1 /*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
6 *
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22 */
23
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 #include <linux/rbtree_latch.h>
32 #include <linux/kallsyms.h>
33 #include <linux/rcupdate.h>
34
35 #include <asm/unaligned.h>
36
37 /* Registers */
38 #define BPF_R0 regs[BPF_REG_0]
39 #define BPF_R1 regs[BPF_REG_1]
40 #define BPF_R2 regs[BPF_REG_2]
41 #define BPF_R3 regs[BPF_REG_3]
42 #define BPF_R4 regs[BPF_REG_4]
43 #define BPF_R5 regs[BPF_REG_5]
44 #define BPF_R6 regs[BPF_REG_6]
45 #define BPF_R7 regs[BPF_REG_7]
46 #define BPF_R8 regs[BPF_REG_8]
47 #define BPF_R9 regs[BPF_REG_9]
48 #define BPF_R10 regs[BPF_REG_10]
49
50 /* Named registers */
51 #define DST regs[insn->dst_reg]
52 #define SRC regs[insn->src_reg]
53 #define FP regs[BPF_REG_FP]
54 #define AX regs[BPF_REG_AX]
55 #define ARG1 regs[BPF_REG_ARG1]
56 #define CTX regs[BPF_REG_CTX]
57 #define IMM insn->imm
58
59 /* No hurry in this branch
60 *
61 * Exported for the bpf jit load helper.
62 */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)63 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
64 {
65 u8 *ptr = NULL;
66
67 if (k >= SKF_NET_OFF)
68 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
69 else if (k >= SKF_LL_OFF)
70 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
71
72 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
73 return ptr;
74
75 return NULL;
76 }
77
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)78 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
79 {
80 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
81 struct bpf_prog_aux *aux;
82 struct bpf_prog *fp;
83
84 size = round_up(size, PAGE_SIZE);
85 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
86 if (fp == NULL)
87 return NULL;
88
89 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
90 if (aux == NULL) {
91 vfree(fp);
92 return NULL;
93 }
94
95 fp->pages = size / PAGE_SIZE;
96 fp->aux = aux;
97 fp->aux->prog = fp;
98
99 INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
100
101 return fp;
102 }
103 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
104
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)105 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
106 gfp_t gfp_extra_flags)
107 {
108 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
109 struct bpf_prog *fp;
110 u32 pages, delta;
111 int ret;
112
113 BUG_ON(fp_old == NULL);
114
115 size = round_up(size, PAGE_SIZE);
116 pages = size / PAGE_SIZE;
117 if (pages <= fp_old->pages)
118 return fp_old;
119
120 delta = pages - fp_old->pages;
121 ret = __bpf_prog_charge(fp_old->aux->user, delta);
122 if (ret)
123 return NULL;
124
125 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
126 if (fp == NULL) {
127 __bpf_prog_uncharge(fp_old->aux->user, delta);
128 } else {
129 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
130 fp->pages = pages;
131 fp->aux->prog = fp;
132
133 /* We keep fp->aux from fp_old around in the new
134 * reallocated structure.
135 */
136 fp_old->aux = NULL;
137 __bpf_prog_free(fp_old);
138 }
139
140 return fp;
141 }
142
__bpf_prog_free(struct bpf_prog * fp)143 void __bpf_prog_free(struct bpf_prog *fp)
144 {
145 kfree(fp->aux);
146 vfree(fp);
147 }
148
bpf_prog_calc_tag(struct bpf_prog * fp)149 int bpf_prog_calc_tag(struct bpf_prog *fp)
150 {
151 const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
152 u32 raw_size = bpf_prog_tag_scratch_size(fp);
153 u32 digest[SHA_DIGEST_WORDS];
154 u32 ws[SHA_WORKSPACE_WORDS];
155 u32 i, bsize, psize, blocks;
156 struct bpf_insn *dst;
157 bool was_ld_map;
158 u8 *raw, *todo;
159 __be32 *result;
160 __be64 *bits;
161
162 raw = vmalloc(raw_size);
163 if (!raw)
164 return -ENOMEM;
165
166 sha_init(digest);
167 memset(ws, 0, sizeof(ws));
168
169 /* We need to take out the map fd for the digest calculation
170 * since they are unstable from user space side.
171 */
172 dst = (void *)raw;
173 for (i = 0, was_ld_map = false; i < fp->len; i++) {
174 dst[i] = fp->insnsi[i];
175 if (!was_ld_map &&
176 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
177 dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
178 was_ld_map = true;
179 dst[i].imm = 0;
180 } else if (was_ld_map &&
181 dst[i].code == 0 &&
182 dst[i].dst_reg == 0 &&
183 dst[i].src_reg == 0 &&
184 dst[i].off == 0) {
185 was_ld_map = false;
186 dst[i].imm = 0;
187 } else {
188 was_ld_map = false;
189 }
190 }
191
192 psize = bpf_prog_insn_size(fp);
193 memset(&raw[psize], 0, raw_size - psize);
194 raw[psize++] = 0x80;
195
196 bsize = round_up(psize, SHA_MESSAGE_BYTES);
197 blocks = bsize / SHA_MESSAGE_BYTES;
198 todo = raw;
199 if (bsize - psize >= sizeof(__be64)) {
200 bits = (__be64 *)(todo + bsize - sizeof(__be64));
201 } else {
202 bits = (__be64 *)(todo + bsize + bits_offset);
203 blocks++;
204 }
205 *bits = cpu_to_be64((psize - 1) << 3);
206
207 while (blocks--) {
208 sha_transform(digest, todo, ws);
209 todo += SHA_MESSAGE_BYTES;
210 }
211
212 result = (__force __be32 *)digest;
213 for (i = 0; i < SHA_DIGEST_WORDS; i++)
214 result[i] = cpu_to_be32(digest[i]);
215 memcpy(fp->tag, result, sizeof(fp->tag));
216
217 vfree(raw);
218 return 0;
219 }
220
bpf_is_jmp_and_has_target(const struct bpf_insn * insn)221 static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
222 {
223 return BPF_CLASS(insn->code) == BPF_JMP &&
224 /* Call and Exit are both special jumps with no
225 * target inside the BPF instruction image.
