1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23
24 /* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
36 * analysis is limited to 64k insn, which may be hit even if total number of
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
64 * Most of the time the registers have SCALAR_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes SCALAR_VALUE type)
67 *
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
132 struct bpf_verifier_stack_elem {
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
137 struct bpf_verifier_state st;
138 int insn_idx;
139 int prev_insn_idx;
140 struct bpf_verifier_stack_elem *next;
141 };
142
143 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
144 #define BPF_COMPLEXITY_LIMIT_STACK 1024
145
146 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
148 struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
150 bool raw_mode;
151 bool pkt_access;
152 int regno;
153 int access_size;
154 };
155
156 /* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159 static u32 log_level, log_size, log_len;
160 static char *log_buf;
161
162 static DEFINE_MUTEX(bpf_verifier_lock);
163
164 /* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
verbose(const char * fmt,...)168 static __printf(1, 2) void verbose(const char *fmt, ...)
169 {
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178 }
179
180 /* string representation of 'enum bpf_reg_type' */
181 static const char * const reg_type_str[] = {
182 [NOT_INIT] = "?",
183 [SCALAR_VALUE] = "inv",
184 [PTR_TO_CTX] = "ctx",
185 [CONST_PTR_TO_MAP] = "map_ptr",
186 [PTR_TO_MAP_VALUE] = "map_value",
187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
188 [PTR_TO_STACK] = "fp",
189 [PTR_TO_PACKET] = "pkt",
190 [PTR_TO_PACKET_END] = "pkt_end",
191 };
192
193 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
194 static const char * const func_id_str[] = {
195 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
196 };
197 #undef __BPF_FUNC_STR_FN
198
func_id_name(int id)199 static const char *func_id_name(int id)
200 {
201 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
202
203 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
204 return func_id_str[id];
205 else
206 return "unknown";
207 }
208
print_verifier_state(struct bpf_verifier_state * state)209 static void print_verifier_state(struct bpf_verifier_state *state)
210 {
211 struct bpf_reg_state *reg;
212 enum bpf_reg_type t;
213 int i;
214
215 for (i = 0; i < MAX_BPF_REG; i++) {
216 reg = &state->regs[i];
217 t = reg->type;
218 if (t == NOT_INIT)
219 continue;
220 verbose(" R%d=%s", i, reg_type_str[t]);
221 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
222 tnum_is_const(reg->var_off)) {
223 /* reg->off should be 0 for SCALAR_VALUE */
224 verbose("%lld", reg->var_off.value + reg->off);
225 } else {
226 verbose("(id=%d", reg->id);
227 if (t != SCALAR_VALUE)
228 verbose(",off=%d", reg->off);
229 if (t == PTR_TO_PACKET)
230 verbose(",r=%d", reg->range);
231 else if (t == CONST_PTR_TO_MAP ||
232 t == PTR_TO_MAP_VALUE ||
233 t == PTR_TO_MAP_VALUE_OR_NULL)
234 verbose(",ks=%d,vs=%d",
235 reg->map_ptr->key_size,
236 reg->map_ptr->value_size);
237 if (tnum_is_const(reg->var_off)) {
238 /* Typically an immediate SCALAR_VALUE, but
239 * could be a pointer whose offset is too big
240 * for reg->off
241 */
242 verbose(",imm=%llx", reg->var_off.value);
243 } else {
244 if (reg->smin_value != reg->umin_value &&
245 reg->smin_value != S64_MIN)
246 verbose(",smin_value=%lld",
247 (long long)reg->smin_value);
248 if (reg->smax_value != reg->umax_value &&
249 reg->smax_value != S64_MAX)
250 verbose(",smax_value=%lld",
251 (long long)reg->smax_value);
252 if (reg->umin_value != 0)
253 verbose(",umin_value=%llu",
254 (unsigned long long)reg->umin_value);
255 if (reg->umax_value != U64_MAX)
256 verbose(",umax_value=%llu",
257 (unsigned long long)reg->umax_value);
258 if (!tnum_is_unknown(reg->var_off)) {
259 char tn_buf[48];
260
261 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
262 verbose(",var_off=%s", tn_buf);
263 }
264 }
265 verbose(")");
266 }
267 }
268 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
269 if (state->stack[i].slot_type[0] == STACK_SPILL)
270 verbose(" fp%d=%s",
271 (-i - 1) * BPF_REG_SIZE,
272 reg_type_str[state->stack[i].spilled_ptr.type]);
273 }
274 verbose("\n");
275 }
276
277 static const char *const bpf_class_string[] = {
278 [BPF_LD] = "ld",
279 [BPF_LDX] = "ldx",
280 [BPF_ST] = "st",
281 [BPF_STX] = "stx",
282 [BPF_ALU] = "alu",
283 [BPF_JMP] = "jmp",
284 [BPF_RET] = "BUG",
285 [BPF_ALU64] = "alu64",
286 };
287
288 static const char *const bpf_alu_string[16] = {
289 [BPF_ADD >> 4] = "+=",
290 [BPF_SUB >> 4] = "-=",
291 [BPF_MUL >> 4] = "*=",
292 [BPF_DIV >> 4] = "/=",
293 [BPF_OR >> 4] = "|=",
294 [BPF_AND >> 4] = "&=",
295 [BPF_LSH >> 4] = "<<=",
296 [BPF_RSH >> 4] = ">>=",
297 [BPF_NEG >> 4] = "neg",
298 [BPF_MOD >> 4] = "%=",
299 [BPF_XOR >> 4] = "^=",
300 [BPF_MOV >> 4] = "=",
301 [BPF_ARSH >> 4] = "s>>=",
302 [BPF_END >> 4] = "endian",
303 };
304
305 static const char *const bpf_ldst_string[] = {
306 [BPF_W >> 3] = "u32",
307 [BPF_H >> 3] = "u16",
308 [BPF_B >> 3] = "u8",
309 [BPF_DW >> 3] = "u64",
310 };
311
312 static const char *const bpf_jmp_string[16] = {
313 [BPF_JA >> 4] = "jmp",
314 [BPF_JEQ >> 4] = "==",
315 [BPF_JGT >> 4] = ">",
316 [BPF_JLT >> 4] = "<",
317 [BPF_JGE >> 4] = ">=",
318 [BPF_JLE >> 4] = "<=",
319 [BPF_JSET >> 4] = "&",
320 [BPF_JNE >> 4] = "!=",
321 [BPF_JSGT >> 4] = "s>",
322 [BPF_JSLT >> 4] = "s<",
323 [BPF_JSGE >> 4] = "s>=",
324 [BPF_JSLE >> 4] = "s<=",
325 [BPF_CALL >> 4] = "call",
326 [BPF_EXIT >> 4] = "exit",
327 };
328
print_bpf_insn(const struct bpf_verifier_env * env,const struct bpf_insn * insn)329 static void print_bpf_insn(const struct bpf_verifier_env *env,
330 const struct bpf_insn *insn)
331 {
332 u8 class = BPF_CLASS(insn->code);
333
334 if (class == BPF_ALU || class == BPF_ALU64) {
335 if (BPF_SRC(insn->code) == BPF_X)
336 verbose("(%02x) %sr%d %s %sr%d\n",
337 insn->code, class == BPF_ALU ? "(u32) " : "",
338 insn->dst_reg,
339 bpf_alu_string[BPF_OP(insn->code) >> 4],
340 class == BPF_ALU ? "(u32) " : "",
341 insn->src_reg);
342 else
343 verbose("(%02x) %sr%d %s %s%d\n",
344 insn->code, class == BPF_ALU ? "(u32) " : "",
345 insn->dst_reg,
346 bpf_alu_string[BPF_OP(insn->code) >> 4],
347 class == BPF_ALU ? "(u32) " : "",
348 insn->imm);
349 } else if (class == BPF_STX) {
350 if (BPF_MODE(insn->code) == BPF_MEM)
351 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
352 insn->code,
353 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
354 insn->dst_reg,
355 insn->off, insn->src_reg);
356 else if (BPF_MODE(insn->code) == BPF_XADD)
357 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
358 insn->code,
359 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 insn->dst_reg, insn->off,
361 insn->src_reg);
362 else
363 verbose("BUG_%02x\n", insn->code);
364 } else if (class == BPF_ST) {
365 if (BPF_MODE(insn->code) != BPF_MEM) {
366 verbose("BUG_st_%02x\n", insn->code);
367 return;
368 }
369 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
370 insn->code,
371 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
372 insn->dst_reg,
373 insn->off, insn->imm);
374 } else if (class == BPF_LDX) {
375 if (BPF_MODE(insn->code) != BPF_MEM) {
376 verbose("BUG_ldx_%02x\n", insn->code);
377 return;
378 }
379 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
380 insn->code, insn->dst_reg,
381 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
382 insn->src_reg, insn->off);
383 } else if (class == BPF_LD) {
384 if (BPF_MODE(insn->code) == BPF_ABS) {
385 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
386 insn->code,
387 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
388 insn->imm);
389 } else if (BPF_MODE(insn->code) == BPF_IND) {
390 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
391 insn->code,
392 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
393 insn->src_reg, insn->imm);
394 } else if (BPF_MODE(insn->code) == BPF_IMM &&
395 BPF_SIZE(insn->code) == BPF_DW) {
396 /* At this point, we already made sure that the second
397 * part of the ldimm64 insn is accessible.
398 */
399 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
400 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
401
402 if (map_ptr && !env->allow_ptr_leaks)
403 imm = 0;
404
405 verbose("(%02x) r%d = 0x%llx\n", insn->code,
406 insn->dst_reg, (unsigned long long)imm);
407 } else {
408 verbose("BUG_ld_%02x\n", insn->code);
409 return;
410 }
411 } else if (class == BPF_JMP) {
412 u8 opcode = BPF_OP(insn->code);
413
414 if (opcode == BPF_CALL) {
415 verbose("(%02x) call %s#%d\n", insn->code,
416 func_id_name(insn->imm), insn->imm);
417 } else if (insn->code == (BPF_JMP | BPF_JA)) {
418 verbose("(%02x) goto pc%+d\n",
419 insn->code, insn->off);
420 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
421 verbose("(%02x) exit\n", insn->code);
422 } else if (BPF_SRC(insn->code) == BPF_X) {
423 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
424 insn->code, insn->dst_reg,
425 bpf_jmp_string[BPF_OP(insn->code) >> 4],
426 insn->src_reg, insn->off);
427 } else {
428 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
429 insn->code, insn->dst_reg,
430 bpf_jmp_string[BPF_OP(insn->code) >> 4],
431 insn->imm, insn->off);
432 }
433 } else {
434 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
435 }
436 }
437
copy_stack_state(struct bpf_verifier_state * dst,const struct bpf_verifier_state * src)438 static int copy_stack_state(struct bpf_verifier_state *dst,
439 const struct bpf_verifier_state *src)
440 {
441 if (!src->stack)
442 return 0;
443 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
444 /* internal bug, make state invalid to reject the program */
445 memset(dst, 0, sizeof(*dst));
446 return -EFAULT;
447 }
448 memcpy(dst->stack, src->stack,
449 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
450 return 0;
451 }
452
453 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
454 * make it consume minimal amount of memory. check_stack_write() access from
455 * the program calls into realloc_verifier_state() to grow the stack size.
456 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
457 * which this function copies over. It points to previous bpf_verifier_state
458 * which is never reallocated
459 */
realloc_verifier_state(struct bpf_verifier_state * state,int size,bool copy_old)460 static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
461 bool copy_old)
462 {
463 u32 old_size = state->allocated_stack;
464 struct bpf_stack_state *new_stack;
465 int slot = size / BPF_REG_SIZE;
466
467 if (size <= old_size || !size) {
468 if (copy_old)
469 return 0;
470 state->allocated_stack = slot * BPF_REG_SIZE;
471 if (!size && old_size) {
472 kfree(state->stack);
473 state->stack = NULL;
474 }
475 return 0;
476 }
477 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
478 GFP_KERNEL);
479 if (!new_stack)
480 return -ENOMEM;
481 if (copy_old) {
482 if (state->stack)
483 memcpy(new_stack, state->stack,
484 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
485 memset(new_stack + old_size / BPF_REG_SIZE, 0,
486 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
487 }
488 state->allocated_stack = slot * BPF_REG_SIZE;
489 kfree(state->stack);
490 state->stack = new_stack;
491 return 0;
492 }
493
free_verifier_state(struct bpf_verifier_state * state,bool free_self)494 static void free_verifier_state(struct bpf_verifier_state *state,
495 bool free_self)
496 {
497 kfree(state->stack);
498 if (free_self)
499 kfree(state);
500 }
501
502 /* copy verifier state from src to dst growing dst stack space
503 * when necessary to accommodate larger src stack
504 */
copy_verifier_state(struct bpf_verifier_state * dst,const struct bpf_verifier_state * src)505 static int copy_verifier_state(struct bpf_verifier_state *dst,
506 const struct bpf_verifier_state *src)
507 {
508 int err;
509
510 err = realloc_verifier_state(dst, src->allocated_stack, false);
511 if (err)
512 return err;
513 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
514 return copy_stack_state(dst, src);
515 }
516
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx)517 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
518 int *insn_idx)
519 {
520 struct bpf_verifier_state *cur = env->cur_state;
521 struct bpf_verifier_stack_elem *elem, *head = env->head;
522 int err;
523
524 if (env->head == NULL)
525 return -ENOENT;
526
527 if (cur) {
528 err = copy_verifier_state(cur, &head->st);
529 if (err)
530 return err;
531 }
532 if (insn_idx)
533 *insn_idx = head->insn_idx;
534 if (prev_insn_idx)
535 *prev_insn_idx = head->prev_insn_idx;
536 elem = head->next;
537 free_verifier_state(&head->st, false);
538 kfree(head);
539 env->head = elem;
540 env->stack_size--;
541 return 0;
542 }
543
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)544 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
545 int insn_idx, int prev_insn_idx,
546 bool speculative)
547 {
548 struct bpf_verifier_stack_elem *elem;
549 struct bpf_verifier_state *cur = env->cur_state;
550 int err;
551
552 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
553 if (!elem)
554 goto err;
555
556 elem->insn_idx = insn_idx;
557 elem->prev_insn_idx = prev_insn_idx;
558 elem->next = env->head;
559 elem->st.speculative |= speculative;
560 env->head = elem;
561 env->stack_size++;
562 err = copy_verifier_state(&elem->st, cur);
563 if (err)
564 goto err;
565 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
566 verbose("BPF program is too complex\n");
567 goto err;
568 }
569 return &elem->st;
570 err:
571 /* pop all elements and return */
572 while (!pop_stack(env, NULL, NULL));
573 return NULL;
574 }
575
576 #define CALLER_SAVED_REGS 6
577 static const int caller_saved[CALLER_SAVED_REGS] = {
578 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
579 };
580
581 static void __mark_reg_not_init(struct bpf_reg_state *reg);
582
583 /* Mark the unknown part of a register (variable offset or scalar value) as
584 * known to have the value @imm.
585 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)586 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
587 {
588 reg->id = 0;
589 reg->var_off = tnum_const(imm);
590 reg->smin_value = (s64)imm;
591 reg->smax_value = (s64)imm;
592 reg->umin_value = imm;
593 reg->umax_value = imm;
594 }
595
596 /* Mark the 'variable offset' part of a register as zero. This should be
597 * used only on registers holding a pointer type.
598 */
__mark_reg_known_zero(struct bpf_reg_state * reg)599 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
600 {
601 __mark_reg_known(reg, 0);
602 }
603
mark_reg_known_zero(struct bpf_reg_state * regs,u32 regno)604 static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
605 {
606 if (WARN_ON(regno >= MAX_BPF_REG)) {
607 verbose("mark_reg_known_zero(regs, %u)\n", regno);
608 /* Something bad happened, let's kill all regs */
609 for (regno = 0; regno < MAX_BPF_REG; regno++)
610 __mark_reg_not_init(regs + regno);
611 return;
612 }
613 __mark_reg_known_zero(regs + regno);
614 }
615
616 /* Attempts to improve min/max values based on var_off information */
__update_reg_bounds(struct bpf_reg_state * reg)617 static void __update_reg_bounds(struct bpf_reg_state *reg)
618 {
619 /* min signed is max(sign bit) | min(other bits) */
620 reg->smin_value = max_t(s64, reg->smin_value,
621 reg->var_off.value | (reg->var_off.mask & S64_MIN));
622 /* max signed is min(sign bit) | max(other bits) */
623 reg->smax_value = min_t(s64, reg->smax_value,
624 reg->var_off.value | (reg->var_off.mask & S64_MAX));
625 reg->umin_value = max(reg->umin_value, reg->var_off.value);
626 reg->umax_value = min(reg->umax_value,
627 reg->var_off.value | reg->var_off.mask);
628 }
629
630 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg_deduce_bounds(struct bpf_reg_state * reg)631 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
632 {
633 /* Learn sign from signed bounds.
634 * If we cannot cross the sign boundary, then signed and unsigned bounds
635 * are the same, so combine. This works even in the negative case, e.g.
636 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
637 */
638 if (reg->smin_value >= 0 || reg->smax_value < 0) {
639 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
640 reg->umin_value);
641 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
642 reg->umax_value);
643 return;
644 }
645 /* Learn sign from unsigned bounds. Signed bounds cross the sign
646 * boundary, so we must be careful.
647 */
648 if ((s64)reg->umax_value >= 0) {
649 /* Positive. We can't learn anything from the smin, but smax
650 * is positive, hence safe.
651 */
652 reg->smin_value = reg->umin_value;
653 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
654 reg->umax_value);
655 } else if ((s64)reg->umin_value < 0) {
656 /* Negative. We can't learn anything from the smax, but smin
657 * is negative, hence safe.
