1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
147
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152 return &fs_uuids;
153 }
154
155 /*
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
158 *
159 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160 * The returned struct is not linked onto any lists and can be destroyed with
161 * kfree() right away.
162 */
alloc_fs_devices(const u8 * fsid)163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165 struct btrfs_fs_devices *fs_devs;
166
167 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
168 if (!fs_devs)
169 return ERR_PTR(-ENOMEM);
170
171 mutex_init(&fs_devs->device_list_mutex);
172
173 INIT_LIST_HEAD(&fs_devs->devices);
174 INIT_LIST_HEAD(&fs_devs->resized_devices);
175 INIT_LIST_HEAD(&fs_devs->alloc_list);
176 INIT_LIST_HEAD(&fs_devs->list);
177 if (fsid)
178 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
179
180 return fs_devs;
181 }
182
free_fs_devices(struct btrfs_fs_devices * fs_devices)183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184 {
185 struct btrfs_device *device;
186 WARN_ON(fs_devices->opened);
187 while (!list_empty(&fs_devices->devices)) {
188 device = list_entry(fs_devices->devices.next,
189 struct btrfs_device, dev_list);
190 list_del(&device->dev_list);
191 rcu_string_free(device->name);
192 kfree(device);
193 }
194 kfree(fs_devices);
195 }
196
btrfs_kobject_uevent(struct block_device * bdev,enum kobject_action action)197 static void btrfs_kobject_uevent(struct block_device *bdev,
198 enum kobject_action action)
199 {
200 int ret;
201
202 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
203 if (ret)
204 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
205 action,
206 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
207 &disk_to_dev(bdev->bd_disk)->kobj);
208 }
209
btrfs_cleanup_fs_uuids(void)210 void btrfs_cleanup_fs_uuids(void)
211 {
212 struct btrfs_fs_devices *fs_devices;
213
214 while (!list_empty(&fs_uuids)) {
215 fs_devices = list_entry(fs_uuids.next,
216 struct btrfs_fs_devices, list);
217 list_del(&fs_devices->list);
218 free_fs_devices(fs_devices);
219 }
220 }
221
__alloc_device(void)222 static struct btrfs_device *__alloc_device(void)
223 {
224 struct btrfs_device *dev;
225
226 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
227 if (!dev)
228 return ERR_PTR(-ENOMEM);
229
230 /*
231 * Preallocate a bio that's always going to be used for flushing device
232 * barriers and matches the device lifespan
233 */
234 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
235 if (!dev->flush_bio) {
236 kfree(dev);
237 return ERR_PTR(-ENOMEM);
238 }
239
240 INIT_LIST_HEAD(&dev->dev_list);
241 INIT_LIST_HEAD(&dev->dev_alloc_list);
242 INIT_LIST_HEAD(&dev->resized_list);
243
244 spin_lock_init(&dev->io_lock);
245
246 spin_lock_init(&dev->reada_lock);
247 atomic_set(&dev->reada_in_flight, 0);
248 atomic_set(&dev->dev_stats_ccnt, 0);
249 btrfs_device_data_ordered_init(dev);
250 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
251 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252
253 return dev;
254 }
255
256 /*
257 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
258 * return NULL.
259 *
260 * If devid and uuid are both specified, the match must be exact, otherwise
261 * only devid is used.
