2618
2619 addr = BAR_XSTRORM_INTMEM +
2620 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2621 size = sizeof(struct fairness_vars_per_vn);
2622 __storm_memset_struct(bp, addr, size,
2623 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2624 }
2625 }
2626
2627 /* init cmng mode in HW according to local configuration */
bnx2x_set_local_cmng(struct bnx2x * bp)2628 void bnx2x_set_local_cmng(struct bnx2x *bp)
2629 {
2630 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2631
2632 if (cmng_fns != CMNG_FNS_NONE) {
2633 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2634 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2635 } else {
2636 /* rate shaping and fairness are disabled */
2637 DP(NETIF_MSG_IFUP,
2638 "single function mode without fairness\n");
2639 }
2640 }
2641
2642 /* This function is called upon link interrupt */
bnx2x_link_attn(struct bnx2x * bp)2643 static void bnx2x_link_attn(struct bnx2x *bp)
2644 {
2645 /* Make sure that we are synced with the current statistics */
2646 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2647
2648 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2649
2650 bnx2x_init_dropless_fc(bp);
2651
2652 if (bp->link_vars.link_up) {
2653
2654 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2655 struct host_port_stats *pstats;
2656
2657 pstats = bnx2x_sp(bp, port_stats);
2658 /* reset old mac stats */
2659 memset(&(pstats->mac_stx[0]), 0,
2660 sizeof(struct mac_stx));
2661 }
2662 if (bp->state == BNX2X_STATE_OPEN)
2663 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2664 }
2665
2666 if (bp->link_vars.link_up && bp->link_vars.line_speed)
2667 bnx2x_set_local_cmng(bp);
2668
2669 __bnx2x_link_report(bp);
2670
2671 if (IS_MF(bp))
2672 bnx2x_link_sync_notify(bp);
2673 }
2674
bnx2x__link_status_update(struct bnx2x * bp)2675 void bnx2x__link_status_update(struct bnx2x *bp)
2676 {
2677 if (bp->state != BNX2X_STATE_OPEN)
2678 return;
2679
2680 /* read updated dcb configuration */
2681 if (IS_PF(bp)) {
2682 bnx2x_dcbx_pmf_update(bp);
2683 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2684 if (bp->link_vars.link_up)
2685 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2686 else
2687 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2688 /* indicate link status */
2689 bnx2x_link_report(bp);
2690
2691 } else { /* VF */
2692 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2693 SUPPORTED_10baseT_Full |
2694 SUPPORTED_100baseT_Half |
2695 SUPPORTED_100baseT_Full |
2696 SUPPORTED_1000baseT_Full |
2697 SUPPORTED_2500baseX_Full |
2698 SUPPORTED_10000baseT_Full |
2699 SUPPORTED_TP |
2700 SUPPORTED_FIBRE |
2701 SUPPORTED_Autoneg |
2702 SUPPORTED_Pause |
2703 SUPPORTED_Asym_Pause);
2704 bp->port.advertising[0] = bp->port.supported[0];
2705
2706 bp->link_params.bp = bp;
2707 bp->link_params.port = BP_PORT(bp);
2708 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2709 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2710 bp->link_params.req_line_speed[0] = SPEED_10000;
2711 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2712 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2713 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2714 bp->link_vars.line_speed = SPEED_10000;
2715 bp->link_vars.link_status =
2716 (LINK_STATUS_LINK_UP |
2717 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2718 bp->link_vars.link_up = 1;
2719 bp->link_vars.duplex = DUPLEX_FULL;
2720 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2721 __bnx2x_link_report(bp);
2722
2723 bnx2x_sample_bulletin(bp);
2724
2725 /* if bulletin board did not have an update for link status
2726 * __bnx2x_link_report will report current status
2727 * but it will NOT duplicate report in case of already reported
2728 * during sampling bulletin board.
2729 */
2730 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2731 }
2732 }
2733
bnx2x_afex_func_update(struct bnx2x * bp,u16 vifid,u16 vlan_val,u8 allowed_prio)2734 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2735 u16 vlan_val, u8 allowed_prio)
2736 {
2737 struct bnx2x_func_state_params func_params = {NULL};
2738 struct bnx2x_func_afex_update_params *f_update_params =
2739 &func_params.params.afex_update;
2740
2741 func_params.f_obj = &bp->func_obj;
2742 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2743
2744 /* no need to wait for RAMROD completion, so don't
2745 * set RAMROD_COMP_WAIT flag
2746 */
2747
2748 f_update_params->vif_id = vifid;
2749 f_update_params->afex_default_vlan = vlan_val;
2750 f_update_params->allowed_priorities = allowed_prio;
2751
2752 /* if ramrod can not be sent, response to MCP immediately */
2753 if (bnx2x_func_state_change(bp, &func_params) < 0)
2754 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2755
2756 return 0;
2757 }
2758
bnx2x_afex_handle_vif_list_cmd(struct bnx2x * bp,u8 cmd_type,u16 vif_index,u8 func_bit_map)2759 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2760 u16 vif_index, u8 func_bit_map)
2761 {
2762 struct bnx2x_func_state_params func_params = {NULL};
2763 struct bnx2x_func_afex_viflists_params *update_params =
2764 &func_params.params.afex_viflists;
2765 int rc;
2766 u32 drv_msg_code;
2767
2768 /* validate only LIST_SET and LIST_GET are received from switch */
2769 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2770 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2771 cmd_type);
2772
2773 func_params.f_obj = &bp->func_obj;
2774 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2775
2776 /* set parameters according to cmd_type */
2777 update_params->afex_vif_list_command = cmd_type;
2778 update_params->vif_list_index = vif_index;
2779 update_params->func_bit_map =
2780 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2781 update_params->func_to_clear = 0;
2782 drv_msg_code =
2783 (cmd_type == VIF_LIST_RULE_GET) ?
2784 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2785 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2786
2787 /* if ramrod can not be sent, respond to MCP immediately for
2788 * SET and GET requests (other are not triggered from MCP)
2789 */
2790 rc = bnx2x_func_state_change(bp, &func_params);
2791 if (rc < 0)
2792 bnx2x_fw_command(bp, drv_msg_code, 0);
2793
2794 return 0;
2795 }
2796
bnx2x_handle_afex_cmd(struct bnx2x * bp,u32 cmd)2797 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2798 {
2799 struct afex_stats afex_stats;
2800 u32 func = BP_ABS_FUNC(bp);
2801 u32 mf_config;
2802 u16 vlan_val;
2803 u32 vlan_prio;
2804 u16 vif_id;
2805 u8 allowed_prio;
2806 u8 vlan_mode;
2807 u32 addr_to_write, vifid, addrs, stats_type, i;
2808
2809 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2810 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2811 DP(BNX2X_MSG_MCP,
2812 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2813 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2814 }
2815
2816 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2817 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2818 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2819 DP(BNX2X_MSG_MCP,
2820 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2821 vifid, addrs);
2822 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2823 addrs);
2824 }
2825
2826 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2827 addr_to_write = SHMEM2_RD(bp,
2828 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2829 stats_type = SHMEM2_RD(bp,
2830 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2831
2832 DP(BNX2X_MSG_MCP,
2833 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2834 addr_to_write);
2835
2836 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2837
2838 /* write response to scratchpad, for MCP */
2839 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2840 REG_WR(bp, addr_to_write + i*sizeof(u32),
2841 *(((u32 *)(&afex_stats))+i));
2842
2843 /* send ack message to MCP */
2844 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2845 }
2846
2847 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2848 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2849 bp->mf_config[BP_VN(bp)] = mf_config;
2850 DP(BNX2X_MSG_MCP,
2851 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2852 mf_config);
2853
2854 /* if VIF_SET is "enabled" */
2855 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2856 /* set rate limit directly to internal RAM */
2857 struct cmng_init_input cmng_input;
2858 struct rate_shaping_vars_per_vn m_rs_vn;
2859 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2860 u32 addr = BAR_XSTRORM_INTMEM +
2861 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2862
2863 bp->mf_config[BP_VN(bp)] = mf_config;
2864
2865 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2866 m_rs_vn.vn_counter.rate =
2867 cmng_input.vnic_max_rate[BP_VN(bp)];
2868 m_rs_vn.vn_counter.quota =
2869 (m_rs_vn.vn_counter.rate *
2870 RS_PERIODIC_TIMEOUT_USEC) / 8;
2871
2872 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2873
2874 /* read relevant values from mf_cfg struct in shmem */
2875 vif_id =
2876 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2877 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2878 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2879 vlan_val =
2880 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2881 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2882 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2883 vlan_prio = (mf_config &
2884 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2885 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2886 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2887 vlan_mode =
2888 (MF_CFG_RD(bp,
2889 func_mf_config[func].afex_config) &
2890 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2891 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2892 allowed_prio =
2893 (MF_CFG_RD(bp,
2894 func_mf_config[func].afex_config) &
2895 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2896 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2897
2898 /* send ramrod to FW, return in case of failure */
2899 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2900 allowed_prio))
2901 return;
2902
2903 bp->afex_def_vlan_tag = vlan_val;
2904 bp->afex_vlan_mode = vlan_mode;
2905 } else {
2906 /* notify link down because BP->flags is disabled */
2907 bnx2x_link_report(bp);
2908
2909 /* send INVALID VIF ramrod to FW */
2910 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2911
2912 /* Reset the default afex VLAN */
2913 bp->afex_def_vlan_tag = -1;
2914 }
2915 }
2916 }
2917
bnx2x_handle_update_svid_cmd(struct bnx2x * bp)2918 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2919 {
2920 struct bnx2x_func_switch_update_params *switch_update_params;
2921 struct bnx2x_func_state_params func_params;
2922
2923 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2924 switch_update_params = &func_params.params.switch_update;
2925 func_params.f_obj = &bp->func_obj;
2926 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2927
2928 /* Prepare parameters for function state transitions */
2929 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2930 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2931
2932 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2933 int func = BP_ABS_FUNC(bp);
2934 u32 val;
2935
2936 /* Re-learn the S-tag from shmem */
2937 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2938 FUNC_MF_CFG_E1HOV_TAG_MASK;
2939 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2940 bp->mf_ov = val;
2941 } else {
2942 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2943 goto fail;
2944 }
2945
2946 /* Configure new S-tag in LLH */
2947 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2948 bp->mf_ov);
2949
2950 /* Send Ramrod to update FW of change */
2951 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2952 &switch_update_params->changes);
2953 switch_update_params->vlan = bp->mf_ov;
2954
2955 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2956 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2957 bp->mf_ov);
2958 goto fail;
2959 } else {
2960 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2961 bp->mf_ov);
2962 }
2963 } else {
2964 goto fail;
2965 }
2966
2967 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2968 return;
2969 fail:
2970 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2971 }
2972
bnx2x_pmf_update(struct bnx2x * bp)2973 static void bnx2x_pmf_update(struct bnx2x *bp)
2974 {
2975 int port = BP_PORT(bp);
2976 u32 val;
2977
2978 bp->port.pmf = 1;
2979 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2980
2981 /*
2982 * We need the mb() to ensure the ordering between the writing to
2983 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2984 */
2985 smp_mb();
2986
2987 /* queue a periodic task */
2988 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2989
2990 bnx2x_dcbx_pmf_update(bp);
2991
2992 /* enable nig attention */
2993 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2994 if (bp->common.int_block == INT_BLOCK_HC) {
2995 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2996 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2997 } else if (!CHIP_IS_E1x(bp)) {
2998 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2999 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3000 }
3001
3002 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3003 }
3004
3005 /* end of Link */
3006
3007 /* slow path */
3008
3009 /*
3010 * General service functions
3011 */
3012
3013 /* send the MCP a request, block until there is a reply */
bnx2x_fw_command(struct bnx2x * bp,u32 command,u32 param)3014 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3015 {
3016 int mb_idx = BP_FW_MB_IDX(bp);
3017 u32 seq;
3018 u32 rc = 0;
3019 u32 cnt = 1;
3020 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3021
3022 mutex_lock(&bp->fw_mb_mutex);
3023 seq = ++bp->fw_seq;
3024 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3025 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3026
3027 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3028 (command | seq), param);
3029
3030 do {
3031 /* let the FW do it's magic ... */
3032 msleep(delay);
3033
3034 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3035
3036 /* Give the FW up to 5 second (500*10ms) */
3037 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3038
3039 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3040 cnt*delay, rc, seq);
3041
3042 /* is this a reply to our command? */
3043 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3044 rc &= FW_MSG_CODE_MASK;
3045 else {
3046 /* FW BUG! */
3047 BNX2X_ERR("FW failed to respond!\n");
3048 bnx2x_fw_dump(bp);
3049 rc = 0;
3050 }
3051 mutex_unlock(&bp->fw_mb_mutex);
3052
3053 return rc;
3054 }
3055
storm_memset_func_cfg(struct bnx2x * bp,struct tstorm_eth_function_common_config * tcfg,u16 abs_fid)3056 static void storm_memset_func_cfg(struct bnx2x *bp,
3057 struct tstorm_eth_function_common_config *tcfg,
3058 u16 abs_fid)
3059 {
3060 size_t size = sizeof(struct tstorm_eth_function_common_config);
3061
3062 u32 addr = BAR_TSTRORM_INTMEM +
3063 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3064
3065 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3066 }
3067
bnx2x_func_init(struct bnx2x * bp,struct bnx2x_func_init_params * p)3068 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3069 {
3070 if (CHIP_IS_E1x(bp)) {
3071 struct tstorm_eth_function_common_config tcfg = {0};
3072
3073 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3074 }
3075
3076 /* Enable the function in the FW */
3077 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3078 storm_memset_func_en(bp, p->func_id, 1);
3079
3080 /* spq */
3081 if (p->spq_active) {
3082 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3083 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3084 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3085 }
3086 }
3087
3088 /**
3089 * bnx2x_get_common_flags - Return common flags
3090 *
3091 * @bp device handle
3092 * @fp queue handle
3093 * @zero_stats TRUE if statistics zeroing is needed
3094 *
3095 * Return the flags that are common for the Tx-only and not normal connections.
3096 */
bnx2x_get_common_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool zero_stats)3097 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3098 struct bnx2x_fastpath *fp,
3099 bool zero_stats)
3100 {
3101 unsigned long flags = 0;
3102
3103 /* PF driver will always initialize the Queue to an ACTIVE state */
3104 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3105
3106 /* tx only connections collect statistics (on the same index as the
3107 * parent connection). The statistics are zeroed when the parent
3108 * connection is initialized.
3109 */
3110
3111 __set_bit(BNX2X_Q_FLG_STATS, &flags);
3112 if (zero_stats)
3113 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3114
3115 if (bp->flags & TX_SWITCHING)
3116 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3117
3118 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3119 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3120
3121 #ifdef BNX2X_STOP_ON_ERROR
3122 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3123 #endif
3124
3125 return flags;
3126 }
3127
bnx2x_get_q_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)3128 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3129 struct bnx2x_fastpath *fp,
3130 bool leading)
3131 {
3132 unsigned long flags = 0;
3133
3134 /* calculate other queue flags */
3135 if (IS_MF_SD(bp))
3136 __set_bit(BNX2X_Q_FLG_OV, &flags);
3137
3138 if (IS_FCOE_FP(fp)) {
3139 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3140 /* For FCoE - force usage of default priority (for afex) */
3141 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3142 }
3143
3144 if (fp->mode != TPA_MODE_DISABLED) {
3145 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3146 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3147 if (fp->mode == TPA_MODE_GRO)
3148 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3149 }
3150
3151 if (leading) {
3152 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3153 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3154 }
3155
3156 /* Always set HW VLAN stripping */
3157 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3158
3159 /* configure silent vlan removal */
3160 if (IS_MF_AFEX(bp))
3161 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3162
3163 return flags | bnx2x_get_common_flags(bp, fp, true);
3164 }
3165
bnx2x_pf_q_prep_general(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_general_setup_params * gen_init,u8 cos)3166 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3167 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3168 u8 cos)
3169 {
3170 gen_init->stat_id = bnx2x_stats_id(fp);
3171 gen_init->spcl_id = fp->cl_id;
3172
3173 /* Always use mini-jumbo MTU for FCoE L2 ring */
3174 if (IS_FCOE_FP(fp))
3175 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3176 else
3177 gen_init->mtu = bp->dev->mtu;
3178
3179 gen_init->cos = cos;
3180
3181 gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3182 }
3183
bnx2x_pf_rx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct rxq_pause_params * pause,struct bnx2x_rxq_setup_params * rxq_init)3184 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3185 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3186 struct bnx2x_rxq_setup_params *rxq_init)
3187 {
3188 u8 max_sge = 0;
3189 u16 sge_sz = 0;
3190 u16 tpa_agg_size = 0;
3191
3192 if (fp->mode != TPA_MODE_DISABLED) {
3193 pause->sge_th_lo = SGE_TH_LO(bp);
3194 pause->sge_th_hi = SGE_TH_HI(bp);
3195
3196 /* validate SGE ring has enough to cross high threshold */
3197 WARN_ON(bp->dropless_fc &&
3198 pause->sge_th_hi + FW_PREFETCH_CNT >
3199 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3200
3201 tpa_agg_size = TPA_AGG_SIZE;
3202 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3203 SGE_PAGE_SHIFT;
3204 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3205 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3206 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3207 }
3208
3209 /* pause - not for e1 */
3210 if (!CHIP_IS_E1(bp)) {
3211 pause->bd_th_lo = BD_TH_LO(bp);
3212 pause->bd_th_hi = BD_TH_HI(bp);
3213
3214 pause->rcq_th_lo = RCQ_TH_LO(bp);
3215 pause->rcq_th_hi = RCQ_TH_HI(bp);
3216 /*
3217 * validate that rings have enough entries to cross
3218 * high thresholds
3219 */
3220 WARN_ON(bp->dropless_fc &&
3221 pause->bd_th_hi + FW_PREFETCH_CNT >
3222 bp->rx_ring_size);
3223 WARN_ON(bp->dropless_fc &&
3224 pause->rcq_th_hi + FW_PREFETCH_CNT >
3225 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3226
3227 pause->pri_map = 1;
3228 }
3229
3230 /* rxq setup */
3231 rxq_init->dscr_map = fp->rx_desc_mapping;
3232 rxq_init->sge_map = fp->rx_sge_mapping;
3233 rxq_init->rcq_map = fp->rx_comp_mapping;
3234 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3235
3236 /* This should be a maximum number of data bytes that may be
3237 * placed on the BD (not including paddings).
3238 */
3239 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3240 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3241
3242 rxq_init->cl_qzone_id = fp->cl_qzone_id;
3243 rxq_init->tpa_agg_sz = tpa_agg_size;
3244 rxq_init->sge_buf_sz = sge_sz;
3245 rxq_init->max_sges_pkt = max_sge;
3246 rxq_init->rss_engine_id = BP_FUNC(bp);
3247 rxq_init->mcast_engine_id = BP_FUNC(bp);
3248
3249 /* Maximum number or simultaneous TPA aggregation for this Queue.
3250 *
3251 * For PF Clients it should be the maximum available number.
3252 * VF driver(s) may want to define it to a smaller value.
3253 */
3254 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3255
3256 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3257 rxq_init->fw_sb_id = fp->fw_sb_id;
3258
3259 if (IS_FCOE_FP(fp))
3260 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3261 else
3262 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3263 /* configure silent vlan removal
3264 * if multi function mode is afex, then mask default vlan
3265 */
3266 if (IS_MF_AFEX(bp)) {
3267 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3268 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3269 }
3270 }
3271
bnx2x_pf_tx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_txq_setup_params * txq_init,u8 cos)3272 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3273 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3274 u8 cos)
3275 {
3276 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3277 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3278 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3279 txq_init->fw_sb_id = fp->fw_sb_id;
3280
3281 /*
3282 * set the tss leading client id for TX classification ==
3283 * leading RSS client id
3284 */
3285 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3286
3287 if (IS_FCOE_FP(fp)) {
3288 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3289 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3290 }
3291 }
3292
bnx2x_pf_init(struct bnx2x * bp)3293 static void bnx2x_pf_init(struct bnx2x *bp)
3294 {
3295 struct bnx2x_func_init_params func_init = {0};
3296 struct event_ring_data eq_data = { {0} };
3297
3298 if (!CHIP_IS_E1x(bp)) {
3299 /* reset IGU PF statistics: MSIX + ATTN */
3300 /* PF */
3301 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3302 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3303 (CHIP_MODE_IS_4_PORT(bp) ?
3304 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3305 /* ATTN */
3306 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3307 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3308 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3309 (CHIP_MODE_IS_4_PORT(bp) ?
3310 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3311 }
3312
3313 func_init.spq_active = true;
3314 func_init.pf_id = BP_FUNC(bp);
3315 func_init.func_id = BP_FUNC(bp);
3316 func_init.spq_map = bp->spq_mapping;
3317 func_init.spq_prod = bp->spq_prod_idx;
3318
3319 bnx2x_func_init(bp, &func_init);
3320
3321 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3322
3323 /*
3324 * Congestion management values depend on the link rate
3325 * There is no active link so initial link rate is set to 10 Gbps.
3326 * When the link comes up The congestion management values are
3327 * re-calculated according to the actual link rate.
3328 */
3329 bp->link_vars.line_speed = SPEED_10000;
3330 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3331
3332 /* Only the PMF sets the HW */
3333 if (bp->port.pmf)
3334 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3335
3336 /* init Event Queue - PCI bus guarantees correct endianity*/
3337 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3338 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3339 eq_data.producer = bp->eq_prod;
3340 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3341 eq_data.sb_id = DEF_SB_ID;
3342 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3343 }
3344
bnx2x_e1h_disable(struct bnx2x * bp)3345 static void bnx2x_e1h_disable(struct bnx2x *bp)
3346 {
3347 int port = BP_PORT(bp);
3348
3349 bnx2x_tx_disable(bp);
3350
3351 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3352 }
3353
bnx2x_e1h_enable(struct bnx2x * bp)3354 static void bnx2x_e1h_enable(struct bnx2x *bp)
3355 {
3356 int port = BP_PORT(bp);
3357
3358 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3359 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3360
3361 /* Tx queue should be only re-enabled */
3362 netif_tx_wake_all_queues(bp->dev);
3363
3364 /*
3365 * Should not call netif_carrier_on since it will be called if the link
3366 * is up when checking for link state
3367 */
3368 }
3369
3370 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3371
bnx2x_drv_info_ether_stat(struct bnx2x * bp)3372 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3373 {
3374 struct eth_stats_info *ether_stat =
3375 &bp->slowpath->drv_info_to_mcp.ether_stat;
3376 struct bnx2x_vlan_mac_obj *mac_obj =
3377 &bp->sp_objs->mac_obj;
3378 int i;
3379
3380 strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3381 ETH_STAT_INFO_VERSION_LEN);
3382
3383 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3384 * mac_local field in ether_stat struct. The base address is offset by 2
3385 * bytes to account for the field being 8 bytes but a mac address is
3386 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3387 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3388 * allocated by the ether_stat struct, so the macs will land in their
3389 * proper positions.
3390 */
3391 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3392 memset(ether_stat->mac_local + i, 0,
3393 sizeof(ether_stat->mac_local[0]));
3394 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3395 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3396 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3397 ETH_ALEN);
3398 ether_stat->mtu_size = bp->dev->mtu;
3399 if (bp->dev->features & NETIF_F_RXCSUM)
3400 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3401 if (bp->dev->features & NETIF_F_TSO)
3402 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3403 ether_stat->feature_flags |= bp->common.boot_mode;
3404
3405 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3406
3407 ether_stat->txq_size = bp->tx_ring_size;
3408 ether_stat->rxq_size = bp->rx_ring_size;
3409
3410 #ifdef CONFIG_BNX2X_SRIOV
3411 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3412 #endif
3413 }
3414
bnx2x_drv_info_fcoe_stat(struct bnx2x * bp)3415 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3416 {
3417 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3418 struct fcoe_stats_info *fcoe_stat =
3419 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3420
3421 if (!CNIC_LOADED(bp))
3422 return;
3423
3424 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3425
3426 fcoe_stat->qos_priority =
3427 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3428
3429 /* insert FCoE stats from ramrod response */
3430 if (!NO_FCOE(bp)) {
3431 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3432 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3433 tstorm_queue_statistics;
3434
3435 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3436 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3437 xstorm_queue_statistics;
3438
3439 struct fcoe_statistics_params *fw_fcoe_stat =
3440 &bp->fw_stats_data->fcoe;
3441
3442 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3443 fcoe_stat->rx_bytes_lo,
3444 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3445
3446 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3447 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3448 fcoe_stat->rx_bytes_lo,
3449 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3450
3451 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3452 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3453 fcoe_stat->rx_bytes_lo,
3454 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3455
3456 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3457 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3458 fcoe_stat->rx_bytes_lo,
3459 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3460
3461 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462 fcoe_stat->rx_frames_lo,
3463 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3464
3465 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466 fcoe_stat->rx_frames_lo,
3467 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3468
3469 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470 fcoe_stat->rx_frames_lo,
3471 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3472
3473 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3474 fcoe_stat->rx_frames_lo,
3475 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3476
3477 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3478 fcoe_stat->tx_bytes_lo,
3479 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3480
3481 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3482 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3483 fcoe_stat->tx_bytes_lo,
3484 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3485
3486 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3487 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3488 fcoe_stat->tx_bytes_lo,
3489 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3490
3491 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3492 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3493 fcoe_stat->tx_bytes_lo,
3494 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3495
3496 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497 fcoe_stat->tx_frames_lo,
3498 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3499
3500 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501 fcoe_stat->tx_frames_lo,
3502 fcoe_q_xstorm_stats->ucast_pkts_sent);
3503
3504 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505 fcoe_stat->tx_frames_lo,
3506 fcoe_q_xstorm_stats->bcast_pkts_sent);
3507
3508 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3509 fcoe_stat->tx_frames_lo,
3510 fcoe_q_xstorm_stats->mcast_pkts_sent);
3511 }
3512
3513 /* ask L5 driver to add data to the struct */
3514 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3515 }
3516
bnx2x_drv_info_iscsi_stat(struct bnx2x * bp)3517 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3518 {
3519 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3520 struct iscsi_stats_info *iscsi_stat =
3521 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3522
3523 if (!CNIC_LOADED(bp))
3524 return;
3525
3526 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3527 ETH_ALEN);
3528
3529 iscsi_stat->qos_priority =
3530 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3531
3532 /* ask L5 driver to add data to the struct */
3533 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3534 }
3535
3536 /* called due to MCP event (on pmf):
3537 * reread new bandwidth configuration
3538 * configure FW
3539 * notify others function about the change
3540 */
bnx2x_config_mf_bw(struct bnx2x * bp)3541 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3542 {
3543 /* Workaround for MFW bug.
3544 * MFW is not supposed to generate BW attention in
3545 * single function mode.
3546 */
3547 if (!IS_MF(bp)) {
3548 DP(BNX2X_MSG_MCP,
3549 "Ignoring MF BW config in single function mode\n");
3550 return;
3551 }
3552
3553 if (bp->link_vars.link_up) {
3554 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3555 bnx2x_link_sync_notify(bp);
3556 }
3557 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3558 }
3559
bnx2x_set_mf_bw(struct bnx2x * bp)3560 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3561 {
3562 bnx2x_config_mf_bw(bp);
3563 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3564 }
3565
bnx2x_handle_eee_event(struct bnx2x * bp)3566 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3567 {
3568 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3569 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3570 }
3571
3572 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20)
3573 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25)
3574
bnx2x_handle_drv_info_req(struct bnx2x * bp)3575 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3576 {
3577 enum drv_info_opcode op_code;
3578 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3579 bool release = false;
3580 int wait;
3581
3582 /* if drv_info version supported by MFW doesn't match - send NACK */
3583 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3584 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3585 return;
3586 }
3587
3588 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3589 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3590
3591 /* Must prevent other flows from accessing drv_info_to_mcp */
3592 mutex_lock(&bp->drv_info_mutex);
3593
3594 memset(&bp->slowpath->drv_info_to_mcp, 0,
3595 sizeof(union drv_info_to_mcp));
3596
3597 switch (op_code) {
3598 case ETH_STATS_OPCODE:
3599 bnx2x_drv_info_ether_stat(bp);
3600 break;
3601 case FCOE_STATS_OPCODE:
3602 bnx2x_drv_info_fcoe_stat(bp);
3603 break;
3604 case ISCSI_STATS_OPCODE:
3605 bnx2x_drv_info_iscsi_stat(bp);
3606 break;
3607 default:
3608 /* if op code isn't supported - send NACK */
3609 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3610 goto out;
3611 }
3612
3613 /* if we got drv_info attn from MFW then these fields are defined in
3614 * shmem2 for sure
3615 */
3616 SHMEM2_WR(bp, drv_info_host_addr_lo,
3617 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3618 SHMEM2_WR(bp, drv_info_host_addr_hi,
3619 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3620
3621 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3622
3623 /* Since possible management wants both this and get_driver_version
3624 * need to wait until management notifies us it finished utilizing
3625 * the buffer.
3626 */
3627 if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3628 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3629 } else if (!bp->drv_info_mng_owner) {
3630 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3631
3632 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3633 u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3634
3635 /* Management is done; need to clear indication */
3636 if (indication & bit) {
3637 SHMEM2_WR(bp, mfw_drv_indication,
3638 indication & ~bit);
3639 release = true;
3640 break;
3641 }
3642
3643 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3644 }
3645 }
3646 if (!release) {
3647 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3648 bp->drv_info_mng_owner = true;
3649 }
3650
3651 out:
3652 mutex_unlock(&bp->drv_info_mutex);
3653 }
3654
bnx2x_update_mng_version_utility(u8 * version,bool bnx2x_format)3655 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3656 {
3657 u8 vals[4];
3658 int i = 0;
3659
3660 if (bnx2x_format) {
3661 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3662 &vals[0], &vals[1], &vals[2], &vals[3]);
3663 if (i > 0)
3664 vals[0] -= '0';
3665 } else {
3666 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3667 &vals[0], &vals[1], &vals[2], &vals[3]);
3668 }
3669
3670 while (i < 4)
3671 vals[i++] = 0;
3672
3673 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3674 }
3675
bnx2x_update_mng_version(struct bnx2x * bp)3676 void bnx2x_update_mng_version(struct bnx2x *bp)
3677 {
3678 u32 iscsiver = DRV_VER_NOT_LOADED;
3679 u32 fcoever = DRV_VER_NOT_LOADED;
3680 u32 ethver = DRV_VER_NOT_LOADED;
3681 int idx = BP_FW_MB_IDX(bp);
3682 u8 *version;
3683
3684 if (!SHMEM2_HAS(bp, func_os_drv_ver))
3685 return;
3686
3687 mutex_lock(&bp->drv_info_mutex);
3688 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3689 if (bp->drv_info_mng_owner)
3690 goto out;
3691
3692 if (bp->state != BNX2X_STATE_OPEN)
3693 goto out;
3694
3695 /* Parse ethernet driver version */
3696 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3697 if (!CNIC_LOADED(bp))
3698 goto out;
3699
3700 /* Try getting storage driver version via cnic */
3701 memset(&bp->slowpath->drv_info_to_mcp, 0,
3702 sizeof(union drv_info_to_mcp));
3703 bnx2x_drv_info_iscsi_stat(bp);
3704 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3705 iscsiver = bnx2x_update_mng_version_utility(version, false);
3706
3707 memset(&bp->slowpath->drv_info_to_mcp, 0,
3708 sizeof(union drv_info_to_mcp));
3709 bnx2x_drv_info_fcoe_stat(bp);
3710 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3711 fcoever = bnx2x_update_mng_version_utility(version, false);
3712
3713 out:
3714 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3715 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3716 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3717
3718 mutex_unlock(&bp->drv_info_mutex);
3719
3720 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3721 ethver, iscsiver, fcoever);
3722 }
3723
bnx2x_update_mfw_dump(struct bnx2x * bp)3724 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3725 {
3726 u32 drv_ver;
3727 u32 valid_dump;
3728
3729 if (!SHMEM2_HAS(bp, drv_info))
3730 return;
3731
3732 /* Update Driver load time, possibly broken in y2038 */
3733 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3734
3735 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3736 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3737
3738 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3739
3740 /* Check & notify On-Chip dump. */
3741 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3742
3743 if (valid_dump & FIRST_DUMP_VALID)
3744 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3745
3746 if (valid_dump & SECOND_DUMP_VALID)
3747 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3748 }
3749
bnx2x_oem_event(struct bnx2x * bp,u32 event)3750 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3751 {
3752 u32 cmd_ok, cmd_fail;
3753
3754 /* sanity */
3755 if (event & DRV_STATUS_DCC_EVENT_MASK &&
3756 event & DRV_STATUS_OEM_EVENT_MASK) {
3757 BNX2X_ERR("Received simultaneous events %08x\n", event);
3758 return;
3759 }
3760
3761 if (event & DRV_STATUS_DCC_EVENT_MASK) {
3762 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3763 cmd_ok = DRV_MSG_CODE_DCC_OK;
3764 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3765 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3766 cmd_ok = DRV_MSG_CODE_OEM_OK;
3767 }
3768
3769 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3770
3771 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3772 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3773 /* This is the only place besides the function initialization
3774 * where the bp->flags can change so it is done without any
3775 * locks
3776 */
3777 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3778 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3779 bp->flags |= MF_FUNC_DIS;
3780
3781 bnx2x_e1h_disable(bp);
3782 } else {
3783 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3784 bp->flags &= ~MF_FUNC_DIS;
3785
3786 bnx2x_e1h_enable(bp);
3787 }
3788 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3789 DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3790 }
3791
3792 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3793 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3794 bnx2x_config_mf_bw(bp);
3795 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3796 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3797 }
3798
3799 /* Report results to MCP */
3800 if (event)
3801 bnx2x_fw_command(bp, cmd_fail, 0);
3802 else
3803 bnx2x_fw_command(bp, cmd_ok, 0);
3804 }
3805
3806 /* must be called under the spq lock */
bnx2x_sp_get_next(struct bnx2x * bp)3807 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3808 {
3809 struct eth_spe *next_spe = bp->spq_prod_bd;
3810
3811 if (bp->spq_prod_bd == bp->spq_last_bd) {
3812 bp->spq_prod_bd = bp->spq;
3813 bp->spq_prod_idx = 0;
3814 DP(BNX2X_MSG_SP, "end of spq\n");
3815 } else {
3816 bp->spq_prod_bd++;
3817 bp->spq_prod_idx++;
3818 }
3819 return next_spe;
3820 }
3821
3822 /* must be called under the spq lock */
bnx2x_sp_prod_update(struct bnx2x * bp)3823 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3824 {
3825 int func = BP_FUNC(bp);
3826
3827 /*
3828 * Make sure that BD data is updated before writing the producer:
3829 * BD data is written to the memory, the producer is read from the
3830 * memory, thus we need a full memory barrier to ensure the ordering.
3831 */
3832 mb();
3833
3834 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3835 bp->spq_prod_idx);
3836 mmiowb();
3837 }
3838
3839 /**
3840 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3841 *
3842 * @cmd: command to check
3843 * @cmd_type: command type
3844 */
bnx2x_is_contextless_ramrod(int cmd,int cmd_type)3845 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3846 {
3847 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3848 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3849 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3850 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3851 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3852 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3853 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3854 return true;
3855 else
3856 return false;
3857 }
3858
3859 /**
3860 * bnx2x_sp_post - place a single command on an SP ring
3861 *
3862 * @bp: driver handle
3863 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3864 * @cid: SW CID the command is related to
3865 * @data_hi: command private data address (high 32 bits)
3866 * @data_lo: command private data address (low 32 bits)
3867 * @cmd_type: command type (e.g. NONE, ETH)
3868 *
3869 * SP data is handled as if it's always an address pair, thus data fields are
3870 * not swapped to little endian in upper functions. Instead this function swaps
3871 * data as if it's two u32 fields.
3872 */
bnx2x_sp_post(struct bnx2x * bp,int command,int cid,u32 data_hi,u32 data_lo,int cmd_type)3873 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3874 u32 data_hi, u32 data_lo, int cmd_type)
3875 {
3876 struct eth_spe *spe;
3877 u16 type;
3878 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3879
3880 #ifdef BNX2X_STOP_ON_ERROR
3881 if (unlikely(bp->panic)) {
3882 BNX2X_ERR("Can't post SP when there is panic\n");
3883 return -EIO;
3884 }
3885 #endif
3886
3887 spin_lock_bh(&bp->spq_lock);
3888
3889 if (common) {
3890 if (!atomic_read(&bp->eq_spq_left)) {
3891 BNX2X_ERR("BUG! EQ ring full!\n");
3892 spin_unlock_bh(&bp->spq_lock);
3893 bnx2x_panic();
3894 return -EBUSY;
3895 }
3896 } else if (!atomic_read(&bp->cq_spq_left)) {
3897 BNX2X_ERR("BUG! SPQ ring full!\n");
3898 spin_unlock_bh(&bp->spq_lock);
3899 bnx2x_panic();
3900 return -EBUSY;
3901 }
3902
3903 spe = bnx2x_sp_get_next(bp);
3904
3905 /* CID needs port number to be encoded int it */
3906 spe->hdr.conn_and_cmd_data =
3907 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3908 HW_CID(bp, cid));
3909
3910 /* In some cases, type may already contain the func-id
3911 * mainly in SRIOV related use cases, so we add it here only
3912 * if it's not already set.
3913 */
3914 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3915 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3916 SPE_HDR_CONN_TYPE;
3917 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3918 SPE_HDR_FUNCTION_ID);
3919 } else {
3920 type = cmd_type;
3921 }
3922
3923 spe->hdr.type = cpu_to_le16(type);
3924
3925 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3926 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3927
3928 /*
3929 * It's ok if the actual decrement is issued towards the memory
3930 * somewhere between the spin_lock and spin_unlock. Thus no
3931 * more explicit memory barrier is needed.
3932 */
3933 if (common)
3934 atomic_dec(&bp->eq_spq_left);
3935 else
3936 atomic_dec(&bp->cq_spq_left);
3937
3938 DP(BNX2X_MSG_SP,
3939 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3940 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3941 (u32)(U64_LO(bp->spq_mapping) +
3942 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3943 HW_CID(bp, cid), data_hi, data_lo, type,
3944 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3945
3946 bnx2x_sp_prod_update(bp);
3947 spin_unlock_bh(&bp->spq_lock);
3948 return 0;
3949 }
3950
3951 /* acquire split MCP access lock register */
bnx2x_acquire_alr(struct bnx2x * bp)3952 static int bnx2x_acquire_alr(struct bnx2x *bp)
3953 {
3954 u32 j, val;
3955 int rc = 0;
3956
3957 might_sleep();
3958 for (j = 0; j < 1000; j++) {
3959 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3960 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3961 if (val & MCPR_ACCESS_LOCK_LOCK)
3962 break;
3963
3964 usleep_range(5000, 10000);
3965 }
3966 if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3967 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3968 rc = -EBUSY;
3969 }
3970
3971 return rc;
3972 }
3973
3974 /* release split MCP access lock register */
bnx2x_release_alr(struct bnx2x * bp)3975 static void bnx2x_release_alr(struct bnx2x *bp)
3976 {
3977 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3978 }
3979
3980 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3981 #define BNX2X_DEF_SB_IDX 0x0002
3982
bnx2x_update_dsb_idx(struct bnx2x * bp)3983 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3984 {
3985 struct host_sp_status_block *def_sb = bp->def_status_blk;
3986 u16 rc = 0;
3987
3988 barrier(); /* status block is written to by the chip */
3989 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3990 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3991 rc |= BNX2X_DEF_SB_ATT_IDX;
3992 }
3993
3994 if (bp->def_idx != def_sb->sp_sb.running_index) {
3995 bp->def_idx = def_sb->sp_sb.running_index;
3996 rc |= BNX2X_DEF_SB_IDX;
3997 }
3998
3999 /* Do not reorder: indices reading should complete before handling */
4000 barrier();
4001 return rc;
4002 }
4003
4004 /*
4005 * slow path service functions
4006 */
4007
bnx2x_attn_int_asserted(struct bnx2x * bp,u32 asserted)4008 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4009 {
4010 int port = BP_PORT(bp);
4011 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4012 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4013 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4014 NIG_REG_MASK_INTERRUPT_PORT0;
4015 u32 aeu_mask;
4016 u32 nig_mask = 0;
4017 u32 reg_addr;
4018
4019 if (bp->attn_state & asserted)
4020 BNX2X_ERR("IGU ERROR\n");
4021
4022 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4023 aeu_mask = REG_RD(bp, aeu_addr);
4024
4025 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
4026 aeu_mask, asserted);
4027 aeu_mask &= ~(asserted & 0x3ff);
4028 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4029
4030 REG_WR(bp, aeu_addr, aeu_mask);
4031 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4032
4033 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4034 bp->attn_state |= asserted;
4035 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4036
4037 if (asserted & ATTN_HARD_WIRED_MASK) {
4038 if (asserted & ATTN_NIG_FOR_FUNC) {
4039
4040 bnx2x_acquire_phy_lock(bp);
4041
4042 /* save nig interrupt mask */
4043 nig_mask = REG_RD(bp, nig_int_mask_addr);
4044
4045 /* If nig_mask is not set, no need to call the update
4046 * function.
4047 */
4048 if (nig_mask) {
4049 REG_WR(bp, nig_int_mask_addr, 0);
4050
4051 bnx2x_link_attn(bp);
4052 }
4053
4054 /* handle unicore attn? */
4055 }
4056 if (asserted & ATTN_SW_TIMER_4_FUNC)
4057 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4058
4059 if (asserted & GPIO_2_FUNC)
4060 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4061
4062 if (asserted & GPIO_3_FUNC)
4063 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4064
4065 if (asserted & GPIO_4_FUNC)
4066 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4067
4068 if (port == 0) {
4069 if (asserted & ATTN_GENERAL_ATTN_1) {
4070 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4071 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4072 }
4073 if (asserted & ATTN_GENERAL_ATTN_2) {
4074 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4075 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4076 }
4077 if (asserted & ATTN_GENERAL_ATTN_3) {
4078 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4079 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4080 }
4081 } else {
4082 if (asserted & ATTN_GENERAL_ATTN_4) {
4083 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4084 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4085 }
4086 if (asserted & ATTN_GENERAL_ATTN_5) {
4087 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4088 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4089 }
4090 if (asserted & ATTN_GENERAL_ATTN_6) {
4091 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4092 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4093 }
4094 }
4095
4096 } /* if hardwired */
4097
4098 if (bp->common.int_block == INT_BLOCK_HC)
4099 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4100 COMMAND_REG_ATTN_BITS_SET);
4101 else
4102 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4103
4104 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4105 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4106 REG_WR(bp, reg_addr, asserted);
4107
4108 /* now set back the mask */
4109 if (asserted & ATTN_NIG_FOR_FUNC) {
4110 /* Verify that IGU ack through BAR was written before restoring
4111 * NIG mask. This loop should exit after 2-3 iterations max.
4112 */
4113 if (bp->common.int_block != INT_BLOCK_HC) {
4114 u32 cnt = 0, igu_acked;
4115 do {
4116 igu_acked = REG_RD(bp,
4117 IGU_REG_ATTENTION_ACK_BITS);
4118 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4119 (++cnt < MAX_IGU_ATTN_ACK_TO));
4120 if (!igu_acked)
4121 DP(NETIF_MSG_HW,
4122 "Failed to verify IGU ack on time\n");
4123 barrier();
4124 }
4125 REG_WR(bp, nig_int_mask_addr, nig_mask);
4126 bnx2x_release_phy_lock(bp);
4127 }
4128 }
4129
bnx2x_fan_failure(struct bnx2x * bp)4130 static void bnx2x_fan_failure(struct bnx2x *bp)
4131 {
4132 int port = BP_PORT(bp);
4133 u32 ext_phy_config;
4134 /* mark the failure */
4135 ext_phy_config =
4136 SHMEM_RD(bp,
4137 dev_info.port_hw_config[port].external_phy_config);
4138
4139 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4140 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4141 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4142 ext_phy_config);
4143
4144 /* log the failure */
4145 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4146 "Please contact OEM Support for assistance\n");
4147
4148 /* Schedule device reset (unload)
4149 * This is due to some boards consuming sufficient power when driver is
4150 * up to overheat if fan fails.
4151 */
4152 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4153 }
4154
bnx2x_attn_int_deasserted0(struct bnx2x * bp,u32 attn)4155 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4156 {
4157 int port = BP_PORT(bp);
4158 int reg_offset;
4159 u32 val;
4160
4161 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4162 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4163
4164 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4165
4166 val = REG_RD(bp, reg_offset);
4167 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4168 REG_WR(bp, reg_offset, val);
4169
4170 BNX2X_ERR("SPIO5 hw attention\n");
4171
4172 /* Fan failure attention */
4173 bnx2x_hw_reset_phy(&bp->link_params);
4174 bnx2x_fan_failure(bp);
4175 }
4176
4177 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4178 bnx2x_acquire_phy_lock(bp);
4179 bnx2x_handle_module_detect_int(&bp->link_params);
4180 bnx2x_release_phy_lock(bp);
4181 }
4182
4183 if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4184
4185 val = REG_RD(bp, reg_offset);
4186 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4187 REG_WR(bp, reg_offset, val);
4188
4189 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4190 (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4191 bnx2x_panic();
4192 }
4193 }
4194
bnx2x_attn_int_deasserted1(struct bnx2x * bp,u32 attn)4195 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4196 {
4197 u32 val;
4198
4199 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4200
4201 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4202 BNX2X_ERR("DB hw attention 0x%x\n", val);
4203 /* DORQ discard attention */
4204 if (val & 0x2)
4205 BNX2X_ERR("FATAL error from DORQ\n");
4206 }
4207
4208 if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4209
4210 int port = BP_PORT(bp);
4211 int reg_offset;
4212
4213 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4214 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4215
4216 val = REG_RD(bp, reg_offset);
4217 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4218 REG_WR(bp, reg_offset, val);
4219
4220 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4221 (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4222 bnx2x_panic();
4223 }
4224 }
4225
bnx2x_attn_int_deasserted2(struct bnx2x * bp,u32 attn)4226 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4227 {
4228 u32 val;
4229
4230 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4231
4232 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4233 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4234 /* CFC error attention */
4235 if (val & 0x2)
4236 BNX2X_ERR("FATAL error from CFC\n");
4237 }
4238
4239 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4240 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4241 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4242 /* RQ_USDMDP_FIFO_OVERFLOW */
4243 if (val & 0x18000)
4244 BNX2X_ERR("FATAL error from PXP\n");
4245
4246 if (!CHIP_IS_E1x(bp)) {
4247 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4248 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4249 }
4250 }
4251
4252 if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4253
4254 int port = BP_PORT(bp);
4255 int reg_offset;
4256
4257 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4258 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4259
4260 val = REG_RD(bp, reg_offset);
4261 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4262 REG_WR(bp, reg_offset, val);
4263
4264 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4265 (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4266 bnx2x_panic();
4267 }
4268 }
4269
bnx2x_attn_int_deasserted3(struct bnx2x * bp,u32 attn)4270 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4271 {
4272 u32 val;
4273
4274 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4275
4276 if (attn & BNX2X_PMF_LINK_ASSERT) {
4277 int func = BP_FUNC(bp);
4278
4279 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4280 bnx2x_read_mf_cfg(bp);
4281 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4282 func_mf_config[BP_ABS_FUNC(bp)].config);
4283 val = SHMEM_RD(bp,
4284 func_mb[BP_FW_MB_IDX(bp)].drv_status);
4285
4286 if (val & (DRV_STATUS_DCC_EVENT_MASK |
4287 DRV_STATUS_OEM_EVENT_MASK))
4288 bnx2x_oem_event(bp,
4289 (val & (DRV_STATUS_DCC_EVENT_MASK |
4290 DRV_STATUS_OEM_EVENT_MASK)));
4291
4292 if (val & DRV_STATUS_SET_MF_BW)
4293 bnx2x_set_mf_bw(bp);
4294
4295 if (val & DRV_STATUS_DRV_INFO_REQ)
4296 bnx2x_handle_drv_info_req(bp);
4297
4298 if (val & DRV_STATUS_VF_DISABLED)
4299 bnx2x_schedule_iov_task(bp,
4300 BNX2X_IOV_HANDLE_FLR);
4301
4302 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4303 bnx2x_pmf_update(bp);
4304
4305 if (bp->port.pmf &&
4306 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4307 bp->dcbx_enabled > 0)
4308 /* start dcbx state machine */
4309 bnx2x_dcbx_set_params(bp,
4310 BNX2X_DCBX_STATE_NEG_RECEIVED);
4311 if (val & DRV_STATUS_AFEX_EVENT_MASK)
4312 bnx2x_handle_afex_cmd(bp,
4313 val & DRV_STATUS_AFEX_EVENT_MASK);
4314 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4315 bnx2x_handle_eee_event(bp);
4316
4317 if (val & DRV_STATUS_OEM_UPDATE_SVID)
4318 bnx2x_schedule_sp_rtnl(bp,
4319 BNX2X_SP_RTNL_UPDATE_SVID, 0);
4320
4321 if (bp->link_vars.periodic_flags &
4322 PERIODIC_FLAGS_LINK_EVENT) {
4323 /* sync with link */
4324 bnx2x_acquire_phy_lock(bp);
4325 bp->link_vars.periodic_flags &=
4326 ~PERIODIC_FLAGS_LINK_EVENT;
4327 bnx2x_release_phy_lock(bp);
4328 if (IS_MF(bp))
4329 bnx2x_link_sync_notify(bp);
4330 bnx2x_link_report(bp);
4331 }
4332 /* Always call it here: bnx2x_link_report() will
4333 * prevent the link indication duplication.
