1 /* bnx2x_sriov.c: QLogic Everest network driver.
2 *
3 * Copyright 2009-2013 Broadcom Corporation
4 * Copyright 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * Unless you and QLogic execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2, available
10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11 *
12 * Notwithstanding the above, under no circumstances may you combine this
13 * software in any way with any other QLogic software provided under a
14 * license other than the GPL, without QLogic's express prior written
15 * consent.
16 *
17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18 * Written by: Shmulik Ravid
19 * Ariel Elior <ariel.elior@qlogic.com>
20 *
21 */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 struct bnx2x_virtf **vf,
31 struct pf_vf_bulletin_content **bulletin,
32 bool test_queue);
33
34 /* General service functions */
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 u16 pf_id)
37 {
38 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 pf_id);
40 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 pf_id);
42 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 pf_id);
44 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 pf_id);
46 }
47
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 u8 enable)
50 {
51 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 enable);
53 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 enable);
55 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 enable);
57 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 enable);
59 }
60
bnx2x_vf_idx_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 int idx;
64
65 for_each_vf(bp, idx)
66 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 break;
68 return idx;
69 }
70
71 static
bnx2x_vf_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77
bnx2x_vf_igu_ack_sb(struct bnx2x * bp,struct bnx2x_virtf * vf,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 u8 update)
81 {
82 /* acking a VF sb through the PF - use the GRC */
83 u32 ctl;
84 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 u32 func_encode = vf->abs_vfid;
87 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 struct igu_regular cmd_data = {0};
89
90 cmd_data.sb_id_and_flags =
91 ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95
96 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
97 func_encode << IGU_CTRL_REG_FID_SHIFT |
98 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99
100 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 cmd_data.sb_id_and_flags, igu_addr_data);
102 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 mmiowb();
104 barrier();
105
106 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
107 ctl, igu_addr_ctl);
108 REG_WR(bp, igu_addr_ctl, ctl);
109 mmiowb();
110 barrier();
111 }
112
bnx2x_validate_vf_sp_objs(struct bnx2x * bp,struct bnx2x_virtf * vf,bool print_err)113 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
114 struct bnx2x_virtf *vf,
115 bool print_err)
116 {
117 if (!bnx2x_leading_vfq(vf, sp_initialized)) {
118 if (print_err)
119 BNX2X_ERR("Slowpath objects not yet initialized!\n");
120 else
121 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
122 return false;
123 }
124 return true;
125 }
126
127 /* VFOP operations states */
bnx2x_vfop_qctor_dump_tx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)128 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
129 struct bnx2x_queue_init_params *init_params,
130 struct bnx2x_queue_setup_params *setup_params,
131 u16 q_idx, u16 sb_idx)
132 {
133 DP(BNX2X_MSG_IOV,
134 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
135 vf->abs_vfid,
136 q_idx,
137 sb_idx,
138 init_params->tx.sb_cq_index,
139 init_params->tx.hc_rate,
140 setup_params->flags,
141 setup_params->txq_params.traffic_type);
142 }
143
bnx2x_vfop_qctor_dump_rx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)144 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
145 struct bnx2x_queue_init_params *init_params,
146 struct bnx2x_queue_setup_params *setup_params,
147 u16 q_idx, u16 sb_idx)
148 {
149 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
150
151 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
152 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
153 vf->abs_vfid,
154 q_idx,
155 sb_idx,
156 init_params->rx.sb_cq_index,
157 init_params->rx.hc_rate,
158 setup_params->gen_params.mtu,
159 rxq_params->buf_sz,
160 rxq_params->sge_buf_sz,
161 rxq_params->max_sges_pkt,
162 rxq_params->tpa_agg_sz,
163 setup_params->flags,
164 rxq_params->drop_flags,
165 rxq_params->cache_line_log);
166 }
167
bnx2x_vfop_qctor_prep(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q,struct bnx2x_vf_queue_construct_params * p,unsigned long q_type)168 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
169 struct bnx2x_virtf *vf,
170 struct bnx2x_vf_queue *q,
171 struct bnx2x_vf_queue_construct_params *p,
172 unsigned long q_type)
173 {
174 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
175 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
176
177 /* INIT */
178
179 /* Enable host coalescing in the transition to INIT state */
180 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
181 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
182
183 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
184 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
185
186 /* FW SB ID */
187 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
188 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
189
190 /* context */
191 init_p->cxts[0] = q->cxt;
192
193 /* SETUP */
194
195 /* Setup-op general parameters */
196 setup_p->gen_params.spcl_id = vf->sp_cl_id;
197 setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
198 setup_p->gen_params.fp_hsi = vf->fp_hsi;
199
200 /* Setup-op flags:
201 * collect statistics, zero statistics, local-switching, security,
202 * OV for Flex10, RSS and MCAST for leading
203 */
204 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
205 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
206
207 /* for VFs, enable tx switching, bd coherency, and mac address
208 * anti-spoofing
209 */
210 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
211 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
212 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
213
214 /* Setup-op rx parameters */
215 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
216 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
217
218 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
219 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
220 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
221
222 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
223 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
224 }
225
226 /* Setup-op tx parameters */
227 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
228 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
229 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
230 }
231 }
232
bnx2x_vf_queue_create(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)233 static int bnx2x_vf_queue_create(struct bnx2x *bp,
234 struct bnx2x_virtf *vf, int qid,
235 struct bnx2x_vf_queue_construct_params *qctor)
236 {
237 struct bnx2x_queue_state_params *q_params;
238 int rc = 0;
239
240 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
241
242 /* Prepare ramrod information */
243 q_params = &qctor->qstate;
244 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
245 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
246
247 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
248 BNX2X_Q_LOGICAL_STATE_ACTIVE) {
249 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
250 goto out;
251 }
252
253 /* Run Queue 'construction' ramrods */
254 q_params->cmd = BNX2X_Q_CMD_INIT;
255 rc = bnx2x_queue_state_change(bp, q_params);
256 if (rc)
257 goto out;
258
259 memcpy(&q_params->params.setup, &qctor->prep_qsetup,
260 sizeof(struct bnx2x_queue_setup_params));
261 q_params->cmd = BNX2X_Q_CMD_SETUP;
262 rc = bnx2x_queue_state_change(bp, q_params);
263 if (rc)
264 goto out;
265
266 /* enable interrupts */
267 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
268 USTORM_ID, 0, IGU_INT_ENABLE, 0);
269 out:
270 return rc;
271 }
272
bnx2x_vf_queue_destroy(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)273 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
274 int qid)
275 {
276 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
277 BNX2X_Q_CMD_TERMINATE,
278 BNX2X_Q_CMD_CFC_DEL};
279 struct bnx2x_queue_state_params q_params;
280 int rc, i;
281
282 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
283
284 /* Prepare ramrod information */
285 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
286 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
287 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
288
289 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
290 BNX2X_Q_LOGICAL_STATE_STOPPED) {
291 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
292 goto out;
293 }
294
295 /* Run Queue 'destruction' ramrods */
296 for (i = 0; i < ARRAY_SIZE(cmds); i++) {
297 q_params.cmd = cmds[i];
298 rc = bnx2x_queue_state_change(bp, &q_params);
299 if (rc) {
300 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
301 return rc;
302 }
303 }
304 out:
305 /* Clean Context */
306 if (bnx2x_vfq(vf, qid, cxt)) {
307 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
308 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
309 }
310
311 return 0;
312 }
313
314 static void
bnx2x_vf_set_igu_info(struct bnx2x * bp,u8 igu_sb_id,u8 abs_vfid)315 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
316 {
317 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
318 if (vf) {
319 /* the first igu entry belonging to VFs of this PF */
320 if (!BP_VFDB(bp)->first_vf_igu_entry)
321 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
322
323 /* the first igu entry belonging to this VF */
324 if (!vf_sb_count(vf))
325 vf->igu_base_id = igu_sb_id;
326
327 ++vf_sb_count(vf);
328 ++vf->sb_count;
329 }
330 BP_VFDB(bp)->vf_sbs_pool++;
331 }
332
bnx2x_vf_vlan_credit(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * obj,atomic_t * counter)333 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
334 struct bnx2x_vlan_mac_obj *obj,
335 atomic_t *counter)
336 {
337 struct list_head *pos;
338 int read_lock;
339 int cnt = 0;
340
341 read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
342 if (read_lock)
343 DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
344
345 list_for_each(pos, &obj->head)
346 cnt++;
347
348 if (!read_lock)
349 bnx2x_vlan_mac_h_read_unlock(bp, obj);
350
351 atomic_set(counter, cnt);
352 }
353
bnx2x_vf_vlan_mac_clear(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,bool drv_only,int type)354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
355 int qid, bool drv_only, int type)
356 {
357 struct bnx2x_vlan_mac_ramrod_params ramrod;
358 int rc;
359
360 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
361 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
362 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
363
364 /* Prepare ramrod params */
365 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
366 if (type == BNX2X_VF_FILTER_VLAN_MAC) {
367 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
368 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
369 } else if (type == BNX2X_VF_FILTER_MAC) {
370 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
371 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
372 } else {
373 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
374 }
375 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
376
377 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
378 if (drv_only)
379 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
380 else
381 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
382
383 /* Start deleting */
384 rc = ramrod.vlan_mac_obj->delete_all(bp,
385 ramrod.vlan_mac_obj,
386 &ramrod.user_req.vlan_mac_flags,
387 &ramrod.ramrod_flags);
388 if (rc) {
389 BNX2X_ERR("Failed to delete all %s\n",
390 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
391 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
392 return rc;
393 }
394
395 return 0;
396 }
397
bnx2x_vf_mac_vlan_config(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_mac_vlan_filter * filter,bool drv_only)398 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
399 struct bnx2x_virtf *vf, int qid,
400 struct bnx2x_vf_mac_vlan_filter *filter,
401 bool drv_only)
402 {
403 struct bnx2x_vlan_mac_ramrod_params ramrod;
404 int rc;
405
406 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
407 vf->abs_vfid, filter->add ? "Adding" : "Deleting",
408 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
409 (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
410
411 /* Prepare ramrod params */
412 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
413 if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
414 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
415 ramrod.user_req.u.vlan.vlan = filter->vid;
416 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
417 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
418 } else if (filter->type == BNX2X_VF_FILTER_VLAN) {
419 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
420 ramrod.user_req.u.vlan.vlan = filter->vid;
421 } else {
422 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
423 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
424 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
425 }
426 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
427 BNX2X_VLAN_MAC_DEL;
428
429 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
430 if (drv_only)
431 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
432 else
433 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
434
435 /* Add/Remove the filter */
436 rc = bnx2x_config_vlan_mac(bp, &ramrod);
437 if (rc == -EEXIST)
438 return 0;
439 if (rc) {
440 BNX2X_ERR("Failed to %s %s\n",
441 filter->add ? "add" : "delete",
442 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
443 "VLAN-MAC" :
444 (filter->type == BNX2X_VF_FILTER_MAC) ?