226 */
227 BPF_OP(insn->code) != BPF_CALL &&
228 BPF_OP(insn->code) != BPF_EXIT;
229 }
230
bpf_adj_branches(struct bpf_prog * prog,u32 pos,u32 delta)231 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
232 {
233 struct bpf_insn *insn = prog->insnsi;
234 u32 i, insn_cnt = prog->len;
235
236 for (i = 0; i < insn_cnt; i++, insn++) {
237 if (!bpf_is_jmp_and_has_target(insn))
238 continue;
239
240 /* Adjust offset of jmps if we cross boundaries. */
241 if (i < pos && i + insn->off + 1 > pos)
242 insn->off += delta;
243 else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
244 insn->off -= delta;
245 }
246 }
247
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)248 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
249 const struct bpf_insn *patch, u32 len)
250 {
251 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
252 struct bpf_prog *prog_adj;
253
254 /* Since our patchlet doesn't expand the image, we're done. */
255 if (insn_delta == 0) {
256 memcpy(prog->insnsi + off, patch, sizeof(*patch));
257 return prog;
258 }
259
260 insn_adj_cnt = prog->len + insn_delta;
261
262 /* Several new instructions need to be inserted. Make room
263 * for them. Likely, there's no need for a new allocation as
264 * last page could have large enough tailroom.
265 */
266 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
267 GFP_USER);
268 if (!prog_adj)
269 return NULL;
270
271 prog_adj->len = insn_adj_cnt;
272
273 /* Patching happens in 3 steps:
274 *
275 * 1) Move over tail of insnsi from next instruction onwards,
276 * so we can patch the single target insn with one or more
277 * new ones (patching is always from 1 to n insns, n > 0).
278 * 2) Inject new instructions at the target location.
279 * 3) Adjust branch offsets if necessary.
280 */
281 insn_rest = insn_adj_cnt - off - len;
282
283 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
284 sizeof(*patch) * insn_rest);
285 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
286
287 bpf_adj_branches(prog_adj, off, insn_delta);
288
289 return prog_adj;
290 }
291
292 #ifdef CONFIG_BPF_JIT
293 /* All BPF JIT sysctl knobs here. */
294 int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
295 int bpf_jit_harden __read_mostly;
296 int bpf_jit_kallsyms __read_mostly;
297 long bpf_jit_limit __read_mostly;
298
299 static __always_inline void
bpf_get_prog_addr_region(const struct bpf_prog * prog,unsigned long * symbol_start,unsigned long * symbol_end)300 bpf_get_prog_addr_region(const struct bpf_prog *prog,
301 unsigned long *symbol_start,
302 unsigned long *symbol_end)
303 {
304 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
305 unsigned long addr = (unsigned long)hdr;
306
307 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
308
309 *symbol_start = addr;
310 *symbol_end = addr + hdr->pages * PAGE_SIZE;
311 }
312
bpf_get_prog_name(const struct bpf_prog * prog,char * sym)313 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
314 {
315 BUILD_BUG_ON(sizeof("bpf_prog_") +
316 sizeof(prog->tag) * 2 + 1 > KSYM_NAME_LEN);
317
318 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
319 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
320 *sym = 0;
321 }
322
323 static __always_inline unsigned long
bpf_get_prog_addr_start(struct latch_tree_node * n)324 bpf_get_prog_addr_start(struct latch_tree_node *n)
325 {
326 unsigned long symbol_start, symbol_end;
327 const struct bpf_prog_aux *aux;
328
329 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
330 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
331
332 return symbol_start;
333 }
334
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)335 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
336 struct latch_tree_node *b)
337 {
338 return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
339 }
340
bpf_tree_comp(void * key,struct latch_tree_node * n)341 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
342 {
343 unsigned long val = (unsigned long)key;
344 unsigned long symbol_start, symbol_end;
345 const struct bpf_prog_aux *aux;
346
347 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
348 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
349
350 if (val < symbol_start)
351 return -1;
352 if (val >= symbol_end)
353 return 1;
354
355 return 0;
356 }
357
358 static const struct latch_tree_ops bpf_tree_ops = {
359 .less = bpf_tree_less,
360 .comp = bpf_tree_comp,
361 };
362
363 static DEFINE_SPINLOCK(bpf_lock);
364 static LIST_HEAD(bpf_kallsyms);
365 static struct latch_tree_root bpf_tree __cacheline_aligned;
366
bpf_prog_ksym_node_add(struct bpf_prog_aux * aux)367 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
368 {
369 WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
370 list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
371 latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
372 }
373
bpf_prog_ksym_node_del(struct bpf_prog_aux * aux)374 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
375 {
376 if (list_empty(&aux->ksym_lnode))
377 return;
378
379 latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
380 list_del_rcu(&aux->ksym_lnode);
381 }
382
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)383 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
384 {
385 return fp->jited && !bpf_prog_was_classic(fp);
386 }
387
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)388 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
389 {
390 return list_empty(&fp->aux->ksym_lnode) ||
391 fp->aux->ksym_lnode.prev == LIST_POISON2;
392 }
393
bpf_prog_kallsyms_add(struct bpf_prog * fp)394 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
395 {
396 if (!bpf_prog_kallsyms_candidate(fp) ||
397 !capable(CAP_SYS_ADMIN))
398 return;
399
400 spin_lock_bh(&bpf_lock);
401 bpf_prog_ksym_node_add(fp->aux);
402 spin_unlock_bh(&bpf_lock);
403 }
404
bpf_prog_kallsyms_del(struct bpf_prog * fp)405 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
406 {
407 if (!bpf_prog_kallsyms_candidate(fp))
408 return;
409
410 spin_lock_bh(&bpf_lock);
411 bpf_prog_ksym_node_del(fp->aux);
412 spin_unlock_bh(&bpf_lock);
413 }
414
bpf_prog_kallsyms_find(unsigned long addr)415 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
416 {
417 struct latch_tree_node *n;
418
419 if (!bpf_jit_kallsyms_enabled())
420 return NULL;
421
422 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
423 return n ?