4334 */
4335 bnx2x__link_status_update(bp);
4336 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4337
4338 BNX2X_ERR("MC assert!\n");
4339 bnx2x_mc_assert(bp);
4340 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4341 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4342 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4343 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4344 bnx2x_panic();
4345
4346 } else if (attn & BNX2X_MCP_ASSERT) {
4347
4348 BNX2X_ERR("MCP assert!\n");
4349 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4350 bnx2x_fw_dump(bp);
4351
4352 } else
4353 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4354 }
4355
4356 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4357 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4358 if (attn & BNX2X_GRC_TIMEOUT) {
4359 val = CHIP_IS_E1(bp) ? 0 :
4360 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4361 BNX2X_ERR("GRC time-out 0x%08x\n", val);
4362 }
4363 if (attn & BNX2X_GRC_RSV) {
4364 val = CHIP_IS_E1(bp) ? 0 :
4365 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4366 BNX2X_ERR("GRC reserved 0x%08x\n", val);
4367 }
4368 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4369 }
4370 }
4371
4372 /*
4373 * Bits map:
4374 * 0-7 - Engine0 load counter.
4375 * 8-15 - Engine1 load counter.
4376 * 16 - Engine0 RESET_IN_PROGRESS bit.
4377 * 17 - Engine1 RESET_IN_PROGRESS bit.
4378 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4379 * on the engine
4380 * 19 - Engine1 ONE_IS_LOADED.
4381 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4382 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4383 * just the one belonging to its engine).
4384 *
4385 */
4386 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4387
4388 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4389 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4390 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4391 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4392 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4393 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4394 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4395
4396 /*
4397 * Set the GLOBAL_RESET bit.
4398 *
4399 * Should be run under rtnl lock
4400 */
bnx2x_set_reset_global(struct bnx2x * bp)4401 void bnx2x_set_reset_global(struct bnx2x *bp)
4402 {
4403 u32 val;
4404 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4405 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4406 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4407 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4408 }
4409
4410 /*
4411 * Clear the GLOBAL_RESET bit.
4412 *
4413 * Should be run under rtnl lock
4414 */
bnx2x_clear_reset_global(struct bnx2x * bp)4415 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4416 {
4417 u32 val;
4418 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4419 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4420 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4421 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4422 }
4423
4424 /*
4425 * Checks the GLOBAL_RESET bit.
4426 *
4427 * should be run under rtnl lock
4428 */
bnx2x_reset_is_global(struct bnx2x * bp)4429 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4430 {
4431 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4432
4433 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4434 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4435 }
4436
4437 /*
4438 * Clear RESET_IN_PROGRESS bit for the current engine.
4439 *
4440 * Should be run under rtnl lock
4441 */
bnx2x_set_reset_done(struct bnx2x * bp)4442 static void bnx2x_set_reset_done(struct bnx2x *bp)
4443 {
4444 u32 val;
4445 u32 bit = BP_PATH(bp) ?
4446 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4447 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4448 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4449
4450 /* Clear the bit */
4451 val &= ~bit;
4452 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4453
4454 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4455 }
4456
4457 /*
4458 * Set RESET_IN_PROGRESS for the current engine.
4459 *
4460 * should be run under rtnl lock
4461 */
bnx2x_set_reset_in_progress(struct bnx2x * bp)4462 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4463 {
4464 u32 val;
4465 u32 bit = BP_PATH(bp) ?
4466 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4467 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4468 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4469
4470 /* Set the bit */
4471 val |= bit;
4472 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4473 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4474 }
4475
4476 /*
4477 * Checks the RESET_IN_PROGRESS bit for the given engine.
4478 * should be run under rtnl lock
4479 */
bnx2x_reset_is_done(struct bnx2x * bp,int engine)4480 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4481 {
4482 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4483 u32 bit = engine ?
4484 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4485
4486 /* return false if bit is set */
4487 return (val & bit) ? false : true;
4488 }
4489
4490 /*
4491 * set pf load for the current pf.
4492 *
4493 * should be run under rtnl lock
4494 */
bnx2x_set_pf_load(struct bnx2x * bp)4495 void bnx2x_set_pf_load(struct bnx2x *bp)
4496 {
4497 u32 val1, val;
4498 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4499 BNX2X_PATH0_LOAD_CNT_MASK;
4500 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4501 BNX2X_PATH0_LOAD_CNT_SHIFT;
4502
4503 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4504 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4505
4506 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4507
4508 /* get the current counter value */
4509 val1 = (val & mask) >> shift;
4510
4511 /* set bit of that PF */
4512 val1 |= (1 << bp->pf_num);
4513
4514 /* clear the old value */
4515 val &= ~mask;
4516
4517 /* set the new one */
4518 val |= ((val1 << shift) & mask);
4519
4520 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4521 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4522 }
4523
4524 /**
4525 * bnx2x_clear_pf_load - clear pf load mark
4526 *
4527 * @bp: driver handle
4528 *
4529 * Should be run under rtnl lock.
4530 * Decrements the load counter for the current engine. Returns
4531 * whether other functions are still loaded
4532 */
bnx2x_clear_pf_load(struct bnx2x * bp)4533 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4534 {
4535 u32 val1, val;
4536 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4537 BNX2X_PATH0_LOAD_CNT_MASK;
4538 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4539 BNX2X_PATH0_LOAD_CNT_SHIFT;
4540
4541 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4542 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4543 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4544
4545 /* get the current counter value */
4546 val1 = (val & mask) >> shift;
4547
4548 /* clear bit of that PF */
4549 val1 &= ~(1 << bp->pf_num);
4550
4551 /* clear the old value */
4552 val &= ~mask;
4553
4554 /* set the new one */
4555 val |= ((val1 << shift) & mask);
4556
4557 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4558 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4559 return val1 != 0;
4560 }
4561
4562 /*
4563 * Read the load status for the current engine.
4564 *
4565 * should be run under rtnl lock
4566 */
bnx2x_get_load_status(struct bnx2x * bp,int engine)4567 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4568 {
4569 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4570 BNX2X_PATH0_LOAD_CNT_MASK);
4571 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4572 BNX2X_PATH0_LOAD_CNT_SHIFT);
4573 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4574
4575 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4576
4577 val = (val & mask) >> shift;
4578
4579 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4580 engine, val);
4581
4582 return val != 0;
4583 }
4584
_print_parity(struct bnx2x * bp,u32 reg)4585 static void _print_parity(struct bnx2x *bp, u32 reg)
4586 {
4587 pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4588 }
4589
_print_next_block(int idx,const char * blk)4590 static void _print_next_block(int idx, const char *blk)
4591 {
4592 pr_cont("%s%s", idx ? ", " : "", blk);
4593 }
4594
bnx2x_check_blocks_with_parity0(struct bnx2x * bp,u32 sig,int * par_num,bool print)4595 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4596 int *par_num, bool print)
4597 {
4598 u32 cur_bit;
4599 bool res;
4600 int i;
4601
4602 res = false;
4603
4604 for (i = 0; sig; i++) {
4605 cur_bit = (0x1UL << i);
4606 if (sig & cur_bit) {
4607 res |= true; /* Each bit is real error! */
4608
4609 if (print) {
4610 switch (cur_bit) {
4611 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4612 _print_next_block((*par_num)++, "BRB");
4613 _print_parity(bp,
4614 BRB1_REG_BRB1_PRTY_STS);
4615 break;
4616 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4617 _print_next_block((*par_num)++,
4618 "PARSER");
4619 _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4620 break;
4621 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4622 _print_next_block((*par_num)++, "TSDM");
4623 _print_parity(bp,
4624 TSDM_REG_TSDM_PRTY_STS);
4625 break;
4626 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4627 _print_next_block((*par_num)++,
4628 "SEARCHER");
4629 _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4630 break;
4631 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4632 _print_next_block((*par_num)++, "TCM");
4633 _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4634 break;
4635 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4636 _print_next_block((*par_num)++,
4637 "TSEMI");
4638 _print_parity(bp,
4639 TSEM_REG_TSEM_PRTY_STS_0);
4640 _print_parity(bp,
4641 TSEM_REG_TSEM_PRTY_STS_1);
4642 break;
4643 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4644 _print_next_block((*par_num)++, "XPB");
4645 _print_parity(bp, GRCBASE_XPB +
4646 PB_REG_PB_PRTY_STS);
4647 break;
4648 }
4649 }
4650
4651 /* Clear the bit */
4652 sig &= ~cur_bit;
4653 }
4654 }
4655
4656 return res;
4657 }
4658
bnx2x_check_blocks_with_parity1(struct bnx2x * bp,u32 sig,int * par_num,bool * global,bool print)4659 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4660 int *par_num, bool *global,
4661 bool print)
4662 {
4663 u32 cur_bit;
4664 bool res;
4665 int i;
4666
4667 res = false;
4668
4669 for (i = 0; sig; i++) {
4670 cur_bit = (0x1UL << i);
4671 if (sig & cur_bit) {
4672 res |= true; /* Each bit is real error! */
4673 switch (cur_bit) {
4674 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4675 if (print) {
4676 _print_next_block((*par_num)++, "PBF");
4677 _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4678 }
4679 break;
4680 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4681 if (print) {
4682 _print_next_block((*par_num)++, "QM");
4683 _print_parity(bp, QM_REG_QM_PRTY_STS);
4684 }
4685 break;
4686 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4687 if (print) {
4688 _print_next_block((*par_num)++, "TM");
4689 _print_parity(bp, TM_REG_TM_PRTY_STS);
4690 }
4691 break;
4692 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4693 if (print) {
4694 _print_next_block((*par_num)++, "XSDM");
4695 _print_parity(bp,
4696 XSDM_REG_XSDM_PRTY_STS);
4697 }
4698 break;
4699 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4700 if (print) {
4701 _print_next_block((*par_num)++, "XCM");
4702 _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4703 }
4704 break;
4705 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4706 if (print) {
4707 _print_next_block((*par_num)++,
4708 "XSEMI");
4709 _print_parity(bp,
4710 XSEM_REG_XSEM_PRTY_STS_0);
4711 _print_parity(bp,
4712 XSEM_REG_XSEM_PRTY_STS_1);
4713 }
4714 break;
4715 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4716 if (print) {
4717 _print_next_block((*par_num)++,
4718 "DOORBELLQ");
4719 _print_parity(bp,
4720 DORQ_REG_DORQ_PRTY_STS);
4721 }
4722 break;
4723 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4724 if (print) {
4725 _print_next_block((*par_num)++, "NIG");
4726 if (CHIP_IS_E1x(bp)) {
4727 _print_parity(bp,
4728 NIG_REG_NIG_PRTY_STS);
4729 } else {
4730 _print_parity(bp,
4731 NIG_REG_NIG_PRTY_STS_0);
4732 _print_parity(bp,
4733 NIG_REG_NIG_PRTY_STS_1);
4734 }
4735 }
4736 break;
4737 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4738 if (print)
4739 _print_next_block((*par_num)++,
4740 "VAUX PCI CORE");
4741 *global = true;
4742 break;
4743 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4744 if (print) {
4745 _print_next_block((*par_num)++,
4746 "DEBUG");
4747 _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4748 }
4749 break;
4750 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4751 if (print) {
4752 _print_next_block((*par_num)++, "USDM");
4753 _print_parity(bp,
4754 USDM_REG_USDM_PRTY_STS);
4755 }
4756 break;
4757 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4758 if (print) {
4759 _print_next_block((*par_num)++, "UCM");
4760 _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4761 }
4762 break;
4763 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4764 if (print) {
4765 _print_next_block((*par_num)++,
4766 "USEMI");
4767 _print_parity(bp,
4768 USEM_REG_USEM_PRTY_STS_0);
4769 _print_parity(bp,
4770 USEM_REG_USEM_PRTY_STS_1);
4771 }
4772 break;
4773 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4774 if (print) {
4775 _print_next_block((*par_num)++, "UPB");
4776 _print_parity(bp, GRCBASE_UPB +
4777 PB_REG_PB_PRTY_STS);
4778 }
4779 break;
4780 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4781 if (print) {
4782 _print_next_block((*par_num)++, "CSDM");
4783 _print_parity(bp,
4784 CSDM_REG_CSDM_PRTY_STS);
4785 }
4786 break;
4787 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4788 if (print) {
4789 _print_next_block((*par_num)++, "CCM");
4790 _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4791 }
4792 break;
4793 }
4794
4795 /* Clear the bit */
4796 sig &= ~cur_bit;
4797 }
4798 }
4799
4800 return res;
4801 }
4802
bnx2x_check_blocks_with_parity2(struct bnx2x * bp,u32 sig,int * par_num,bool print)4803 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4804 int *par_num, bool print)
4805 {
4806 u32 cur_bit;
4807 bool res;
4808 int i;
4809
4810 res = false;
4811
4812 for (i = 0; sig; i++) {
4813 cur_bit = (0x1UL << i);
4814 if (sig & cur_bit) {
4815 res = true; /* Each bit is real error! */
4816 if (print) {
4817 switch (cur_bit) {
4818 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4819 _print_next_block((*par_num)++,
4820 "CSEMI");
4821 _print_parity(bp,
4822 CSEM_REG_CSEM_PRTY_STS_0);
4823 _print_parity(bp,
4824 CSEM_REG_CSEM_PRTY_STS_1);
4825 break;
4826 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4827 _print_next_block((*par_num)++, "PXP");
4828 _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4829 _print_parity(bp,
4830 PXP2_REG_PXP2_PRTY_STS_0);
4831 _print_parity(bp,
4832 PXP2_REG_PXP2_PRTY_STS_1);
4833 break;
4834 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4835 _print_next_block((*par_num)++,
4836 "PXPPCICLOCKCLIENT");
4837 break;
4838 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4839 _print_next_block((*par_num)++, "CFC");
4840 _print_parity(bp,
4841 CFC_REG_CFC_PRTY_STS);
4842 break;
4843 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4844 _print_next_block((*par_num)++, "CDU");
4845 _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4846 break;
4847 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4848 _print_next_block((*par_num)++, "DMAE");
4849 _print_parity(bp,
4850 DMAE_REG_DMAE_PRTY_STS);
4851 break;
4852 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4853 _print_next_block((*par_num)++, "IGU");
4854 if (CHIP_IS_E1x(bp))
4855 _print_parity(bp,
4856 HC_REG_HC_PRTY_STS);
4857 else
4858 _print_parity(bp,
4859 IGU_REG_IGU_PRTY_STS);
4860 break;
4861 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4862 _print_next_block((*par_num)++, "MISC");
4863 _print_parity(bp,
4864 MISC_REG_MISC_PRTY_STS);
4865 break;
4866 }
4867 }
4868
4869 /* Clear the bit */
4870 sig &= ~cur_bit;
4871 }
4872 }
4873
4874 return res;
4875 }
4876
bnx2x_check_blocks_with_parity3(struct bnx2x * bp,u32 sig,int * par_num,bool * global,bool print)4877 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4878 int *par_num, bool *global,
4879 bool print)
4880 {
4881 bool res = false;
4882 u32 cur_bit;
4883 int i;
4884
4885 for (i = 0; sig; i++) {
4886 cur_bit = (0x1UL << i);
4887 if (sig & cur_bit) {
4888 switch (cur_bit) {
4889 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4890 if (print)
4891 _print_next_block((*par_num)++,
4892 "MCP ROM");
4893 *global = true;
4894 res = true;
4895 break;
4896 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4897 if (print)
4898 _print_next_block((*par_num)++,
4899 "MCP UMP RX");
4900 *global = true;
4901 res = true;
4902 break;
4903 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4904 if (print)
4905 _print_next_block((*par_num)++,
4906 "MCP UMP TX");
4907 *global = true;
4908 res = true;
4909 break;
4910 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4911 (*par_num)++;
4912 /* clear latched SCPAD PATIRY from MCP */
4913 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4914 1UL << 10);
4915 break;
4916 }
4917
4918 /* Clear the bit */
4919 sig &= ~cur_bit;
4920 }
4921 }
4922
4923 return res;
4924 }
4925
bnx2x_check_blocks_with_parity4(struct bnx2x * bp,u32 sig,int * par_num,bool print)4926 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4927 int *par_num, bool print)
4928 {
4929 u32 cur_bit;
4930 bool res;
4931 int i;
4932
4933 res = false;
4934
4935 for (i = 0; sig; i++) {
4936 cur_bit = (0x1UL << i);
4937 if (sig & cur_bit) {
4938 res = true; /* Each bit is real error! */
4939 if (print) {
4940 switch (cur_bit) {
4941 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4942 _print_next_block((*par_num)++,
4943 "PGLUE_B");
4944 _print_parity(bp,
4945 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4946 break;
4947 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4948 _print_next_block((*par_num)++, "ATC");
4949 _print_parity(bp,
4950 ATC_REG_ATC_PRTY_STS);
4951 break;
4952 }
4953 }
4954 /* Clear the bit */
4955 sig &= ~cur_bit;
4956 }
4957 }
4958
4959 return res;
4960 }
4961
bnx2x_parity_attn(struct bnx2x * bp,bool * global,bool print,u32 * sig)4962 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4963 u32 *sig)
4964 {
4965 bool res = false;
4966
4967 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4968 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4969 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4970 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4971 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4972 int par_num = 0;
4973
4974 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4975 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4976 sig[0] & HW_PRTY_ASSERT_SET_0,
4977 sig[1] & HW_PRTY_ASSERT_SET_1,
4978 sig[2] & HW_PRTY_ASSERT_SET_2,
4979 sig[3] & HW_PRTY_ASSERT_SET_3,
4980 sig[4] & HW_PRTY_ASSERT_SET_4);
4981 if (print) {
4982 if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4983 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4984 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4985 (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4986 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4987 netdev_err(bp->dev,
4988 "Parity errors detected in blocks: ");
4989 } else {
4990 print = false;
4991 }
4992 }
4993 res |= bnx2x_check_blocks_with_parity0(bp,
4994 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4995 res |= bnx2x_check_blocks_with_parity1(bp,
4996 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4997 res |= bnx2x_check_blocks_with_parity2(bp,
4998 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4999 res |= bnx2x_check_blocks_with_parity3(bp,
5000 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5001 res |= bnx2x_check_blocks_with_parity4(bp,
5002 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5003
5004 if (print)
5005 pr_cont("\n");
5006 }
5007
5008 return res;
5009 }
5010
5011 /**
5012 * bnx2x_chk_parity_attn - checks for parity attentions.
5013 *
5014 * @bp: driver handle
5015 * @global: true if there was a global attention
5016 * @print: show parity attention in syslog
5017 */
bnx2x_chk_parity_attn(struct bnx2x * bp,bool * global,bool print)5018 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5019 {
5020 struct attn_route attn = { {0} };
5021 int port = BP_PORT(bp);
5022
5023 attn.sig[0] = REG_RD(bp,
5024 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5025 port*4);
5026 attn.sig[1] = REG_RD(bp,
5027 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5028 port*4);
5029 attn.sig[2] = REG_RD(bp,
5030 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5031 port*4);
5032 attn.sig[3] = REG_RD(bp,
5033 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5034 port*4);
5035 /* Since MCP attentions can't be disabled inside the block, we need to
5036 * read AEU registers to see whether they're currently disabled
5037 */
5038 attn.sig[3] &= ((REG_RD(bp,
5039 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5040 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5041 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5042 ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5043
5044 if (!CHIP_IS_E1x(bp))
5045 attn.sig[4] = REG_RD(bp,
5046 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5047 port*4);
5048
5049 return bnx2x_parity_attn(bp, global, print, attn.sig);
5050 }
5051
bnx2x_attn_int_deasserted4(struct bnx2x * bp,u32 attn)5052 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5053 {
5054 u32 val;
5055 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5056
5057 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5058 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5059 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5060 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5061 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5062 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5063 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5064 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5065 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5066 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5067 if (val &
5068 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5069 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5070 if (val &
5071 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5072 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5073 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5074 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5075 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5076 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5077 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5078 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5079 }
5080 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5081 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5082 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5083 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5084 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5085 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5086 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5087 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5088 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5089 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5090 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5091 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5092 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5093 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5094 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5095 }
5096
5097 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5098 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5099 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5100 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5101 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5102 }
5103 }
5104
bnx2x_attn_int_deasserted(struct bnx2x * bp,u32 deasserted)5105 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5106 {
5107 struct attn_route attn, *group_mask;
5108 int port = BP_PORT(bp);
5109 int index;
5110 u32 reg_addr;
5111 u32 val;
5112 u32 aeu_mask;
5113 bool global = false;
5114
5115 /* need to take HW lock because MCP or other port might also
5116 try to handle this event */
5117 bnx2x_acquire_alr(bp);
5118
5119 if (bnx2x_chk_parity_attn(bp, &global, true)) {
5120 #ifndef BNX2X_STOP_ON_ERROR
5121 bp->recovery_state = BNX2X_RECOVERY_INIT;
5122 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5123 /* Disable HW interrupts */
5124 bnx2x_int_disable(bp);
5125 /* In case of parity errors don't handle attentions so that
5126 * other function would "see" parity errors.
5127 */
5128 #else
5129 bnx2x_panic();
5130 #endif
5131 bnx2x_release_alr(bp);
5132 return;
5133 }
5134
5135 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5136 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5137 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5138 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5139 if (!CHIP_IS_E1x(bp))
5140 attn.sig[4] =
5141 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5142 else
5143 attn.sig[4] = 0;
5144
5145 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5146 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5147
5148 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5149 if (deasserted & (1 << index)) {
5150 group_mask = &bp->attn_group[index];
5151
5152 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5153 index,
5154 group_mask->sig[0], group_mask->sig[1],
5155 group_mask->sig[2], group_mask->sig[3],
5156 group_mask->sig[4]);
5157
5158 bnx2x_attn_int_deasserted4(bp,
5159 attn.sig[4] & group_mask->sig[4]);
5160 bnx2x_attn_int_deasserted3(bp,
5161 attn.sig[3] & group_mask->sig[3]);
5162 bnx2x_attn_int_deasserted1(bp,
5163 attn.sig[1] & group_mask->sig[1]);
5164 bnx2x_attn_int_deasserted2(bp,
5165 attn.sig[2] & group_mask->sig[2]);
5166 bnx2x_attn_int_deasserted0(bp,
5167 attn.sig[0] & group_mask->sig[0]);
5168 }
5169 }
5170
5171 bnx2x_release_alr(bp);
5172
5173 if (bp->common.int_block == INT_BLOCK_HC)
5174 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5175 COMMAND_REG_ATTN_BITS_CLR);
5176 else
5177 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5178
5179 val = ~deasserted;
5180 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5181 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5182 REG_WR(bp, reg_addr, val);
5183
5184 if (~bp->attn_state & deasserted)
5185 BNX2X_ERR("IGU ERROR\n");
5186
5187 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5188 MISC_REG_AEU_MASK_ATTN_FUNC_0;
5189
5190 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5191 aeu_mask = REG_RD(bp, reg_addr);
5192
5193 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
5194 aeu_mask, deasserted);
5195 aeu_mask |= (deasserted & 0x3ff);
5196 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5197
5198 REG_WR(bp, reg_addr, aeu_mask);
5199 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5200
5201 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5202 bp->attn_state &= ~deasserted;
5203 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5204 }
5205
bnx2x_attn_int(struct bnx2x * bp)5206 static void bnx2x_attn_int(struct bnx2x *bp)
5207 {
5208 /* read local copy of bits */
5209 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5210 attn_bits);
5211 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5212 attn_bits_ack);
5213 u32 attn_state = bp->attn_state;
5214
5215 /* look for changed bits */
5216 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
5217 u32 deasserted = ~attn_bits & attn_ack & attn_state;
5218
5219 DP(NETIF_MSG_HW,
5220 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
5221 attn_bits, attn_ack, asserted, deasserted);
5222
5223 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5224 BNX2X_ERR("BAD attention state\n");
5225
5226 /* handle bits that were raised */
5227 if (asserted)
5228 bnx2x_attn_int_asserted(bp, asserted);
5229
5230 if (deasserted)
5231 bnx2x_attn_int_deasserted(bp, deasserted);
5232 }
5233
bnx2x_igu_ack_sb(struct bnx2x * bp,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)5234 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5235 u16 index, u8 op, u8 update)
5236 {
5237 u32 igu_addr = bp->igu_base_addr;
5238 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5239 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5240 igu_addr);
5241 }
5242
bnx2x_update_eq_prod(struct bnx2x * bp,u16 prod)5243 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5244 {
5245 /* No memory barriers */
5246 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5247 mmiowb(); /* keep prod updates ordered */
5248 }
5249
bnx2x_cnic_handle_cfc_del(struct bnx2x * bp,u32 cid,union event_ring_elem * elem)5250 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5251 union event_ring_elem *elem)
5252 {
5253 u8 err = elem->message.error;
5254
5255 if (!bp->cnic_eth_dev.starting_cid ||
5256 (cid < bp->cnic_eth_dev.starting_cid &&
5257 cid != bp->cnic_eth_dev.iscsi_l2_cid))
5258 return 1;
5259
5260 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5261
5262 if (unlikely(err)) {
5263
5264 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5265 cid);
5266 bnx2x_panic_dump(bp, false);
5267 }
5268 bnx2x_cnic_cfc_comp(bp, cid, err);
5269 return 0;
5270 }
5271
bnx2x_handle_mcast_eqe(struct bnx2x * bp)5272 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5273 {
5274 struct bnx2x_mcast_ramrod_params rparam;
5275 int rc;
5276
5277 memset(&rparam, 0, sizeof(rparam));
5278
5279 rparam.mcast_obj = &bp->mcast_obj;
5280
5281 netif_addr_lock_bh(bp->dev);
5282
5283 /* Clear pending state for the last command */
5284 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5285
5286 /* If there are pending mcast commands - send them */
5287 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5288 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5289 if (rc < 0)
5290 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5291 rc);
5292 }
5293
5294 netif_addr_unlock_bh(bp->dev);
5295 }
5296
bnx2x_handle_classification_eqe(struct bnx2x * bp,union event_ring_elem * elem)5297 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5298 union event_ring_elem *elem)
5299 {
5300 unsigned long ramrod_flags = 0;
5301 int rc = 0;
5302 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5303 u32 cid = echo & BNX2X_SWCID_MASK;
5304 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5305
5306 /* Always push next commands out, don't wait here */
5307 __set_bit(RAMROD_CONT, &ramrod_flags);
5308
5309 switch (echo >> BNX2X_SWCID_SHIFT) {
5310 case BNX2X_FILTER_MAC_PENDING:
5311 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5312 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5313 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5314 else
5315 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5316
5317 break;
5318 case BNX2X_FILTER_VLAN_PENDING:
5319 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5320 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5321 break;
5322 case BNX2X_FILTER_MCAST_PENDING:
5323 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5324 /* This is only relevant for 57710 where multicast MACs are
5325 * configured as unicast MACs using the same ramrod.
5326 */
5327 bnx2x_handle_mcast_eqe(bp);
5328 return;
5329 default:
5330 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5331 return;
5332 }
5333
5334 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5335
5336 if (rc < 0)
5337 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5338 else if (rc > 0)
5339 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5340 }
5341
5342 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5343
bnx2x_handle_rx_mode_eqe(struct bnx2x * bp)5344 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5345 {
5346 netif_addr_lock_bh(bp->dev);
5347
5348 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5349
5350 /* Send rx_mode command again if was requested */
5351 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5352 bnx2x_set_storm_rx_mode(bp);
5353 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5354 &bp->sp_state))
5355 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5356 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5357 &bp->sp_state))
5358 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5359
5360 netif_addr_unlock_bh(bp->dev);
5361 }
5362
bnx2x_after_afex_vif_lists(struct bnx2x * bp,union event_ring_elem * elem)5363 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5364 union event_ring_elem *elem)
5365 {
5366 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5367 DP(BNX2X_MSG_SP,
5368 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5369 elem->message.data.vif_list_event.func_bit_map);
5370 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5371 elem->message.data.vif_list_event.func_bit_map);
5372 } else if (elem->message.data.vif_list_event.echo ==
5373 VIF_LIST_RULE_SET) {
5374 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5375 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5376 }
5377 }
5378
5379 /* called with rtnl_lock */
bnx2x_after_function_update(struct bnx2x * bp)5380 static void bnx2x_after_function_update(struct bnx2x *bp)
5381 {
5382 int q, rc;
5383 struct bnx2x_fastpath *fp;
5384 struct bnx2x_queue_state_params queue_params = {NULL};
5385 struct bnx2x_queue_update_params *q_update_params =
5386 &queue_params.params.update;
5387
5388 /* Send Q update command with afex vlan removal values for all Qs */
5389 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5390
5391 /* set silent vlan removal values according to vlan mode */
5392 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5393 &q_update_params->update_flags);
5394 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5395 &q_update_params->update_flags);
5396 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5397
5398 /* in access mode mark mask and value are 0 to strip all vlans */
5399 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5400 q_update_params->silent_removal_value = 0;
5401 q_update_params->silent_removal_mask = 0;
5402 } else {
5403 q_update_params->silent_removal_value =
5404 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5405 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5406 }
5407
5408 for_each_eth_queue(bp, q) {
5409 /* Set the appropriate Queue object */
5410 fp = &bp->fp[q];
5411 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5412
5413 /* send the ramrod */
5414 rc = bnx2x_queue_state_change(bp, &queue_params);
5415 if (rc < 0)
5416 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5417 q);
5418 }
5419
5420 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5421 fp = &bp->fp[FCOE_IDX(bp)];
5422 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5423
5424 /* clear pending completion bit */
5425 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5426
5427 /* mark latest Q bit */
5428 smp_mb__before_atomic();
5429 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5430 smp_mb__after_atomic();
5431
5432 /* send Q update ramrod for FCoE Q */
5433 rc = bnx2x_queue_state_change(bp, &queue_params);
5434 if (rc < 0)
5435 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5436 q);
5437 } else {
5438 /* If no FCoE ring - ACK MCP now */
5439 bnx2x_link_report(bp);
5440 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5441 }
5442 }
5443
bnx2x_cid_to_q_obj(struct bnx2x * bp,u32 cid)5444 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5445 struct bnx2x *bp, u32 cid)
5446 {
5447 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5448
5449 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5450 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5451 else
5452 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5453 }
5454
bnx2x_eq_int(struct bnx2x * bp)5455 static void bnx2x_eq_int(struct bnx2x *bp)
5456 {
5457 u16 hw_cons, sw_cons, sw_prod;
5458 union event_ring_elem *elem;
5459 u8 echo;
5460 u32 cid;
5461 u8 opcode;
5462 int rc, spqe_cnt = 0;
5463 struct bnx2x_queue_sp_obj *q_obj;
5464 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5465 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5466
5467 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5468
5469 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5470 * when we get the next-page we need to adjust so the loop
5471 * condition below will be met. The next element is the size of a
5472 * regular element and hence incrementing by 1
5473 */
5474 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5475 hw_cons++;
5476
5477 /* This function may never run in parallel with itself for a
5478 * specific bp, thus there is no need in "paired" read memory
5479 * barrier here.
5480 */
5481 sw_cons = bp->eq_cons;
5482 sw_prod = bp->eq_prod;
5483
5484 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5485 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5486
5487 for (; sw_cons != hw_cons;
5488 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5489
5490 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5491
5492 rc = bnx2x_iov_eq_sp_event(bp, elem);
5493 if (!rc) {
5494 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5495 rc);
5496 goto next_spqe;
5497 }
5498
5499 opcode = elem->message.opcode;
5500
5501 /* handle eq element */
5502 switch (opcode) {
5503 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5504 bnx2x_vf_mbx_schedule(bp,
5505 &elem->message.data.vf_pf_event);
5506 continue;
5507
5508 case EVENT_RING_OPCODE_STAT_QUERY:
5509 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5510 "got statistics comp event %d\n",
5511 bp->stats_comp++);
5512 /* nothing to do with stats comp */
5513 goto next_spqe;
5514
5515 case EVENT_RING_OPCODE_CFC_DEL:
5516 /* handle according to cid range */
5517 /*
5518 * we may want to verify here that the bp state is
5519 * HALTING
5520 */
5521
5522 /* elem CID originates from FW; actually LE */
5523 cid = SW_CID(elem->message.data.cfc_del_event.cid);
5524
5525 DP(BNX2X_MSG_SP,
5526 "got delete ramrod for MULTI[%d]\n", cid);
5527
5528 if (CNIC_LOADED(bp) &&
5529 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5530 goto next_spqe;
5531
5532 q_obj = bnx2x_cid_to_q_obj(bp, cid);
5533
5534 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5535 break;
5536
5537 goto next_spqe;
5538
5539 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5540 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5541 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5542 if (f_obj->complete_cmd(bp, f_obj,
5543 BNX2X_F_CMD_TX_STOP))
5544 break;
5545 goto next_spqe;
5546
5547 case EVENT_RING_OPCODE_START_TRAFFIC:
5548 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5549 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5550 if (f_obj->complete_cmd(bp, f_obj,
5551 BNX2X_F_CMD_TX_START))
5552 break;
5553 goto next_spqe;
5554
5555 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5556 echo = elem->message.data.function_update_event.echo;
5557 if (echo == SWITCH_UPDATE) {
5558 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5559 "got FUNC_SWITCH_UPDATE ramrod\n");
5560 if (f_obj->complete_cmd(
5561 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5562 break;
5563
5564 } else {
5565 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5566
5567 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5568 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5569 f_obj->complete_cmd(bp, f_obj,
5570 BNX2X_F_CMD_AFEX_UPDATE);
5571
5572 /* We will perform the Queues update from
5573 * sp_rtnl task as all Queue SP operations
5574 * should run under rtnl_lock.
5575 */
5576 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5577 }
5578
5579 goto next_spqe;
5580
5581 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5582 f_obj->complete_cmd(bp, f_obj,
5583 BNX2X_F_CMD_AFEX_VIFLISTS);
5584 bnx2x_after_afex_vif_lists(bp, elem);
5585 goto next_spqe;
5586 case EVENT_RING_OPCODE_FUNCTION_START:
5587 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5588 "got FUNC_START ramrod\n");
5589 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5590 break;
5591
5592 goto next_spqe;
5593
5594 case EVENT_RING_OPCODE_FUNCTION_STOP:
5595 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5596 "got FUNC_STOP ramrod\n");
5597 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5598 break;
5599
5600 goto next_spqe;
5601
5602 case EVENT_RING_OPCODE_SET_TIMESYNC:
5603 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5604 "got set_timesync ramrod completion\n");
5605 if (f_obj->complete_cmd(bp, f_obj,
5606 BNX2X_F_CMD_SET_TIMESYNC))
5607 break;
5608 goto next_spqe;
5609 }
5610
5611 switch (opcode | bp->state) {
5612 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5613 BNX2X_STATE_OPEN):
5614 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5615 BNX2X_STATE_OPENING_WAIT4_PORT):
5616 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5617 BNX2X_STATE_CLOSING_WAIT4_HALT):
5618 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5619 SW_CID(elem->message.data.eth_event.echo));
5620 rss_raw->clear_pending(rss_raw);
5621 break;
5622
5623 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5624 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5625 case (EVENT_RING_OPCODE_SET_MAC |
5626 BNX2X_STATE_CLOSING_WAIT4_HALT):
5627 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5628 BNX2X_STATE_OPEN):
5629 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5630 BNX2X_STATE_DIAG):
5631 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5632 BNX2X_STATE_CLOSING_WAIT4_HALT):
5633 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5634 bnx2x_handle_classification_eqe(bp, elem);
5635 break;
5636
5637 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5638 BNX2X_STATE_OPEN):
5639 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5640 BNX2X_STATE_DIAG):
5641 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5642 BNX2X_STATE_CLOSING_WAIT4_HALT):
5643 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5644 bnx2x_handle_mcast_eqe(bp);
5645 break;
5646
5647 case (EVENT_RING_OPCODE_FILTERS_RULES |
5648 BNX2X_STATE_OPEN):
5649 case (EVENT_RING_OPCODE_FILTERS_RULES |
5650 BNX2X_STATE_DIAG):
5651 case (EVENT_RING_OPCODE_FILTERS_RULES |
5652 BNX2X_STATE_CLOSING_WAIT4_HALT):
5653 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5654 bnx2x_handle_rx_mode_eqe(bp);
5655 break;
5656 default:
5657 /* unknown event log error and continue */
5658 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5659 elem->message.opcode, bp->state);
5660 }
5661 next_spqe:
5662 spqe_cnt++;
5663 } /* for */
5664
5665 smp_mb__before_atomic();
5666 atomic_add(spqe_cnt, &bp->eq_spq_left);
5667
5668 bp->eq_cons = sw_cons;
5669 bp->eq_prod = sw_prod;
5670 /* Make sure that above mem writes were issued towards the memory */
5671 smp_wmb();
5672
5673 /* update producer */
5674 bnx2x_update_eq_prod(bp, bp->eq_prod);
5675 }
5676
bnx2x_sp_task(struct work_struct * work)5677 static void bnx2x_sp_task(struct work_struct *work)
5678 {
5679 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5680
5681 DP(BNX2X_MSG_SP, "sp task invoked\n");
5682
5683 /* make sure the atomic interrupt_occurred has been written */
5684 smp_rmb();
5685 if (atomic_read(&bp->interrupt_occurred)) {
5686
5687 /* what work needs to be performed? */
5688 u16 status = bnx2x_update_dsb_idx(bp);
5689
5690 DP(BNX2X_MSG_SP, "status %x\n", status);
5691 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5692 atomic_set(&bp->interrupt_occurred, 0);
5693
5694 /* HW attentions */
5695 if (status & BNX2X_DEF_SB_ATT_IDX) {
5696 bnx2x_attn_int(bp);
5697 status &= ~BNX2X_DEF_SB_ATT_IDX;
5698 }
5699
5700 /* SP events: STAT_QUERY and others */
5701 if (status & BNX2X_DEF_SB_IDX) {
5702 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5703
5704 if (FCOE_INIT(bp) &&
5705 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5706 /* Prevent local bottom-halves from running as
5707 * we are going to change the local NAPI list.
5708 */
5709 local_bh_disable();
5710 napi_schedule(&bnx2x_fcoe(bp, napi));
5711 local_bh_enable();
5712 }
5713
5714 /* Handle EQ completions */
5715 bnx2x_eq_int(bp);
5716 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5717 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5718
5719 status &= ~BNX2X_DEF_SB_IDX;
5720 }
5721
5722 /* if status is non zero then perhaps something went wrong */
5723 if (unlikely(status))
5724 DP(BNX2X_MSG_SP,
5725 "got an unknown interrupt! (status 0x%x)\n", status);
5726
5727 /* ack status block only if something was actually handled */
5728 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5729 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5730 }
5731
5732 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5733 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5734 &bp->sp_state)) {
5735 bnx2x_link_report(bp);
5736 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5737 }
5738 }
5739
bnx2x_msix_sp_int(int irq,void * dev_instance)5740 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5741 {
5742 struct net_device *dev = dev_instance;
5743 struct bnx2x *bp = netdev_priv(dev);
5744
5745 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5746 IGU_INT_DISABLE, 0);
5747
5748 #ifdef BNX2X_STOP_ON_ERROR
5749 if (unlikely(bp->panic))
5750 return IRQ_HANDLED;
5751 #endif
5752
5753 if (CNIC_LOADED(bp)) {
5754 struct cnic_ops *c_ops;
5755
5756 rcu_read_lock();
5757 c_ops = rcu_dereference(bp->cnic_ops);
5758 if (c_ops)
5759 c_ops->cnic_handler(bp->cnic_data, NULL);
5760 rcu_read_unlock();
5761 }
5762
5763 /* schedule sp task to perform default status block work, ack
5764 * attentions and enable interrupts.
5765 */
5766 bnx2x_schedule_sp_task(bp);
5767
5768 return IRQ_HANDLED;
5769 }
5770
5771 /* end of slow path */
5772
bnx2x_drv_pulse(struct bnx2x * bp)5773 void bnx2x_drv_pulse(struct bnx2x *bp)
5774 {
5775 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5776 bp->fw_drv_pulse_wr_seq);
5777 }
5778
bnx2x_timer(unsigned long data)5779 static void bnx2x_timer(unsigned long data)
5780 {
5781 struct bnx2x *bp = (struct bnx2x *) data;
5782
5783 if (!netif_running(bp->dev))
5784 return;
5785
5786 if (IS_PF(bp) &&
5787 !BP_NOMCP(bp)) {
5788 int mb_idx = BP_FW_MB_IDX(bp);
5789 u16 drv_pulse;
5790 u16 mcp_pulse;
5791
5792 ++bp->fw_drv_pulse_wr_seq;
5793 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5794 drv_pulse = bp->fw_drv_pulse_wr_seq;
5795 bnx2x_drv_pulse(bp);
5796
5797 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5798 MCP_PULSE_SEQ_MASK);
5799 /* The delta between driver pulse and mcp response
5800 * should not get too big. If the MFW is more than 5 pulses
5801 * behind, we should worry about it enough to generate an error
5802 * log.