445 "MAC" : "VLAN");
446 return rc;
447 }
448
449 filter->applied = true;
450
451 return 0;
452 }
453
bnx2x_vf_mac_vlan_config_list(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_mac_vlan_filters * filters,int qid,bool drv_only)454 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
455 struct bnx2x_vf_mac_vlan_filters *filters,
456 int qid, bool drv_only)
457 {
458 int rc = 0, i;
459
460 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
461
462 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
463 return -EINVAL;
464
465 /* Prepare ramrod params */
466 for (i = 0; i < filters->count; i++) {
467 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
468 &filters->filters[i], drv_only);
469 if (rc)
470 break;
471 }
472
473 /* Rollback if needed */
474 if (i != filters->count) {
475 BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
476 i, filters->count);
477 while (--i >= 0) {
478 if (!filters->filters[i].applied)
479 continue;
480 filters->filters[i].add = !filters->filters[i].add;
481 bnx2x_vf_mac_vlan_config(bp, vf, qid,
482 &filters->filters[i],
483 drv_only);
484 }
485 }
486
487 /* It's our responsibility to free the filters */
488 kfree(filters);
489
490 return rc;
491 }
492
bnx2x_vf_queue_setup(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)493 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
494 struct bnx2x_vf_queue_construct_params *qctor)
495 {
496 int rc;
497
498 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
499
500 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
501 if (rc)
502 goto op_err;
503
504 /* Schedule the configuration of any pending vlan filters */
505 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
506 BNX2X_MSG_IOV);
507 return 0;
508 op_err:
509 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
510 return rc;
511 }
512
bnx2x_vf_queue_flr(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)513 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
514 int qid)
515 {
516 int rc;
517
518 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
519
520 /* If needed, clean the filtering data base */
521 if ((qid == LEADING_IDX) &&
522 bnx2x_validate_vf_sp_objs(bp, vf, false)) {
523 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
524 BNX2X_VF_FILTER_VLAN_MAC);
525 if (rc)
526 goto op_err;
527 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
528 BNX2X_VF_FILTER_VLAN);
529 if (rc)
530 goto op_err;
531 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
532 BNX2X_VF_FILTER_MAC);
533 if (rc)
534 goto op_err;
535 }
536
537 /* Terminate queue */
538 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
539 struct bnx2x_queue_state_params qstate;
540
541 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
542 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
543 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
544 qstate.cmd = BNX2X_Q_CMD_TERMINATE;
545 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
546 rc = bnx2x_queue_state_change(bp, &qstate);
547 if (rc)
548 goto op_err;
549 }
550
551 return 0;
552 op_err:
553 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
554 return rc;
555 }
556
bnx2x_vf_mcast(struct bnx2x * bp,struct bnx2x_virtf * vf,bnx2x_mac_addr_t * mcasts,int mc_num,bool drv_only)557 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
558 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
559 {
560 struct bnx2x_mcast_list_elem *mc = NULL;
561 struct bnx2x_mcast_ramrod_params mcast;
562 int rc, i;
563
564 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
565
566 /* Prepare Multicast command */
567 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
568 mcast.mcast_obj = &vf->mcast_obj;
569 if (drv_only)
570 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
571 else
572 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
573 if (mc_num) {
574 mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
575 GFP_KERNEL);
576 if (!mc) {
577 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
578 return -ENOMEM;
579 }
580 }
581
582 if (mc_num) {
583 INIT_LIST_HEAD(&mcast.mcast_list);
584 for (i = 0; i < mc_num; i++) {
585 mc[i].mac = mcasts[i];
586 list_add_tail(&mc[i].link,
587 &mcast.mcast_list);
588 }
589
590 /* add new mcasts */
591 mcast.mcast_list_len = mc_num;
592 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET);
593 if (rc)
594 BNX2X_ERR("Failed to set multicasts\n");
595 } else {
596 /* clear existing mcasts */
597 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
598 if (rc)
599 BNX2X_ERR("Failed to remove multicasts\n");
600 }
601
602 kfree(mc);
603
604 return rc;
605 }
606
bnx2x_vf_prep_rx_mode(struct bnx2x * bp,u8 qid,struct bnx2x_rx_mode_ramrod_params * ramrod,struct bnx2x_virtf * vf,unsigned long accept_flags)607 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
608 struct bnx2x_rx_mode_ramrod_params *ramrod,
609 struct bnx2x_virtf *vf,
610 unsigned long accept_flags)
611 {
612 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
613
614 memset(ramrod, 0, sizeof(*ramrod));
615 ramrod->cid = vfq->cid;
616 ramrod->cl_id = vfq_cl_id(vf, vfq);
617 ramrod->rx_mode_obj = &bp->rx_mode_obj;
618 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
619 ramrod->rx_accept_flags = accept_flags;
620 ramrod->tx_accept_flags = accept_flags;
621 ramrod->pstate = &vf->filter_state;
622 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
623
624 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
625 set_bit(RAMROD_RX, &ramrod->ramrod_flags);
626 set_bit(RAMROD_TX, &ramrod->ramrod_flags);
627
628 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
629 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
630 }
631
bnx2x_vf_rxmode(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,unsigned long accept_flags)632 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
633 int qid, unsigned long accept_flags)
634 {
635 struct bnx2x_rx_mode_ramrod_params ramrod;
636
637 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
638
639 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
640 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
641 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
642 return bnx2x_config_rx_mode(bp, &ramrod);
643 }
644
bnx2x_vf_queue_teardown(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)645 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
646 {
647 int rc;
648
649 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
650
651 /* Remove all classification configuration for leading queue */
652 if (qid == LEADING_IDX) {
653 rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
654 if (rc)
655 goto op_err;
656
657 /* Remove filtering if feasible */
658 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
659 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
660 false,
661 BNX2X_VF_FILTER_VLAN_MAC);
662 if (rc)
663 goto op_err;
664 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
665 false,
666 BNX2X_VF_FILTER_VLAN);
667 if (rc)
668 goto op_err;
669 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
670 false,
671 BNX2X_VF_FILTER_MAC);
672 if (rc)
673 goto op_err;
674 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
675 if (rc)
676 goto op_err;
677 }
678 }
679
680 /* Destroy queue */
681 rc = bnx2x_vf_queue_destroy(bp, vf, qid);
682 if (rc)
683 goto op_err;
684 return rc;
685 op_err:
686 BNX2X_ERR("vf[%d:%d] error: rc %d\n",
687 vf->abs_vfid, qid, rc);
688 return rc;
689 }
690
691 /* VF enable primitives
692 * when pretend is required the caller is responsible
693 * for calling pretend prior to calling these routines
694 */
695
696 /* internal vf enable - until vf is enabled internally all transactions
697 * are blocked. This routine should always be called last with pretend.
698 */
bnx2x_vf_enable_internal(struct bnx2x * bp,u8 enable)699 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
700 {
701 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
702 }
703
704 /* clears vf error in all semi blocks */
bnx2x_vf_semi_clear_err(struct bnx2x * bp,u8 abs_vfid)705 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
706 {
707 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
708 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
709 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
710 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
711 }
712
bnx2x_vf_pglue_clear_err(struct bnx2x * bp,u8 abs_vfid)713 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
714 {
715 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
716 u32 was_err_reg = 0;
717
718 switch (was_err_group) {
719 case 0:
720 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
721 break;
722 case 1:
723 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
724 break;
725 case 2:
726 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
727 break;
728 case 3:
729 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
730 break;
731 }
732 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
733 }
734
bnx2x_vf_igu_reset(struct bnx2x * bp,struct bnx2x_virtf * vf)735 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
736 {
737 int i;
738 u32 val;
739
740 /* Set VF masks and configuration - pretend */
741 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
742
743 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
744 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
745 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
746 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
747 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
748 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
749
750 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
751 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
752 val &= ~IGU_VF_CONF_PARENT_MASK;
753 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
754 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
755
756 DP(BNX2X_MSG_IOV,
757 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
758 vf->abs_vfid, val);
759
760 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
761
762 /* iterate over all queues, clear sb consumer */
763 for (i = 0; i < vf_sb_count(vf); i++) {
764 u8 igu_sb_id = vf_igu_sb(vf, i);
765
766 /* zero prod memory */
767 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
768
769 /* clear sb state machine */
770 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
771 false /* VF */);
772
773 /* disable + update */
774 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
775 IGU_INT_DISABLE, 1);
776 }
777 }
778
bnx2x_vf_enable_access(struct bnx2x * bp,u8 abs_vfid)779 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
780 {
781 /* set the VF-PF association in the FW */
782 storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
783 storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
784
785 /* clear vf errors*/
786 bnx2x_vf_semi_clear_err(bp, abs_vfid);
787 bnx2x_vf_pglue_clear_err(bp, abs_vfid);
788
789 /* internal vf-enable - pretend */
790 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
791 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
792 bnx2x_vf_enable_internal(bp, true);
793 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
794 }
795
bnx2x_vf_enable_traffic(struct bnx2x * bp,struct bnx2x_virtf * vf)796 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
797 {
798 /* Reset vf in IGU interrupts are still disabled */
799 bnx2x_vf_igu_reset(bp, vf);
800
801 /* pretend to enable the vf with the PBF */
802 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
803 REG_WR(bp, PBF_REG_DISABLE_VF, 0);
804 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
805 }
806
bnx2x_vf_is_pcie_pending(struct bnx2x * bp,u8 abs_vfid)807 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
808 {
809 struct pci_dev *dev;
810 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
811
812 if (!vf)
813 return false;
814
815 dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
816 if (dev)
817 return bnx2x_is_pcie_pending(dev);
818 return false;
819 }
820
bnx2x_vf_flr_clnup_epilog(struct bnx2x * bp,u8 abs_vfid)821 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
822 {
823 /* Verify no pending pci transactions */
824 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
825 BNX2X_ERR("PCIE Transactions still pending\n");
826
827 return 0;
828 }
829
830 /* must be called after the number of PF queues and the number of VFs are
831 * both known
832 */
833 static void
bnx2x_iov_static_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)834 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
835 {
836 struct vf_pf_resc_request *resc = &vf->alloc_resc;
837
838 /* will be set only during VF-ACQUIRE */
839 resc->num_rxqs = 0;
840 resc->num_txqs = 0;
841
842 resc->num_mac_filters = VF_MAC_CREDIT_CNT;
843 resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
844
845 /* no real limitation */
846 resc->num_mc_filters = 0;
847
848 /* num_sbs already set */
849 resc->num_sbs = vf->sb_count;
850 }
851
852 /* FLR routines: */
bnx2x_vf_free_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)853 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
854 {
855 /* reset the state variables */
856 bnx2x_iov_static_resc(bp, vf);
857 vf->state = VF_FREE;
858 }
859
bnx2x_vf_flr_clnup_hw(struct bnx2x * bp,struct bnx2x_virtf * vf)860 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
861 {
862 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
863
864 /* DQ usage counter */
865 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
866 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
867 "DQ VF usage counter timed out",
868 poll_cnt);
869 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
870
871 /* FW cleanup command - poll for the results */
872 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
873 poll_cnt))
874 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
875
876 /* verify TX hw is flushed */
877 bnx2x_tx_hw_flushed(bp, poll_cnt);
878 }
879
bnx2x_vf_flr(struct bnx2x * bp,struct bnx2x_virtf * vf)880 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
881 {
882 int rc, i;
883
884 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
885
886 /* the cleanup operations are valid if and only if the VF
887 * was first acquired.