658 */
659 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
660 reg->umin_value);
661 reg->smax_value = reg->umax_value;
662 }
663 }
664
665 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)666 static void __reg_bound_offset(struct bpf_reg_state *reg)
667 {
668 reg->var_off = tnum_intersect(reg->var_off,
669 tnum_range(reg->umin_value,
670 reg->umax_value));
671 }
672
673 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)674 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
675 {
676 reg->smin_value = S64_MIN;
677 reg->smax_value = S64_MAX;
678 reg->umin_value = 0;
679 reg->umax_value = U64_MAX;
680 }
681
682 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(struct bpf_reg_state * reg)683 static void __mark_reg_unknown(struct bpf_reg_state *reg)
684 {
685 reg->type = SCALAR_VALUE;
686 reg->id = 0;
687 reg->off = 0;
688 reg->var_off = tnum_unknown;
689 __mark_reg_unbounded(reg);
690 }
691
mark_reg_unknown(struct bpf_reg_state * regs,u32 regno)692 static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
693 {
694 if (WARN_ON(regno >= MAX_BPF_REG)) {
695 verbose("mark_reg_unknown(regs, %u)\n", regno);
696 /* Something bad happened, let's kill all regs */
697 for (regno = 0; regno < MAX_BPF_REG; regno++)
698 __mark_reg_not_init(regs + regno);
699 return;
700 }
701 __mark_reg_unknown(regs + regno);
702 }
703
__mark_reg_not_init(struct bpf_reg_state * reg)704 static void __mark_reg_not_init(struct bpf_reg_state *reg)
705 {
706 __mark_reg_unknown(reg);
707 reg->type = NOT_INIT;
708 }
709
mark_reg_not_init(struct bpf_reg_state * regs,u32 regno)710 static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
711 {
712 if (WARN_ON(regno >= MAX_BPF_REG)) {
713 verbose("mark_reg_not_init(regs, %u)\n", regno);
714 /* Something bad happened, let's kill all regs */
715 for (regno = 0; regno < MAX_BPF_REG; regno++)
716 __mark_reg_not_init(regs + regno);
717 return;
718 }
719 __mark_reg_not_init(regs + regno);
720 }
721
init_reg_state(struct bpf_reg_state * regs)722 static void init_reg_state(struct bpf_reg_state *regs)
723 {
724 int i;
725
726 for (i = 0; i < MAX_BPF_REG; i++) {
727 mark_reg_not_init(regs, i);
728 regs[i].live = REG_LIVE_NONE;
729 }
730
731 /* frame pointer */
732 regs[BPF_REG_FP].type = PTR_TO_STACK;
733 mark_reg_known_zero(regs, BPF_REG_FP);
734
735 /* 1st arg to a function */
736 regs[BPF_REG_1].type = PTR_TO_CTX;
737 mark_reg_known_zero(regs, BPF_REG_1);
738 }
739
740 enum reg_arg_type {
741 SRC_OP, /* register is used as source operand */
742 DST_OP, /* register is used as destination operand */
743 DST_OP_NO_MARK /* same as above, check only, don't mark */
744 };
745
mark_reg_read(const struct bpf_verifier_state * state,u32 regno)746 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
747 {
748 struct bpf_verifier_state *parent = state->parent;
749
750 if (regno == BPF_REG_FP)
751 /* We don't need to worry about FP liveness because it's read-only */
752 return;
753
754 while (parent) {
755 /* if read wasn't screened by an earlier write ... */
756 if (state->regs[regno].live & REG_LIVE_WRITTEN)
757 break;
758 /* ... then we depend on parent's value */
759 parent->regs[regno].live |= REG_LIVE_READ;
760 state = parent;
761 parent = state->parent;
762 }
763 }
764
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)765 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
766 enum reg_arg_type t)
767 {
768 struct bpf_reg_state *regs = env->cur_state->regs;
769
770 if (regno >= MAX_BPF_REG) {
771 verbose("R%d is invalid\n", regno);
772 return -EINVAL;
773 }
774
775 if (t == SRC_OP) {
776 /* check whether register used as source operand can be read */
777 if (regs[regno].type == NOT_INIT) {
778 verbose("R%d !read_ok\n", regno);
779 return -EACCES;
780 }
781 mark_reg_read(env->cur_state, regno);
782 } else {
783 /* check whether register used as dest operand can be written to */
784 if (regno == BPF_REG_FP) {
785 verbose("frame pointer is read only\n");
786 return -EACCES;
787 }
788 regs[regno].live |= REG_LIVE_WRITTEN;
789 if (t == DST_OP)
790 mark_reg_unknown(regs, regno);
791 }
792 return 0;
793 }
794
is_spillable_regtype(enum bpf_reg_type type)795 static bool is_spillable_regtype(enum bpf_reg_type type)
796 {
797 switch (type) {
798 case PTR_TO_MAP_VALUE:
799 case PTR_TO_MAP_VALUE_OR_NULL:
800 case PTR_TO_STACK:
801 case PTR_TO_CTX:
802 case PTR_TO_PACKET:
803 case PTR_TO_PACKET_END:
804 case CONST_PTR_TO_MAP:
805 return true;
806 default:
807 return false;
808 }
809 }
810
811 /* check_stack_read/write functions track spill/fill of registers,
812 * stack boundary and alignment are checked in check_mem_access()
813 */
check_stack_write(struct bpf_verifier_env * env,struct bpf_verifier_state * state,int off,int size,int value_regno,int insn_idx)814 static int check_stack_write(struct bpf_verifier_env *env,
815 struct bpf_verifier_state *state, int off,
816 int size, int value_regno, int insn_idx)
817 {
818 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
819
820 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
821 true);
822 if (err)
823 return err;
824 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
825 * so it's aligned access and [off, off + size) are within stack limits
826 */
827 if (!env->allow_ptr_leaks &&
828 state->stack[spi].slot_type[0] == STACK_SPILL &&
829 size != BPF_REG_SIZE) {
830 verbose("attempt to corrupt spilled pointer on stack\n");
831 return -EACCES;
832 }
833
834 if (value_regno >= 0 &&
835 is_spillable_regtype(state->regs[value_regno].type)) {
836
837 /* register containing pointer is being spilled into stack */
838 if (size != BPF_REG_SIZE) {
839 verbose("invalid size of register spill\n");
840 return -EACCES;
841 }
842
843 /* save register state */
844 state->stack[spi].spilled_ptr = state->regs[value_regno];
845 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
846
847 for (i = 0; i < BPF_REG_SIZE; i++) {
848 if (state->stack[spi].slot_type[i] == STACK_MISC &&
849 !env->allow_ptr_leaks) {
850 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
851 int soff = (-spi - 1) * BPF_REG_SIZE;
852
853 /* detected reuse of integer stack slot with a pointer
854 * which means either llvm is reusing stack slot or
855 * an attacker is trying to exploit CVE-2018-3639
856 * (speculative store bypass)
857 * Have to sanitize that slot with preemptive
858 * store of zero.
859 */
860 if (*poff && *poff != soff) {
861 /* disallow programs where single insn stores
862 * into two different stack slots, since verifier
863 * cannot sanitize them
864 */
865 verbose("insn %d cannot access two stack slots fp%d and fp%d",
866 insn_idx, *poff, soff);
867 return -EINVAL;
868 }
869 *poff = soff;
870 }
871 state->stack[spi].slot_type[i] = STACK_SPILL;
872 }
873 } else {
874 /* regular write of data into stack */
875 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
876
877 for (i = 0; i < size; i++)
878 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
879 STACK_MISC;
880 }
881 return 0;
882 }
883
mark_stack_slot_read(const struct bpf_verifier_state * state,int slot)884 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
885 {
886 struct bpf_verifier_state *parent = state->parent;
887
888 while (parent) {
889 /* if read wasn't screened by an earlier write ... */
890 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
891 break;
892 /* ... then we depend on parent's value */
893 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
894 state = parent;
895 parent = state->parent;
896 }
897 }
898
check_stack_read(struct bpf_verifier_state * state,int off,int size,int value_regno)899 static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
900 int value_regno)
901 {
902 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
903 u8 *stype;
904
905 if (state->allocated_stack <= slot) {
906 verbose("invalid read from stack off %d+0 size %d\n",
907 off, size);
908 return -EACCES;
909 }
910 stype = state->stack[spi].slot_type;
911
912 if (stype[0] == STACK_SPILL) {
913 if (size != BPF_REG_SIZE) {
914 verbose("invalid size of register spill\n");
915 return -EACCES;
916 }
917 for (i = 1; i < BPF_REG_SIZE; i++) {
918 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
919 verbose("corrupted spill memory\n");
920 return -EACCES;
921 }
922 }
923
924 if (value_regno >= 0) {
925 /* restore register state from stack */
926 state->regs[value_regno] = state->stack[spi].spilled_ptr;
927 mark_stack_slot_read(state, spi);
928 }
929 return 0;
930 } else {
931 for (i = 0; i < size; i++) {
932 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
933 verbose("invalid read from stack off %d+%d size %d\n",
934 off, i, size);
935 return -EACCES;
936 }
937 }
938 if (value_regno >= 0)
939 /* have read misc data from the stack */
940 mark_reg_unknown(state->regs, value_regno);
941 return 0;
942 }
943 }
944
check_stack_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size)945 static int check_stack_access(struct bpf_verifier_env *env,
946 const struct bpf_reg_state *reg,
947 int off, int size)
948 {
949 /* Stack accesses must be at a fixed offset, so that we
950 * can determine what type of data were returned. See
951 * check_stack_read().
952 */
953 if (!tnum_is_const(reg->var_off)) {
954 char tn_buf[48];
955
956 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
957 verbose("variable stack access var_off=%s off=%d size=%d",
958 tn_buf, off, size);
959 return -EACCES;
960 }
961
962 if (off >= 0 || off < -MAX_BPF_STACK) {
963 verbose("invalid stack off=%d size=%d\n", off, size);
964 return -EACCES;
965 }
966
967 return 0;
968 }
969
970 /* check read/write into map element returned by bpf_map_lookup_elem() */
__check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size)971 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
972 int size)
973 {
974 struct bpf_reg_state *regs = cur_regs(env);
975 struct bpf_map *map = regs[regno].map_ptr;
976
977 if (off < 0 || size <= 0 || off + size > map->value_size) {
978 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
979 map->value_size, off, size);
980 return -EACCES;
981 }
982 return 0;
983 }
984
985 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size)986 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
987 int off, int size)
988 {
989 struct bpf_verifier_state *state = env->cur_state;
990 struct bpf_reg_state *reg = &state->regs[regno];
991 int err;
992
993 /* We may have adjusted the register to this map value, so we
994 * need to try adding each of min_value and max_value to off
995 * to make sure our theoretical access will be safe.
996 */
997 if (log_level)
998 print_verifier_state(state);
999
1000 /* The minimum value is only important with signed
1001 * comparisons where we can't assume the floor of a
1002 * value is 0. If we are using signed variables for our
1003 * index'es we need to make sure that whatever we use
1004 * will have a set floor within our range.
1005 */
1006 if (reg->smin_value < 0 &&
1007 (reg->smin_value == S64_MIN ||
1008 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1009 reg->smin_value + off < 0)) {
1010 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1011 regno);
1012 return -EACCES;
1013 }
1014 err = __check_map_access(env, regno, reg->smin_value + off, size);
1015 if (err) {
1016 verbose("R%d min value is outside of the array range\n", regno);
1017 return err;
1018 }
1019
1020 /* If we haven't set a max value then we need to bail since we can't be
1021 * sure we won't do bad things.
1022 * If reg->umax_value + off could overflow, treat that as unbounded too.
1023 */
1024 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1025 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1026 regno);
1027 return -EACCES;
1028 }
1029 err = __check_map_access(env, regno, reg->umax_value + off, size);
1030 if (err)
1031 verbose("R%d max value is outside of the array range\n", regno);
1032 return err;
1033 }
1034
1035 #define MAX_PACKET_OFF 0xffff
1036
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)1037 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1038 const struct bpf_call_arg_meta *meta,
1039 enum bpf_access_type t)
1040 {
1041 switch (env->prog->type) {
1042 case BPF_PROG_TYPE_LWT_IN:
1043 case BPF_PROG_TYPE_LWT_OUT:
1044 /* dst_input() and dst_output() can't write for now */
1045 if (t == BPF_WRITE)
1046 return false;
1047 /* fallthrough */
1048 case BPF_PROG_TYPE_SCHED_CLS:
1049 case BPF_PROG_TYPE_SCHED_ACT:
1050 case BPF_PROG_TYPE_XDP:
1051 case BPF_PROG_TYPE_LWT_XMIT:
1052 case BPF_PROG_TYPE_SK_SKB:
1053 if (meta)
1054 return meta->pkt_access;
1055
1056 env->seen_direct_write = true;
1057 return true;
1058 default:
1059 return false;
1060 }
1061 }
1062
__check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size)1063 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1064 int off, int size)
1065 {
1066 struct bpf_reg_state *regs = cur_regs(env);
1067 struct bpf_reg_state *reg = ®s[regno];
1068
1069 if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
1070 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1071 off, size, regno, reg->id, reg->off, reg->range);
1072 return -EACCES;
1073 }
1074 return 0;
1075 }
1076
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size)1077 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1078 int size)
1079 {
1080 struct bpf_reg_state *regs = cur_regs(env);
1081 struct bpf_reg_state *reg = ®s[regno];
1082 int err;
1083
1084 /* We may have added a variable offset to the packet pointer; but any
1085 * reg->range we have comes after that. We are only checking the fixed
1086 * offset.
1087 */
1088
1089 /* We don't allow negative numbers, because we aren't tracking enough
1090 * detail to prove they're safe.
1091 */
1092 if (reg->smin_value < 0) {
1093 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1094 regno);
1095 return -EACCES;
1096 }
1097 err = __check_packet_access(env, regno, off, size);
1098 if (err) {
1099 verbose("R%d offset is outside of the packet\n", regno);
1100 return err;
1101 }
1102 return err;
1103 }
1104
1105 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type)1106 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1107 enum bpf_access_type t, enum bpf_reg_type *reg_type)
1108 {
1109 struct bpf_insn_access_aux info = {
1110 .reg_type = *reg_type,
1111 };
1112
1113 /* for analyzer ctx accesses are already validated and converted */
1114 if (env->analyzer_ops)
1115 return 0;
1116
1117 if (env->prog->aux->ops->is_valid_access &&
1118 env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
1119 /* A non zero info.ctx_field_size indicates that this field is a
1120 * candidate for later verifier transformation to load the whole
1121 * field and then apply a mask when accessed with a narrower
1122 * access than actual ctx access size. A zero info.ctx_field_size
1123 * will only allow for whole field access and rejects any other
1124 * type of narrower access.
1125 */
1126 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1127 *reg_type = info.reg_type;
1128
1129 /* remember the offset of last byte accessed in ctx */
1130 if (env->prog->aux->max_ctx_offset < off + size)
1131 env->prog->aux->max_ctx_offset = off + size;
1132 return 0;
1133 }
1134
1135 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
1136 return -EACCES;
1137 }
1138
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)1139 static bool __is_pointer_value(bool allow_ptr_leaks,
1140 const struct bpf_reg_state *reg)
1141 {
1142 if (allow_ptr_leaks)
1143 return false;
1144
1145 return reg->type != SCALAR_VALUE;
1146 }
1147
is_pointer_value(struct bpf_verifier_env * env,int regno)1148 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1149 {
1150 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1151 }
1152
is_ctx_reg(struct bpf_verifier_env * env,int regno)1153 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1154 {
1155 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1156
1157 return reg->type == PTR_TO_CTX;
1158 }
1159
is_pkt_reg(struct bpf_verifier_env * env,int regno)1160 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1161 {
1162 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1163
1164 return reg->type == PTR_TO_PACKET;
1165 }
1166
check_pkt_ptr_alignment(const struct bpf_reg_state * reg,int off,int size,bool strict)1167 static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
1168 int off, int size, bool strict)
1169 {
1170 struct tnum reg_off;
1171 int ip_align;
1172
1173 /* Byte size accesses are always allowed. */
1174 if (!strict || size == 1)
1175 return 0;
1176
1177 /* For platforms that do not have a Kconfig enabling
1178 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1179 * NET_IP_ALIGN is universally set to '2'. And on platforms
1180 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1181 * to this code only in strict mode where we want to emulate
1182 * the NET_IP_ALIGN==2 checking. Therefore use an
1183 * unconditional IP align value of '2'.
1184 */
1185 ip_align = 2;
1186
1187 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1188 if (!tnum_is_aligned(reg_off, size)) {
1189 char tn_buf[48];
1190
1191 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1192 verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
1193 ip_align, tn_buf, reg->off, off, size);
1194 return -EACCES;
1195 }
1196
1197 return 0;
1198 }
1199
check_generic_ptr_alignment(const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)1200 static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
1201 const char *pointer_desc,
1202 int off, int size, bool strict)
1203 {
1204 struct tnum reg_off;
1205
1206 /* Byte size accesses are always allowed. */
1207 if (!strict || size == 1)
1208 return 0;
1209
1210 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1211 if (!tnum_is_aligned(reg_off, size)) {
1212 char tn_buf[48];
1213
1214 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1215 verbose("misaligned %saccess off %s+%d+%d size %d\n",
1216 pointer_desc, tn_buf, reg->off, off, size);
1217 return -EACCES;
1218 }
1219
1220 return 0;
1221 }
1222
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)1223 static int check_ptr_alignment(struct bpf_verifier_env *env,
1224 const struct bpf_reg_state *reg, int off,
1225 int size, bool strict_alignment_once)
1226 {
1227 bool strict = env->strict_alignment || strict_alignment_once;
1228 const char *pointer_desc = "";
1229
1230 switch (reg->type) {
1231 case PTR_TO_PACKET:
1232 /* special case, because of NET_IP_ALIGN */
1233 return check_pkt_ptr_alignment(reg, off, size, strict);
1234 case PTR_TO_MAP_VALUE:
1235 pointer_desc = "value ";
1236 break;
1237 case PTR_TO_CTX:
1238 pointer_desc = "context ";
1239 break;
1240 case PTR_TO_STACK:
1241 pointer_desc = "stack ";
1242 /* The stack spill tracking logic in check_stack_write()
1243 * and check_stack_read() relies on stack accesses being
1244 * aligned.
1245 */
1246 strict = true;
1247 break;
1248 default:
1249 break;
1250 }
1251 return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
1252 }
1253
check_ctx_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)1254 static int check_ctx_reg(struct bpf_verifier_env *env,
1255 const struct bpf_reg_state *reg, int regno)
1256 {
1257 /* Access to ctx or passing it to a helper is only allowed in
1258 * its original, unmodified form.
1259 */
1260
1261 if (reg->off) {
1262 verbose("dereference of modified ctx ptr R%d off=%d disallowed\n",
1263 regno, reg->off);
1264 return -EACCES;
1265 }
1266
1267 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1268 char tn_buf[48];
1269
1270 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1271 verbose("variable ctx access var_off=%s disallowed\n", tn_buf);
1272 return -EACCES;
1273 }
1274
1275 return 0;
1276 }
1277
1278 /* truncate register to smaller size (in bytes)
1279 * must be called with size < BPF_REG_SIZE
1280 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)1281 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1282 {
1283 u64 mask;
1284
1285 /* clear high bits in bit representation */
1286 reg->var_off = tnum_cast(reg->var_off, size);
1287
1288 /* fix arithmetic bounds */
1289 mask = ((u64)1 << (size * 8)) - 1;
1290 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1291 reg->umin_value &= mask;
1292 reg->umax_value &= mask;
1293 } else {
1294 reg->umin_value = 0;
1295 reg->umax_value = mask;
1296 }
1297 reg->smin_value = reg->umin_value;
1298 reg->smax_value = reg->umax_value;
1299 }
1300
1301 /* check whether memory at (regno + off) is accessible for t = (read | write)
1302 * if t==write, value_regno is a register which value is stored into memory
1303 * if t==read, value_regno is a register which will receive the value from memory
1304 * if t==write && value_regno==-1, some unknown value is stored into memory
1305 * if t==read && value_regno==-1, don't care what we read from memory
1306 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once)1307 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1308 int off, int bpf_size, enum bpf_access_type t,
1309 int value_regno, bool strict_alignment_once)
1310 {
1311 struct bpf_verifier_state *state = env->cur_state;
1312 struct bpf_reg_state *regs = cur_regs(env);
1313 struct bpf_reg_state *reg = regs + regno;
1314 int size, err = 0;
1315
1316 size = bpf_size_to_bytes(bpf_size);
1317 if (size < 0)
1318 return size;
1319
1320 /* alignment checks will add in reg->off themselves */
1321 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1322 if (err)
1323 return err;
1324
1325 /* for access checks, reg->off is just part of off */
1326 off += reg->off;
1327
1328 if (reg->type == PTR_TO_MAP_VALUE) {
1329 if (t == BPF_WRITE && value_regno >= 0 &&
1330 is_pointer_value(env, value_regno)) {
1331 verbose("R%d leaks addr into map\n", value_regno);
1332 return -EACCES;
1333 }
1334
1335 err = check_map_access(env, regno, off, size);
1336 if (!err && t == BPF_READ && value_regno >= 0)
1337 mark_reg_unknown(regs, value_regno);
1338
1339 } else if (reg->type == PTR_TO_CTX) {
1340 enum bpf_reg_type reg_type = SCALAR_VALUE;
1341
1342 if (t == BPF_WRITE && value_regno >= 0 &&
1343 is_pointer_value(env, value_regno)) {
1344 verbose("R%d leaks addr into ctx\n", value_regno);
1345 return -EACCES;
1346 }
1347 err = check_ctx_reg(env, reg, regno);
1348 if (err < 0)
1349 return err;
1350
1351 err = check_ctx_access(env, insn_idx, off, size, t, ®_type);
1352 if (!err && t == BPF_READ && value_regno >= 0) {
1353 /* ctx access returns either a scalar, or a
1354 * PTR_TO_PACKET[_END]. In the latter case, we know
1355 * the offset is zero.