5803 */
5804 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5805 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5806 drv_pulse, mcp_pulse);
5807 }
5808
5809 if (bp->state == BNX2X_STATE_OPEN)
5810 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5811
5812 /* sample pf vf bulletin board for new posts from pf */
5813 if (IS_VF(bp))
5814 bnx2x_timer_sriov(bp);
5815
5816 mod_timer(&bp->timer, jiffies + bp->current_interval);
5817 }
5818
5819 /* end of Statistics */
5820
5821 /* nic init */
5822
5823 /*
5824 * nic init service functions
5825 */
5826
bnx2x_fill(struct bnx2x * bp,u32 addr,int fill,u32 len)5827 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5828 {
5829 u32 i;
5830 if (!(len%4) && !(addr%4))
5831 for (i = 0; i < len; i += 4)
5832 REG_WR(bp, addr + i, fill);
5833 else
5834 for (i = 0; i < len; i++)
5835 REG_WR8(bp, addr + i, fill);
5836 }
5837
5838 /* helper: writes FP SP data to FW - data_size in dwords */
bnx2x_wr_fp_sb_data(struct bnx2x * bp,int fw_sb_id,u32 * sb_data_p,u32 data_size)5839 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5840 int fw_sb_id,
5841 u32 *sb_data_p,
5842 u32 data_size)
5843 {
5844 int index;
5845 for (index = 0; index < data_size; index++)
5846 REG_WR(bp, BAR_CSTRORM_INTMEM +
5847 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5848 sizeof(u32)*index,
5849 *(sb_data_p + index));
5850 }
5851
bnx2x_zero_fp_sb(struct bnx2x * bp,int fw_sb_id)5852 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5853 {
5854 u32 *sb_data_p;
5855 u32 data_size = 0;
5856 struct hc_status_block_data_e2 sb_data_e2;
5857 struct hc_status_block_data_e1x sb_data_e1x;
5858
5859 /* disable the function first */
5860 if (!CHIP_IS_E1x(bp)) {
5861 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5862 sb_data_e2.common.state = SB_DISABLED;
5863 sb_data_e2.common.p_func.vf_valid = false;
5864 sb_data_p = (u32 *)&sb_data_e2;
5865 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5866 } else {
5867 memset(&sb_data_e1x, 0,
5868 sizeof(struct hc_status_block_data_e1x));
5869 sb_data_e1x.common.state = SB_DISABLED;
5870 sb_data_e1x.common.p_func.vf_valid = false;
5871 sb_data_p = (u32 *)&sb_data_e1x;
5872 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5873 }
5874 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5875
5876 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5877 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5878 CSTORM_STATUS_BLOCK_SIZE);
5879 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5880 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5881 CSTORM_SYNC_BLOCK_SIZE);
5882 }
5883
5884 /* helper: writes SP SB data to FW */
bnx2x_wr_sp_sb_data(struct bnx2x * bp,struct hc_sp_status_block_data * sp_sb_data)5885 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5886 struct hc_sp_status_block_data *sp_sb_data)
5887 {
5888 int func = BP_FUNC(bp);
5889 int i;
5890 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5891 REG_WR(bp, BAR_CSTRORM_INTMEM +
5892 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5893 i*sizeof(u32),
5894 *((u32 *)sp_sb_data + i));
5895 }
5896
bnx2x_zero_sp_sb(struct bnx2x * bp)5897 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5898 {
5899 int func = BP_FUNC(bp);
5900 struct hc_sp_status_block_data sp_sb_data;
5901 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5902
5903 sp_sb_data.state = SB_DISABLED;
5904 sp_sb_data.p_func.vf_valid = false;
5905
5906 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5907
5908 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5909 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5910 CSTORM_SP_STATUS_BLOCK_SIZE);
5911 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5912 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5913 CSTORM_SP_SYNC_BLOCK_SIZE);
5914 }
5915
bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm * hc_sm,int igu_sb_id,int igu_seg_id)5916 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5917 int igu_sb_id, int igu_seg_id)
5918 {
5919 hc_sm->igu_sb_id = igu_sb_id;
5920 hc_sm->igu_seg_id = igu_seg_id;
5921 hc_sm->timer_value = 0xFF;
5922 hc_sm->time_to_expire = 0xFFFFFFFF;
5923 }
5924
5925 /* allocates state machine ids. */
bnx2x_map_sb_state_machines(struct hc_index_data * index_data)5926 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5927 {
5928 /* zero out state machine indices */
5929 /* rx indices */
5930 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5931
5932 /* tx indices */
5933 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5934 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5935 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5936 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5937
5938 /* map indices */
5939 /* rx indices */
5940 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5941 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5942
5943 /* tx indices */
5944 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5945 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5946 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5947 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5948 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5949 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5950 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5951 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5952 }
5953
bnx2x_init_sb(struct bnx2x * bp,dma_addr_t mapping,int vfid,u8 vf_valid,int fw_sb_id,int igu_sb_id)5954 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5955 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5956 {
5957 int igu_seg_id;
5958
5959 struct hc_status_block_data_e2 sb_data_e2;
5960 struct hc_status_block_data_e1x sb_data_e1x;
5961 struct hc_status_block_sm *hc_sm_p;
5962 int data_size;
5963 u32 *sb_data_p;
5964
5965 if (CHIP_INT_MODE_IS_BC(bp))
5966 igu_seg_id = HC_SEG_ACCESS_NORM;
5967 else
5968 igu_seg_id = IGU_SEG_ACCESS_NORM;
5969
5970 bnx2x_zero_fp_sb(bp, fw_sb_id);
5971
5972 if (!CHIP_IS_E1x(bp)) {
5973 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5974 sb_data_e2.common.state = SB_ENABLED;
5975 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5976 sb_data_e2.common.p_func.vf_id = vfid;
5977 sb_data_e2.common.p_func.vf_valid = vf_valid;
5978 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5979 sb_data_e2.common.same_igu_sb_1b = true;
5980 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5981 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5982 hc_sm_p = sb_data_e2.common.state_machine;
5983 sb_data_p = (u32 *)&sb_data_e2;
5984 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5985 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5986 } else {
5987 memset(&sb_data_e1x, 0,
5988 sizeof(struct hc_status_block_data_e1x));
5989 sb_data_e1x.common.state = SB_ENABLED;
5990 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5991 sb_data_e1x.common.p_func.vf_id = 0xff;
5992 sb_data_e1x.common.p_func.vf_valid = false;
5993 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5994 sb_data_e1x.common.same_igu_sb_1b = true;
5995 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5996 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5997 hc_sm_p = sb_data_e1x.common.state_machine;
5998 sb_data_p = (u32 *)&sb_data_e1x;
5999 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6000 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6001 }
6002
6003 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6004 igu_sb_id, igu_seg_id);
6005 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6006 igu_sb_id, igu_seg_id);
6007
6008 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6009
6010 /* write indices to HW - PCI guarantees endianity of regpairs */
6011 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6012 }
6013
bnx2x_update_coalesce_sb(struct bnx2x * bp,u8 fw_sb_id,u16 tx_usec,u16 rx_usec)6014 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6015 u16 tx_usec, u16 rx_usec)
6016 {
6017 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6018 false, rx_usec);
6019 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6020 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6021 tx_usec);
6022 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6023 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6024 tx_usec);
6025 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6026 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6027 tx_usec);
6028 }
6029
bnx2x_init_def_sb(struct bnx2x * bp)6030 static void bnx2x_init_def_sb(struct bnx2x *bp)
6031 {
6032 struct host_sp_status_block *def_sb = bp->def_status_blk;
6033 dma_addr_t mapping = bp->def_status_blk_mapping;
6034 int igu_sp_sb_index;
6035 int igu_seg_id;
6036 int port = BP_PORT(bp);
6037 int func = BP_FUNC(bp);
6038 int reg_offset, reg_offset_en5;
6039 u64 section;
6040 int index;
6041 struct hc_sp_status_block_data sp_sb_data;
6042 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6043
6044 if (CHIP_INT_MODE_IS_BC(bp)) {
6045 igu_sp_sb_index = DEF_SB_IGU_ID;
6046 igu_seg_id = HC_SEG_ACCESS_DEF;
6047 } else {
6048 igu_sp_sb_index = bp->igu_dsb_id;
6049 igu_seg_id = IGU_SEG_ACCESS_DEF;
6050 }
6051
6052 /* ATTN */
6053 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6054 atten_status_block);
6055 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6056
6057 bp->attn_state = 0;
6058
6059 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6060 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6061 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6062 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6063 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6064 int sindex;
6065 /* take care of sig[0]..sig[4] */
6066 for (sindex = 0; sindex < 4; sindex++)
6067 bp->attn_group[index].sig[sindex] =
6068 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6069
6070 if (!CHIP_IS_E1x(bp))
6071 /*
6072 * enable5 is separate from the rest of the registers,
6073 * and therefore the address skip is 4
6074 * and not 16 between the different groups
6075 */
6076 bp->attn_group[index].sig[4] = REG_RD(bp,
6077 reg_offset_en5 + 0x4*index);
6078 else
6079 bp->attn_group[index].sig[4] = 0;
6080 }
6081
6082 if (bp->common.int_block == INT_BLOCK_HC) {
6083 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6084 HC_REG_ATTN_MSG0_ADDR_L);
6085
6086 REG_WR(bp, reg_offset, U64_LO(section));
6087 REG_WR(bp, reg_offset + 4, U64_HI(section));
6088 } else if (!CHIP_IS_E1x(bp)) {
6089 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6090 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6091 }
6092
6093 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6094 sp_sb);
6095
6096 bnx2x_zero_sp_sb(bp);
6097
6098 /* PCI guarantees endianity of regpairs */
6099 sp_sb_data.state = SB_ENABLED;
6100 sp_sb_data.host_sb_addr.lo = U64_LO(section);
6101 sp_sb_data.host_sb_addr.hi = U64_HI(section);
6102 sp_sb_data.igu_sb_id = igu_sp_sb_index;
6103 sp_sb_data.igu_seg_id = igu_seg_id;
6104 sp_sb_data.p_func.pf_id = func;
6105 sp_sb_data.p_func.vnic_id = BP_VN(bp);
6106 sp_sb_data.p_func.vf_id = 0xff;
6107
6108 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6109
6110 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6111 }
6112
bnx2x_update_coalesce(struct bnx2x * bp)6113 void bnx2x_update_coalesce(struct bnx2x *bp)
6114 {
6115 int i;
6116
6117 for_each_eth_queue(bp, i)
6118 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6119 bp->tx_ticks, bp->rx_ticks);
6120 }
6121
bnx2x_init_sp_ring(struct bnx2x * bp)6122 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6123 {
6124 spin_lock_init(&bp->spq_lock);
6125 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6126
6127 bp->spq_prod_idx = 0;
6128 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6129 bp->spq_prod_bd = bp->spq;
6130 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6131 }
6132
bnx2x_init_eq_ring(struct bnx2x * bp)6133 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6134 {
6135 int i;
6136 for (i = 1; i <= NUM_EQ_PAGES; i++) {
6137 union event_ring_elem *elem =
6138 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6139
6140 elem->next_page.addr.hi =
6141 cpu_to_le32(U64_HI(bp->eq_mapping +
6142 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6143 elem->next_page.addr.lo =
6144 cpu_to_le32(U64_LO(bp->eq_mapping +
6145 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6146 }
6147 bp->eq_cons = 0;
6148 bp->eq_prod = NUM_EQ_DESC;
6149 bp->eq_cons_sb = BNX2X_EQ_INDEX;
6150 /* we want a warning message before it gets wrought... */
6151 atomic_set(&bp->eq_spq_left,
6152 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6153 }
6154
6155 /* called with netif_addr_lock_bh() */
bnx2x_set_q_rx_mode(struct bnx2x * bp,u8 cl_id,unsigned long rx_mode_flags,unsigned long rx_accept_flags,unsigned long tx_accept_flags,unsigned long ramrod_flags)6156 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6157 unsigned long rx_mode_flags,
6158 unsigned long rx_accept_flags,
6159 unsigned long tx_accept_flags,
6160 unsigned long ramrod_flags)
6161 {
6162 struct bnx2x_rx_mode_ramrod_params ramrod_param;
6163 int rc;
6164
6165 memset(&ramrod_param, 0, sizeof(ramrod_param));
6166
6167 /* Prepare ramrod parameters */
6168 ramrod_param.cid = 0;
6169 ramrod_param.cl_id = cl_id;
6170 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6171 ramrod_param.func_id = BP_FUNC(bp);
6172
6173 ramrod_param.pstate = &bp->sp_state;
6174 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6175
6176 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6177 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6178
6179 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6180
6181 ramrod_param.ramrod_flags = ramrod_flags;
6182 ramrod_param.rx_mode_flags = rx_mode_flags;
6183
6184 ramrod_param.rx_accept_flags = rx_accept_flags;
6185 ramrod_param.tx_accept_flags = tx_accept_flags;
6186
6187 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6188 if (rc < 0) {
6189 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6190 return rc;
6191 }
6192
6193 return 0;
6194 }
6195
bnx2x_fill_accept_flags(struct bnx2x * bp,u32 rx_mode,unsigned long * rx_accept_flags,unsigned long * tx_accept_flags)6196 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6197 unsigned long *rx_accept_flags,
6198 unsigned long *tx_accept_flags)
6199 {
6200 /* Clear the flags first */
6201 *rx_accept_flags = 0;
6202 *tx_accept_flags = 0;
6203
6204 switch (rx_mode) {
6205 case BNX2X_RX_MODE_NONE:
6206 /*
6207 * 'drop all' supersedes any accept flags that may have been
6208 * passed to the function.
6209 */
6210 break;
6211 case BNX2X_RX_MODE_NORMAL:
6212 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6213 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6214 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6215
6216 /* internal switching mode */
6217 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6218 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6219 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6220
6221 if (bp->accept_any_vlan) {
6222 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6223 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6224 }
6225
6226 break;
6227 case BNX2X_RX_MODE_ALLMULTI:
6228 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6229 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6230 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6231
6232 /* internal switching mode */
6233 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6234 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6235 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6236
6237 if (bp->accept_any_vlan) {
6238 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6239 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6240 }
6241
6242 break;
6243 case BNX2X_RX_MODE_PROMISC:
6244 /* According to definition of SI mode, iface in promisc mode
6245 * should receive matched and unmatched (in resolution of port)
6246 * unicast packets.
6247 */
6248 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6249 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6250 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6251 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6252
6253 /* internal switching mode */
6254 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6255 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6256
6257 if (IS_MF_SI(bp))
6258 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6259 else
6260 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6261
6262 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6263 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6264
6265 break;
6266 default:
6267 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6268 return -EINVAL;
6269 }
6270
6271 return 0;
6272 }
6273
6274 /* called with netif_addr_lock_bh() */
bnx2x_set_storm_rx_mode(struct bnx2x * bp)6275 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6276 {
6277 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6278 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6279 int rc;
6280
6281 if (!NO_FCOE(bp))
6282 /* Configure rx_mode of FCoE Queue */
6283 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6284
6285 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6286 &tx_accept_flags);
6287 if (rc)
6288 return rc;
6289
6290 __set_bit(RAMROD_RX, &ramrod_flags);
6291 __set_bit(RAMROD_TX, &ramrod_flags);
6292
6293 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6294 rx_accept_flags, tx_accept_flags,
6295 ramrod_flags);
6296 }
6297
bnx2x_init_internal_common(struct bnx2x * bp)6298 static void bnx2x_init_internal_common(struct bnx2x *bp)
6299 {
6300 int i;
6301
6302 /* Zero this manually as its initialization is
6303 currently missing in the initTool */
6304 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6305 REG_WR(bp, BAR_USTRORM_INTMEM +
6306 USTORM_AGG_DATA_OFFSET + i * 4, 0);
6307 if (!CHIP_IS_E1x(bp)) {
6308 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6309 CHIP_INT_MODE_IS_BC(bp) ?
6310 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6311 }
6312 }
6313
bnx2x_init_internal(struct bnx2x * bp,u32 load_code)6314 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6315 {
6316 switch (load_code) {
6317 case FW_MSG_CODE_DRV_LOAD_COMMON:
6318 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6319 bnx2x_init_internal_common(bp);
6320 /* no break */
6321
6322 case FW_MSG_CODE_DRV_LOAD_PORT:
6323 /* nothing to do */
6324 /* no break */
6325
6326 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6327 /* internal memory per function is
6328 initialized inside bnx2x_pf_init */
6329 break;
6330
6331 default:
6332 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6333 break;
6334 }
6335 }
6336
bnx2x_fp_igu_sb_id(struct bnx2x_fastpath * fp)6337 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6338 {
6339 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6340 }
6341
bnx2x_fp_fw_sb_id(struct bnx2x_fastpath * fp)6342 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6343 {
6344 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6345 }
6346
bnx2x_fp_cl_id(struct bnx2x_fastpath * fp)6347 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6348 {
6349 if (CHIP_IS_E1x(fp->bp))
6350 return BP_L_ID(fp->bp) + fp->index;
6351 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6352 return bnx2x_fp_igu_sb_id(fp);
6353 }
6354
bnx2x_init_eth_fp(struct bnx2x * bp,int fp_idx)6355 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6356 {
6357 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6358 u8 cos;
6359 unsigned long q_type = 0;
6360 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6361 fp->rx_queue = fp_idx;
6362 fp->cid = fp_idx;
6363 fp->cl_id = bnx2x_fp_cl_id(fp);
6364 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6365 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6366 /* qZone id equals to FW (per path) client id */
6367 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
6368
6369 /* init shortcut */
6370 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6371
6372 /* Setup SB indices */
6373 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6374
6375 /* Configure Queue State object */
6376 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6377 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6378
6379 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6380
6381 /* init tx data */
6382 for_each_cos_in_tx_queue(fp, cos) {
6383 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6384 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6385 FP_COS_TO_TXQ(fp, cos, bp),
6386 BNX2X_TX_SB_INDEX_BASE + cos, fp);
6387 cids[cos] = fp->txdata_ptr[cos]->cid;
6388 }
6389
6390 /* nothing more for vf to do here */
6391 if (IS_VF(bp))
6392 return;
6393
6394 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6395 fp->fw_sb_id, fp->igu_sb_id);
6396 bnx2x_update_fpsb_idx(fp);
6397 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6398 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6399 bnx2x_sp_mapping(bp, q_rdata), q_type);
6400
6401 /**
6402 * Configure classification DBs: Always enable Tx switching
6403 */
6404 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6405
6406 DP(NETIF_MSG_IFUP,
6407 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6408 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6409 fp->igu_sb_id);
6410 }
6411
bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata * txdata)6412 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6413 {
6414 int i;
6415
6416 for (i = 1; i <= NUM_TX_RINGS; i++) {
6417 struct eth_tx_next_bd *tx_next_bd =
6418 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6419
6420 tx_next_bd->addr_hi =
6421 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6422 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6423 tx_next_bd->addr_lo =
6424 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6425 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6426 }
6427
6428 *txdata->tx_cons_sb = cpu_to_le16(0);
6429
6430 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6431 txdata->tx_db.data.zero_fill1 = 0;
6432 txdata->tx_db.data.prod = 0;
6433
6434 txdata->tx_pkt_prod = 0;
6435 txdata->tx_pkt_cons = 0;
6436 txdata->tx_bd_prod = 0;
6437 txdata->tx_bd_cons = 0;
6438 txdata->tx_pkt = 0;
6439 }
6440
bnx2x_init_tx_rings_cnic(struct bnx2x * bp)6441 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6442 {
6443 int i;
6444
6445 for_each_tx_queue_cnic(bp, i)
6446 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6447 }
6448
bnx2x_init_tx_rings(struct bnx2x * bp)6449 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6450 {
6451 int i;
6452 u8 cos;
6453
6454 for_each_eth_queue(bp, i)
6455 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6456 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6457 }
6458
bnx2x_init_fcoe_fp(struct bnx2x * bp)6459 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6460 {
6461 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6462 unsigned long q_type = 0;
6463
6464 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6465 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6466 BNX2X_FCOE_ETH_CL_ID_IDX);
6467 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6468 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6469 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6470 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6471 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6472 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6473 fp);
6474
6475 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6476
6477 /* qZone id equals to FW (per path) client id */
6478 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6479 /* init shortcut */
6480 bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6481 bnx2x_rx_ustorm_prods_offset(fp);
6482
6483 /* Configure Queue State object */
6484 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6485 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6486
6487 /* No multi-CoS for FCoE L2 client */
6488 BUG_ON(fp->max_cos != 1);
6489
6490 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6491 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6492 bnx2x_sp_mapping(bp, q_rdata), q_type);
6493
6494 DP(NETIF_MSG_IFUP,
6495 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6496 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6497 fp->igu_sb_id);
6498 }
6499
bnx2x_nic_init_cnic(struct bnx2x * bp)6500 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6501 {
6502 if (!NO_FCOE(bp))
6503 bnx2x_init_fcoe_fp(bp);
6504
6505 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6506 BNX2X_VF_ID_INVALID, false,
6507 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6508
6509 /* ensure status block indices were read */
6510 rmb();
6511 bnx2x_init_rx_rings_cnic(bp);
6512 bnx2x_init_tx_rings_cnic(bp);
6513
6514 /* flush all */
6515 mb();
6516 mmiowb();
6517 }
6518
bnx2x_pre_irq_nic_init(struct bnx2x * bp)6519 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6520 {
6521 int i;
6522
6523 /* Setup NIC internals and enable interrupts */
6524 for_each_eth_queue(bp, i)
6525 bnx2x_init_eth_fp(bp, i);
6526
6527 /* ensure status block indices were read */
6528 rmb();
6529 bnx2x_init_rx_rings(bp);
6530 bnx2x_init_tx_rings(bp);
6531
6532 if (IS_PF(bp)) {
6533 /* Initialize MOD_ABS interrupts */
6534 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6535 bp->common.shmem_base,
6536 bp->common.shmem2_base, BP_PORT(bp));
6537
6538 /* initialize the default status block and sp ring */
6539 bnx2x_init_def_sb(bp);
6540 bnx2x_update_dsb_idx(bp);
6541 bnx2x_init_sp_ring(bp);
6542 } else {
6543 bnx2x_memset_stats(bp);
6544 }
6545 }
6546
bnx2x_post_irq_nic_init(struct bnx2x * bp,u32 load_code)6547 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6548 {
6549 bnx2x_init_eq_ring(bp);
6550 bnx2x_init_internal(bp, load_code);
6551 bnx2x_pf_init(bp);
6552 bnx2x_stats_init(bp);
6553
6554 /* flush all before enabling interrupts */
6555 mb();
6556 mmiowb();
6557
6558 bnx2x_int_enable(bp);
6559
6560 /* Check for SPIO5 */
6561 bnx2x_attn_int_deasserted0(bp,
6562 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6563 AEU_INPUTS_ATTN_BITS_SPIO5);
6564 }
6565
6566 /* gzip service functions */
bnx2x_gunzip_init(struct bnx2x * bp)6567 static int bnx2x_gunzip_init(struct bnx2x *bp)
6568 {
6569 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6570 &bp->gunzip_mapping, GFP_KERNEL);
6571 if (bp->gunzip_buf == NULL)
6572 goto gunzip_nomem1;
6573
6574 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6575 if (bp->strm == NULL)
6576 goto gunzip_nomem2;
6577
6578 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6579 if (bp->strm->workspace == NULL)
6580 goto gunzip_nomem3;
6581
6582 return 0;
6583
6584 gunzip_nomem3:
6585 kfree(bp->strm);
6586 bp->strm = NULL;
6587
6588 gunzip_nomem2:
6589 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6590 bp->gunzip_mapping);
6591 bp->gunzip_buf = NULL;
6592
6593 gunzip_nomem1:
6594 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6595 return -ENOMEM;
6596 }
6597
bnx2x_gunzip_end(struct bnx2x * bp)6598 static void bnx2x_gunzip_end(struct bnx2x *bp)
6599 {
6600 if (bp->strm) {
6601 vfree(bp->strm->workspace);
6602 kfree(bp->strm);
6603 bp->strm = NULL;
6604 }
6605
6606 if (bp->gunzip_buf) {
6607 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6608 bp->gunzip_mapping);
6609 bp->gunzip_buf = NULL;
6610 }
6611 }
6612
bnx2x_gunzip(struct bnx2x * bp,const u8 * zbuf,int len)6613 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6614 {
6615 int n, rc;
6616
6617 /* check gzip header */
6618 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6619 BNX2X_ERR("Bad gzip header\n");
6620 return -EINVAL;
6621 }
6622
6623 n = 10;
6624
6625 #define FNAME 0x8
6626
6627 if (zbuf[3] & FNAME)
6628 while ((zbuf[n++] != 0) && (n < len));
6629
6630 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6631 bp->strm->avail_in = len - n;
6632 bp->strm->next_out = bp->gunzip_buf;
6633 bp->strm->avail_out = FW_BUF_SIZE;
6634
6635 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6636 if (rc != Z_OK)
6637 return rc;
6638
6639 rc = zlib_inflate(bp->strm, Z_FINISH);
6640 if ((rc != Z_OK) && (rc != Z_STREAM_END))
6641 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6642 bp->strm->msg);
6643
6644 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6645 if (bp->gunzip_outlen & 0x3)
6646 netdev_err(bp->dev,
6647 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6648 bp->gunzip_outlen);
6649 bp->gunzip_outlen >>= 2;
6650
6651 zlib_inflateEnd(bp->strm);
6652
6653 if (rc == Z_STREAM_END)
6654 return 0;
6655
6656 return rc;
6657 }
6658
6659 /* nic load/unload */
6660
6661 /*
6662 * General service functions
6663 */
6664
6665 /* send a NIG loopback debug packet */
bnx2x_lb_pckt(struct bnx2x * bp)6666 static void bnx2x_lb_pckt(struct bnx2x *bp)
6667 {
6668 u32 wb_write[3];
6669
6670 /* Ethernet source and destination addresses */
6671 wb_write[0] = 0x55555555;
6672 wb_write[1] = 0x55555555;
6673 wb_write[2] = 0x20; /* SOP */
6674 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6675
6676 /* NON-IP protocol */
6677 wb_write[0] = 0x09000000;
6678 wb_write[1] = 0x55555555;
6679 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
6680 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6681 }
6682
6683 /* some of the internal memories
6684 * are not directly readable from the driver
6685 * to test them we send debug packets
6686 */
bnx2x_int_mem_test(struct bnx2x * bp)6687 static int bnx2x_int_mem_test(struct bnx2x *bp)
6688 {
6689 int factor;
6690 int count, i;
6691 u32 val = 0;
6692
6693 if (CHIP_REV_IS_FPGA(bp))
6694 factor = 120;
6695 else if (CHIP_REV_IS_EMUL(bp))
6696 factor = 200;
6697 else
6698 factor = 1;
6699
6700 /* Disable inputs of parser neighbor blocks */
6701 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6702 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6703 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6704 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6705
6706 /* Write 0 to parser credits for CFC search request */
6707 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6708
6709 /* send Ethernet packet */
6710 bnx2x_lb_pckt(bp);
6711
6712 /* TODO do i reset NIG statistic? */
6713 /* Wait until NIG register shows 1 packet of size 0x10 */
6714 count = 1000 * factor;
6715 while (count) {
6716
6717 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6718 val = *bnx2x_sp(bp, wb_data[0]);
6719 if (val == 0x10)
6720 break;
6721
6722 usleep_range(10000, 20000);
6723 count--;
6724 }
6725 if (val != 0x10) {
6726 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6727 return -1;
6728 }
6729
6730 /* Wait until PRS register shows 1 packet */
6731 count = 1000 * factor;
6732 while (count) {
6733 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6734 if (val == 1)
6735 break;
6736
6737 usleep_range(10000, 20000);
6738 count--;
6739 }
6740 if (val != 0x1) {
6741 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6742 return -2;
6743 }
6744
6745 /* Reset and init BRB, PRS */
6746 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6747 msleep(50);
6748 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6749 msleep(50);
6750 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6751 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6752
6753 DP(NETIF_MSG_HW, "part2\n");
6754
6755 /* Disable inputs of parser neighbor blocks */
6756 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6757 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6758 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6759 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6760
6761 /* Write 0 to parser credits for CFC search request */
6762 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6763
6764 /* send 10 Ethernet packets */
6765 for (i = 0; i < 10; i++)
6766 bnx2x_lb_pckt(bp);
6767
6768 /* Wait until NIG register shows 10 + 1
6769 packets of size 11*0x10 = 0xb0 */
6770 count = 1000 * factor;
6771 while (count) {
6772
6773 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6774 val = *bnx2x_sp(bp, wb_data[0]);
6775 if (val == 0xb0)
6776 break;
6777
6778 usleep_range(10000, 20000);
6779 count--;
6780 }
6781 if (val != 0xb0) {
6782 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6783 return -3;
6784 }
6785
6786 /* Wait until PRS register shows 2 packets */
6787 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6788 if (val != 2)
6789 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6790
6791 /* Write 1 to parser credits for CFC search request */
6792 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6793
6794 /* Wait until PRS register shows 3 packets */
6795 msleep(10 * factor);
6796 /* Wait until NIG register shows 1 packet of size 0x10 */
6797 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6798 if (val != 3)
6799 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6800
6801 /* clear NIG EOP FIFO */
6802 for (i = 0; i < 11; i++)
6803 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6804 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6805 if (val != 1) {
6806 BNX2X_ERR("clear of NIG failed\n");
6807 return -4;
6808 }
6809
6810 /* Reset and init BRB, PRS, NIG */
6811 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6812 msleep(50);
6813 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6814 msleep(50);
6815 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6816 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6817 if (!CNIC_SUPPORT(bp))
6818 /* set NIC mode */
6819 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6820
6821 /* Enable inputs of parser neighbor blocks */
6822 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6823 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6824 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6825 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6826
6827 DP(NETIF_MSG_HW, "done\n");
6828
6829 return 0; /* OK */
6830 }
6831
bnx2x_enable_blocks_attention(struct bnx2x * bp)6832 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6833 {
6834 u32 val;
6835
6836 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6837 if (!CHIP_IS_E1x(bp))
6838 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6839 else
6840 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6841 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6842 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6843 /*
6844 * mask read length error interrupts in brb for parser
6845 * (parsing unit and 'checksum and crc' unit)
6846 * these errors are legal (PU reads fixed length and CAC can cause
6847 * read length error on truncated packets)
6848 */
6849 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6850 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6851 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6852 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6853 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6854 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6855 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6856 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6857 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6858 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6859 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6860 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6861 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6862 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6863 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6864 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6865 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6866 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6867 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6868
6869 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
6870 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6871 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6872 if (!CHIP_IS_E1x(bp))
6873 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6874 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6875 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6876
6877 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6878 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6879 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6880 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6881
6882 if (!CHIP_IS_E1x(bp))
6883 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6884 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6885
6886 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6887 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6888 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6889 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6890 }
6891
bnx2x_reset_common(struct bnx2x * bp)6892 static void bnx2x_reset_common(struct bnx2x *bp)
6893 {
6894 u32 val = 0x1400;
6895
6896 /* reset_common */
6897 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6898 0xd3ffff7f);
6899
6900 if (CHIP_IS_E3(bp)) {
6901 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6902 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6903 }
6904
6905 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6906 }
6907
bnx2x_setup_dmae(struct bnx2x * bp)6908 static void bnx2x_setup_dmae(struct bnx2x *bp)
6909 {
6910 bp->dmae_ready = 0;
6911 spin_lock_init(&bp->dmae_lock);
6912 }
6913
bnx2x_init_pxp(struct bnx2x * bp)6914 static void bnx2x_init_pxp(struct bnx2x *bp)
6915 {
6916 u16 devctl;
6917 int r_order, w_order;
6918
6919 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6920 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6921 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6922 if (bp->mrrs == -1)
6923 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6924 else {
6925 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6926 r_order = bp->mrrs;
6927 }
6928
6929 bnx2x_init_pxp_arb(bp, r_order, w_order);
6930 }
6931
bnx2x_setup_fan_failure_detection(struct bnx2x * bp)6932 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6933 {
6934 int is_required;
6935 u32 val;
6936 int port;
6937
6938 if (BP_NOMCP(bp))
6939 return;
6940
6941 is_required = 0;
6942 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6943 SHARED_HW_CFG_FAN_FAILURE_MASK;
6944
6945 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6946 is_required = 1;
6947
6948 /*
6949 * The fan failure mechanism is usually related to the PHY type since
6950 * the power consumption of the board is affected by the PHY. Currently,
6951 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6952 */
6953 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6954 for (port = PORT_0; port < PORT_MAX; port++) {
6955 is_required |=
6956 bnx2x_fan_failure_det_req(
6957 bp,
6958 bp->common.shmem_base,
6959 bp->common.shmem2_base,
6960 port);
6961 }
6962
6963 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6964
6965 if (is_required == 0)
6966 return;
6967
6968 /* Fan failure is indicated by SPIO 5 */
6969 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6970
6971 /* set to active low mode */
6972 val = REG_RD(bp, MISC_REG_SPIO_INT);
6973 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6974 REG_WR(bp, MISC_REG_SPIO_INT, val);
6975
6976 /* enable interrupt to signal the IGU */
6977 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6978 val |= MISC_SPIO_SPIO5;
6979 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6980 }
6981
bnx2x_pf_disable(struct bnx2x * bp)6982 void bnx2x_pf_disable(struct bnx2x *bp)
6983 {
6984 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6985 val &= ~IGU_PF_CONF_FUNC_EN;
6986
6987 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6988 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6989 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6990 }
6991
bnx2x__common_init_phy(struct bnx2x * bp)6992 static void bnx2x__common_init_phy(struct bnx2x *bp)
6993 {
6994 u32 shmem_base[2], shmem2_base[2];
6995 /* Avoid common init in case MFW supports LFA */
6996 if (SHMEM2_RD(bp, size) >
6997 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6998 return;
6999 shmem_base[0] = bp->common.shmem_base;
7000 shmem2_base[0] = bp->common.shmem2_base;
7001 if (!CHIP_IS_E1x(bp)) {
7002 shmem_base[1] =
7003 SHMEM2_RD(bp, other_shmem_base_addr);
7004 shmem2_base[1] =
7005 SHMEM2_RD(bp, other_shmem2_base_addr);
7006 }
7007 bnx2x_acquire_phy_lock(bp);
7008 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7009 bp->common.chip_id);
7010 bnx2x_release_phy_lock(bp);
7011 }
7012
bnx2x_config_endianity(struct bnx2x * bp,u32 val)7013 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7014 {
7015 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7016 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7017 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7018 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7019 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7020
7021 /* make sure this value is 0 */
7022 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7023
7024 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7025 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7026 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7027 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7028 }
7029
bnx2x_set_endianity(struct bnx2x * bp)7030 static void bnx2x_set_endianity(struct bnx2x *bp)
7031 {
7032 #ifdef __BIG_ENDIAN
7033 bnx2x_config_endianity(bp, 1);
7034 #else
7035 bnx2x_config_endianity(bp, 0);
7036 #endif
7037 }
7038
bnx2x_reset_endianity(struct bnx2x * bp)7039 static void bnx2x_reset_endianity(struct bnx2x *bp)
7040 {
7041 bnx2x_config_endianity(bp, 0);
7042 }
7043
7044 /**
7045 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7046 *
7047 * @bp: driver handle
7048 */
bnx2x_init_hw_common(struct bnx2x * bp)7049 static int bnx2x_init_hw_common(struct bnx2x *bp)
7050 {
7051 u32 val;
7052
7053 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
7054
7055 /*
7056 * take the RESET lock to protect undi_unload flow from accessing
7057 * registers while we're resetting the chip
7058 */
7059 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7060
7061 bnx2x_reset_common(bp);
7062 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7063
7064 val = 0xfffc;
7065 if (CHIP_IS_E3(bp)) {
7066 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7067 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7068 }
7069 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7070
7071 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7072
7073 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7074
7075 if (!CHIP_IS_E1x(bp)) {
7076 u8 abs_func_id;
7077
7078 /**
7079 * 4-port mode or 2-port mode we need to turn of master-enable
7080 * for everyone, after that, turn it back on for self.
7081 * so, we disregard multi-function or not, and always disable
7082 * for all functions on the given path, this means 0,2,4,6 for
7083 * path 0 and 1,3,5,7 for path 1
7084 */
7085 for (abs_func_id = BP_PATH(bp);
7086 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7087 if (abs_func_id == BP_ABS_FUNC(bp)) {
7088 REG_WR(bp,
7089 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7090 1);
7091 continue;
7092 }
7093
7094 bnx2x_pretend_func(bp, abs_func_id);
7095 /* clear pf enable */
7096 bnx2x_pf_disable(bp);
7097 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7098 }
7099 }
7100
7101 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7102 if (CHIP_IS_E1(bp)) {
7103 /* enable HW interrupt from PXP on USDM overflow
7104 bit 16 on INT_MASK_0 */
7105 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7106 }
7107
7108 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7109 bnx2x_init_pxp(bp);
7110 bnx2x_set_endianity(bp);
7111 bnx2x_ilt_init_page_size(bp, INITOP_SET);
7112
7113 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7114 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7115
7116 /* let the HW do it's magic ... */
7117 msleep(100);
7118 /* finish PXP init */
7119 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7120 if (val != 1) {
7121 BNX2X_ERR("PXP2 CFG failed\n");
7122 return -EBUSY;
7123 }
7124 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7125 if (val != 1) {
7126 BNX2X_ERR("PXP2 RD_INIT failed\n");
7127 return -EBUSY;
7128 }
7129
7130 /* Timers bug workaround E2 only. We need to set the entire ILT to
7131 * have entries with value "0" and valid bit on.
7132 * This needs to be done by the first PF that is loaded in a path
7133 * (i.e. common phase)
7134 */
7135 if (!CHIP_IS_E1x(bp)) {
7136 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7137 * (i.e. vnic3) to start even if it is marked as "scan-off".
7138 * This occurs when a different function (func2,3) is being marked
7139 * as "scan-off". Real-life scenario for example: if a driver is being
7140 * load-unloaded while func6,7 are down. This will cause the timer to access
7141 * the ilt, translate to a logical address and send a request to read/write.
7142 * Since the ilt for the function that is down is not valid, this will cause
7143 * a translation error which is unrecoverable.
7144 * The Workaround is intended to make sure that when this happens nothing fatal
7145 * will occur. The workaround:
7146 * 1. First PF driver which loads on a path will:
7147 * a. After taking the chip out of reset, by using pretend,
7148 * it will write "0" to the following registers of
7149 * the other vnics.
7150 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7151 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7152 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7153 * And for itself it will write '1' to
7154 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7155 * dmae-operations (writing to pram for example.)
7156 * note: can be done for only function 6,7 but cleaner this
7157 * way.
7158 * b. Write zero+valid to the entire ILT.
7159 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
7160 * VNIC3 (of that port). The range allocated will be the
7161 * entire ILT. This is needed to prevent ILT range error.
7162 * 2. Any PF driver load flow:
7163 * a. ILT update with the physical addresses of the allocated
7164 * logical pages.
7165 * b. Wait 20msec. - note that this timeout is needed to make
7166 * sure there are no requests in one of the PXP internal
7167 * queues with "old" ILT addresses.
7168 * c. PF enable in the PGLC.
7169 * d. Clear the was_error of the PF in the PGLC. (could have
7170 * occurred while driver was down)
7171 * e. PF enable in the CFC (WEAK + STRONG)
7172 * f. Timers scan enable
7173 * 3. PF driver unload flow:
7174 * a. Clear the Timers scan_en.
7175 * b. Polling for scan_on=0 for that PF.
7176 * c. Clear the PF enable bit in the PXP.
7177 * d. Clear the PF enable in the CFC (WEAK + STRONG)
7178 * e. Write zero+valid to all ILT entries (The valid bit must
7179 * stay set)
7180 * f. If this is VNIC 3 of a port then also init
7181 * first_timers_ilt_entry to zero and last_timers_ilt_entry
7182 * to the last entry in the ILT.
7183 *
7184 * Notes:
7185 * Currently the PF error in the PGLC is non recoverable.
7186 * In the future the there will be a recovery routine for this error.
7187 * Currently attention is masked.
7188 * Having an MCP lock on the load/unload process does not guarantee that
7189 * there is no Timer disable during Func6/7 enable. This is because the
7190 * Timers scan is currently being cleared by the MCP on FLR.
7191 * Step 2.d can be done only for PF6/7 and the driver can also check if
7192 * there is error before clearing it. But the flow above is simpler and
7193 * more general.
7194 * All ILT entries are written by zero+valid and not just PF6/7
7195 * ILT entries since in the future the ILT entries allocation for
7196 * PF-s might be dynamic.
7197 */
7198 struct ilt_client_info ilt_cli;
7199 struct bnx2x_ilt ilt;
7200 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7201 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7202
7203 /* initialize dummy TM client */
7204 ilt_cli.start = 0;
7205 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7206 ilt_cli.client_num = ILT_CLIENT_TM;
7207
7208 /* Step 1: set zeroes to all ilt page entries with valid bit on
7209 * Step 2: set the timers first/last ilt entry to point
7210 * to the entire range to prevent ILT range error for 3rd/4th
7211 * vnic (this code assumes existence of the vnic)
7212 *
7213 * both steps performed by call to bnx2x_ilt_client_init_op()
7214 * with dummy TM client
7215 *
7216 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7217 * and his brother are split registers
7218 */
7219 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7220 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7221 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7222
7223 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7224 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7225 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7226 }
7227
7228 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7229 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7230
7231 if (!CHIP_IS_E1x(bp)) {
7232 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7233 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7234 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7235
7236 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7237
7238 /* let the HW do it's magic ... */
7239 do {
7240 msleep(200);
7241 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7242 } while (factor-- && (val != 1));
7243
7244 if (val != 1) {
7245 BNX2X_ERR("ATC_INIT failed\n");
7246 return -EBUSY;
7247 }
7248 }
7249
7250 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7251
7252 bnx2x_iov_init_dmae(bp);
7253
7254 /* clean the DMAE memory */
7255 bp->dmae_ready = 1;
7256 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7257
7258 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7259
7260 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7261
7262 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7263
7264 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7265
7266 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7267 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7268 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7269 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7270
7271 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7272
7273 /* QM queues pointers table */
7274 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7275
7276 /* soft reset pulse */
7277 REG_WR(bp, QM_REG_SOFT_RESET, 1);
7278 REG_WR(bp, QM_REG_SOFT_RESET, 0);
7279
7280 if (CNIC_SUPPORT(bp))
7281 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7282
7283 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7284
7285 if (!CHIP_REV_IS_SLOW(bp))
7286 /* enable hw interrupt from doorbell Q */
7287 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7288
7289 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7290
7291 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7292 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7293
7294 if (!CHIP_IS_E1(bp))
7295 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7296
7297 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7298 if (IS_MF_AFEX(bp)) {
7299 /* configure that VNTag and VLAN headers must be
7300 * received in afex mode
7301 */
7302 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7303 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7304 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7305 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7306 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7307 } else {
7308 /* Bit-map indicating which L2 hdrs may appear
7309 * after the basic Ethernet header
7310 */
7311 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7312 bp->path_has_ovlan ? 7 : 6);
7313 }
7314 }
7315
7316 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7317 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7318 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7319 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7320
7321 if (!CHIP_IS_E1x(bp)) {
7322 /* reset VFC memories */
7323 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7324 VFC_MEMORIES_RST_REG_CAM_RST |
7325 VFC_MEMORIES_RST_REG_RAM_RST);
7326 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7327 VFC_MEMORIES_RST_REG_CAM_RST |
7328 VFC_MEMORIES_RST_REG_RAM_RST);
7329
7330 msleep(20);
7331 }
7332
7333 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7334 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7335 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7336 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7337
7338 /* sync semi rtc */
7339 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7340 0x80000000);
7341 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7342 0x80000000);
7343
7344 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7345 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7346 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7347
7348 if (!CHIP_IS_E1x(bp)) {
7349 if (IS_MF_AFEX(bp)) {
7350 /* configure that VNTag and VLAN headers must be
7351 * sent in afex mode
7352 */
7353 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7354 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7355 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7356 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7357 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7358 } else {
7359 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7360 bp->path_has_ovlan ? 7 : 6);
7361 }
7362 }
7363
7364 REG_WR(bp, SRC_REG_SOFT_RST, 1);
7365
7366 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7367
7368 if (CNIC_SUPPORT(bp)) {
7369 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7370 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7371 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7372 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7373 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7374 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7375 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7376 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7377 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7378 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7379 }
7380 REG_WR(bp, SRC_REG_SOFT_RST, 0);
7381
7382 if (sizeof(union cdu_context) != 1024)
7383 /* we currently assume that a context is 1024 bytes */
7384 dev_alert(&bp->pdev->dev,
7385 "please adjust the size of cdu_context(%ld)\n",
7386 (long)sizeof(union cdu_context));
7387
7388 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7389 val = (4 << 24) + (0 << 12) + 1024;
7390 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7391
7392 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7393 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7394 /* enable context validation interrupt from CFC */
7395 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7396
7397 /* set the thresholds to prevent CFC/CDU race */
7398 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7399
7400 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7401
7402 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7403 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7404
7405 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7406 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7407
7408 /* Reset PCIE errors for debug */
7409 REG_WR(bp, 0x2814, 0xffffffff);
7410 REG_WR(bp, 0x3820, 0xffffffff);
7411
7412 if (!CHIP_IS_E1x(bp)) {
7413 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7414 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7415 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7416 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7417 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7418 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7419 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7420 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7421 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7422 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7423 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7424 }
7425
7426 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7427 if (!CHIP_IS_E1(bp)) {
7428 /* in E3 this done in per-port section */
7429 if (!CHIP_IS_E3(bp))
7430 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7431 }
7432 if (CHIP_IS_E1H(bp))
7433 /* not applicable for E2 (and above ...) */
7434 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7435
7436 if (CHIP_REV_IS_SLOW(bp))
7437 msleep(200);
7438
7439 /* finish CFC init */
7440 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7441 if (val != 1) {
7442 BNX2X_ERR("CFC LL_INIT failed\n");
7443 return -EBUSY;
7444 }
7445 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7446 if (val != 1) {
7447 BNX2X_ERR("CFC AC_INIT failed\n");
7448 return -EBUSY;
7449 }
7450 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7451 if (val != 1) {
7452 BNX2X_ERR("CFC CAM_INIT failed\n");
7453 return -EBUSY;
7454 }
7455 REG_WR(bp, CFC_REG_DEBUG0, 0);
7456
7457 if (CHIP_IS_E1(bp)) {
7458 /* read NIG statistic
7459 to see if this is our first up since powerup */
7460 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7461 val = *bnx2x_sp(bp, wb_data[0]);
7462
7463 /* do internal memory self test */
7464 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7465 BNX2X_ERR("internal mem self test failed\n");
7466 return -EBUSY;
7467 }
7468 }
7469
7470 bnx2x_setup_fan_failure_detection(bp);
7471
7472 /* clear PXP2 attentions */
7473 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7474
7475 bnx2x_enable_blocks_attention(bp);
7476 bnx2x_enable_blocks_parity(bp);
7477
7478 if (!BP_NOMCP(bp)) {
7479 if (CHIP_IS_E1x(bp))
7480 bnx2x__common_init_phy(bp);
7481 } else
7482 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7483
7484 if (SHMEM2_HAS(bp, netproc_fw_ver))
7485 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7486
7487 return 0;
7488 }
7489
7490 /**
7491 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7492 *
7493 * @bp: driver handle
7494 */
bnx2x_init_hw_common_chip(struct bnx2x * bp)7495 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7496 {
7497 int rc = bnx2x_init_hw_common(bp);
7498
7499 if (rc)
7500 return rc;
7501
7502 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7503 if (!BP_NOMCP(bp))
7504 bnx2x__common_init_phy(bp);
7505
7506 return 0;
7507 }
7508
bnx2x_init_hw_port(struct bnx2x * bp)7509 static int bnx2x_init_hw_port(struct bnx2x *bp)
7510 {
7511 int port = BP_PORT(bp);
7512 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7513 u32 low, high;
7514 u32 val, reg;
7515
7516 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
7517
7518 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7519
7520 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7521 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7522 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7523
7524 /* Timers bug workaround: disables the pf_master bit in pglue at
7525 * common phase, we need to enable it here before any dmae access are
7526 * attempted. Therefore we manually added the enable-master to the
7527 * port phase (it also happens in the function phase)
7528 */
7529 if (!CHIP_IS_E1x(bp))
7530 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7531
7532 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7533 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7534 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7535 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7536
7537 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7538 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7539 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7540 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7541
7542 /* QM cid (connection) count */
7543 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7544
7545 if (CNIC_SUPPORT(bp)) {
7546 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7547 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7548 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7549 }
7550
7551 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7552
7553 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7554
7555 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7556
7557 if (IS_MF(bp))
7558 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7559 else if (bp->dev->mtu > 4096) {
7560 if (bp->flags & ONE_PORT_FLAG)
7561 low = 160;
7562 else {
7563 val = bp->dev->mtu;
7564 /* (24*1024 + val*4)/256 */
7565 low = 96 + (val/64) +
7566 ((val % 64) ? 1 : 0);
7567 }
7568 } else
7569 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7570 high = low + 56; /* 14*1024/256 */
7571 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7572 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7573 }
7574
7575 if (CHIP_MODE_IS_4_PORT(bp))
7576 REG_WR(bp, (BP_PORT(bp) ?
7577 BRB1_REG_MAC_GUARANTIED_1 :
7578 BRB1_REG_MAC_GUARANTIED_0), 40);
7579
7580 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7581 if (CHIP_IS_E3B0(bp)) {
7582 if (IS_MF_AFEX(bp)) {
7583 /* configure headers for AFEX mode */
7584 REG_WR(bp, BP_PORT(bp) ?
7585 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7586 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7587 REG_WR(bp, BP_PORT(bp) ?
7588 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7589 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7590 REG_WR(bp, BP_PORT(bp) ?