262 */
find_device(struct btrfs_fs_devices * fs_devices,u64 devid,const u8 * uuid)263 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
264 u64 devid, const u8 *uuid)
265 {
266 struct list_head *head = &fs_devices->devices;
267 struct btrfs_device *dev;
268
269 list_for_each_entry(dev, head, dev_list) {
270 if (dev->devid == devid &&
271 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
272 return dev;
273 }
274 }
275 return NULL;
276 }
277
find_fsid(u8 * fsid)278 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
279 {
280 struct btrfs_fs_devices *fs_devices;
281
282 list_for_each_entry(fs_devices, &fs_uuids, list) {
283 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
284 return fs_devices;
285 }
286 return NULL;
287 }
288
289 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct buffer_head ** bh)290 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
291 int flush, struct block_device **bdev,
292 struct buffer_head **bh)
293 {
294 int ret;
295
296 *bdev = blkdev_get_by_path(device_path, flags, holder);
297
298 if (IS_ERR(*bdev)) {
299 ret = PTR_ERR(*bdev);
300 goto error;
301 }
302
303 if (flush)
304 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
305 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
306 if (ret) {
307 blkdev_put(*bdev, flags);
308 goto error;
309 }
310 invalidate_bdev(*bdev);
311 *bh = btrfs_read_dev_super(*bdev);
312 if (IS_ERR(*bh)) {
313 ret = PTR_ERR(*bh);
314 blkdev_put(*bdev, flags);
315 goto error;
316 }
317
318 return 0;
319
320 error:
321 *bdev = NULL;
322 *bh = NULL;
323 return ret;
324 }
325
requeue_list(struct btrfs_pending_bios * pending_bios,struct bio * head,struct bio * tail)326 static void requeue_list(struct btrfs_pending_bios *pending_bios,
327 struct bio *head, struct bio *tail)
328 {
329
330 struct bio *old_head;
331
332 old_head = pending_bios->head;
333 pending_bios->head = head;
334 if (pending_bios->tail)
335 tail->bi_next = old_head;
336 else
337 pending_bios->tail = tail;
338 }
339
340 /*
341 * we try to collect pending bios for a device so we don't get a large
342 * number of procs sending bios down to the same device. This greatly
343 * improves the schedulers ability to collect and merge the bios.
344 *
345 * But, it also turns into a long list of bios to process and that is sure
346 * to eventually make the worker thread block. The solution here is to
347 * make some progress and then put this work struct back at the end of
348 * the list if the block device is congested. This way, multiple devices
349 * can make progress from a single worker thread.
350 */
run_scheduled_bios(struct btrfs_device * device)351 static noinline void run_scheduled_bios(struct btrfs_device *device)
352 {
353 struct btrfs_fs_info *fs_info = device->fs_info;
354 struct bio *pending;
355 struct backing_dev_info *bdi;
356 struct btrfs_pending_bios *pending_bios;
357 struct bio *tail;
358 struct bio *cur;
359 int again = 0;
360 unsigned long num_run;
361 unsigned long batch_run = 0;
362 unsigned long limit;
363 unsigned long last_waited = 0;
364 int force_reg = 0;
365 int sync_pending = 0;
366 struct blk_plug plug;
367
368 /*
369 * this function runs all the bios we've collected for
370 * a particular device. We don't want to wander off to
371 * another device without first sending all of these down.
372 * So, setup a plug here and finish it off before we return
373 */
374 blk_start_plug(&plug);
375
376 bdi = device->bdev->bd_bdi;
377 limit = btrfs_async_submit_limit(fs_info);
378 limit = limit * 2 / 3;
379
380 loop:
381 spin_lock(&device->io_lock);
382
383 loop_lock:
384 num_run = 0;
385
386 /* take all the bios off the list at once and process them
387 * later on (without the lock held). But, remember the
388 * tail and other pointers so the bios can be properly reinserted
389 * into the list if we hit congestion
390 */
391 if (!force_reg && device->pending_sync_bios.head) {
392 pending_bios = &device->pending_sync_bios;
393 force_reg = 1;
394 } else {
395 pending_bios = &device->pending_bios;
396 force_reg = 0;
397 }
398
399 pending = pending_bios->head;
400 tail = pending_bios->tail;
401 WARN_ON(pending && !tail);
402
403 /*
404 * if pending was null this time around, no bios need processing
405 * at all and we can stop. Otherwise it'll loop back up again
406 * and do an additional check so no bios are missed.
407 *
408 * device->running_pending is used to synchronize with the
409 * schedule_bio code.