1356 */
1357 if (reg_type == SCALAR_VALUE)
1358 mark_reg_unknown(regs, value_regno);
1359 else
1360 mark_reg_known_zero(regs, value_regno);
1361 regs[value_regno].id = 0;
1362 regs[value_regno].off = 0;
1363 regs[value_regno].range = 0;
1364 regs[value_regno].type = reg_type;
1365 }
1366
1367 } else if (reg->type == PTR_TO_STACK) {
1368 off += reg->var_off.value;
1369 err = check_stack_access(env, reg, off, size);
1370 if (err)
1371 return err;
1372
1373 if (env->prog->aux->stack_depth < -off)
1374 env->prog->aux->stack_depth = -off;
1375
1376 if (t == BPF_WRITE)
1377 err = check_stack_write(env, state, off, size,
1378 value_regno, insn_idx);
1379 else
1380 err = check_stack_read(state, off, size, value_regno);
1381 } else if (reg->type == PTR_TO_PACKET) {
1382 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1383 verbose("cannot write into packet\n");
1384 return -EACCES;
1385 }
1386 if (t == BPF_WRITE && value_regno >= 0 &&
1387 is_pointer_value(env, value_regno)) {
1388 verbose("R%d leaks addr into packet\n", value_regno);
1389 return -EACCES;
1390 }
1391 err = check_packet_access(env, regno, off, size);
1392 if (!err && t == BPF_READ && value_regno >= 0)
1393 mark_reg_unknown(regs, value_regno);
1394 } else {
1395 verbose("R%d invalid mem access '%s'\n",
1396 regno, reg_type_str[reg->type]);
1397 return -EACCES;
1398 }
1399
1400 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1401 regs[value_regno].type == SCALAR_VALUE) {
1402 /* b/h/w load zero-extends, mark upper bits as known 0 */
1403 coerce_reg_to_size(®s[value_regno], size);
1404 }
1405 return err;
1406 }
1407
check_xadd(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)1408 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1409 {
1410 int err;
1411
1412 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1413 insn->imm != 0) {
1414 verbose("BPF_XADD uses reserved fields\n");
1415 return -EINVAL;
1416 }
1417
1418 /* check src1 operand */
1419 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1420 if (err)
1421 return err;
1422
1423 /* check src2 operand */
1424 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1425 if (err)
1426 return err;
1427
1428 if (is_pointer_value(env, insn->src_reg)) {
1429 verbose("R%d leaks addr into mem\n", insn->src_reg);
1430 return -EACCES;
1431 }
1432
1433 if (is_ctx_reg(env, insn->dst_reg) ||
1434 is_pkt_reg(env, insn->dst_reg)) {
1435 verbose("BPF_XADD stores into R%d %s is not allowed\n",
1436 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1437 "context" : "packet");
1438 return -EACCES;
1439 }
1440
1441 /* check whether atomic_add can read the memory */
1442 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1443 BPF_SIZE(insn->code), BPF_READ, -1, true);
1444 if (err)
1445 return err;
1446
1447 /* check whether atomic_add can write into the same memory */
1448 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1449 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1450 }
1451
1452 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state reg)1453 static bool register_is_null(struct bpf_reg_state reg)
1454 {
1455 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1456 }
1457
1458 /* when register 'regno' is passed into function that will read 'access_size'
1459 * bytes from that pointer, make sure that it's within stack boundary
1460 * and all elements of stack are initialized.
1461 * Unlike most pointer bounds-checking functions, this one doesn't take an
1462 * 'off' argument, so it has to add in reg->off itself.
1463 */
check_stack_boundary(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)1464 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1465 int access_size, bool zero_size_allowed,
1466 struct bpf_call_arg_meta *meta)
1467 {
1468 struct bpf_verifier_state *state = env->cur_state;
1469 struct bpf_reg_state *regs = state->regs;
1470 int off, i, slot, spi;
1471
1472 if (regs[regno].type != PTR_TO_STACK) {
1473 /* Allow zero-byte read from NULL, regardless of pointer type */
1474 if (zero_size_allowed && access_size == 0 &&
1475 register_is_null(regs[regno]))
1476 return 0;
1477
1478 verbose("R%d type=%s expected=%s\n", regno,
1479 reg_type_str[regs[regno].type],
1480 reg_type_str[PTR_TO_STACK]);
1481 return -EACCES;
1482 }
1483
1484 /* Only allow fixed-offset stack reads */
1485 if (!tnum_is_const(regs[regno].var_off)) {
1486 char tn_buf[48];
1487
1488 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1489 verbose("invalid variable stack read R%d var_off=%s\n",
1490 regno, tn_buf);
1491 return -EACCES;
1492 }
1493 off = regs[regno].off + regs[regno].var_off.value;
1494 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1495 access_size <= 0) {
1496 verbose("invalid stack type R%d off=%d access_size=%d\n",
1497 regno, off, access_size);
1498 return -EACCES;
1499 }
1500
1501 if (env->prog->aux->stack_depth < -off)
1502 env->prog->aux->stack_depth = -off;
1503
1504 if (meta && meta->raw_mode) {
1505 meta->access_size = access_size;
1506 meta->regno = regno;
1507 return 0;
1508 }
1509
1510 for (i = 0; i < access_size; i++) {
1511 slot = -(off + i) - 1;
1512 spi = slot / BPF_REG_SIZE;
1513 if (state->allocated_stack <= slot ||
1514 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1515 STACK_MISC) {
1516 verbose("invalid indirect read from stack off %d+%d size %d\n",
1517 off, i, access_size);
1518 return -EACCES;
1519 }
1520 }
1521 return 0;
1522 }
1523
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)1524 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1525 int access_size, bool zero_size_allowed,
1526 struct bpf_call_arg_meta *meta)
1527 {
1528 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
1529
1530 switch (reg->type) {
1531 case PTR_TO_PACKET:
1532 return check_packet_access(env, regno, reg->off, access_size);
1533 case PTR_TO_MAP_VALUE:
1534 return check_map_access(env, regno, reg->off, access_size);
1535 default: /* scalar_value|ptr_to_stack or invalid ptr */
1536 return check_stack_boundary(env, regno, access_size,
1537 zero_size_allowed, meta);
1538 }
1539 }
1540
check_func_arg(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,struct bpf_call_arg_meta * meta)1541 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1542 enum bpf_arg_type arg_type,
1543 struct bpf_call_arg_meta *meta)
1544 {
1545 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
1546 enum bpf_reg_type expected_type, type = reg->type;
1547 int err = 0;
1548
1549 if (arg_type == ARG_DONTCARE)
1550 return 0;
1551
1552 err = check_reg_arg(env, regno, SRC_OP);
1553 if (err)
1554 return err;
1555
1556 if (arg_type == ARG_ANYTHING) {
1557 if (is_pointer_value(env, regno)) {
1558 verbose("R%d leaks addr into helper function\n", regno);
1559 return -EACCES;
1560 }
1561 return 0;
1562 }
1563
1564 if (type == PTR_TO_PACKET &&
1565 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1566 verbose("helper access to the packet is not allowed\n");
1567 return -EACCES;
1568 }
1569
1570 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1571 arg_type == ARG_PTR_TO_MAP_VALUE) {
1572 expected_type = PTR_TO_STACK;
1573 if (type != PTR_TO_PACKET && type != expected_type)
1574 goto err_type;
1575 } else if (arg_type == ARG_CONST_SIZE ||
1576 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1577 expected_type = SCALAR_VALUE;
1578 if (type != expected_type)
1579 goto err_type;
1580 } else if (arg_type == ARG_CONST_MAP_PTR) {
1581 expected_type = CONST_PTR_TO_MAP;
1582 if (type != expected_type)
1583 goto err_type;
1584 } else if (arg_type == ARG_PTR_TO_CTX) {
1585 expected_type = PTR_TO_CTX;
1586 if (type != expected_type)
1587 goto err_type;
1588 err = check_ctx_reg(env, reg, regno);
1589 if (err < 0)
1590 return err;
1591 } else if (arg_type == ARG_PTR_TO_MEM ||
1592 arg_type == ARG_PTR_TO_UNINIT_MEM) {
1593 expected_type = PTR_TO_STACK;
1594 /* One exception here. In case function allows for NULL to be
1595 * passed in as argument, it's a SCALAR_VALUE type. Final test
1596 * happens during stack boundary checking.
1597 */
1598 if (register_is_null(*reg))
1599 /* final test in check_stack_boundary() */;
1600 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1601 type != expected_type)
1602 goto err_type;
1603 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1604 } else {
1605 verbose("unsupported arg_type %d\n", arg_type);
1606 return -EFAULT;
1607 }
1608
1609 if (arg_type == ARG_CONST_MAP_PTR) {
1610 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1611 meta->map_ptr = reg->map_ptr;
1612 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1613 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1614 * check that [key, key + map->key_size) are within
1615 * stack limits and initialized
1616 */
1617 if (!meta->map_ptr) {
1618 /* in function declaration map_ptr must come before
1619 * map_key, so that it's verified and known before
1620 * we have to check map_key here. Otherwise it means
1621 * that kernel subsystem misconfigured verifier
1622 */
1623 verbose("invalid map_ptr to access map->key\n");
1624 return -EACCES;
1625 }
1626 if (type == PTR_TO_PACKET)
1627 err = check_packet_access(env, regno, reg->off,
1628 meta->map_ptr->key_size);
1629 else
1630 err = check_stack_boundary(env, regno,
1631 meta->map_ptr->key_size,
1632 false, NULL);
1633 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1634 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1635 * check [value, value + map->value_size) validity
1636 */
1637 if (!meta->map_ptr) {
1638 /* kernel subsystem misconfigured verifier */
1639 verbose("invalid map_ptr to access map->value\n");
1640 return -EACCES;
1641 }
1642 if (type == PTR_TO_PACKET)
1643 err = check_packet_access(env, regno, reg->off,
1644 meta->map_ptr->value_size);
1645 else
1646 err = check_stack_boundary(env, regno,
1647 meta->map_ptr->value_size,
1648 false, NULL);
1649 } else if (arg_type == ARG_CONST_SIZE ||
1650 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1651 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1652
1653 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1654 * from stack pointer 'buf'. Check it
1655 * note: regno == len, regno - 1 == buf
1656 */
1657 if (regno == 0) {
1658 /* kernel subsystem misconfigured verifier */
1659 verbose("ARG_CONST_SIZE cannot be first argument\n");
1660 return -EACCES;
1661 }
1662
1663 /* The register is SCALAR_VALUE; the access check
1664 * happens using its boundaries.
1665 */
1666
1667 if (!tnum_is_const(reg->var_off))
1668 /* For unprivileged variable accesses, disable raw
1669 * mode so that the program is required to
1670 * initialize all the memory that the helper could
1671 * just partially fill up.
1672 */
1673 meta = NULL;
1674
1675 if (reg->smin_value < 0) {
1676 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1677 regno);
1678 return -EACCES;
1679 }
1680
1681 if (reg->umin_value == 0) {
1682 err = check_helper_mem_access(env, regno - 1, 0,
1683 zero_size_allowed,
1684 meta);
1685 if (err)
1686 return err;
1687 }
1688
1689 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1690 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1691 regno);
1692 return -EACCES;
1693 }
1694 err = check_helper_mem_access(env, regno - 1,
1695 reg->umax_value,
1696 zero_size_allowed, meta);
1697 }
1698
1699 return err;
1700 err_type:
1701 verbose("R%d type=%s expected=%s\n", regno,
1702 reg_type_str[type], reg_type_str[expected_type]);
1703 return -EACCES;
1704 }
1705
check_map_func_compatibility(struct bpf_map * map,int func_id)1706 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1707 {
1708 if (!map)
1709 return 0;
1710
1711 /* We need a two way check, first is from map perspective ... */
1712 switch (map->map_type) {
1713 case BPF_MAP_TYPE_PROG_ARRAY:
1714 if (func_id != BPF_FUNC_tail_call)
1715 goto error;
1716 break;
1717 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1718 if (func_id != BPF_FUNC_perf_event_read &&
1719 func_id != BPF_FUNC_perf_event_output)
1720 goto error;
1721 break;
1722 case BPF_MAP_TYPE_STACK_TRACE:
1723 if (func_id != BPF_FUNC_get_stackid)
1724 goto error;
1725 break;
1726 case BPF_MAP_TYPE_CGROUP_ARRAY:
1727 if (func_id != BPF_FUNC_skb_under_cgroup &&
1728 func_id != BPF_FUNC_current_task_under_cgroup)
1729 goto error;
1730 break;
1731 /* devmap returns a pointer to a live net_device ifindex that we cannot
1732 * allow to be modified from bpf side. So do not allow lookup elements
1733 * for now.
1734 */
1735 case BPF_MAP_TYPE_DEVMAP:
1736 if (func_id != BPF_FUNC_redirect_map)
1737 goto error;
1738 break;
1739 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1740 case BPF_MAP_TYPE_HASH_OF_MAPS:
1741 if (func_id != BPF_FUNC_map_lookup_elem)
1742 goto error;
1743 break;
1744 case BPF_MAP_TYPE_SOCKMAP:
1745 if (func_id != BPF_FUNC_sk_redirect_map &&
1746 func_id != BPF_FUNC_sock_map_update &&
1747 func_id != BPF_FUNC_map_delete_elem)
1748 goto error;
1749 break;
1750 default:
1751 break;
1752 }
1753
1754 /* ... and second from the function itself. */
1755 switch (func_id) {
1756 case BPF_FUNC_tail_call:
1757 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1758 goto error;
1759 break;
1760 case BPF_FUNC_perf_event_read:
1761 case BPF_FUNC_perf_event_output:
1762 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1763 goto error;
1764 break;
1765 case BPF_FUNC_get_stackid:
1766 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1767 goto error;
1768 break;
1769 case BPF_FUNC_current_task_under_cgroup:
1770 case BPF_FUNC_skb_under_cgroup:
1771 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1772 goto error;
1773 break;
1774 case BPF_FUNC_redirect_map:
1775 if (map->map_type != BPF_MAP_TYPE_DEVMAP)
1776 goto error;
1777 break;
1778 case BPF_FUNC_sk_redirect_map:
1779 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1780 goto error;
1781 break;
1782 case BPF_FUNC_sock_map_update:
1783 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1784 goto error;
1785 break;
1786 default:
1787 break;
1788 }
1789
1790 return 0;
1791 error:
1792 verbose("cannot pass map_type %d into func %s#%d\n",
1793 map->map_type, func_id_name(func_id), func_id);
1794 return -EINVAL;
1795 }
1796
check_raw_mode(const struct bpf_func_proto * fn)1797 static int check_raw_mode(const struct bpf_func_proto *fn)
1798 {
1799 int count = 0;
1800
1801 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1802 count++;
1803 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1804 count++;
1805 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1806 count++;
1807 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1808 count++;
1809 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1810 count++;
1811
1812 return count > 1 ? -EINVAL : 0;
1813 }
1814
1815 /* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid,
1816 * so turn them into unknown SCALAR_VALUE.
1817 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)1818 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1819 {
1820 struct bpf_verifier_state *state = env->cur_state;
1821 struct bpf_reg_state *regs = state->regs, *reg;
1822 int i;
1823
1824 for (i = 0; i < MAX_BPF_REG; i++)
1825 if (regs[i].type == PTR_TO_PACKET ||
1826 regs[i].type == PTR_TO_PACKET_END)
1827 mark_reg_unknown(regs, i);
1828
1829 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1830 if (state->stack[i].slot_type[0] != STACK_SPILL)
1831 continue;
1832 reg = &state->stack[i].spilled_ptr;
1833 if (reg->type != PTR_TO_PACKET &&
1834 reg->type != PTR_TO_PACKET_END)
1835 continue;
1836 __mark_reg_unknown(reg);
1837 }
1838 }
1839
check_call(struct bpf_verifier_env * env,int func_id,int insn_idx)1840 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1841 {
1842 const struct bpf_func_proto *fn = NULL;
1843 struct bpf_reg_state *regs;
1844 struct bpf_call_arg_meta meta;
1845 bool changes_data;
1846 int i, err;
1847
1848 /* find function prototype */
1849 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1850 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1851 return -EINVAL;
1852 }
1853
1854 if (env->prog->aux->ops->get_func_proto)
1855 fn = env->prog->aux->ops->get_func_proto(func_id);
1856
1857 if (!fn) {
1858 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1859 return -EINVAL;
1860 }
1861
1862 /* eBPF programs must be GPL compatible to use GPL-ed functions */
1863 if (!env->prog->gpl_compatible && fn->gpl_only) {
1864 verbose("cannot call GPL only function from proprietary program\n");
1865 return -EINVAL;
1866 }
1867
1868 changes_data = bpf_helper_changes_pkt_data(fn->func);
1869
1870 memset(&meta, 0, sizeof(meta));
1871 meta.pkt_access = fn->pkt_access;
1872
1873 /* We only support one arg being in raw mode at the moment, which
1874 * is sufficient for the helper functions we have right now.
1875 */
1876 err = check_raw_mode(fn);
1877 if (err) {
1878 verbose("kernel subsystem misconfigured func %s#%d\n",
1879 func_id_name(func_id), func_id);
1880 return err;
1881 }
1882
1883 /* check args */
1884 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1885 if (err)
1886 return err;
1887 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1888 if (err)
1889 return err;
1890 if (func_id == BPF_FUNC_tail_call) {
1891 if (meta.map_ptr == NULL) {
1892 verbose("verifier bug\n");
1893 return -EINVAL;
1894 }
1895 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
1896 }
1897 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1898 if (err)
1899 return err;
1900 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1901 if (err)
1902 return err;
1903 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1904 if (err)
1905 return err;
1906
1907 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1908 * is inferred from register state.
1909 */
1910 for (i = 0; i < meta.access_size; i++) {
1911 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
1912 BPF_WRITE, -1, false);
1913 if (err)
1914 return err;
1915 }
1916
1917 regs = cur_regs(env);
1918 /* reset caller saved regs */
1919 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1920 mark_reg_not_init(regs, caller_saved[i]);
1921 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1922 }
1923
1924 /* update return register (already marked as written above) */
1925 if (fn->ret_type == RET_INTEGER) {
1926 /* sets type to SCALAR_VALUE */
1927 mark_reg_unknown(regs, BPF_REG_0);
1928 } else if (fn->ret_type == RET_VOID) {
1929 regs[BPF_REG_0].type = NOT_INIT;
1930 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1931 struct bpf_insn_aux_data *insn_aux;
1932
1933 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1934 /* There is no offset yet applied, variable or fixed */
1935 mark_reg_known_zero(regs, BPF_REG_0);
1936 regs[BPF_REG_0].off = 0;
1937 /* remember map_ptr, so that check_map_access()
1938 * can check 'value_size' boundary of memory access
1939 * to map element returned from bpf_map_lookup_elem()
1940 */
1941 if (meta.map_ptr == NULL) {
1942 verbose("kernel subsystem misconfigured verifier\n");
1943 return -EINVAL;
1944 }
1945 regs[BPF_REG_0].map_ptr = meta.map_ptr;
1946 regs[BPF_REG_0].id = ++env->id_gen;
1947 insn_aux = &env->insn_aux_data[insn_idx];
1948 if (!insn_aux->map_ptr)
1949 insn_aux->map_ptr = meta.map_ptr;
1950 else if (insn_aux->map_ptr != meta.map_ptr)
1951 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1952 } else {
1953 verbose("unknown return type %d of func %s#%d\n",
1954 fn->ret_type, func_id_name(func_id), func_id);
1955 return -EINVAL;
1956 }
1957
1958 err = check_map_func_compatibility(meta.map_ptr, func_id);
1959 if (err)
1960 return err;
1961
1962 if (changes_data)
1963 clear_all_pkt_pointers(env);
1964 return 0;
1965 }
1966
signed_add_overflows(s64 a,s64 b)1967 static bool signed_add_overflows(s64 a, s64 b)
1968 {
1969 /* Do the add in u64, where overflow is well-defined */
1970 s64 res = (s64)((u64)a + (u64)b);
1971
1972 if (b < 0)
1973 return res > a;
1974 return res < a;
1975 }
1976
signed_sub_overflows(s64 a,s64 b)1977 static bool signed_sub_overflows(s64 a, s64 b)
1978 {
1979 /* Do the sub in u64, where overflow is well-defined */
1980 s64 res = (s64)((u64)a - (u64)b);
1981
1982 if (b < 0)
1983 return res < a;
1984 return res > a;
1985 }
1986
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)1987 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
1988 const struct bpf_reg_state *reg,
1989 enum bpf_reg_type type)
1990 {
1991 bool known = tnum_is_const(reg->var_off);
1992 s64 val = reg->var_off.value;
1993 s64 smin = reg->smin_value;
1994
1995 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
1996 verbose("math between %s pointer and %lld is not allowed\n",
1997 reg_type_str[type], val);
1998 return false;
1999 }
2000
2001 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2002 verbose("%s pointer offset %d is not allowed\n",
2003 reg_type_str[type], reg->off);
2004 return false;
2005 }
2006
2007 if (smin == S64_MIN) {
2008 verbose("math between %s pointer and register with unbounded min value is not allowed\n",
2009 reg_type_str[type]);
2010 return false;
2011 }
2012
2013 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2014 verbose("value %lld makes %s pointer be out of bounds\n",
2015 smin, reg_type_str[type]);
2016 return false;
2017 }
2018
2019 return true;
2020 }
2021
cur_aux(struct bpf_verifier_env * env)2022 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
2023 {
2024 return &env->insn_aux_data[env->insn_idx];
2025 }
2026
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * ptr_limit,u8 opcode,bool off_is_neg)2027 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
2028 u32 *ptr_limit, u8 opcode, bool off_is_neg)
2029 {
2030 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
2031 (opcode == BPF_SUB && !off_is_neg);
2032 u32 off;
2033
2034 switch (ptr_reg->type) {
2035 case PTR_TO_STACK:
2036 off = ptr_reg->off + ptr_reg->var_off.value;
2037 if (mask_to_left)
2038 *ptr_limit = MAX_BPF_STACK + off;
2039 else
2040 *ptr_limit = -off;
2041 return 0;
2042 case PTR_TO_MAP_VALUE:
2043 if (mask_to_left) {
2044 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
2045 } else {
2046 off = ptr_reg->smin_value + ptr_reg->off;
2047 *ptr_limit = ptr_reg->map_ptr->value_size - off;
2048 }
2049 return 0;
2050 default:
2051 return -EINVAL;
2052 }
2053 }
2054
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)2055 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
2056 const struct bpf_insn *insn)
2057 {
2058 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
2059 }
2060
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)2061 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
2062 u32 alu_state, u32 alu_limit)
2063 {
2064 /* If we arrived here from different branches with different
2065 * state or limits to sanitize, then this won't work.