888 */
889 for (i = 0; i < vf_rxq_count(vf); i++) {
890 rc = bnx2x_vf_queue_flr(bp, vf, i);
891 if (rc)
892 goto out;
893 }
894
895 /* remove multicasts */
896 bnx2x_vf_mcast(bp, vf, NULL, 0, true);
897
898 /* dispatch final cleanup and wait for HW queues to flush */
899 bnx2x_vf_flr_clnup_hw(bp, vf);
900
901 /* release VF resources */
902 bnx2x_vf_free_resc(bp, vf);
903
904 vf->malicious = false;
905
906 /* re-open the mailbox */
907 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
908 return;
909 out:
910 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
911 vf->abs_vfid, i, rc);
912 }
913
bnx2x_vf_flr_clnup(struct bnx2x * bp)914 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
915 {
916 struct bnx2x_virtf *vf;
917 int i;
918
919 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
920 /* VF should be RESET & in FLR cleanup states */
921 if (bnx2x_vf(bp, i, state) != VF_RESET ||
922 !bnx2x_vf(bp, i, flr_clnup_stage))
923 continue;
924
925 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
926 i, BNX2X_NR_VIRTFN(bp));
927
928 vf = BP_VF(bp, i);
929
930 /* lock the vf pf channel */
931 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
932
933 /* invoke the VF FLR SM */
934 bnx2x_vf_flr(bp, vf);
935
936 /* mark the VF to be ACKED and continue */
937 vf->flr_clnup_stage = false;
938 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
939 }
940
941 /* Acknowledge the handled VFs.
942 * we are acknowledge all the vfs which an flr was requested for, even
943 * if amongst them there are such that we never opened, since the mcp
944 * will interrupt us immediately again if we only ack some of the bits,
945 * resulting in an endless loop. This can happen for example in KVM
946 * where an 'all ones' flr request is sometimes given by hyper visor
947 */
948 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
949 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
950 for (i = 0; i < FLRD_VFS_DWORDS; i++)
951 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
952 bp->vfdb->flrd_vfs[i]);
953
954 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
955
956 /* clear the acked bits - better yet if the MCP implemented
957 * write to clear semantics
958 */
959 for (i = 0; i < FLRD_VFS_DWORDS; i++)
960 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
961 }
962
bnx2x_vf_handle_flr_event(struct bnx2x * bp)963 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
964 {
965 int i;
966
967 /* Read FLR'd VFs */
968 for (i = 0; i < FLRD_VFS_DWORDS; i++)
969 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
970
971 DP(BNX2X_MSG_MCP,
972 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
973 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
974
975 for_each_vf(bp, i) {
976 struct bnx2x_virtf *vf = BP_VF(bp, i);
977 u32 reset = 0;
978
979 if (vf->abs_vfid < 32)
980 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
981 else
982 reset = bp->vfdb->flrd_vfs[1] &
983 (1 << (vf->abs_vfid - 32));
984
985 if (reset) {
986 /* set as reset and ready for cleanup */
987 vf->state = VF_RESET;
988 vf->flr_clnup_stage = true;
989
990 DP(BNX2X_MSG_IOV,
991 "Initiating Final cleanup for VF %d\n",
992 vf->abs_vfid);
993 }
994 }
995
996 /* do the FLR cleanup for all marked VFs*/
997 bnx2x_vf_flr_clnup(bp);
998 }
999
1000 /* IOV global initialization routines */
bnx2x_iov_init_dq(struct bnx2x * bp)1001 void bnx2x_iov_init_dq(struct bnx2x *bp)
1002 {
1003 if (!IS_SRIOV(bp))
1004 return;
1005
1006 /* Set the DQ such that the CID reflect the abs_vfid */
1007 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1008 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1009
1010 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1011 * the PF L2 queues
1012 */
1013 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1014
1015 /* The VF window size is the log2 of the max number of CIDs per VF */
1016 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1017
1018 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match
1019 * the Pf doorbell size although the 2 are independent.
1020 */
1021 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1022
1023 /* No security checks for now -
1024 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1025 * CID range 0 - 0x1ffff
1026 */
1027 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1028 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1029 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1030 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1031
1032 /* set the VF doorbell threshold. This threshold represents the amount
1033 * of doorbells allowed in the main DORQ fifo for a specific VF.
1034 */
1035 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1036 }
1037
bnx2x_iov_init_dmae(struct bnx2x * bp)1038 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1039 {
1040 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1041 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1042 }
1043
bnx2x_vf_bus(struct bnx2x * bp,int vfid)1044 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1045 {
1046 struct pci_dev *dev = bp->pdev;
1047 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1048
1049 return dev->bus->number + ((dev->devfn + iov->offset +
1050 iov->stride * vfid) >> 8);
1051 }
1052
bnx2x_vf_devfn(struct bnx2x * bp,int vfid)1053 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1054 {
1055 struct pci_dev *dev = bp->pdev;
1056 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1057
1058 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1059 }
1060
bnx2x_vf_set_bars(struct bnx2x * bp,struct bnx2x_virtf * vf)1061 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1062 {
1063 int i, n;
1064 struct pci_dev *dev = bp->pdev;
1065 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1066
1067 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1068 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1069 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1070
1071 size /= iov->total;
1072 vf->bars[n].bar = start + size * vf->abs_vfid;
1073 vf->bars[n].size = size;
1074 }
1075 }
1076
bnx2x_ari_enabled(struct pci_dev * dev)1077 static int bnx2x_ari_enabled(struct pci_dev *dev)
1078 {
1079 return dev->bus->self && dev->bus->self->ari_enabled;
1080 }
1081
1082 static int
bnx2x_get_vf_igu_cam_info(struct bnx2x * bp)1083 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1084 {
1085 int sb_id;
1086 u32 val;
1087 u8 fid, current_pf = 0;
1088
1089 /* IGU in normal mode - read CAM */
1090 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1091 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1092 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1093 continue;
1094 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1095 if (fid & IGU_FID_ENCODE_IS_PF)
1096 current_pf = fid & IGU_FID_PF_NUM_MASK;
1097 else if (current_pf == BP_FUNC(bp))
1098 bnx2x_vf_set_igu_info(bp, sb_id,
1099 (fid & IGU_FID_VF_NUM_MASK));
1100 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1101 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1102 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1103 (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1104 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1105 }
1106 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1107 return BP_VFDB(bp)->vf_sbs_pool;
1108 }
1109
__bnx2x_iov_free_vfdb(struct bnx2x * bp)1110 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1111 {
1112 if (bp->vfdb) {
1113 kfree(bp->vfdb->vfqs);
1114 kfree(bp->vfdb->vfs);
1115 kfree(bp->vfdb);
1116 }
1117 bp->vfdb = NULL;
1118 }
1119
bnx2x_sriov_pci_cfg_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1120 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1121 {
1122 int pos;
1123 struct pci_dev *dev = bp->pdev;
1124
1125 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1126 if (!pos) {
1127 BNX2X_ERR("failed to find SRIOV capability in device\n");
1128 return -ENODEV;
1129 }
1130
1131 iov->pos = pos;
1132 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1133 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1134 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1135 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1136 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1137 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1138 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1139 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1140 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1141
1142 return 0;
1143 }
1144
bnx2x_sriov_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1145 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1146 {
1147 u32 val;
1148
1149 /* read the SRIOV capability structure
1150 * The fields can be read via configuration read or
1151 * directly from the device (starting at offset PCICFG_OFFSET)
1152 */
1153 if (bnx2x_sriov_pci_cfg_info(bp, iov))
1154 return -ENODEV;
1155
1156 /* get the number of SRIOV bars */
1157 iov->nres = 0;
1158
1159 /* read the first_vfid */
1160 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1161 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1162 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1163
1164 DP(BNX2X_MSG_IOV,
1165 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1166 BP_FUNC(bp),
1167 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1168 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1169
1170 return 0;
1171 }
1172
1173 /* must be called after PF bars are mapped */
bnx2x_iov_init_one(struct bnx2x * bp,int int_mode_param,int num_vfs_param)1174 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1175 int num_vfs_param)
1176 {
1177 int err, i;
1178 struct bnx2x_sriov *iov;
1179 struct pci_dev *dev = bp->pdev;
1180
1181 bp->vfdb = NULL;
1182
1183 /* verify is pf */
1184 if (IS_VF(bp))
1185 return 0;
1186
1187 /* verify sriov capability is present in configuration space */
1188 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1189 return 0;
1190
1191 /* verify chip revision */
1192 if (CHIP_IS_E1x(bp))
1193 return 0;
1194
1195 /* check if SRIOV support is turned off */
1196 if (!num_vfs_param)
1197 return 0;
1198
1199 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1200 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1201 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1202 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1203 return 0;
1204 }
1205
1206 /* SRIOV can be enabled only with MSIX */
1207 if (int_mode_param == BNX2X_INT_MODE_MSI ||
1208 int_mode_param == BNX2X_INT_MODE_INTX) {
1209 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1210 return 0;
1211 }
1212
1213 err = -EIO;
1214 /* verify ari is enabled */
1215 if (!bnx2x_ari_enabled(bp->pdev)) {
1216 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1217 return 0;
1218 }
1219
1220 /* verify igu is in normal mode */
1221 if (CHIP_INT_MODE_IS_BC(bp)) {
1222 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n");
1223 return 0;
1224 }
1225
1226 /* allocate the vfs database */
1227 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1228 if (!bp->vfdb) {
1229 BNX2X_ERR("failed to allocate vf database\n");
1230 err = -ENOMEM;
1231 goto failed;
1232 }
1233
1234 /* get the sriov info - Linux already collected all the pertinent
1235 * information, however the sriov structure is for the private use
1236 * of the pci module. Also we want this information regardless
1237 * of the hyper-visor.