410 */
411 if (device->pending_sync_bios.head == NULL &&
412 device->pending_bios.head == NULL) {
413 again = 0;
414 device->running_pending = 0;
415 } else {
416 again = 1;
417 device->running_pending = 1;
418 }
419
420 pending_bios->head = NULL;
421 pending_bios->tail = NULL;
422
423 spin_unlock(&device->io_lock);
424
425 while (pending) {
426
427 rmb();
428 /* we want to work on both lists, but do more bios on the
429 * sync list than the regular list
430 */
431 if ((num_run > 32 &&
432 pending_bios != &device->pending_sync_bios &&
433 device->pending_sync_bios.head) ||
434 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
435 device->pending_bios.head)) {
436 spin_lock(&device->io_lock);
437 requeue_list(pending_bios, pending, tail);
438 goto loop_lock;
439 }
440
441 cur = pending;
442 pending = pending->bi_next;
443 cur->bi_next = NULL;
444
445 /*
446 * atomic_dec_return implies a barrier for waitqueue_active
447 */
448 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
449 waitqueue_active(&fs_info->async_submit_wait))
450 wake_up(&fs_info->async_submit_wait);
451
452 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
453
454 /*
455 * if we're doing the sync list, record that our
456 * plug has some sync requests on it
457 *
458 * If we're doing the regular list and there are
459 * sync requests sitting around, unplug before
460 * we add more
461 */
462 if (pending_bios == &device->pending_sync_bios) {
463 sync_pending = 1;
464 } else if (sync_pending) {
465 blk_finish_plug(&plug);
466 blk_start_plug(&plug);
467 sync_pending = 0;
468 }
469
470 btrfsic_submit_bio(cur);
471 num_run++;
472 batch_run++;
473
474 cond_resched();
475
476 /*
477 * we made progress, there is more work to do and the bdi
478 * is now congested. Back off and let other work structs
479 * run instead
480 */
481 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
482 fs_info->fs_devices->open_devices > 1) {
483 struct io_context *ioc;
484
485 ioc = current->io_context;
486
487 /*
488 * the main goal here is that we don't want to
489 * block if we're going to be able to submit
490 * more requests without blocking.
491 *
492 * This code does two great things, it pokes into
493 * the elevator code from a filesystem _and_
494 * it makes assumptions about how batching works.
495 */
496 if (ioc && ioc->nr_batch_requests > 0 &&
497 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
498 (last_waited == 0 ||
499 ioc->last_waited == last_waited)) {
500 /*
501 * we want to go through our batch of
502 * requests and stop. So, we copy out
503 * the ioc->last_waited time and test
504 * against it before looping
505 */
506 last_waited = ioc->last_waited;
507 cond_resched();
508 continue;
509 }
510 spin_lock(&device->io_lock);
511 requeue_list(pending_bios, pending, tail);
512 device->running_pending = 1;
513
514 spin_unlock(&device->io_lock);
515 btrfs_queue_work(fs_info->submit_workers,
516 &device->work);
517 goto done;
518 }
519 /* unplug every 64 requests just for good measure */
520 if (batch_run % 64 == 0) {
521 blk_finish_plug(&plug);
522 blk_start_plug(&plug);
523 sync_pending = 0;
524 }
525 }
526
527 cond_resched();
528 if (again)
529 goto loop;
530
531 spin_lock(&device->io_lock);
532 if (device->pending_bios.head || device->pending_sync_bios.head)
533 goto loop_lock;
534 spin_unlock(&device->io_lock);
535
536 done:
537 blk_finish_plug(&plug);
538 }
539
pending_bios_fn(struct btrfs_work * work)540 static void pending_bios_fn(struct btrfs_work *work)
541 {
542 struct btrfs_device *device;
543
544 device = container_of(work, struct btrfs_device, work);
545 run_scheduled_bios(device);
546 }
547
548
btrfs_free_stale_device(struct btrfs_device * cur_dev)549 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
550 {
551 struct btrfs_fs_devices *fs_devs;
552 struct btrfs_device *dev;
553
554 if (!cur_dev->name)
555 return;
556
557 list_for_each_entry(fs_devs, &fs_uuids, list) {
558 int del = 1;
559
560 if (fs_devs->opened)
561 continue;
562 if (fs_devs->seeding)
563 continue;
564
565 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
566
567 if (dev == cur_dev)
568 continue;
569 if (!dev->name)
570 continue;
571
572 /*
573 * Todo: This won't be enough. What if the same device
574 * comes back (with new uuid and) with its mapper path?
575 * But for now, this does help as mostly an admin will
576 * either use mapper or non mapper path throughout.