2066 */
2067 if (aux->alu_state &&
2068 (aux->alu_state != alu_state ||
2069 aux->alu_limit != alu_limit))
2070 return -EACCES;
2071
2072 /* Corresponding fixup done in fixup_bpf_calls(). */
2073 aux->alu_state = alu_state;
2074 aux->alu_limit = alu_limit;
2075 return 0;
2076 }
2077
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)2078 static int sanitize_val_alu(struct bpf_verifier_env *env,
2079 struct bpf_insn *insn)
2080 {
2081 struct bpf_insn_aux_data *aux = cur_aux(env);
2082
2083 if (can_skip_alu_sanitation(env, insn))
2084 return 0;
2085
2086 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
2087 }
2088
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,struct bpf_reg_state * dst_reg,bool off_is_neg)2089 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
2090 struct bpf_insn *insn,
2091 const struct bpf_reg_state *ptr_reg,
2092 struct bpf_reg_state *dst_reg,
2093 bool off_is_neg)
2094 {
2095 struct bpf_verifier_state *vstate = env->cur_state;
2096 struct bpf_insn_aux_data *aux = cur_aux(env);
2097 bool ptr_is_dst_reg = ptr_reg == dst_reg;
2098 u8 opcode = BPF_OP(insn->code);
2099 u32 alu_state, alu_limit;
2100 struct bpf_reg_state tmp;
2101 bool ret;
2102
2103 if (can_skip_alu_sanitation(env, insn))
2104 return 0;
2105
2106 /* We already marked aux for masking from non-speculative
2107 * paths, thus we got here in the first place. We only care
2108 * to explore bad access from here.
2109 */
2110 if (vstate->speculative)
2111 goto do_sim;
2112
2113 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
2114 alu_state |= ptr_is_dst_reg ?
2115 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
2116
2117 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
2118 return 0;
2119 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
2120 return -EACCES;
2121 do_sim:
2122 /* Simulate and find potential out-of-bounds access under
2123 * speculative execution from truncation as a result of
2124 * masking when off was not within expected range. If off
2125 * sits in dst, then we temporarily need to move ptr there
2126 * to simulate dst (== 0) +/-= ptr. Needed, for example,
2127 * for cases where we use K-based arithmetic in one direction
2128 * and truncated reg-based in the other in order to explore
2129 * bad access.
2130 */
2131 if (!ptr_is_dst_reg) {
2132 tmp = *dst_reg;
2133 *dst_reg = *ptr_reg;
2134 }
2135 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
2136 if (!ptr_is_dst_reg && ret)
2137 *dst_reg = tmp;
2138 return !ret ? -EFAULT : 0;
2139 }
2140
2141 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2142 * Caller should also handle BPF_MOV case separately.
2143 * If we return -EACCES, caller may want to try again treating pointer as a
2144 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2145 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)2146 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2147 struct bpf_insn *insn,
2148 const struct bpf_reg_state *ptr_reg,
2149 const struct bpf_reg_state *off_reg)
2150 {
2151 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
2152 bool known = tnum_is_const(off_reg->var_off);
2153 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2154 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2155 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2156 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2157 u32 dst = insn->dst_reg, src = insn->src_reg;
2158 u8 opcode = BPF_OP(insn->code);
2159 int ret;
2160
2161 dst_reg = ®s[dst];
2162
2163 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2164 smin_val > smax_val || umin_val > umax_val) {
2165 /* Taint dst register if offset had invalid bounds derived from
2166 * e.g. dead branches.
2167 */
2168 __mark_reg_unknown(dst_reg);
2169 return 0;
2170 }
2171
2172 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2173 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
2174 if (!env->allow_ptr_leaks)
2175 verbose("R%d 32-bit pointer arithmetic prohibited\n",
2176 dst);
2177 return -EACCES;
2178 }
2179
2180 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2181 if (!env->allow_ptr_leaks)
2182 verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2183 dst);
2184 return -EACCES;
2185 }
2186 if (ptr_reg->type == CONST_PTR_TO_MAP) {
2187 if (!env->allow_ptr_leaks)
2188 verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2189 dst);
2190 return -EACCES;
2191 }
2192 if (ptr_reg->type == PTR_TO_PACKET_END) {
2193 if (!env->allow_ptr_leaks)
2194 verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2195 dst);
2196 return -EACCES;
2197 }
2198
2199 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2200 * The id may be overwritten later if we create a new variable offset.
2201 */
2202 dst_reg->type = ptr_reg->type;
2203 dst_reg->id = ptr_reg->id;
2204
2205 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2206 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2207 return -EINVAL;
2208
2209 switch (opcode) {
2210 case BPF_ADD:
2211 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
2212 if (ret < 0) {
2213 verbose("R%d tried to add from different maps or paths\n", dst);
2214 return ret;
2215 }
2216 /* We can take a fixed offset as long as it doesn't overflow
2217 * the s32 'off' field
2218 */
2219 if (known && (ptr_reg->off + smin_val ==
2220 (s64)(s32)(ptr_reg->off + smin_val))) {
2221 /* pointer += K. Accumulate it into fixed offset */
2222 dst_reg->smin_value = smin_ptr;
2223 dst_reg->smax_value = smax_ptr;
2224 dst_reg->umin_value = umin_ptr;
2225 dst_reg->umax_value = umax_ptr;
2226 dst_reg->var_off = ptr_reg->var_off;
2227 dst_reg->off = ptr_reg->off + smin_val;
2228 dst_reg->raw = ptr_reg->raw;
2229 break;
2230 }
2231 /* A new variable offset is created. Note that off_reg->off
2232 * == 0, since it's a scalar.
2233 * dst_reg gets the pointer type and since some positive
2234 * integer value was added to the pointer, give it a new 'id'
2235 * if it's a PTR_TO_PACKET.
2236 * this creates a new 'base' pointer, off_reg (variable) gets
2237 * added into the variable offset, and we copy the fixed offset
2238 * from ptr_reg.
2239 */
2240 if (signed_add_overflows(smin_ptr, smin_val) ||
2241 signed_add_overflows(smax_ptr, smax_val)) {
2242 dst_reg->smin_value = S64_MIN;
2243 dst_reg->smax_value = S64_MAX;
2244 } else {
2245 dst_reg->smin_value = smin_ptr + smin_val;
2246 dst_reg->smax_value = smax_ptr + smax_val;
2247 }
2248 if (umin_ptr + umin_val < umin_ptr ||
2249 umax_ptr + umax_val < umax_ptr) {
2250 dst_reg->umin_value = 0;
2251 dst_reg->umax_value = U64_MAX;
2252 } else {
2253 dst_reg->umin_value = umin_ptr + umin_val;
2254 dst_reg->umax_value = umax_ptr + umax_val;
2255 }
2256 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2257 dst_reg->off = ptr_reg->off;
2258 dst_reg->raw = ptr_reg->raw;
2259 if (ptr_reg->type == PTR_TO_PACKET) {
2260 dst_reg->id = ++env->id_gen;
2261 /* something was added to pkt_ptr, set range to zero */
2262 dst_reg->raw = 0;
2263 }
2264 break;
2265 case BPF_SUB:
2266 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
2267 if (ret < 0) {
2268 verbose("R%d tried to sub from different maps or paths\n", dst);
2269 return ret;
2270 }
2271 if (dst_reg == off_reg) {
2272 /* scalar -= pointer. Creates an unknown scalar */
2273 if (!env->allow_ptr_leaks)
2274 verbose("R%d tried to subtract pointer from scalar\n",
2275 dst);
2276 return -EACCES;
2277 }
2278 /* We don't allow subtraction from FP, because (according to
2279 * test_verifier.c test "invalid fp arithmetic", JITs might not
2280 * be able to deal with it.
2281 */
2282 if (ptr_reg->type == PTR_TO_STACK) {
2283 if (!env->allow_ptr_leaks)
2284 verbose("R%d subtraction from stack pointer prohibited\n",
2285 dst);
2286 return -EACCES;
2287 }
2288 if (known && (ptr_reg->off - smin_val ==
2289 (s64)(s32)(ptr_reg->off - smin_val))) {
2290 /* pointer -= K. Subtract it from fixed offset */
2291 dst_reg->smin_value = smin_ptr;
2292 dst_reg->smax_value = smax_ptr;
2293 dst_reg->umin_value = umin_ptr;
2294 dst_reg->umax_value = umax_ptr;
2295 dst_reg->var_off = ptr_reg->var_off;
2296 dst_reg->id = ptr_reg->id;
2297 dst_reg->off = ptr_reg->off - smin_val;
2298 dst_reg->raw = ptr_reg->raw;
2299 break;
2300 }
2301 /* A new variable offset is created. If the subtrahend is known
2302 * nonnegative, then any reg->range we had before is still good.
2303 */
2304 if (signed_sub_overflows(smin_ptr, smax_val) ||
2305 signed_sub_overflows(smax_ptr, smin_val)) {
2306 /* Overflow possible, we know nothing */
2307 dst_reg->smin_value = S64_MIN;
2308 dst_reg->smax_value = S64_MAX;
2309 } else {
2310 dst_reg->smin_value = smin_ptr - smax_val;
2311 dst_reg->smax_value = smax_ptr - smin_val;
2312 }
2313 if (umin_ptr < umax_val) {
2314 /* Overflow possible, we know nothing */
2315 dst_reg->umin_value = 0;
2316 dst_reg->umax_value = U64_MAX;
2317 } else {
2318 /* Cannot overflow (as long as bounds are consistent) */
2319 dst_reg->umin_value = umin_ptr - umax_val;
2320 dst_reg->umax_value = umax_ptr - umin_val;
2321 }
2322 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2323 dst_reg->off = ptr_reg->off;
2324 dst_reg->raw = ptr_reg->raw;
2325 if (ptr_reg->type == PTR_TO_PACKET) {
2326 dst_reg->id = ++env->id_gen;
2327 /* something was added to pkt_ptr, set range to zero */
2328 if (smin_val < 0)
2329 dst_reg->raw = 0;
2330 }
2331 break;
2332 case BPF_AND:
2333 case BPF_OR:
2334 case BPF_XOR:
2335 /* bitwise ops on pointers are troublesome, prohibit for now.
2336 * (However, in principle we could allow some cases, e.g.
2337 * ptr &= ~3 which would reduce min_value by 3.)
2338 */
2339 if (!env->allow_ptr_leaks)
2340 verbose("R%d bitwise operator %s on pointer prohibited\n",
2341 dst, bpf_alu_string[opcode >> 4]);
2342 return -EACCES;
2343 case PTR_TO_MAP_VALUE:
2344 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
2345 verbose("R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
2346 off_reg == dst_reg ? dst : src);
2347 return -EACCES;
2348 }
2349 /* fall-through */
2350 default:
2351 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2352 if (!env->allow_ptr_leaks)
2353 verbose("R%d pointer arithmetic with %s operator prohibited\n",
2354 dst, bpf_alu_string[opcode >> 4]);
2355 return -EACCES;
2356 }
2357
2358 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2359 return -EINVAL;
2360
2361 __update_reg_bounds(dst_reg);
2362 __reg_deduce_bounds(dst_reg);
2363 __reg_bound_offset(dst_reg);
2364
2365 /* For unprivileged we require that resulting offset must be in bounds
2366 * in order to be able to sanitize access later on.
2367 */
2368 if (!env->allow_ptr_leaks) {
2369 if (dst_reg->type == PTR_TO_MAP_VALUE &&
2370 check_map_access(env, dst, dst_reg->off, 1)) {
2371 verbose("R%d pointer arithmetic of map value goes out of range, "
2372 "prohibited for !root\n", dst);
2373 return -EACCES;
2374 } else if (dst_reg->type == PTR_TO_STACK &&
2375 check_stack_access(env, dst_reg, dst_reg->off +
2376 dst_reg->var_off.value, 1)) {
2377 verbose("R%d stack pointer arithmetic goes out of range, "
2378 "prohibited for !root\n", dst);
2379 return -EACCES;
2380 }
2381 }
2382
2383 return 0;
2384 }
2385
2386 /* WARNING: This function does calculations on 64-bit values, but the actual
2387 * execution may occur on 32-bit values. Therefore, things like bitshifts
2388 * need extra checks in the 32-bit case.
2389 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)2390 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2391 struct bpf_insn *insn,
2392 struct bpf_reg_state *dst_reg,
2393 struct bpf_reg_state src_reg)
2394 {
2395 struct bpf_reg_state *regs = cur_regs(env);
2396 u8 opcode = BPF_OP(insn->code);
2397 bool src_known, dst_known;
2398 s64 smin_val, smax_val;
2399 u64 umin_val, umax_val;
2400 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2401 u32 dst = insn->dst_reg;
2402 int ret;
2403
2404 if (insn_bitness == 32) {
2405 /* Relevant for 32-bit RSH: Information can propagate towards
2406 * LSB, so it isn't sufficient to only truncate the output to
2407 * 32 bits.
2408 */
2409 coerce_reg_to_size(dst_reg, 4);
2410 coerce_reg_to_size(&src_reg, 4);
2411 }
2412
2413 smin_val = src_reg.smin_value;
2414 smax_val = src_reg.smax_value;
2415 umin_val = src_reg.umin_value;
2416 umax_val = src_reg.umax_value;
2417 src_known = tnum_is_const(src_reg.var_off);
2418 dst_known = tnum_is_const(dst_reg->var_off);
2419
2420 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2421 smin_val > smax_val || umin_val > umax_val) {
2422 /* Taint dst register if offset had invalid bounds derived from
2423 * e.g. dead branches.
2424 */
2425 __mark_reg_unknown(dst_reg);
2426 return 0;
2427 }
2428
2429 if (!src_known &&
2430 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2431 __mark_reg_unknown(dst_reg);
2432 return 0;
2433 }
2434
2435 switch (opcode) {
2436 case BPF_ADD:
2437 ret = sanitize_val_alu(env, insn);
2438 if (ret < 0) {
2439 verbose("R%d tried to add from different pointers or scalars\n", dst);
2440 return ret;
2441 }
2442 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2443 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2444 dst_reg->smin_value = S64_MIN;
2445 dst_reg->smax_value = S64_MAX;
2446 } else {
2447 dst_reg->smin_value += smin_val;
2448 dst_reg->smax_value += smax_val;
2449 }
2450 if (dst_reg->umin_value + umin_val < umin_val ||
2451 dst_reg->umax_value + umax_val < umax_val) {
2452 dst_reg->umin_value = 0;
2453 dst_reg->umax_value = U64_MAX;
2454 } else {
2455 dst_reg->umin_value += umin_val;
2456 dst_reg->umax_value += umax_val;
2457 }
2458 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2459 break;
2460 case BPF_SUB:
2461 ret = sanitize_val_alu(env, insn);
2462 if (ret < 0) {
2463 verbose("R%d tried to sub from different pointers or scalars\n", dst);
2464 return ret;
2465 }
2466 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2467 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2468 /* Overflow possible, we know nothing */
2469 dst_reg->smin_value = S64_MIN;
2470 dst_reg->smax_value = S64_MAX;
2471 } else {
2472 dst_reg->smin_value -= smax_val;
2473 dst_reg->smax_value -= smin_val;
2474 }
2475 if (dst_reg->umin_value < umax_val) {
2476 /* Overflow possible, we know nothing */
2477 dst_reg->umin_value = 0;
2478 dst_reg->umax_value = U64_MAX;
2479 } else {
2480 /* Cannot overflow (as long as bounds are consistent) */
2481 dst_reg->umin_value -= umax_val;
2482 dst_reg->umax_value -= umin_val;
2483 }
2484 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2485 break;
2486 case BPF_MUL:
2487 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2488 if (smin_val < 0 || dst_reg->smin_value < 0) {
2489 /* Ain't nobody got time to multiply that sign */
2490 __mark_reg_unbounded(dst_reg);
2491 __update_reg_bounds(dst_reg);
2492 break;
2493 }
2494 /* Both values are positive, so we can work with unsigned and
2495 * copy the result to signed (unless it exceeds S64_MAX).
2496 */
2497 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2498 /* Potential overflow, we know nothing */
2499 __mark_reg_unbounded(dst_reg);
2500 /* (except what we can learn from the var_off) */
2501 __update_reg_bounds(dst_reg);
2502 break;
2503 }
2504 dst_reg->umin_value *= umin_val;
2505 dst_reg->umax_value *= umax_val;
2506 if (dst_reg->umax_value > S64_MAX) {
2507 /* Overflow possible, we know nothing */
2508 dst_reg->smin_value = S64_MIN;
2509 dst_reg->smax_value = S64_MAX;
2510 } else {
2511 dst_reg->smin_value = dst_reg->umin_value;
2512 dst_reg->smax_value = dst_reg->umax_value;
2513 }
2514 break;
2515 case BPF_AND:
2516 if (src_known && dst_known) {
2517 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2518 src_reg.var_off.value);
2519 break;
2520 }
2521 /* We get our minimum from the var_off, since that's inherently
2522 * bitwise. Our maximum is the minimum of the operands' maxima.
2523 */
2524 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2525 dst_reg->umin_value = dst_reg->var_off.value;
2526 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2527 if (dst_reg->smin_value < 0 || smin_val < 0) {
2528 /* Lose signed bounds when ANDing negative numbers,
2529 * ain't nobody got time for that.
2530 */
2531 dst_reg->smin_value = S64_MIN;
2532 dst_reg->smax_value = S64_MAX;
2533 } else {
2534 /* ANDing two positives gives a positive, so safe to
2535 * cast result into s64.
2536 */
2537 dst_reg->smin_value = dst_reg->umin_value;
2538 dst_reg->smax_value = dst_reg->umax_value;
2539 }
2540 /* We may learn something more from the var_off */
2541 __update_reg_bounds(dst_reg);
2542 break;
2543 case BPF_OR:
2544 if (src_known && dst_known) {
2545 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2546 src_reg.var_off.value);
2547 break;
2548 }
2549 /* We get our maximum from the var_off, and our minimum is the
2550 * maximum of the operands' minima
2551 */
2552 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2553 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2554 dst_reg->umax_value = dst_reg->var_off.value |
2555 dst_reg->var_off.mask;
2556 if (dst_reg->smin_value < 0 || smin_val < 0) {
2557 /* Lose signed bounds when ORing negative numbers,
2558 * ain't nobody got time for that.
2559 */
2560 dst_reg->smin_value = S64_MIN;
2561 dst_reg->smax_value = S64_MAX;
2562 } else {
2563 /* ORing two positives gives a positive, so safe to
2564 * cast result into s64.
2565 */
2566 dst_reg->smin_value = dst_reg->umin_value;
2567 dst_reg->smax_value = dst_reg->umax_value;
2568 }
2569 /* We may learn something more from the var_off */
2570 __update_reg_bounds(dst_reg);
2571 break;
2572 case BPF_LSH:
2573 if (umax_val >= insn_bitness) {
2574 /* Shifts greater than 31 or 63 are undefined.
2575 * This includes shifts by a negative number.
2576 */
2577 mark_reg_unknown(regs, insn->dst_reg);
2578 break;
2579 }
2580 /* We lose all sign bit information (except what we can pick
2581 * up from var_off)
2582 */
2583 dst_reg->smin_value = S64_MIN;
2584 dst_reg->smax_value = S64_MAX;
2585 /* If we might shift our top bit out, then we know nothing */
2586 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2587 dst_reg->umin_value = 0;
2588 dst_reg->umax_value = U64_MAX;
2589 } else {
2590 dst_reg->umin_value <<= umin_val;
2591 dst_reg->umax_value <<= umax_val;
2592 }
2593 if (src_known)
2594 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2595 else
2596 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2597 /* We may learn something more from the var_off */
2598 __update_reg_bounds(dst_reg);
2599 break;
2600 case BPF_RSH:
2601 if (umax_val >= insn_bitness) {
2602 /* Shifts greater than 31 or 63 are undefined.