424 container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
425 NULL;
426 }
427
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)428 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
429 unsigned long *off, char *sym)
430 {
431 unsigned long symbol_start, symbol_end;
432 struct bpf_prog *prog;
433 char *ret = NULL;
434
435 rcu_read_lock();
436 prog = bpf_prog_kallsyms_find(addr);
437 if (prog) {
438 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
439 bpf_get_prog_name(prog, sym);
440
441 ret = sym;
442 if (size)
443 *size = symbol_end - symbol_start;
444 if (off)
445 *off = addr - symbol_start;
446 }
447 rcu_read_unlock();
448
449 return ret;
450 }
451
is_bpf_text_address(unsigned long addr)452 bool is_bpf_text_address(unsigned long addr)
453 {
454 bool ret;
455
456 rcu_read_lock();
457 ret = bpf_prog_kallsyms_find(addr) != NULL;
458 rcu_read_unlock();
459
460 return ret;
461 }
462
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)463 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
464 char *sym)
465 {
466 unsigned long symbol_start, symbol_end;
467 struct bpf_prog_aux *aux;
468 unsigned int it = 0;
469 int ret = -ERANGE;
470
471 if (!bpf_jit_kallsyms_enabled())
472 return ret;
473
474 rcu_read_lock();
475 list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
476 if (it++ != symnum)
477 continue;
478
479 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
480 bpf_get_prog_name(aux->prog, sym);
481
482 *value = symbol_start;
483 *type = BPF_SYM_ELF_TYPE;
484
485 ret = 0;
486 break;
487 }
488 rcu_read_unlock();
489
490 return ret;
491 }
492
493 static atomic_long_t bpf_jit_current;
494
495 /* Can be overridden by an arch's JIT compiler if it has a custom,
496 * dedicated BPF backend memory area, or if neither of the two
497 * below apply.
498 */
bpf_jit_alloc_exec_limit(void)499 u64 __weak bpf_jit_alloc_exec_limit(void)
500 {
501 #if defined(MODULES_VADDR)
502 return MODULES_END - MODULES_VADDR;
503 #else
504 return VMALLOC_END - VMALLOC_START;
505 #endif
506 }
507
bpf_jit_charge_init(void)508 static int __init bpf_jit_charge_init(void)
509 {
510 /* Only used as heuristic here to derive limit. */
511 bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
512 PAGE_SIZE), LONG_MAX);
513 return 0;
514 }
515 pure_initcall(bpf_jit_charge_init);
516
bpf_jit_charge_modmem(u32 pages)517 static int bpf_jit_charge_modmem(u32 pages)
518 {
519 if (atomic_long_add_return(pages, &bpf_jit_current) >
520 (bpf_jit_limit >> PAGE_SHIFT)) {
521 if (!capable(CAP_SYS_ADMIN)) {
522 atomic_long_sub(pages, &bpf_jit_current);
523 return -EPERM;
524 }
525 }
526
527 return 0;
528 }
529
bpf_jit_uncharge_modmem(u32 pages)530 static void bpf_jit_uncharge_modmem(u32 pages)
531 {
532 atomic_long_sub(pages, &bpf_jit_current);
533 }
534
535 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)536 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
537 unsigned int alignment,
538 bpf_jit_fill_hole_t bpf_fill_ill_insns)
539 {
540 struct bpf_binary_header *hdr;
541 u32 size, hole, start, pages;
542
543 /* Most of BPF filters are really small, but if some of them
544 * fill a page, allow at least 128 extra bytes to insert a
545 * random section of illegal instructions.
546 */
547 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
548 pages = size / PAGE_SIZE;
549
550 if (bpf_jit_charge_modmem(pages))
551 return NULL;
552 hdr = module_alloc(size);
553 if (!hdr) {
554 bpf_jit_uncharge_modmem(pages);
555 return NULL;
556 }
557
558 /* Fill space with illegal/arch-dep instructions. */
559 bpf_fill_ill_insns(hdr, size);
560
561 hdr->pages = pages;
562 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
563 PAGE_SIZE - sizeof(*hdr));
564 start = (get_random_int() % hole) & ~(alignment - 1);
565
566 /* Leave a random number of instructions before BPF code. */
567 *image_ptr = &hdr->image[start];
568
569 return hdr;
570 }
571
bpf_jit_binary_free(struct bpf_binary_header * hdr)572 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
573 {
574 u32 pages = hdr->pages;
575
576 module_memfree(hdr);
577 bpf_jit_uncharge_modmem(pages);
578 }
579
580 /* This symbol is only overridden by archs that have different
581 * requirements than the usual eBPF JITs, f.e. when they only
582 * implement cBPF JIT, do not set images read-only, etc.