1238 */
1239 iov = &(bp->vfdb->sriov);
1240 err = bnx2x_sriov_info(bp, iov);
1241 if (err)
1242 goto failed;
1243
1244 /* SR-IOV capability was enabled but there are no VFs*/
1245 if (iov->total == 0)
1246 goto failed;
1247
1248 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1249
1250 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1251 num_vfs_param, iov->nr_virtfn);
1252
1253 /* allocate the vf array */
1254 bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1255 BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1256 if (!bp->vfdb->vfs) {
1257 BNX2X_ERR("failed to allocate vf array\n");
1258 err = -ENOMEM;
1259 goto failed;
1260 }
1261
1262 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1263 for_each_vf(bp, i) {
1264 bnx2x_vf(bp, i, index) = i;
1265 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1266 bnx2x_vf(bp, i, state) = VF_FREE;
1267 mutex_init(&bnx2x_vf(bp, i, op_mutex));
1268 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1269 }
1270
1271 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1272 if (!bnx2x_get_vf_igu_cam_info(bp)) {
1273 BNX2X_ERR("No entries in IGU CAM for vfs\n");
1274 err = -EINVAL;
1275 goto failed;
1276 }
1277
1278 /* allocate the queue arrays for all VFs */
1279 bp->vfdb->vfqs = kzalloc(
1280 BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1281 GFP_KERNEL);
1282
1283 if (!bp->vfdb->vfqs) {
1284 BNX2X_ERR("failed to allocate vf queue array\n");
1285 err = -ENOMEM;
1286 goto failed;
1287 }
1288
1289 /* Prepare the VFs event synchronization mechanism */
1290 mutex_init(&bp->vfdb->event_mutex);
1291
1292 mutex_init(&bp->vfdb->bulletin_mutex);
1293
1294 if (SHMEM2_HAS(bp, sriov_switch_mode))
1295 SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1296
1297 return 0;
1298 failed:
1299 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1300 __bnx2x_iov_free_vfdb(bp);
1301 return err;
1302 }
1303
bnx2x_iov_remove_one(struct bnx2x * bp)1304 void bnx2x_iov_remove_one(struct bnx2x *bp)
1305 {
1306 int vf_idx;
1307
1308 /* if SRIOV is not enabled there's nothing to do */
1309 if (!IS_SRIOV(bp))
1310 return;
1311
1312 bnx2x_disable_sriov(bp);
1313
1314 /* disable access to all VFs */
1315 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1316 bnx2x_pretend_func(bp,
1317 HW_VF_HANDLE(bp,
1318 bp->vfdb->sriov.first_vf_in_pf +
1319 vf_idx));
1320 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1321 bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1322 bnx2x_vf_enable_internal(bp, 0);
1323 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1324 }
1325
1326 /* free vf database */
1327 __bnx2x_iov_free_vfdb(bp);
1328 }
1329
bnx2x_iov_free_mem(struct bnx2x * bp)1330 void bnx2x_iov_free_mem(struct bnx2x *bp)
1331 {
1332 int i;
1333
1334 if (!IS_SRIOV(bp))
1335 return;
1336
1337 /* free vfs hw contexts */
1338 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1339 struct hw_dma *cxt = &bp->vfdb->context[i];
1340 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1341 }
1342
1343 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1344 BP_VFDB(bp)->sp_dma.mapping,
1345 BP_VFDB(bp)->sp_dma.size);
1346
1347 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1348 BP_VF_MBX_DMA(bp)->mapping,
1349 BP_VF_MBX_DMA(bp)->size);
1350
1351 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1352 BP_VF_BULLETIN_DMA(bp)->mapping,
1353 BP_VF_BULLETIN_DMA(bp)->size);
1354 }
1355
bnx2x_iov_alloc_mem(struct bnx2x * bp)1356 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1357 {
1358 size_t tot_size;
1359 int i, rc = 0;
1360
1361 if (!IS_SRIOV(bp))
1362 return rc;
1363
1364 /* allocate vfs hw contexts */
1365 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1366 BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1367
1368 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1369 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1370 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1371
1372 if (cxt->size) {
1373 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1374 if (!cxt->addr)
1375 goto alloc_mem_err;
1376 } else {
1377 cxt->addr = NULL;
1378 cxt->mapping = 0;
1379 }
1380 tot_size -= cxt->size;
1381 }
1382
1383 /* allocate vfs ramrods dma memory - client_init and set_mac */
1384 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1385 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1386 tot_size);
1387 if (!BP_VFDB(bp)->sp_dma.addr)
1388 goto alloc_mem_err;
1389 BP_VFDB(bp)->sp_dma.size = tot_size;
1390
1391 /* allocate mailboxes */
1392 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1393 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1394 tot_size);
1395 if (!BP_VF_MBX_DMA(bp)->addr)
1396 goto alloc_mem_err;
1397
1398 BP_VF_MBX_DMA(bp)->size = tot_size;
1399
1400 /* allocate local bulletin boards */
1401 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1402 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1403 tot_size);
1404 if (!BP_VF_BULLETIN_DMA(bp)->addr)
1405 goto alloc_mem_err;
1406
1407 BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1408
1409 return 0;
1410
1411 alloc_mem_err:
1412 return -ENOMEM;
1413 }
1414
bnx2x_vfq_init(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q)1415 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1416 struct bnx2x_vf_queue *q)
1417 {
1418 u8 cl_id = vfq_cl_id(vf, q);
1419 u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1420 unsigned long q_type = 0;
1421
1422 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1423 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1424
1425 /* Queue State object */
1426 bnx2x_init_queue_obj(bp, &q->sp_obj,
1427 cl_id, &q->cid, 1, func_id,
1428 bnx2x_vf_sp(bp, vf, q_data),
1429 bnx2x_vf_sp_map(bp, vf, q_data),
1430 q_type);
1431
1432 /* sp indication is set only when vlan/mac/etc. are initialized */
1433 q->sp_initialized = false;
1434
1435 DP(BNX2X_MSG_IOV,
1436 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1437 vf->abs_vfid, q->sp_obj.func_id, q->cid);
1438 }
1439
bnx2x_max_speed_cap(struct bnx2x * bp)1440 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1441 {
1442 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1443
1444 if (supported &
1445 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1446 return 20000;
1447
1448 return 10000; /* assume lowest supported speed is 10G */
1449 }
1450
bnx2x_iov_link_update_vf(struct bnx2x * bp,int idx)1451 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1452 {
1453 struct bnx2x_link_report_data *state = &bp->last_reported_link;
1454 struct pf_vf_bulletin_content *bulletin;
1455 struct bnx2x_virtf *vf;
1456 bool update = true;
1457 int rc = 0;
1458
1459 /* sanity and init */
1460 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1461 if (rc)
1462 return rc;
1463
1464 mutex_lock(&bp->vfdb->bulletin_mutex);
1465
1466 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1467 bulletin->valid_bitmap |= 1 << LINK_VALID;
1468
1469 bulletin->link_speed = state->line_speed;
1470 bulletin->link_flags = 0;
1471 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1472 &state->link_report_flags))
1473 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1474 if (test_bit(BNX2X_LINK_REPORT_FD,
1475 &state->link_report_flags))
1476 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1477 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1478 &state->link_report_flags))
1479 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1480 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1481 &state->link_report_flags))
1482 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1483 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1484 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1485 bulletin->valid_bitmap |= 1 << LINK_VALID;
1486 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1487 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1488 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1489 bulletin->valid_bitmap |= 1 << LINK_VALID;
1490 bulletin->link_speed = bnx2x_max_speed_cap(bp);
1491 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1492 } else {
1493 update = false;
1494 }
1495
1496 if (update) {
1497 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1498 "vf %d mode %u speed %d flags %x\n", idx,
1499 vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1500
1501 /* Post update on VF's bulletin board */
1502 rc = bnx2x_post_vf_bulletin(bp, idx);
1503 if (rc) {
1504 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1505 goto out;
1506 }
1507 }
1508
1509 out:
1510 mutex_unlock(&bp->vfdb->bulletin_mutex);
1511 return rc;
1512 }
1513
bnx2x_set_vf_link_state(struct net_device * dev,int idx,int link_state)1514 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1515 {
1516 struct bnx2x *bp = netdev_priv(dev);
1517 struct bnx2x_virtf *vf = BP_VF(bp, idx);
1518
1519 if (!vf)
1520 return -EINVAL;
1521
1522 if (vf->link_cfg == link_state)
1523 return 0; /* nothing todo */
1524
1525 vf->link_cfg = link_state;
1526
1527 return bnx2x_iov_link_update_vf(bp, idx);
1528 }
1529
bnx2x_iov_link_update(struct bnx2x * bp)1530 void bnx2x_iov_link_update(struct bnx2x *bp)
1531 {
1532 int vfid;
1533
1534 if (!IS_SRIOV(bp))
1535 return;
1536
1537 for_each_vf(bp, vfid)
1538 bnx2x_iov_link_update_vf(bp, vfid);
1539 }
1540
1541 /* called by bnx2x_nic_load */
bnx2x_iov_nic_init(struct bnx2x * bp)1542 int bnx2x_iov_nic_init(struct bnx2x *bp)
1543 {
1544 int vfid;
1545
1546 if (!IS_SRIOV(bp)) {
1547 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1548 return 0;
1549 }
1550
1551 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1552
1553 /* let FLR complete ... */
1554 msleep(100);
1555
1556 /* initialize vf database */
1557 for_each_vf(bp, vfid) {
1558 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1559
1560 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1561 BNX2X_CIDS_PER_VF;
1562
1563 union cdu_context *base_cxt = (union cdu_context *)
1564 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1565 (base_vf_cid & (ILT_PAGE_CIDS-1));
1566
1567 DP(BNX2X_MSG_IOV,
1568 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1569 vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1570 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1571
1572 /* init statically provisioned resources */
1573 bnx2x_iov_static_resc(bp, vf);
1574
1575 /* queues are initialized during VF-ACQUIRE */
1576 vf->filter_state = 0;
1577 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1578
1579 bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1580 vf_vlan_rules_cnt(vf));
1581 bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1582 vf_mac_rules_cnt(vf));
1583
1584 /* init mcast object - This object will be re-initialized
1585 * during VF-ACQUIRE with the proper cl_id and cid.
1586 * It needs to be initialized here so that it can be safely
1587 * handled by a subsequent FLR flow.