2603 * This includes shifts by a negative number.
2604 */
2605 mark_reg_unknown(regs, insn->dst_reg);
2606 break;
2607 }
2608 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2609 * be negative, then either:
2610 * 1) src_reg might be zero, so the sign bit of the result is
2611 * unknown, so we lose our signed bounds
2612 * 2) it's known negative, thus the unsigned bounds capture the
2613 * signed bounds
2614 * 3) the signed bounds cross zero, so they tell us nothing
2615 * about the result
2616 * If the value in dst_reg is known nonnegative, then again the
2617 * unsigned bounts capture the signed bounds.
2618 * Thus, in all cases it suffices to blow away our signed bounds
2619 * and rely on inferring new ones from the unsigned bounds and
2620 * var_off of the result.
2621 */
2622 dst_reg->smin_value = S64_MIN;
2623 dst_reg->smax_value = S64_MAX;
2624 if (src_known)
2625 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2626 umin_val);
2627 else
2628 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2629 dst_reg->umin_value >>= umax_val;
2630 dst_reg->umax_value >>= umin_val;
2631 /* We may learn something more from the var_off */
2632 __update_reg_bounds(dst_reg);
2633 break;
2634 default:
2635 mark_reg_unknown(regs, insn->dst_reg);
2636 break;
2637 }
2638
2639 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2640 /* 32-bit ALU ops are (32,32)->32 */
2641 coerce_reg_to_size(dst_reg, 4);
2642 }
2643
2644 __reg_deduce_bounds(dst_reg);
2645 __reg_bound_offset(dst_reg);
2646 return 0;
2647 }
2648
2649 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2650 * and var_off.
2651 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)2652 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2653 struct bpf_insn *insn)
2654 {
2655 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2656 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2657 u8 opcode = BPF_OP(insn->code);
2658 int rc;
2659
2660 dst_reg = ®s[insn->dst_reg];
2661 src_reg = NULL;
2662 if (dst_reg->type != SCALAR_VALUE)
2663 ptr_reg = dst_reg;
2664 if (BPF_SRC(insn->code) == BPF_X) {
2665 src_reg = ®s[insn->src_reg];
2666 if (src_reg->type != SCALAR_VALUE) {
2667 if (dst_reg->type != SCALAR_VALUE) {
2668 /* Combining two pointers by any ALU op yields
2669 * an arbitrary scalar.
2670 */
2671 if (!env->allow_ptr_leaks) {
2672 verbose("R%d pointer %s pointer prohibited\n",
2673 insn->dst_reg,
2674 bpf_alu_string[opcode >> 4]);
2675 return -EACCES;
2676 }
2677 mark_reg_unknown(regs, insn->dst_reg);
2678 return 0;
2679 } else {
2680 /* scalar += pointer
2681 * This is legal, but we have to reverse our
2682 * src/dest handling in computing the range
2683 */
2684 rc = adjust_ptr_min_max_vals(env, insn,
2685 src_reg, dst_reg);
2686 if (rc == -EACCES && env->allow_ptr_leaks) {
2687 /* scalar += unknown scalar */
2688 __mark_reg_unknown(&off_reg);
2689 return adjust_scalar_min_max_vals(
2690 env, insn,
2691 dst_reg, off_reg);
2692 }
2693 return rc;
2694 }
2695 } else if (ptr_reg) {
2696 /* pointer += scalar */
2697 rc = adjust_ptr_min_max_vals(env, insn,
2698 dst_reg, src_reg);
2699 if (rc == -EACCES && env->allow_ptr_leaks) {
2700 /* unknown scalar += scalar */
2701 __mark_reg_unknown(dst_reg);
2702 return adjust_scalar_min_max_vals(
2703 env, insn, dst_reg, *src_reg);
2704 }
2705 return rc;
2706 }
2707 } else {
2708 /* Pretend the src is a reg with a known value, since we only
2709 * need to be able to read from this state.
2710 */
2711 off_reg.type = SCALAR_VALUE;
2712 __mark_reg_known(&off_reg, insn->imm);
2713 src_reg = &off_reg;
2714 if (ptr_reg) { /* pointer += K */
2715 rc = adjust_ptr_min_max_vals(env, insn,
2716 ptr_reg, src_reg);
2717 if (rc == -EACCES && env->allow_ptr_leaks) {
2718 /* unknown scalar += K */
2719 __mark_reg_unknown(dst_reg);
2720 return adjust_scalar_min_max_vals(
2721 env, insn, dst_reg, off_reg);
2722 }
2723 return rc;
2724 }
2725 }
2726
2727 /* Got here implies adding two SCALAR_VALUEs */
2728 if (WARN_ON_ONCE(ptr_reg)) {
2729 print_verifier_state(env->cur_state);
2730 verbose("verifier internal error: unexpected ptr_reg\n");
2731 return -EINVAL;
2732 }
2733 if (WARN_ON(!src_reg)) {
2734 print_verifier_state(env->cur_state);
2735 verbose("verifier internal error: no src_reg\n");
2736 return -EINVAL;
2737 }
2738 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2739 }
2740
2741 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)2742 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2743 {
2744 struct bpf_reg_state *regs = cur_regs(env);
2745 u8 opcode = BPF_OP(insn->code);
2746 int err;
2747
2748 if (opcode == BPF_END || opcode == BPF_NEG) {
2749 if (opcode == BPF_NEG) {
2750 if (BPF_SRC(insn->code) != 0 ||
2751 insn->src_reg != BPF_REG_0 ||
2752 insn->off != 0 || insn->imm != 0) {
2753 verbose("BPF_NEG uses reserved fields\n");
2754 return -EINVAL;
2755 }
2756 } else {
2757 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2758 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2759 BPF_CLASS(insn->code) == BPF_ALU64) {
2760 verbose("BPF_END uses reserved fields\n");
2761 return -EINVAL;
2762 }
2763 }
2764
2765 /* check src operand */
2766 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2767 if (err)
2768 return err;
2769
2770 if (is_pointer_value(env, insn->dst_reg)) {
2771 verbose("R%d pointer arithmetic prohibited\n",
2772 insn->dst_reg);
2773 return -EACCES;
2774 }
2775
2776 /* check dest operand */
2777 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2778 if (err)
2779 return err;
2780
2781 } else if (opcode == BPF_MOV) {
2782
2783 if (BPF_SRC(insn->code) == BPF_X) {
2784 if (insn->imm != 0 || insn->off != 0) {
2785 verbose("BPF_MOV uses reserved fields\n");
2786 return -EINVAL;
2787 }
2788
2789 /* check src operand */
2790 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2791 if (err)
2792 return err;
2793 } else {
2794 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2795 verbose("BPF_MOV uses reserved fields\n");
2796 return -EINVAL;
2797 }
2798 }
2799
2800 /* check dest operand */
2801 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2802 if (err)
2803 return err;
2804
2805 if (BPF_SRC(insn->code) == BPF_X) {
2806 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2807 /* case: R1 = R2
2808 * copy register state to dest reg
2809 */
2810 regs[insn->dst_reg] = regs[insn->src_reg];
2811 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2812 } else {
2813 /* R1 = (u32) R2 */
2814 if (is_pointer_value(env, insn->src_reg)) {
2815 verbose("R%d partial copy of pointer\n",
2816 insn->src_reg);
2817 return -EACCES;
2818 }
2819 mark_reg_unknown(regs, insn->dst_reg);
2820 coerce_reg_to_size(®s[insn->dst_reg], 4);
2821 }
2822 } else {
2823 /* case: R = imm
2824 * remember the value we stored into this reg
2825 */
2826 regs[insn->dst_reg].type = SCALAR_VALUE;
2827 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2828 __mark_reg_known(regs + insn->dst_reg,
2829 insn->imm);
2830 } else {
2831 __mark_reg_known(regs + insn->dst_reg,
2832 (u32)insn->imm);
2833 }
2834 }
2835
2836 } else if (opcode > BPF_END) {
2837 verbose("invalid BPF_ALU opcode %x\n", opcode);
2838 return -EINVAL;
2839
2840 } else { /* all other ALU ops: and, sub, xor, add, ... */
2841
2842 if (BPF_SRC(insn->code) == BPF_X) {
2843 if (insn->imm != 0 || insn->off != 0) {
2844 verbose("BPF_ALU uses reserved fields\n");
2845 return -EINVAL;
2846 }
2847 /* check src1 operand */
2848 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2849 if (err)
2850 return err;
2851 } else {
2852 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2853 verbose("BPF_ALU uses reserved fields\n");
2854 return -EINVAL;
2855 }
2856 }
2857
2858 /* check src2 operand */
2859 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2860 if (err)
2861 return err;
2862
2863 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2864 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2865 verbose("div by zero\n");
2866 return -EINVAL;
2867 }
2868
2869 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
2870 verbose("BPF_ARSH not supported for 32 bit ALU\n");
2871 return -EINVAL;
2872 }
2873
2874 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2875 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2876 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2877
2878 if (insn->imm < 0 || insn->imm >= size) {
2879 verbose("invalid shift %d\n", insn->imm);
2880 return -EINVAL;
2881 }
2882 }
2883
2884 /* check dest operand */
2885 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2886 if (err)
2887 return err;
2888
2889 return adjust_reg_min_max_vals(env, insn);
2890 }
2891
2892 return 0;
2893 }
2894
find_good_pkt_pointers(struct bpf_verifier_state * state,struct bpf_reg_state * dst_reg,bool range_right_open)2895 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2896 struct bpf_reg_state *dst_reg,
2897 bool range_right_open)
2898 {
2899 struct bpf_reg_state *regs = state->regs, *reg;
2900 u16 new_range;
2901 int i;
2902
2903 if (dst_reg->off < 0 ||
2904 (dst_reg->off == 0 && range_right_open))
2905 /* This doesn't give us any range */
2906 return;
2907
2908 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2909 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2910 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2911 * than pkt_end, but that's because it's also less than pkt.
2912 */
2913 return;
2914
2915 new_range = dst_reg->off;
2916 if (range_right_open)
2917 new_range--;
2918
2919 /* Examples for register markings:
2920 *
2921 * pkt_data in dst register:
2922 *
2923 * r2 = r3;
2924 * r2 += 8;
2925 * if (r2 > pkt_end) goto <handle exception>
2926 * <access okay>
2927 *
2928 * r2 = r3;
2929 * r2 += 8;
2930 * if (r2 < pkt_end) goto <access okay>
2931 * <handle exception>
2932 *
2933 * Where:
2934 * r2 == dst_reg, pkt_end == src_reg
2935 * r2=pkt(id=n,off=8,r=0)
2936 * r3=pkt(id=n,off=0,r=0)
2937 *
2938 * pkt_data in src register:
2939 *
2940 * r2 = r3;
2941 * r2 += 8;
2942 * if (pkt_end >= r2) goto <access okay>
2943 * <handle exception>
2944 *
2945 * r2 = r3;
2946 * r2 += 8;
2947 * if (pkt_end <= r2) goto <handle exception>
2948 * <access okay>
2949 *
2950 * Where:
2951 * pkt_end == dst_reg, r2 == src_reg
2952 * r2=pkt(id=n,off=8,r=0)
2953 * r3=pkt(id=n,off=0,r=0)
2954 *
2955 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2956 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2957 * and [r3, r3 + 8-1) respectively is safe to access depending on
2958 * the check.
2959 */
2960
2961 /* If our ids match, then we must have the same max_value. And we
2962 * don't care about the other reg's fixed offset, since if it's too big
2963 * the range won't allow anything.
2964 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2965 */
2966 for (i = 0; i < MAX_BPF_REG; i++)
2967 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
2968 /* keep the maximum range already checked */
2969 regs[i].range = max(regs[i].range, new_range);
2970
2971 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2972 if (state->stack[i].slot_type[0] != STACK_SPILL)
2973 continue;
2974 reg = &state->stack[i].spilled_ptr;
2975 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
2976 reg->range = max(reg->range, new_range);
2977 }
2978 }
2979
2980 /* Adjusts the register min/max values in the case that the dst_reg is the
2981 * variable register that we are working on, and src_reg is a constant or we're
2982 * simply doing a BPF_K check.
2983 * In JEQ/JNE cases we also adjust the var_off values.
2984 */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u8 opcode)2985 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2986 struct bpf_reg_state *false_reg, u64 val,
2987 u8 opcode)
2988 {
2989 /* If the dst_reg is a pointer, we can't learn anything about its
2990 * variable offset from the compare (unless src_reg were a pointer into
2991 * the same object, but we don't bother with that.
2992 * Since false_reg and true_reg have the same type by construction, we
2993 * only need to check one of them for pointerness.
2994 */
2995 if (__is_pointer_value(false, false_reg))
2996 return;
2997
2998 switch (opcode) {
2999 case BPF_JEQ:
3000 /* If this is false then we know nothing Jon Snow, but if it is
3001 * true then we know for sure.
3002 */
3003 __mark_reg_known(true_reg, val);
3004 break;
3005 case BPF_JNE:
3006 /* If this is true we know nothing Jon Snow, but if it is false
3007 * we know the value for sure;
3008 */
3009 __mark_reg_known(false_reg, val);
3010 break;
3011 case BPF_JGT:
3012 false_reg->umax_value = min(false_reg->umax_value, val);
3013 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3014 break;
3015 case BPF_JSGT:
3016 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3017 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3018 break;
3019 case BPF_JLT:
3020 false_reg->umin_value = max(false_reg->umin_value, val);
3021 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3022 break;
3023 case BPF_JSLT:
3024 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3025 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3026 break;
3027 case BPF_JGE:
3028 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3029 true_reg->umin_value = max(true_reg->umin_value, val);
3030 break;
3031 case BPF_JSGE:
3032 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3033 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3034 break;
3035 case BPF_JLE:
3036 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3037 true_reg->umax_value = min(true_reg->umax_value, val);
3038 break;
3039 case BPF_JSLE:
3040 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3041 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3042 break;
3043 default:
3044 break;
3045 }
3046
3047 __reg_deduce_bounds(false_reg);
3048 __reg_deduce_bounds(true_reg);
3049 /* We might have learned some bits from the bounds. */
3050 __reg_bound_offset(false_reg);
3051 __reg_bound_offset(true_reg);
3052 /* Intersecting with the old var_off might have improved our bounds
3053 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3054 * then new var_off is (0; 0x7f...fc) which improves our umax.
3055 */
3056 __update_reg_bounds(false_reg);
3057 __update_reg_bounds(true_reg);
3058 }
3059
3060 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3061 * the variable reg.
3062 */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u8 opcode)3063 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3064 struct bpf_reg_state *false_reg, u64 val,
3065 u8 opcode)
3066 {
3067 if (__is_pointer_value(false, false_reg))
3068 return;
3069
3070 switch (opcode) {
3071 case BPF_JEQ:
3072 /* If this is false then we know nothing Jon Snow, but if it is
3073 * true then we know for sure.
3074 */
3075 __mark_reg_known(true_reg, val);
3076 break;
3077 case BPF_JNE:
3078 /* If this is true we know nothing Jon Snow, but if it is false
3079 * we know the value for sure;
3080 */
3081 __mark_reg_known(false_reg, val);
3082 break;
3083 case BPF_JGT:
3084 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3085 false_reg->umin_value = max(false_reg->umin_value, val);
3086 break;
3087 case BPF_JSGT:
3088 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3089 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3090 break;
3091 case BPF_JLT:
3092 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3093 false_reg->umax_value = min(false_reg->umax_value, val);
3094 break;
3095 case BPF_JSLT:
3096 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3097 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3098 break;
3099 case BPF_JGE:
3100 true_reg->umax_value = min(true_reg->umax_value, val);
3101 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3102 break;
3103 case BPF_JSGE:
3104 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3105 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3106 break;
3107 case BPF_JLE:
3108 true_reg->umin_value = max(true_reg->umin_value, val);
3109 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3110 break;
3111 case BPF_JSLE:
3112 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3113 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3114 break;
3115 default:
3116 break;
3117 }
3118
3119 __reg_deduce_bounds(false_reg);
3120 __reg_deduce_bounds(true_reg);
3121 /* We might have learned some bits from the bounds. */
3122 __reg_bound_offset(false_reg);
3123 __reg_bound_offset(true_reg);
3124 /* Intersecting with the old var_off might have improved our bounds
3125 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3126 * then new var_off is (0; 0x7f...fc) which improves our umax.
3127 */
3128 __update_reg_bounds(false_reg);
3129 __update_reg_bounds(true_reg);
3130 }
3131
3132 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)3133 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3134 struct bpf_reg_state *dst_reg)
3135 {
3136 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3137 dst_reg->umin_value);
3138 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3139 dst_reg->umax_value);
3140 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3141 dst_reg->smin_value);
3142 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3143 dst_reg->smax_value);
3144 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3145 dst_reg->var_off);
3146 /* We might have learned new bounds from the var_off. */
3147 __update_reg_bounds(src_reg);
3148 __update_reg_bounds(dst_reg);
3149 /* We might have learned something about the sign bit. */
3150 __reg_deduce_bounds(src_reg);
3151 __reg_deduce_bounds(dst_reg);
3152 /* We might have learned some bits from the bounds. */
3153 __reg_bound_offset(src_reg);
3154 __reg_bound_offset(dst_reg);
3155 /* Intersecting with the old var_off might have improved our bounds
3156 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3157 * then new var_off is (0; 0x7f...fc) which improves our umax.
3158 */
3159 __update_reg_bounds(src_reg);
3160 __update_reg_bounds(dst_reg);
3161 }
3162
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)3163 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3164 struct bpf_reg_state *true_dst,
3165 struct bpf_reg_state *false_src,
3166 struct bpf_reg_state *false_dst,
3167 u8 opcode)
3168 {
3169 switch (opcode) {
3170 case BPF_JEQ:
3171 __reg_combine_min_max(true_src, true_dst);
3172 break;
3173 case BPF_JNE:
3174 __reg_combine_min_max(false_src, false_dst);
3175 break;
3176 }
3177 }
3178
mark_map_reg(struct bpf_reg_state * regs,u32 regno,u32 id,bool is_null)3179 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3180 bool is_null)
3181 {
3182 struct bpf_reg_state *reg = ®s[regno];
3183
3184 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3185 /* Old offset (both fixed and variable parts) should
3186 * have been known-zero, because we don't allow pointer
3187 * arithmetic on pointers that might be NULL.
3188 */
3189 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3190 !tnum_equals_const(reg->var_off, 0) ||
3191 reg->off)) {
3192 __mark_reg_known_zero(reg);
3193 reg->off = 0;
3194 }
3195 if (is_null) {
3196 reg->type = SCALAR_VALUE;
3197 } else if (reg->map_ptr->inner_map_meta) {
3198 reg->type = CONST_PTR_TO_MAP;
3199 reg->map_ptr = reg->map_ptr->inner_map_meta;
3200 } else {
3201 reg->type = PTR_TO_MAP_VALUE;
3202 }
3203 /* We don't need id from this point onwards anymore, thus we
3204 * should better reset it, so that state pruning has chances
3205 * to take effect.
3206 */
3207 reg->id = 0;
3208 }
3209 }
3210
3211 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3212 * be folded together at some point.