583 */
bpf_jit_free(struct bpf_prog * fp)584 void __weak bpf_jit_free(struct bpf_prog *fp)
585 {
586 if (fp->jited) {
587 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
588
589 bpf_jit_binary_unlock_ro(hdr);
590 bpf_jit_binary_free(hdr);
591
592 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
593 }
594
595 bpf_prog_unlock_free(fp);
596 }
597
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff)598 static int bpf_jit_blind_insn(const struct bpf_insn *from,
599 const struct bpf_insn *aux,
600 struct bpf_insn *to_buff)
601 {
602 struct bpf_insn *to = to_buff;
603 u32 imm_rnd = get_random_int();
604 s16 off;
605
606 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
607 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
608
609 /* Constraints on AX register:
610 *
611 * AX register is inaccessible from user space. It is mapped in
612 * all JITs, and used here for constant blinding rewrites. It is
613 * typically "stateless" meaning its contents are only valid within
614 * the executed instruction, but not across several instructions.
615 * There are a few exceptions however which are further detailed
616 * below.
617 *
618 * Constant blinding is only used by JITs, not in the interpreter.
619 * The interpreter uses AX in some occasions as a local temporary
620 * register e.g. in DIV or MOD instructions.
621 *
622 * In restricted circumstances, the verifier can also use the AX
623 * register for rewrites as long as they do not interfere with
624 * the above cases!
625 */
626 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
627 goto out;
628
629 if (from->imm == 0 &&
630 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
631 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
632 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
633 goto out;
634 }
635
636 switch (from->code) {
637 case BPF_ALU | BPF_ADD | BPF_K:
638 case BPF_ALU | BPF_SUB | BPF_K:
639 case BPF_ALU | BPF_AND | BPF_K:
640 case BPF_ALU | BPF_OR | BPF_K:
641 case BPF_ALU | BPF_XOR | BPF_K:
642 case BPF_ALU | BPF_MUL | BPF_K:
643 case BPF_ALU | BPF_MOV | BPF_K:
644 case BPF_ALU | BPF_DIV | BPF_K:
645 case BPF_ALU | BPF_MOD | BPF_K:
646 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
647 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
648 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
649 break;
650
651 case BPF_ALU64 | BPF_ADD | BPF_K:
652 case BPF_ALU64 | BPF_SUB | BPF_K:
653 case BPF_ALU64 | BPF_AND | BPF_K:
654 case BPF_ALU64 | BPF_OR | BPF_K:
655 case BPF_ALU64 | BPF_XOR | BPF_K:
656 case BPF_ALU64 | BPF_MUL | BPF_K:
657 case BPF_ALU64 | BPF_MOV | BPF_K:
658 case BPF_ALU64 | BPF_DIV | BPF_K:
659 case BPF_ALU64 | BPF_MOD | BPF_K:
660 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
661 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
662 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
663 break;
664
665 case BPF_JMP | BPF_JEQ | BPF_K:
666 case BPF_JMP | BPF_JNE | BPF_K:
667 case BPF_JMP | BPF_JGT | BPF_K:
668 case BPF_JMP | BPF_JLT | BPF_K:
669 case BPF_JMP | BPF_JGE | BPF_K:
670 case BPF_JMP | BPF_JLE | BPF_K:
671 case BPF_JMP | BPF_JSGT | BPF_K:
672 case BPF_JMP | BPF_JSLT | BPF_K:
673 case BPF_JMP | BPF_JSGE | BPF_K:
674 case BPF_JMP | BPF_JSLE | BPF_K:
675 case BPF_JMP | BPF_JSET | BPF_K:
676 /* Accommodate for extra offset in case of a backjump. */
677 off = from->off;
678 if (off < 0)
679 off -= 2;
680 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
681 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
682 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
683 break;
684
685 case BPF_LD | BPF_ABS | BPF_W:
686 case BPF_LD | BPF_ABS | BPF_H:
687 case BPF_LD | BPF_ABS | BPF_B:
688 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
689 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
690 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
691 break;
692
693 case BPF_LD | BPF_IND | BPF_W:
694 case BPF_LD | BPF_IND | BPF_H:
695 case BPF_LD | BPF_IND | BPF_B:
696 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
697 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
698 *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
699 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
700 break;
701
702 case BPF_LD | BPF_IMM | BPF_DW:
703 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
704 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
705 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
706 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
707 break;
708 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
709 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
710 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
711 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
712 break;
713
714 case BPF_ST | BPF_MEM | BPF_DW:
715 case BPF_ST | BPF_MEM | BPF_W:
716 case BPF_ST | BPF_MEM | BPF_H:
717 case BPF_ST | BPF_MEM | BPF_B:
718 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
719 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
720 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
721 break;
722 }
723 out:
724 return to - to_buff;
725 }
726
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)727 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
728 gfp_t gfp_extra_flags)
729 {
730 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
731 struct bpf_prog *fp;
732
733 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
734 if (fp != NULL) {
735 /* aux->prog still points to the fp_other one, so
736 * when promoting the clone to the real program,
737 * this still needs to be adapted.
738 */
739 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
740 }
741
742 return fp;
743 }
744
bpf_prog_clone_free(struct bpf_prog * fp)745 static void bpf_prog_clone_free(struct bpf_prog *fp)
746 {
747 /* aux was stolen by the other clone, so we cannot free
748 * it from this path! It will be freed eventually by the
749 * other program on release.
750 *
751 * At this point, we don't need a deferred release since
752 * clone is guaranteed to not be locked.
753 */
754 fp->aux = NULL;
755 __bpf_prog_free(fp);
756 }
757
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)758 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
759 {
760 /* We have to repoint aux->prog to self, as we don't
761 * know whether fp here is the clone or the original.