7591 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7592 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7593 } else {
7594 /* Ovlan exists only if we are in multi-function +
7595 * switch-dependent mode, in switch-independent there
7596 * is no ovlan headers
7597 */
7598 REG_WR(bp, BP_PORT(bp) ?
7599 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7600 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7601 (bp->path_has_ovlan ? 7 : 6));
7602 }
7603 }
7604
7605 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7606 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7607 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7608 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7609
7610 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7611 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7612 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7613 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7614
7615 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7616 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7617
7618 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7619
7620 if (CHIP_IS_E1x(bp)) {
7621 /* configure PBF to work without PAUSE mtu 9000 */
7622 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7623
7624 /* update threshold */
7625 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7626 /* update init credit */
7627 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7628
7629 /* probe changes */
7630 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7631 udelay(50);
7632 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7633 }
7634
7635 if (CNIC_SUPPORT(bp))
7636 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7637
7638 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7639 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7640
7641 if (CHIP_IS_E1(bp)) {
7642 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7643 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7644 }
7645 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7646
7647 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7648
7649 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7650 /* init aeu_mask_attn_func_0/1:
7651 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7652 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7653 * bits 4-7 are used for "per vn group attention" */
7654 val = IS_MF(bp) ? 0xF7 : 0x7;
7655 /* Enable DCBX attention for all but E1 */
7656 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7657 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7658
7659 /* SCPAD_PARITY should NOT trigger close the gates */
7660 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7661 REG_WR(bp, reg,
7662 REG_RD(bp, reg) &
7663 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7664
7665 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7666 REG_WR(bp, reg,
7667 REG_RD(bp, reg) &
7668 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7669
7670 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7671
7672 if (!CHIP_IS_E1x(bp)) {
7673 /* Bit-map indicating which L2 hdrs may appear after the
7674 * basic Ethernet header
7675 */
7676 if (IS_MF_AFEX(bp))
7677 REG_WR(bp, BP_PORT(bp) ?
7678 NIG_REG_P1_HDRS_AFTER_BASIC :
7679 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7680 else
7681 REG_WR(bp, BP_PORT(bp) ?
7682 NIG_REG_P1_HDRS_AFTER_BASIC :
7683 NIG_REG_P0_HDRS_AFTER_BASIC,
7684 IS_MF_SD(bp) ? 7 : 6);
7685
7686 if (CHIP_IS_E3(bp))
7687 REG_WR(bp, BP_PORT(bp) ?
7688 NIG_REG_LLH1_MF_MODE :
7689 NIG_REG_LLH_MF_MODE, IS_MF(bp));
7690 }
7691 if (!CHIP_IS_E3(bp))
7692 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7693
7694 if (!CHIP_IS_E1(bp)) {
7695 /* 0x2 disable mf_ov, 0x1 enable */
7696 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7697 (IS_MF_SD(bp) ? 0x1 : 0x2));
7698
7699 if (!CHIP_IS_E1x(bp)) {
7700 val = 0;
7701 switch (bp->mf_mode) {
7702 case MULTI_FUNCTION_SD:
7703 val = 1;
7704 break;
7705 case MULTI_FUNCTION_SI:
7706 case MULTI_FUNCTION_AFEX:
7707 val = 2;
7708 break;
7709 }
7710
7711 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7712 NIG_REG_LLH0_CLS_TYPE), val);
7713 }
7714 {
7715 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7716 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7717 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7718 }
7719 }
7720
7721 /* If SPIO5 is set to generate interrupts, enable it for this port */
7722 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7723 if (val & MISC_SPIO_SPIO5) {
7724 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7725 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7726 val = REG_RD(bp, reg_addr);
7727 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7728 REG_WR(bp, reg_addr, val);
7729 }
7730
7731 return 0;
7732 }
7733
bnx2x_ilt_wr(struct bnx2x * bp,u32 index,dma_addr_t addr)7734 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7735 {
7736 int reg;
7737 u32 wb_write[2];
7738
7739 if (CHIP_IS_E1(bp))
7740 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7741 else
7742 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7743
7744 wb_write[0] = ONCHIP_ADDR1(addr);
7745 wb_write[1] = ONCHIP_ADDR2(addr);
7746 REG_WR_DMAE(bp, reg, wb_write, 2);
7747 }
7748
bnx2x_igu_clear_sb_gen(struct bnx2x * bp,u8 func,u8 idu_sb_id,bool is_pf)7749 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7750 {
7751 u32 data, ctl, cnt = 100;
7752 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7753 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7754 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7755 u32 sb_bit = 1 << (idu_sb_id%32);
7756 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7757 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7758
7759 /* Not supported in BC mode */
7760 if (CHIP_INT_MODE_IS_BC(bp))
7761 return;
7762
7763 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7764 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7765 IGU_REGULAR_CLEANUP_SET |
7766 IGU_REGULAR_BCLEANUP;
7767
7768 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7769 func_encode << IGU_CTRL_REG_FID_SHIFT |
7770 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7771
7772 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7773 data, igu_addr_data);
7774 REG_WR(bp, igu_addr_data, data);
7775 mmiowb();
7776 barrier();
7777 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7778 ctl, igu_addr_ctl);
7779 REG_WR(bp, igu_addr_ctl, ctl);
7780 mmiowb();
7781 barrier();
7782
7783 /* wait for clean up to finish */
7784 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7785 msleep(20);
7786
7787 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7788 DP(NETIF_MSG_HW,
7789 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7790 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7791 }
7792 }
7793
bnx2x_igu_clear_sb(struct bnx2x * bp,u8 idu_sb_id)7794 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7795 {
7796 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7797 }
7798
bnx2x_clear_func_ilt(struct bnx2x * bp,u32 func)7799 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7800 {
7801 u32 i, base = FUNC_ILT_BASE(func);
7802 for (i = base; i < base + ILT_PER_FUNC; i++)
7803 bnx2x_ilt_wr(bp, i, 0);
7804 }
7805
bnx2x_init_searcher(struct bnx2x * bp)7806 static void bnx2x_init_searcher(struct bnx2x *bp)
7807 {
7808 int port = BP_PORT(bp);
7809 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7810 /* T1 hash bits value determines the T1 number of entries */
7811 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7812 }
7813
bnx2x_func_switch_update(struct bnx2x * bp,int suspend)7814 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7815 {
7816 int rc;
7817 struct bnx2x_func_state_params func_params = {NULL};
7818 struct bnx2x_func_switch_update_params *switch_update_params =
7819 &func_params.params.switch_update;
7820
7821 /* Prepare parameters for function state transitions */
7822 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7823 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7824
7825 func_params.f_obj = &bp->func_obj;
7826 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7827
7828 /* Function parameters */
7829 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7830 &switch_update_params->changes);
7831 if (suspend)
7832 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7833 &switch_update_params->changes);
7834
7835 rc = bnx2x_func_state_change(bp, &func_params);
7836
7837 return rc;
7838 }
7839
bnx2x_reset_nic_mode(struct bnx2x * bp)7840 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7841 {
7842 int rc, i, port = BP_PORT(bp);
7843 int vlan_en = 0, mac_en[NUM_MACS];
7844
7845 /* Close input from network */
7846 if (bp->mf_mode == SINGLE_FUNCTION) {
7847 bnx2x_set_rx_filter(&bp->link_params, 0);
7848 } else {
7849 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7850 NIG_REG_LLH0_FUNC_EN);
7851 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7852 NIG_REG_LLH0_FUNC_EN, 0);
7853 for (i = 0; i < NUM_MACS; i++) {
7854 mac_en[i] = REG_RD(bp, port ?
7855 (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7856 4 * i) :
7857 (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7858 4 * i));
7859 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7860 4 * i) :
7861 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7862 }
7863 }
7864
7865 /* Close BMC to host */
7866 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7867 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7868
7869 /* Suspend Tx switching to the PF. Completion of this ramrod
7870 * further guarantees that all the packets of that PF / child
7871 * VFs in BRB were processed by the Parser, so it is safe to
7872 * change the NIC_MODE register.
7873 */
7874 rc = bnx2x_func_switch_update(bp, 1);
7875 if (rc) {
7876 BNX2X_ERR("Can't suspend tx-switching!\n");
7877 return rc;
7878 }
7879
7880 /* Change NIC_MODE register */
7881 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7882
7883 /* Open input from network */
7884 if (bp->mf_mode == SINGLE_FUNCTION) {
7885 bnx2x_set_rx_filter(&bp->link_params, 1);
7886 } else {
7887 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7888 NIG_REG_LLH0_FUNC_EN, vlan_en);
7889 for (i = 0; i < NUM_MACS; i++) {
7890 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7891 4 * i) :
7892 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7893 mac_en[i]);
7894 }
7895 }
7896
7897 /* Enable BMC to host */
7898 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7899 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7900
7901 /* Resume Tx switching to the PF */
7902 rc = bnx2x_func_switch_update(bp, 0);
7903 if (rc) {
7904 BNX2X_ERR("Can't resume tx-switching!\n");
7905 return rc;
7906 }
7907
7908 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7909 return 0;
7910 }
7911
bnx2x_init_hw_func_cnic(struct bnx2x * bp)7912 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7913 {
7914 int rc;
7915
7916 bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7917
7918 if (CONFIGURE_NIC_MODE(bp)) {
7919 /* Configure searcher as part of function hw init */
7920 bnx2x_init_searcher(bp);
7921
7922 /* Reset NIC mode */
7923 rc = bnx2x_reset_nic_mode(bp);
7924 if (rc)
7925 BNX2X_ERR("Can't change NIC mode!\n");
7926 return rc;
7927 }
7928
7929 return 0;
7930 }
7931
7932 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7933 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7934 * the addresses of the transaction, resulting in was-error bit set in the pci
7935 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7936 * to clear the interrupt which detected this from the pglueb and the was done
7937 * bit
7938 */
bnx2x_clean_pglue_errors(struct bnx2x * bp)7939 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7940 {
7941 if (!CHIP_IS_E1x(bp))
7942 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7943 1 << BP_ABS_FUNC(bp));
7944 }
7945
bnx2x_init_hw_func(struct bnx2x * bp)7946 static int bnx2x_init_hw_func(struct bnx2x *bp)
7947 {
7948 int port = BP_PORT(bp);
7949 int func = BP_FUNC(bp);
7950 int init_phase = PHASE_PF0 + func;
7951 struct bnx2x_ilt *ilt = BP_ILT(bp);
7952 u16 cdu_ilt_start;
7953 u32 addr, val;
7954 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7955 int i, main_mem_width, rc;
7956
7957 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7958
7959 /* FLR cleanup - hmmm */
7960 if (!CHIP_IS_E1x(bp)) {
7961 rc = bnx2x_pf_flr_clnup(bp);
7962 if (rc) {
7963 bnx2x_fw_dump(bp);
7964 return rc;
7965 }
7966 }
7967
7968 /* set MSI reconfigure capability */
7969 if (bp->common.int_block == INT_BLOCK_HC) {
7970 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7971 val = REG_RD(bp, addr);
7972 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7973 REG_WR(bp, addr, val);
7974 }
7975
7976 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7977 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7978
7979 ilt = BP_ILT(bp);
7980 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7981
7982 if (IS_SRIOV(bp))
7983 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7984 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7985
7986 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7987 * those of the VFs, so start line should be reset
7988 */
7989 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7990 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7991 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7992 ilt->lines[cdu_ilt_start + i].page_mapping =
7993 bp->context[i].cxt_mapping;
7994 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7995 }
7996
7997 bnx2x_ilt_init_op(bp, INITOP_SET);
7998
7999 if (!CONFIGURE_NIC_MODE(bp)) {
8000 bnx2x_init_searcher(bp);
8001 REG_WR(bp, PRS_REG_NIC_MODE, 0);
8002 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8003 } else {
8004 /* Set NIC mode */
8005 REG_WR(bp, PRS_REG_NIC_MODE, 1);
8006 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8007 }
8008
8009 if (!CHIP_IS_E1x(bp)) {
8010 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8011
8012 /* Turn on a single ISR mode in IGU if driver is going to use
8013 * INT#x or MSI
8014 */
8015 if (!(bp->flags & USING_MSIX_FLAG))
8016 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8017 /*
8018 * Timers workaround bug: function init part.
8019 * Need to wait 20msec after initializing ILT,
8020 * needed to make sure there are no requests in
8021 * one of the PXP internal queues with "old" ILT addresses
8022 */
8023 msleep(20);
8024 /*
8025 * Master enable - Due to WB DMAE writes performed before this
8026 * register is re-initialized as part of the regular function
8027 * init
8028 */
8029 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8030 /* Enable the function in IGU */
8031 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8032 }
8033
8034 bp->dmae_ready = 1;
8035
8036 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8037
8038 bnx2x_clean_pglue_errors(bp);
8039
8040 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8041 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8042 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8043 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8044 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8045 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8046 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8047 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8048 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8049 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8050 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8051 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8052 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8053
8054 if (!CHIP_IS_E1x(bp))
8055 REG_WR(bp, QM_REG_PF_EN, 1);
8056
8057 if (!CHIP_IS_E1x(bp)) {
8058 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8059 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8060 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8061 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8062 }
8063 bnx2x_init_block(bp, BLOCK_QM, init_phase);
8064
8065 bnx2x_init_block(bp, BLOCK_TM, init_phase);
8066 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8067 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8068
8069 bnx2x_iov_init_dq(bp);
8070
8071 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8072 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8073 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8074 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8075 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8076 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8077 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8078 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8079 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8080 if (!CHIP_IS_E1x(bp))
8081 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8082
8083 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8084
8085 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8086
8087 if (!CHIP_IS_E1x(bp))
8088 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8089
8090 if (IS_MF(bp)) {
8091 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8092 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8093 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8094 bp->mf_ov);
8095 }
8096 }
8097
8098 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8099
8100 /* HC init per function */
8101 if (bp->common.int_block == INT_BLOCK_HC) {
8102 if (CHIP_IS_E1H(bp)) {
8103 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8104
8105 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8106 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8107 }
8108 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8109
8110 } else {
8111 int num_segs, sb_idx, prod_offset;
8112
8113 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8114
8115 if (!CHIP_IS_E1x(bp)) {
8116 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8117 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8118 }
8119
8120 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8121
8122 if (!CHIP_IS_E1x(bp)) {
8123 int dsb_idx = 0;
8124 /**
8125 * Producer memory:
8126 * E2 mode: address 0-135 match to the mapping memory;
8127 * 136 - PF0 default prod; 137 - PF1 default prod;
8128 * 138 - PF2 default prod; 139 - PF3 default prod;
8129 * 140 - PF0 attn prod; 141 - PF1 attn prod;
8130 * 142 - PF2 attn prod; 143 - PF3 attn prod;
8131 * 144-147 reserved.
8132 *
8133 * E1.5 mode - In backward compatible mode;
8134 * for non default SB; each even line in the memory
8135 * holds the U producer and each odd line hold
8136 * the C producer. The first 128 producers are for
8137 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8138 * producers are for the DSB for each PF.
8139 * Each PF has five segments: (the order inside each
8140 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8141 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8142 * 144-147 attn prods;
8143 */
8144 /* non-default-status-blocks */
8145 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8146 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8147 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8148 prod_offset = (bp->igu_base_sb + sb_idx) *
8149 num_segs;
8150
8151 for (i = 0; i < num_segs; i++) {
8152 addr = IGU_REG_PROD_CONS_MEMORY +
8153 (prod_offset + i) * 4;
8154 REG_WR(bp, addr, 0);
8155 }
8156 /* send consumer update with value 0 */
8157 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8158 USTORM_ID, 0, IGU_INT_NOP, 1);
8159 bnx2x_igu_clear_sb(bp,
8160 bp->igu_base_sb + sb_idx);
8161 }
8162
8163 /* default-status-blocks */
8164 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8165 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8166
8167 if (CHIP_MODE_IS_4_PORT(bp))
8168 dsb_idx = BP_FUNC(bp);
8169 else
8170 dsb_idx = BP_VN(bp);
8171
8172 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8173 IGU_BC_BASE_DSB_PROD + dsb_idx :
8174 IGU_NORM_BASE_DSB_PROD + dsb_idx);
8175
8176 /*
8177 * igu prods come in chunks of E1HVN_MAX (4) -
8178 * does not matters what is the current chip mode
8179 */
8180 for (i = 0; i < (num_segs * E1HVN_MAX);
8181 i += E1HVN_MAX) {
8182 addr = IGU_REG_PROD_CONS_MEMORY +
8183 (prod_offset + i)*4;
8184 REG_WR(bp, addr, 0);
8185 }
8186 /* send consumer update with 0 */
8187 if (CHIP_INT_MODE_IS_BC(bp)) {
8188 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8189 USTORM_ID, 0, IGU_INT_NOP, 1);
8190 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8191 CSTORM_ID, 0, IGU_INT_NOP, 1);
8192 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8193 XSTORM_ID, 0, IGU_INT_NOP, 1);
8194 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8195 TSTORM_ID, 0, IGU_INT_NOP, 1);
8196 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8197 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8198 } else {
8199 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8200 USTORM_ID, 0, IGU_INT_NOP, 1);
8201 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8202 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8203 }
8204 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8205
8206 /* !!! These should become driver const once
8207 rf-tool supports split-68 const */
8208 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8209 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8210 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8211 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8212 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8213 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8214 }
8215 }
8216
8217 /* Reset PCIE errors for debug */
8218 REG_WR(bp, 0x2114, 0xffffffff);
8219 REG_WR(bp, 0x2120, 0xffffffff);
8220
8221 if (CHIP_IS_E1x(bp)) {
8222 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8223 main_mem_base = HC_REG_MAIN_MEMORY +
8224 BP_PORT(bp) * (main_mem_size * 4);
8225 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8226 main_mem_width = 8;
8227
8228 val = REG_RD(bp, main_mem_prty_clr);
8229 if (val)
8230 DP(NETIF_MSG_HW,
8231 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8232 val);
8233
8234 /* Clear "false" parity errors in MSI-X table */
8235 for (i = main_mem_base;
8236 i < main_mem_base + main_mem_size * 4;
8237 i += main_mem_width) {
8238 bnx2x_read_dmae(bp, i, main_mem_width / 4);
8239 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8240 i, main_mem_width / 4);
8241 }
8242 /* Clear HC parity attention */
8243 REG_RD(bp, main_mem_prty_clr);
8244 }
8245
8246 #ifdef BNX2X_STOP_ON_ERROR
8247 /* Enable STORMs SP logging */
8248 REG_WR8(bp, BAR_USTRORM_INTMEM +
8249 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8250 REG_WR8(bp, BAR_TSTRORM_INTMEM +
8251 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8252 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8253 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8254 REG_WR8(bp, BAR_XSTRORM_INTMEM +
8255 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8256 #endif
8257
8258 bnx2x_phy_probe(&bp->link_params);
8259
8260 return 0;
8261 }
8262
bnx2x_free_mem_cnic(struct bnx2x * bp)8263 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8264 {
8265 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8266
8267 if (!CHIP_IS_E1x(bp))
8268 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8269 sizeof(struct host_hc_status_block_e2));
8270 else
8271 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8272 sizeof(struct host_hc_status_block_e1x));
8273
8274 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8275 }
8276
bnx2x_free_mem(struct bnx2x * bp)8277 void bnx2x_free_mem(struct bnx2x *bp)
8278 {
8279 int i;
8280
8281 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8282 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8283
8284 if (IS_VF(bp))
8285 return;
8286
8287 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8288 sizeof(struct host_sp_status_block));
8289
8290 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8291 sizeof(struct bnx2x_slowpath));
8292
8293 for (i = 0; i < L2_ILT_LINES(bp); i++)
8294 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8295 bp->context[i].size);
8296 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8297
8298 BNX2X_FREE(bp->ilt->lines);
8299
8300 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8301
8302 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8303 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8304
8305 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8306
8307 bnx2x_iov_free_mem(bp);
8308 }
8309
bnx2x_alloc_mem_cnic(struct bnx2x * bp)8310 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8311 {
8312 if (!CHIP_IS_E1x(bp)) {
8313 /* size = the status block + ramrod buffers */
8314 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8315 sizeof(struct host_hc_status_block_e2));
8316 if (!bp->cnic_sb.e2_sb)
8317 goto alloc_mem_err;
8318 } else {
8319 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8320 sizeof(struct host_hc_status_block_e1x));
8321 if (!bp->cnic_sb.e1x_sb)
8322 goto alloc_mem_err;
8323 }
8324
8325 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8326 /* allocate searcher T2 table, as it wasn't allocated before */
8327 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8328 if (!bp->t2)
8329 goto alloc_mem_err;
8330 }
8331
8332 /* write address to which L5 should insert its values */
8333 bp->cnic_eth_dev.addr_drv_info_to_mcp =
8334 &bp->slowpath->drv_info_to_mcp;
8335
8336 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8337 goto alloc_mem_err;
8338
8339 return 0;
8340
8341 alloc_mem_err:
8342 bnx2x_free_mem_cnic(bp);
8343 BNX2X_ERR("Can't allocate memory\n");
8344 return -ENOMEM;
8345 }
8346
bnx2x_alloc_mem(struct bnx2x * bp)8347 int bnx2x_alloc_mem(struct bnx2x *bp)
8348 {
8349 int i, allocated, context_size;
8350
8351 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8352 /* allocate searcher T2 table */
8353 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8354 if (!bp->t2)
8355 goto alloc_mem_err;
8356 }
8357
8358 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8359 sizeof(struct host_sp_status_block));
8360 if (!bp->def_status_blk)
8361 goto alloc_mem_err;
8362
8363 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8364 sizeof(struct bnx2x_slowpath));
8365 if (!bp->slowpath)
8366 goto alloc_mem_err;
8367
8368 /* Allocate memory for CDU context:
8369 * This memory is allocated separately and not in the generic ILT
8370 * functions because CDU differs in few aspects:
8371 * 1. There are multiple entities allocating memory for context -
8372 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8373 * its own ILT lines.
8374 * 2. Since CDU page-size is not a single 4KB page (which is the case
8375 * for the other ILT clients), to be efficient we want to support
8376 * allocation of sub-page-size in the last entry.
8377 * 3. Context pointers are used by the driver to pass to FW / update
8378 * the context (for the other ILT clients the pointers are used just to
8379 * free the memory during unload).
8380 */
8381 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8382
8383 for (i = 0, allocated = 0; allocated < context_size; i++) {
8384 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8385 (context_size - allocated));
8386 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8387 bp->context[i].size);
8388 if (!bp->context[i].vcxt)
8389 goto alloc_mem_err;
8390 allocated += bp->context[i].size;
8391 }
8392 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8393 GFP_KERNEL);
8394 if (!bp->ilt->lines)
8395 goto alloc_mem_err;
8396
8397 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8398 goto alloc_mem_err;
8399
8400 if (bnx2x_iov_alloc_mem(bp))
8401 goto alloc_mem_err;
8402
8403 /* Slow path ring */
8404 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8405 if (!bp->spq)
8406 goto alloc_mem_err;
8407
8408 /* EQ */
8409 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8410 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8411 if (!bp->eq_ring)
8412 goto alloc_mem_err;
8413
8414 return 0;
8415
8416 alloc_mem_err:
8417 bnx2x_free_mem(bp);
8418 BNX2X_ERR("Can't allocate memory\n");
8419 return -ENOMEM;
8420 }
8421
8422 /*
8423 * Init service functions
8424 */
8425
bnx2x_set_mac_one(struct bnx2x * bp,u8 * mac,struct bnx2x_vlan_mac_obj * obj,bool set,int mac_type,unsigned long * ramrod_flags)8426 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8427 struct bnx2x_vlan_mac_obj *obj, bool set,
8428 int mac_type, unsigned long *ramrod_flags)
8429 {
8430 int rc;
8431 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8432
8433 memset(&ramrod_param, 0, sizeof(ramrod_param));
8434
8435 /* Fill general parameters */
8436 ramrod_param.vlan_mac_obj = obj;
8437 ramrod_param.ramrod_flags = *ramrod_flags;
8438
8439 /* Fill a user request section if needed */
8440 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8441 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8442
8443 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8444
8445 /* Set the command: ADD or DEL */
8446 if (set)
8447 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8448 else
8449 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8450 }
8451
8452 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8453
8454 if (rc == -EEXIST) {
8455 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8456 /* do not treat adding same MAC as error */
8457 rc = 0;
8458 } else if (rc < 0)
8459 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8460
8461 return rc;
8462 }
8463
bnx2x_set_vlan_one(struct bnx2x * bp,u16 vlan,struct bnx2x_vlan_mac_obj * obj,bool set,unsigned long * ramrod_flags)8464 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8465 struct bnx2x_vlan_mac_obj *obj, bool set,
8466 unsigned long *ramrod_flags)
8467 {
8468 int rc;
8469 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8470
8471 memset(&ramrod_param, 0, sizeof(ramrod_param));
8472
8473 /* Fill general parameters */
8474 ramrod_param.vlan_mac_obj = obj;
8475 ramrod_param.ramrod_flags = *ramrod_flags;
8476
8477 /* Fill a user request section if needed */
8478 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8479 ramrod_param.user_req.u.vlan.vlan = vlan;
8480 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8481 /* Set the command: ADD or DEL */
8482 if (set)
8483 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8484 else
8485 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8486 }
8487
8488 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8489
8490 if (rc == -EEXIST) {
8491 /* Do not treat adding same vlan as error. */
8492 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8493 rc = 0;
8494 } else if (rc < 0) {
8495 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8496 }
8497
8498 return rc;
8499 }
8500
bnx2x_clear_vlan_info(struct bnx2x * bp)8501 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8502 {
8503 struct bnx2x_vlan_entry *vlan;
8504
8505 /* Mark that hw forgot all entries */
8506 list_for_each_entry(vlan, &bp->vlan_reg, link)
8507 vlan->hw = false;
8508
8509 bp->vlan_cnt = 0;
8510 }
8511
bnx2x_del_all_vlans(struct bnx2x * bp)8512 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8513 {
8514 struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8515 unsigned long ramrod_flags = 0, vlan_flags = 0;
8516 int rc;
8517
8518 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8519 __set_bit(BNX2X_VLAN, &vlan_flags);
8520 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8521 if (rc)
8522 return rc;
8523
8524 bnx2x_clear_vlan_info(bp);
8525
8526 return 0;
8527 }
8528
bnx2x_del_all_macs(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * mac_obj,int mac_type,bool wait_for_comp)8529 int bnx2x_del_all_macs(struct bnx2x *bp,
8530 struct bnx2x_vlan_mac_obj *mac_obj,
8531 int mac_type, bool wait_for_comp)
8532 {
8533 int rc;
8534 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8535
8536 /* Wait for completion of requested */
8537 if (wait_for_comp)
8538 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8539
8540 /* Set the mac type of addresses we want to clear */
8541 __set_bit(mac_type, &vlan_mac_flags);
8542
8543 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8544 if (rc < 0)
8545 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8546
8547 return rc;
8548 }
8549
bnx2x_set_eth_mac(struct bnx2x * bp,bool set)8550 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8551 {
8552 if (IS_PF(bp)) {
8553 unsigned long ramrod_flags = 0;
8554
8555 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8556 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8557 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8558 &bp->sp_objs->mac_obj, set,
8559 BNX2X_ETH_MAC, &ramrod_flags);
8560 } else { /* vf */
8561 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8562 bp->fp->index, set);
8563 }
8564 }
8565
bnx2x_setup_leading(struct bnx2x * bp)8566 int bnx2x_setup_leading(struct bnx2x *bp)
8567 {
8568 if (IS_PF(bp))
8569 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8570 else /* VF */
8571 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8572 }
8573
8574 /**
8575 * bnx2x_set_int_mode - configure interrupt mode
8576 *
8577 * @bp: driver handle
8578 *
8579 * In case of MSI-X it will also try to enable MSI-X.
8580 */
bnx2x_set_int_mode(struct bnx2x * bp)8581 int bnx2x_set_int_mode(struct bnx2x *bp)
8582 {
8583 int rc = 0;
8584
8585 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8586 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8587 return -EINVAL;
8588 }
8589
8590 switch (int_mode) {
8591 case BNX2X_INT_MODE_MSIX:
8592 /* attempt to enable msix */
8593 rc = bnx2x_enable_msix(bp);
8594
8595 /* msix attained */
8596 if (!rc)
8597 return 0;
8598
8599 /* vfs use only msix */
8600 if (rc && IS_VF(bp))
8601 return rc;
8602
8603 /* failed to enable multiple MSI-X */
8604 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8605 bp->num_queues,
8606 1 + bp->num_cnic_queues);
8607
8608 /* falling through... */
8609 case BNX2X_INT_MODE_MSI:
8610 bnx2x_enable_msi(bp);
8611
8612 /* falling through... */
8613 case BNX2X_INT_MODE_INTX:
8614 bp->num_ethernet_queues = 1;
8615 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8616 BNX2X_DEV_INFO("set number of queues to 1\n");
8617 break;
8618 default:
8619 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8620 return -EINVAL;
8621 }
8622 return 0;
8623 }
8624
8625 /* must be called prior to any HW initializations */
bnx2x_cid_ilt_lines(struct bnx2x * bp)8626 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8627 {
8628 if (IS_SRIOV(bp))
8629 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8630 return L2_ILT_LINES(bp);
8631 }
8632
bnx2x_ilt_set_info(struct bnx2x * bp)8633 void bnx2x_ilt_set_info(struct bnx2x *bp)
8634 {
8635 struct ilt_client_info *ilt_client;
8636 struct bnx2x_ilt *ilt = BP_ILT(bp);
8637 u16 line = 0;
8638
8639 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8640 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8641
8642 /* CDU */
8643 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8644 ilt_client->client_num = ILT_CLIENT_CDU;
8645 ilt_client->page_size = CDU_ILT_PAGE_SZ;
8646 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8647 ilt_client->start = line;
8648 line += bnx2x_cid_ilt_lines(bp);
8649
8650 if (CNIC_SUPPORT(bp))
8651 line += CNIC_ILT_LINES;
8652 ilt_client->end = line - 1;
8653
8654 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8655 ilt_client->start,
8656 ilt_client->end,
8657 ilt_client->page_size,
8658 ilt_client->flags,
8659 ilog2(ilt_client->page_size >> 12));
8660
8661 /* QM */
8662 if (QM_INIT(bp->qm_cid_count)) {
8663 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8664 ilt_client->client_num = ILT_CLIENT_QM;
8665 ilt_client->page_size = QM_ILT_PAGE_SZ;
8666 ilt_client->flags = 0;
8667 ilt_client->start = line;
8668
8669 /* 4 bytes for each cid */
8670 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8671 QM_ILT_PAGE_SZ);
8672
8673 ilt_client->end = line - 1;
8674
8675 DP(NETIF_MSG_IFUP,
8676 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8677 ilt_client->start,
8678 ilt_client->end,
8679 ilt_client->page_size,
8680 ilt_client->flags,
8681 ilog2(ilt_client->page_size >> 12));
8682 }
8683
8684 if (CNIC_SUPPORT(bp)) {
8685 /* SRC */
8686 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8687 ilt_client->client_num = ILT_CLIENT_SRC;
8688 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8689 ilt_client->flags = 0;
8690 ilt_client->start = line;
8691 line += SRC_ILT_LINES;
8692 ilt_client->end = line - 1;
8693
8694 DP(NETIF_MSG_IFUP,
8695 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8696 ilt_client->start,
8697 ilt_client->end,
8698 ilt_client->page_size,
8699 ilt_client->flags,
8700 ilog2(ilt_client->page_size >> 12));
8701
8702 /* TM */
8703 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8704 ilt_client->client_num = ILT_CLIENT_TM;
8705 ilt_client->page_size = TM_ILT_PAGE_SZ;
8706 ilt_client->flags = 0;
8707 ilt_client->start = line;
8708 line += TM_ILT_LINES;
8709 ilt_client->end = line - 1;
8710
8711 DP(NETIF_MSG_IFUP,
8712 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8713 ilt_client->start,
8714 ilt_client->end,
8715 ilt_client->page_size,
8716 ilt_client->flags,
8717 ilog2(ilt_client->page_size >> 12));
8718 }
8719
8720 BUG_ON(line > ILT_MAX_LINES);
8721 }
8722
8723 /**
8724 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8725 *
8726 * @bp: driver handle
8727 * @fp: pointer to fastpath
8728 * @init_params: pointer to parameters structure
8729 *
8730 * parameters configured:
8731 * - HC configuration
8732 * - Queue's CDU context
8733 */
bnx2x_pf_q_prep_init(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_init_params * init_params)8734 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8735 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8736 {
8737 u8 cos;
8738 int cxt_index, cxt_offset;
8739
8740 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8741 if (!IS_FCOE_FP(fp)) {
8742 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8743 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8744
8745 /* If HC is supported, enable host coalescing in the transition
8746 * to INIT state.
8747 */
8748 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8749 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8750
8751 /* HC rate */
8752 init_params->rx.hc_rate = bp->rx_ticks ?
8753 (1000000 / bp->rx_ticks) : 0;
8754 init_params->tx.hc_rate = bp->tx_ticks ?
8755 (1000000 / bp->tx_ticks) : 0;
8756
8757 /* FW SB ID */
8758 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8759 fp->fw_sb_id;
8760
8761 /*
8762 * CQ index among the SB indices: FCoE clients uses the default
8763 * SB, therefore it's different.
8764 */
8765 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8766 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8767 }
8768
8769 /* set maximum number of COSs supported by this queue */
8770 init_params->max_cos = fp->max_cos;
8771
8772 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8773 fp->index, init_params->max_cos);
8774
8775 /* set the context pointers queue object */
8776 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8777 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8778 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8779 ILT_PAGE_CIDS);
8780 init_params->cxts[cos] =
8781 &bp->context[cxt_index].vcxt[cxt_offset].eth;
8782 }
8783 }
8784
bnx2x_setup_tx_only(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_state_params * q_params,struct bnx2x_queue_setup_tx_only_params * tx_only_params,int tx_index,bool leading)8785 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8786 struct bnx2x_queue_state_params *q_params,
8787 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8788 int tx_index, bool leading)
8789 {
8790 memset(tx_only_params, 0, sizeof(*tx_only_params));
8791
8792 /* Set the command */
8793 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8794
8795 /* Set tx-only QUEUE flags: don't zero statistics */
8796 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8797
8798 /* choose the index of the cid to send the slow path on */
8799 tx_only_params->cid_index = tx_index;
8800
8801 /* Set general TX_ONLY_SETUP parameters */
8802 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8803
8804 /* Set Tx TX_ONLY_SETUP parameters */
8805 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8806
8807 DP(NETIF_MSG_IFUP,
8808 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8809 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8810 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8811 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8812
8813 /* send the ramrod */
8814 return bnx2x_queue_state_change(bp, q_params);
8815 }
8816
8817 /**
8818 * bnx2x_setup_queue - setup queue
8819 *
8820 * @bp: driver handle
8821 * @fp: pointer to fastpath
8822 * @leading: is leading
8823 *
8824 * This function performs 2 steps in a Queue state machine
8825 * actually: 1) RESET->INIT 2) INIT->SETUP
8826 */
8827
bnx2x_setup_queue(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)8828 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8829 bool leading)
8830 {
8831 struct bnx2x_queue_state_params q_params = {NULL};
8832 struct bnx2x_queue_setup_params *setup_params =
8833 &q_params.params.setup;
8834 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8835 &q_params.params.tx_only;
8836 int rc;
8837 u8 tx_index;
8838
8839 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8840
8841 /* reset IGU state skip FCoE L2 queue */
8842 if (!IS_FCOE_FP(fp))
8843 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8844 IGU_INT_ENABLE, 0);
8845
8846 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8847 /* We want to wait for completion in this context */
8848 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8849
8850 /* Prepare the INIT parameters */
8851 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8852
8853 /* Set the command */
8854 q_params.cmd = BNX2X_Q_CMD_INIT;
8855
8856 /* Change the state to INIT */
8857 rc = bnx2x_queue_state_change(bp, &q_params);
8858 if (rc) {
8859 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8860 return rc;
8861 }
8862
8863 DP(NETIF_MSG_IFUP, "init complete\n");
8864
8865 /* Now move the Queue to the SETUP state... */
8866 memset(setup_params, 0, sizeof(*setup_params));
8867
8868 /* Set QUEUE flags */
8869 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8870
8871 /* Set general SETUP parameters */
8872 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8873 FIRST_TX_COS_INDEX);
8874
8875 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8876 &setup_params->rxq_params);
8877
8878 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8879 FIRST_TX_COS_INDEX);
8880
8881 /* Set the command */
8882 q_params.cmd = BNX2X_Q_CMD_SETUP;
8883
8884 if (IS_FCOE_FP(fp))
8885 bp->fcoe_init = true;
8886
8887 /* Change the state to SETUP */
8888 rc = bnx2x_queue_state_change(bp, &q_params);
8889 if (rc) {
8890 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8891 return rc;
8892 }
8893
8894 /* loop through the relevant tx-only indices */
8895 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8896 tx_index < fp->max_cos;
8897 tx_index++) {
8898
8899 /* prepare and send tx-only ramrod*/
8900 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8901 tx_only_params, tx_index, leading);
8902 if (rc) {
8903 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8904 fp->index, tx_index);
8905 return rc;
8906 }
8907 }
8908
8909 return rc;
8910 }
8911
bnx2x_stop_queue(struct bnx2x * bp,int index)8912 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8913 {
8914 struct bnx2x_fastpath *fp = &bp->fp[index];
8915 struct bnx2x_fp_txdata *txdata;
8916 struct bnx2x_queue_state_params q_params = {NULL};
8917 int rc, tx_index;
8918
8919 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8920
8921 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8922 /* We want to wait for completion in this context */
8923 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8924
8925 /* close tx-only connections */
8926 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8927 tx_index < fp->max_cos;
8928 tx_index++){
8929
8930 /* ascertain this is a normal queue*/
8931 txdata = fp->txdata_ptr[tx_index];
8932
8933 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8934 txdata->txq_index);
8935
8936 /* send halt terminate on tx-only connection */
8937 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8938 memset(&q_params.params.terminate, 0,
8939 sizeof(q_params.params.terminate));
8940 q_params.params.terminate.cid_index = tx_index;
8941
8942 rc = bnx2x_queue_state_change(bp, &q_params);
8943 if (rc)
8944 return rc;
8945
8946 /* send halt terminate on tx-only connection */
8947 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8948 memset(&q_params.params.cfc_del, 0,
8949 sizeof(q_params.params.cfc_del));
8950 q_params.params.cfc_del.cid_index = tx_index;
8951 rc = bnx2x_queue_state_change(bp, &q_params);
8952 if (rc)
8953 return rc;
8954 }
8955 /* Stop the primary connection: */
8956 /* ...halt the connection */
8957 q_params.cmd = BNX2X_Q_CMD_HALT;
8958 rc = bnx2x_queue_state_change(bp, &q_params);
8959 if (rc)
8960 return rc;
8961
8962 /* ...terminate the connection */
8963 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8964 memset(&q_params.params.terminate, 0,
8965 sizeof(q_params.params.terminate));
8966 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8967 rc = bnx2x_queue_state_change(bp, &q_params);
8968 if (rc)
8969 return rc;
8970 /* ...delete cfc entry */
8971 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8972 memset(&q_params.params.cfc_del, 0,
8973 sizeof(q_params.params.cfc_del));
8974 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8975 return bnx2x_queue_state_change(bp, &q_params);
8976 }
8977
bnx2x_reset_func(struct bnx2x * bp)8978 static void bnx2x_reset_func(struct bnx2x *bp)
8979 {
8980 int port = BP_PORT(bp);
8981 int func = BP_FUNC(bp);
8982 int i;
8983
8984 /* Disable the function in the FW */
8985 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8986 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8987 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8988 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8989
8990 /* FP SBs */
8991 for_each_eth_queue(bp, i) {
8992 struct bnx2x_fastpath *fp = &bp->fp[i];
8993 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8994 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8995 SB_DISABLED);
8996 }
8997
8998 if (CNIC_LOADED(bp))
8999 /* CNIC SB */
9000 REG_WR8(bp, BAR_CSTRORM_INTMEM +
9001 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
9002 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
9003
9004 /* SP SB */
9005 REG_WR8(bp, BAR_CSTRORM_INTMEM +
9006 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9007 SB_DISABLED);
9008
9009 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9010 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9011 0);
9012
9013 /* Configure IGU */
9014 if (bp->common.int_block == INT_BLOCK_HC) {
9015 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9016 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9017 } else {
9018 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9019 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9020 }
9021
9022 if (CNIC_LOADED(bp)) {
9023 /* Disable Timer scan */
9024 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9025 /*
9026 * Wait for at least 10ms and up to 2 second for the timers
9027 * scan to complete
9028 */
9029 for (i = 0; i < 200; i++) {
9030 usleep_range(10000, 20000);
9031 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9032 break;
9033 }
9034 }
9035 /* Clear ILT */
9036 bnx2x_clear_func_ilt(bp, func);
9037
9038 /* Timers workaround bug for E2: if this is vnic-3,
9039 * we need to set the entire ilt range for this timers.
9040 */
9041 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9042 struct ilt_client_info ilt_cli;
9043 /* use dummy TM client */
9044 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9045 ilt_cli.start = 0;
9046 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9047 ilt_cli.client_num = ILT_CLIENT_TM;
9048
9049 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9050 }
9051
9052 /* this assumes that reset_port() called before reset_func()*/
9053 if (!CHIP_IS_E1x(bp))
9054 bnx2x_pf_disable(bp);
9055
9056 bp->dmae_ready = 0;
9057 }
9058
bnx2x_reset_port(struct bnx2x * bp)9059 static void bnx2x_reset_port(struct bnx2x *bp)
9060 {
9061 int port = BP_PORT(bp);
9062 u32 val;
9063
9064 /* Reset physical Link */
9065 bnx2x__link_reset(bp);
9066
9067 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9068
9069 /* Do not rcv packets to BRB */
9070 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9071 /* Do not direct rcv packets that are not for MCP to the BRB */
9072 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9073 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9074
9075 /* Configure AEU */
9076 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9077
9078 msleep(100);
9079 /* Check for BRB port occupancy */
9080 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9081 if (val)
9082 DP(NETIF_MSG_IFDOWN,
9083 "BRB1 is not empty %d blocks are occupied\n", val);
9084
9085 /* TODO: Close Doorbell port? */
9086 }
9087
bnx2x_reset_hw(struct bnx2x * bp,u32 load_code)9088 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9089 {
9090 struct bnx2x_func_state_params func_params = {NULL};
9091
9092 /* Prepare parameters for function state transitions */
9093 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9094
9095 func_params.f_obj = &bp->func_obj;
9096 func_params.cmd = BNX2X_F_CMD_HW_RESET;
9097
9098 func_params.params.hw_init.load_phase = load_code;
9099
9100 return bnx2x_func_state_change(bp, &func_params);
9101 }
9102
bnx2x_func_stop(struct bnx2x * bp)9103 static int bnx2x_func_stop(struct bnx2x *bp)
9104 {
9105 struct bnx2x_func_state_params func_params = {NULL};
9106 int rc;
9107
9108 /* Prepare parameters for function state transitions */
9109 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9110 func_params.f_obj = &bp->func_obj;
9111 func_params.cmd = BNX2X_F_CMD_STOP;
9112
9113 /*
9114 * Try to stop the function the 'good way'. If fails (in case
9115 * of a parity error during bnx2x_chip_cleanup()) and we are
9116 * not in a debug mode, perform a state transaction in order to
9117 * enable further HW_RESET transaction.
9118 */
9119 rc = bnx2x_func_state_change(bp, &func_params);
9120 if (rc) {
9121 #ifdef BNX2X_STOP_ON_ERROR
9122 return rc;
9123 #else
9124 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9125 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9126 return bnx2x_func_state_change(bp, &func_params);
9127 #endif
9128 }
9129
9130 return 0;
9131 }
9132
9133 /**
9134 * bnx2x_send_unload_req - request unload mode from the MCP.
9135 *
9136 * @bp: driver handle
9137 * @unload_mode: requested function's unload mode
9138 *
9139 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9140 */
bnx2x_send_unload_req(struct bnx2x * bp,int unload_mode)9141 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9142 {
9143 u32 reset_code = 0;
9144 int port = BP_PORT(bp);
9145
9146 /* Select the UNLOAD request mode */
9147 if (unload_mode == UNLOAD_NORMAL)
9148 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9149
9150 else if (bp->flags & NO_WOL_FLAG)
9151 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9152
9153 else if (bp->wol) {
9154 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9155 u8 *mac_addr = bp->dev->dev_addr;
9156 struct pci_dev *pdev = bp->pdev;
9157 u32 val;
9158 u16 pmc;
9159
9160 /* The mac address is written to entries 1-4 to
9161 * preserve entry 0 which is used by the PMF
9162 */
9163 u8 entry = (BP_VN(bp) + 1)*8;
9164
9165 val = (mac_addr[0] << 8) | mac_addr[1];
9166 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9167
9168 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9169 (mac_addr[4] << 8) | mac_addr[5];
9170 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9171
9172 /* Enable the PME and clear the status */
9173 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9174 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9175 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9176
9177 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9178
9179 } else
9180 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9181
9182 /* Send the request to the MCP */
9183 if (!BP_NOMCP(bp))
9184 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9185 else {
9186 int path = BP_PATH(bp);
9187
9188 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
9189 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9190 bnx2x_load_count[path][2]);
9191 bnx2x_load_count[path][0]--;
9192 bnx2x_load_count[path][1 + port]--;
9193 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
9194 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9195 bnx2x_load_count[path][2]);
9196 if (bnx2x_load_count[path][0] == 0)
9197 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9198 else if (bnx2x_load_count[path][1 + port] == 0)
9199 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9200 else
9201 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9202 }
9203
9204 return reset_code;
9205 }
9206
9207 /**
9208 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9209 *
9210 * @bp: driver handle
9211 * @keep_link: true iff link should be kept up
9212 */
bnx2x_send_unload_done(struct bnx2x * bp,bool keep_link)9213 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9214 {
9215 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9216
9217 /* Report UNLOAD_DONE to MCP */
9218 if (!BP_NOMCP(bp))
9219 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9220 }
9221
bnx2x_func_wait_started(struct bnx2x * bp)9222 static int bnx2x_func_wait_started(struct bnx2x *bp)
9223 {
9224 int tout = 50;
9225 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9226
9227 if (!bp->port.pmf)
9228 return 0;
9229
9230 /*
9231 * (assumption: No Attention from MCP at this stage)
9232 * PMF probably in the middle of TX disable/enable transaction
9233 * 1. Sync IRS for default SB
9234 * 2. Sync SP queue - this guarantees us that attention handling started
9235 * 3. Wait, that TX disable/enable transaction completes
9236 *
9237 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9238 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9239 * received completion for the transaction the state is TX_STOPPED.
9240 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9241 * transaction.
9242 */
9243
9244 /* make sure default SB ISR is done */
9245 if (msix)
9246 synchronize_irq(bp->msix_table[0].vector);
9247 else
9248 synchronize_irq(bp->pdev->irq);
9249
9250 flush_workqueue(bnx2x_wq);
9251 flush_workqueue(bnx2x_iov_wq);
9252
9253 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9254 BNX2X_F_STATE_STARTED && tout--)
9255 msleep(20);
9256
9257 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9258 BNX2X_F_STATE_STARTED) {
9259 #ifdef BNX2X_STOP_ON_ERROR
9260 BNX2X_ERR("Wrong function state\n");
9261 return -EBUSY;
9262 #else
9263 /*
9264 * Failed to complete the transaction in a "good way"
9265 * Force both transactions with CLR bit
9266 */
9267 struct bnx2x_func_state_params func_params = {NULL};
9268
9269 DP(NETIF_MSG_IFDOWN,
9270 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9271
9272 func_params.f_obj = &bp->func_obj;
9273 __set_bit(RAMROD_DRV_CLR_ONLY,
9274 &func_params.ramrod_flags);
9275
9276 /* STARTED-->TX_ST0PPED */
9277 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9278 bnx2x_func_state_change(bp, &func_params);
9279
9280 /* TX_ST0PPED-->STARTED */
9281 func_params.cmd = BNX2X_F_CMD_TX_START;
9282 return bnx2x_func_state_change(bp, &func_params);
9283 #endif
9284 }
9285
9286 return 0;
9287 }
9288
bnx2x_disable_ptp(struct bnx2x * bp)9289 static void bnx2x_disable_ptp(struct bnx2x *bp)
9290 {
9291 int port = BP_PORT(bp);
9292
9293 /* Disable sending PTP packets to host */
9294 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9295 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9296
9297 /* Reset PTP event detection rules */
9298 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9299 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9300 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9301 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9302 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9303 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9304 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9305 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9306
9307 /* Disable the PTP feature */
9308 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9309 NIG_REG_P0_PTP_EN, 0x0);
9310 }
9311
9312 /* Called during unload, to stop PTP-related stuff */
bnx2x_stop_ptp(struct bnx2x * bp)9313 static void bnx2x_stop_ptp(struct bnx2x *bp)
9314 {
9315 /* Cancel PTP work queue. Should be done after the Tx queues are
9316 * drained to prevent additional scheduling.