577 */
578 rcu_read_lock();
579 del = strcmp(rcu_str_deref(dev->name),
580 rcu_str_deref(cur_dev->name));
581 rcu_read_unlock();
582 if (!del)
583 break;
584 }
585
586 if (!del) {
587 /* delete the stale device */
588 if (fs_devs->num_devices == 1) {
589 btrfs_sysfs_remove_fsid(fs_devs);
590 list_del(&fs_devs->list);
591 free_fs_devices(fs_devs);
592 break;
593 } else {
594 fs_devs->num_devices--;
595 list_del(&dev->dev_list);
596 rcu_string_free(dev->name);
597 kfree(dev);
598 }
599 break;
600 }
601 }
602 }
603
604 /*
605 * Add new device to list of registered devices
606 *
607 * Returns:
608 * 1 - first time device is seen
609 * 0 - device already known
610 * < 0 - error
611 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,u64 devid,struct btrfs_fs_devices ** fs_devices_ret)612 static noinline int device_list_add(const char *path,
613 struct btrfs_super_block *disk_super,
614 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
615 {
616 struct btrfs_device *device;
617 struct btrfs_fs_devices *fs_devices;
618 struct rcu_string *name;
619 int ret = 0;
620 u64 found_transid = btrfs_super_generation(disk_super);
621
622 fs_devices = find_fsid(disk_super->fsid);
623 if (!fs_devices) {
624 fs_devices = alloc_fs_devices(disk_super->fsid);
625 if (IS_ERR(fs_devices))
626 return PTR_ERR(fs_devices);
627
628 list_add(&fs_devices->list, &fs_uuids);
629
630 device = NULL;
631 } else {
632 device = find_device(fs_devices, devid,
633 disk_super->dev_item.uuid);
634 }
635
636 if (!device) {
637 if (fs_devices->opened)
638 return -EBUSY;
639
640 device = btrfs_alloc_device(NULL, &devid,
641 disk_super->dev_item.uuid);
642 if (IS_ERR(device)) {
643 /* we can safely leave the fs_devices entry around */
644 return PTR_ERR(device);
645 }
646
647 name = rcu_string_strdup(path, GFP_NOFS);
648 if (!name) {
649 kfree(device);
650 return -ENOMEM;
651 }
652 rcu_assign_pointer(device->name, name);
653
654 mutex_lock(&fs_devices->device_list_mutex);
655 list_add_rcu(&device->dev_list, &fs_devices->devices);
656 fs_devices->num_devices++;
657 mutex_unlock(&fs_devices->device_list_mutex);
658
659 ret = 1;
660 device->fs_devices = fs_devices;
661 } else if (!device->name || strcmp(device->name->str, path)) {
662 /*
663 * When FS is already mounted.
664 * 1. If you are here and if the device->name is NULL that
665 * means this device was missing at time of FS mount.
666 * 2. If you are here and if the device->name is different
667 * from 'path' that means either
668 * a. The same device disappeared and reappeared with
669 * different name. or
670 * b. The missing-disk-which-was-replaced, has
671 * reappeared now.
672 *
673 * We must allow 1 and 2a above. But 2b would be a spurious
674 * and unintentional.
675 *
676 * Further in case of 1 and 2a above, the disk at 'path'
677 * would have missed some transaction when it was away and
678 * in case of 2a the stale bdev has to be updated as well.
679 * 2b must not be allowed at all time.
680 */
681
682 /*
683 * For now, we do allow update to btrfs_fs_device through the
684 * btrfs dev scan cli after FS has been mounted. We're still
685 * tracking a problem where systems fail mount by subvolume id
686 * when we reject replacement on a mounted FS.
687 */
688 if (!fs_devices->opened && found_transid < device->generation) {
689 /*
690 * That is if the FS is _not_ mounted and if you
691 * are here, that means there is more than one
692 * disk with same uuid and devid.We keep the one
693 * with larger generation number or the last-in if
694 * generation are equal.
695 */
696 return -EEXIST;
697 }
698
699 name = rcu_string_strdup(path, GFP_NOFS);
700 if (!name)
701 return -ENOMEM;
702 rcu_string_free(device->name);
703 rcu_assign_pointer(device->name, name);
704 if (device->missing) {
705 fs_devices->missing_devices--;
706 device->missing = 0;
707 }
708 }
709
710 /*
711 * Unmount does not free the btrfs_device struct but would zero
712 * generation along with most of the other members. So just update
713 * it back. We need it to pick the disk with largest generation
714 * (as above).
715 */
716 if (!fs_devices->opened)
717 device->generation = found_transid;
718
719 /*
720 * if there is new btrfs on an already registered device,
721 * then remove the stale device entry.