762 */
763 fp->aux->prog = fp;
764 bpf_prog_clone_free(fp_other);
765 }
766
bpf_jit_blind_constants(struct bpf_prog * prog)767 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
768 {
769 struct bpf_insn insn_buff[16], aux[2];
770 struct bpf_prog *clone, *tmp;
771 int insn_delta, insn_cnt;
772 struct bpf_insn *insn;
773 int i, rewritten;
774
775 if (!bpf_jit_blinding_enabled())
776 return prog;
777
778 clone = bpf_prog_clone_create(prog, GFP_USER);
779 if (!clone)
780 return ERR_PTR(-ENOMEM);
781
782 insn_cnt = clone->len;
783 insn = clone->insnsi;
784
785 for (i = 0; i < insn_cnt; i++, insn++) {
786 /* We temporarily need to hold the original ld64 insn
787 * so that we can still access the first part in the
788 * second blinding run.
789 */
790 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
791 insn[1].code == 0)
792 memcpy(aux, insn, sizeof(aux));
793
794 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
795 if (!rewritten)
796 continue;
797
798 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
799 if (!tmp) {
800 /* Patching may have repointed aux->prog during
801 * realloc from the original one, so we need to
802 * fix it up here on error.
803 */
804 bpf_jit_prog_release_other(prog, clone);
805 return ERR_PTR(-ENOMEM);
806 }
807
808 clone = tmp;
809 insn_delta = rewritten - 1;
810
811 /* Walk new program and skip insns we just inserted. */
812 insn = clone->insnsi + i + insn_delta;
813 insn_cnt += insn_delta;
814 i += insn_delta;
815 }
816
817 return clone;
818 }
819 #endif /* CONFIG_BPF_JIT */
820
821 /* Base function for offset calculation. Needs to go into .text section,
822 * therefore keeping it non-static as well; will also be used by JITs
823 * anyway later on, so do not let the compiler omit it.
824 */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)825 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
826 {
827 return 0;
828 }
829 EXPORT_SYMBOL_GPL(__bpf_call_base);
830
831 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
832 /**
833 * __bpf_prog_run - run eBPF program on a given context
834 * @ctx: is the data we are operating on
835 * @insn: is the array of eBPF instructions
836 *
837 * Decode and execute eBPF instructions.
838 */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn,u64 * stack)839 static unsigned int ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn,
840 u64 *stack)
841 {
842 u64 tmp;
843 static const void *jumptable[256] = {
844 [0 ... 255] = &&default_label,
845 /* Now overwrite non-defaults ... */
846 /* 32 bit ALU operations */
847 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
848 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
849 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
850 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
851 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
852 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
853 [BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X,
854 [BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K,
855 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
856 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
857 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
858 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
859 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
860 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
861 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
862 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
863 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
864 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
865 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
866 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
867 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
868 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
869 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
870 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
871 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
872 /* 64 bit ALU operations */
873 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
874 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
875 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
876 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
877 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
878 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
879 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
880 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
881 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
882 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
883 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
884 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
885 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
886 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
887 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
888 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
889 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
890 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
891 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
892 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
893 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
894 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
895 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
896 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
897 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
898 /* Call instruction */
899 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
900 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
901 /* Jumps */
902 [BPF_JMP | BPF_JA] = &&JMP_JA,
903 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
904 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
905 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
906 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
907 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
908 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
909 [BPF_JMP | BPF_JLT | BPF_X] = &&JMP_JLT_X,
910 [BPF_JMP | BPF_JLT | BPF_K] = &&JMP_JLT_K,
911 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
912 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
913 [BPF_JMP | BPF_JLE | BPF_X] = &&JMP_JLE_X,