1588 */
1589 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1590 0xFF, 0xFF, 0xFF,
1591 bnx2x_vf_sp(bp, vf, mcast_rdata),
1592 bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1593 BNX2X_FILTER_MCAST_PENDING,
1594 &vf->filter_state,
1595 BNX2X_OBJ_TYPE_RX_TX);
1596
1597 /* set the mailbox message addresses */
1598 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1599 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1600 MBX_MSG_ALIGNED_SIZE);
1601
1602 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1603 vfid * MBX_MSG_ALIGNED_SIZE;
1604
1605 /* Enable vf mailbox */
1606 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1607 }
1608
1609 /* Final VF init */
1610 for_each_vf(bp, vfid) {
1611 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1612
1613 /* fill in the BDF and bars */
1614 vf->bus = bnx2x_vf_bus(bp, vfid);
1615 vf->devfn = bnx2x_vf_devfn(bp, vfid);
1616 bnx2x_vf_set_bars(bp, vf);
1617
1618 DP(BNX2X_MSG_IOV,
1619 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1620 vf->abs_vfid, vf->bus, vf->devfn,
1621 (unsigned)vf->bars[0].bar, vf->bars[0].size,
1622 (unsigned)vf->bars[1].bar, vf->bars[1].size,
1623 (unsigned)vf->bars[2].bar, vf->bars[2].size);
1624 }
1625
1626 return 0;
1627 }
1628
1629 /* called by bnx2x_chip_cleanup */
bnx2x_iov_chip_cleanup(struct bnx2x * bp)1630 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1631 {
1632 int i;
1633
1634 if (!IS_SRIOV(bp))
1635 return 0;
1636
1637 /* release all the VFs */
1638 for_each_vf(bp, i)
1639 bnx2x_vf_release(bp, BP_VF(bp, i));
1640
1641 return 0;
1642 }
1643
1644 /* called by bnx2x_init_hw_func, returns the next ilt line */
bnx2x_iov_init_ilt(struct bnx2x * bp,u16 line)1645 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1646 {
1647 int i;
1648 struct bnx2x_ilt *ilt = BP_ILT(bp);
1649
1650 if (!IS_SRIOV(bp))
1651 return line;
1652
1653 /* set vfs ilt lines */
1654 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1655 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1656
1657 ilt->lines[line+i].page = hw_cxt->addr;
1658 ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1659 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1660 }
1661 return line + i;
1662 }
1663
bnx2x_iov_is_vf_cid(struct bnx2x * bp,u16 cid)1664 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1665 {
1666 return ((cid >= BNX2X_FIRST_VF_CID) &&
1667 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1668 }
1669
1670 static
bnx2x_vf_handle_classification_eqe(struct bnx2x * bp,struct bnx2x_vf_queue * vfq,union event_ring_elem * elem)1671 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1672 struct bnx2x_vf_queue *vfq,
1673 union event_ring_elem *elem)
1674 {
1675 unsigned long ramrod_flags = 0;
1676 int rc = 0;
1677 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
1678
1679 /* Always push next commands out, don't wait here */
1680 set_bit(RAMROD_CONT, &ramrod_flags);
1681
1682 switch (echo >> BNX2X_SWCID_SHIFT) {
1683 case BNX2X_FILTER_MAC_PENDING:
1684 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1685 &ramrod_flags);
1686 break;
1687 case BNX2X_FILTER_VLAN_PENDING:
1688 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1689 &ramrod_flags);
1690 break;
1691 default:
1692 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
1693 return;
1694 }
1695 if (rc < 0)
1696 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1697 else if (rc > 0)
1698 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1699 }
1700
1701 static
bnx2x_vf_handle_mcast_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1702 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1703 struct bnx2x_virtf *vf)
1704 {
1705 struct bnx2x_mcast_ramrod_params rparam = {NULL};
1706 int rc;
1707
1708 rparam.mcast_obj = &vf->mcast_obj;
1709 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1710
1711 /* If there are pending mcast commands - send them */
1712 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1713 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1714 if (rc < 0)
1715 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1716 rc);
1717 }
1718 }
1719
1720 static
bnx2x_vf_handle_filters_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1721 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1722 struct bnx2x_virtf *vf)
1723 {
1724 smp_mb__before_atomic();
1725 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1726 smp_mb__after_atomic();
1727 }
1728
bnx2x_vf_handle_rss_update_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1729 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1730 struct bnx2x_virtf *vf)
1731 {
1732 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1733 }
1734
bnx2x_iov_eq_sp_event(struct bnx2x * bp,union event_ring_elem * elem)1735 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1736 {
1737 struct bnx2x_virtf *vf;
1738 int qidx = 0, abs_vfid;
1739 u8 opcode;
1740 u16 cid = 0xffff;
1741
1742 if (!IS_SRIOV(bp))
1743 return 1;
1744
1745 /* first get the cid - the only events we handle here are cfc-delete
1746 * and set-mac completion
1747 */
1748 opcode = elem->message.opcode;
1749
1750 switch (opcode) {
1751 case EVENT_RING_OPCODE_CFC_DEL:
1752 cid = SW_CID(elem->message.data.cfc_del_event.cid);
1753 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1754 break;
1755 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1756 case EVENT_RING_OPCODE_MULTICAST_RULES:
1757 case EVENT_RING_OPCODE_FILTERS_RULES:
1758 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1759 cid = SW_CID(elem->message.data.eth_event.echo);
1760 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1761 break;
1762 case EVENT_RING_OPCODE_VF_FLR:
1763 abs_vfid = elem->message.data.vf_flr_event.vf_id;
1764 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1765 abs_vfid);
1766 goto get_vf;
1767 case EVENT_RING_OPCODE_MALICIOUS_VF:
1768 abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1769 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1770 abs_vfid,
1771 elem->message.data.malicious_vf_event.err_id);
1772 goto get_vf;
1773 default:
1774 return 1;
1775 }
1776
1777 /* check if the cid is the VF range */
1778 if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1779 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1780 return 1;
1781 }
1782
1783 /* extract vf and rxq index from vf_cid - relies on the following:
1784 * 1. vfid on cid reflects the true abs_vfid
1785 * 2. The max number of VFs (per path) is 64
1786 */
1787 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1788 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1789 get_vf:
1790 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1791
1792 if (!vf) {
1793 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1794 cid, abs_vfid);
1795 return 0;
1796 }
1797
1798 switch (opcode) {
1799 case EVENT_RING_OPCODE_CFC_DEL:
1800 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1801 vf->abs_vfid, qidx);
1802 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1803 &vfq_get(vf,
1804 qidx)->sp_obj,
1805 BNX2X_Q_CMD_CFC_DEL);
1806 break;
1807 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1808 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1809 vf->abs_vfid, qidx);
1810 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1811 break;
1812 case EVENT_RING_OPCODE_MULTICAST_RULES:
1813 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1814 vf->abs_vfid, qidx);
1815 bnx2x_vf_handle_mcast_eqe(bp, vf);
1816 break;
1817 case EVENT_RING_OPCODE_FILTERS_RULES:
1818 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1819 vf->abs_vfid, qidx);
1820 bnx2x_vf_handle_filters_eqe(bp, vf);
1821 break;
1822 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1823 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1824 vf->abs_vfid, qidx);
1825 bnx2x_vf_handle_rss_update_eqe(bp, vf);
1826 case EVENT_RING_OPCODE_VF_FLR:
1827 /* Do nothing for now */
1828 return 0;
1829 case EVENT_RING_OPCODE_MALICIOUS_VF:
1830 vf->malicious = true;
1831 return 0;
1832 }
1833
1834 return 0;
1835 }
1836
bnx2x_vf_by_cid(struct bnx2x * bp,int vf_cid)1837 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1838 {
1839 /* extract the vf from vf_cid - relies on the following:
1840 * 1. vfid on cid reflects the true abs_vfid
1841 * 2. The max number of VFs (per path) is 64
1842 */
1843 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1844 return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1845 }
1846
bnx2x_iov_set_queue_sp_obj(struct bnx2x * bp,int vf_cid,struct bnx2x_queue_sp_obj ** q_obj)1847 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1848 struct bnx2x_queue_sp_obj **q_obj)
1849 {
1850 struct bnx2x_virtf *vf;
1851
1852 if (!IS_SRIOV(bp))
1853 return;
1854
1855 vf = bnx2x_vf_by_cid(bp, vf_cid);
1856
1857 if (vf) {
1858 /* extract queue index from vf_cid - relies on the following:
1859 * 1. vfid on cid reflects the true abs_vfid
1860 * 2. The max number of VFs (per path) is 64
1861 */
1862 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1863 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1864 } else {
1865 BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1866 }
1867 }
1868
bnx2x_iov_adjust_stats_req(struct bnx2x * bp)1869 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1870 {
1871 int i;
1872 int first_queue_query_index, num_queues_req;
1873 dma_addr_t cur_data_offset;
1874 struct stats_query_entry *cur_query_entry;
1875 u8 stats_count = 0;
1876 bool is_fcoe = false;
1877
1878 if (!IS_SRIOV(bp))
1879 return;
1880
1881 if (!NO_FCOE(bp))
1882 is_fcoe = true;
1883
1884 /* fcoe adds one global request and one queue request */
1885 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1886 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1887 (is_fcoe ? 0 : 1);
1888
1889 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1890 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1891 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1892 first_queue_query_index + num_queues_req);
1893
1894 cur_data_offset = bp->fw_stats_data_mapping +
1895 offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1896 num_queues_req * sizeof(struct per_queue_stats);
1897
1898 cur_query_entry = &bp->fw_stats_req->
1899 query[first_queue_query_index + num_queues_req];
1900
1901 for_each_vf(bp, i) {
1902 int j;
1903 struct bnx2x_virtf *vf = BP_VF(bp, i);
1904
1905 if (vf->state != VF_ENABLED) {
1906 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1907 "vf %d not enabled so no stats for it\n",
1908 vf->abs_vfid);
1909 continue;
1910 }
1911
1912 if (vf->malicious) {
1913 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1914 "vf %d malicious so no stats for it\n",
1915 vf->abs_vfid);
1916 continue;
1917 }
1918
1919 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1920 "add addresses for vf %d\n", vf->abs_vfid);
1921 for_each_vfq(vf, j) {
1922 struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1923
1924 dma_addr_t q_stats_addr =
1925 vf->fw_stat_map + j * vf->stats_stride;
1926
1927 /* collect stats fro active queues only */
1928 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1929 BNX2X_Q_LOGICAL_STATE_STOPPED)
1930 continue;
1931
1932 /* create stats query entry for this queue */
1933 cur_query_entry->kind = STATS_TYPE_QUEUE;
1934 cur_query_entry->index = vfq_stat_id(vf, rxq);
1935 cur_query_entry->funcID =
1936 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1937 cur_query_entry->address.hi =
1938 cpu_to_le32(U64_HI(q_stats_addr));
1939 cur_query_entry->address.lo =
1940 cpu_to_le32(U64_LO(q_stats_addr));
1941 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1942 "added address %x %x for vf %d queue %d client %d\n",
1943 cur_query_entry->address.hi,
1944 cur_query_entry->address.lo,
1945 cur_query_entry->funcID,
1946 j, cur_query_entry->index);
1947 cur_query_entry++;
1948 cur_data_offset += sizeof(struct per_queue_stats);
1949 stats_count++;
1950
1951 /* all stats are coalesced to the leading queue */
1952 if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1953 break;
1954 }
1955 }
1956 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1957 }
1958
1959 /* VF API helpers */
bnx2x_vf_qtbl_set_q(struct bnx2x * bp,u8 abs_vfid,u8 qid,u8 enable)1960 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1961 u8 enable)
1962 {
1963 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1964 u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1965
1966 REG_WR(bp, reg, val);
1967 }
1968
bnx2x_vf_clr_qtbl(struct bnx2x * bp,struct bnx2x_virtf * vf)1969 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1970 {
1971 int i;
1972
1973 for_each_vfq(vf, i)
1974 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1975 vfq_qzone_id(vf, vfq_get(vf, i)), false);
1976 }
1977
bnx2x_vf_igu_disable(struct bnx2x * bp,struct bnx2x_virtf * vf)1978 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1979 {
1980 u32 val;
1981
1982 /* clear the VF configuration - pretend */
1983 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1984 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1985 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1986 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1987 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1988 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1989 }
1990
bnx2x_vf_max_queue_cnt(struct bnx2x * bp,struct bnx2x_virtf * vf)1991 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1992 {
1993 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1994 BNX2X_VF_MAX_QUEUES);
1995 }
1996
1997 static
bnx2x_vf_chk_avail_resc(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * req_resc)1998 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1999 struct vf_pf_resc_request *req_resc)
2000 {
2001 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2002 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
2003
2004 return ((req_resc->num_rxqs <= rxq_cnt) &&
2005 (req_resc->num_txqs <= txq_cnt) &&
2006 (req_resc->num_sbs <= vf_sb_count(vf)) &&
2007 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
2008 (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
2009 }
2010
2011 /* CORE VF API */
bnx2x_vf_acquire(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * resc)2012 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2013 struct vf_pf_resc_request *resc)
2014 {
2015 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2016 BNX2X_CIDS_PER_VF;
2017
2018 union cdu_context *base_cxt = (union cdu_context *)
2019 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2020 (base_vf_cid & (ILT_PAGE_CIDS-1));
2021 int i;
2022
2023 /* if state is 'acquired' the VF was not released or FLR'd, in
2024 * this case the returned resources match the acquired already
2025 * acquired resources. Verify that the requested numbers do
2026 * not exceed the already acquired numbers.