722 */
723 if (ret > 0)
724 btrfs_free_stale_device(device);
725
726 *fs_devices_ret = fs_devices;
727
728 return ret;
729 }
730
clone_fs_devices(struct btrfs_fs_devices * orig)731 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
732 {
733 struct btrfs_fs_devices *fs_devices;
734 struct btrfs_device *device;
735 struct btrfs_device *orig_dev;
736
737 fs_devices = alloc_fs_devices(orig->fsid);
738 if (IS_ERR(fs_devices))
739 return fs_devices;
740
741 mutex_lock(&orig->device_list_mutex);
742 fs_devices->total_devices = orig->total_devices;
743
744 /* We have held the volume lock, it is safe to get the devices. */
745 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
746 struct rcu_string *name;
747
748 device = btrfs_alloc_device(NULL, &orig_dev->devid,
749 orig_dev->uuid);
750 if (IS_ERR(device))
751 goto error;
752
753 /*
754 * This is ok to do without rcu read locked because we hold the
755 * uuid mutex so nothing we touch in here is going to disappear.
756 */
757 if (orig_dev->name) {
758 name = rcu_string_strdup(orig_dev->name->str,
759 GFP_KERNEL);
760 if (!name) {
761 kfree(device);
762 goto error;
763 }
764 rcu_assign_pointer(device->name, name);
765 }
766
767 list_add(&device->dev_list, &fs_devices->devices);
768 device->fs_devices = fs_devices;
769 fs_devices->num_devices++;
770 }
771 mutex_unlock(&orig->device_list_mutex);
772 return fs_devices;
773 error:
774 mutex_unlock(&orig->device_list_mutex);
775 free_fs_devices(fs_devices);
776 return ERR_PTR(-ENOMEM);
777 }
778
btrfs_close_extra_devices(struct btrfs_fs_devices * fs_devices,int step)779 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
780 {
781 struct btrfs_device *device, *next;
782 struct btrfs_device *latest_dev = NULL;
783
784 mutex_lock(&uuid_mutex);
785 again:
786 /* This is the initialized path, it is safe to release the devices. */
787 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
788 if (device->in_fs_metadata) {
789 if (!device->is_tgtdev_for_dev_replace &&
790 (!latest_dev ||
791 device->generation > latest_dev->generation)) {
792 latest_dev = device;
793 }
794 continue;
795 }
796
797 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
798 /*
799 * In the first step, keep the device which has
800 * the correct fsid and the devid that is used
801 * for the dev_replace procedure.
802 * In the second step, the dev_replace state is
803 * read from the device tree and it is known
804 * whether the procedure is really active or
805 * not, which means whether this device is
806 * used or whether it should be removed.
807 */
808 if (step == 0 || device->is_tgtdev_for_dev_replace) {
809 continue;
810 }
811 }
812 if (device->bdev) {
813 blkdev_put(device->bdev, device->mode);
814 device->bdev = NULL;
815 fs_devices->open_devices--;
816 }
817 if (device->writeable) {
818 list_del_init(&device->dev_alloc_list);
819 device->writeable = 0;
820 if (!device->is_tgtdev_for_dev_replace)
821 fs_devices->rw_devices--;
822 }
823 list_del_init(&device->dev_list);
824 fs_devices->num_devices--;
825 rcu_string_free(device->name);
826 kfree(device);
827 }
828
829 if (fs_devices->seed) {
830 fs_devices = fs_devices->seed;
831 goto again;
832 }
833
834 fs_devices->latest_bdev = latest_dev->bdev;
835
836 mutex_unlock(&uuid_mutex);
837 }
838
__free_device(struct work_struct * work)839 static void __free_device(struct work_struct *work)
840 {
841 struct btrfs_device *device;
842
843 device = container_of(work, struct btrfs_device, rcu_work);
844 rcu_string_free(device->name);
845 bio_put(device->flush_bio);