914 [BPF_JMP | BPF_JLE | BPF_K] = &&JMP_JLE_K,
915 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
916 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
917 [BPF_JMP | BPF_JSLT | BPF_X] = &&JMP_JSLT_X,
918 [BPF_JMP | BPF_JSLT | BPF_K] = &&JMP_JSLT_K,
919 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
920 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
921 [BPF_JMP | BPF_JSLE | BPF_X] = &&JMP_JSLE_X,
922 [BPF_JMP | BPF_JSLE | BPF_K] = &&JMP_JSLE_K,
923 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
924 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
925 /* Program return */
926 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
927 /* Store instructions */
928 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
929 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
930 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
931 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
932 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
933 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
934 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
935 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
936 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
937 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
938 /* Load instructions */
939 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
940 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
941 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
942 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
943 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
944 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
945 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
946 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
947 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
948 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
949 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
950 };
951 u32 tail_call_cnt = 0;
952 void *ptr;
953 int off;
954
955 #define CONT ({ insn++; goto select_insn; })
956 #define CONT_JMP ({ insn++; goto select_insn; })
957
958 select_insn:
959 goto *jumptable[insn->code];
960
961 /* ALU */
962 #define ALU(OPCODE, OP) \
963 ALU64_##OPCODE##_X: \
964 DST = DST OP SRC; \
965 CONT; \
966 ALU_##OPCODE##_X: \
967 DST = (u32) DST OP (u32) SRC; \
968 CONT; \
969 ALU64_##OPCODE##_K: \
970 DST = DST OP IMM; \
971 CONT; \
972 ALU_##OPCODE##_K: \
973 DST = (u32) DST OP (u32) IMM; \
974 CONT;
975
976 ALU(ADD, +)
977 ALU(SUB, -)
978 ALU(AND, &)
979 ALU(OR, |)
980 ALU(LSH, <<)
981 ALU(RSH, >>)
982 ALU(XOR, ^)
983 ALU(MUL, *)
984 #undef ALU
985 ALU_NEG:
986 DST = (u32) -DST;
987 CONT;
988 ALU64_NEG:
989 DST = -DST;
990 CONT;
991 ALU_MOV_X:
992 DST = (u32) SRC;
993 CONT;
994 ALU_MOV_K:
995 DST = (u32) IMM;
996 CONT;
997 ALU64_MOV_X:
998 DST = SRC;
999 CONT;
1000 ALU64_MOV_K:
1001 DST = IMM;
1002 CONT;
1003 LD_IMM_DW:
1004 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1005 insn++;
1006 CONT;
1007 ALU64_ARSH_X:
1008 (*(s64 *) &DST) >>= SRC;
1009 CONT;
1010 ALU64_ARSH_K:
1011 (*(s64 *) &DST) >>= IMM;
1012 CONT;
1013 ALU64_MOD_X:
1014 if (unlikely(SRC == 0))
1015 return 0;
1016 div64_u64_rem(DST, SRC, &AX);
1017 DST = AX;
1018 CONT;
1019 ALU_MOD_X:
1020 if (unlikely((u32)SRC == 0))
1021 return 0;
1022 AX = (u32) DST;
1023 DST = do_div(AX, (u32) SRC);
1024 CONT;
1025 ALU64_MOD_K:
1026 div64_u64_rem(DST, IMM, &AX);
1027 DST = AX;
1028 CONT;
1029 ALU_MOD_K:
1030 AX = (u32) DST;
1031 DST = do_div(AX, (u32) IMM);
1032 CONT;
1033 ALU64_DIV_X:
1034 if (unlikely(SRC == 0))
1035 return 0;
1036 DST = div64_u64(DST, SRC);
1037 CONT;
1038 ALU_DIV_X:
1039 if (unlikely((u32)SRC == 0))
1040 return 0;
1041 AX = (u32) DST;
1042 do_div(AX, (u32) SRC);
1043 DST = (u32) AX;
1044 CONT;
1045 ALU64_DIV_K:
1046 DST = div64_u64(DST, IMM);
1047 CONT;
1048 ALU_DIV_K:
1049 AX = (u32) DST;
1050 do_div(AX, (u32) IMM);
1051 DST = (u32) AX;
1052 CONT;
1053 ALU_END_TO_BE:
1054 switch (IMM) {
1055 case 16:
1056 DST = (__force u16) cpu_to_be16(DST);
1057 break;
1058 case 32:
1059 DST = (__force u32) cpu_to_be32(DST);
1060 break;
1061 case 64:
1062 DST = (__force u64) cpu_to_be64(DST);
1063 break;
1064 }
1065 CONT;
1066 ALU_END_TO_LE:
1067 switch (IMM) {
1068 case 16:
1069 DST = (__force u16) cpu_to_le16(DST);
1070 break;
1071 case 32:
1072 DST = (__force u32) cpu_to_le32(DST);
1073 break;
1074 case 64:
1075 DST = (__force u64) cpu_to_le64(DST);
1076 break;
1077 }
1078 CONT;
1079
1080 /* CALL */
1081 JMP_CALL:
1082 /* Function call scratches BPF_R1-BPF_R5 registers,
1083 * preserves BPF_R6-BPF_R9, and stores return value
1084 * into BPF_R0.
1085 */
1086 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1087 BPF_R4, BPF_R5);
1088 CONT;
1089
1090 JMP_TAIL_CALL: {
1091 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1092 struct bpf_array *array = container_of(map, struct bpf_array, map);
1093 struct bpf_prog *prog;
1094 u32 index = BPF_R3;
1095
1096 if (unlikely(index >= array->map.max_entries))
1097 goto out;
1098 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1099 goto out;
1100
1101 tail_call_cnt++;
1102
1103 prog = READ_ONCE(array->ptrs[index]);
1104 if (!prog)
1105 goto out;
1106
1107 /* ARG1 at this point is guaranteed to point to CTX from
1108 * the verifier side due to the fact that the tail call is
1109 * handeled like a helper, that is, bpf_tail_call_proto,
1110 * where arg1_type is ARG_PTR_TO_CTX.
1111 */
1112 insn = prog->insnsi;
1113 goto select_insn;
1114 out:
1115 CONT;
1116 }
1117 /* JMP */
1118 JMP_JA:
1119 insn += insn->off;
1120 CONT;
1121 JMP_JEQ_X:
1122 if (DST == SRC) {
1123 insn += insn->off;
1124 CONT_JMP;
1125 }
1126 CONT;
1127 JMP_JEQ_K:
1128 if (DST == IMM) {
1129 insn += insn->off;
1130 CONT_JMP;
1131 }
1132 CONT;
1133 JMP_JNE_X:
1134 if (DST != SRC) {
1135 insn += insn->off;
1136 CONT_JMP;
1137 }
1138 CONT;
1139 JMP_JNE_K:
1140 if (DST != IMM) {
1141 insn += insn->off;
1142 CONT_JMP;
1143 }
1144 CONT;
1145 JMP_JGT_X:
1146 if (DST > SRC) {
1147 insn += insn->off;
1148 CONT_JMP;
1149 }
1150 CONT;
1151 JMP_JGT_K:
1152 if (DST > IMM) {
1153 insn += insn->off;
1154 CONT_JMP;
1155 }
1156 CONT;
1157 JMP_JLT_X:
1158 if (DST < SRC) {
1159 insn += insn->off;
1160 CONT_JMP;
1161 }
1162 CONT;
1163 JMP_JLT_K:
1164 if (DST < IMM) {