3213 */
mark_map_regs(struct bpf_verifier_state * state,u32 regno,bool is_null)3214 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
3215 bool is_null)
3216 {
3217 struct bpf_reg_state *regs = state->regs;
3218 u32 id = regs[regno].id;
3219 int i;
3220
3221 for (i = 0; i < MAX_BPF_REG; i++)
3222 mark_map_reg(regs, i, id, is_null);
3223
3224 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3225 if (state->stack[i].slot_type[0] != STACK_SPILL)
3226 continue;
3227 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3228 }
3229 }
3230
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)3231 static int check_cond_jmp_op(struct bpf_verifier_env *env,
3232 struct bpf_insn *insn, int *insn_idx)
3233 {
3234 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
3235 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
3236 u8 opcode = BPF_OP(insn->code);
3237 int err;
3238
3239 if (opcode > BPF_JSLE) {
3240 verbose("invalid BPF_JMP opcode %x\n", opcode);
3241 return -EINVAL;
3242 }
3243
3244 if (BPF_SRC(insn->code) == BPF_X) {
3245 if (insn->imm != 0) {
3246 verbose("BPF_JMP uses reserved fields\n");
3247 return -EINVAL;
3248 }
3249
3250 /* check src1 operand */
3251 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3252 if (err)
3253 return err;
3254
3255 if (is_pointer_value(env, insn->src_reg)) {
3256 verbose("R%d pointer comparison prohibited\n",
3257 insn->src_reg);
3258 return -EACCES;
3259 }
3260 } else {
3261 if (insn->src_reg != BPF_REG_0) {
3262 verbose("BPF_JMP uses reserved fields\n");
3263 return -EINVAL;
3264 }
3265 }
3266
3267 /* check src2 operand */
3268 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3269 if (err)
3270 return err;
3271
3272 dst_reg = ®s[insn->dst_reg];
3273
3274 /* detect if R == 0 where R was initialized to zero earlier */
3275 if (BPF_SRC(insn->code) == BPF_K &&
3276 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3277 dst_reg->type == SCALAR_VALUE &&
3278 tnum_equals_const(dst_reg->var_off, insn->imm)) {
3279 if (opcode == BPF_JEQ) {
3280 /* if (imm == imm) goto pc+off;
3281 * only follow the goto, ignore fall-through
3282 */
3283 *insn_idx += insn->off;
3284 return 0;
3285 } else {
3286 /* if (imm != imm) goto pc+off;
3287 * only follow fall-through branch, since
3288 * that's where the program will go
3289 */
3290 return 0;
3291 }
3292 }
3293
3294 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
3295 false);
3296 if (!other_branch)
3297 return -EFAULT;
3298
3299 /* detect if we are comparing against a constant value so we can adjust
3300 * our min/max values for our dst register.
3301 * this is only legit if both are scalars (or pointers to the same
3302 * object, I suppose, but we don't support that right now), because
3303 * otherwise the different base pointers mean the offsets aren't
3304 * comparable.
3305 */
3306 if (BPF_SRC(insn->code) == BPF_X) {
3307 if (dst_reg->type == SCALAR_VALUE &&
3308 regs[insn->src_reg].type == SCALAR_VALUE) {
3309 if (tnum_is_const(regs[insn->src_reg].var_off))
3310 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3311 dst_reg, regs[insn->src_reg].var_off.value,
3312 opcode);
3313 else if (tnum_is_const(dst_reg->var_off))
3314 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
3315 ®s[insn->src_reg],
3316 dst_reg->var_off.value, opcode);
3317 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3318 /* Comparing for equality, we can combine knowledge */
3319 reg_combine_min_max(&other_branch->regs[insn->src_reg],
3320 &other_branch->regs[insn->dst_reg],
3321 ®s[insn->src_reg],
3322 ®s[insn->dst_reg], opcode);
3323 }
3324 } else if (dst_reg->type == SCALAR_VALUE) {
3325 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3326 dst_reg, insn->imm, opcode);
3327 }
3328
3329 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3330 if (BPF_SRC(insn->code) == BPF_K &&
3331 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3332 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3333 /* Mark all identical map registers in each branch as either
3334 * safe or unknown depending R == 0 or R != 0 conditional.
3335 */
3336 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3337 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3338 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
3339 dst_reg->type == PTR_TO_PACKET &&
3340 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
3341 /* pkt_data' > pkt_end */
3342 find_good_pkt_pointers(this_branch, dst_reg, false);
3343 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
3344 dst_reg->type == PTR_TO_PACKET_END &&
3345 regs[insn->src_reg].type == PTR_TO_PACKET) {
3346 /* pkt_end > pkt_data' */
3347 find_good_pkt_pointers(other_branch, ®s[insn->src_reg], true);
3348 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
3349 dst_reg->type == PTR_TO_PACKET &&
3350 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
3351 /* pkt_data' < pkt_end */
3352 find_good_pkt_pointers(other_branch, dst_reg, true);
3353 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
3354 dst_reg->type == PTR_TO_PACKET_END &&
3355 regs[insn->src_reg].type == PTR_TO_PACKET) {
3356 /* pkt_end < pkt_data' */
3357 find_good_pkt_pointers(this_branch, ®s[insn->src_reg], false);
3358 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
3359 dst_reg->type == PTR_TO_PACKET &&
3360 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
3361 /* pkt_data' >= pkt_end */
3362 find_good_pkt_pointers(this_branch, dst_reg, true);
3363 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
3364 dst_reg->type == PTR_TO_PACKET_END &&
3365 regs[insn->src_reg].type == PTR_TO_PACKET) {
3366 /* pkt_end >= pkt_data' */
3367 find_good_pkt_pointers(other_branch, ®s[insn->src_reg], false);
3368 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
3369 dst_reg->type == PTR_TO_PACKET &&
3370 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
3371 /* pkt_data' <= pkt_end */
3372 find_good_pkt_pointers(other_branch, dst_reg, false);
3373 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
3374 dst_reg->type == PTR_TO_PACKET_END &&
3375 regs[insn->src_reg].type == PTR_TO_PACKET) {
3376 /* pkt_end <= pkt_data' */
3377 find_good_pkt_pointers(this_branch, ®s[insn->src_reg], true);
3378 } else if (is_pointer_value(env, insn->dst_reg)) {
3379 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
3380 return -EACCES;
3381 }
3382 if (log_level)
3383 print_verifier_state(this_branch);
3384 return 0;
3385 }
3386
3387 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
ld_imm64_to_map_ptr(struct bpf_insn * insn)3388 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3389 {
3390 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3391
3392 return (struct bpf_map *) (unsigned long) imm64;
3393 }
3394
3395 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)3396 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3397 {
3398 struct bpf_reg_state *regs = cur_regs(env);
3399 int err;
3400
3401 if (BPF_SIZE(insn->code) != BPF_DW) {
3402 verbose("invalid BPF_LD_IMM insn\n");
3403 return -EINVAL;
3404 }
3405 if (insn->off != 0) {
3406 verbose("BPF_LD_IMM64 uses reserved fields\n");
3407 return -EINVAL;
3408 }
3409
3410 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3411 if (err)
3412 return err;
3413
3414 if (insn->src_reg == 0) {
3415 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3416
3417 regs[insn->dst_reg].type = SCALAR_VALUE;
3418 __mark_reg_known(®s[insn->dst_reg], imm);
3419 return 0;
3420 }
3421
3422 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3423 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3424
3425 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3426 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3427 return 0;
3428 }
3429
may_access_skb(enum bpf_prog_type type)3430 static bool may_access_skb(enum bpf_prog_type type)
3431 {
3432 switch (type) {
3433 case BPF_PROG_TYPE_SOCKET_FILTER:
3434 case BPF_PROG_TYPE_SCHED_CLS:
3435 case BPF_PROG_TYPE_SCHED_ACT:
3436 return true;
3437 default:
3438 return false;
3439 }
3440 }
3441
3442 /* verify safety of LD_ABS|LD_IND instructions:
3443 * - they can only appear in the programs where ctx == skb
3444 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3445 * preserve R6-R9, and store return value into R0
3446 *
3447 * Implicit input:
3448 * ctx == skb == R6 == CTX
3449 *
3450 * Explicit input:
3451 * SRC == any register
3452 * IMM == 32-bit immediate
3453 *
3454 * Output:
3455 * R0 - 8/16/32-bit skb data converted to cpu endianness
3456 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)3457 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3458 {
3459 struct bpf_reg_state *regs = cur_regs(env);
3460 static const int ctx_reg = BPF_REG_6;
3461 u8 mode = BPF_MODE(insn->code);
3462 int i, err;
3463
3464 if (!may_access_skb(env->prog->type)) {
3465 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3466 return -EINVAL;
3467 }
3468
3469 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3470 BPF_SIZE(insn->code) == BPF_DW ||
3471 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3472 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
3473 return -EINVAL;
3474 }
3475
3476 /* check whether implicit source operand (register R6) is readable */
3477 err = check_reg_arg(env, ctx_reg, SRC_OP);
3478 if (err)
3479 return err;
3480
3481 if (regs[ctx_reg].type != PTR_TO_CTX) {
3482 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3483 return -EINVAL;
3484 }
3485
3486 if (mode == BPF_IND) {
3487 /* check explicit source operand */
3488 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3489 if (err)
3490 return err;
3491 }
3492
3493 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg);
3494 if (err < 0)
3495 return err;
3496
3497 /* reset caller saved regs to unreadable */
3498 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3499 mark_reg_not_init(regs, caller_saved[i]);
3500 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3501 }
3502
3503 /* mark destination R0 register as readable, since it contains
3504 * the value fetched from the packet.
3505 * Already marked as written above.
3506 */
3507 mark_reg_unknown(regs, BPF_REG_0);
3508 return 0;
3509 }
3510
3511 /* non-recursive DFS pseudo code
3512 * 1 procedure DFS-iterative(G,v):
3513 * 2 label v as discovered
3514 * 3 let S be a stack
3515 * 4 S.push(v)
3516 * 5 while S is not empty
3517 * 6 t <- S.pop()
3518 * 7 if t is what we're looking for:
3519 * 8 return t
3520 * 9 for all edges e in G.adjacentEdges(t) do
3521 * 10 if edge e is already labelled
3522 * 11 continue with the next edge
3523 * 12 w <- G.adjacentVertex(t,e)
3524 * 13 if vertex w is not discovered and not explored
3525 * 14 label e as tree-edge
3526 * 15 label w as discovered
3527 * 16 S.push(w)
3528 * 17 continue at 5
3529 * 18 else if vertex w is discovered
3530 * 19 label e as back-edge
3531 * 20 else
3532 * 21 // vertex w is explored
3533 * 22 label e as forward- or cross-edge
3534 * 23 label t as explored
3535 * 24 S.pop()
3536 *
3537 * convention:
3538 * 0x10 - discovered
3539 * 0x11 - discovered and fall-through edge labelled
3540 * 0x12 - discovered and fall-through and branch edges labelled
3541 * 0x20 - explored
3542 */
3543
3544 enum {
3545 DISCOVERED = 0x10,
3546 EXPLORED = 0x20,
3547 FALLTHROUGH = 1,
3548 BRANCH = 2,
3549 };
3550
3551 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3552
3553 static int *insn_stack; /* stack of insns to process */
3554 static int cur_stack; /* current stack index */
3555 static int *insn_state;
3556
3557 /* t, w, e - match pseudo-code above:
3558 * t - index of current instruction
3559 * w - next instruction
3560 * e - edge
3561 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env)3562 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3563 {
3564 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3565 return 0;
3566
3567 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3568 return 0;
3569
3570 if (w < 0 || w >= env->prog->len) {
3571 verbose("jump out of range from insn %d to %d\n", t, w);
3572 return -EINVAL;
3573 }
3574
3575 if (e == BRANCH)
3576 /* mark branch target for state pruning */
3577 env->explored_states[w] = STATE_LIST_MARK;
3578
3579 if (insn_state[w] == 0) {
3580 /* tree-edge */
3581 insn_state[t] = DISCOVERED | e;
3582 insn_state[w] = DISCOVERED;
3583 if (cur_stack >= env->prog->len)
3584 return -E2BIG;
3585 insn_stack[cur_stack++] = w;
3586 return 1;
3587 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3588 verbose("back-edge from insn %d to %d\n", t, w);
3589 return -EINVAL;
3590 } else if (insn_state[w] == EXPLORED) {
3591 /* forward- or cross-edge */
3592 insn_state[t] = DISCOVERED | e;
3593 } else {
3594 verbose("insn state internal bug\n");
3595 return -EFAULT;
3596 }
3597 return 0;
3598 }
3599
3600 /* non-recursive depth-first-search to detect loops in BPF program
3601 * loop == back-edge in directed graph
3602 */
check_cfg(struct bpf_verifier_env * env)3603 static int check_cfg(struct bpf_verifier_env *env)
3604 {
3605 struct bpf_insn *insns = env->prog->insnsi;
3606 int insn_cnt = env->prog->len;
3607 int ret = 0;
3608 int i, t;
3609
3610 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3611 if (!insn_state)
3612 return -ENOMEM;
3613
3614 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3615 if (!insn_stack) {
3616 kfree(insn_state);
3617 return -ENOMEM;
3618 }
3619
3620 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3621 insn_stack[0] = 0; /* 0 is the first instruction */
3622 cur_stack = 1;
3623
3624 peek_stack:
3625 if (cur_stack == 0)
3626 goto check_state;
3627 t = insn_stack[cur_stack - 1];
3628
3629 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3630 u8 opcode = BPF_OP(insns[t].code);
3631
3632 if (opcode == BPF_EXIT) {
3633 goto mark_explored;
3634 } else if (opcode == BPF_CALL) {
3635 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3636 if (ret == 1)
3637 goto peek_stack;
3638 else if (ret < 0)
3639 goto err_free;
3640 if (t + 1 < insn_cnt)
3641 env->explored_states[t + 1] = STATE_LIST_MARK;
3642 } else if (opcode == BPF_JA) {
3643 if (BPF_SRC(insns[t].code) != BPF_K) {
3644 ret = -EINVAL;
3645 goto err_free;
3646 }
3647 /* unconditional jump with single edge */
3648 ret = push_insn(t, t + insns[t].off + 1,
3649 FALLTHROUGH, env);
3650 if (ret == 1)
3651 goto peek_stack;
3652 else if (ret < 0)
3653 goto err_free;
3654 /* tell verifier to check for equivalent states
3655 * after every call and jump
3656 */
3657 if (t + 1 < insn_cnt)
3658 env->explored_states[t + 1] = STATE_LIST_MARK;
3659 } else {
3660 /* conditional jump with two edges */
3661 env->explored_states[t] = STATE_LIST_MARK;
3662 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3663 if (ret == 1)
3664 goto peek_stack;
3665 else if (ret < 0)
3666 goto err_free;
3667
3668 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3669 if (ret == 1)
3670 goto peek_stack;
3671 else if (ret < 0)
3672 goto err_free;
3673 }
3674 } else {
3675 /* all other non-branch instructions with single
3676 * fall-through edge
3677 */
3678 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3679 if (ret == 1)
3680 goto peek_stack;
3681 else if (ret < 0)
3682 goto err_free;
3683 }
3684
3685 mark_explored:
3686 insn_state[t] = EXPLORED;
3687 if (cur_stack-- <= 0) {
3688 verbose("pop stack internal bug\n");
3689 ret = -EFAULT;
3690 goto err_free;
3691 }
3692 goto peek_stack;
3693
3694 check_state:
3695 for (i = 0; i < insn_cnt; i++) {
3696 if (insn_state[i] != EXPLORED) {
3697 verbose("unreachable insn %d\n", i);
3698 ret = -EINVAL;
3699 goto err_free;
3700 }
3701 }
3702 ret = 0; /* cfg looks good */
3703
3704 err_free:
3705 kfree(insn_state);
3706 kfree(insn_stack);
3707 return ret;
3708 }
3709
3710 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)3711 static bool range_within(struct bpf_reg_state *old,
3712 struct bpf_reg_state *cur)
3713 {
3714 return old->umin_value <= cur->umin_value &&
3715 old->umax_value >= cur->umax_value &&
3716 old->smin_value <= cur->smin_value &&
3717 old->smax_value >= cur->smax_value;
3718 }
3719
3720 /* Maximum number of register states that can exist at once */
3721 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3722 struct idpair {
3723 u32 old;
3724 u32 cur;
3725 };
3726
3727 /* If in the old state two registers had the same id, then they need to have
3728 * the same id in the new state as well. But that id could be different from
3729 * the old state, so we need to track the mapping from old to new ids.
3730 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3731 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3732 * regs with a different old id could still have new id 9, we don't care about
3733 * that.
3734 * So we look through our idmap to see if this old id has been seen before. If
3735 * so, we require the new id to match; otherwise, we add the id pair to the map.
3736 */
check_ids(u32 old_id,u32 cur_id,struct idpair * idmap)3737 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3738 {
3739 unsigned int i;
3740
3741 for (i = 0; i < ID_MAP_SIZE; i++) {
3742 if (!idmap[i].old) {
3743 /* Reached an empty slot; haven't seen this id before */
3744 idmap[i].old = old_id;
3745 idmap[i].cur = cur_id;
3746 return true;
3747 }
3748 if (idmap[i].old == old_id)
3749 return idmap[i].cur == cur_id;
3750 }
3751 /* We ran out of idmap slots, which should be impossible */
3752 WARN_ON_ONCE(1);
3753 return false;
3754 }
3755
3756 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct idpair * idmap)3757 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3758 struct idpair *idmap)
3759 {
3760 if (!(rold->live & REG_LIVE_READ))
3761 /* explored state didn't use this */
3762 return true;
3763
3764 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3765 return true;
3766
3767 if (rold->type == NOT_INIT)
3768 /* explored state can't have used this */
3769 return true;
3770 if (rcur->type == NOT_INIT)
3771 return false;
3772 switch (rold->type) {
3773 case SCALAR_VALUE:
3774 if (rcur->type == SCALAR_VALUE) {
3775 /* new val must satisfy old val knowledge */
3776 return range_within(rold, rcur) &&
3777 tnum_in(rold->var_off, rcur->var_off);
3778 } else {
3779 /* We're trying to use a pointer in place of a scalar.
3780 * Even if the scalar was unbounded, this could lead to
3781 * pointer leaks because scalars are allowed to leak
3782 * while pointers are not. We could make this safe in
3783 * special cases if root is calling us, but it's
3784 * probably not worth the hassle.
3785 */
3786 return false;
3787 }
3788 case PTR_TO_MAP_VALUE:
3789 /* If the new min/max/var_off satisfy the old ones and
3790 * everything else matches, we are OK.
3791 * We don't care about the 'id' value, because nothing
3792 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3793 */
3794 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3795 range_within(rold, rcur) &&
3796 tnum_in(rold->var_off, rcur->var_off);
3797 case PTR_TO_MAP_VALUE_OR_NULL:
3798 /* a PTR_TO_MAP_VALUE could be safe to use as a
3799 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3800 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3801 * checked, doing so could have affected others with the same
3802 * id, and we can't check for that because we lost the id when
3803 * we converted to a PTR_TO_MAP_VALUE.
3804 */
3805 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3806 return false;
3807 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3808 return false;
3809 /* Check our ids match any regs they're supposed to */
3810 return check_ids(rold->id, rcur->id, idmap);
3811 case PTR_TO_PACKET:
3812 if (rcur->type != PTR_TO_PACKET)
3813 return false;
3814 /* We must have at least as much range as the old ptr
3815 * did, so that any accesses which were safe before are
3816 * still safe. This is true even if old range < old off,
3817 * since someone could have accessed through (ptr - k), or
3818 * even done ptr -= k in a register, to get a safe access.
3819 */
3820 if (rold->range > rcur->range)
3821 return false;
3822 /* If the offsets don't match, we can't trust our alignment;
3823 * nor can we be sure that we won't fall out of range.
3824 */
3825 if (rold->off != rcur->off)
3826 return false;
3827 /* id relations must be preserved */
3828 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3829 return false;
3830 /* new val must satisfy old val knowledge */
3831 return range_within(rold, rcur) &&
3832 tnum_in(rold->var_off, rcur->var_off);
3833 case PTR_TO_CTX:
3834 case CONST_PTR_TO_MAP:
3835 case PTR_TO_STACK:
3836 case PTR_TO_PACKET_END:
3837 /* Only valid matches are exact, which memcmp() above
3838 * would have accepted
3839 */
3840 default:
3841 /* Don't know what's going on, just say it's not safe */
3842 return false;
3843 }
3844
3845 /* Shouldn't get here; if we do, say it's not safe */
3846 WARN_ON_ONCE(1);
3847 return false;
3848 }
3849
stacksafe(struct bpf_verifier_state * old,struct bpf_verifier_state * cur,struct idpair * idmap)3850 static bool stacksafe(struct bpf_verifier_state *old,
3851 struct bpf_verifier_state *cur,
3852 struct idpair *idmap)
3853 {
3854 int i, spi;
3855
3856 /* if explored stack has more populated slots than current stack
3857 * such stacks are not equivalent
3858 */
3859 if (old->allocated_stack > cur->allocated_stack)
3860 return false;
3861
3862 /* walk slots of the explored stack and ignore any additional
3863 * slots in the current stack, since explored(safe) state
3864 * didn't use them
3865 */
3866 for (i = 0; i < old->allocated_stack; i++) {
3867 spi = i / BPF_REG_SIZE;
3868
3869 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3870 continue;
3871 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3872 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3873 /* Ex: old explored (safe) state has STACK_SPILL in
3874 * this stack slot, but current has has STACK_MISC ->
3875 * this verifier states are not equivalent,
3876 * return false to continue verification of this path
3877 */
3878 return false;
3879 if (i % BPF_REG_SIZE)
3880 continue;
3881 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3882 continue;
3883 if (!regsafe(&old->stack[spi].spilled_ptr,
3884 &cur->stack[spi].spilled_ptr,
3885 idmap))
3886 /* when explored and current stack slot are both storing
3887 * spilled registers, check that stored pointers types
3888 * are the same as well.