846 kfree(device);
847 }
848
free_device(struct rcu_head * head)849 static void free_device(struct rcu_head *head)
850 {
851 struct btrfs_device *device;
852
853 device = container_of(head, struct btrfs_device, rcu);
854
855 INIT_WORK(&device->rcu_work, __free_device);
856 schedule_work(&device->rcu_work);
857 }
858
btrfs_close_bdev(struct btrfs_device * device)859 static void btrfs_close_bdev(struct btrfs_device *device)
860 {
861 if (device->bdev && device->writeable) {
862 sync_blockdev(device->bdev);
863 invalidate_bdev(device->bdev);
864 }
865
866 if (device->bdev)
867 blkdev_put(device->bdev, device->mode);
868 }
869
btrfs_prepare_close_one_device(struct btrfs_device * device)870 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
871 {
872 struct btrfs_fs_devices *fs_devices = device->fs_devices;
873 struct btrfs_device *new_device;
874 struct rcu_string *name;
875
876 if (device->bdev)
877 fs_devices->open_devices--;
878
879 if (device->writeable &&
880 device->devid != BTRFS_DEV_REPLACE_DEVID) {
881 list_del_init(&device->dev_alloc_list);
882 fs_devices->rw_devices--;
883 }
884
885 if (device->missing)
886 fs_devices->missing_devices--;
887
888 new_device = btrfs_alloc_device(NULL, &device->devid,
889 device->uuid);
890 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
891
892 /* Safe because we are under uuid_mutex */
893 if (device->name) {
894 name = rcu_string_strdup(device->name->str, GFP_NOFS);
895 BUG_ON(!name); /* -ENOMEM */
896 rcu_assign_pointer(new_device->name, name);
897 }
898
899 list_replace_rcu(&device->dev_list, &new_device->dev_list);
900 new_device->fs_devices = device->fs_devices;
901 }
902
__btrfs_close_devices(struct btrfs_fs_devices * fs_devices)903 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
904 {
905 struct btrfs_device *device, *tmp;
906 struct list_head pending_put;
907
908 INIT_LIST_HEAD(&pending_put);
909
910 if (--fs_devices->opened > 0)
911 return 0;
912
913 mutex_lock(&fs_devices->device_list_mutex);
914 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
915 btrfs_prepare_close_one_device(device);
916 list_add(&device->dev_list, &pending_put);
917 }
918 mutex_unlock(&fs_devices->device_list_mutex);
919
920 /*
921 * btrfs_show_devname() is using the device_list_mutex,
922 * sometimes call to blkdev_put() leads vfs calling
923 * into this func. So do put outside of device_list_mutex,
924 * as of now.
925 */
926 while (!list_empty(&pending_put)) {
927 device = list_first_entry(&pending_put,
928 struct btrfs_device, dev_list);
929 list_del(&device->dev_list);
930 btrfs_close_bdev(device);
931 call_rcu(&device->rcu, free_device);
932 }
933
934 WARN_ON(fs_devices->open_devices);
935 WARN_ON(fs_devices->rw_devices);
936 fs_devices->opened = 0;
937 fs_devices->seeding = 0;
938
939 return 0;
940 }
941
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)942 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
943 {
944 struct btrfs_fs_devices *seed_devices = NULL;
945 int ret;
946
947 mutex_lock(&uuid_mutex);
948 ret = __btrfs_close_devices(fs_devices);
949 if (!fs_devices->opened) {
950 seed_devices = fs_devices->seed;
951 fs_devices->seed = NULL;
952 }
953 mutex_unlock(&uuid_mutex);
954
955 while (seed_devices) {
956 fs_devices = seed_devices;
957 seed_devices = fs_devices->seed;
958 __btrfs_close_devices(fs_devices);
959 free_fs_devices(fs_devices);
960 }
961 /*
962 * Wait for rcu kworkers under __btrfs_close_devices
963 * to finish all blkdev_puts so device is really
964 * free when umount is done.