1165 insn += insn->off;
1166 CONT_JMP;
1167 }
1168 CONT;
1169 JMP_JGE_X:
1170 if (DST >= SRC) {
1171 insn += insn->off;
1172 CONT_JMP;
1173 }
1174 CONT;
1175 JMP_JGE_K:
1176 if (DST >= IMM) {
1177 insn += insn->off;
1178 CONT_JMP;
1179 }
1180 CONT;
1181 JMP_JLE_X:
1182 if (DST <= SRC) {
1183 insn += insn->off;
1184 CONT_JMP;
1185 }
1186 CONT;
1187 JMP_JLE_K:
1188 if (DST <= IMM) {
1189 insn += insn->off;
1190 CONT_JMP;
1191 }
1192 CONT;
1193 JMP_JSGT_X:
1194 if (((s64) DST) > ((s64) SRC)) {
1195 insn += insn->off;
1196 CONT_JMP;
1197 }
1198 CONT;
1199 JMP_JSGT_K:
1200 if (((s64) DST) > ((s64) IMM)) {
1201 insn += insn->off;
1202 CONT_JMP;
1203 }
1204 CONT;
1205 JMP_JSLT_X:
1206 if (((s64) DST) < ((s64) SRC)) {
1207 insn += insn->off;
1208 CONT_JMP;
1209 }
1210 CONT;
1211 JMP_JSLT_K:
1212 if (((s64) DST) < ((s64) IMM)) {
1213 insn += insn->off;
1214 CONT_JMP;
1215 }
1216 CONT;
1217 JMP_JSGE_X:
1218 if (((s64) DST) >= ((s64) SRC)) {
1219 insn += insn->off;
1220 CONT_JMP;
1221 }
1222 CONT;
1223 JMP_JSGE_K:
1224 if (((s64) DST) >= ((s64) IMM)) {
1225 insn += insn->off;
1226 CONT_JMP;
1227 }
1228 CONT;
1229 JMP_JSLE_X:
1230 if (((s64) DST) <= ((s64) SRC)) {
1231 insn += insn->off;
1232 CONT_JMP;
1233 }
1234 CONT;
1235 JMP_JSLE_K:
1236 if (((s64) DST) <= ((s64) IMM)) {
1237 insn += insn->off;
1238 CONT_JMP;
1239 }
1240 CONT;
1241 JMP_JSET_X:
1242 if (DST & SRC) {
1243 insn += insn->off;
1244 CONT_JMP;
1245 }
1246 CONT;
1247 JMP_JSET_K:
1248 if (DST & IMM) {
1249 insn += insn->off;
1250 CONT_JMP;
1251 }
1252 CONT;
1253 JMP_EXIT:
1254 return BPF_R0;
1255
1256 /* STX and ST and LDX*/
1257 #define LDST(SIZEOP, SIZE) \
1258 STX_MEM_##SIZEOP: \
1259 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1260 CONT; \
1261 ST_MEM_##SIZEOP: \
1262 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1263 CONT; \
1264 LDX_MEM_##SIZEOP: \
1265 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1266 CONT;
1267
1268 LDST(B, u8)
1269 LDST(H, u16)
1270 LDST(W, u32)
1271 LDST(DW, u64)
1272 #undef LDST
1273 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1274 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1275 (DST + insn->off));
1276 CONT;
1277 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1278 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1279 (DST + insn->off));
1280 CONT;
1281 LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1282 off = IMM;
1283 load_word:
1284 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1285 * appearing in the programs where ctx == skb
1286 * (see may_access_skb() in the verifier). All programs
1287 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1288 * bpf_convert_filter() saves it in BPF_R6, internal BPF
1289 * verifier will check that BPF_R6 == ctx.
1290 *
1291 * BPF_ABS and BPF_IND are wrappers of function calls,
1292 * so they scratch BPF_R1-BPF_R5 registers, preserve
1293 * BPF_R6-BPF_R9, and store return value into BPF_R0.
1294 *
1295 * Implicit input:
1296 * ctx == skb == BPF_R6 == CTX
1297 *
1298 * Explicit input:
1299 * SRC == any register
1300 * IMM == 32-bit immediate
1301 *
1302 * Output:
1303 * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1304 */
1305
1306 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1307 if (likely(ptr != NULL)) {
1308 BPF_R0 = get_unaligned_be32(ptr);
1309 CONT;
1310 }
1311
1312 return 0;
1313 LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1314 off = IMM;
1315 load_half:
1316 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1317 if (likely(ptr != NULL)) {
1318 BPF_R0 = get_unaligned_be16(ptr);
1319 CONT;
1320 }
1321
1322 return 0;
1323 LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1324 off = IMM;
1325 load_byte:
1326 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1327 if (likely(ptr != NULL)) {
1328 BPF_R0 = *(u8 *)ptr;
1329 CONT;
1330 }
1331
1332 return 0;
1333 LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1334 off = IMM + SRC;
1335 goto load_word;
1336 LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1337 off = IMM + SRC;
1338 goto load_half;
1339 LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1340 off = IMM + SRC;
1341 goto load_byte;
1342
1343 default_label:
1344 /* If we ever reach this, we have a bug somewhere. */
1345 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
1346 return 0;
1347 }
1348 STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1349
1350 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1351 #define DEFINE_BPF_PROG_RUN(stack_size) \
1352 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1353 { \
1354 u64 stack[stack_size / sizeof(u64)]; \
1355 u64 regs[MAX_BPF_EXT_REG]; \
1356 \
1357 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1358 ARG1 = (u64) (unsigned long) ctx; \
1359 return ___bpf_prog_run(regs, insn, stack); \
1360 }
1361
1362 #define EVAL1(FN, X) FN(X)
1363 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1364 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1365 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1366 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1367 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1368
1369 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1370 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1371 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1372
1373 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1374
1375 static unsigned int (*interpreters[])(const void *ctx,
1376 const struct bpf_insn *insn) = {
1377 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1378 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1379 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1380 };
1381
1382 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)1383 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1384 const struct bpf_insn *insn)
1385 {
1386 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1387 * is not working properly, so warn about it!
1388 */
1389 WARN_ON_ONCE(1);
1390 return 0;
1391 }
1392 #endif
1393
bpf_prog_array_compatible(struct bpf_array * array,const struct bpf_prog * fp)1394 bool bpf_prog_array_compatible(struct bpf_array *array,
1395 const struct bpf_prog *fp)
1396 {
1397 if (!array->owner_prog_type) {
1398 /* There's no owner yet where we could check for
1399 * compatibility.