9317 */
9318 cancel_work_sync(&bp->ptp_task);
9319
9320 if (bp->ptp_tx_skb) {
9321 dev_kfree_skb_any(bp->ptp_tx_skb);
9322 bp->ptp_tx_skb = NULL;
9323 }
9324
9325 /* Disable PTP in HW */
9326 bnx2x_disable_ptp(bp);
9327
9328 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9329 }
9330
bnx2x_chip_cleanup(struct bnx2x * bp,int unload_mode,bool keep_link)9331 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9332 {
9333 int port = BP_PORT(bp);
9334 int i, rc = 0;
9335 u8 cos;
9336 struct bnx2x_mcast_ramrod_params rparam = {NULL};
9337 u32 reset_code;
9338
9339 /* Wait until tx fastpath tasks complete */
9340 for_each_tx_queue(bp, i) {
9341 struct bnx2x_fastpath *fp = &bp->fp[i];
9342
9343 for_each_cos_in_tx_queue(fp, cos)
9344 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9345 #ifdef BNX2X_STOP_ON_ERROR
9346 if (rc)
9347 return;
9348 #endif
9349 }
9350
9351 /* Give HW time to discard old tx messages */
9352 usleep_range(1000, 2000);
9353
9354 /* Clean all ETH MACs */
9355 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9356 false);
9357 if (rc < 0)
9358 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9359
9360 /* Clean up UC list */
9361 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9362 true);
9363 if (rc < 0)
9364 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9365 rc);
9366
9367 /* The whole *vlan_obj structure may be not initialized if VLAN
9368 * filtering offload is not supported by hardware. Currently this is
9369 * true for all hardware covered by CHIP_IS_E1x().
9370 */
9371 if (!CHIP_IS_E1x(bp)) {
9372 /* Remove all currently configured VLANs */
9373 rc = bnx2x_del_all_vlans(bp);
9374 if (rc < 0)
9375 BNX2X_ERR("Failed to delete all VLANs\n");
9376 }
9377
9378 /* Disable LLH */
9379 if (!CHIP_IS_E1(bp))
9380 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9381
9382 /* Set "drop all" (stop Rx).
9383 * We need to take a netif_addr_lock() here in order to prevent
9384 * a race between the completion code and this code.
9385 */
9386 netif_addr_lock_bh(bp->dev);
9387 /* Schedule the rx_mode command */
9388 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9389 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9390 else
9391 bnx2x_set_storm_rx_mode(bp);
9392
9393 /* Cleanup multicast configuration */
9394 rparam.mcast_obj = &bp->mcast_obj;
9395 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9396 if (rc < 0)
9397 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9398
9399 netif_addr_unlock_bh(bp->dev);
9400
9401 bnx2x_iov_chip_cleanup(bp);
9402
9403 /*
9404 * Send the UNLOAD_REQUEST to the MCP. This will return if
9405 * this function should perform FUNC, PORT or COMMON HW
9406 * reset.
9407 */
9408 reset_code = bnx2x_send_unload_req(bp, unload_mode);
9409
9410 /*
9411 * (assumption: No Attention from MCP at this stage)
9412 * PMF probably in the middle of TX disable/enable transaction
9413 */
9414 rc = bnx2x_func_wait_started(bp);
9415 if (rc) {
9416 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9417 #ifdef BNX2X_STOP_ON_ERROR
9418 return;
9419 #endif
9420 }
9421
9422 /* Close multi and leading connections
9423 * Completions for ramrods are collected in a synchronous way
9424 */
9425 for_each_eth_queue(bp, i)
9426 if (bnx2x_stop_queue(bp, i))
9427 #ifdef BNX2X_STOP_ON_ERROR
9428 return;
9429 #else
9430 goto unload_error;
9431 #endif
9432
9433 if (CNIC_LOADED(bp)) {
9434 for_each_cnic_queue(bp, i)
9435 if (bnx2x_stop_queue(bp, i))
9436 #ifdef BNX2X_STOP_ON_ERROR
9437 return;
9438 #else
9439 goto unload_error;
9440 #endif
9441 }
9442
9443 /* If SP settings didn't get completed so far - something
9444 * very wrong has happen.
9445 */
9446 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9447 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9448
9449 #ifndef BNX2X_STOP_ON_ERROR
9450 unload_error:
9451 #endif
9452 rc = bnx2x_func_stop(bp);
9453 if (rc) {
9454 BNX2X_ERR("Function stop failed!\n");
9455 #ifdef BNX2X_STOP_ON_ERROR
9456 return;
9457 #endif
9458 }
9459
9460 /* stop_ptp should be after the Tx queues are drained to prevent
9461 * scheduling to the cancelled PTP work queue. It should also be after
9462 * function stop ramrod is sent, since as part of this ramrod FW access
9463 * PTP registers.
9464 */
9465 if (bp->flags & PTP_SUPPORTED)
9466 bnx2x_stop_ptp(bp);
9467
9468 /* Disable HW interrupts, NAPI */
9469 bnx2x_netif_stop(bp, 1);
9470 /* Delete all NAPI objects */
9471 bnx2x_del_all_napi(bp);
9472 if (CNIC_LOADED(bp))
9473 bnx2x_del_all_napi_cnic(bp);
9474
9475 /* Release IRQs */
9476 bnx2x_free_irq(bp);
9477
9478 /* Reset the chip, unless PCI function is offline. If we reach this
9479 * point following a PCI error handling, it means device is really
9480 * in a bad state and we're about to remove it, so reset the chip
9481 * is not a good idea.
9482 */
9483 if (!pci_channel_offline(bp->pdev)) {
9484 rc = bnx2x_reset_hw(bp, reset_code);
9485 if (rc)
9486 BNX2X_ERR("HW_RESET failed\n");
9487 }
9488
9489 /* Report UNLOAD_DONE to MCP */
9490 bnx2x_send_unload_done(bp, keep_link);
9491 }
9492
bnx2x_disable_close_the_gate(struct bnx2x * bp)9493 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9494 {
9495 u32 val;
9496
9497 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9498
9499 if (CHIP_IS_E1(bp)) {
9500 int port = BP_PORT(bp);
9501 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9502 MISC_REG_AEU_MASK_ATTN_FUNC_0;
9503
9504 val = REG_RD(bp, addr);
9505 val &= ~(0x300);
9506 REG_WR(bp, addr, val);
9507 } else {
9508 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9509 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9510 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9511 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9512 }
9513 }
9514
9515 /* Close gates #2, #3 and #4: */
bnx2x_set_234_gates(struct bnx2x * bp,bool close)9516 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9517 {
9518 u32 val;
9519
9520 /* Gates #2 and #4a are closed/opened for "not E1" only */
9521 if (!CHIP_IS_E1(bp)) {
9522 /* #4 */
9523 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9524 /* #2 */
9525 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9526 }
9527
9528 /* #3 */
9529 if (CHIP_IS_E1x(bp)) {
9530 /* Prevent interrupts from HC on both ports */
9531 val = REG_RD(bp, HC_REG_CONFIG_1);
9532 REG_WR(bp, HC_REG_CONFIG_1,
9533 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9534 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9535
9536 val = REG_RD(bp, HC_REG_CONFIG_0);
9537 REG_WR(bp, HC_REG_CONFIG_0,
9538 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9539 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9540 } else {
9541 /* Prevent incoming interrupts in IGU */
9542 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9543
9544 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9545 (!close) ?
9546 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9547 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9548 }
9549
9550 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9551 close ? "closing" : "opening");
9552 mmiowb();
9553 }
9554
9555 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
9556
bnx2x_clp_reset_prep(struct bnx2x * bp,u32 * magic_val)9557 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9558 {
9559 /* Do some magic... */
9560 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9561 *magic_val = val & SHARED_MF_CLP_MAGIC;
9562 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9563 }
9564
9565 /**
9566 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9567 *
9568 * @bp: driver handle
9569 * @magic_val: old value of the `magic' bit.
9570 */
bnx2x_clp_reset_done(struct bnx2x * bp,u32 magic_val)9571 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9572 {
9573 /* Restore the `magic' bit value... */
9574 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9575 MF_CFG_WR(bp, shared_mf_config.clp_mb,
9576 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9577 }
9578
9579 /**
9580 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9581 *
9582 * @bp: driver handle
9583 * @magic_val: old value of 'magic' bit.
9584 *
9585 * Takes care of CLP configurations.
9586 */
bnx2x_reset_mcp_prep(struct bnx2x * bp,u32 * magic_val)9587 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9588 {
9589 u32 shmem;
9590 u32 validity_offset;
9591
9592 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9593
9594 /* Set `magic' bit in order to save MF config */
9595 if (!CHIP_IS_E1(bp))
9596 bnx2x_clp_reset_prep(bp, magic_val);
9597
9598 /* Get shmem offset */
9599 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9600 validity_offset =
9601 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9602
9603 /* Clear validity map flags */
9604 if (shmem > 0)
9605 REG_WR(bp, shmem + validity_offset, 0);
9606 }
9607
9608 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9609 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9610
9611 /**
9612 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9613 *
9614 * @bp: driver handle
9615 */
bnx2x_mcp_wait_one(struct bnx2x * bp)9616 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9617 {
9618 /* special handling for emulation and FPGA,
9619 wait 10 times longer */
9620 if (CHIP_REV_IS_SLOW(bp))
9621 msleep(MCP_ONE_TIMEOUT*10);
9622 else
9623 msleep(MCP_ONE_TIMEOUT);
9624 }
9625
9626 /*
9627 * initializes bp->common.shmem_base and waits for validity signature to appear
9628 */
bnx2x_init_shmem(struct bnx2x * bp)9629 static int bnx2x_init_shmem(struct bnx2x *bp)
9630 {
9631 int cnt = 0;
9632 u32 val = 0;
9633
9634 do {
9635 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9636
9637 /* If we read all 0xFFs, means we are in PCI error state and
9638 * should bail out to avoid crashes on adapter's FW reads.
9639 */
9640 if (bp->common.shmem_base == 0xFFFFFFFF) {
9641 bp->flags |= NO_MCP_FLAG;
9642 return -ENODEV;
9643 }
9644
9645 if (bp->common.shmem_base) {
9646 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9647 if (val & SHR_MEM_VALIDITY_MB)
9648 return 0;
9649 }
9650
9651 bnx2x_mcp_wait_one(bp);
9652
9653 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9654
9655 BNX2X_ERR("BAD MCP validity signature\n");
9656
9657 return -ENODEV;
9658 }
9659
bnx2x_reset_mcp_comp(struct bnx2x * bp,u32 magic_val)9660 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9661 {
9662 int rc = bnx2x_init_shmem(bp);
9663
9664 /* Restore the `magic' bit value */
9665 if (!CHIP_IS_E1(bp))
9666 bnx2x_clp_reset_done(bp, magic_val);
9667
9668 return rc;
9669 }
9670
bnx2x_pxp_prep(struct bnx2x * bp)9671 static void bnx2x_pxp_prep(struct bnx2x *bp)
9672 {
9673 if (!CHIP_IS_E1(bp)) {
9674 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9675 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9676 mmiowb();
9677 }
9678 }
9679
9680 /*
9681 * Reset the whole chip except for:
9682 * - PCIE core
9683 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9684 * one reset bit)
9685 * - IGU
9686 * - MISC (including AEU)
9687 * - GRC
9688 * - RBCN, RBCP
9689 */
bnx2x_process_kill_chip_reset(struct bnx2x * bp,bool global)9690 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9691 {
9692 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9693 u32 global_bits2, stay_reset2;
9694
9695 /*
9696 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9697 * (per chip) blocks.
9698 */
9699 global_bits2 =
9700 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9701 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9702
9703 /* Don't reset the following blocks.
9704 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9705 * reset, as in 4 port device they might still be owned
9706 * by the MCP (there is only one leader per path).
9707 */
9708 not_reset_mask1 =
9709 MISC_REGISTERS_RESET_REG_1_RST_HC |
9710 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9711 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9712
9713 not_reset_mask2 =
9714 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9715 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9716 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9717 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9718 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9719 MISC_REGISTERS_RESET_REG_2_RST_GRC |
9720 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9721 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9722 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9723 MISC_REGISTERS_RESET_REG_2_PGLC |
9724 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9725 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9726 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9727 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9728 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9729 MISC_REGISTERS_RESET_REG_2_UMAC1;
9730
9731 /*
9732 * Keep the following blocks in reset:
9733 * - all xxMACs are handled by the bnx2x_link code.
9734 */
9735 stay_reset2 =
9736 MISC_REGISTERS_RESET_REG_2_XMAC |
9737 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9738
9739 /* Full reset masks according to the chip */
9740 reset_mask1 = 0xffffffff;
9741
9742 if (CHIP_IS_E1(bp))
9743 reset_mask2 = 0xffff;
9744 else if (CHIP_IS_E1H(bp))
9745 reset_mask2 = 0x1ffff;
9746 else if (CHIP_IS_E2(bp))
9747 reset_mask2 = 0xfffff;
9748 else /* CHIP_IS_E3 */
9749 reset_mask2 = 0x3ffffff;
9750
9751 /* Don't reset global blocks unless we need to */
9752 if (!global)
9753 reset_mask2 &= ~global_bits2;
9754
9755 /*
9756 * In case of attention in the QM, we need to reset PXP
9757 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9758 * because otherwise QM reset would release 'close the gates' shortly
9759 * before resetting the PXP, then the PSWRQ would send a write
9760 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9761 * read the payload data from PSWWR, but PSWWR would not
9762 * respond. The write queue in PGLUE would stuck, dmae commands
9763 * would not return. Therefore it's important to reset the second
9764 * reset register (containing the
9765 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9766 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9767 * bit).
9768 */
9769 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9770 reset_mask2 & (~not_reset_mask2));
9771
9772 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9773 reset_mask1 & (~not_reset_mask1));
9774
9775 barrier();
9776 mmiowb();
9777
9778 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9779 reset_mask2 & (~stay_reset2));
9780
9781 barrier();
9782 mmiowb();
9783
9784 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9785 mmiowb();
9786 }
9787
9788 /**
9789 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9790 * It should get cleared in no more than 1s.
9791 *
9792 * @bp: driver handle
9793 *
9794 * It should get cleared in no more than 1s. Returns 0 if
9795 * pending writes bit gets cleared.
9796 */
bnx2x_er_poll_igu_vq(struct bnx2x * bp)9797 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9798 {
9799 u32 cnt = 1000;
9800 u32 pend_bits = 0;
9801
9802 do {
9803 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9804
9805 if (pend_bits == 0)
9806 break;
9807
9808 usleep_range(1000, 2000);
9809 } while (cnt-- > 0);
9810
9811 if (cnt <= 0) {
9812 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9813 pend_bits);
9814 return -EBUSY;
9815 }
9816
9817 return 0;
9818 }
9819
bnx2x_process_kill(struct bnx2x * bp,bool global)9820 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9821 {
9822 int cnt = 1000;
9823 u32 val = 0;
9824 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9825 u32 tags_63_32 = 0;
9826
9827 /* Empty the Tetris buffer, wait for 1s */
9828 do {
9829 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9830 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9831 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9832 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9833 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9834 if (CHIP_IS_E3(bp))
9835 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9836
9837 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9838 ((port_is_idle_0 & 0x1) == 0x1) &&
9839 ((port_is_idle_1 & 0x1) == 0x1) &&
9840 (pgl_exp_rom2 == 0xffffffff) &&
9841 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9842 break;
9843 usleep_range(1000, 2000);
9844 } while (cnt-- > 0);
9845
9846 if (cnt <= 0) {
9847 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9848 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9849 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9850 pgl_exp_rom2);
9851 return -EAGAIN;
9852 }
9853
9854 barrier();
9855
9856 /* Close gates #2, #3 and #4 */
9857 bnx2x_set_234_gates(bp, true);
9858
9859 /* Poll for IGU VQs for 57712 and newer chips */
9860 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9861 return -EAGAIN;
9862
9863 /* TBD: Indicate that "process kill" is in progress to MCP */
9864
9865 /* Clear "unprepared" bit */
9866 REG_WR(bp, MISC_REG_UNPREPARED, 0);
9867 barrier();
9868
9869 /* Make sure all is written to the chip before the reset */
9870 mmiowb();
9871
9872 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9873 * PSWHST, GRC and PSWRD Tetris buffer.
9874 */
9875 usleep_range(1000, 2000);
9876
9877 /* Prepare to chip reset: */
9878 /* MCP */
9879 if (global)
9880 bnx2x_reset_mcp_prep(bp, &val);
9881
9882 /* PXP */
9883 bnx2x_pxp_prep(bp);
9884 barrier();
9885
9886 /* reset the chip */
9887 bnx2x_process_kill_chip_reset(bp, global);
9888 barrier();
9889
9890 /* clear errors in PGB */
9891 if (!CHIP_IS_E1x(bp))
9892 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9893
9894 /* Recover after reset: */
9895 /* MCP */
9896 if (global && bnx2x_reset_mcp_comp(bp, val))
9897 return -EAGAIN;
9898
9899 /* TBD: Add resetting the NO_MCP mode DB here */
9900
9901 /* Open the gates #2, #3 and #4 */
9902 bnx2x_set_234_gates(bp, false);
9903
9904 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9905 * reset state, re-enable attentions. */
9906
9907 return 0;
9908 }
9909
bnx2x_leader_reset(struct bnx2x * bp)9910 static int bnx2x_leader_reset(struct bnx2x *bp)
9911 {
9912 int rc = 0;
9913 bool global = bnx2x_reset_is_global(bp);
9914 u32 load_code;
9915
9916 /* if not going to reset MCP - load "fake" driver to reset HW while
9917 * driver is owner of the HW
9918 */
9919 if (!global && !BP_NOMCP(bp)) {
9920 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9921 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9922 if (!load_code) {
9923 BNX2X_ERR("MCP response failure, aborting\n");
9924 rc = -EAGAIN;
9925 goto exit_leader_reset;
9926 }
9927 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9928 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9929 BNX2X_ERR("MCP unexpected resp, aborting\n");
9930 rc = -EAGAIN;
9931 goto exit_leader_reset2;
9932 }
9933 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9934 if (!load_code) {
9935 BNX2X_ERR("MCP response failure, aborting\n");
9936 rc = -EAGAIN;
9937 goto exit_leader_reset2;
9938 }
9939 }
9940
9941 /* Try to recover after the failure */
9942 if (bnx2x_process_kill(bp, global)) {
9943 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9944 BP_PATH(bp));
9945 rc = -EAGAIN;
9946 goto exit_leader_reset2;
9947 }
9948
9949 /*
9950 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9951 * state.
9952 */
9953 bnx2x_set_reset_done(bp);
9954 if (global)
9955 bnx2x_clear_reset_global(bp);
9956
9957 exit_leader_reset2:
9958 /* unload "fake driver" if it was loaded */
9959 if (!global && !BP_NOMCP(bp)) {
9960 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9961 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9962 }
9963 exit_leader_reset:
9964 bp->is_leader = 0;
9965 bnx2x_release_leader_lock(bp);
9966 smp_mb();
9967 return rc;
9968 }
9969
bnx2x_recovery_failed(struct bnx2x * bp)9970 static void bnx2x_recovery_failed(struct bnx2x *bp)
9971 {
9972 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9973
9974 /* Disconnect this device */
9975 netif_device_detach(bp->dev);
9976
9977 /*
9978 * Block ifup for all function on this engine until "process kill"
9979 * or power cycle.
9980 */
9981 bnx2x_set_reset_in_progress(bp);
9982
9983 /* Shut down the power */
9984 bnx2x_set_power_state(bp, PCI_D3hot);
9985
9986 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9987
9988 smp_mb();
9989 }
9990
9991 /*
9992 * Assumption: runs under rtnl lock. This together with the fact
9993 * that it's called only from bnx2x_sp_rtnl() ensure that it
9994 * will never be called when netif_running(bp->dev) is false.
9995 */
bnx2x_parity_recover(struct bnx2x * bp)9996 static void bnx2x_parity_recover(struct bnx2x *bp)
9997 {
9998 u32 error_recovered, error_unrecovered;
9999 bool is_parity, global = false;
10000 #ifdef CONFIG_BNX2X_SRIOV
10001 int vf_idx;
10002
10003 for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
10004 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
10005
10006 if (vf)
10007 vf->state = VF_LOST;
10008 }
10009 #endif
10010 DP(NETIF_MSG_HW, "Handling parity\n");
10011 while (1) {
10012 switch (bp->recovery_state) {
10013 case BNX2X_RECOVERY_INIT:
10014 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10015 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10016 WARN_ON(!is_parity);
10017
10018 /* Try to get a LEADER_LOCK HW lock */
10019 if (bnx2x_trylock_leader_lock(bp)) {
10020 bnx2x_set_reset_in_progress(bp);
10021 /*
10022 * Check if there is a global attention and if
10023 * there was a global attention, set the global
10024 * reset bit.
10025 */
10026
10027 if (global)
10028 bnx2x_set_reset_global(bp);
10029
10030 bp->is_leader = 1;
10031 }
10032
10033 /* Stop the driver */
10034 /* If interface has been removed - break */
10035 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10036 return;
10037
10038 bp->recovery_state = BNX2X_RECOVERY_WAIT;
10039
10040 /* Ensure "is_leader", MCP command sequence and
10041 * "recovery_state" update values are seen on other
10042 * CPUs.
10043 */
10044 smp_mb();
10045 break;
10046
10047 case BNX2X_RECOVERY_WAIT:
10048 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10049 if (bp->is_leader) {
10050 int other_engine = BP_PATH(bp) ? 0 : 1;
10051 bool other_load_status =
10052 bnx2x_get_load_status(bp, other_engine);
10053 bool load_status =
10054 bnx2x_get_load_status(bp, BP_PATH(bp));
10055 global = bnx2x_reset_is_global(bp);
10056
10057 /*
10058 * In case of a parity in a global block, let
10059 * the first leader that performs a
10060 * leader_reset() reset the global blocks in
10061 * order to clear global attentions. Otherwise
10062 * the gates will remain closed for that
10063 * engine.
10064 */
10065 if (load_status ||
10066 (global && other_load_status)) {
10067 /* Wait until all other functions get
10068 * down.
10069 */
10070 schedule_delayed_work(&bp->sp_rtnl_task,
10071 HZ/10);
10072 return;
10073 } else {
10074 /* If all other functions got down -
10075 * try to bring the chip back to
10076 * normal. In any case it's an exit
10077 * point for a leader.
10078 */
10079 if (bnx2x_leader_reset(bp)) {
10080 bnx2x_recovery_failed(bp);
10081 return;
10082 }
10083
10084 /* If we are here, means that the
10085 * leader has succeeded and doesn't
10086 * want to be a leader any more. Try
10087 * to continue as a none-leader.
10088 */
10089 break;
10090 }
10091 } else { /* non-leader */
10092 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10093 /* Try to get a LEADER_LOCK HW lock as
10094 * long as a former leader may have
10095 * been unloaded by the user or
10096 * released a leadership by another
10097 * reason.
10098 */
10099 if (bnx2x_trylock_leader_lock(bp)) {
10100 /* I'm a leader now! Restart a
10101 * switch case.
10102 */
10103 bp->is_leader = 1;
10104 break;
10105 }
10106
10107 schedule_delayed_work(&bp->sp_rtnl_task,
10108 HZ/10);
10109 return;
10110
10111 } else {
10112 /*
10113 * If there was a global attention, wait
10114 * for it to be cleared.
10115 */
10116 if (bnx2x_reset_is_global(bp)) {
10117 schedule_delayed_work(
10118 &bp->sp_rtnl_task,
10119 HZ/10);
10120 return;
10121 }
10122
10123 error_recovered =
10124 bp->eth_stats.recoverable_error;
10125 error_unrecovered =
10126 bp->eth_stats.unrecoverable_error;
10127 bp->recovery_state =
10128 BNX2X_RECOVERY_NIC_LOADING;
10129 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10130 error_unrecovered++;
10131 netdev_err(bp->dev,
10132 "Recovery failed. Power cycle needed\n");
10133 /* Disconnect this device */
10134 netif_device_detach(bp->dev);
10135 /* Shut down the power */
10136 bnx2x_set_power_state(
10137 bp, PCI_D3hot);
10138 smp_mb();
10139 } else {
10140 bp->recovery_state =
10141 BNX2X_RECOVERY_DONE;
10142 error_recovered++;
10143 smp_mb();
10144 }
10145 bp->eth_stats.recoverable_error =
10146 error_recovered;
10147 bp->eth_stats.unrecoverable_error =
10148 error_unrecovered;
10149
10150 return;
10151 }
10152 }
10153 default:
10154 return;
10155 }
10156 }
10157 }
10158
bnx2x_udp_port_update(struct bnx2x * bp)10159 static int bnx2x_udp_port_update(struct bnx2x *bp)
10160 {
10161 struct bnx2x_func_switch_update_params *switch_update_params;
10162 struct bnx2x_func_state_params func_params = {NULL};
10163 struct bnx2x_udp_tunnel *udp_tunnel;
10164 u16 vxlan_port = 0, geneve_port = 0;
10165 int rc;
10166
10167 switch_update_params = &func_params.params.switch_update;
10168
10169 /* Prepare parameters for function state transitions */
10170 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10171 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10172
10173 func_params.f_obj = &bp->func_obj;
10174 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10175
10176 /* Function parameters */
10177 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10178 &switch_update_params->changes);
10179
10180 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
10181 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10182 geneve_port = udp_tunnel->dst_port;
10183 switch_update_params->geneve_dst_port = geneve_port;
10184 }
10185
10186 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
10187 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10188 vxlan_port = udp_tunnel->dst_port;
10189 switch_update_params->vxlan_dst_port = vxlan_port;
10190 }
10191
10192 /* Re-enable inner-rss for the offloaded UDP tunnels */
10193 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10194 &switch_update_params->changes);
10195
10196 rc = bnx2x_func_state_change(bp, &func_params);
10197 if (rc)
10198 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10199 vxlan_port, geneve_port, rc);
10200 else
10201 DP(BNX2X_MSG_SP,
10202 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10203 vxlan_port, geneve_port);
10204
10205 return rc;
10206 }
10207
__bnx2x_add_udp_port(struct bnx2x * bp,u16 port,enum bnx2x_udp_port_type type)10208 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
10209 enum bnx2x_udp_port_type type)
10210 {
10211 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10212
10213 if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp))
10214 return;
10215
10216 if (udp_port->count && udp_port->dst_port == port) {
10217 udp_port->count++;
10218 return;
10219 }
10220
10221 if (udp_port->count) {
10222 DP(BNX2X_MSG_SP,
10223 "UDP tunnel [%d] - destination port limit reached\n",
10224 type);
10225 return;
10226 }
10227
10228 udp_port->dst_port = port;
10229 udp_port->count = 1;
10230 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10231 }
10232
__bnx2x_del_udp_port(struct bnx2x * bp,u16 port,enum bnx2x_udp_port_type type)10233 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
10234 enum bnx2x_udp_port_type type)
10235 {
10236 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10237
10238 if (!IS_PF(bp) || CHIP_IS_E1x(bp))
10239 return;
10240
10241 if (!udp_port->count || udp_port->dst_port != port) {
10242 DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
10243 type);
10244 return;
10245 }
10246
10247 /* Remove reference, and make certain it's no longer in use */
10248 udp_port->count--;
10249 if (udp_port->count)
10250 return;
10251 udp_port->dst_port = 0;
10252
10253 if (netif_running(bp->dev))
10254 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10255 else
10256 DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
10257 type, port);
10258 }
10259
bnx2x_udp_tunnel_add(struct net_device * netdev,struct udp_tunnel_info * ti)10260 static void bnx2x_udp_tunnel_add(struct net_device *netdev,
10261 struct udp_tunnel_info *ti)
10262 {
10263 struct bnx2x *bp = netdev_priv(netdev);
10264 u16 t_port = ntohs(ti->port);
10265
10266 switch (ti->type) {
10267 case UDP_TUNNEL_TYPE_VXLAN:
10268 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10269 break;
10270 case UDP_TUNNEL_TYPE_GENEVE:
10271 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10272 break;
10273 default:
10274 break;
10275 }
10276 }
10277
bnx2x_udp_tunnel_del(struct net_device * netdev,struct udp_tunnel_info * ti)10278 static void bnx2x_udp_tunnel_del(struct net_device *netdev,
10279 struct udp_tunnel_info *ti)
10280 {
10281 struct bnx2x *bp = netdev_priv(netdev);
10282 u16 t_port = ntohs(ti->port);
10283
10284 switch (ti->type) {
10285 case UDP_TUNNEL_TYPE_VXLAN:
10286 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10287 break;
10288 case UDP_TUNNEL_TYPE_GENEVE:
10289 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10290 break;
10291 default:
10292 break;
10293 }
10294 }
10295
10296 static int bnx2x_close(struct net_device *dev);
10297
10298 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10299 * scheduled on a general queue in order to prevent a dead lock.
10300 */
bnx2x_sp_rtnl_task(struct work_struct * work)10301 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10302 {
10303 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10304
10305 rtnl_lock();
10306
10307 if (!netif_running(bp->dev)) {
10308 rtnl_unlock();
10309 return;
10310 }
10311
10312 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10313 #ifdef BNX2X_STOP_ON_ERROR
10314 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10315 "you will need to reboot when done\n");
10316 goto sp_rtnl_not_reset;
10317 #endif
10318 /*
10319 * Clear all pending SP commands as we are going to reset the
10320 * function anyway.
10321 */
10322 bp->sp_rtnl_state = 0;
10323 smp_mb();
10324
10325 bnx2x_parity_recover(bp);
10326
10327 rtnl_unlock();
10328 return;
10329 }
10330
10331 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10332 #ifdef BNX2X_STOP_ON_ERROR
10333 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10334 "you will need to reboot when done\n");
10335 goto sp_rtnl_not_reset;
10336 #endif
10337
10338 /*
10339 * Clear all pending SP commands as we are going to reset the
10340 * function anyway.
10341 */
10342 bp->sp_rtnl_state = 0;
10343 smp_mb();
10344
10345 /* Immediately indicate link as down */
10346 bp->link_vars.link_up = 0;
10347 bp->force_link_down = true;
10348 netif_carrier_off(bp->dev);
10349 BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10350
10351 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10352 bnx2x_nic_load(bp, LOAD_NORMAL);
10353
10354 rtnl_unlock();
10355 return;
10356 }
10357 #ifdef BNX2X_STOP_ON_ERROR
10358 sp_rtnl_not_reset:
10359 #endif
10360 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10361 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10362 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10363 bnx2x_after_function_update(bp);
10364 /*
10365 * in case of fan failure we need to reset id if the "stop on error"
10366 * debug flag is set, since we trying to prevent permanent overheating
10367 * damage
10368 */
10369 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10370 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10371 netif_device_detach(bp->dev);
10372 bnx2x_close(bp->dev);
10373 rtnl_unlock();
10374 return;
10375 }
10376
10377 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10378 DP(BNX2X_MSG_SP,
10379 "sending set mcast vf pf channel message from rtnl sp-task\n");
10380 bnx2x_vfpf_set_mcast(bp->dev);
10381 }
10382 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10383 &bp->sp_rtnl_state)){
10384 if (netif_carrier_ok(bp->dev)) {
10385 bnx2x_tx_disable(bp);
10386 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10387 }
10388 }
10389
10390 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10391 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10392 bnx2x_set_rx_mode_inner(bp);
10393 }
10394
10395 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10396 &bp->sp_rtnl_state))
10397 bnx2x_pf_set_vfs_vlan(bp);
10398
10399 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10400 bnx2x_dcbx_stop_hw_tx(bp);
10401 bnx2x_dcbx_resume_hw_tx(bp);
10402 }
10403
10404 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10405 &bp->sp_rtnl_state))
10406 bnx2x_update_mng_version(bp);
10407
10408 if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10409 bnx2x_handle_update_svid_cmd(bp);
10410
10411 if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
10412 &bp->sp_rtnl_state)) {
10413 if (bnx2x_udp_port_update(bp)) {
10414 /* On error, forget configuration */
10415 memset(bp->udp_tunnel_ports, 0,
10416 sizeof(struct bnx2x_udp_tunnel) *
10417 BNX2X_UDP_PORT_MAX);
10418 } else {
10419 /* Since we don't store additional port information,
10420 * if no ports are configured for any feature ask for
10421 * information about currently configured ports.
10422 */
10423 if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count &&
10424 !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
10425 udp_tunnel_get_rx_info(bp->dev);
10426 }
10427 }
10428
10429 /* work which needs rtnl lock not-taken (as it takes the lock itself and
10430 * can be called from other contexts as well)
10431 */
10432 rtnl_unlock();
10433
10434 /* enable SR-IOV if applicable */
10435 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10436 &bp->sp_rtnl_state)) {
10437 bnx2x_disable_sriov(bp);
10438 bnx2x_enable_sriov(bp);
10439 }
10440 }
10441
bnx2x_period_task(struct work_struct * work)10442 static void bnx2x_period_task(struct work_struct *work)
10443 {
10444 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10445
10446 if (!netif_running(bp->dev))
10447 goto period_task_exit;
10448
10449 if (CHIP_REV_IS_SLOW(bp)) {
10450 BNX2X_ERR("period task called on emulation, ignoring\n");
10451 goto period_task_exit;
10452 }
10453
10454 bnx2x_acquire_phy_lock(bp);
10455 /*
10456 * The barrier is needed to ensure the ordering between the writing to
10457 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10458 * the reading here.
10459 */
10460 smp_mb();
10461 if (bp->port.pmf) {
10462 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10463
10464 /* Re-queue task in 1 sec */
10465 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10466 }
10467
10468 bnx2x_release_phy_lock(bp);
10469 period_task_exit:
10470 return;
10471 }
10472
10473 /*
10474 * Init service functions
10475 */
10476
bnx2x_get_pretend_reg(struct bnx2x * bp)10477 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10478 {
10479 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10480 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10481 return base + (BP_ABS_FUNC(bp)) * stride;
10482 }
10483
bnx2x_prev_unload_close_umac(struct bnx2x * bp,u8 port,u32 reset_reg,struct bnx2x_mac_vals * vals)10484 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10485 u8 port, u32 reset_reg,
10486 struct bnx2x_mac_vals *vals)
10487 {
10488 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10489 u32 base_addr;
10490
10491 if (!(mask & reset_reg))
10492 return false;
10493
10494 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10495 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10496 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10497 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10498 REG_WR(bp, vals->umac_addr[port], 0);
10499
10500 return true;
10501 }
10502
bnx2x_prev_unload_close_mac(struct bnx2x * bp,struct bnx2x_mac_vals * vals)10503 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10504 struct bnx2x_mac_vals *vals)
10505 {
10506 u32 val, base_addr, offset, mask, reset_reg;
10507 bool mac_stopped = false;
10508 u8 port = BP_PORT(bp);
10509
10510 /* reset addresses as they also mark which values were changed */
10511 memset(vals, 0, sizeof(*vals));
10512
10513 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10514
10515 if (!CHIP_IS_E3(bp)) {
10516 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10517 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10518 if ((mask & reset_reg) && val) {
10519 u32 wb_data[2];
10520 BNX2X_DEV_INFO("Disable bmac Rx\n");
10521 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10522 : NIG_REG_INGRESS_BMAC0_MEM;
10523 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10524 : BIGMAC_REGISTER_BMAC_CONTROL;
10525
10526 /*
10527 * use rd/wr since we cannot use dmae. This is safe
10528 * since MCP won't access the bus due to the request
10529 * to unload, and no function on the path can be
10530 * loaded at this time.
10531 */
10532 wb_data[0] = REG_RD(bp, base_addr + offset);
10533 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10534 vals->bmac_addr = base_addr + offset;
10535 vals->bmac_val[0] = wb_data[0];
10536 vals->bmac_val[1] = wb_data[1];
10537 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10538 REG_WR(bp, vals->bmac_addr, wb_data[0]);
10539 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10540 }
10541 BNX2X_DEV_INFO("Disable emac Rx\n");
10542 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10543 vals->emac_val = REG_RD(bp, vals->emac_addr);
10544 REG_WR(bp, vals->emac_addr, 0);
10545 mac_stopped = true;
10546 } else {
10547 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10548 BNX2X_DEV_INFO("Disable xmac Rx\n");
10549 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10550 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10551 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10552 val & ~(1 << 1));
10553 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10554 val | (1 << 1));
10555 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10556 vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10557 REG_WR(bp, vals->xmac_addr, 0);
10558 mac_stopped = true;
10559 }
10560
10561 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10562 reset_reg, vals);
10563 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10564 reset_reg, vals);
10565 }
10566
10567 if (mac_stopped)
10568 msleep(20);
10569 }
10570
10571 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10572 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10573 0x1848 + ((f) << 4))
10574 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
10575 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
10576 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
10577
10578 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07)
10579 #define BCM_5710_UNDI_FW_MF_MINOR (0x08)
10580 #define BCM_5710_UNDI_FW_MF_VERS (0x05)
10581
bnx2x_prev_is_after_undi(struct bnx2x * bp)10582 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10583 {
10584 /* UNDI marks its presence in DORQ -
10585 * it initializes CID offset for normal bell to 0x7
10586 */
10587 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10588 MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10589 return false;
10590
10591 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10592 BNX2X_DEV_INFO("UNDI previously loaded\n");
10593 return true;
10594 }
10595
10596 return false;
10597 }
10598
bnx2x_prev_unload_undi_inc(struct bnx2x * bp,u8 inc)10599 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10600 {
10601 u16 rcq, bd;
10602 u32 addr, tmp_reg;
10603
10604 if (BP_FUNC(bp) < 2)
10605 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10606 else
10607 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10608
10609 tmp_reg = REG_RD(bp, addr);
10610 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10611 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10612
10613 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10614 REG_WR(bp, addr, tmp_reg);
10615
10616 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10617 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10618 }
10619
bnx2x_prev_mcp_done(struct bnx2x * bp)10620 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10621 {
10622 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10623 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10624 if (!rc) {
10625 BNX2X_ERR("MCP response failure, aborting\n");
10626 return -EBUSY;
10627 }
10628
10629 return 0;
10630 }
10631
10632 static struct bnx2x_prev_path_list *
bnx2x_prev_path_get_entry(struct bnx2x * bp)10633 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10634 {
10635 struct bnx2x_prev_path_list *tmp_list;
10636
10637 list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10638 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10639 bp->pdev->bus->number == tmp_list->bus &&
10640 BP_PATH(bp) == tmp_list->path)
10641 return tmp_list;
10642
10643 return NULL;
10644 }
10645
bnx2x_prev_path_mark_eeh(struct bnx2x * bp)10646 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10647 {
10648 struct bnx2x_prev_path_list *tmp_list;
10649 int rc;
10650
10651 rc = down_interruptible(&bnx2x_prev_sem);
10652 if (rc) {
10653 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10654 return rc;
10655 }
10656
10657 tmp_list = bnx2x_prev_path_get_entry(bp);
10658 if (tmp_list) {
10659 tmp_list->aer = 1;
10660 rc = 0;
10661 } else {
10662 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10663 BP_PATH(bp));
10664 }
10665
10666 up(&bnx2x_prev_sem);
10667
10668 return rc;
10669 }
10670
bnx2x_prev_is_path_marked(struct bnx2x * bp)10671 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10672 {
10673 struct bnx2x_prev_path_list *tmp_list;
10674 bool rc = false;
10675
10676 if (down_trylock(&bnx2x_prev_sem))
10677 return false;
10678
10679 tmp_list = bnx2x_prev_path_get_entry(bp);
10680 if (tmp_list) {
10681 if (tmp_list->aer) {
10682 DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10683 BP_PATH(bp));
10684 } else {
10685 rc = true;
10686 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10687 BP_PATH(bp));
10688 }
10689 }
10690
10691 up(&bnx2x_prev_sem);
10692
10693 return rc;
10694 }
10695
bnx2x_port_after_undi(struct bnx2x * bp)10696 bool bnx2x_port_after_undi(struct bnx2x *bp)
10697 {
10698 struct bnx2x_prev_path_list *entry;
10699 bool val;
10700
10701 down(&bnx2x_prev_sem);
10702
10703 entry = bnx2x_prev_path_get_entry(bp);
10704 val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10705
10706 up(&bnx2x_prev_sem);
10707
10708 return val;
10709 }
10710
bnx2x_prev_mark_path(struct bnx2x * bp,bool after_undi)10711 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10712 {
10713 struct bnx2x_prev_path_list *tmp_list;
10714 int rc;
10715
10716 rc = down_interruptible(&bnx2x_prev_sem);
10717 if (rc) {
10718 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10719 return rc;
10720 }
10721
10722 /* Check whether the entry for this path already exists */
10723 tmp_list = bnx2x_prev_path_get_entry(bp);
10724 if (tmp_list) {
10725 if (!tmp_list->aer) {
10726 BNX2X_ERR("Re-Marking the path.\n");
10727 } else {
10728 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10729 BP_PATH(bp));
10730 tmp_list->aer = 0;
10731 }
10732 up(&bnx2x_prev_sem);
10733 return 0;
10734 }
10735 up(&bnx2x_prev_sem);
10736
10737 /* Create an entry for this path and add it */
10738 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10739 if (!tmp_list) {
10740 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10741 return -ENOMEM;
10742 }
10743
10744 tmp_list->bus = bp->pdev->bus->number;
10745 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10746 tmp_list->path = BP_PATH(bp);
10747 tmp_list->aer = 0;
10748 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10749
10750 rc = down_interruptible(&bnx2x_prev_sem);
10751 if (rc) {
10752 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10753 kfree(tmp_list);
10754 } else {
10755 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10756 BP_PATH(bp));
10757 list_add(&tmp_list->list, &bnx2x_prev_list);
10758 up(&bnx2x_prev_sem);
10759 }
10760
10761 return rc;
10762 }
10763
bnx2x_do_flr(struct bnx2x * bp)10764 static int bnx2x_do_flr(struct bnx2x *bp)
10765 {
10766 struct pci_dev *dev = bp->pdev;
10767
10768 if (CHIP_IS_E1x(bp)) {
10769 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10770 return -EINVAL;
10771 }
10772
10773 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10774 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10775 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10776 bp->common.bc_ver);
10777 return -EINVAL;
10778 }
10779
10780 if (!pci_wait_for_pending_transaction(dev))
10781 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10782
10783 BNX2X_DEV_INFO("Initiating FLR\n");
10784 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10785
10786 return 0;
10787 }
10788
bnx2x_prev_unload_uncommon(struct bnx2x * bp)10789 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10790 {
10791 int rc;
10792
10793 BNX2X_DEV_INFO("Uncommon unload Flow\n");
10794
10795 /* Test if previous unload process was already finished for this path */
10796 if (bnx2x_prev_is_path_marked(bp))
10797 return bnx2x_prev_mcp_done(bp);
10798
10799 BNX2X_DEV_INFO("Path is unmarked\n");
10800
10801 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10802 if (bnx2x_prev_is_after_undi(bp))
10803 goto out;
10804
10805 /* If function has FLR capabilities, and existing FW version matches
10806 * the one required, then FLR will be sufficient to clean any residue
10807 * left by previous driver
10808 */
10809 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10810
10811 if (!rc) {
10812 /* fw version is good */
10813 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10814 rc = bnx2x_do_flr(bp);
10815 }
10816
10817 if (!rc) {
10818 /* FLR was performed */
10819 BNX2X_DEV_INFO("FLR successful\n");
10820 return 0;
10821 }
10822
10823 BNX2X_DEV_INFO("Could not FLR\n");
10824
10825 out:
10826 /* Close the MCP request, return failure*/
10827 rc = bnx2x_prev_mcp_done(bp);
10828 if (!rc)
10829 rc = BNX2X_PREV_WAIT_NEEDED;
10830
10831 return rc;
10832 }
10833
bnx2x_prev_unload_common(struct bnx2x * bp)10834 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10835 {
10836 u32 reset_reg, tmp_reg = 0, rc;
10837 bool prev_undi = false;
10838 struct bnx2x_mac_vals mac_vals;
10839
10840 /* It is possible a previous function received 'common' answer,
10841 * but hasn't loaded yet, therefore creating a scenario of
10842 * multiple functions receiving 'common' on the same path.
10843 */
10844 BNX2X_DEV_INFO("Common unload Flow\n");
10845
10846 memset(&mac_vals, 0, sizeof(mac_vals));
10847
10848 if (bnx2x_prev_is_path_marked(bp))
10849 return bnx2x_prev_mcp_done(bp);
10850
10851 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10852
10853 /* Reset should be performed after BRB is emptied */
10854 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10855 u32 timer_count = 1000;
10856
10857 /* Close the MAC Rx to prevent BRB from filling up */
10858 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10859
10860 /* close LLH filters for both ports towards the BRB */
10861 bnx2x_set_rx_filter(&bp->link_params, 0);
10862 bp->link_params.port ^= 1;
10863 bnx2x_set_rx_filter(&bp->link_params, 0);
10864 bp->link_params.port ^= 1;
10865
10866 /* Check if the UNDI driver was previously loaded */
10867 if (bnx2x_prev_is_after_undi(bp)) {
10868 prev_undi = true;
10869 /* clear the UNDI indication */
10870 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10871 /* clear possible idle check errors */
10872 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10873 }
10874 if (!CHIP_IS_E1x(bp))
10875 /* block FW from writing to host */
10876 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10877
10878 /* wait until BRB is empty */
10879 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10880 while (timer_count) {
10881 u32 prev_brb = tmp_reg;
10882
10883 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10884 if (!tmp_reg)
10885 break;
10886
10887 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10888
10889 /* reset timer as long as BRB actually gets emptied */
10890 if (prev_brb > tmp_reg)
10891 timer_count = 1000;
10892 else
10893 timer_count--;
10894
10895 /* If UNDI resides in memory, manually increment it */
10896 if (prev_undi)
10897 bnx2x_prev_unload_undi_inc(bp, 1);
10898
10899 udelay(10);
10900 }
10901
10902 if (!timer_count)
10903 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10904 }
10905
10906 /* No packets are in the pipeline, path is ready for reset */
10907 bnx2x_reset_common(bp);
10908
10909 if (mac_vals.xmac_addr)
10910 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10911 if (mac_vals.umac_addr[0])
10912 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10913 if (mac_vals.umac_addr[1])
10914 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10915 if (mac_vals.emac_addr)
10916 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10917 if (mac_vals.bmac_addr) {
10918 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10919 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10920 }
10921
10922 rc = bnx2x_prev_mark_path(bp, prev_undi);
10923 if (rc) {
10924 bnx2x_prev_mcp_done(bp);
10925 return rc;
10926 }
10927
10928 return bnx2x_prev_mcp_done(bp);
10929 }
10930
bnx2x_prev_unload(struct bnx2x * bp)10931 static int bnx2x_prev_unload(struct bnx2x *bp)
10932 {
10933 int time_counter = 10;
10934 u32 rc, fw, hw_lock_reg, hw_lock_val;
10935 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10936
10937 /* clear hw from errors which may have resulted from an interrupted
10938 * dmae transaction.