3889 * Ex: explored safe path could have stored
3890 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3891 * but current path has stored:
3892 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3893 * such verifier states are not equivalent.
3894 * return false to continue verification of this path
3895 */
3896 return false;
3897 }
3898 return true;
3899 }
3900
3901 /* compare two verifier states
3902 *
3903 * all states stored in state_list are known to be valid, since
3904 * verifier reached 'bpf_exit' instruction through them
3905 *
3906 * this function is called when verifier exploring different branches of
3907 * execution popped from the state stack. If it sees an old state that has
3908 * more strict register state and more strict stack state then this execution
3909 * branch doesn't need to be explored further, since verifier already
3910 * concluded that more strict state leads to valid finish.
3911 *
3912 * Therefore two states are equivalent if register state is more conservative
3913 * and explored stack state is more conservative than the current one.
3914 * Example:
3915 * explored current
3916 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3917 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3918 *
3919 * In other words if current stack state (one being explored) has more
3920 * valid slots than old one that already passed validation, it means
3921 * the verifier can stop exploring and conclude that current state is valid too
3922 *
3923 * Similarly with registers. If explored state has register type as invalid
3924 * whereas register type in current state is meaningful, it means that
3925 * the current state will reach 'bpf_exit' instruction safely
3926 */
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)3927 static bool states_equal(struct bpf_verifier_env *env,
3928 struct bpf_verifier_state *old,
3929 struct bpf_verifier_state *cur)
3930 {
3931 struct idpair *idmap;
3932 bool ret = false;
3933 int i;
3934
3935 /* Verification state from speculative execution simulation
3936 * must never prune a non-speculative execution one.
3937 */
3938 if (old->speculative && !cur->speculative)
3939 return false;
3940
3941 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3942 /* If we failed to allocate the idmap, just say it's not safe */
3943 if (!idmap)
3944 return false;
3945
3946 for (i = 0; i < MAX_BPF_REG; i++) {
3947 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3948 goto out_free;
3949 }
3950
3951 if (!stacksafe(old, cur, idmap))
3952 goto out_free;
3953 ret = true;
3954 out_free:
3955 kfree(idmap);
3956 return ret;
3957 }
3958
3959 /* A write screens off any subsequent reads; but write marks come from the
3960 * straight-line code between a state and its parent. When we arrive at a
3961 * jump target (in the first iteration of the propagate_liveness() loop),
3962 * we didn't arrive by the straight-line code, so read marks in state must
3963 * propagate to parent regardless of state's write marks.
3964 */
do_propagate_liveness(const struct bpf_verifier_state * state,struct bpf_verifier_state * parent)3965 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3966 struct bpf_verifier_state *parent)
3967 {
3968 bool writes = parent == state->parent; /* Observe write marks */
3969 bool touched = false; /* any changes made? */
3970 int i;
3971
3972 if (!parent)
3973 return touched;
3974 /* Propagate read liveness of registers... */
3975 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3976 /* We don't need to worry about FP liveness because it's read-only */
3977 for (i = 0; i < BPF_REG_FP; i++) {
3978 if (parent->regs[i].live & REG_LIVE_READ)
3979 continue;
3980 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3981 continue;
3982 if (state->regs[i].live & REG_LIVE_READ) {
3983 parent->regs[i].live |= REG_LIVE_READ;
3984 touched = true;
3985 }
3986 }
3987 /* ... and stack slots */
3988 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3989 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3990 if (parent->stack[i].slot_type[0] != STACK_SPILL)
3991 continue;
3992 if (state->stack[i].slot_type[0] != STACK_SPILL)
3993 continue;
3994 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3995 continue;
3996 if (writes &&
3997 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3998 continue;
3999 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
4000 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
4001 touched = true;
4002 }
4003 }
4004 return touched;
4005 }
4006
4007 /* "parent" is "a state from which we reach the current state", but initially
4008 * it is not the state->parent (i.e. "the state whose straight-line code leads
4009 * to the current state"), instead it is the state that happened to arrive at
4010 * a (prunable) equivalent of the current state. See comment above
4011 * do_propagate_liveness() for consequences of this.
4012 * This function is just a more efficient way of calling mark_reg_read() or
4013 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
4014 * though it requires that parent != state->parent in the call arguments.
4015 */
propagate_liveness(const struct bpf_verifier_state * state,struct bpf_verifier_state * parent)4016 static void propagate_liveness(const struct bpf_verifier_state *state,
4017 struct bpf_verifier_state *parent)
4018 {
4019 while (do_propagate_liveness(state, parent)) {
4020 /* Something changed, so we need to feed those changes onward */
4021 state = parent;
4022 parent = state->parent;
4023 }
4024 }
4025
is_state_visited(struct bpf_verifier_env * env,int insn_idx)4026 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4027 {
4028 struct bpf_verifier_state_list *new_sl;
4029 struct bpf_verifier_state_list *sl;
4030 struct bpf_verifier_state *cur = env->cur_state;
4031 int i, err;
4032
4033 sl = env->explored_states[insn_idx];
4034 if (!sl)
4035 /* this 'insn_idx' instruction wasn't marked, so we will not
4036 * be doing state search here
4037 */
4038 return 0;
4039
4040 while (sl != STATE_LIST_MARK) {
4041 if (states_equal(env, &sl->state, cur)) {
4042 /* reached equivalent register/stack state,
4043 * prune the search.
4044 * Registers read by the continuation are read by us.
4045 * If we have any write marks in env->cur_state, they
4046 * will prevent corresponding reads in the continuation
4047 * from reaching our parent (an explored_state). Our
4048 * own state will get the read marks recorded, but
4049 * they'll be immediately forgotten as we're pruning
4050 * this state and will pop a new one.
4051 */
4052 propagate_liveness(&sl->state, cur);
4053 return 1;
4054 }
4055 sl = sl->next;
4056 }
4057
4058 /* there were no equivalent states, remember current one.
4059 * technically the current state is not proven to be safe yet,
4060 * but it will either reach bpf_exit (which means it's safe) or
4061 * it will be rejected. Since there are no loops, we won't be
4062 * seeing this 'insn_idx' instruction again on the way to bpf_exit
4063 */
4064 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4065 if (!new_sl)
4066 return -ENOMEM;
4067
4068 /* add new state to the head of linked list */
4069 err = copy_verifier_state(&new_sl->state, cur);
4070 if (err) {
4071 free_verifier_state(&new_sl->state, false);
4072 kfree(new_sl);
4073 return err;
4074 }
4075 new_sl->next = env->explored_states[insn_idx];
4076 env->explored_states[insn_idx] = new_sl;
4077 /* connect new state to parentage chain */
4078 cur->parent = &new_sl->state;
4079 /* clear write marks in current state: the writes we did are not writes
4080 * our child did, so they don't screen off its reads from us.
4081 * (There are no read marks in current state, because reads always mark
4082 * their parent and current state never has children yet. Only
4083 * explored_states can get read marks.)
4084 */
4085 for (i = 0; i < BPF_REG_FP; i++)
4086 cur->regs[i].live = REG_LIVE_NONE;
4087 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
4088 if (cur->stack[i].slot_type[0] == STACK_SPILL)
4089 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4090 return 0;
4091 }
4092
ext_analyzer_insn_hook(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx)4093 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
4094 int insn_idx, int prev_insn_idx)
4095 {
4096 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
4097 return 0;
4098
4099 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
4100 }
4101
do_check(struct bpf_verifier_env * env)4102 static int do_check(struct bpf_verifier_env *env)
4103 {
4104 struct bpf_verifier_state *state;
4105 struct bpf_insn *insns = env->prog->insnsi;
4106 struct bpf_reg_state *regs;
4107 int insn_cnt = env->prog->len;
4108 int insn_processed = 0;
4109 bool do_print_state = false;
4110
4111 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4112 if (!state)
4113 return -ENOMEM;
4114 env->cur_state = state;
4115 init_reg_state(state->regs);
4116 state->parent = NULL;
4117 for (;;) {
4118 struct bpf_insn *insn;
4119 u8 class;
4120 int err;
4121
4122 if (env->insn_idx >= insn_cnt) {
4123 verbose("invalid insn idx %d insn_cnt %d\n",
4124 env->insn_idx, insn_cnt);
4125 return -EFAULT;
4126 }
4127
4128 insn = &insns[env->insn_idx];
4129 class = BPF_CLASS(insn->code);
4130
4131 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4132 verbose("BPF program is too large. Processed %d insn\n",
4133 insn_processed);
4134 return -E2BIG;
4135 }
4136
4137 err = is_state_visited(env, env->insn_idx);
4138 if (err < 0)
4139 return err;
4140 if (err == 1) {
4141 /* found equivalent state, can prune the search */
4142 if (log_level) {
4143 if (do_print_state)
4144 verbose("\nfrom %d to %d%s: safe\n",
4145 env->prev_insn_idx, env->insn_idx,
4146 env->cur_state->speculative ?
4147 " (speculative execution)" : "");
4148 else
4149 verbose("%d: safe\n", env->insn_idx);
4150 }
4151 goto process_bpf_exit;
4152 }
4153
4154 if (need_resched())
4155 cond_resched();
4156
4157 if (log_level > 1 || (log_level && do_print_state)) {
4158 if (log_level > 1)
4159 verbose("%d:", env->insn_idx);
4160 else
4161 verbose("\nfrom %d to %d%s:",
4162 env->prev_insn_idx, env->insn_idx,
4163 env->cur_state->speculative ?
4164 " (speculative execution)" : "");
4165 print_verifier_state(env->cur_state);
4166 do_print_state = false;
4167 }
4168
4169 if (log_level) {
4170 verbose("%d: ", env->insn_idx);
4171 print_bpf_insn(env, insn);
4172 }
4173
4174 err = ext_analyzer_insn_hook(env, env->insn_idx, env->prev_insn_idx);
4175 if (err)
4176 return err;
4177
4178 regs = cur_regs(env);
4179 env->insn_aux_data[env->insn_idx].seen = true;
4180 if (class == BPF_ALU || class == BPF_ALU64) {
4181 err = check_alu_op(env, insn);
4182 if (err)
4183 return err;
4184
4185 } else if (class == BPF_LDX) {
4186 enum bpf_reg_type *prev_src_type, src_reg_type;
4187
4188 /* check for reserved fields is already done */
4189
4190 /* check src operand */
4191 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4192 if (err)
4193 return err;
4194
4195 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4196 if (err)
4197 return err;
4198
4199 src_reg_type = regs[insn->src_reg].type;
4200
4201 /* check that memory (src_reg + off) is readable,
4202 * the state of dst_reg will be updated by this func
4203 */
4204 err = check_mem_access(env, env->insn_idx, insn->src_reg,
4205 insn->off, BPF_SIZE(insn->code),
4206 BPF_READ, insn->dst_reg, false);
4207 if (err)
4208 return err;
4209
4210 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
4211
4212 if (*prev_src_type == NOT_INIT) {
4213 /* saw a valid insn
4214 * dst_reg = *(u32 *)(src_reg + off)
4215 * save type to validate intersecting paths
4216 */
4217 *prev_src_type = src_reg_type;
4218
4219 } else if (src_reg_type != *prev_src_type &&
4220 (src_reg_type == PTR_TO_CTX ||
4221 *prev_src_type == PTR_TO_CTX)) {
4222 /* ABuser program is trying to use the same insn
4223 * dst_reg = *(u32*) (src_reg + off)
4224 * with different pointer types:
4225 * src_reg == ctx in one branch and
4226 * src_reg == stack|map in some other branch.
4227 * Reject it.
4228 */
4229 verbose("same insn cannot be used with different pointers\n");
4230 return -EINVAL;
4231 }
4232
4233 } else if (class == BPF_STX) {
4234 enum bpf_reg_type *prev_dst_type, dst_reg_type;
4235
4236 if (BPF_MODE(insn->code) == BPF_XADD) {
4237 err = check_xadd(env, env->insn_idx, insn);
4238 if (err)
4239 return err;
4240 env->insn_idx++;
4241 continue;
4242 }
4243
4244 /* check src1 operand */
4245 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4246 if (err)
4247 return err;
4248 /* check src2 operand */
4249 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4250 if (err)
4251 return err;
4252
4253 dst_reg_type = regs[insn->dst_reg].type;
4254
4255 /* check that memory (dst_reg + off) is writeable */
4256 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
4257 insn->off, BPF_SIZE(insn->code),
4258 BPF_WRITE, insn->src_reg, false);
4259 if (err)
4260 return err;
4261
4262 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
4263
4264 if (*prev_dst_type == NOT_INIT) {
4265 *prev_dst_type = dst_reg_type;
4266 } else if (dst_reg_type != *prev_dst_type &&
4267 (dst_reg_type == PTR_TO_CTX ||
4268 *prev_dst_type == PTR_TO_CTX)) {
4269 verbose("same insn cannot be used with different pointers\n");
4270 return -EINVAL;
4271 }
4272
4273 } else if (class == BPF_ST) {
4274 if (BPF_MODE(insn->code) != BPF_MEM ||
4275 insn->src_reg != BPF_REG_0) {
4276 verbose("BPF_ST uses reserved fields\n");
4277 return -EINVAL;
4278 }
4279 /* check src operand */
4280 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4281 if (err)
4282 return err;
4283
4284 if (is_ctx_reg(env, insn->dst_reg)) {
4285 verbose("BPF_ST stores into R%d context is not allowed\n",
4286 insn->dst_reg);
4287 return -EACCES;
4288 }
4289
4290 /* check that memory (dst_reg + off) is writeable */
4291 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
4292 insn->off, BPF_SIZE(insn->code),
4293 BPF_WRITE, -1, false);
4294 if (err)
4295 return err;
4296
4297 } else if (class == BPF_JMP) {
4298 u8 opcode = BPF_OP(insn->code);
4299
4300 if (opcode == BPF_CALL) {
4301 if (BPF_SRC(insn->code) != BPF_K ||
4302 insn->off != 0 ||
4303 insn->src_reg != BPF_REG_0 ||
4304 insn->dst_reg != BPF_REG_0) {
4305 verbose("BPF_CALL uses reserved fields\n");
4306 return -EINVAL;
4307 }
4308
4309 err = check_call(env, insn->imm, env->insn_idx);
4310 if (err)
4311 return err;
4312
4313 } else if (opcode == BPF_JA) {
4314 if (BPF_SRC(insn->code) != BPF_K ||
4315 insn->imm != 0 ||
4316 insn->src_reg != BPF_REG_0 ||
4317 insn->dst_reg != BPF_REG_0) {
4318 verbose("BPF_JA uses reserved fields\n");
4319 return -EINVAL;
4320 }
4321
4322 env->insn_idx += insn->off + 1;
4323 continue;
4324
4325 } else if (opcode == BPF_EXIT) {
4326 if (BPF_SRC(insn->code) != BPF_K ||
4327 insn->imm != 0 ||
4328 insn->src_reg != BPF_REG_0 ||
4329 insn->dst_reg != BPF_REG_0) {
4330 verbose("BPF_EXIT uses reserved fields\n");
4331 return -EINVAL;
4332 }
4333
4334 /* eBPF calling convetion is such that R0 is used
4335 * to return the value from eBPF program.
4336 * Make sure that it's readable at this time
4337 * of bpf_exit, which means that program wrote
4338 * something into it earlier
4339 */
4340 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4341 if (err)
4342 return err;
4343
4344 if (is_pointer_value(env, BPF_REG_0)) {
4345 verbose("R0 leaks addr as return value\n");
4346 return -EACCES;
4347 }
4348
4349 process_bpf_exit:
4350 err = pop_stack(env, &env->prev_insn_idx, &env->insn_idx);
4351 if (err < 0) {
4352 if (err != -ENOENT)
4353 return err;
4354 break;
4355 } else {
4356 do_print_state = true;
4357 continue;
4358 }
4359 } else {
4360 err = check_cond_jmp_op(env, insn, &env->insn_idx);
4361 if (err)
4362 return err;
4363 }
4364 } else if (class == BPF_LD) {
4365 u8 mode = BPF_MODE(insn->code);
4366
4367 if (mode == BPF_ABS || mode == BPF_IND) {
4368 err = check_ld_abs(env, insn);
4369 if (err)
4370 return err;
4371
4372 } else if (mode == BPF_IMM) {
4373 err = check_ld_imm(env, insn);
4374 if (err)
4375 return err;
4376
4377 env->insn_idx++;
4378 env->insn_aux_data[env->insn_idx].seen = true;
4379 } else {
4380 verbose("invalid BPF_LD mode\n");
4381 return -EINVAL;
4382 }
4383 } else {
4384 verbose("unknown insn class %d\n", class);
4385 return -EINVAL;
4386 }
4387
4388 env->insn_idx++;
4389 }
4390
4391 verbose("processed %d insns, stack depth %d\n",
4392 insn_processed, env->prog->aux->stack_depth);
4393 return 0;
4394 }
4395
check_map_prealloc(struct bpf_map * map)4396 static int check_map_prealloc(struct bpf_map *map)
4397 {
4398 return (map->map_type != BPF_MAP_TYPE_HASH &&
4399 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4400 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4401 !(map->map_flags & BPF_F_NO_PREALLOC);
4402 }
4403
check_map_prog_compatibility(struct bpf_map * map,struct bpf_prog * prog)4404 static int check_map_prog_compatibility(struct bpf_map *map,
4405 struct bpf_prog *prog)
4406
4407 {
4408 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4409 * preallocated hash maps, since doing memory allocation
4410 * in overflow_handler can crash depending on where nmi got
4411 * triggered.
4412 */
4413 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4414 if (!check_map_prealloc(map)) {
4415 verbose("perf_event programs can only use preallocated hash map\n");
4416 return -EINVAL;
4417 }
4418 if (map->inner_map_meta &&
4419 !check_map_prealloc(map->inner_map_meta)) {
4420 verbose("perf_event programs can only use preallocated inner hash map\n");
4421 return -EINVAL;
4422 }
4423 }
4424 return 0;
4425 }
4426
4427 /* look for pseudo eBPF instructions that access map FDs and
4428 * replace them with actual map pointers
4429 */
replace_map_fd_with_map_ptr(struct bpf_verifier_env * env)4430 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4431 {
4432 struct bpf_insn *insn = env->prog->insnsi;
4433 int insn_cnt = env->prog->len;
4434 int i, j, err;
4435
4436 err = bpf_prog_calc_tag(env->prog);
4437 if (err)
4438 return err;
4439
4440 for (i = 0; i < insn_cnt; i++, insn++) {
4441 if (BPF_CLASS(insn->code) == BPF_LDX &&
4442 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4443 verbose("BPF_LDX uses reserved fields\n");
4444 return -EINVAL;
4445 }
4446
4447 if (BPF_CLASS(insn->code) == BPF_STX &&
4448 ((BPF_MODE(insn->code) != BPF_MEM &&
4449 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4450 verbose("BPF_STX uses reserved fields\n");
4451 return -EINVAL;
4452 }
4453
4454 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4455 struct bpf_map *map;
4456 struct fd f;
4457
4458 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4459 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4460 insn[1].off != 0) {
4461 verbose("invalid bpf_ld_imm64 insn\n");
4462 return -EINVAL;
4463 }
4464
4465 if (insn->src_reg == 0)
4466 /* valid generic load 64-bit imm */
4467 goto next_insn;
4468
4469 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4470 verbose("unrecognized bpf_ld_imm64 insn\n");
4471 return -EINVAL;
4472 }
4473
4474 f = fdget(insn->imm);
4475 map = __bpf_map_get(f);
4476 if (IS_ERR(map)) {
4477 verbose("fd %d is not pointing to valid bpf_map\n",
4478 insn->imm);
4479 return PTR_ERR(map);
4480 }
4481
4482 err = check_map_prog_compatibility(map, env->prog);
4483 if (err) {
4484 fdput(f);
4485 return err;
4486 }
4487
4488 /* store map pointer inside BPF_LD_IMM64 instruction */
4489 insn[0].imm = (u32) (unsigned long) map;
4490 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4491
4492 /* check whether we recorded this map already */
4493 for (j = 0; j < env->used_map_cnt; j++)
4494 if (env->used_maps[j] == map) {
4495 fdput(f);
4496 goto next_insn;
4497 }
4498
4499 if (env->used_map_cnt >= MAX_USED_MAPS) {
4500 fdput(f);
4501 return -E2BIG;
4502 }
4503
4504 /* hold the map. If the program is rejected by verifier,
4505 * the map will be released by release_maps() or it
4506 * will be used by the valid program until it's unloaded
4507 * and all maps are released in free_used_maps()
4508 */
4509 map = bpf_map_inc(map, false);
4510 if (IS_ERR(map)) {
4511 fdput(f);
4512 return PTR_ERR(map);
4513 }
4514 env->used_maps[env->used_map_cnt++] = map;
4515
4516 fdput(f);
4517 next_insn:
4518 insn++;
4519 i++;
4520 }
4521 }
4522
4523 /* now all pseudo BPF_LD_IMM64 instructions load valid
4524 * 'struct bpf_map *' into a register instead of user map_fd.