2027 */
2028 if (vf->state == VF_ACQUIRED) {
2029 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2030 vf->abs_vfid);
2031
2032 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2033 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2034 vf->abs_vfid);
2035 return -EINVAL;
2036 }
2037 return 0;
2038 }
2039
2040 /* Otherwise vf state must be 'free' or 'reset' */
2041 if (vf->state != VF_FREE && vf->state != VF_RESET) {
2042 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2043 vf->abs_vfid, vf->state);
2044 return -EINVAL;
2045 }
2046
2047 /* static allocation:
2048 * the global maximum number are fixed per VF. Fail the request if
2049 * requested number exceed these globals
2050 */
2051 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2052 DP(BNX2X_MSG_IOV,
2053 "cannot fulfill vf resource request. Placing maximal available values in response\n");
2054 /* set the max resource in the vf */
2055 return -ENOMEM;
2056 }
2057
2058 /* Set resources counters - 0 request means max available */
2059 vf_sb_count(vf) = resc->num_sbs;
2060 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2061 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2062
2063 DP(BNX2X_MSG_IOV,
2064 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2065 vf_sb_count(vf), vf_rxq_count(vf),
2066 vf_txq_count(vf), vf_mac_rules_cnt(vf),
2067 vf_vlan_rules_cnt(vf));
2068
2069 /* Initialize the queues */
2070 if (!vf->vfqs) {
2071 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2072 return -EINVAL;
2073 }
2074
2075 for_each_vfq(vf, i) {
2076 struct bnx2x_vf_queue *q = vfq_get(vf, i);
2077
2078 if (!q) {
2079 BNX2X_ERR("q number %d was not allocated\n", i);
2080 return -EINVAL;
2081 }
2082
2083 q->index = i;
2084 q->cxt = &((base_cxt + i)->eth);
2085 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2086
2087 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2088 vf->abs_vfid, i, q->index, q->cid, q->cxt);
2089
2090 /* init SP objects */
2091 bnx2x_vfq_init(bp, vf, q);
2092 }
2093 vf->state = VF_ACQUIRED;
2094 return 0;
2095 }
2096
bnx2x_vf_init(struct bnx2x * bp,struct bnx2x_virtf * vf,dma_addr_t * sb_map)2097 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2098 {
2099 struct bnx2x_func_init_params func_init = {0};
2100 int i;
2101
2102 /* the sb resources are initialized at this point, do the
2103 * FW/HW initializations
2104 */
2105 for_each_vf_sb(vf, i)
2106 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2107 vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2108
2109 /* Sanity checks */
2110 if (vf->state != VF_ACQUIRED) {
2111 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2112 vf->abs_vfid, vf->state);
2113 return -EINVAL;
2114 }
2115
2116 /* let FLR complete ... */
2117 msleep(100);
2118
2119 /* FLR cleanup epilogue */
2120 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2121 return -EBUSY;
2122
2123 /* reset IGU VF statistics: MSIX */
2124 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2125
2126 /* function setup */
2127 func_init.pf_id = BP_FUNC(bp);
2128 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2129 bnx2x_func_init(bp, &func_init);
2130
2131 /* Enable the vf */
2132 bnx2x_vf_enable_access(bp, vf->abs_vfid);
2133 bnx2x_vf_enable_traffic(bp, vf);
2134
2135 /* queue protection table */
2136 for_each_vfq(vf, i)
2137 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2138 vfq_qzone_id(vf, vfq_get(vf, i)), true);
2139
2140 vf->state = VF_ENABLED;
2141
2142 /* update vf bulletin board */
2143 bnx2x_post_vf_bulletin(bp, vf->index);
2144
2145 return 0;
2146 }
2147
2148 struct set_vf_state_cookie {
2149 struct bnx2x_virtf *vf;
2150 u8 state;
2151 };
2152
bnx2x_set_vf_state(void * cookie)2153 static void bnx2x_set_vf_state(void *cookie)
2154 {
2155 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2156
2157 p->vf->state = p->state;
2158 }
2159
bnx2x_vf_close(struct bnx2x * bp,struct bnx2x_virtf * vf)2160 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2161 {
2162 int rc = 0, i;
2163
2164 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2165
2166 /* Close all queues */
2167 for (i = 0; i < vf_rxq_count(vf); i++) {
2168 rc = bnx2x_vf_queue_teardown(bp, vf, i);
2169 if (rc)
2170 goto op_err;
2171 }
2172
2173 /* disable the interrupts */
2174 DP(BNX2X_MSG_IOV, "disabling igu\n");
2175 bnx2x_vf_igu_disable(bp, vf);
2176
2177 /* disable the VF */
2178 DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2179 bnx2x_vf_clr_qtbl(bp, vf);
2180
2181 /* need to make sure there are no outstanding stats ramrods which may
2182 * cause the device to access the VF's stats buffer which it will free
2183 * as soon as we return from the close flow.
2184 */
2185 {
2186 struct set_vf_state_cookie cookie;
2187
2188 cookie.vf = vf;
2189 cookie.state = VF_ACQUIRED;
2190 rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2191 if (rc)
2192 goto op_err;
2193 }
2194
2195 DP(BNX2X_MSG_IOV, "set state to acquired\n");
2196
2197 return 0;
2198 op_err:
2199 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2200 return rc;
2201 }
2202
2203 /* VF release can be called either: 1. The VF was acquired but
2204 * not enabled 2. the vf was enabled or in the process of being
2205 * enabled
2206 */
bnx2x_vf_free(struct bnx2x * bp,struct bnx2x_virtf * vf)2207 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2208 {
2209 int rc;
2210
2211 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2212 vf->state == VF_FREE ? "Free" :
2213 vf->state == VF_ACQUIRED ? "Acquired" :
2214 vf->state == VF_ENABLED ? "Enabled" :
2215 vf->state == VF_RESET ? "Reset" :
2216 "Unknown");
2217
2218 switch (vf->state) {
2219 case VF_ENABLED:
2220 rc = bnx2x_vf_close(bp, vf);
2221 if (rc)
2222 goto op_err;
2223 /* Fallthrough to release resources */
2224 case VF_ACQUIRED:
2225 DP(BNX2X_MSG_IOV, "about to free resources\n");
2226 bnx2x_vf_free_resc(bp, vf);
2227 break;
2228
2229 case VF_FREE:
2230 case VF_RESET:
2231 default:
2232 break;
2233 }
2234 return 0;
2235 op_err:
2236 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2237 return rc;
2238 }
2239
bnx2x_vf_rss_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_config_rss_params * rss)2240 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2241 struct bnx2x_config_rss_params *rss)
2242 {
2243 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2244 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2245 return bnx2x_config_rss(bp, rss);
2246 }
2247
bnx2x_vf_tpa_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vfpf_tpa_tlv * tlv,struct bnx2x_queue_update_tpa_params * params)2248 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2249 struct vfpf_tpa_tlv *tlv,
2250 struct bnx2x_queue_update_tpa_params *params)
2251 {
2252 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2253 struct bnx2x_queue_state_params qstate;
2254 int qid, rc = 0;
2255
2256 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2257
2258 /* Set ramrod params */
2259 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2260 memcpy(&qstate.params.update_tpa, params,
2261 sizeof(struct bnx2x_queue_update_tpa_params));
2262 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2263 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2264
2265 for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2266 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2267 qstate.params.update_tpa.sge_map = sge_addr[qid];
2268 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2269 vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2270 U64_LO(sge_addr[qid]));
2271 rc = bnx2x_queue_state_change(bp, &qstate);
2272 if (rc) {
2273 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2274 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2275 vf->abs_vfid, qid);
2276 return rc;
2277 }
2278 }
2279
2280 return rc;
2281 }
2282
2283 /* VF release ~ VF close + VF release-resources
2284 * Release is the ultimate SW shutdown and is called whenever an
2285 * irrecoverable error is encountered.
2286 */
bnx2x_vf_release(struct bnx2x * bp,struct bnx2x_virtf * vf)2287 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2288 {
2289 int rc;
2290
2291 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2292 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2293
2294 rc = bnx2x_vf_free(bp, vf);
2295 if (rc)
2296 WARN(rc,
2297 "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2298 vf->abs_vfid, rc);
2299 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2300 return rc;
2301 }
2302
bnx2x_lock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs tlv)2303 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2304 enum channel_tlvs tlv)
2305 {
2306 /* we don't lock the channel for unsupported tlvs */
2307 if (!bnx2x_tlv_supported(tlv)) {
2308 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2309 return;
2310 }
2311
2312 /* lock the channel */
2313 mutex_lock(&vf->op_mutex);
2314
2315 /* record the locking op */
2316 vf->op_current = tlv;
2317
2318 /* log the lock */
2319 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2320 vf->abs_vfid, tlv);
2321 }
2322
bnx2x_unlock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs expected_tlv)2323 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2324 enum channel_tlvs expected_tlv)
2325 {
2326 enum channel_tlvs current_tlv;
2327
2328 if (!vf) {
2329 BNX2X_ERR("VF was %p\n", vf);
2330 return;
2331 }
2332
2333 current_tlv = vf->op_current;
2334
2335 /* we don't unlock the channel for unsupported tlvs */
2336 if (!bnx2x_tlv_supported(expected_tlv))
2337 return;
2338
2339 WARN(expected_tlv != vf->op_current,
2340 "lock mismatch: expected %d found %d", expected_tlv,
2341 vf->op_current);
2342
2343 /* record the locking op */
2344 vf->op_current = CHANNEL_TLV_NONE;
2345
2346 /* lock the channel */
2347 mutex_unlock(&vf->op_mutex);
2348
2349 /* log the unlock */
2350 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2351 vf->abs_vfid, current_tlv);
2352 }
2353
bnx2x_set_pf_tx_switching(struct bnx2x * bp,bool enable)2354 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2355 {
2356 struct bnx2x_queue_state_params q_params;
2357 u32 prev_flags;
2358 int i, rc;
2359
2360 /* Verify changes are needed and record current Tx switching state */
2361 prev_flags = bp->flags;
2362 if (enable)
2363 bp->flags |= TX_SWITCHING;
2364 else
2365 bp->flags &= ~TX_SWITCHING;
2366 if (prev_flags == bp->flags)
2367 return 0;
2368
2369 /* Verify state enables the sending of queue ramrods */
2370 if ((bp->state != BNX2X_STATE_OPEN) ||
2371 (bnx2x_get_q_logical_state(bp,
2372 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2373 BNX2X_Q_LOGICAL_STATE_ACTIVE))
2374 return 0;
2375
2376 /* send q. update ramrod to configure Tx switching */
2377 memset(&q_params, 0, sizeof(q_params));
2378 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2379 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2380 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2381 &q_params.params.update.update_flags);
2382 if (enable)
2383 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2384 &q_params.params.update.update_flags);
2385 else
2386 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2387 &q_params.params.update.update_flags);
2388
2389 /* send the ramrod on all the queues of the PF */
2390 for_each_eth_queue(bp, i) {
2391 struct bnx2x_fastpath *fp = &bp->fp[i];
2392 int tx_idx;
2393
2394 /* Set the appropriate Queue object */
2395 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2396
2397 for (tx_idx = FIRST_TX_COS_INDEX;
2398 tx_idx < fp->max_cos; tx_idx++) {
2399 q_params.params.update.cid_index = tx_idx;
2400
2401 /* Update the Queue state */
2402 rc = bnx2x_queue_state_change(bp, &q_params);
2403 if (rc) {
2404 BNX2X_ERR("Failed to configure Tx switching\n");
2405 return rc;
2406 }
2407 }
2408 }
2409
2410 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2411 return 0;
2412 }
2413
bnx2x_sriov_configure(struct pci_dev * dev,int num_vfs_param)2414 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2415 {
2416 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2417
2418 if (!IS_SRIOV(bp)) {
2419 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2420 return -EINVAL;
2421 }
2422
2423 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2424 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2425
2426 /* HW channel is only operational when PF is up */
2427 if (bp->state != BNX2X_STATE_OPEN) {
2428 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2429 return -EINVAL;
2430 }
2431
2432 /* we are always bound by the total_vfs in the configuration space */
2433 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2434 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2435 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2436 num_vfs_param = BNX2X_NR_VIRTFN(bp);
2437 }
2438
2439 bp->requested_nr_virtfn = num_vfs_param;
2440 if (num_vfs_param == 0) {
2441 bnx2x_set_pf_tx_switching(bp, false);
2442 bnx2x_disable_sriov(bp);
2443 return 0;
2444 } else {
2445 return bnx2x_enable_sriov(bp);
2446 }
2447 }
2448
2449 #define IGU_ENTRY_SIZE 4
2450
bnx2x_enable_sriov(struct bnx2x * bp)2451 int bnx2x_enable_sriov(struct bnx2x *bp)
2452 {
2453 int rc = 0, req_vfs = bp->requested_nr_virtfn;
2454 int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2455 u32 igu_entry, address;
2456 u16 num_vf_queues;
2457
2458 if (req_vfs == 0)
2459 return 0;
2460
2461 first_vf = bp->vfdb->sriov.first_vf_in_pf;
2462
2463 /* statically distribute vf sb pool between VFs */
2464 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2465 BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2466
2467 /* zero previous values learned from igu cam */
2468 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2469 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2470
2471 vf->sb_count = 0;
2472 vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2473 }
2474 bp->vfdb->vf_sbs_pool = 0;
2475
2476 /* prepare IGU cam */
2477 sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2478 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2479 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2480 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2481 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2482 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2483 IGU_REG_MAPPING_MEMORY_VALID;
2484 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2485 sb_idx, vf_idx);
2486 REG_WR(bp, address, igu_entry);
2487 sb_idx++;
2488 address += IGU_ENTRY_SIZE;
2489 }
2490 }
2491
2492 /* Reinitialize vf database according to igu cam */
2493 bnx2x_get_vf_igu_cam_info(bp);
2494
2495 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2496 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2497
2498 qcount = 0;
2499 for_each_vf(bp, vf_idx) {
2500 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2501
2502 /* set local queue arrays */
2503 vf->vfqs = &bp->vfdb->vfqs[qcount];
2504 qcount += vf_sb_count(vf);
2505 bnx2x_iov_static_resc(bp, vf);
2506 }
2507
2508 /* prepare msix vectors in VF configuration space - the value in the
2509 * PCI configuration space should be the index of the last entry,
2510 * namely one less than the actual size of the table
2511 */
2512 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2513 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2514 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2515 num_vf_queues - 1);
2516 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2517 vf_idx, num_vf_queues - 1);
2518 }
2519 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2520
2521 /* enable sriov. This will probe all the VFs, and consequentially cause
2522 * the "acquire" messages to appear on the VF PF channel.