10939 */
10940 bnx2x_clean_pglue_errors(bp);
10941
10942 /* Release previously held locks */
10943 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10944 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10945 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10946
10947 hw_lock_val = REG_RD(bp, hw_lock_reg);
10948 if (hw_lock_val) {
10949 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10950 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10951 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10952 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10953 }
10954
10955 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10956 REG_WR(bp, hw_lock_reg, 0xffffffff);
10957 } else
10958 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10959
10960 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10961 BNX2X_DEV_INFO("Release previously held alr\n");
10962 bnx2x_release_alr(bp);
10963 }
10964
10965 do {
10966 int aer = 0;
10967 /* Lock MCP using an unload request */
10968 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10969 if (!fw) {
10970 BNX2X_ERR("MCP response failure, aborting\n");
10971 rc = -EBUSY;
10972 break;
10973 }
10974
10975 rc = down_interruptible(&bnx2x_prev_sem);
10976 if (rc) {
10977 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10978 rc);
10979 } else {
10980 /* If Path is marked by EEH, ignore unload status */
10981 aer = !!(bnx2x_prev_path_get_entry(bp) &&
10982 bnx2x_prev_path_get_entry(bp)->aer);
10983 up(&bnx2x_prev_sem);
10984 }
10985
10986 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10987 rc = bnx2x_prev_unload_common(bp);
10988 break;
10989 }
10990
10991 /* non-common reply from MCP might require looping */
10992 rc = bnx2x_prev_unload_uncommon(bp);
10993 if (rc != BNX2X_PREV_WAIT_NEEDED)
10994 break;
10995
10996 msleep(20);
10997 } while (--time_counter);
10998
10999 if (!time_counter || rc) {
11000 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
11001 rc = -EPROBE_DEFER;
11002 }
11003
11004 /* Mark function if its port was used to boot from SAN */
11005 if (bnx2x_port_after_undi(bp))
11006 bp->link_params.feature_config_flags |=
11007 FEATURE_CONFIG_BOOT_FROM_SAN;
11008
11009 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
11010
11011 return rc;
11012 }
11013
bnx2x_get_common_hwinfo(struct bnx2x * bp)11014 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
11015 {
11016 u32 val, val2, val3, val4, id, boot_mode;
11017 u16 pmc;
11018
11019 /* Get the chip revision id and number. */
11020 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
11021 val = REG_RD(bp, MISC_REG_CHIP_NUM);
11022 id = ((val & 0xffff) << 16);
11023 val = REG_RD(bp, MISC_REG_CHIP_REV);
11024 id |= ((val & 0xf) << 12);
11025
11026 /* Metal is read from PCI regs, but we can't access >=0x400 from
11027 * the configuration space (so we need to reg_rd)
11028 */
11029 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
11030 id |= (((val >> 24) & 0xf) << 4);
11031 val = REG_RD(bp, MISC_REG_BOND_ID);
11032 id |= (val & 0xf);
11033 bp->common.chip_id = id;
11034
11035 /* force 57811 according to MISC register */
11036 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
11037 if (CHIP_IS_57810(bp))
11038 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
11039 (bp->common.chip_id & 0x0000FFFF);
11040 else if (CHIP_IS_57810_MF(bp))
11041 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
11042 (bp->common.chip_id & 0x0000FFFF);
11043 bp->common.chip_id |= 0x1;
11044 }
11045
11046 /* Set doorbell size */
11047 bp->db_size = (1 << BNX2X_DB_SHIFT);
11048
11049 if (!CHIP_IS_E1x(bp)) {
11050 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
11051 if ((val & 1) == 0)
11052 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
11053 else
11054 val = (val >> 1) & 1;
11055 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
11056 "2_PORT_MODE");
11057 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
11058 CHIP_2_PORT_MODE;
11059
11060 if (CHIP_MODE_IS_4_PORT(bp))
11061 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
11062 else
11063 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
11064 } else {
11065 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
11066 bp->pfid = bp->pf_num; /* 0..7 */
11067 }
11068
11069 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
11070
11071 bp->link_params.chip_id = bp->common.chip_id;
11072 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
11073
11074 val = (REG_RD(bp, 0x2874) & 0x55);
11075 if ((bp->common.chip_id & 0x1) ||
11076 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
11077 bp->flags |= ONE_PORT_FLAG;
11078 BNX2X_DEV_INFO("single port device\n");
11079 }
11080
11081 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11082 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11083 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11084 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11085 bp->common.flash_size, bp->common.flash_size);
11086
11087 bnx2x_init_shmem(bp);
11088
11089 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11090 MISC_REG_GENERIC_CR_1 :
11091 MISC_REG_GENERIC_CR_0));
11092
11093 bp->link_params.shmem_base = bp->common.shmem_base;
11094 bp->link_params.shmem2_base = bp->common.shmem2_base;
11095 if (SHMEM2_RD(bp, size) >
11096 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11097 bp->link_params.lfa_base =
11098 REG_RD(bp, bp->common.shmem2_base +
11099 (u32)offsetof(struct shmem2_region,
11100 lfa_host_addr[BP_PORT(bp)]));
11101 else
11102 bp->link_params.lfa_base = 0;
11103 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
11104 bp->common.shmem_base, bp->common.shmem2_base);
11105
11106 if (!bp->common.shmem_base) {
11107 BNX2X_DEV_INFO("MCP not active\n");
11108 bp->flags |= NO_MCP_FLAG;
11109 return;
11110 }
11111
11112 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11113 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11114
11115 bp->link_params.hw_led_mode = ((bp->common.hw_config &
11116 SHARED_HW_CFG_LED_MODE_MASK) >>
11117 SHARED_HW_CFG_LED_MODE_SHIFT);
11118
11119 bp->link_params.feature_config_flags = 0;
11120 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11121 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11122 bp->link_params.feature_config_flags |=
11123 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11124 else
11125 bp->link_params.feature_config_flags &=
11126 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11127
11128 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11129 bp->common.bc_ver = val;
11130 BNX2X_DEV_INFO("bc_ver %X\n", val);
11131 if (val < BNX2X_BC_VER) {
11132 /* for now only warn
11133 * later we might need to enforce this */
11134 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11135 BNX2X_BC_VER, val);
11136 }
11137 bp->link_params.feature_config_flags |=
11138 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11139 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11140
11141 bp->link_params.feature_config_flags |=
11142 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11143 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11144 bp->link_params.feature_config_flags |=
11145 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11146 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11147 bp->link_params.feature_config_flags |=
11148 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11149 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11150
11151 bp->link_params.feature_config_flags |=
11152 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11153 FEATURE_CONFIG_MT_SUPPORT : 0;
11154
11155 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11156 BC_SUPPORTS_PFC_STATS : 0;
11157
11158 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11159 BC_SUPPORTS_FCOE_FEATURES : 0;
11160
11161 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11162 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11163
11164 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11165 BC_SUPPORTS_RMMOD_CMD : 0;
11166
11167 boot_mode = SHMEM_RD(bp,
11168 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11169 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11170 switch (boot_mode) {
11171 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11172 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11173 break;
11174 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11175 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11176 break;
11177 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11178 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11179 break;
11180 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11181 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11182 break;
11183 }
11184
11185 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11186 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11187
11188 BNX2X_DEV_INFO("%sWoL capable\n",
11189 (bp->flags & NO_WOL_FLAG) ? "not " : "");
11190
11191 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11192 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11193 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11194 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11195
11196 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11197 val, val2, val3, val4);
11198 }
11199
11200 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11201 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11202
bnx2x_get_igu_cam_info(struct bnx2x * bp)11203 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11204 {
11205 int pfid = BP_FUNC(bp);
11206 int igu_sb_id;
11207 u32 val;
11208 u8 fid, igu_sb_cnt = 0;
11209
11210 bp->igu_base_sb = 0xff;
11211 if (CHIP_INT_MODE_IS_BC(bp)) {
11212 int vn = BP_VN(bp);
11213 igu_sb_cnt = bp->igu_sb_cnt;
11214 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11215 FP_SB_MAX_E1x;
11216
11217 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
11218 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11219
11220 return 0;
11221 }
11222
11223 /* IGU in normal mode - read CAM */
11224 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11225 igu_sb_id++) {
11226 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11227 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11228 continue;
11229 fid = IGU_FID(val);
11230 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11231 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11232 continue;
11233 if (IGU_VEC(val) == 0)
11234 /* default status block */
11235 bp->igu_dsb_id = igu_sb_id;
11236 else {
11237 if (bp->igu_base_sb == 0xff)
11238 bp->igu_base_sb = igu_sb_id;
11239 igu_sb_cnt++;
11240 }
11241 }
11242 }
11243
11244 #ifdef CONFIG_PCI_MSI
11245 /* Due to new PF resource allocation by MFW T7.4 and above, it's
11246 * optional that number of CAM entries will not be equal to the value
11247 * advertised in PCI.
11248 * Driver should use the minimal value of both as the actual status
11249 * block count
11250 */
11251 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11252 #endif
11253
11254 if (igu_sb_cnt == 0) {
11255 BNX2X_ERR("CAM configuration error\n");
11256 return -EINVAL;
11257 }
11258
11259 return 0;
11260 }
11261
bnx2x_link_settings_supported(struct bnx2x * bp,u32 switch_cfg)11262 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11263 {
11264 int cfg_size = 0, idx, port = BP_PORT(bp);
11265
11266 /* Aggregation of supported attributes of all external phys */
11267 bp->port.supported[0] = 0;
11268 bp->port.supported[1] = 0;
11269 switch (bp->link_params.num_phys) {
11270 case 1:
11271 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11272 cfg_size = 1;
11273 break;
11274 case 2:
11275 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11276 cfg_size = 1;
11277 break;
11278 case 3:
11279 if (bp->link_params.multi_phy_config &
11280 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11281 bp->port.supported[1] =
11282 bp->link_params.phy[EXT_PHY1].supported;
11283 bp->port.supported[0] =
11284 bp->link_params.phy[EXT_PHY2].supported;
11285 } else {
11286 bp->port.supported[0] =
11287 bp->link_params.phy[EXT_PHY1].supported;
11288 bp->port.supported[1] =
11289 bp->link_params.phy[EXT_PHY2].supported;
11290 }
11291 cfg_size = 2;
11292 break;
11293 }
11294
11295 if (!(bp->port.supported[0] || bp->port.supported[1])) {
11296 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11297 SHMEM_RD(bp,
11298 dev_info.port_hw_config[port].external_phy_config),
11299 SHMEM_RD(bp,
11300 dev_info.port_hw_config[port].external_phy_config2));
11301 return;
11302 }
11303
11304 if (CHIP_IS_E3(bp))
11305 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11306 else {
11307 switch (switch_cfg) {
11308 case SWITCH_CFG_1G:
11309 bp->port.phy_addr = REG_RD(
11310 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11311 break;
11312 case SWITCH_CFG_10G:
11313 bp->port.phy_addr = REG_RD(
11314 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11315 break;
11316 default:
11317 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11318 bp->port.link_config[0]);
11319 return;
11320 }
11321 }
11322 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11323 /* mask what we support according to speed_cap_mask per configuration */
11324 for (idx = 0; idx < cfg_size; idx++) {
11325 if (!(bp->link_params.speed_cap_mask[idx] &
11326 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11327 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11328
11329 if (!(bp->link_params.speed_cap_mask[idx] &
11330 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11331 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11332
11333 if (!(bp->link_params.speed_cap_mask[idx] &
11334 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11335 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11336
11337 if (!(bp->link_params.speed_cap_mask[idx] &
11338 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11339 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11340
11341 if (!(bp->link_params.speed_cap_mask[idx] &
11342 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11343 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11344 SUPPORTED_1000baseT_Full);
11345
11346 if (!(bp->link_params.speed_cap_mask[idx] &
11347 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11348 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11349
11350 if (!(bp->link_params.speed_cap_mask[idx] &
11351 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11352 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11353
11354 if (!(bp->link_params.speed_cap_mask[idx] &
11355 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11356 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11357 }
11358
11359 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11360 bp->port.supported[1]);
11361 }
11362
bnx2x_link_settings_requested(struct bnx2x * bp)11363 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11364 {
11365 u32 link_config, idx, cfg_size = 0;
11366 bp->port.advertising[0] = 0;
11367 bp->port.advertising[1] = 0;
11368 switch (bp->link_params.num_phys) {
11369 case 1:
11370 case 2:
11371 cfg_size = 1;
11372 break;
11373 case 3:
11374 cfg_size = 2;
11375 break;
11376 }
11377 for (idx = 0; idx < cfg_size; idx++) {
11378 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11379 link_config = bp->port.link_config[idx];
11380 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11381 case PORT_FEATURE_LINK_SPEED_AUTO:
11382 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11383 bp->link_params.req_line_speed[idx] =
11384 SPEED_AUTO_NEG;
11385 bp->port.advertising[idx] |=
11386 bp->port.supported[idx];
11387 if (bp->link_params.phy[EXT_PHY1].type ==
11388 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11389 bp->port.advertising[idx] |=
11390 (SUPPORTED_100baseT_Half |
11391 SUPPORTED_100baseT_Full);
11392 } else {
11393 /* force 10G, no AN */
11394 bp->link_params.req_line_speed[idx] =
11395 SPEED_10000;
11396 bp->port.advertising[idx] |=
11397 (ADVERTISED_10000baseT_Full |
11398 ADVERTISED_FIBRE);
11399 continue;
11400 }
11401 break;
11402
11403 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11404 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11405 bp->link_params.req_line_speed[idx] =
11406 SPEED_10;
11407 bp->port.advertising[idx] |=
11408 (ADVERTISED_10baseT_Full |
11409 ADVERTISED_TP);
11410 } else {
11411 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11412 link_config,
11413 bp->link_params.speed_cap_mask[idx]);
11414 return;
11415 }
11416 break;
11417
11418 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11419 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11420 bp->link_params.req_line_speed[idx] =
11421 SPEED_10;
11422 bp->link_params.req_duplex[idx] =
11423 DUPLEX_HALF;
11424 bp->port.advertising[idx] |=
11425 (ADVERTISED_10baseT_Half |
11426 ADVERTISED_TP);
11427 } else {
11428 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11429 link_config,
11430 bp->link_params.speed_cap_mask[idx]);
11431 return;
11432 }
11433 break;
11434
11435 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11436 if (bp->port.supported[idx] &
11437 SUPPORTED_100baseT_Full) {
11438 bp->link_params.req_line_speed[idx] =
11439 SPEED_100;
11440 bp->port.advertising[idx] |=
11441 (ADVERTISED_100baseT_Full |
11442 ADVERTISED_TP);
11443 } else {
11444 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11445 link_config,
11446 bp->link_params.speed_cap_mask[idx]);
11447 return;
11448 }
11449 break;
11450
11451 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11452 if (bp->port.supported[idx] &
11453 SUPPORTED_100baseT_Half) {
11454 bp->link_params.req_line_speed[idx] =
11455 SPEED_100;
11456 bp->link_params.req_duplex[idx] =
11457 DUPLEX_HALF;
11458 bp->port.advertising[idx] |=
11459 (ADVERTISED_100baseT_Half |
11460 ADVERTISED_TP);
11461 } else {
11462 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11463 link_config,
11464 bp->link_params.speed_cap_mask[idx]);
11465 return;
11466 }
11467 break;
11468
11469 case PORT_FEATURE_LINK_SPEED_1G:
11470 if (bp->port.supported[idx] &
11471 SUPPORTED_1000baseT_Full) {
11472 bp->link_params.req_line_speed[idx] =
11473 SPEED_1000;
11474 bp->port.advertising[idx] |=
11475 (ADVERTISED_1000baseT_Full |
11476 ADVERTISED_TP);
11477 } else if (bp->port.supported[idx] &
11478 SUPPORTED_1000baseKX_Full) {
11479 bp->link_params.req_line_speed[idx] =
11480 SPEED_1000;
11481 bp->port.advertising[idx] |=
11482 ADVERTISED_1000baseKX_Full;
11483 } else {
11484 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11485 link_config,
11486 bp->link_params.speed_cap_mask[idx]);
11487 return;
11488 }
11489 break;
11490
11491 case PORT_FEATURE_LINK_SPEED_2_5G:
11492 if (bp->port.supported[idx] &
11493 SUPPORTED_2500baseX_Full) {
11494 bp->link_params.req_line_speed[idx] =
11495 SPEED_2500;
11496 bp->port.advertising[idx] |=
11497 (ADVERTISED_2500baseX_Full |
11498 ADVERTISED_TP);
11499 } else {
11500 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11501 link_config,
11502 bp->link_params.speed_cap_mask[idx]);
11503 return;
11504 }
11505 break;
11506
11507 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11508 if (bp->port.supported[idx] &
11509 SUPPORTED_10000baseT_Full) {
11510 bp->link_params.req_line_speed[idx] =
11511 SPEED_10000;
11512 bp->port.advertising[idx] |=
11513 (ADVERTISED_10000baseT_Full |
11514 ADVERTISED_FIBRE);
11515 } else if (bp->port.supported[idx] &
11516 SUPPORTED_10000baseKR_Full) {
11517 bp->link_params.req_line_speed[idx] =
11518 SPEED_10000;
11519 bp->port.advertising[idx] |=
11520 (ADVERTISED_10000baseKR_Full |
11521 ADVERTISED_FIBRE);
11522 } else {
11523 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11524 link_config,
11525 bp->link_params.speed_cap_mask[idx]);
11526 return;
11527 }
11528 break;
11529 case PORT_FEATURE_LINK_SPEED_20G:
11530 bp->link_params.req_line_speed[idx] = SPEED_20000;
11531
11532 break;
11533 default:
11534 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11535 link_config);
11536 bp->link_params.req_line_speed[idx] =
11537 SPEED_AUTO_NEG;
11538 bp->port.advertising[idx] =
11539 bp->port.supported[idx];
11540 break;
11541 }
11542
11543 bp->link_params.req_flow_ctrl[idx] = (link_config &
11544 PORT_FEATURE_FLOW_CONTROL_MASK);
11545 if (bp->link_params.req_flow_ctrl[idx] ==
11546 BNX2X_FLOW_CTRL_AUTO) {
11547 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11548 bp->link_params.req_flow_ctrl[idx] =
11549 BNX2X_FLOW_CTRL_NONE;
11550 else
11551 bnx2x_set_requested_fc(bp);
11552 }
11553
11554 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11555 bp->link_params.req_line_speed[idx],
11556 bp->link_params.req_duplex[idx],
11557 bp->link_params.req_flow_ctrl[idx],
11558 bp->port.advertising[idx]);
11559 }
11560 }
11561
bnx2x_set_mac_buf(u8 * mac_buf,u32 mac_lo,u16 mac_hi)11562 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11563 {
11564 __be16 mac_hi_be = cpu_to_be16(mac_hi);
11565 __be32 mac_lo_be = cpu_to_be32(mac_lo);
11566 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11567 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11568 }
11569
bnx2x_get_port_hwinfo(struct bnx2x * bp)11570 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11571 {
11572 int port = BP_PORT(bp);
11573 u32 config;
11574 u32 ext_phy_type, ext_phy_config, eee_mode;
11575
11576 bp->link_params.bp = bp;
11577 bp->link_params.port = port;
11578
11579 bp->link_params.lane_config =
11580 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11581
11582 bp->link_params.speed_cap_mask[0] =
11583 SHMEM_RD(bp,
11584 dev_info.port_hw_config[port].speed_capability_mask) &
11585 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11586 bp->link_params.speed_cap_mask[1] =
11587 SHMEM_RD(bp,
11588 dev_info.port_hw_config[port].speed_capability_mask2) &
11589 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11590 bp->port.link_config[0] =
11591 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11592
11593 bp->port.link_config[1] =
11594 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11595
11596 bp->link_params.multi_phy_config =
11597 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11598 /* If the device is capable of WoL, set the default state according
11599 * to the HW
11600 */
11601 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11602 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11603 (config & PORT_FEATURE_WOL_ENABLED));
11604
11605 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11606 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11607 bp->flags |= NO_ISCSI_FLAG;
11608 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11609 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11610 bp->flags |= NO_FCOE_FLAG;
11611
11612 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
11613 bp->link_params.lane_config,
11614 bp->link_params.speed_cap_mask[0],
11615 bp->port.link_config[0]);
11616
11617 bp->link_params.switch_cfg = (bp->port.link_config[0] &
11618 PORT_FEATURE_CONNECTED_SWITCH_MASK);
11619 bnx2x_phy_probe(&bp->link_params);
11620 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11621
11622 bnx2x_link_settings_requested(bp);
11623
11624 /*
11625 * If connected directly, work with the internal PHY, otherwise, work
11626 * with the external PHY
11627 */
11628 ext_phy_config =
11629 SHMEM_RD(bp,
11630 dev_info.port_hw_config[port].external_phy_config);
11631 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11632 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11633 bp->mdio.prtad = bp->port.phy_addr;
11634
11635 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11636 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11637 bp->mdio.prtad =
11638 XGXS_EXT_PHY_ADDR(ext_phy_config);
11639
11640 /* Configure link feature according to nvram value */
11641 eee_mode = (((SHMEM_RD(bp, dev_info.
11642 port_feature_config[port].eee_power_mode)) &
11643 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11644 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11645 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11646 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11647 EEE_MODE_ENABLE_LPI |
11648 EEE_MODE_OUTPUT_TIME;
11649 } else {
11650 bp->link_params.eee_mode = 0;
11651 }
11652 }
11653
bnx2x_get_iscsi_info(struct bnx2x * bp)11654 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11655 {
11656 u32 no_flags = NO_ISCSI_FLAG;
11657 int port = BP_PORT(bp);
11658 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11659 drv_lic_key[port].max_iscsi_conn);
11660
11661 if (!CNIC_SUPPORT(bp)) {
11662 bp->flags |= no_flags;
11663 return;
11664 }
11665
11666 /* Get the number of maximum allowed iSCSI connections */
11667 bp->cnic_eth_dev.max_iscsi_conn =
11668 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11669 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11670
11671 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11672 bp->cnic_eth_dev.max_iscsi_conn);
11673
11674 /*
11675 * If maximum allowed number of connections is zero -
11676 * disable the feature.
11677 */
11678 if (!bp->cnic_eth_dev.max_iscsi_conn)
11679 bp->flags |= no_flags;
11680 }
11681
bnx2x_get_ext_wwn_info(struct bnx2x * bp,int func)11682 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11683 {
11684 /* Port info */
11685 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11686 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11687 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11688 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11689
11690 /* Node info */
11691 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11692 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11693 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11694 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11695 }
11696
bnx2x_shared_fcoe_funcs(struct bnx2x * bp)11697 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11698 {
11699 u8 count = 0;
11700
11701 if (IS_MF(bp)) {
11702 u8 fid;
11703
11704 /* iterate over absolute function ids for this path: */
11705 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11706 if (IS_MF_SD(bp)) {
11707 u32 cfg = MF_CFG_RD(bp,
11708 func_mf_config[fid].config);
11709
11710 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11711 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11712 FUNC_MF_CFG_PROTOCOL_FCOE))
11713 count++;
11714 } else {
11715 u32 cfg = MF_CFG_RD(bp,
11716 func_ext_config[fid].
11717 func_cfg);
11718
11719 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11720 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11721 count++;
11722 }
11723 }
11724 } else { /* SF */
11725 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11726
11727 for (port = 0; port < port_cnt; port++) {
11728 u32 lic = SHMEM_RD(bp,
11729 drv_lic_key[port].max_fcoe_conn) ^
11730 FW_ENCODE_32BIT_PATTERN;
11731 if (lic)
11732 count++;
11733 }
11734 }
11735
11736 return count;
11737 }
11738
bnx2x_get_fcoe_info(struct bnx2x * bp)11739 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11740 {
11741 int port = BP_PORT(bp);
11742 int func = BP_ABS_FUNC(bp);
11743 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11744 drv_lic_key[port].max_fcoe_conn);
11745 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11746
11747 if (!CNIC_SUPPORT(bp)) {
11748 bp->flags |= NO_FCOE_FLAG;
11749 return;
11750 }
11751
11752 /* Get the number of maximum allowed FCoE connections */
11753 bp->cnic_eth_dev.max_fcoe_conn =
11754 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11755 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11756
11757 /* Calculate the number of maximum allowed FCoE tasks */
11758 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11759
11760 /* check if FCoE resources must be shared between different functions */
11761 if (num_fcoe_func)
11762 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11763
11764 /* Read the WWN: */
11765 if (!IS_MF(bp)) {
11766 /* Port info */
11767 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11768 SHMEM_RD(bp,
11769 dev_info.port_hw_config[port].
11770 fcoe_wwn_port_name_upper);
11771 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11772 SHMEM_RD(bp,
11773 dev_info.port_hw_config[port].
11774 fcoe_wwn_port_name_lower);
11775
11776 /* Node info */
11777 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11778 SHMEM_RD(bp,
11779 dev_info.port_hw_config[port].
11780 fcoe_wwn_node_name_upper);
11781 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11782 SHMEM_RD(bp,
11783 dev_info.port_hw_config[port].
11784 fcoe_wwn_node_name_lower);
11785 } else if (!IS_MF_SD(bp)) {
11786 /* Read the WWN info only if the FCoE feature is enabled for
11787 * this function.
11788 */
11789 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11790 bnx2x_get_ext_wwn_info(bp, func);
11791 } else {
11792 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11793 bnx2x_get_ext_wwn_info(bp, func);
11794 }
11795
11796 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11797
11798 /*
11799 * If maximum allowed number of connections is zero -
11800 * disable the feature.
11801 */
11802 if (!bp->cnic_eth_dev.max_fcoe_conn) {
11803 bp->flags |= NO_FCOE_FLAG;
11804 eth_zero_addr(bp->fip_mac);
11805 }
11806 }
11807
bnx2x_get_cnic_info(struct bnx2x * bp)11808 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11809 {
11810 /*
11811 * iSCSI may be dynamically disabled but reading
11812 * info here we will decrease memory usage by driver
11813 * if the feature is disabled for good
11814 */
11815 bnx2x_get_iscsi_info(bp);
11816 bnx2x_get_fcoe_info(bp);
11817 }
11818
bnx2x_get_cnic_mac_hwinfo(struct bnx2x * bp)11819 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11820 {
11821 u32 val, val2;
11822 int func = BP_ABS_FUNC(bp);
11823 int port = BP_PORT(bp);
11824 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11825 u8 *fip_mac = bp->fip_mac;
11826
11827 if (IS_MF(bp)) {
11828 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11829 * FCoE MAC then the appropriate feature should be disabled.
11830 * In non SD mode features configuration comes from struct
11831 * func_ext_config.
11832 */
11833 if (!IS_MF_SD(bp)) {
11834 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11835 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11836 val2 = MF_CFG_RD(bp, func_ext_config[func].
11837 iscsi_mac_addr_upper);
11838 val = MF_CFG_RD(bp, func_ext_config[func].
11839 iscsi_mac_addr_lower);
11840 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11841 BNX2X_DEV_INFO
11842 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11843 } else {
11844 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11845 }
11846
11847 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11848 val2 = MF_CFG_RD(bp, func_ext_config[func].
11849 fcoe_mac_addr_upper);
11850 val = MF_CFG_RD(bp, func_ext_config[func].
11851 fcoe_mac_addr_lower);
11852 bnx2x_set_mac_buf(fip_mac, val, val2);
11853 BNX2X_DEV_INFO
11854 ("Read FCoE L2 MAC: %pM\n", fip_mac);
11855 } else {
11856 bp->flags |= NO_FCOE_FLAG;
11857 }
11858
11859 bp->mf_ext_config = cfg;
11860
11861 } else { /* SD MODE */
11862 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11863 /* use primary mac as iscsi mac */
11864 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11865
11866 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11867 BNX2X_DEV_INFO
11868 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11869 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11870 /* use primary mac as fip mac */
11871 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11872 BNX2X_DEV_INFO("SD FCoE MODE\n");
11873 BNX2X_DEV_INFO
11874 ("Read FIP MAC: %pM\n", fip_mac);
11875 }
11876 }
11877
11878 /* If this is a storage-only interface, use SAN mac as
11879 * primary MAC. Notice that for SD this is already the case,
11880 * as the SAN mac was copied from the primary MAC.
11881 */
11882 if (IS_MF_FCOE_AFEX(bp))
11883 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11884 } else {
11885 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11886 iscsi_mac_upper);
11887 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11888 iscsi_mac_lower);
11889 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11890
11891 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11892 fcoe_fip_mac_upper);
11893 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11894 fcoe_fip_mac_lower);
11895 bnx2x_set_mac_buf(fip_mac, val, val2);
11896 }
11897
11898 /* Disable iSCSI OOO if MAC configuration is invalid. */
11899 if (!is_valid_ether_addr(iscsi_mac)) {
11900 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11901 eth_zero_addr(iscsi_mac);
11902 }
11903
11904 /* Disable FCoE if MAC configuration is invalid. */
11905 if (!is_valid_ether_addr(fip_mac)) {
11906 bp->flags |= NO_FCOE_FLAG;
11907 eth_zero_addr(bp->fip_mac);
11908 }
11909 }
11910
bnx2x_get_mac_hwinfo(struct bnx2x * bp)11911 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11912 {
11913 u32 val, val2;
11914 int func = BP_ABS_FUNC(bp);
11915 int port = BP_PORT(bp);
11916
11917 /* Zero primary MAC configuration */
11918 eth_zero_addr(bp->dev->dev_addr);
11919
11920 if (BP_NOMCP(bp)) {
11921 BNX2X_ERROR("warning: random MAC workaround active\n");
11922 eth_hw_addr_random(bp->dev);
11923 } else if (IS_MF(bp)) {
11924 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11925 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11926 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11927 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11928 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11929
11930 if (CNIC_SUPPORT(bp))
11931 bnx2x_get_cnic_mac_hwinfo(bp);
11932 } else {
11933 /* in SF read MACs from port configuration */
11934 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11935 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11936 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11937
11938 if (CNIC_SUPPORT(bp))
11939 bnx2x_get_cnic_mac_hwinfo(bp);
11940 }
11941
11942 if (!BP_NOMCP(bp)) {
11943 /* Read physical port identifier from shmem */
11944 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11945 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11946 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11947 bp->flags |= HAS_PHYS_PORT_ID;
11948 }
11949
11950 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11951
11952 if (!is_valid_ether_addr(bp->dev->dev_addr))
11953 dev_err(&bp->pdev->dev,
11954 "bad Ethernet MAC address configuration: %pM\n"
11955 "change it manually before bringing up the appropriate network interface\n",
11956 bp->dev->dev_addr);
11957 }
11958
bnx2x_get_dropless_info(struct bnx2x * bp)11959 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11960 {
11961 int tmp;
11962 u32 cfg;
11963
11964 if (IS_VF(bp))
11965 return false;
11966
11967 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11968 /* Take function: tmp = func */
11969 tmp = BP_ABS_FUNC(bp);
11970 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11971 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11972 } else {
11973 /* Take port: tmp = port */
11974 tmp = BP_PORT(bp);
11975 cfg = SHMEM_RD(bp,
11976 dev_info.port_hw_config[tmp].generic_features);
11977 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11978 }
11979 return cfg;
11980 }
11981
validate_set_si_mode(struct bnx2x * bp)11982 static void validate_set_si_mode(struct bnx2x *bp)
11983 {
11984 u8 func = BP_ABS_FUNC(bp);
11985 u32 val;
11986
11987 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11988
11989 /* check for legal mac (upper bytes) */
11990 if (val != 0xffff) {
11991 bp->mf_mode = MULTI_FUNCTION_SI;
11992 bp->mf_config[BP_VN(bp)] =
11993 MF_CFG_RD(bp, func_mf_config[func].config);
11994 } else
11995 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11996 }
11997
bnx2x_get_hwinfo(struct bnx2x * bp)11998 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11999 {
12000 int /*abs*/func = BP_ABS_FUNC(bp);
12001 int vn, mfw_vn;
12002 u32 val = 0, val2 = 0;
12003 int rc = 0;
12004
12005 /* Validate that chip access is feasible */
12006 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
12007 dev_err(&bp->pdev->dev,
12008 "Chip read returns all Fs. Preventing probe from continuing\n");
12009 return -EINVAL;
12010 }
12011
12012 bnx2x_get_common_hwinfo(bp);
12013
12014 /*
12015 * initialize IGU parameters
12016 */
12017 if (CHIP_IS_E1x(bp)) {
12018 bp->common.int_block = INT_BLOCK_HC;
12019
12020 bp->igu_dsb_id = DEF_SB_IGU_ID;
12021 bp->igu_base_sb = 0;
12022 } else {
12023 bp->common.int_block = INT_BLOCK_IGU;
12024
12025 /* do not allow device reset during IGU info processing */
12026 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
12027
12028 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
12029
12030 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
12031 int tout = 5000;
12032
12033 BNX2X_DEV_INFO("FORCING Normal Mode\n");
12034
12035 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
12036 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
12037 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
12038
12039 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
12040 tout--;
12041 usleep_range(1000, 2000);
12042 }
12043
12044 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
12045 dev_err(&bp->pdev->dev,
12046 "FORCING Normal Mode failed!!!\n");
12047 bnx2x_release_hw_lock(bp,
12048 HW_LOCK_RESOURCE_RESET);
12049 return -EPERM;
12050 }
12051 }
12052
12053 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
12054 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
12055 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
12056 } else
12057 BNX2X_DEV_INFO("IGU Normal Mode\n");
12058
12059 rc = bnx2x_get_igu_cam_info(bp);
12060 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
12061 if (rc)
12062 return rc;
12063 }
12064
12065 /*
12066 * set base FW non-default (fast path) status block id, this value is
12067 * used to initialize the fw_sb_id saved on the fp/queue structure to
12068 * determine the id used by the FW.
12069 */
12070 if (CHIP_IS_E1x(bp))
12071 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
12072 else /*
12073 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
12074 * the same queue are indicated on the same IGU SB). So we prefer
12075 * FW and IGU SBs to be the same value.
12076 */
12077 bp->base_fw_ndsb = bp->igu_base_sb;
12078
12079 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
12080 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12081 bp->igu_sb_cnt, bp->base_fw_ndsb);
12082
12083 /*
12084 * Initialize MF configuration
12085 */
12086
12087 bp->mf_ov = 0;
12088 bp->mf_mode = 0;
12089 bp->mf_sub_mode = 0;
12090 vn = BP_VN(bp);
12091 mfw_vn = BP_FW_MB_IDX(bp);
12092
12093 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12094 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12095 bp->common.shmem2_base, SHMEM2_RD(bp, size),
12096 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12097
12098 if (SHMEM2_HAS(bp, mf_cfg_addr))
12099 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12100 else
12101 bp->common.mf_cfg_base = bp->common.shmem_base +
12102 offsetof(struct shmem_region, func_mb) +
12103 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12104 /*
12105 * get mf configuration:
12106 * 1. Existence of MF configuration
12107 * 2. MAC address must be legal (check only upper bytes)
12108 * for Switch-Independent mode;
12109 * OVLAN must be legal for Switch-Dependent mode
12110 * 3. SF_MODE configures specific MF mode
12111 */
12112 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12113 /* get mf configuration */
12114 val = SHMEM_RD(bp,
12115 dev_info.shared_feature_config.config);
12116 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12117
12118 switch (val) {
12119 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12120 validate_set_si_mode(bp);
12121 break;
12122 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12123 if ((!CHIP_IS_E1x(bp)) &&
12124 (MF_CFG_RD(bp, func_mf_config[func].
12125 mac_upper) != 0xffff) &&
12126 (SHMEM2_HAS(bp,
12127 afex_driver_support))) {
12128 bp->mf_mode = MULTI_FUNCTION_AFEX;
12129 bp->mf_config[vn] = MF_CFG_RD(bp,
12130 func_mf_config[func].config);
12131 } else {
12132 BNX2X_DEV_INFO("can not configure afex mode\n");
12133 }
12134 break;
12135 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12136 /* get OV configuration */
12137 val = MF_CFG_RD(bp,
12138 func_mf_config[FUNC_0].e1hov_tag);
12139 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12140
12141 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12142 bp->mf_mode = MULTI_FUNCTION_SD;
12143 bp->mf_config[vn] = MF_CFG_RD(bp,
12144 func_mf_config[func].config);
12145 } else
12146 BNX2X_DEV_INFO("illegal OV for SD\n");
12147 break;
12148 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12149 bp->mf_mode = MULTI_FUNCTION_SD;
12150 bp->mf_sub_mode = SUB_MF_MODE_BD;
12151 bp->mf_config[vn] =
12152 MF_CFG_RD(bp,
12153 func_mf_config[func].config);
12154
12155 if (SHMEM2_HAS(bp, mtu_size)) {
12156 int mtu_idx = BP_FW_MB_IDX(bp);
12157 u16 mtu_size;
12158 u32 mtu;
12159
12160 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12161 mtu_size = (u16)mtu;
12162 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12163 mtu_size, mtu);
12164
12165 /* if valid: update device mtu */
12166 if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12167 (mtu_size <=
12168 ETH_MAX_JUMBO_PACKET_SIZE))
12169 bp->dev->mtu = mtu_size;
12170 }
12171 break;
12172 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12173 bp->mf_mode = MULTI_FUNCTION_SD;
12174 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12175 bp->mf_config[vn] =
12176 MF_CFG_RD(bp,
12177 func_mf_config[func].config);
12178 break;
12179 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12180 bp->mf_config[vn] = 0;
12181 break;
12182 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12183 val2 = SHMEM_RD(bp,
12184 dev_info.shared_hw_config.config_3);
12185 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12186 switch (val2) {
12187 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12188 validate_set_si_mode(bp);
12189 bp->mf_sub_mode =
12190 SUB_MF_MODE_NPAR1_DOT_5;
12191 break;
12192 default:
12193 /* Unknown configuration */
12194 bp->mf_config[vn] = 0;
12195 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12196 val);
12197 }
12198 break;
12199 default:
12200 /* Unknown configuration: reset mf_config */
12201 bp->mf_config[vn] = 0;
12202 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12203 }
12204 }
12205
12206 BNX2X_DEV_INFO("%s function mode\n",
12207 IS_MF(bp) ? "multi" : "single");
12208
12209 switch (bp->mf_mode) {
12210 case MULTI_FUNCTION_SD:
12211 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12212 FUNC_MF_CFG_E1HOV_TAG_MASK;
12213 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12214 bp->mf_ov = val;
12215 bp->path_has_ovlan = true;
12216
12217 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12218 func, bp->mf_ov, bp->mf_ov);
12219 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12220 (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12221 dev_err(&bp->pdev->dev,
12222 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12223 func);
12224 bp->path_has_ovlan = true;
12225 } else {
12226 dev_err(&bp->pdev->dev,
12227 "No valid MF OV for func %d, aborting\n",
12228 func);
12229 return -EPERM;
12230 }
12231 break;
12232 case MULTI_FUNCTION_AFEX:
12233 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12234 break;
12235 case MULTI_FUNCTION_SI:
12236 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12237 func);
12238 break;
12239 default:
12240 if (vn) {
12241 dev_err(&bp->pdev->dev,
12242 "VN %d is in a single function mode, aborting\n",
12243 vn);
12244 return -EPERM;
12245 }
12246 break;
12247 }
12248
12249 /* check if other port on the path needs ovlan:
12250 * Since MF configuration is shared between ports
12251 * Possible mixed modes are only
12252 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12253 */
12254 if (CHIP_MODE_IS_4_PORT(bp) &&
12255 !bp->path_has_ovlan &&
12256 !IS_MF(bp) &&
12257 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12258 u8 other_port = !BP_PORT(bp);
12259 u8 other_func = BP_PATH(bp) + 2*other_port;
12260 val = MF_CFG_RD(bp,
12261 func_mf_config[other_func].e1hov_tag);
12262 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12263 bp->path_has_ovlan = true;
12264 }
12265 }
12266
12267 /* adjust igu_sb_cnt to MF for E1H */
12268 if (CHIP_IS_E1H(bp) && IS_MF(bp))
12269 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12270
12271 /* port info */
12272 bnx2x_get_port_hwinfo(bp);
12273
12274 /* Get MAC addresses */
12275 bnx2x_get_mac_hwinfo(bp);
12276
12277 bnx2x_get_cnic_info(bp);
12278
12279 return rc;
12280 }
12281
bnx2x_read_fwinfo(struct bnx2x * bp)12282 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12283 {
12284 int cnt, i, block_end, rodi;
12285 char vpd_start[BNX2X_VPD_LEN+1];
12286 char str_id_reg[VENDOR_ID_LEN+1];
12287 char str_id_cap[VENDOR_ID_LEN+1];
12288 char *vpd_data;
12289 char *vpd_extended_data = NULL;
12290 u8 len;
12291
12292 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12293 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12294
12295 if (cnt < BNX2X_VPD_LEN)
12296 goto out_not_found;
12297
12298 /* VPD RO tag should be first tag after identifier string, hence
12299 * we should be able to find it in first BNX2X_VPD_LEN chars
12300 */
12301 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12302 PCI_VPD_LRDT_RO_DATA);
12303 if (i < 0)
12304 goto out_not_found;
12305
12306 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12307 pci_vpd_lrdt_size(&vpd_start[i]);
12308
12309 i += PCI_VPD_LRDT_TAG_SIZE;
12310
12311 if (block_end > BNX2X_VPD_LEN) {
12312 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12313 if (vpd_extended_data == NULL)
12314 goto out_not_found;
12315
12316 /* read rest of vpd image into vpd_extended_data */
12317 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12318 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12319 block_end - BNX2X_VPD_LEN,
12320 vpd_extended_data + BNX2X_VPD_LEN);
12321 if (cnt < (block_end - BNX2X_VPD_LEN))
12322 goto out_not_found;
12323 vpd_data = vpd_extended_data;
12324 } else
12325 vpd_data = vpd_start;
12326
12327 /* now vpd_data holds full vpd content in both cases */
12328
12329 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12330 PCI_VPD_RO_KEYWORD_MFR_ID);
12331 if (rodi < 0)
12332 goto out_not_found;
12333
12334 len = pci_vpd_info_field_size(&vpd_data[rodi]);
12335
12336 if (len != VENDOR_ID_LEN)
12337 goto out_not_found;
12338
12339 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12340
12341 /* vendor specific info */
12342 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12343 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12344 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12345 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12346
12347 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12348 PCI_VPD_RO_KEYWORD_VENDOR0);
12349 if (rodi >= 0) {
12350 len = pci_vpd_info_field_size(&vpd_data[rodi]);
12351
12352 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12353
12354 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12355 memcpy(bp->fw_ver, &vpd_data[rodi], len);
12356 bp->fw_ver[len] = ' ';
12357 }
12358 }
12359 kfree(vpd_extended_data);
12360 return;
12361 }
12362 out_not_found:
12363 kfree(vpd_extended_data);
12364 return;
12365 }
12366
bnx2x_set_modes_bitmap(struct bnx2x * bp)12367 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12368 {
12369 u32 flags = 0;
12370
12371 if (CHIP_REV_IS_FPGA(bp))
12372 SET_FLAGS(flags, MODE_FPGA);
12373 else if (CHIP_REV_IS_EMUL(bp))
12374 SET_FLAGS(flags, MODE_EMUL);
12375 else
12376 SET_FLAGS(flags, MODE_ASIC);
12377
12378 if (CHIP_MODE_IS_4_PORT(bp))
12379 SET_FLAGS(flags, MODE_PORT4);
12380 else
12381 SET_FLAGS(flags, MODE_PORT2);
12382
12383 if (CHIP_IS_E2(bp))
12384 SET_FLAGS(flags, MODE_E2);
12385 else if (CHIP_IS_E3(bp)) {
12386 SET_FLAGS(flags, MODE_E3);
12387 if (CHIP_REV(bp) == CHIP_REV_Ax)
12388 SET_FLAGS(flags, MODE_E3_A0);
12389 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12390 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12391 }
12392
12393 if (IS_MF(bp)) {
12394 SET_FLAGS(flags, MODE_MF);
12395 switch (bp->mf_mode) {
12396 case MULTI_FUNCTION_SD:
12397 SET_FLAGS(flags, MODE_MF_SD);
12398 break;
12399 case MULTI_FUNCTION_SI:
12400 SET_FLAGS(flags, MODE_MF_SI);
12401 break;
12402 case MULTI_FUNCTION_AFEX:
12403 SET_FLAGS(flags, MODE_MF_AFEX);
12404 break;
12405 }
12406 } else
12407 SET_FLAGS(flags, MODE_SF);
12408
12409 #if defined(__LITTLE_ENDIAN)
12410 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12411 #else /*(__BIG_ENDIAN)*/
12412 SET_FLAGS(flags, MODE_BIG_ENDIAN);
12413 #endif
12414 INIT_MODE_FLAGS(bp) = flags;
12415 }
12416
bnx2x_init_bp(struct bnx2x * bp)12417 static int bnx2x_init_bp(struct bnx2x *bp)
12418 {
12419 int func;
12420 int rc;
12421
12422 mutex_init(&bp->port.phy_mutex);
12423 mutex_init(&bp->fw_mb_mutex);
12424 mutex_init(&bp->drv_info_mutex);
12425 sema_init(&bp->stats_lock, 1);
12426 bp->drv_info_mng_owner = false;
12427 INIT_LIST_HEAD(&bp->vlan_reg);
12428
12429 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12430 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12431 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12432 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12433 if (IS_PF(bp)) {
12434 rc = bnx2x_get_hwinfo(bp);
12435 if (rc)
12436 return rc;
12437 } else {
12438 eth_zero_addr(bp->dev->dev_addr);
12439 }
12440
12441 bnx2x_set_modes_bitmap(bp);
12442
12443 rc = bnx2x_alloc_mem_bp(bp);
12444 if (rc)
12445 return rc;
12446
12447 bnx2x_read_fwinfo(bp);
12448
12449 func = BP_FUNC(bp);
12450
12451 /* need to reset chip if undi was active */
12452 if (IS_PF(bp) && !BP_NOMCP(bp)) {
12453 /* init fw_seq */
12454 bp->fw_seq =
12455 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12456 DRV_MSG_SEQ_NUMBER_MASK;
12457 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12458
12459 rc = bnx2x_prev_unload(bp);
12460 if (rc) {
12461 bnx2x_free_mem_bp(bp);
12462 return rc;
12463 }
12464 }
12465
12466 if (CHIP_REV_IS_FPGA(bp))
12467 dev_err(&bp->pdev->dev, "FPGA detected\n");
12468
12469 if (BP_NOMCP(bp) && (func == 0))
12470 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12471
12472 bp->disable_tpa = disable_tpa;
12473 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12474 /* Reduce memory usage in kdump environment by disabling TPA */
12475 bp->disable_tpa |= is_kdump_kernel();
12476
12477 /* Set TPA flags */
12478 if (bp->disable_tpa) {
12479 bp->dev->hw_features &= ~NETIF_F_LRO;
12480 bp->dev->features &= ~NETIF_F_LRO;
12481 }
12482
12483 if (CHIP_IS_E1(bp))
12484 bp->dropless_fc = 0;
12485 else
12486 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12487
12488 bp->mrrs = mrrs;
12489
12490 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12491 if (IS_VF(bp))
12492 bp->rx_ring_size = MAX_RX_AVAIL;
12493
12494 /* make sure that the numbers are in the right granularity */
12495 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12496 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12497
12498 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12499
12500 init_timer(&bp->timer);
12501 bp->timer.expires = jiffies + bp->current_interval;
12502 bp->timer.data = (unsigned long) bp;
12503 bp->timer.function = bnx2x_timer;
12504
12505 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12506 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12507 SHMEM2_HAS(bp, dcbx_en) &&
12508 SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12509 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12510 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12511 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12512 bnx2x_dcbx_init_params(bp);
12513 } else {
12514 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12515 }
12516
12517 if (CHIP_IS_E1x(bp))
12518 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12519 else
12520 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12521
12522 /* multiple tx priority */
12523 if (IS_VF(bp))
12524 bp->max_cos = 1;
12525 else if (CHIP_IS_E1x(bp))
12526 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12527 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12528 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12529 else if (CHIP_IS_E3B0(bp))
12530 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12531 else
12532 BNX2X_ERR("unknown chip %x revision %x\n",
12533 CHIP_NUM(bp), CHIP_REV(bp));
12534 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12535
12536 /* We need at least one default status block for slow-path events,
12537 * second status block for the L2 queue, and a third status block for
12538 * CNIC if supported.