4525 * These pointers will be used later by verifier to validate map access.
4526 */
4527 return 0;
4528 }
4529
4530 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)4531 static void release_maps(struct bpf_verifier_env *env)
4532 {
4533 int i;
4534
4535 for (i = 0; i < env->used_map_cnt; i++)
4536 bpf_map_put(env->used_maps[i]);
4537 }
4538
4539 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)4540 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4541 {
4542 struct bpf_insn *insn = env->prog->insnsi;
4543 int insn_cnt = env->prog->len;
4544 int i;
4545
4546 for (i = 0; i < insn_cnt; i++, insn++)
4547 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4548 insn->src_reg = 0;
4549 }
4550
4551 /* single env->prog->insni[off] instruction was replaced with the range
4552 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4553 * [0, off) and [off, end) to new locations, so the patched range stays zero
4554 */
adjust_insn_aux_data(struct bpf_verifier_env * env,u32 prog_len,u32 off,u32 cnt)4555 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4556 u32 off, u32 cnt)
4557 {
4558 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4559 int i;
4560
4561 if (cnt == 1)
4562 return 0;
4563 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4564 if (!new_data)
4565 return -ENOMEM;
4566 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4567 memcpy(new_data + off + cnt - 1, old_data + off,
4568 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4569 for (i = off; i < off + cnt - 1; i++)
4570 new_data[i].seen = true;
4571 env->insn_aux_data = new_data;
4572 vfree(old_data);
4573 return 0;
4574 }
4575
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)4576 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4577 const struct bpf_insn *patch, u32 len)
4578 {
4579 struct bpf_prog *new_prog;
4580
4581 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4582 if (!new_prog)
4583 return NULL;
4584 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4585 return NULL;
4586 return new_prog;
4587 }
4588
4589 /* The verifier does more data flow analysis than llvm and will not explore
4590 * branches that are dead at run time. Malicious programs can have dead code
4591 * too. Therefore replace all dead at-run-time code with nops.
4592 */
sanitize_dead_code(struct bpf_verifier_env * env)4593 static void sanitize_dead_code(struct bpf_verifier_env *env)
4594 {
4595 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4596 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4597 struct bpf_insn *insn = env->prog->insnsi;
4598 const int insn_cnt = env->prog->len;
4599 int i;
4600
4601 for (i = 0; i < insn_cnt; i++) {
4602 if (aux_data[i].seen)
4603 continue;
4604 memcpy(insn + i, &nop, sizeof(nop));
4605 }
4606 }
4607
4608 /* convert load instructions that access fields of 'struct __sk_buff'
4609 * into sequence of instructions that access fields of 'struct sk_buff'
4610 */
convert_ctx_accesses(struct bpf_verifier_env * env)4611 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4612 {
4613 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
4614 int i, cnt, size, ctx_field_size, delta = 0;
4615 const int insn_cnt = env->prog->len;
4616 struct bpf_insn insn_buf[16], *insn;
4617 struct bpf_prog *new_prog;
4618 enum bpf_access_type type;
4619 bool is_narrower_load;
4620 u32 target_size;
4621
4622 if (ops->gen_prologue) {
4623 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4624 env->prog);
4625 if (cnt >= ARRAY_SIZE(insn_buf)) {
4626 verbose("bpf verifier is misconfigured\n");
4627 return -EINVAL;
4628 } else if (cnt) {
4629 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4630 if (!new_prog)
4631 return -ENOMEM;
4632
4633 env->prog = new_prog;
4634 delta += cnt - 1;
4635 }
4636 }
4637
4638 if (!ops->convert_ctx_access)
4639 return 0;
4640
4641 insn = env->prog->insnsi + delta;
4642
4643 for (i = 0; i < insn_cnt; i++, insn++) {
4644 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4645 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4646 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4647 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4648 type = BPF_READ;
4649 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4650 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4651 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4652 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4653 type = BPF_WRITE;
4654 else
4655 continue;
4656
4657 if (type == BPF_WRITE &&
4658 env->insn_aux_data[i + delta].sanitize_stack_off) {
4659 struct bpf_insn patch[] = {
4660 /* Sanitize suspicious stack slot with zero.
4661 * There are no memory dependencies for this store,
4662 * since it's only using frame pointer and immediate
4663 * constant of zero
4664 */
4665 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
4666 env->insn_aux_data[i + delta].sanitize_stack_off,
4667 0),
4668 /* the original STX instruction will immediately
4669 * overwrite the same stack slot with appropriate value
4670 */
4671 *insn,
4672 };
4673
4674 cnt = ARRAY_SIZE(patch);
4675 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
4676 if (!new_prog)
4677 return -ENOMEM;
4678
4679 delta += cnt - 1;
4680 env->prog = new_prog;
4681 insn = new_prog->insnsi + i + delta;
4682 continue;
4683 }
4684
4685 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4686 continue;
4687
4688 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4689 size = BPF_LDST_BYTES(insn);
4690
4691 /* If the read access is a narrower load of the field,
4692 * convert to a 4/8-byte load, to minimum program type specific
4693 * convert_ctx_access changes. If conversion is successful,
4694 * we will apply proper mask to the result.
4695 */
4696 is_narrower_load = size < ctx_field_size;
4697 if (is_narrower_load) {
4698 u32 off = insn->off;
4699 u8 size_code;
4700
4701 if (type == BPF_WRITE) {
4702 verbose("bpf verifier narrow ctx access misconfigured\n");
4703 return -EINVAL;
4704 }
4705
4706 size_code = BPF_H;
4707 if (ctx_field_size == 4)
4708 size_code = BPF_W;
4709 else if (ctx_field_size == 8)
4710 size_code = BPF_DW;
4711
4712 insn->off = off & ~(ctx_field_size - 1);
4713 insn->code = BPF_LDX | BPF_MEM | size_code;
4714 }
4715
4716 target_size = 0;
4717 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4718 &target_size);
4719 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4720 (ctx_field_size && !target_size)) {
4721 verbose("bpf verifier is misconfigured\n");
4722 return -EINVAL;
4723 }
4724
4725 if (is_narrower_load && size < target_size) {
4726 if (ctx_field_size <= 4)
4727 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4728 (1 << size * 8) - 1);
4729 else
4730 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4731 (1 << size * 8) - 1);
4732 }
4733
4734 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4735 if (!new_prog)
4736 return -ENOMEM;
4737
4738 delta += cnt - 1;
4739
4740 /* keep walking new program and skip insns we just inserted */
4741 env->prog = new_prog;
4742 insn = new_prog->insnsi + i + delta;
4743 }
4744
4745 return 0;
4746 }
4747
4748 /* fixup insn->imm field of bpf_call instructions
4749 * and inline eligible helpers as explicit sequence of BPF instructions
4750 *
4751 * this function is called after eBPF program passed verification
4752 */
fixup_bpf_calls(struct bpf_verifier_env * env)4753 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4754 {
4755 struct bpf_prog *prog = env->prog;
4756 struct bpf_insn *insn = prog->insnsi;
4757 const struct bpf_func_proto *fn;
4758 const int insn_cnt = prog->len;
4759 struct bpf_insn insn_buf[16];
4760 struct bpf_prog *new_prog;
4761 struct bpf_map *map_ptr;
4762 int i, cnt, delta = 0;
4763 struct bpf_insn_aux_data *aux;
4764
4765 for (i = 0; i < insn_cnt; i++, insn++) {
4766 if (insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
4767 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
4768 /* due to JIT bugs clear upper 32-bits of src register
4769 * before div/mod operation
4770 */
4771 insn_buf[0] = BPF_MOV32_REG(insn->src_reg, insn->src_reg);
4772 insn_buf[1] = *insn;
4773 cnt = 2;
4774 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4775 if (!new_prog)
4776 return -ENOMEM;
4777
4778 delta += cnt - 1;
4779 env->prog = prog = new_prog;
4780 insn = new_prog->insnsi + i + delta;
4781 continue;
4782 }
4783
4784 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
4785 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
4786 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
4787 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
4788 struct bpf_insn insn_buf[16];
4789 struct bpf_insn *patch = &insn_buf[0];
4790 bool issrc, isneg;
4791 u32 off_reg;
4792
4793 aux = &env->insn_aux_data[i + delta];
4794 if (!aux->alu_state ||
4795 aux->alu_state == BPF_ALU_NON_POINTER)
4796 continue;
4797
4798 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
4799 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
4800 BPF_ALU_SANITIZE_SRC;
4801
4802 off_reg = issrc ? insn->src_reg : insn->dst_reg;
4803 if (isneg)
4804 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
4805 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
4806 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
4807 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
4808 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
4809 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
4810 if (issrc) {
4811 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
4812 off_reg);
4813 insn->src_reg = BPF_REG_AX;
4814 } else {
4815 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
4816 BPF_REG_AX);
4817 }
4818 if (isneg)
4819 insn->code = insn->code == code_add ?
4820 code_sub : code_add;
4821 *patch++ = *insn;
4822 if (issrc && isneg)
4823 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
4824 cnt = patch - insn_buf;
4825
4826 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4827 if (!new_prog)
4828 return -ENOMEM;
4829
4830 delta += cnt - 1;
4831 env->prog = prog = new_prog;
4832 insn = new_prog->insnsi + i + delta;
4833 continue;
4834 }
4835
4836 if (insn->code != (BPF_JMP | BPF_CALL))
4837 continue;
4838
4839 if (insn->imm == BPF_FUNC_get_route_realm)
4840 prog->dst_needed = 1;
4841 if (insn->imm == BPF_FUNC_get_prandom_u32)
4842 bpf_user_rnd_init_once();
4843 if (insn->imm == BPF_FUNC_tail_call) {
4844 /* If we tail call into other programs, we
4845 * cannot make any assumptions since they can
4846 * be replaced dynamically during runtime in
4847 * the program array.
4848 */
4849 prog->cb_access = 1;
4850 env->prog->aux->stack_depth = MAX_BPF_STACK;
4851
4852 /* mark bpf_tail_call as different opcode to avoid
4853 * conditional branch in the interpeter for every normal
4854 * call and to prevent accidental JITing by JIT compiler
4855 * that doesn't support bpf_tail_call yet
4856 */
4857 insn->imm = 0;
4858 insn->code = BPF_JMP | BPF_TAIL_CALL;
4859
4860 /* instead of changing every JIT dealing with tail_call
4861 * emit two extra insns:
4862 * if (index >= max_entries) goto out;
4863 * index &= array->index_mask;
4864 * to avoid out-of-bounds cpu speculation
4865 */
4866 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4867 if (map_ptr == BPF_MAP_PTR_POISON) {
4868 verbose("tail_call obusing map_ptr\n");
4869 return -EINVAL;
4870 }
4871 if (!map_ptr->unpriv_array)
4872 continue;
4873 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
4874 map_ptr->max_entries, 2);
4875 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
4876 container_of(map_ptr,
4877 struct bpf_array,
4878 map)->index_mask);
4879 insn_buf[2] = *insn;
4880 cnt = 3;
4881 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4882 if (!new_prog)
4883 return -ENOMEM;
4884
4885 delta += cnt - 1;
4886 env->prog = prog = new_prog;
4887 insn = new_prog->insnsi + i + delta;
4888 continue;
4889 }
4890
4891 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4892 * handlers are currently limited to 64 bit only.
4893 */
4894 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4895 insn->imm == BPF_FUNC_map_lookup_elem) {
4896 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4897 if (map_ptr == BPF_MAP_PTR_POISON ||
4898 !map_ptr->ops->map_gen_lookup)
4899 goto patch_call_imm;
4900
4901 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4902 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4903 verbose("bpf verifier is misconfigured\n");
4904 return -EINVAL;
4905 }
4906
4907 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4908 cnt);
4909 if (!new_prog)
4910 return -ENOMEM;
4911
4912 delta += cnt - 1;
4913
4914 /* keep walking new program and skip insns we just inserted */
4915 env->prog = prog = new_prog;
4916 insn = new_prog->insnsi + i + delta;
4917 continue;
4918 }
4919
4920 if (insn->imm == BPF_FUNC_redirect_map) {
4921 /* Note, we cannot use prog directly as imm as subsequent
4922 * rewrites would still change the prog pointer. The only
4923 * stable address we can use is aux, which also works with
4924 * prog clones during blinding.
4925 */
4926 u64 addr = (unsigned long)prog->aux;
4927 struct bpf_insn r4_ld[] = {
4928 BPF_LD_IMM64(BPF_REG_4, addr),
4929 *insn,
4930 };
4931 cnt = ARRAY_SIZE(r4_ld);
4932
4933 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4934 if (!new_prog)
4935 return -ENOMEM;
4936
4937 delta += cnt - 1;
4938 env->prog = prog = new_prog;
4939 insn = new_prog->insnsi + i + delta;
4940 }
4941 patch_call_imm:
4942 fn = prog->aux->ops->get_func_proto(insn->imm);
4943 /* all functions that have prototype and verifier allowed
4944 * programs to call them, must be real in-kernel functions
4945 */
4946 if (!fn->func) {
4947 verbose("kernel subsystem misconfigured func %s#%d\n",
4948 func_id_name(insn->imm), insn->imm);
4949 return -EFAULT;
4950 }
4951 insn->imm = fn->func - __bpf_call_base;
4952 }
4953
4954 return 0;
4955 }
4956
free_states(struct bpf_verifier_env * env)4957 static void free_states(struct bpf_verifier_env *env)
4958 {
4959 struct bpf_verifier_state_list *sl, *sln;
4960 int i;
4961
4962 if (!env->explored_states)
4963 return;
4964
4965 for (i = 0; i < env->prog->len; i++) {
4966 sl = env->explored_states[i];
4967
4968 if (sl)
4969 while (sl != STATE_LIST_MARK) {
4970 sln = sl->next;
4971 free_verifier_state(&sl->state, false);
4972 kfree(sl);
4973 sl = sln;
4974 }
4975 }
4976
4977 kfree(env->explored_states);
4978 }
4979
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr)4980 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4981 {
4982 char __user *log_ubuf = NULL;
4983 struct bpf_verifier_env *env;
4984 int ret = -EINVAL;
4985
4986 /* 'struct bpf_verifier_env' can be global, but since it's not small,
4987 * allocate/free it every time bpf_check() is called
4988 */
4989 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4990 if (!env)
4991 return -ENOMEM;
4992
4993 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4994 (*prog)->len);
4995 ret = -ENOMEM;
4996 if (!env->insn_aux_data)
4997 goto err_free_env;
4998 env->prog = *prog;
4999
5000 /* grab the mutex to protect few globals used by verifier */
5001 mutex_lock(&bpf_verifier_lock);
5002
5003 if (attr->log_level || attr->log_buf || attr->log_size) {
5004 /* user requested verbose verifier output
5005 * and supplied buffer to store the verification trace
5006 */
5007 log_level = attr->log_level;
5008 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
5009 log_size = attr->log_size;
5010 log_len = 0;
5011
5012 ret = -EINVAL;
5013 /* log_* values have to be sane */
5014 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
5015 log_level == 0 || log_ubuf == NULL)
5016 goto err_unlock;
5017
5018 ret = -ENOMEM;
5019 log_buf = vmalloc(log_size);
5020 if (!log_buf)
5021 goto err_unlock;
5022 } else {
5023 log_level = 0;
5024 }
5025
5026 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5027 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5028 env->strict_alignment = true;
5029
5030 ret = replace_map_fd_with_map_ptr(env);
5031 if (ret < 0)
5032 goto skip_full_check;
5033
5034 env->explored_states = kcalloc(env->prog->len,
5035 sizeof(struct bpf_verifier_state_list *),
5036 GFP_USER);
5037 ret = -ENOMEM;
5038 if (!env->explored_states)
5039 goto skip_full_check;
5040
5041 ret = check_cfg(env);
5042 if (ret < 0)
5043 goto skip_full_check;
5044
5045 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5046
5047 ret = do_check(env);
5048 if (env->cur_state) {
5049 free_verifier_state(env->cur_state, true);
5050 env->cur_state = NULL;
5051 }
5052
5053 skip_full_check:
5054 while (!pop_stack(env, NULL, NULL));
5055 free_states(env);
5056
5057 if (ret == 0)
5058 sanitize_dead_code(env);
5059
5060 if (ret == 0)
5061 /* program is valid, convert *(u32*)(ctx + off) accesses */
5062 ret = convert_ctx_accesses(env);
5063
5064 if (ret == 0)
5065 ret = fixup_bpf_calls(env);
5066
5067 if (log_level && log_len >= log_size - 1) {
5068 BUG_ON(log_len >= log_size);
5069 /* verifier log exceeded user supplied buffer */
5070 ret = -ENOSPC;
5071 /* fall through to return what was recorded */
5072 }
5073
5074 /* copy verifier log back to user space including trailing zero */
5075 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
5076 ret = -EFAULT;
5077 goto free_log_buf;
5078 }
5079
5080 if (ret == 0 && env->used_map_cnt) {
5081 /* if program passed verifier, update used_maps in bpf_prog_info */
5082 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5083 sizeof(env->used_maps[0]),
5084 GFP_KERNEL);
5085
5086 if (!env->prog->aux->used_maps) {
5087 ret = -ENOMEM;
5088 goto free_log_buf;
5089 }
5090
5091 memcpy(env->prog->aux->used_maps, env->used_maps,
5092 sizeof(env->used_maps[0]) * env->used_map_cnt);
5093 env->prog->aux->used_map_cnt = env->used_map_cnt;
5094
5095 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
5096 * bpf_ld_imm64 instructions
5097 */
5098 convert_pseudo_ld_imm64(env);
5099 }
5100
5101 free_log_buf:
5102 if (log_level)
5103 vfree(log_buf);
5104 if (!env->prog->aux->used_maps)
5105 /* if we didn't copy map pointers into bpf_prog_info, release
5106 * them now. Otherwise free_used_maps() will release them.
5107 */
5108 release_maps(env);
5109 *prog = env->prog;
5110 err_unlock:
5111 mutex_unlock(&bpf_verifier_lock);
5112 vfree(env->insn_aux_data);
5113 err_free_env:
5114 kfree(env);
5115 return ret;
5116 }
5117
bpf_analyzer(struct bpf_prog * prog,const struct bpf_ext_analyzer_ops * ops,void * priv)5118 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
5119 void *priv)
5120 {
5121 struct bpf_verifier_env *env;
5122 int ret;
5123
5124 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5125 if (!env)
5126 return -ENOMEM;
5127
5128 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5129 prog->len);
5130 ret = -ENOMEM;
5131 if (!env->insn_aux_data)
5132 goto err_free_env;
5133 env->prog = prog;
5134 env->analyzer_ops = ops;
5135 env->analyzer_priv = priv;
5136
5137 /* grab the mutex to protect few globals used by verifier */
5138 mutex_lock(&bpf_verifier_lock);
5139
5140 log_level = 0;
5141
5142 env->strict_alignment = false;
5143 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5144 env->strict_alignment = true;
5145
5146 env->explored_states = kcalloc(env->prog->len,
5147 sizeof(struct bpf_verifier_state_list *),
5148 GFP_KERNEL);
5149 ret = -ENOMEM;
5150 if (!env->explored_states)
5151 goto skip_full_check;
5152
5153 ret = check_cfg(env);
5154 if (ret < 0)
5155 goto skip_full_check;
5156
5157 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5158
5159 ret = do_check(env);
5160 if (env->cur_state) {
5161 free_verifier_state(env->cur_state, true);
5162 env->cur_state = NULL;
5163 }
5164
5165 skip_full_check:
5166 while (!pop_stack(env, NULL, NULL));
5167 free_states(env);
5168
5169 mutex_unlock(&bpf_verifier_lock);
5170 vfree(env->insn_aux_data);
5171 err_free_env:
5172 kfree(env);
5173 return ret;
5174 }
5175 EXPORT_SYMBOL_GPL(bpf_analyzer);
5176