2523 */
2524 DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2525 bnx2x_disable_sriov(bp);
2526
2527 rc = bnx2x_set_pf_tx_switching(bp, true);
2528 if (rc)
2529 return rc;
2530
2531 rc = pci_enable_sriov(bp->pdev, req_vfs);
2532 if (rc) {
2533 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2534 return rc;
2535 }
2536 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2537 return req_vfs;
2538 }
2539
bnx2x_pf_set_vfs_vlan(struct bnx2x * bp)2540 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2541 {
2542 int vfidx;
2543 struct pf_vf_bulletin_content *bulletin;
2544
2545 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2546 for_each_vf(bp, vfidx) {
2547 bulletin = BP_VF_BULLETIN(bp, vfidx);
2548 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2549 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0,
2550 htons(ETH_P_8021Q));
2551 }
2552 }
2553
bnx2x_disable_sriov(struct bnx2x * bp)2554 void bnx2x_disable_sriov(struct bnx2x *bp)
2555 {
2556 if (pci_vfs_assigned(bp->pdev)) {
2557 DP(BNX2X_MSG_IOV,
2558 "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2559 return;
2560 }
2561
2562 pci_disable_sriov(bp->pdev);
2563 }
2564
bnx2x_vf_op_prep(struct bnx2x * bp,int vfidx,struct bnx2x_virtf ** vf,struct pf_vf_bulletin_content ** bulletin,bool test_queue)2565 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2566 struct bnx2x_virtf **vf,
2567 struct pf_vf_bulletin_content **bulletin,
2568 bool test_queue)
2569 {
2570 if (bp->state != BNX2X_STATE_OPEN) {
2571 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2572 return -EINVAL;
2573 }
2574
2575 if (!IS_SRIOV(bp)) {
2576 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2577 return -EINVAL;
2578 }
2579
2580 if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2581 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2582 vfidx, BNX2X_NR_VIRTFN(bp));
2583 return -EINVAL;
2584 }
2585
2586 /* init members */
2587 *vf = BP_VF(bp, vfidx);
2588 *bulletin = BP_VF_BULLETIN(bp, vfidx);
2589
2590 if (!*vf) {
2591 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2592 return -EINVAL;
2593 }
2594
2595 if (test_queue && !(*vf)->vfqs) {
2596 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2597 vfidx);
2598 return -EINVAL;
2599 }
2600
2601 if (!*bulletin) {
2602 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2603 vfidx);
2604 return -EINVAL;
2605 }
2606
2607 return 0;
2608 }
2609
bnx2x_get_vf_config(struct net_device * dev,int vfidx,struct ifla_vf_info * ivi)2610 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2611 struct ifla_vf_info *ivi)
2612 {
2613 struct bnx2x *bp = netdev_priv(dev);
2614 struct bnx2x_virtf *vf = NULL;
2615 struct pf_vf_bulletin_content *bulletin = NULL;
2616 struct bnx2x_vlan_mac_obj *mac_obj;
2617 struct bnx2x_vlan_mac_obj *vlan_obj;
2618 int rc;
2619
2620 /* sanity and init */
2621 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2622 if (rc)
2623 return rc;
2624
2625 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2626 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2627 if (!mac_obj || !vlan_obj) {
2628 BNX2X_ERR("VF partially initialized\n");
2629 return -EINVAL;
2630 }
2631
2632 ivi->vf = vfidx;
2633 ivi->qos = 0;
2634 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2635 ivi->min_tx_rate = 0;
2636 ivi->spoofchk = 1; /*always enabled */
2637 if (vf->state == VF_ENABLED) {
2638 /* mac and vlan are in vlan_mac objects */
2639 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2640 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2641 0, ETH_ALEN);
2642 vlan_obj->get_n_elements(bp, vlan_obj, 1,
2643 (u8 *)&ivi->vlan, 0,
2644 VLAN_HLEN);
2645 }
2646 } else {
2647 mutex_lock(&bp->vfdb->bulletin_mutex);
2648 /* mac */
2649 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2650 /* mac configured by ndo so its in bulletin board */
2651 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2652 else
2653 /* function has not been loaded yet. Show mac as 0s */
2654 eth_zero_addr(ivi->mac);
2655
2656 /* vlan */
2657 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2658 /* vlan configured by ndo so its in bulletin board */
2659 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2660 else
2661 /* function has not been loaded yet. Show vlans as 0s */
2662 memset(&ivi->vlan, 0, VLAN_HLEN);
2663
2664 mutex_unlock(&bp->vfdb->bulletin_mutex);
2665 }
2666
2667 return 0;
2668 }
2669
2670 /* New mac for VF. Consider these cases:
2671 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2672 * supply at acquire.
2673 * 2. VF has already been acquired but has not yet initialized - store in local
2674 * bulletin board. mac will be posted on VF bulletin board after VF init. VF
2675 * will configure this mac when it is ready.
2676 * 3. VF has already initialized but has not yet setup a queue - post the new
2677 * mac on VF's bulletin board right now. VF will configure this mac when it
2678 * is ready.
2679 * 4. VF has already set a queue - delete any macs already configured for this
2680 * queue and manually config the new mac.
2681 * In any event, once this function has been called refuse any attempts by the
2682 * VF to configure any mac for itself except for this mac. In case of a race
2683 * where the VF fails to see the new post on its bulletin board before sending a
2684 * mac configuration request, the PF will simply fail the request and VF can try
2685 * again after consulting its bulletin board.
2686 */
bnx2x_set_vf_mac(struct net_device * dev,int vfidx,u8 * mac)2687 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2688 {
2689 struct bnx2x *bp = netdev_priv(dev);
2690 int rc, q_logical_state;
2691 struct bnx2x_virtf *vf = NULL;
2692 struct pf_vf_bulletin_content *bulletin = NULL;
2693
2694 if (!is_valid_ether_addr(mac)) {
2695 BNX2X_ERR("mac address invalid\n");
2696 return -EINVAL;
2697 }
2698
2699 /* sanity and init */
2700 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2701 if (rc)
2702 return rc;
2703
2704 mutex_lock(&bp->vfdb->bulletin_mutex);
2705
2706 /* update PF's copy of the VF's bulletin. Will no longer accept mac
2707 * configuration requests from vf unless match this mac
2708 */
2709 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2710 memcpy(bulletin->mac, mac, ETH_ALEN);
2711
2712 /* Post update on VF's bulletin board */
2713 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2714
2715 /* release lock before checking return code */
2716 mutex_unlock(&bp->vfdb->bulletin_mutex);
2717
2718 if (rc) {
2719 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2720 return rc;
2721 }
2722
2723 q_logical_state =
2724 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2725 if (vf->state == VF_ENABLED &&
2726 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2727 /* configure the mac in device on this vf's queue */
2728 unsigned long ramrod_flags = 0;
2729 struct bnx2x_vlan_mac_obj *mac_obj;
2730
2731 /* User should be able to see failure reason in system logs */
2732 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2733 return -EINVAL;
2734
2735 /* must lock vfpf channel to protect against vf flows */
2736 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2737
2738 /* remove existing eth macs */
2739 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2740 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2741 if (rc) {
2742 BNX2X_ERR("failed to delete eth macs\n");
2743 rc = -EINVAL;
2744 goto out;
2745 }
2746
2747 /* remove existing uc list macs */
2748 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2749 if (rc) {
2750 BNX2X_ERR("failed to delete uc_list macs\n");
2751 rc = -EINVAL;
2752 goto out;
2753 }
2754
2755 /* configure the new mac to device */
2756 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2757 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2758 BNX2X_ETH_MAC, &ramrod_flags);
2759
2760 out:
2761 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2762 }
2763
2764 return rc;
2765 }
2766
bnx2x_set_vf_vlan_acceptance(struct bnx2x * bp,struct bnx2x_virtf * vf,bool accept)2767 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2768 struct bnx2x_virtf *vf, bool accept)
2769 {
2770 struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2771 unsigned long accept_flags;
2772
2773 /* need to remove/add the VF's accept_any_vlan bit */
2774 accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2775 if (accept)
2776 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2777 else
2778 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2779
2780 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2781 accept_flags);
2782 bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2783 bnx2x_config_rx_mode(bp, &rx_ramrod);
2784 }
2785
bnx2x_set_vf_vlan_filter(struct bnx2x * bp,struct bnx2x_virtf * vf,u16 vlan,bool add)2786 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2787 u16 vlan, bool add)
2788 {
2789 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2790 unsigned long ramrod_flags = 0;
2791 int rc = 0;
2792
2793 /* configure the new vlan to device */
2794 memset(&ramrod_param, 0, sizeof(ramrod_param));
2795 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2796 ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2797 ramrod_param.ramrod_flags = ramrod_flags;
2798 ramrod_param.user_req.u.vlan.vlan = vlan;
2799 ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2800 : BNX2X_VLAN_MAC_DEL;
2801 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2802 if (rc) {
2803 BNX2X_ERR("failed to configure vlan\n");
2804 return -EINVAL;
2805 }
2806
2807 return 0;
2808 }
2809
bnx2x_set_vf_vlan(struct net_device * dev,int vfidx,u16 vlan,u8 qos,__be16 vlan_proto)2810 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos,
2811 __be16 vlan_proto)
2812 {
2813 struct pf_vf_bulletin_content *bulletin = NULL;
2814 struct bnx2x *bp = netdev_priv(dev);
2815 struct bnx2x_vlan_mac_obj *vlan_obj;
2816 unsigned long vlan_mac_flags = 0;
2817 unsigned long ramrod_flags = 0;
2818 struct bnx2x_virtf *vf = NULL;
2819 int i, rc;
2820
2821 if (vlan > 4095) {
2822 BNX2X_ERR("illegal vlan value %d\n", vlan);
2823 return -EINVAL;
2824 }
2825
2826 if (vlan_proto != htons(ETH_P_8021Q))
2827 return -EPROTONOSUPPORT;
2828
2829 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2830 vfidx, vlan, 0);
2831
2832 /* sanity and init */
2833 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2834 if (rc)
2835 return rc;
2836
2837 /* update PF's copy of the VF's bulletin. No point in posting the vlan
2838 * to the VF since it doesn't have anything to do with it. But it useful
2839 * to store it here in case the VF is not up yet and we can only
2840 * configure the vlan later when it does. Treat vlan id 0 as remove the
2841 * Host tag.