1400 */
1401 array->owner_prog_type = fp->type;
1402 array->owner_jited = fp->jited;
1403
1404 return true;
1405 }
1406
1407 return array->owner_prog_type == fp->type &&
1408 array->owner_jited == fp->jited;
1409 }
1410
bpf_check_tail_call(const struct bpf_prog * fp)1411 static int bpf_check_tail_call(const struct bpf_prog *fp)
1412 {
1413 struct bpf_prog_aux *aux = fp->aux;
1414 int i;
1415
1416 for (i = 0; i < aux->used_map_cnt; i++) {
1417 struct bpf_map *map = aux->used_maps[i];
1418 struct bpf_array *array;
1419
1420 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1421 continue;
1422
1423 array = container_of(map, struct bpf_array, map);
1424 if (!bpf_prog_array_compatible(array, fp))
1425 return -EINVAL;
1426 }
1427
1428 return 0;
1429 }
1430
1431 /**
1432 * bpf_prog_select_runtime - select exec runtime for BPF program
1433 * @fp: bpf_prog populated with internal BPF program
1434 * @err: pointer to error variable
1435 *
1436 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1437 * The BPF program will be executed via BPF_PROG_RUN() macro.
1438 */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)1439 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1440 {
1441 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1442 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1443
1444 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1445 #else
1446 fp->bpf_func = __bpf_prog_ret0_warn;
1447 #endif
1448
1449 /* eBPF JITs can rewrite the program in case constant
1450 * blinding is active. However, in case of error during
1451 * blinding, bpf_int_jit_compile() must always return a
1452 * valid program, which in this case would simply not
1453 * be JITed, but falls back to the interpreter.
1454 */
1455 fp = bpf_int_jit_compile(fp);
1456 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1457 if (!fp->jited) {
1458 *err = -ENOTSUPP;
1459 return fp;
1460 }
1461 #endif
1462 bpf_prog_lock_ro(fp);
1463
1464 /* The tail call compatibility check can only be done at
1465 * this late stage as we need to determine, if we deal
1466 * with JITed or non JITed program concatenations and not
1467 * all eBPF JITs might immediately support all features.
1468 */
1469 *err = bpf_check_tail_call(fp);
1470
1471 return fp;
1472 }
1473 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1474
bpf_prog_free_deferred(struct work_struct * work)1475 static void bpf_prog_free_deferred(struct work_struct *work)
1476 {
1477 struct bpf_prog_aux *aux;
1478
1479 aux = container_of(work, struct bpf_prog_aux, work);
1480 bpf_jit_free(aux->prog);
1481 }
1482
1483 /* Free internal BPF program */
bpf_prog_free(struct bpf_prog * fp)1484 void bpf_prog_free(struct bpf_prog *fp)
1485 {
1486 struct bpf_prog_aux *aux = fp->aux;
1487
1488 INIT_WORK(&aux->work, bpf_prog_free_deferred);
1489 schedule_work(&aux->work);
1490 }
1491 EXPORT_SYMBOL_GPL(bpf_prog_free);
1492
1493 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1494 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1495
bpf_user_rnd_init_once(void)1496 void bpf_user_rnd_init_once(void)
1497 {
1498 prandom_init_once(&bpf_user_rnd_state);
1499 }
1500
BPF_CALL_0(bpf_user_rnd_u32)1501 BPF_CALL_0(bpf_user_rnd_u32)
1502 {
1503 /* Should someone ever have the rather unwise idea to use some
1504 * of the registers passed into this function, then note that
1505 * this function is called from native eBPF and classic-to-eBPF
1506 * transformations. Register assignments from both sides are
1507 * different, f.e. classic always sets fn(ctx, A, X) here.
1508 */
1509 struct rnd_state *state;
1510 u32 res;
1511
1512 state = &get_cpu_var(bpf_user_rnd_state);
1513 res = prandom_u32_state(state);
1514 put_cpu_var(bpf_user_rnd_state);
1515
1516 return res;
1517 }
1518
1519 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1520 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1521 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1522 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1523
1524 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1525 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1526 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1527 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1528
1529 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1530 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1531 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1532 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
1533
bpf_get_trace_printk_proto(void)1534 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1535 {
1536 return NULL;
1537 }
1538
1539 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)1540 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1541 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1542 {
1543 return -ENOTSUPP;
1544 }
1545
1546 /* Always built-in helper functions. */
1547 const struct bpf_func_proto bpf_tail_call_proto = {
1548 .func = NULL,
1549 .gpl_only = false,
1550 .ret_type = RET_VOID,
1551 .arg1_type = ARG_PTR_TO_CTX,
1552 .arg2_type = ARG_CONST_MAP_PTR,
1553 .arg3_type = ARG_ANYTHING,
1554 };
1555
1556 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1557 * It is encouraged to implement bpf_int_jit_compile() instead, so that
1558 * eBPF and implicitly also cBPF can get JITed!
1559 */
bpf_int_jit_compile(struct bpf_prog * prog)1560 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1561 {
1562 return prog;
1563 }
1564
1565 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1566 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1567 */
bpf_jit_compile(struct bpf_prog * prog)1568 void __weak bpf_jit_compile(struct bpf_prog *prog)
1569 {
1570 }
1571
bpf_helper_changes_pkt_data(void * func)1572 bool __weak bpf_helper_changes_pkt_data(void *func)
1573 {
1574 return false;
1575 }
1576
1577 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1578 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1579 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)1580 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1581 int len)
1582 {
1583 return -EFAULT;
1584 }
1585
1586 /* All definitions of tracepoints related to BPF. */
1587 #define CREATE_TRACE_POINTS
1588 #include <linux/bpf_trace.h>
1589
1590 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1591
1592 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1593 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
1594