12539 */
12540 if (IS_VF(bp))
12541 bp->min_msix_vec_cnt = 1;
12542 else if (CNIC_SUPPORT(bp))
12543 bp->min_msix_vec_cnt = 3;
12544 else /* PF w/o cnic */
12545 bp->min_msix_vec_cnt = 2;
12546 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12547
12548 bp->dump_preset_idx = 1;
12549
12550 if (CHIP_IS_E3B0(bp))
12551 bp->flags |= PTP_SUPPORTED;
12552
12553 return rc;
12554 }
12555
12556 /****************************************************************************
12557 * General service functions
12558 ****************************************************************************/
12559
12560 /*
12561 * net_device service functions
12562 */
12563
12564 /* called with rtnl_lock */
bnx2x_open(struct net_device * dev)12565 static int bnx2x_open(struct net_device *dev)
12566 {
12567 struct bnx2x *bp = netdev_priv(dev);
12568 int rc;
12569
12570 bp->stats_init = true;
12571
12572 netif_carrier_off(dev);
12573
12574 bnx2x_set_power_state(bp, PCI_D0);
12575
12576 /* If parity had happen during the unload, then attentions
12577 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12578 * want the first function loaded on the current engine to
12579 * complete the recovery.
12580 * Parity recovery is only relevant for PF driver.
12581 */
12582 if (IS_PF(bp)) {
12583 int other_engine = BP_PATH(bp) ? 0 : 1;
12584 bool other_load_status, load_status;
12585 bool global = false;
12586
12587 other_load_status = bnx2x_get_load_status(bp, other_engine);
12588 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12589 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12590 bnx2x_chk_parity_attn(bp, &global, true)) {
12591 do {
12592 /* If there are attentions and they are in a
12593 * global blocks, set the GLOBAL_RESET bit
12594 * regardless whether it will be this function
12595 * that will complete the recovery or not.
12596 */
12597 if (global)
12598 bnx2x_set_reset_global(bp);
12599
12600 /* Only the first function on the current
12601 * engine should try to recover in open. In case
12602 * of attentions in global blocks only the first
12603 * in the chip should try to recover.
12604 */
12605 if ((!load_status &&
12606 (!global || !other_load_status)) &&
12607 bnx2x_trylock_leader_lock(bp) &&
12608 !bnx2x_leader_reset(bp)) {
12609 netdev_info(bp->dev,
12610 "Recovered in open\n");
12611 break;
12612 }
12613
12614 /* recovery has failed... */
12615 bnx2x_set_power_state(bp, PCI_D3hot);
12616 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12617
12618 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12619 "If you still see this message after a few retries then power cycle is required.\n");
12620
12621 return -EAGAIN;
12622 } while (0);
12623 }
12624 }
12625
12626 bp->recovery_state = BNX2X_RECOVERY_DONE;
12627 rc = bnx2x_nic_load(bp, LOAD_OPEN);
12628 if (rc)
12629 return rc;
12630
12631 if (IS_PF(bp))
12632 udp_tunnel_get_rx_info(dev);
12633
12634 return 0;
12635 }
12636
12637 /* called with rtnl_lock */
bnx2x_close(struct net_device * dev)12638 static int bnx2x_close(struct net_device *dev)
12639 {
12640 struct bnx2x *bp = netdev_priv(dev);
12641
12642 /* Unload the driver, release IRQs */
12643 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12644
12645 return 0;
12646 }
12647
12648 struct bnx2x_mcast_list_elem_group
12649 {
12650 struct list_head mcast_group_link;
12651 struct bnx2x_mcast_list_elem mcast_elems[];
12652 };
12653
12654 #define MCAST_ELEMS_PER_PG \
12655 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12656 sizeof(struct bnx2x_mcast_list_elem))
12657
bnx2x_free_mcast_macs_list(struct list_head * mcast_group_list)12658 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12659 {
12660 struct bnx2x_mcast_list_elem_group *current_mcast_group;
12661
12662 while (!list_empty(mcast_group_list)) {
12663 current_mcast_group = list_first_entry(mcast_group_list,
12664 struct bnx2x_mcast_list_elem_group,
12665 mcast_group_link);
12666 list_del(¤t_mcast_group->mcast_group_link);
12667 free_page((unsigned long)current_mcast_group);
12668 }
12669 }
12670
bnx2x_init_mcast_macs_list(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,struct list_head * mcast_group_list)12671 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12672 struct bnx2x_mcast_ramrod_params *p,
12673 struct list_head *mcast_group_list)
12674 {
12675 struct bnx2x_mcast_list_elem *mc_mac;
12676 struct netdev_hw_addr *ha;
12677 struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12678 int mc_count = netdev_mc_count(bp->dev);
12679 int offset = 0;
12680
12681 INIT_LIST_HEAD(&p->mcast_list);
12682 netdev_for_each_mc_addr(ha, bp->dev) {
12683 if (!offset) {
12684 current_mcast_group =
12685 (struct bnx2x_mcast_list_elem_group *)
12686 __get_free_page(GFP_ATOMIC);
12687 if (!current_mcast_group) {
12688 bnx2x_free_mcast_macs_list(mcast_group_list);
12689 BNX2X_ERR("Failed to allocate mc MAC list\n");
12690 return -ENOMEM;
12691 }
12692 list_add(¤t_mcast_group->mcast_group_link,
12693 mcast_group_list);
12694 }
12695 mc_mac = ¤t_mcast_group->mcast_elems[offset];
12696 mc_mac->mac = bnx2x_mc_addr(ha);
12697 list_add_tail(&mc_mac->link, &p->mcast_list);
12698 offset++;
12699 if (offset == MCAST_ELEMS_PER_PG)
12700 offset = 0;
12701 }
12702 p->mcast_list_len = mc_count;
12703 return 0;
12704 }
12705
12706 /**
12707 * bnx2x_set_uc_list - configure a new unicast MACs list.
12708 *
12709 * @bp: driver handle
12710 *
12711 * We will use zero (0) as a MAC type for these MACs.
12712 */
bnx2x_set_uc_list(struct bnx2x * bp)12713 static int bnx2x_set_uc_list(struct bnx2x *bp)
12714 {
12715 int rc;
12716 struct net_device *dev = bp->dev;
12717 struct netdev_hw_addr *ha;
12718 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12719 unsigned long ramrod_flags = 0;
12720
12721 /* First schedule a cleanup up of old configuration */
12722 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12723 if (rc < 0) {
12724 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12725 return rc;
12726 }
12727
12728 netdev_for_each_uc_addr(ha, dev) {
12729 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12730 BNX2X_UC_LIST_MAC, &ramrod_flags);
12731 if (rc == -EEXIST) {
12732 DP(BNX2X_MSG_SP,
12733 "Failed to schedule ADD operations: %d\n", rc);
12734 /* do not treat adding same MAC as error */
12735 rc = 0;
12736
12737 } else if (rc < 0) {
12738
12739 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12740 rc);
12741 return rc;
12742 }
12743 }
12744
12745 /* Execute the pending commands */
12746 __set_bit(RAMROD_CONT, &ramrod_flags);
12747 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12748 BNX2X_UC_LIST_MAC, &ramrod_flags);
12749 }
12750
bnx2x_set_mc_list_e1x(struct bnx2x * bp)12751 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12752 {
12753 LIST_HEAD(mcast_group_list);
12754 struct net_device *dev = bp->dev;
12755 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12756 int rc = 0;
12757
12758 rparam.mcast_obj = &bp->mcast_obj;
12759
12760 /* first, clear all configured multicast MACs */
12761 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12762 if (rc < 0) {
12763 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12764 return rc;
12765 }
12766
12767 /* then, configure a new MACs list */
12768 if (netdev_mc_count(dev)) {
12769 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12770 if (rc)
12771 return rc;
12772
12773 /* Now add the new MACs */
12774 rc = bnx2x_config_mcast(bp, &rparam,
12775 BNX2X_MCAST_CMD_ADD);
12776 if (rc < 0)
12777 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12778 rc);
12779
12780 bnx2x_free_mcast_macs_list(&mcast_group_list);
12781 }
12782
12783 return rc;
12784 }
12785
bnx2x_set_mc_list(struct bnx2x * bp)12786 static int bnx2x_set_mc_list(struct bnx2x *bp)
12787 {
12788 LIST_HEAD(mcast_group_list);
12789 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12790 struct net_device *dev = bp->dev;
12791 int rc = 0;
12792
12793 /* On older adapters, we need to flush and re-add filters */
12794 if (CHIP_IS_E1x(bp))
12795 return bnx2x_set_mc_list_e1x(bp);
12796
12797 rparam.mcast_obj = &bp->mcast_obj;
12798
12799 if (netdev_mc_count(dev)) {
12800 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12801 if (rc)
12802 return rc;
12803
12804 /* Override the curently configured set of mc filters */
12805 rc = bnx2x_config_mcast(bp, &rparam,
12806 BNX2X_MCAST_CMD_SET);
12807 if (rc < 0)
12808 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12809 rc);
12810
12811 bnx2x_free_mcast_macs_list(&mcast_group_list);
12812 } else {
12813 /* If no mc addresses are required, flush the configuration */
12814 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12815 if (rc < 0)
12816 BNX2X_ERR("Failed to clear multicast configuration %d\n",
12817 rc);
12818 }
12819
12820 return rc;
12821 }
12822
12823 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
bnx2x_set_rx_mode(struct net_device * dev)12824 static void bnx2x_set_rx_mode(struct net_device *dev)
12825 {
12826 struct bnx2x *bp = netdev_priv(dev);
12827
12828 if (bp->state != BNX2X_STATE_OPEN) {
12829 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12830 return;
12831 } else {
12832 /* Schedule an SP task to handle rest of change */
12833 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12834 NETIF_MSG_IFUP);
12835 }
12836 }
12837
bnx2x_set_rx_mode_inner(struct bnx2x * bp)12838 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12839 {
12840 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12841
12842 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12843
12844 netif_addr_lock_bh(bp->dev);
12845
12846 if (bp->dev->flags & IFF_PROMISC) {
12847 rx_mode = BNX2X_RX_MODE_PROMISC;
12848 } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12849 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12850 CHIP_IS_E1(bp))) {
12851 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12852 } else {
12853 if (IS_PF(bp)) {
12854 /* some multicasts */
12855 if (bnx2x_set_mc_list(bp) < 0)
12856 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12857
12858 /* release bh lock, as bnx2x_set_uc_list might sleep */
12859 netif_addr_unlock_bh(bp->dev);
12860 if (bnx2x_set_uc_list(bp) < 0)
12861 rx_mode = BNX2X_RX_MODE_PROMISC;
12862 netif_addr_lock_bh(bp->dev);
12863 } else {
12864 /* configuring mcast to a vf involves sleeping (when we
12865 * wait for the pf's response).
12866 */
12867 bnx2x_schedule_sp_rtnl(bp,
12868 BNX2X_SP_RTNL_VFPF_MCAST, 0);
12869 }
12870 }
12871
12872 bp->rx_mode = rx_mode;
12873 /* handle ISCSI SD mode */
12874 if (IS_MF_ISCSI_ONLY(bp))
12875 bp->rx_mode = BNX2X_RX_MODE_NONE;
12876
12877 /* Schedule the rx_mode command */
12878 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12879 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12880 netif_addr_unlock_bh(bp->dev);
12881 return;
12882 }
12883
12884 if (IS_PF(bp)) {
12885 bnx2x_set_storm_rx_mode(bp);
12886 netif_addr_unlock_bh(bp->dev);
12887 } else {
12888 /* VF will need to request the PF to make this change, and so
12889 * the VF needs to release the bottom-half lock prior to the
12890 * request (as it will likely require sleep on the VF side)
12891 */
12892 netif_addr_unlock_bh(bp->dev);
12893 bnx2x_vfpf_storm_rx_mode(bp);
12894 }
12895 }
12896
12897 /* called with rtnl_lock */
bnx2x_mdio_read(struct net_device * netdev,int prtad,int devad,u16 addr)12898 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12899 int devad, u16 addr)
12900 {
12901 struct bnx2x *bp = netdev_priv(netdev);
12902 u16 value;
12903 int rc;
12904
12905 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12906 prtad, devad, addr);
12907
12908 /* The HW expects different devad if CL22 is used */
12909 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12910
12911 bnx2x_acquire_phy_lock(bp);
12912 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12913 bnx2x_release_phy_lock(bp);
12914 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12915
12916 if (!rc)
12917 rc = value;
12918 return rc;
12919 }
12920
12921 /* called with rtnl_lock */
bnx2x_mdio_write(struct net_device * netdev,int prtad,int devad,u16 addr,u16 value)12922 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12923 u16 addr, u16 value)
12924 {
12925 struct bnx2x *bp = netdev_priv(netdev);
12926 int rc;
12927
12928 DP(NETIF_MSG_LINK,
12929 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12930 prtad, devad, addr, value);
12931
12932 /* The HW expects different devad if CL22 is used */
12933 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12934
12935 bnx2x_acquire_phy_lock(bp);
12936 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12937 bnx2x_release_phy_lock(bp);
12938 return rc;
12939 }
12940
12941 /* called with rtnl_lock */
bnx2x_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)12942 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12943 {
12944 struct bnx2x *bp = netdev_priv(dev);
12945 struct mii_ioctl_data *mdio = if_mii(ifr);
12946
12947 if (!netif_running(dev))
12948 return -EAGAIN;
12949
12950 switch (cmd) {
12951 case SIOCSHWTSTAMP:
12952 return bnx2x_hwtstamp_ioctl(bp, ifr);
12953 default:
12954 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12955 mdio->phy_id, mdio->reg_num, mdio->val_in);
12956 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12957 }
12958 }
12959
12960 #ifdef CONFIG_NET_POLL_CONTROLLER
poll_bnx2x(struct net_device * dev)12961 static void poll_bnx2x(struct net_device *dev)
12962 {
12963 struct bnx2x *bp = netdev_priv(dev);
12964 int i;
12965
12966 for_each_eth_queue(bp, i) {
12967 struct bnx2x_fastpath *fp = &bp->fp[i];
12968 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12969 }
12970 }
12971 #endif
12972
bnx2x_validate_addr(struct net_device * dev)12973 static int bnx2x_validate_addr(struct net_device *dev)
12974 {
12975 struct bnx2x *bp = netdev_priv(dev);
12976
12977 /* query the bulletin board for mac address configured by the PF */
12978 if (IS_VF(bp))
12979 bnx2x_sample_bulletin(bp);
12980
12981 if (!is_valid_ether_addr(dev->dev_addr)) {
12982 BNX2X_ERR("Non-valid Ethernet address\n");
12983 return -EADDRNOTAVAIL;
12984 }
12985 return 0;
12986 }
12987
bnx2x_get_phys_port_id(struct net_device * netdev,struct netdev_phys_item_id * ppid)12988 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12989 struct netdev_phys_item_id *ppid)
12990 {
12991 struct bnx2x *bp = netdev_priv(netdev);
12992
12993 if (!(bp->flags & HAS_PHYS_PORT_ID))
12994 return -EOPNOTSUPP;
12995
12996 ppid->id_len = sizeof(bp->phys_port_id);
12997 memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12998
12999 return 0;
13000 }
13001
bnx2x_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)13002 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
13003 struct net_device *dev,
13004 netdev_features_t features)
13005 {
13006 /*
13007 * A skb with gso_size + header length > 9700 will cause a
13008 * firmware panic. Drop GSO support.
13009 *
13010 * Eventually the upper layer should not pass these packets down.
13011 *
13012 * For speed, if the gso_size is <= 9000, assume there will
13013 * not be 700 bytes of headers and pass it through. Only do a
13014 * full (slow) validation if the gso_size is > 9000.
13015 *
13016 * (Due to the way SKB_BY_FRAGS works this will also do a full
13017 * validation in that case.)
13018 */
13019 if (unlikely(skb_is_gso(skb) &&
13020 (skb_shinfo(skb)->gso_size > 9000) &&
13021 !skb_gso_validate_mac_len(skb, 9700)))
13022 features &= ~NETIF_F_GSO_MASK;
13023
13024 features = vlan_features_check(skb, features);
13025 return vxlan_features_check(skb, features);
13026 }
13027
__bnx2x_vlan_configure_vid(struct bnx2x * bp,u16 vid,bool add)13028 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
13029 {
13030 int rc;
13031
13032 if (IS_PF(bp)) {
13033 unsigned long ramrod_flags = 0;
13034
13035 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13036 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
13037 add, &ramrod_flags);
13038 } else {
13039 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
13040 }
13041
13042 return rc;
13043 }
13044
bnx2x_vlan_configure_vid_list(struct bnx2x * bp)13045 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
13046 {
13047 struct bnx2x_vlan_entry *vlan;
13048 int rc = 0;
13049
13050 /* Configure all non-configured entries */
13051 list_for_each_entry(vlan, &bp->vlan_reg, link) {
13052 if (vlan->hw)
13053 continue;
13054
13055 if (bp->vlan_cnt >= bp->vlan_credit)
13056 return -ENOBUFS;
13057
13058 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
13059 if (rc) {
13060 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
13061 return rc;
13062 }
13063
13064 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
13065 vlan->hw = true;
13066 bp->vlan_cnt++;
13067 }
13068
13069 return 0;
13070 }
13071
bnx2x_vlan_configure(struct bnx2x * bp,bool set_rx_mode)13072 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
13073 {
13074 bool need_accept_any_vlan;
13075
13076 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
13077
13078 if (bp->accept_any_vlan != need_accept_any_vlan) {
13079 bp->accept_any_vlan = need_accept_any_vlan;
13080 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
13081 bp->accept_any_vlan ? "raised" : "cleared");
13082 if (set_rx_mode) {
13083 if (IS_PF(bp))
13084 bnx2x_set_rx_mode_inner(bp);
13085 else
13086 bnx2x_vfpf_storm_rx_mode(bp);
13087 }
13088 }
13089 }
13090
bnx2x_vlan_reconfigure_vid(struct bnx2x * bp)13091 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
13092 {
13093 /* Don't set rx mode here. Our caller will do it. */
13094 bnx2x_vlan_configure(bp, false);
13095
13096 return 0;
13097 }
13098
bnx2x_vlan_rx_add_vid(struct net_device * dev,__be16 proto,u16 vid)13099 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
13100 {
13101 struct bnx2x *bp = netdev_priv(dev);
13102 struct bnx2x_vlan_entry *vlan;
13103
13104 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
13105
13106 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
13107 if (!vlan)
13108 return -ENOMEM;
13109
13110 vlan->vid = vid;
13111 vlan->hw = false;
13112 list_add_tail(&vlan->link, &bp->vlan_reg);
13113
13114 if (netif_running(dev))
13115 bnx2x_vlan_configure(bp, true);
13116
13117 return 0;
13118 }
13119
bnx2x_vlan_rx_kill_vid(struct net_device * dev,__be16 proto,u16 vid)13120 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13121 {
13122 struct bnx2x *bp = netdev_priv(dev);
13123 struct bnx2x_vlan_entry *vlan;
13124 bool found = false;
13125 int rc = 0;
13126
13127 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13128
13129 list_for_each_entry(vlan, &bp->vlan_reg, link)
13130 if (vlan->vid == vid) {
13131 found = true;
13132 break;
13133 }
13134
13135 if (!found) {
13136 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13137 return -EINVAL;
13138 }
13139
13140 if (netif_running(dev) && vlan->hw) {
13141 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13142 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13143 bp->vlan_cnt--;
13144 }
13145
13146 list_del(&vlan->link);
13147 kfree(vlan);
13148
13149 if (netif_running(dev))
13150 bnx2x_vlan_configure(bp, true);
13151
13152 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13153
13154 return rc;
13155 }
13156
13157 static const struct net_device_ops bnx2x_netdev_ops = {
13158 .ndo_open = bnx2x_open,
13159 .ndo_stop = bnx2x_close,
13160 .ndo_start_xmit = bnx2x_start_xmit,
13161 .ndo_select_queue = bnx2x_select_queue,
13162 .ndo_set_rx_mode = bnx2x_set_rx_mode,
13163 .ndo_set_mac_address = bnx2x_change_mac_addr,
13164 .ndo_validate_addr = bnx2x_validate_addr,
13165 .ndo_do_ioctl = bnx2x_ioctl,
13166 .ndo_change_mtu = bnx2x_change_mtu,
13167 .ndo_fix_features = bnx2x_fix_features,
13168 .ndo_set_features = bnx2x_set_features,
13169 .ndo_tx_timeout = bnx2x_tx_timeout,
13170 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid,
13171 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid,
13172 #ifdef CONFIG_NET_POLL_CONTROLLER
13173 .ndo_poll_controller = poll_bnx2x,
13174 #endif
13175 .ndo_setup_tc = __bnx2x_setup_tc,
13176 #ifdef CONFIG_BNX2X_SRIOV
13177 .ndo_set_vf_mac = bnx2x_set_vf_mac,
13178 .ndo_set_vf_vlan = bnx2x_set_vf_vlan,
13179 .ndo_get_vf_config = bnx2x_get_vf_config,
13180 #endif
13181 #ifdef NETDEV_FCOE_WWNN
13182 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
13183 #endif
13184
13185 .ndo_get_phys_port_id = bnx2x_get_phys_port_id,
13186 .ndo_set_vf_link_state = bnx2x_set_vf_link_state,
13187 .ndo_features_check = bnx2x_features_check,
13188 .ndo_udp_tunnel_add = bnx2x_udp_tunnel_add,
13189 .ndo_udp_tunnel_del = bnx2x_udp_tunnel_del,
13190 };
13191
bnx2x_set_coherency_mask(struct bnx2x * bp)13192 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13193 {
13194 struct device *dev = &bp->pdev->dev;
13195
13196 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13197 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13198 dev_err(dev, "System does not support DMA, aborting\n");
13199 return -EIO;
13200 }
13201
13202 return 0;
13203 }
13204
bnx2x_disable_pcie_error_reporting(struct bnx2x * bp)13205 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13206 {
13207 if (bp->flags & AER_ENABLED) {
13208 pci_disable_pcie_error_reporting(bp->pdev);
13209 bp->flags &= ~AER_ENABLED;
13210 }
13211 }
13212
bnx2x_init_dev(struct bnx2x * bp,struct pci_dev * pdev,struct net_device * dev,unsigned long board_type)13213 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13214 struct net_device *dev, unsigned long board_type)
13215 {
13216 int rc;
13217 u32 pci_cfg_dword;
13218 bool chip_is_e1x = (board_type == BCM57710 ||
13219 board_type == BCM57711 ||
13220 board_type == BCM57711E);
13221
13222 SET_NETDEV_DEV(dev, &pdev->dev);
13223
13224 bp->dev = dev;
13225 bp->pdev = pdev;
13226
13227 rc = pci_enable_device(pdev);
13228 if (rc) {
13229 dev_err(&bp->pdev->dev,
13230 "Cannot enable PCI device, aborting\n");
13231 goto err_out;
13232 }
13233
13234 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13235 dev_err(&bp->pdev->dev,
13236 "Cannot find PCI device base address, aborting\n");
13237 rc = -ENODEV;
13238 goto err_out_disable;
13239 }
13240
13241 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13242 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13243 rc = -ENODEV;
13244 goto err_out_disable;
13245 }
13246
13247 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13248 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13249 PCICFG_REVESION_ID_ERROR_VAL) {
13250 pr_err("PCI device error, probably due to fan failure, aborting\n");
13251 rc = -ENODEV;
13252 goto err_out_disable;
13253 }
13254
13255 if (atomic_read(&pdev->enable_cnt) == 1) {
13256 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13257 if (rc) {
13258 dev_err(&bp->pdev->dev,
13259 "Cannot obtain PCI resources, aborting\n");
13260 goto err_out_disable;
13261 }
13262
13263 pci_set_master(pdev);
13264 pci_save_state(pdev);
13265 }
13266
13267 if (IS_PF(bp)) {
13268 if (!pdev->pm_cap) {
13269 dev_err(&bp->pdev->dev,
13270 "Cannot find power management capability, aborting\n");
13271 rc = -EIO;
13272 goto err_out_release;
13273 }
13274 }
13275
13276 if (!pci_is_pcie(pdev)) {
13277 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13278 rc = -EIO;
13279 goto err_out_release;
13280 }
13281
13282 rc = bnx2x_set_coherency_mask(bp);
13283 if (rc)
13284 goto err_out_release;
13285
13286 dev->mem_start = pci_resource_start(pdev, 0);
13287 dev->base_addr = dev->mem_start;
13288 dev->mem_end = pci_resource_end(pdev, 0);
13289
13290 dev->irq = pdev->irq;
13291
13292 bp->regview = pci_ioremap_bar(pdev, 0);
13293 if (!bp->regview) {
13294 dev_err(&bp->pdev->dev,
13295 "Cannot map register space, aborting\n");
13296 rc = -ENOMEM;
13297 goto err_out_release;
13298 }
13299
13300 /* In E1/E1H use pci device function given by kernel.
13301 * In E2/E3 read physical function from ME register since these chips
13302 * support Physical Device Assignment where kernel BDF maybe arbitrary
13303 * (depending on hypervisor).
13304 */
13305 if (chip_is_e1x) {
13306 bp->pf_num = PCI_FUNC(pdev->devfn);
13307 } else {
13308 /* chip is E2/3*/
13309 pci_read_config_dword(bp->pdev,
13310 PCICFG_ME_REGISTER, &pci_cfg_dword);
13311 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13312 ME_REG_ABS_PF_NUM_SHIFT);
13313 }
13314 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13315
13316 /* clean indirect addresses */
13317 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13318 PCICFG_VENDOR_ID_OFFSET);
13319
13320 /* Set PCIe reset type to fundamental for EEH recovery */
13321 pdev->needs_freset = 1;
13322
13323 /* AER (Advanced Error reporting) configuration */
13324 rc = pci_enable_pcie_error_reporting(pdev);
13325 if (!rc)
13326 bp->flags |= AER_ENABLED;
13327 else
13328 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13329
13330 /*
13331 * Clean the following indirect addresses for all functions since it
13332 * is not used by the driver.
13333 */
13334 if (IS_PF(bp)) {
13335 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13336 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13337 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13338 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13339
13340 if (chip_is_e1x) {
13341 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13342 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13343 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13344 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13345 }
13346
13347 /* Enable internal target-read (in case we are probed after PF
13348 * FLR). Must be done prior to any BAR read access. Only for
13349 * 57712 and up
13350 */
13351 if (!chip_is_e1x)
13352 REG_WR(bp,
13353 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13354 }
13355
13356 dev->watchdog_timeo = TX_TIMEOUT;
13357
13358 dev->netdev_ops = &bnx2x_netdev_ops;
13359 bnx2x_set_ethtool_ops(bp, dev);
13360
13361 dev->priv_flags |= IFF_UNICAST_FLT;
13362
13363 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13364 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13365 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
13366 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13367 if (!chip_is_e1x) {
13368 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13369 NETIF_F_GSO_IPXIP4 |
13370 NETIF_F_GSO_UDP_TUNNEL |
13371 NETIF_F_GSO_UDP_TUNNEL_CSUM |
13372 NETIF_F_GSO_PARTIAL;
13373
13374 dev->hw_enc_features =
13375 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13376 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13377 NETIF_F_GSO_IPXIP4 |
13378 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13379 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13380 NETIF_F_GSO_PARTIAL;
13381
13382 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13383 NETIF_F_GSO_UDP_TUNNEL_CSUM;
13384 }
13385
13386 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13387 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13388
13389 if (IS_PF(bp)) {
13390 if (chip_is_e1x)
13391 bp->accept_any_vlan = true;
13392 else
13393 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13394 }
13395 /* For VF we'll know whether to enable VLAN filtering after
13396 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13397 */
13398
13399 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13400 dev->features |= NETIF_F_HIGHDMA;
13401
13402 /* Add Loopback capability to the device */
13403 dev->hw_features |= NETIF_F_LOOPBACK;
13404
13405 #ifdef BCM_DCBNL
13406 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13407 #endif
13408
13409 /* MTU range, 46 - 9600 */
13410 dev->min_mtu = ETH_MIN_PACKET_SIZE;
13411 dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13412
13413 /* get_port_hwinfo() will set prtad and mmds properly */
13414 bp->mdio.prtad = MDIO_PRTAD_NONE;
13415 bp->mdio.mmds = 0;
13416 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13417 bp->mdio.dev = dev;
13418 bp->mdio.mdio_read = bnx2x_mdio_read;
13419 bp->mdio.mdio_write = bnx2x_mdio_write;
13420
13421 return 0;
13422
13423 err_out_release:
13424 if (atomic_read(&pdev->enable_cnt) == 1)
13425 pci_release_regions(pdev);
13426
13427 err_out_disable:
13428 pci_disable_device(pdev);
13429
13430 err_out:
13431 return rc;
13432 }
13433
bnx2x_check_firmware(struct bnx2x * bp)13434 static int bnx2x_check_firmware(struct bnx2x *bp)
13435 {
13436 const struct firmware *firmware = bp->firmware;
13437 struct bnx2x_fw_file_hdr *fw_hdr;
13438 struct bnx2x_fw_file_section *sections;
13439 u32 offset, len, num_ops;
13440 __be16 *ops_offsets;
13441 int i;
13442 const u8 *fw_ver;
13443
13444 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13445 BNX2X_ERR("Wrong FW size\n");
13446 return -EINVAL;
13447 }
13448
13449 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13450 sections = (struct bnx2x_fw_file_section *)fw_hdr;
13451
13452 /* Make sure none of the offsets and sizes make us read beyond
13453 * the end of the firmware data */
13454 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13455 offset = be32_to_cpu(sections[i].offset);
13456 len = be32_to_cpu(sections[i].len);
13457 if (offset + len > firmware->size) {
13458 BNX2X_ERR("Section %d length is out of bounds\n", i);
13459 return -EINVAL;
13460 }
13461 }
13462
13463 /* Likewise for the init_ops offsets */
13464 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13465 ops_offsets = (__force __be16 *)(firmware->data + offset);
13466 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13467
13468 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13469 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13470 BNX2X_ERR("Section offset %d is out of bounds\n", i);
13471 return -EINVAL;
13472 }
13473 }
13474
13475 /* Check FW version */
13476 offset = be32_to_cpu(fw_hdr->fw_version.offset);
13477 fw_ver = firmware->data + offset;
13478 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13479 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13480 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13481 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13482 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13483 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13484 BCM_5710_FW_MAJOR_VERSION,
13485 BCM_5710_FW_MINOR_VERSION,
13486 BCM_5710_FW_REVISION_VERSION,
13487 BCM_5710_FW_ENGINEERING_VERSION);
13488 return -EINVAL;
13489 }
13490
13491 return 0;
13492 }
13493
be32_to_cpu_n(const u8 * _source,u8 * _target,u32 n)13494 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13495 {
13496 const __be32 *source = (const __be32 *)_source;
13497 u32 *target = (u32 *)_target;
13498 u32 i;
13499
13500 for (i = 0; i < n/4; i++)
13501 target[i] = be32_to_cpu(source[i]);
13502 }
13503
13504 /*
13505 Ops array is stored in the following format:
13506 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13507 */
bnx2x_prep_ops(const u8 * _source,u8 * _target,u32 n)13508 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13509 {
13510 const __be32 *source = (const __be32 *)_source;
13511 struct raw_op *target = (struct raw_op *)_target;
13512 u32 i, j, tmp;
13513
13514 for (i = 0, j = 0; i < n/8; i++, j += 2) {
13515 tmp = be32_to_cpu(source[j]);
13516 target[i].op = (tmp >> 24) & 0xff;
13517 target[i].offset = tmp & 0xffffff;
13518 target[i].raw_data = be32_to_cpu(source[j + 1]);
13519 }
13520 }
13521
13522 /* IRO array is stored in the following format:
13523 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13524 */
bnx2x_prep_iro(const u8 * _source,u8 * _target,u32 n)13525 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13526 {
13527 const __be32 *source = (const __be32 *)_source;
13528 struct iro *target = (struct iro *)_target;
13529 u32 i, j, tmp;
13530
13531 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13532 target[i].base = be32_to_cpu(source[j]);
13533 j++;
13534 tmp = be32_to_cpu(source[j]);
13535 target[i].m1 = (tmp >> 16) & 0xffff;
13536 target[i].m2 = tmp & 0xffff;
13537 j++;
13538 tmp = be32_to_cpu(source[j]);
13539 target[i].m3 = (tmp >> 16) & 0xffff;
13540 target[i].size = tmp & 0xffff;
13541 j++;
13542 }
13543 }
13544
be16_to_cpu_n(const u8 * _source,u8 * _target,u32 n)13545 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13546 {
13547 const __be16 *source = (const __be16 *)_source;
13548 u16 *target = (u16 *)_target;
13549 u32 i;
13550
13551 for (i = 0; i < n/2; i++)
13552 target[i] = be16_to_cpu(source[i]);
13553 }
13554
13555 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
13556 do { \
13557 u32 len = be32_to_cpu(fw_hdr->arr.len); \
13558 bp->arr = kmalloc(len, GFP_KERNEL); \
13559 if (!bp->arr) \
13560 goto lbl; \
13561 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
13562 (u8 *)bp->arr, len); \
13563 } while (0)
13564
bnx2x_init_firmware(struct bnx2x * bp)13565 static int bnx2x_init_firmware(struct bnx2x *bp)
13566 {
13567 const char *fw_file_name;
13568 struct bnx2x_fw_file_hdr *fw_hdr;
13569 int rc;
13570
13571 if (bp->firmware)
13572 return 0;
13573
13574 if (CHIP_IS_E1(bp))
13575 fw_file_name = FW_FILE_NAME_E1;
13576 else if (CHIP_IS_E1H(bp))
13577 fw_file_name = FW_FILE_NAME_E1H;
13578 else if (!CHIP_IS_E1x(bp))
13579 fw_file_name = FW_FILE_NAME_E2;
13580 else {
13581 BNX2X_ERR("Unsupported chip revision\n");
13582 return -EINVAL;
13583 }
13584 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13585
13586 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13587 if (rc) {
13588 BNX2X_ERR("Can't load firmware file %s\n",
13589 fw_file_name);
13590 goto request_firmware_exit;
13591 }
13592
13593 rc = bnx2x_check_firmware(bp);
13594 if (rc) {
13595 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13596 goto request_firmware_exit;
13597 }
13598
13599 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13600
13601 /* Initialize the pointers to the init arrays */
13602 /* Blob */
13603 rc = -ENOMEM;
13604 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13605
13606 /* Opcodes */
13607 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13608
13609 /* Offsets */
13610 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13611 be16_to_cpu_n);
13612
13613 /* STORMs firmware */
13614 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13615 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13616 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
13617 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13618 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13619 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13620 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
13621 be32_to_cpu(fw_hdr->usem_pram_data.offset);
13622 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13623 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13624 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
13625 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13626 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13627 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13628 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
13629 be32_to_cpu(fw_hdr->csem_pram_data.offset);
13630 /* IRO */
13631 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13632
13633 return 0;
13634
13635 iro_alloc_err:
13636 kfree(bp->init_ops_offsets);
13637 init_offsets_alloc_err:
13638 kfree(bp->init_ops);
13639 init_ops_alloc_err:
13640 kfree(bp->init_data);
13641 request_firmware_exit:
13642 release_firmware(bp->firmware);
13643 bp->firmware = NULL;
13644
13645 return rc;
13646 }
13647
bnx2x_release_firmware(struct bnx2x * bp)13648 static void bnx2x_release_firmware(struct bnx2x *bp)
13649 {
13650 kfree(bp->init_ops_offsets);
13651 kfree(bp->init_ops);
13652 kfree(bp->init_data);
13653 release_firmware(bp->firmware);
13654 bp->firmware = NULL;
13655 }
13656
13657 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13658 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13659 .init_hw_cmn = bnx2x_init_hw_common,
13660 .init_hw_port = bnx2x_init_hw_port,
13661 .init_hw_func = bnx2x_init_hw_func,
13662
13663 .reset_hw_cmn = bnx2x_reset_common,
13664 .reset_hw_port = bnx2x_reset_port,
13665 .reset_hw_func = bnx2x_reset_func,
13666
13667 .gunzip_init = bnx2x_gunzip_init,
13668 .gunzip_end = bnx2x_gunzip_end,
13669
13670 .init_fw = bnx2x_init_firmware,
13671 .release_fw = bnx2x_release_firmware,
13672 };
13673
bnx2x__init_func_obj(struct bnx2x * bp)13674 void bnx2x__init_func_obj(struct bnx2x *bp)
13675 {
13676 /* Prepare DMAE related driver resources */
13677 bnx2x_setup_dmae(bp);
13678
13679 bnx2x_init_func_obj(bp, &bp->func_obj,
13680 bnx2x_sp(bp, func_rdata),
13681 bnx2x_sp_mapping(bp, func_rdata),
13682 bnx2x_sp(bp, func_afex_rdata),
13683 bnx2x_sp_mapping(bp, func_afex_rdata),
13684 &bnx2x_func_sp_drv);
13685 }
13686
13687 /* must be called after sriov-enable */
bnx2x_set_qm_cid_count(struct bnx2x * bp)13688 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13689 {
13690 int cid_count = BNX2X_L2_MAX_CID(bp);
13691
13692 if (IS_SRIOV(bp))
13693 cid_count += BNX2X_VF_CIDS;
13694
13695 if (CNIC_SUPPORT(bp))
13696 cid_count += CNIC_CID_MAX;
13697
13698 return roundup(cid_count, QM_CID_ROUND);
13699 }
13700
13701 /**
13702 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13703 *
13704 * @dev: pci device
13705 *
13706 */
bnx2x_get_num_non_def_sbs(struct pci_dev * pdev,int cnic_cnt)13707 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13708 {
13709 int index;
13710 u16 control = 0;
13711
13712 /*
13713 * If MSI-X is not supported - return number of SBs needed to support
13714 * one fast path queue: one FP queue + SB for CNIC
13715 */
13716 if (!pdev->msix_cap) {
13717 dev_info(&pdev->dev, "no msix capability found\n");
13718 return 1 + cnic_cnt;
13719 }
13720 dev_info(&pdev->dev, "msix capability found\n");
13721
13722 /*
13723 * The value in the PCI configuration space is the index of the last
13724 * entry, namely one less than the actual size of the table, which is
13725 * exactly what we want to return from this function: number of all SBs
13726 * without the default SB.
13727 * For VFs there is no default SB, then we return (index+1).
13728 */
13729 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13730
13731 index = control & PCI_MSIX_FLAGS_QSIZE;
13732
13733 return index;
13734 }
13735
set_max_cos_est(int chip_id)13736 static int set_max_cos_est(int chip_id)
13737 {
13738 switch (chip_id) {
13739 case BCM57710:
13740 case BCM57711:
13741 case BCM57711E:
13742 return BNX2X_MULTI_TX_COS_E1X;
13743 case BCM57712:
13744 case BCM57712_MF:
13745 return BNX2X_MULTI_TX_COS_E2_E3A0;
13746 case BCM57800:
13747 case BCM57800_MF:
13748 case BCM57810:
13749 case BCM57810_MF:
13750 case BCM57840_4_10:
13751 case BCM57840_2_20:
13752 case BCM57840_O:
13753 case BCM57840_MFO:
13754 case BCM57840_MF:
13755 case BCM57811:
13756 case BCM57811_MF:
13757 return BNX2X_MULTI_TX_COS_E3B0;
13758 case BCM57712_VF:
13759 case BCM57800_VF:
13760 case BCM57810_VF:
13761 case BCM57840_VF:
13762 case BCM57811_VF:
13763 return 1;
13764 default:
13765 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13766 return -ENODEV;
13767 }
13768 }
13769
set_is_vf(int chip_id)13770 static int set_is_vf(int chip_id)
13771 {
13772 switch (chip_id) {
13773 case BCM57712_VF:
13774 case BCM57800_VF:
13775 case BCM57810_VF:
13776 case BCM57840_VF:
13777 case BCM57811_VF:
13778 return true;
13779 default:
13780 return false;
13781 }
13782 }
13783
13784 /* nig_tsgen registers relative address */
13785 #define tsgen_ctrl 0x0
13786 #define tsgen_freecount 0x10
13787 #define tsgen_synctime_t0 0x20
13788 #define tsgen_offset_t0 0x28
13789 #define tsgen_drift_t0 0x30
13790 #define tsgen_synctime_t1 0x58
13791 #define tsgen_offset_t1 0x60
13792 #define tsgen_drift_t1 0x68
13793
13794 /* FW workaround for setting drift */
bnx2x_send_update_drift_ramrod(struct bnx2x * bp,int drift_dir,int best_val,int best_period)13795 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13796 int best_val, int best_period)
13797 {
13798 struct bnx2x_func_state_params func_params = {NULL};
13799 struct bnx2x_func_set_timesync_params *set_timesync_params =
13800 &func_params.params.set_timesync;
13801
13802 /* Prepare parameters for function state transitions */
13803 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13804 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13805
13806 func_params.f_obj = &bp->func_obj;
13807 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13808
13809 /* Function parameters */
13810 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13811 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13812 set_timesync_params->add_sub_drift_adjust_value =
13813 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13814 set_timesync_params->drift_adjust_value = best_val;
13815 set_timesync_params->drift_adjust_period = best_period;
13816
13817 return bnx2x_func_state_change(bp, &func_params);
13818 }
13819
bnx2x_ptp_adjfreq(struct ptp_clock_info * ptp,s32 ppb)13820 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13821 {
13822 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13823 int rc;
13824 int drift_dir = 1;
13825 int val, period, period1, period2, dif, dif1, dif2;
13826 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13827
13828 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13829
13830 if (!netif_running(bp->dev)) {
13831 DP(BNX2X_MSG_PTP,
13832 "PTP adjfreq called while the interface is down\n");
13833 return -ENETDOWN;
13834 }
13835
13836 if (ppb < 0) {
13837 ppb = -ppb;
13838 drift_dir = 0;
13839 }
13840
13841 if (ppb == 0) {
13842 best_val = 1;
13843 best_period = 0x1FFFFFF;
13844 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13845 best_val = 31;
13846 best_period = 1;
13847 } else {
13848 /* Changed not to allow val = 8, 16, 24 as these values
13849 * are not supported in workaround.
13850 */
13851 for (val = 0; val <= 31; val++) {
13852 if ((val & 0x7) == 0)
13853 continue;
13854 period1 = val * 1000000 / ppb;
13855 period2 = period1 + 1;
13856 if (period1 != 0)
13857 dif1 = ppb - (val * 1000000 / period1);
13858 else
13859 dif1 = BNX2X_MAX_PHC_DRIFT;
13860 if (dif1 < 0)
13861 dif1 = -dif1;
13862 dif2 = ppb - (val * 1000000 / period2);
13863 if (dif2 < 0)
13864 dif2 = -dif2;
13865 dif = (dif1 < dif2) ? dif1 : dif2;
13866 period = (dif1 < dif2) ? period1 : period2;
13867 if (dif < best_dif) {
13868 best_dif = dif;
13869 best_val = val;
13870 best_period = period;
13871 }
13872 }
13873 }
13874
13875 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13876 best_period);
13877 if (rc) {
13878 BNX2X_ERR("Failed to set drift\n");
13879 return -EFAULT;
13880 }
13881
13882 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13883 best_period);
13884
13885 return 0;
13886 }
13887
bnx2x_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)13888 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13889 {
13890 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13891
13892 if (!netif_running(bp->dev)) {
13893 DP(BNX2X_MSG_PTP,
13894 "PTP adjtime called while the interface is down\n");
13895 return -ENETDOWN;
13896 }
13897
13898 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13899
13900 timecounter_adjtime(&bp->timecounter, delta);
13901
13902 return 0;
13903 }
13904
bnx2x_ptp_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)13905 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13906 {
13907 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13908 u64 ns;
13909
13910 if (!netif_running(bp->dev)) {
13911 DP(BNX2X_MSG_PTP,
13912 "PTP gettime called while the interface is down\n");
13913 return -ENETDOWN;
13914 }
13915
13916 ns = timecounter_read(&bp->timecounter);
13917
13918 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13919
13920 *ts = ns_to_timespec64(ns);
13921
13922 return 0;
13923 }
13924
bnx2x_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)13925 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13926 const struct timespec64 *ts)
13927 {
13928 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13929 u64 ns;
13930
13931 if (!netif_running(bp->dev)) {
13932 DP(BNX2X_MSG_PTP,
13933 "PTP settime called while the interface is down\n");
13934 return -ENETDOWN;
13935 }
13936
13937 ns = timespec64_to_ns(ts);
13938
13939 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13940
13941 /* Re-init the timecounter */
13942 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13943
13944 return 0;
13945 }
13946
13947 /* Enable (or disable) ancillary features of the phc subsystem */
bnx2x_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)13948 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13949 struct ptp_clock_request *rq, int on)
13950 {
13951 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13952
13953 BNX2X_ERR("PHC ancillary features are not supported\n");
13954 return -ENOTSUPP;
13955 }
13956
bnx2x_register_phc(struct bnx2x * bp)13957 static void bnx2x_register_phc(struct bnx2x *bp)
13958 {
13959 /* Fill the ptp_clock_info struct and register PTP clock*/
13960 bp->ptp_clock_info.owner = THIS_MODULE;
13961 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13962 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13963 bp->ptp_clock_info.n_alarm = 0;
13964 bp->ptp_clock_info.n_ext_ts = 0;
13965 bp->ptp_clock_info.n_per_out = 0;
13966 bp->ptp_clock_info.pps = 0;
13967 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13968 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13969 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13970 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13971 bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13972
13973 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13974 if (IS_ERR(bp->ptp_clock)) {
13975 bp->ptp_clock = NULL;
13976 BNX2X_ERR("PTP clock registeration failed\n");
13977 }
13978 }
13979
bnx2x_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)13980 static int bnx2x_init_one(struct pci_dev *pdev,
13981 const struct pci_device_id *ent)
13982 {
13983 struct net_device *dev = NULL;
13984 struct bnx2x *bp;
13985 enum pcie_link_width pcie_width;
13986 enum pci_bus_speed pcie_speed;
13987 int rc, max_non_def_sbs;
13988 int rx_count, tx_count, rss_count, doorbell_size;
13989 int max_cos_est;
13990 bool is_vf;
13991 int cnic_cnt;
13992
13993 /* Management FW 'remembers' living interfaces. Allow it some time
13994 * to forget previously living interfaces, allowing a proper re-load.
13995 */
13996 if (is_kdump_kernel()) {
13997 ktime_t now = ktime_get_boottime();
13998 ktime_t fw_ready_time = ktime_set(5, 0);
13999
14000 if (ktime_before(now, fw_ready_time))
14001 msleep(ktime_ms_delta(fw_ready_time, now));
14002 }
14003
14004 /* An estimated maximum supported CoS number according to the chip
14005 * version.
14006 * We will try to roughly estimate the maximum number of CoSes this chip
14007 * may support in order to minimize the memory allocated for Tx
14008 * netdev_queue's. This number will be accurately calculated during the
14009 * initialization of bp->max_cos based on the chip versions AND chip
14010 * revision in the bnx2x_init_bp().