2842 */
2843 mutex_lock(&bp->vfdb->bulletin_mutex);
2844
2845 if (vlan > 0)
2846 bulletin->valid_bitmap |= 1 << VLAN_VALID;
2847 else
2848 bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2849 bulletin->vlan = vlan;
2850
2851 /* Post update on VF's bulletin board */
2852 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2853 if (rc)
2854 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2855 mutex_unlock(&bp->vfdb->bulletin_mutex);
2856
2857 /* is vf initialized and queue set up? */
2858 if (vf->state != VF_ENABLED ||
2859 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2860 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2861 return rc;
2862
2863 /* User should be able to see error in system logs */
2864 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2865 return -EINVAL;
2866
2867 /* must lock vfpf channel to protect against vf flows */
2868 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2869
2870 /* remove existing vlans */
2871 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2872 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2873 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2874 &ramrod_flags);
2875 if (rc) {
2876 BNX2X_ERR("failed to delete vlans\n");
2877 rc = -EINVAL;
2878 goto out;
2879 }
2880
2881 /* clear accept_any_vlan when HV forces vlan, otherwise
2882 * according to VF capabilities
2883 */
2884 if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2885 bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2886
2887 rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2888 if (rc)
2889 goto out;
2890
2891 /* send queue update ramrods to configure default vlan and
2892 * silent vlan removal
2893 */
2894 for_each_vfq(vf, i) {
2895 struct bnx2x_queue_state_params q_params = {NULL};
2896 struct bnx2x_queue_update_params *update_params;
2897
2898 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2899
2900 /* validate the Q is UP */
2901 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2902 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2903 continue;
2904
2905 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2906 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2907 update_params = &q_params.params.update;
2908 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2909 &update_params->update_flags);
2910 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2911 &update_params->update_flags);
2912 if (vlan == 0) {
2913 /* if vlan is 0 then we want to leave the VF traffic
2914 * untagged, and leave the incoming traffic untouched
2915 * (i.e. do not remove any vlan tags).
2916 */
2917 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2918 &update_params->update_flags);
2919 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2920 &update_params->update_flags);
2921 } else {
2922 /* configure default vlan to vf queue and set silent
2923 * vlan removal (the vf remains unaware of this vlan).
2924 */
2925 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2926 &update_params->update_flags);
2927 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2928 &update_params->update_flags);
2929 update_params->def_vlan = vlan;
2930 update_params->silent_removal_value =
2931 vlan & VLAN_VID_MASK;
2932 update_params->silent_removal_mask = VLAN_VID_MASK;
2933 }
2934
2935 /* Update the Queue state */
2936 rc = bnx2x_queue_state_change(bp, &q_params);
2937 if (rc) {
2938 BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2939 i);
2940 goto out;
2941 }
2942 }
2943 out:
2944 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2945
2946 if (rc)
2947 DP(BNX2X_MSG_IOV,
2948 "updated VF[%d] vlan configuration (vlan = %d)\n",
2949 vfidx, vlan);
2950
2951 return rc;
2952 }
2953
2954 /* crc is the first field in the bulletin board. Compute the crc over the
2955 * entire bulletin board excluding the crc field itself. Use the length field
2956 * as the Bulletin Board was posted by a PF with possibly a different version
2957 * from the vf which will sample it. Therefore, the length is computed by the
2958 * PF and then used blindly by the VF.
2959 */
bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content * bulletin)2960 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
2961 {
2962 return crc32(BULLETIN_CRC_SEED,
2963 ((u8 *)bulletin) + sizeof(bulletin->crc),
2964 bulletin->length - sizeof(bulletin->crc));
2965 }
2966
2967 /* Check for new posts on the bulletin board */
bnx2x_sample_bulletin(struct bnx2x * bp)2968 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2969 {
2970 struct pf_vf_bulletin_content *bulletin;
2971 int attempts;
2972
2973 /* sampling structure in mid post may result with corrupted data
2974 * validate crc to ensure coherency.
2975 */
2976 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2977 u32 crc;
2978
2979 /* sample the bulletin board */
2980 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
2981 sizeof(union pf_vf_bulletin));
2982
2983 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
2984
2985 if (bp->shadow_bulletin.content.crc == crc)
2986 break;
2987
2988 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2989 bp->shadow_bulletin.content.crc, crc);
2990 }
2991
2992 if (attempts >= BULLETIN_ATTEMPTS) {
2993 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
2994 attempts);
2995 return PFVF_BULLETIN_CRC_ERR;
2996 }
2997 bulletin = &bp->shadow_bulletin.content;
2998
2999 /* bulletin board hasn't changed since last sample */
3000 if (bp->old_bulletin.version == bulletin->version)
3001 return PFVF_BULLETIN_UNCHANGED;
3002
3003 /* the mac address in bulletin board is valid and is new */
3004 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
3005 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
3006 /* update new mac to net device */
3007 memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
3008 }
3009
3010 if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
3011 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
3012 bulletin->link_speed, bulletin->link_flags);
3013
3014 bp->vf_link_vars.line_speed = bulletin->link_speed;
3015 bp->vf_link_vars.link_report_flags = 0;
3016 /* Link is down */
3017 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
3018 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3019 &bp->vf_link_vars.link_report_flags);
3020 /* Full DUPLEX */
3021 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3022 __set_bit(BNX2X_LINK_REPORT_FD,
3023 &bp->vf_link_vars.link_report_flags);
3024 /* Rx Flow Control is ON */
3025 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3026 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3027 &bp->vf_link_vars.link_report_flags);
3028 /* Tx Flow Control is ON */
3029 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3030 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3031 &bp->vf_link_vars.link_report_flags);
3032 __bnx2x_link_report(bp);
3033 }
3034
3035 /* copy new bulletin board to bp */
3036 memcpy(&bp->old_bulletin, bulletin,
3037 sizeof(struct pf_vf_bulletin_content));
3038
3039 return PFVF_BULLETIN_UPDATED;
3040 }
3041
bnx2x_timer_sriov(struct bnx2x * bp)3042 void bnx2x_timer_sriov(struct bnx2x *bp)
3043 {
3044 bnx2x_sample_bulletin(bp);
3045
3046 /* if channel is down we need to self destruct */
3047 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3048 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3049 BNX2X_MSG_IOV);
3050 }
3051
bnx2x_vf_doorbells(struct bnx2x * bp)3052 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3053 {
3054 /* vf doorbells are embedded within the regview */
3055 return bp->regview + PXP_VF_ADDR_DB_START;
3056 }
3057
bnx2x_vf_pci_dealloc(struct bnx2x * bp)3058 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3059 {
3060 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3061 sizeof(struct bnx2x_vf_mbx_msg));
3062 BNX2X_PCI_FREE(bp->pf2vf_bulletin, bp->pf2vf_bulletin_mapping,
3063 sizeof(union pf_vf_bulletin));
3064 }
3065
bnx2x_vf_pci_alloc(struct bnx2x * bp)3066 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3067 {
3068 mutex_init(&bp->vf2pf_mutex);
3069
3070 /* allocate vf2pf mailbox for vf to pf channel */
3071 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3072 sizeof(struct bnx2x_vf_mbx_msg));
3073 if (!bp->vf2pf_mbox)
3074 goto alloc_mem_err;
3075
3076 /* allocate pf 2 vf bulletin board */
3077 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3078 sizeof(union pf_vf_bulletin));
3079 if (!bp->pf2vf_bulletin)
3080 goto alloc_mem_err;
3081
3082 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3083
3084 return 0;
3085
3086 alloc_mem_err:
3087 bnx2x_vf_pci_dealloc(bp);
3088 return -ENOMEM;
3089 }
3090
bnx2x_iov_channel_down(struct bnx2x * bp)3091 void bnx2x_iov_channel_down(struct bnx2x *bp)
3092 {
3093 int vf_idx;
3094 struct pf_vf_bulletin_content *bulletin;
3095
3096 if (!IS_SRIOV(bp))
3097 return;
3098
3099 for_each_vf(bp, vf_idx) {
3100 /* locate this VFs bulletin board and update the channel down
3101 * bit
3102 */
3103 bulletin = BP_VF_BULLETIN(bp, vf_idx);
3104 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3105
3106 /* update vf bulletin board */
3107 bnx2x_post_vf_bulletin(bp, vf_idx);
3108 }
3109 }
3110
bnx2x_iov_task(struct work_struct * work)3111 void bnx2x_iov_task(struct work_struct *work)
3112 {
3113 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3114
3115 if (!netif_running(bp->dev))
3116 return;
3117
3118 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3119 &bp->iov_task_state))
3120 bnx2x_vf_handle_flr_event(bp);
3121
3122 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3123 &bp->iov_task_state))
3124 bnx2x_vf_mbx(bp);
3125 }
3126
bnx2x_schedule_iov_task(struct bnx2x * bp,enum bnx2x_iov_flag flag)3127 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3128 {
3129 smp_mb__before_atomic();
3130 set_bit(flag, &bp->iov_task_state);
3131 smp_mb__after_atomic();
3132 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3133 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3134 }
3135