14011 */
14012 max_cos_est = set_max_cos_est(ent->driver_data);
14013 if (max_cos_est < 0)
14014 return max_cos_est;
14015 is_vf = set_is_vf(ent->driver_data);
14016 cnic_cnt = is_vf ? 0 : 1;
14017
14018 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
14019
14020 /* add another SB for VF as it has no default SB */
14021 max_non_def_sbs += is_vf ? 1 : 0;
14022
14023 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
14024 rss_count = max_non_def_sbs - cnic_cnt;
14025
14026 if (rss_count < 1)
14027 return -EINVAL;
14028
14029 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
14030 rx_count = rss_count + cnic_cnt;
14031
14032 /* Maximum number of netdev Tx queues:
14033 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
14034 */
14035 tx_count = rss_count * max_cos_est + cnic_cnt;
14036
14037 /* dev zeroed in init_etherdev */
14038 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
14039 if (!dev)
14040 return -ENOMEM;
14041
14042 bp = netdev_priv(dev);
14043
14044 bp->flags = 0;
14045 if (is_vf)
14046 bp->flags |= IS_VF_FLAG;
14047
14048 bp->igu_sb_cnt = max_non_def_sbs;
14049 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
14050 bp->msg_enable = debug;
14051 bp->cnic_support = cnic_cnt;
14052 bp->cnic_probe = bnx2x_cnic_probe;
14053
14054 pci_set_drvdata(pdev, dev);
14055
14056 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
14057 if (rc < 0) {
14058 free_netdev(dev);
14059 return rc;
14060 }
14061
14062 BNX2X_DEV_INFO("This is a %s function\n",
14063 IS_PF(bp) ? "physical" : "virtual");
14064 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
14065 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
14066 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
14067 tx_count, rx_count);
14068
14069 rc = bnx2x_init_bp(bp);
14070 if (rc)
14071 goto init_one_exit;
14072
14073 /* Map doorbells here as we need the real value of bp->max_cos which
14074 * is initialized in bnx2x_init_bp() to determine the number of
14075 * l2 connections.
14076 */
14077 if (IS_VF(bp)) {
14078 bp->doorbells = bnx2x_vf_doorbells(bp);
14079 rc = bnx2x_vf_pci_alloc(bp);
14080 if (rc)
14081 goto init_one_freemem;
14082 } else {
14083 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
14084 if (doorbell_size > pci_resource_len(pdev, 2)) {
14085 dev_err(&bp->pdev->dev,
14086 "Cannot map doorbells, bar size too small, aborting\n");
14087 rc = -ENOMEM;
14088 goto init_one_freemem;
14089 }
14090 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
14091 doorbell_size);
14092 }
14093 if (!bp->doorbells) {
14094 dev_err(&bp->pdev->dev,
14095 "Cannot map doorbell space, aborting\n");
14096 rc = -ENOMEM;
14097 goto init_one_freemem;
14098 }
14099
14100 if (IS_VF(bp)) {
14101 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
14102 if (rc)
14103 goto init_one_freemem;
14104
14105 #ifdef CONFIG_BNX2X_SRIOV
14106 /* VF with OLD Hypervisor or old PF do not support filtering */
14107 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
14108 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14109 dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14110 }
14111 #endif
14112 }
14113
14114 /* Enable SRIOV if capability found in configuration space */
14115 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14116 if (rc)
14117 goto init_one_freemem;
14118
14119 /* calc qm_cid_count */
14120 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14121 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14122
14123 /* disable FCOE L2 queue for E1x*/
14124 if (CHIP_IS_E1x(bp))
14125 bp->flags |= NO_FCOE_FLAG;
14126
14127 /* Set bp->num_queues for MSI-X mode*/
14128 bnx2x_set_num_queues(bp);
14129
14130 /* Configure interrupt mode: try to enable MSI-X/MSI if
14131 * needed.
14132 */
14133 rc = bnx2x_set_int_mode(bp);
14134 if (rc) {
14135 dev_err(&pdev->dev, "Cannot set interrupts\n");
14136 goto init_one_freemem;
14137 }
14138 BNX2X_DEV_INFO("set interrupts successfully\n");
14139
14140 /* register the net device */
14141 rc = register_netdev(dev);
14142 if (rc) {
14143 dev_err(&pdev->dev, "Cannot register net device\n");
14144 goto init_one_freemem;
14145 }
14146 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14147
14148 if (!NO_FCOE(bp)) {
14149 /* Add storage MAC address */
14150 rtnl_lock();
14151 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14152 rtnl_unlock();
14153 }
14154 if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
14155 pcie_speed == PCI_SPEED_UNKNOWN ||
14156 pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
14157 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
14158 else
14159 BNX2X_DEV_INFO(
14160 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
14161 board_info[ent->driver_data].name,
14162 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14163 pcie_width,
14164 pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
14165 pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
14166 pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
14167 "Unknown",
14168 dev->base_addr, bp->pdev->irq, dev->dev_addr);
14169
14170 bnx2x_register_phc(bp);
14171
14172 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14173 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14174
14175 return 0;
14176
14177 init_one_freemem:
14178 bnx2x_free_mem_bp(bp);
14179
14180 init_one_exit:
14181 bnx2x_disable_pcie_error_reporting(bp);
14182
14183 if (bp->regview)
14184 iounmap(bp->regview);
14185
14186 if (IS_PF(bp) && bp->doorbells)
14187 iounmap(bp->doorbells);
14188
14189 free_netdev(dev);
14190
14191 if (atomic_read(&pdev->enable_cnt) == 1)
14192 pci_release_regions(pdev);
14193
14194 pci_disable_device(pdev);
14195
14196 return rc;
14197 }
14198
__bnx2x_remove(struct pci_dev * pdev,struct net_device * dev,struct bnx2x * bp,bool remove_netdev)14199 static void __bnx2x_remove(struct pci_dev *pdev,
14200 struct net_device *dev,
14201 struct bnx2x *bp,
14202 bool remove_netdev)
14203 {
14204 if (bp->ptp_clock) {
14205 ptp_clock_unregister(bp->ptp_clock);
14206 bp->ptp_clock = NULL;
14207 }
14208
14209 /* Delete storage MAC address */
14210 if (!NO_FCOE(bp)) {
14211 rtnl_lock();
14212 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14213 rtnl_unlock();
14214 }
14215
14216 #ifdef BCM_DCBNL
14217 /* Delete app tlvs from dcbnl */
14218 bnx2x_dcbnl_update_applist(bp, true);
14219 #endif
14220
14221 if (IS_PF(bp) &&
14222 !BP_NOMCP(bp) &&
14223 (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14224 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14225
14226 /* Close the interface - either directly or implicitly */
14227 if (remove_netdev) {
14228 unregister_netdev(dev);
14229 } else {
14230 rtnl_lock();
14231 dev_close(dev);
14232 rtnl_unlock();
14233 }
14234
14235 bnx2x_iov_remove_one(bp);
14236
14237 /* Power on: we can't let PCI layer write to us while we are in D3 */
14238 if (IS_PF(bp)) {
14239 bnx2x_set_power_state(bp, PCI_D0);
14240 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14241
14242 /* Set endianity registers to reset values in case next driver
14243 * boots in different endianty environment.
14244 */
14245 bnx2x_reset_endianity(bp);
14246 }
14247
14248 /* Disable MSI/MSI-X */
14249 bnx2x_disable_msi(bp);
14250
14251 /* Power off */
14252 if (IS_PF(bp))
14253 bnx2x_set_power_state(bp, PCI_D3hot);
14254
14255 /* Make sure RESET task is not scheduled before continuing */
14256 cancel_delayed_work_sync(&bp->sp_rtnl_task);
14257
14258 /* send message via vfpf channel to release the resources of this vf */
14259 if (IS_VF(bp))
14260 bnx2x_vfpf_release(bp);
14261
14262 /* Assumes no further PCIe PM changes will occur */
14263 if (system_state == SYSTEM_POWER_OFF) {
14264 pci_wake_from_d3(pdev, bp->wol);
14265 pci_set_power_state(pdev, PCI_D3hot);
14266 }
14267
14268 bnx2x_disable_pcie_error_reporting(bp);
14269 if (remove_netdev) {
14270 if (bp->regview)
14271 iounmap(bp->regview);
14272
14273 /* For vfs, doorbells are part of the regview and were unmapped
14274 * along with it. FW is only loaded by PF.
14275 */
14276 if (IS_PF(bp)) {
14277 if (bp->doorbells)
14278 iounmap(bp->doorbells);
14279
14280 bnx2x_release_firmware(bp);
14281 } else {
14282 bnx2x_vf_pci_dealloc(bp);
14283 }
14284 bnx2x_free_mem_bp(bp);
14285
14286 free_netdev(dev);
14287
14288 if (atomic_read(&pdev->enable_cnt) == 1)
14289 pci_release_regions(pdev);
14290
14291 pci_disable_device(pdev);
14292 }
14293 }
14294
bnx2x_remove_one(struct pci_dev * pdev)14295 static void bnx2x_remove_one(struct pci_dev *pdev)
14296 {
14297 struct net_device *dev = pci_get_drvdata(pdev);
14298 struct bnx2x *bp;
14299
14300 if (!dev) {
14301 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14302 return;
14303 }
14304 bp = netdev_priv(dev);
14305
14306 __bnx2x_remove(pdev, dev, bp, true);
14307 }
14308
bnx2x_eeh_nic_unload(struct bnx2x * bp)14309 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14310 {
14311 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14312
14313 bp->rx_mode = BNX2X_RX_MODE_NONE;
14314
14315 if (CNIC_LOADED(bp))
14316 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14317
14318 /* Stop Tx */
14319 bnx2x_tx_disable(bp);
14320 /* Delete all NAPI objects */
14321 bnx2x_del_all_napi(bp);
14322 if (CNIC_LOADED(bp))
14323 bnx2x_del_all_napi_cnic(bp);
14324 netdev_reset_tc(bp->dev);
14325
14326 del_timer_sync(&bp->timer);
14327 cancel_delayed_work_sync(&bp->sp_task);
14328 cancel_delayed_work_sync(&bp->period_task);
14329
14330 if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14331 bp->stats_state = STATS_STATE_DISABLED;
14332 up(&bp->stats_lock);
14333 }
14334
14335 bnx2x_save_statistics(bp);
14336
14337 netif_carrier_off(bp->dev);
14338
14339 return 0;
14340 }
14341
14342 /**
14343 * bnx2x_io_error_detected - called when PCI error is detected
14344 * @pdev: Pointer to PCI device
14345 * @state: The current pci connection state
14346 *
14347 * This function is called after a PCI bus error affecting
14348 * this device has been detected.
14349 */
bnx2x_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)14350 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14351 pci_channel_state_t state)
14352 {
14353 struct net_device *dev = pci_get_drvdata(pdev);
14354 struct bnx2x *bp = netdev_priv(dev);
14355
14356 rtnl_lock();
14357
14358 BNX2X_ERR("IO error detected\n");
14359
14360 netif_device_detach(dev);
14361
14362 if (state == pci_channel_io_perm_failure) {
14363 rtnl_unlock();
14364 return PCI_ERS_RESULT_DISCONNECT;
14365 }
14366
14367 if (netif_running(dev))
14368 bnx2x_eeh_nic_unload(bp);
14369
14370 bnx2x_prev_path_mark_eeh(bp);
14371
14372 pci_disable_device(pdev);
14373
14374 rtnl_unlock();
14375
14376 /* Request a slot reset */
14377 return PCI_ERS_RESULT_NEED_RESET;
14378 }
14379
14380 /**
14381 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14382 * @pdev: Pointer to PCI device
14383 *
14384 * Restart the card from scratch, as if from a cold-boot.
14385 */
bnx2x_io_slot_reset(struct pci_dev * pdev)14386 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14387 {
14388 struct net_device *dev = pci_get_drvdata(pdev);
14389 struct bnx2x *bp = netdev_priv(dev);
14390 int i;
14391
14392 rtnl_lock();
14393 BNX2X_ERR("IO slot reset initializing...\n");
14394 if (pci_enable_device(pdev)) {
14395 dev_err(&pdev->dev,
14396 "Cannot re-enable PCI device after reset\n");
14397 rtnl_unlock();
14398 return PCI_ERS_RESULT_DISCONNECT;
14399 }
14400
14401 pci_set_master(pdev);
14402 pci_restore_state(pdev);
14403 pci_save_state(pdev);
14404
14405 if (netif_running(dev))
14406 bnx2x_set_power_state(bp, PCI_D0);
14407
14408 if (netif_running(dev)) {
14409 BNX2X_ERR("IO slot reset --> driver unload\n");
14410
14411 /* MCP should have been reset; Need to wait for validity */
14412 if (bnx2x_init_shmem(bp)) {
14413 rtnl_unlock();
14414 return PCI_ERS_RESULT_DISCONNECT;
14415 }
14416
14417 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14418 u32 v;
14419
14420 v = SHMEM2_RD(bp,
14421 drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14422 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14423 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14424 }
14425 bnx2x_drain_tx_queues(bp);
14426 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14427 bnx2x_netif_stop(bp, 1);
14428 bnx2x_free_irq(bp);
14429
14430 /* Report UNLOAD_DONE to MCP */
14431 bnx2x_send_unload_done(bp, true);
14432
14433 bp->sp_state = 0;
14434 bp->port.pmf = 0;
14435
14436 bnx2x_prev_unload(bp);
14437
14438 /* We should have reseted the engine, so It's fair to
14439 * assume the FW will no longer write to the bnx2x driver.
14440 */
14441 bnx2x_squeeze_objects(bp);
14442 bnx2x_free_skbs(bp);
14443 for_each_rx_queue(bp, i)
14444 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14445 bnx2x_free_fp_mem(bp);
14446 bnx2x_free_mem(bp);
14447
14448 bp->state = BNX2X_STATE_CLOSED;
14449 }
14450
14451 rtnl_unlock();
14452
14453 /* If AER, perform cleanup of the PCIe registers */
14454 if (bp->flags & AER_ENABLED) {
14455 if (pci_cleanup_aer_uncorrect_error_status(pdev))
14456 BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
14457 else
14458 DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
14459 }
14460
14461 return PCI_ERS_RESULT_RECOVERED;
14462 }
14463
14464 /**
14465 * bnx2x_io_resume - called when traffic can start flowing again
14466 * @pdev: Pointer to PCI device
14467 *
14468 * This callback is called when the error recovery driver tells us that
14469 * its OK to resume normal operation.
14470 */
bnx2x_io_resume(struct pci_dev * pdev)14471 static void bnx2x_io_resume(struct pci_dev *pdev)
14472 {
14473 struct net_device *dev = pci_get_drvdata(pdev);
14474 struct bnx2x *bp = netdev_priv(dev);
14475
14476 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14477 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14478 return;
14479 }
14480
14481 rtnl_lock();
14482
14483 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14484 DRV_MSG_SEQ_NUMBER_MASK;
14485
14486 if (netif_running(dev))
14487 bnx2x_nic_load(bp, LOAD_NORMAL);
14488
14489 netif_device_attach(dev);
14490
14491 rtnl_unlock();
14492 }
14493
14494 static const struct pci_error_handlers bnx2x_err_handler = {
14495 .error_detected = bnx2x_io_error_detected,
14496 .slot_reset = bnx2x_io_slot_reset,
14497 .resume = bnx2x_io_resume,
14498 };
14499
bnx2x_shutdown(struct pci_dev * pdev)14500 static void bnx2x_shutdown(struct pci_dev *pdev)
14501 {
14502 struct net_device *dev = pci_get_drvdata(pdev);
14503 struct bnx2x *bp;
14504
14505 if (!dev)
14506 return;
14507
14508 bp = netdev_priv(dev);
14509 if (!bp)
14510 return;
14511
14512 rtnl_lock();
14513 netif_device_detach(dev);
14514 rtnl_unlock();
14515
14516 /* Don't remove the netdevice, as there are scenarios which will cause
14517 * the kernel to hang, e.g., when trying to remove bnx2i while the
14518 * rootfs is mounted from SAN.
14519 */
14520 __bnx2x_remove(pdev, dev, bp, false);
14521 }
14522
14523 static struct pci_driver bnx2x_pci_driver = {
14524 .name = DRV_MODULE_NAME,
14525 .id_table = bnx2x_pci_tbl,
14526 .probe = bnx2x_init_one,
14527 .remove = bnx2x_remove_one,
14528 .suspend = bnx2x_suspend,
14529 .resume = bnx2x_resume,
14530 .err_handler = &bnx2x_err_handler,
14531 #ifdef CONFIG_BNX2X_SRIOV
14532 .sriov_configure = bnx2x_sriov_configure,
14533 #endif
14534 .shutdown = bnx2x_shutdown,
14535 };
14536
bnx2x_init(void)14537 static int __init bnx2x_init(void)
14538 {
14539 int ret;
14540
14541 pr_info("%s", version);
14542
14543 bnx2x_wq = create_singlethread_workqueue("bnx2x");
14544 if (bnx2x_wq == NULL) {
14545 pr_err("Cannot create workqueue\n");
14546 return -ENOMEM;
14547 }
14548 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14549 if (!bnx2x_iov_wq) {
14550 pr_err("Cannot create iov workqueue\n");
14551 destroy_workqueue(bnx2x_wq);
14552 return -ENOMEM;
14553 }
14554
14555 ret = pci_register_driver(&bnx2x_pci_driver);
14556 if (ret) {
14557 pr_err("Cannot register driver\n");
14558 destroy_workqueue(bnx2x_wq);
14559 destroy_workqueue(bnx2x_iov_wq);
14560 }
14561 return ret;
14562 }
14563
bnx2x_cleanup(void)14564 static void __exit bnx2x_cleanup(void)
14565 {
14566 struct list_head *pos, *q;
14567
14568 pci_unregister_driver(&bnx2x_pci_driver);
14569
14570 destroy_workqueue(bnx2x_wq);
14571 destroy_workqueue(bnx2x_iov_wq);
14572
14573 /* Free globally allocated resources */
14574 list_for_each_safe(pos, q, &bnx2x_prev_list) {
14575 struct bnx2x_prev_path_list *tmp =
14576 list_entry(pos, struct bnx2x_prev_path_list, list);
14577 list_del(pos);
14578 kfree(tmp);
14579 }
14580 }
14581
bnx2x_notify_link_changed(struct bnx2x * bp)14582 void bnx2x_notify_link_changed(struct bnx2x *bp)
14583 {
14584 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14585 }
14586
14587 module_init(bnx2x_init);
14588 module_exit(bnx2x_cleanup);
14589
14590 /**
14591 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14592 *
14593 * @bp: driver handle
14594 * @set: set or clear the CAM entry
14595 *
14596 * This function will wait until the ramrod completion returns.
14597 * Return 0 if success, -ENODEV if ramrod doesn't return.
14598 */
bnx2x_set_iscsi_eth_mac_addr(struct bnx2x * bp)14599 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14600 {
14601 unsigned long ramrod_flags = 0;
14602
14603 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14604 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14605 &bp->iscsi_l2_mac_obj, true,
14606 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14607 }
14608
14609 /* count denotes the number of new completions we have seen */
bnx2x_cnic_sp_post(struct bnx2x * bp,int count)14610 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14611 {
14612 struct eth_spe *spe;
14613 int cxt_index, cxt_offset;
14614
14615 #ifdef BNX2X_STOP_ON_ERROR
14616 if (unlikely(bp->panic))
14617 return;
14618 #endif
14619
14620 spin_lock_bh(&bp->spq_lock);
14621 BUG_ON(bp->cnic_spq_pending < count);
14622 bp->cnic_spq_pending -= count;
14623
14624 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14625 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14626 & SPE_HDR_CONN_TYPE) >>
14627 SPE_HDR_CONN_TYPE_SHIFT;
14628 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14629 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14630
14631 /* Set validation for iSCSI L2 client before sending SETUP
14632 * ramrod
14633 */
14634 if (type == ETH_CONNECTION_TYPE) {
14635 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14636 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14637 ILT_PAGE_CIDS;
14638 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14639 (cxt_index * ILT_PAGE_CIDS);
14640 bnx2x_set_ctx_validation(bp,
14641 &bp->context[cxt_index].
14642 vcxt[cxt_offset].eth,
14643 BNX2X_ISCSI_ETH_CID(bp));
14644 }
14645 }
14646
14647 /*
14648 * There may be not more than 8 L2, not more than 8 L5 SPEs
14649 * and in the air. We also check that number of outstanding
14650 * COMMON ramrods is not more than the EQ and SPQ can
14651 * accommodate.
14652 */
14653 if (type == ETH_CONNECTION_TYPE) {
14654 if (!atomic_read(&bp->cq_spq_left))
14655 break;
14656 else
14657 atomic_dec(&bp->cq_spq_left);
14658 } else if (type == NONE_CONNECTION_TYPE) {
14659 if (!atomic_read(&bp->eq_spq_left))
14660 break;
14661 else
14662 atomic_dec(&bp->eq_spq_left);
14663 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14664 (type == FCOE_CONNECTION_TYPE)) {
14665 if (bp->cnic_spq_pending >=
14666 bp->cnic_eth_dev.max_kwqe_pending)
14667 break;
14668 else
14669 bp->cnic_spq_pending++;
14670 } else {
14671 BNX2X_ERR("Unknown SPE type: %d\n", type);
14672 bnx2x_panic();
14673 break;
14674 }
14675
14676 spe = bnx2x_sp_get_next(bp);
14677 *spe = *bp->cnic_kwq_cons;
14678
14679 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14680 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14681
14682 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14683 bp->cnic_kwq_cons = bp->cnic_kwq;
14684 else
14685 bp->cnic_kwq_cons++;
14686 }
14687 bnx2x_sp_prod_update(bp);
14688 spin_unlock_bh(&bp->spq_lock);
14689 }
14690
bnx2x_cnic_sp_queue(struct net_device * dev,struct kwqe_16 * kwqes[],u32 count)14691 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14692 struct kwqe_16 *kwqes[], u32 count)
14693 {
14694 struct bnx2x *bp = netdev_priv(dev);
14695 int i;
14696
14697 #ifdef BNX2X_STOP_ON_ERROR
14698 if (unlikely(bp->panic)) {
14699 BNX2X_ERR("Can't post to SP queue while panic\n");
14700 return -EIO;
14701 }
14702 #endif
14703
14704 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14705 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14706 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14707 return -EAGAIN;
14708 }
14709
14710 spin_lock_bh(&bp->spq_lock);
14711
14712 for (i = 0; i < count; i++) {
14713 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14714
14715 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14716 break;
14717
14718 *bp->cnic_kwq_prod = *spe;
14719
14720 bp->cnic_kwq_pending++;
14721
14722 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14723 spe->hdr.conn_and_cmd_data, spe->hdr.type,
14724 spe->data.update_data_addr.hi,
14725 spe->data.update_data_addr.lo,
14726 bp->cnic_kwq_pending);
14727
14728 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14729 bp->cnic_kwq_prod = bp->cnic_kwq;
14730 else
14731 bp->cnic_kwq_prod++;
14732 }
14733
14734 spin_unlock_bh(&bp->spq_lock);
14735
14736 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14737 bnx2x_cnic_sp_post(bp, 0);
14738
14739 return i;
14740 }
14741
bnx2x_cnic_ctl_send(struct bnx2x * bp,struct cnic_ctl_info * ctl)14742 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14743 {
14744 struct cnic_ops *c_ops;
14745 int rc = 0;
14746
14747 mutex_lock(&bp->cnic_mutex);
14748 c_ops = rcu_dereference_protected(bp->cnic_ops,
14749 lockdep_is_held(&bp->cnic_mutex));
14750 if (c_ops)
14751 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14752 mutex_unlock(&bp->cnic_mutex);
14753
14754 return rc;
14755 }
14756
bnx2x_cnic_ctl_send_bh(struct bnx2x * bp,struct cnic_ctl_info * ctl)14757 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14758 {
14759 struct cnic_ops *c_ops;
14760 int rc = 0;
14761
14762 rcu_read_lock();
14763 c_ops = rcu_dereference(bp->cnic_ops);
14764 if (c_ops)
14765 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14766 rcu_read_unlock();
14767
14768 return rc;
14769 }
14770
14771 /*
14772 * for commands that have no data
14773 */
bnx2x_cnic_notify(struct bnx2x * bp,int cmd)14774 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14775 {
14776 struct cnic_ctl_info ctl = {0};
14777
14778 ctl.cmd = cmd;
14779
14780 return bnx2x_cnic_ctl_send(bp, &ctl);
14781 }
14782
bnx2x_cnic_cfc_comp(struct bnx2x * bp,int cid,u8 err)14783 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14784 {
14785 struct cnic_ctl_info ctl = {0};
14786
14787 /* first we tell CNIC and only then we count this as a completion */
14788 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14789 ctl.data.comp.cid = cid;
14790 ctl.data.comp.error = err;
14791
14792 bnx2x_cnic_ctl_send_bh(bp, &ctl);
14793 bnx2x_cnic_sp_post(bp, 0);
14794 }
14795
14796 /* Called with netif_addr_lock_bh() taken.
14797 * Sets an rx_mode config for an iSCSI ETH client.
14798 * Doesn't block.
14799 * Completion should be checked outside.
14800 */
bnx2x_set_iscsi_eth_rx_mode(struct bnx2x * bp,bool start)14801 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14802 {
14803 unsigned long accept_flags = 0, ramrod_flags = 0;
14804 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14805 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14806
14807 if (start) {
14808 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14809 * because it's the only way for UIO Queue to accept
14810 * multicasts (in non-promiscuous mode only one Queue per
14811 * function will receive multicast packets (leading in our
14812 * case).
14813 */
14814 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14815 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14816 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14817 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14818
14819 /* Clear STOP_PENDING bit if START is requested */
14820 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14821
14822 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14823 } else
14824 /* Clear START_PENDING bit if STOP is requested */
14825 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14826
14827 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14828 set_bit(sched_state, &bp->sp_state);
14829 else {
14830 __set_bit(RAMROD_RX, &ramrod_flags);
14831 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14832 ramrod_flags);
14833 }
14834 }
14835
bnx2x_drv_ctl(struct net_device * dev,struct drv_ctl_info * ctl)14836 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14837 {
14838 struct bnx2x *bp = netdev_priv(dev);
14839 int rc = 0;
14840
14841 switch (ctl->cmd) {
14842 case DRV_CTL_CTXTBL_WR_CMD: {
14843 u32 index = ctl->data.io.offset;
14844 dma_addr_t addr = ctl->data.io.dma_addr;
14845
14846 bnx2x_ilt_wr(bp, index, addr);
14847 break;
14848 }
14849
14850 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14851 int count = ctl->data.credit.credit_count;
14852
14853 bnx2x_cnic_sp_post(bp, count);
14854 break;
14855 }
14856
14857 /* rtnl_lock is held. */
14858 case DRV_CTL_START_L2_CMD: {
14859 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14860 unsigned long sp_bits = 0;
14861
14862 /* Configure the iSCSI classification object */
14863 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14864 cp->iscsi_l2_client_id,
14865 cp->iscsi_l2_cid, BP_FUNC(bp),
14866 bnx2x_sp(bp, mac_rdata),
14867 bnx2x_sp_mapping(bp, mac_rdata),
14868 BNX2X_FILTER_MAC_PENDING,
14869 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14870 &bp->macs_pool);
14871
14872 /* Set iSCSI MAC address */
14873 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14874 if (rc)
14875 break;
14876
14877 mmiowb();
14878 barrier();
14879
14880 /* Start accepting on iSCSI L2 ring */
14881
14882 netif_addr_lock_bh(dev);
14883 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14884 netif_addr_unlock_bh(dev);
14885
14886 /* bits to wait on */
14887 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14888 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14889
14890 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14891 BNX2X_ERR("rx_mode completion timed out!\n");
14892
14893 break;
14894 }
14895
14896 /* rtnl_lock is held. */
14897 case DRV_CTL_STOP_L2_CMD: {
14898 unsigned long sp_bits = 0;
14899
14900 /* Stop accepting on iSCSI L2 ring */
14901 netif_addr_lock_bh(dev);
14902 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14903 netif_addr_unlock_bh(dev);
14904
14905 /* bits to wait on */
14906 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14907 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14908
14909 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14910 BNX2X_ERR("rx_mode completion timed out!\n");
14911
14912 mmiowb();
14913 barrier();
14914
14915 /* Unset iSCSI L2 MAC */
14916 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14917 BNX2X_ISCSI_ETH_MAC, true);
14918 break;
14919 }
14920 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14921 int count = ctl->data.credit.credit_count;
14922
14923 smp_mb__before_atomic();
14924 atomic_add(count, &bp->cq_spq_left);
14925 smp_mb__after_atomic();
14926 break;
14927 }
14928 case DRV_CTL_ULP_REGISTER_CMD: {
14929 int ulp_type = ctl->data.register_data.ulp_type;
14930
14931 if (CHIP_IS_E3(bp)) {
14932 int idx = BP_FW_MB_IDX(bp);
14933 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14934 int path = BP_PATH(bp);
14935 int port = BP_PORT(bp);
14936 int i;
14937 u32 scratch_offset;
14938 u32 *host_addr;
14939
14940 /* first write capability to shmem2 */
14941 if (ulp_type == CNIC_ULP_ISCSI)
14942 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14943 else if (ulp_type == CNIC_ULP_FCOE)
14944 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14945 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14946
14947 if ((ulp_type != CNIC_ULP_FCOE) ||
14948 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14949 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
14950 break;
14951
14952 /* if reached here - should write fcoe capabilities */
14953 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14954 if (!scratch_offset)
14955 break;
14956 scratch_offset += offsetof(struct glob_ncsi_oem_data,
14957 fcoe_features[path][port]);
14958 host_addr = (u32 *) &(ctl->data.register_data.
14959 fcoe_features);
14960 for (i = 0; i < sizeof(struct fcoe_capabilities);
14961 i += 4)
14962 REG_WR(bp, scratch_offset + i,
14963 *(host_addr + i/4));
14964 }
14965 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14966 break;
14967 }
14968
14969 case DRV_CTL_ULP_UNREGISTER_CMD: {
14970 int ulp_type = ctl->data.ulp_type;
14971
14972 if (CHIP_IS_E3(bp)) {
14973 int idx = BP_FW_MB_IDX(bp);
14974 u32 cap;
14975
14976 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14977 if (ulp_type == CNIC_ULP_ISCSI)
14978 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14979 else if (ulp_type == CNIC_ULP_FCOE)
14980 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14981 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14982 }
14983 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14984 break;
14985 }
14986
14987 default:
14988 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14989 rc = -EINVAL;
14990 }
14991
14992 /* For storage-only interfaces, change driver state */
14993 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14994 switch (ctl->drv_state) {
14995 case DRV_NOP:
14996 break;
14997 case DRV_ACTIVE:
14998 bnx2x_set_os_driver_state(bp,
14999 OS_DRIVER_STATE_ACTIVE);
15000 break;
15001 case DRV_INACTIVE:
15002 bnx2x_set_os_driver_state(bp,
15003 OS_DRIVER_STATE_DISABLED);
15004 break;
15005 case DRV_UNLOADED:
15006 bnx2x_set_os_driver_state(bp,
15007 OS_DRIVER_STATE_NOT_LOADED);
15008 break;
15009 default:
15010 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
15011 }
15012 }
15013
15014 return rc;
15015 }
15016
bnx2x_get_fc_npiv(struct net_device * dev,struct cnic_fc_npiv_tbl * cnic_tbl)15017 static int bnx2x_get_fc_npiv(struct net_device *dev,
15018 struct cnic_fc_npiv_tbl *cnic_tbl)
15019 {
15020 struct bnx2x *bp = netdev_priv(dev);
15021 struct bdn_fc_npiv_tbl *tbl = NULL;
15022 u32 offset, entries;
15023 int rc = -EINVAL;
15024 int i;
15025
15026 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
15027 goto out;
15028
15029 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
15030
15031 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
15032 if (!tbl) {
15033 BNX2X_ERR("Failed to allocate fc_npiv table\n");
15034 goto out;
15035 }
15036
15037 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
15038 if (!offset) {
15039 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
15040 goto out;
15041 }
15042 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
15043
15044 /* Read the table contents from nvram */
15045 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
15046 BNX2X_ERR("Failed to read FC-NPIV table\n");
15047 goto out;
15048 }
15049
15050 /* Since bnx2x_nvram_read() returns data in be32, we need to convert
15051 * the number of entries back to cpu endianness.
15052 */
15053 entries = tbl->fc_npiv_cfg.num_of_npiv;
15054 entries = (__force u32)be32_to_cpu((__force __be32)entries);
15055 tbl->fc_npiv_cfg.num_of_npiv = entries;
15056
15057 if (!tbl->fc_npiv_cfg.num_of_npiv) {
15058 DP(BNX2X_MSG_MCP,
15059 "No FC-NPIV table [valid, simply not present]\n");
15060 goto out;
15061 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
15062 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
15063 tbl->fc_npiv_cfg.num_of_npiv);
15064 goto out;
15065 } else {
15066 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
15067 tbl->fc_npiv_cfg.num_of_npiv);
15068 }
15069
15070 /* Copy the data into cnic-provided struct */
15071 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
15072 for (i = 0; i < cnic_tbl->count; i++) {
15073 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
15074 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
15075 }
15076
15077 rc = 0;
15078 out:
15079 kfree(tbl);
15080 return rc;
15081 }
15082
bnx2x_setup_cnic_irq_info(struct bnx2x * bp)15083 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
15084 {
15085 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15086
15087 if (bp->flags & USING_MSIX_FLAG) {
15088 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
15089 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
15090 cp->irq_arr[0].vector = bp->msix_table[1].vector;
15091 } else {
15092 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
15093 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
15094 }
15095 if (!CHIP_IS_E1x(bp))
15096 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
15097 else
15098 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
15099
15100 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
15101 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
15102 cp->irq_arr[1].status_blk = bp->def_status_blk;
15103 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
15104 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
15105
15106 cp->num_irq = 2;
15107 }
15108
bnx2x_setup_cnic_info(struct bnx2x * bp)15109 void bnx2x_setup_cnic_info(struct bnx2x *bp)
15110 {
15111 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15112
15113 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15114 bnx2x_cid_ilt_lines(bp);
15115 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15116 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15117 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15118
15119 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
15120 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
15121 cp->iscsi_l2_cid);
15122
15123 if (NO_ISCSI_OOO(bp))
15124 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15125 }
15126
bnx2x_register_cnic(struct net_device * dev,struct cnic_ops * ops,void * data)15127 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
15128 void *data)
15129 {
15130 struct bnx2x *bp = netdev_priv(dev);
15131 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15132 int rc;
15133
15134 DP(NETIF_MSG_IFUP, "Register_cnic called\n");
15135
15136 if (ops == NULL) {
15137 BNX2X_ERR("NULL ops received\n");
15138 return -EINVAL;
15139 }
15140
15141 if (!CNIC_SUPPORT(bp)) {
15142 BNX2X_ERR("Can't register CNIC when not supported\n");
15143 return -EOPNOTSUPP;
15144 }
15145
15146 if (!CNIC_LOADED(bp)) {
15147 rc = bnx2x_load_cnic(bp);
15148 if (rc) {
15149 BNX2X_ERR("CNIC-related load failed\n");
15150 return rc;
15151 }
15152 }
15153
15154 bp->cnic_enabled = true;
15155
15156 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15157 if (!bp->cnic_kwq)
15158 return -ENOMEM;
15159
15160 bp->cnic_kwq_cons = bp->cnic_kwq;
15161 bp->cnic_kwq_prod = bp->cnic_kwq;
15162 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15163
15164 bp->cnic_spq_pending = 0;
15165 bp->cnic_kwq_pending = 0;
15166
15167 bp->cnic_data = data;
15168
15169 cp->num_irq = 0;
15170 cp->drv_state |= CNIC_DRV_STATE_REGD;
15171 cp->iro_arr = bp->iro_arr;
15172
15173 bnx2x_setup_cnic_irq_info(bp);
15174
15175 rcu_assign_pointer(bp->cnic_ops, ops);
15176
15177 /* Schedule driver to read CNIC driver versions */
15178 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15179
15180 return 0;
15181 }
15182
bnx2x_unregister_cnic(struct net_device * dev)15183 static int bnx2x_unregister_cnic(struct net_device *dev)
15184 {
15185 struct bnx2x *bp = netdev_priv(dev);
15186 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15187
15188 mutex_lock(&bp->cnic_mutex);
15189 cp->drv_state = 0;
15190 RCU_INIT_POINTER(bp->cnic_ops, NULL);
15191 mutex_unlock(&bp->cnic_mutex);
15192 synchronize_rcu();
15193 bp->cnic_enabled = false;
15194 kfree(bp->cnic_kwq);
15195 bp->cnic_kwq = NULL;
15196
15197 return 0;
15198 }
15199
bnx2x_cnic_probe(struct net_device * dev)15200 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15201 {
15202 struct bnx2x *bp = netdev_priv(dev);
15203 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15204
15205 /* If both iSCSI and FCoE are disabled - return NULL in
15206 * order to indicate CNIC that it should not try to work
15207 * with this device.
15208 */
15209 if (NO_ISCSI(bp) && NO_FCOE(bp))
15210 return NULL;
15211
15212 cp->drv_owner = THIS_MODULE;
15213 cp->chip_id = CHIP_ID(bp);
15214 cp->pdev = bp->pdev;
15215 cp->io_base = bp->regview;
15216 cp->io_base2 = bp->doorbells;
15217 cp->max_kwqe_pending = 8;
15218 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15219 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15220 bnx2x_cid_ilt_lines(bp);
15221 cp->ctx_tbl_len = CNIC_ILT_LINES;
15222 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15223 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15224 cp->drv_ctl = bnx2x_drv_ctl;
15225 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15226 cp->drv_register_cnic = bnx2x_register_cnic;
15227 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15228 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15229 cp->iscsi_l2_client_id =
15230 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15231 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15232
15233 if (NO_ISCSI_OOO(bp))
15234 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15235
15236 if (NO_ISCSI(bp))
15237 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15238
15239 if (NO_FCOE(bp))
15240 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15241
15242 BNX2X_DEV_INFO(
15243 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15244 cp->ctx_blk_size,
15245 cp->ctx_tbl_offset,
15246 cp->ctx_tbl_len,
15247 cp->starting_cid);
15248 return cp;
15249 }
15250
bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath * fp)15251 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15252 {
15253 struct bnx2x *bp = fp->bp;
15254 u32 offset = BAR_USTRORM_INTMEM;
15255
15256 if (IS_VF(bp))
15257 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15258 else if (!CHIP_IS_E1x(bp))
15259 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15260 else
15261 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15262
15263 return offset;
15264 }
15265
15266 /* called only on E1H or E2.
15267 * When pretending to be PF, the pretend value is the function number 0...7
15268 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15269 * combination
15270 */
bnx2x_pretend_func(struct bnx2x * bp,u16 pretend_func_val)15271 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15272 {
15273 u32 pretend_reg;
15274
15275 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15276 return -1;
15277
15278 /* get my own pretend register */
15279 pretend_reg = bnx2x_get_pretend_reg(bp);
15280 REG_WR(bp, pretend_reg, pretend_func_val);
15281 REG_RD(bp, pretend_reg);
15282 return 0;
15283 }
15284
bnx2x_ptp_task(struct work_struct * work)15285 static void bnx2x_ptp_task(struct work_struct *work)
15286 {
15287 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15288 int port = BP_PORT(bp);
15289 u32 val_seq;
15290 u64 timestamp, ns;
15291 struct skb_shared_hwtstamps shhwtstamps;
15292 bool bail = true;
15293 int i;
15294
15295 /* FW may take a while to complete timestamping; try a bit and if it's
15296 * still not complete, may indicate an error state - bail out then.
15297 */
15298 for (i = 0; i < 10; i++) {
15299 /* Read Tx timestamp registers */
15300 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15301 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15302 if (val_seq & 0x10000) {
15303 bail = false;
15304 break;
15305 }
15306 msleep(1 << i);
15307 }
15308
15309 if (!bail) {
15310 /* There is a valid timestamp value */
15311 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15312 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15313 timestamp <<= 32;
15314 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15315 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15316 /* Reset timestamp register to allow new timestamp */
15317 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15318 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15319 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15320
15321 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15322 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15323 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15324
15325 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15326 timestamp, ns);
15327 } else {
15328 DP(BNX2X_MSG_PTP,
15329 "Tx timestamp is not recorded (register read=%u)\n",
15330 val_seq);
15331 bp->eth_stats.ptp_skip_tx_ts++;
15332 }
15333
15334 dev_kfree_skb_any(bp->ptp_tx_skb);
15335 bp->ptp_tx_skb = NULL;
15336 }
15337
bnx2x_set_rx_ts(struct bnx2x * bp,struct sk_buff * skb)15338 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15339 {
15340 int port = BP_PORT(bp);
15341 u64 timestamp, ns;
15342
15343 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15344 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15345 timestamp <<= 32;
15346 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15347 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15348
15349 /* Reset timestamp register to allow new timestamp */
15350 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15351 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15352
15353 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15354
15355 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15356
15357 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15358 timestamp, ns);
15359 }
15360
15361 /* Read the PHC */
bnx2x_cyclecounter_read(const struct cyclecounter * cc)15362 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15363 {
15364 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15365 int port = BP_PORT(bp);
15366 u32 wb_data[2];
15367 u64 phc_cycles;
15368
15369 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15370 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15371 phc_cycles = wb_data[1];
15372 phc_cycles = (phc_cycles << 32) + wb_data[0];
15373
15374 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15375
15376 return phc_cycles;
15377 }
15378
bnx2x_init_cyclecounter(struct bnx2x * bp)15379 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15380 {
15381 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15382 bp->cyclecounter.read = bnx2x_cyclecounter_read;
15383 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15384 bp->cyclecounter.shift = 0;
15385 bp->cyclecounter.mult = 1;
15386 }
15387
bnx2x_send_reset_timesync_ramrod(struct bnx2x * bp)15388 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15389 {
15390 struct bnx2x_func_state_params func_params = {NULL};
15391 struct bnx2x_func_set_timesync_params *set_timesync_params =
15392 &func_params.params.set_timesync;
15393
15394 /* Prepare parameters for function state transitions */
15395 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15396 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15397
15398 func_params.f_obj = &bp->func_obj;
15399 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15400
15401 /* Function parameters */
15402 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15403 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15404
15405 return bnx2x_func_state_change(bp, &func_params);
15406 }
15407
bnx2x_enable_ptp_packets(struct bnx2x * bp)15408 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15409 {
15410 struct bnx2x_queue_state_params q_params;
15411 int rc, i;
15412
15413 /* send queue update ramrod to enable PTP packets */
15414 memset(&q_params, 0, sizeof(q_params));
15415 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15416 q_params.cmd = BNX2X_Q_CMD_UPDATE;
15417 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15418 &q_params.params.update.update_flags);
15419 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15420 &q_params.params.update.update_flags);
15421
15422 /* send the ramrod on all the queues of the PF */
15423 for_each_eth_queue(bp, i) {
15424 struct bnx2x_fastpath *fp = &bp->fp[i];
15425
15426 /* Set the appropriate Queue object */
15427 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15428
15429 /* Update the Queue state */
15430 rc = bnx2x_queue_state_change(bp, &q_params);
15431 if (rc) {
15432 BNX2X_ERR("Failed to enable PTP packets\n");
15433 return rc;
15434 }
15435 }
15436
15437 return 0;
15438 }
15439
bnx2x_configure_ptp_filters(struct bnx2x * bp)15440 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15441 {
15442 int port = BP_PORT(bp);
15443 int rc;
15444
15445 if (!bp->hwtstamp_ioctl_called)
15446 return 0;
15447
15448 switch (bp->tx_type) {
15449 case HWTSTAMP_TX_ON:
15450 bp->flags |= TX_TIMESTAMPING_EN;
15451 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15452 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15453 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15454 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15455 break;
15456 case HWTSTAMP_TX_ONESTEP_SYNC:
15457 BNX2X_ERR("One-step timestamping is not supported\n");
15458 return -ERANGE;
15459 }
15460
15461 switch (bp->rx_filter) {
15462 case HWTSTAMP_FILTER_NONE:
15463 break;
15464 case HWTSTAMP_FILTER_ALL:
15465 case HWTSTAMP_FILTER_SOME:
15466 case HWTSTAMP_FILTER_NTP_ALL:
15467 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15468 break;
15469 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15470 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15471 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15472 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15473 /* Initialize PTP detection for UDP/IPv4 events */
15474 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15475 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15476 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15477 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15478 break;
15479 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15480 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15481 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15482 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15483 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15484 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15485 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15486 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15487 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15488 break;
15489 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15490 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15491 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15492 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15493 /* Initialize PTP detection L2 events */
15494 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15495 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15496 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15497 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15498
15499 break;
15500 case HWTSTAMP_FILTER_PTP_V2_EVENT:
15501 case HWTSTAMP_FILTER_PTP_V2_SYNC:
15502 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15503 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15504 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15505 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15506 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15507 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15508 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15509 break;
15510 }
15511
15512 /* Indicate to FW that this PF expects recorded PTP packets */
15513 rc = bnx2x_enable_ptp_packets(bp);
15514 if (rc)
15515 return rc;
15516
15517 /* Enable sending PTP packets to host */
15518 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15519 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15520
15521 return 0;
15522 }
15523
bnx2x_hwtstamp_ioctl(struct bnx2x * bp,struct ifreq * ifr)15524 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15525 {
15526 struct hwtstamp_config config;
15527 int rc;
15528
15529 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15530
15531 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15532 return -EFAULT;
15533
15534 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15535 config.tx_type, config.rx_filter);
15536
15537 if (config.flags) {
15538 BNX2X_ERR("config.flags is reserved for future use\n");
15539 return -EINVAL;
15540 }
15541
15542 bp->hwtstamp_ioctl_called = 1;
15543 bp->tx_type = config.tx_type;
15544 bp->rx_filter = config.rx_filter;
15545
15546 rc = bnx2x_configure_ptp_filters(bp);
15547 if (rc)
15548 return rc;
15549
15550 config.rx_filter = bp->rx_filter;
15551
15552 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15553 -EFAULT : 0;
15554 }
15555
15556 /* Configures HW for PTP */
bnx2x_configure_ptp(struct bnx2x * bp)15557 static int bnx2x_configure_ptp(struct bnx2x *bp)
15558 {
15559 int rc, port = BP_PORT(bp);
15560 u32 wb_data[2];
15561
15562 /* Reset PTP event detection rules - will be configured in the IOCTL */
15563 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15564 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15565 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15566 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15567 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15568 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15569 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15570 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15571
15572 /* Disable PTP packets to host - will be configured in the IOCTL*/
15573 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15574 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15575
15576 /* Enable the PTP feature */
15577 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15578 NIG_REG_P0_PTP_EN, 0x3F);
15579
15580 /* Enable the free-running counter */
15581 wb_data[0] = 0;
15582 wb_data[1] = 0;
15583 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15584
15585 /* Reset drift register (offset register is not reset) */
15586 rc = bnx2x_send_reset_timesync_ramrod(bp);
15587 if (rc) {
15588 BNX2X_ERR("Failed to reset PHC drift register\n");
15589 return -EFAULT;
15590 }
15591
15592 /* Reset possibly old timestamps */
15593 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15594 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15595 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15596 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15597
15598 return 0;
15599 }
15600
15601 /* Called during load, to initialize PTP-related stuff */
bnx2x_init_ptp(struct bnx2x * bp)15602 void bnx2x_init_ptp(struct bnx2x *bp)
15603 {
15604 int rc;
15605
15606 /* Configure PTP in HW */
15607 rc = bnx2x_configure_ptp(bp);
15608 if (rc) {
15609 BNX2X_ERR("Stopping PTP initialization\n");
15610 return;
15611 }
15612
15613 /* Init work queue for Tx timestamping */
15614 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15615
15616 /* Init cyclecounter and timecounter. This is done only in the first
15617 * load. If done in every load, PTP application will fail when doing
15618 * unload / load (e.g. MTU change) while it is running.
15619 */
15620 if (!bp->timecounter_init_done) {
15621 bnx2x_init_cyclecounter(bp);
15622 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15623 ktime_to_ns(ktime_get_real()));
15624 bp->timecounter_init_done = 1;
15625 }
15626
15627 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15628 }
15629