965 */
966 rcu_barrier();
967 return ret;
968 }
969
__btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)970 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
971 fmode_t flags, void *holder)
972 {
973 struct request_queue *q;
974 struct block_device *bdev;
975 struct list_head *head = &fs_devices->devices;
976 struct btrfs_device *device;
977 struct btrfs_device *latest_dev = NULL;
978 struct buffer_head *bh;
979 struct btrfs_super_block *disk_super;
980 u64 devid;
981 int seeding = 1;
982 int ret = 0;
983
984 flags |= FMODE_EXCL;
985
986 list_for_each_entry(device, head, dev_list) {
987 if (device->bdev)
988 continue;
989 if (!device->name)
990 continue;
991
992 /* Just open everything we can; ignore failures here */
993 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
994 &bdev, &bh))
995 continue;
996
997 disk_super = (struct btrfs_super_block *)bh->b_data;
998 devid = btrfs_stack_device_id(&disk_super->dev_item);
999 if (devid != device->devid)
1000 goto error_brelse;
1001
1002 if (memcmp(device->uuid, disk_super->dev_item.uuid,
1003 BTRFS_UUID_SIZE))
1004 goto error_brelse;
1005
1006 device->generation = btrfs_super_generation(disk_super);
1007 if (!latest_dev ||
1008 device->generation > latest_dev->generation)
1009 latest_dev = device;
1010
1011 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1012 device->writeable = 0;
1013 } else {
1014 device->writeable = !bdev_read_only(bdev);
1015 seeding = 0;
1016 }
1017
1018 q = bdev_get_queue(bdev);
1019 if (blk_queue_discard(q))
1020 device->can_discard = 1;
1021 if (!blk_queue_nonrot(q))
1022 fs_devices->rotating = 1;
1023
1024 device->bdev = bdev;
1025 device->in_fs_metadata = 0;
1026 device->mode = flags;
1027
1028 fs_devices->open_devices++;
1029 if (device->writeable &&
1030 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1031 fs_devices->rw_devices++;
1032 list_add(&device->dev_alloc_list,
1033 &fs_devices->alloc_list);
1034 }
1035 brelse(bh);
1036 continue;
1037
1038 error_brelse:
1039 brelse(bh);
1040 blkdev_put(bdev, flags);
1041 continue;
1042 }
1043 if (fs_devices->open_devices == 0) {
1044 ret = -EINVAL;
1045 goto out;
1046 }
1047 fs_devices->seeding = seeding;
1048 fs_devices->opened = 1;
1049 fs_devices->latest_bdev = latest_dev->bdev;
1050 fs_devices->total_rw_bytes = 0;
1051 out:
1052 return ret;
1053 }
1054
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1055 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1056 fmode_t flags, void *holder)
1057 {
1058 int ret;
1059
1060 mutex_lock(&uuid_mutex);
1061 if (fs_devices->opened) {
1062 fs_devices->opened++;
1063 ret = 0;
1064 } else {
1065 ret = __btrfs_open_devices(fs_devices, flags, holder);
1066 }
1067 mutex_unlock(&uuid_mutex);
1068 return ret;
1069 }
1070
btrfs_release_disk_super(struct page * page)1071 void btrfs_release_disk_super(struct page *page)
1072 {
1073 kunmap(page);
1074 put_page(page);
1075 }
1076
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,struct page ** page,struct btrfs_super_block ** disk_super)1077 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1078 struct page **page, struct btrfs_super_block **disk_super)
1079 {
1080 void *p;
1081 pgoff_t index;
1082
1083 /* make sure our super fits in the device */
1084 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1085 return 1;
1086
1087 /* make sure our super fits in the page */
1088 if (sizeof(**disk_super) > PAGE_SIZE)
1089 return 1;
1090
1091 /* make sure our super doesn't straddle pages on disk */
1092 index = bytenr >> PAGE_SHIFT;
1093 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1094 return 1;
1095
1096 /* pull in the page with our super */
1097 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1098 index, GFP_KERNEL);
1099
1100 if (IS_ERR_OR_NULL(*page))
1101 return 1;
1102
1103 p = kmap(*page);
1104
1105 /* align our pointer to the offset of the super block */
1106 *disk_super = p + (bytenr & ~PAGE_MASK);
1107
1108 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1109 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1110 btrfs_release_disk_super(*page);
1111 return 1;
1112 }
1113
1114 if ((*disk_super)->label[0] &&
1115 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1116 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1117
1118 return 0;
1119 }
1120
1121 /*
1122 * Look for a btrfs signature on a device. This may be called out of the mount path
1123 * and we are not allowed to call set_blocksize during the scan. The superblock
1124 * is read via pagecache
1125 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder,struct btrfs_fs_devices ** fs_devices_ret)1126 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1127 struct btrfs_fs_devices **fs_devices_ret)
1128 {
1129 struct btrfs_super_block *disk_super;
1130 struct block_device *bdev;
1131 struct page *page;
1132 int ret = -EINVAL;
1133 u64 devid;
1134 u64 transid;
1135 u64 total_devices;
1136 u64 bytenr;
1137
1138 /*
1139 * we would like to check all the supers, but that would make
1140 * a btrfs mount succeed after a mkfs from a different FS.
1141 * So, we need to add a special mount option to scan for
1142 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1143 */
1144 bytenr = btrfs_sb_offset(0);
1145 flags |= FMODE_EXCL;
1146 mutex_lock(&uuid_mutex);
1147
1148 bdev = blkdev_get_by_path(path, flags, holder);
1149 if (IS_ERR(bdev)) {
1150 ret = PTR_ERR(bdev);
1151 goto error;
1152 }
1153
1154 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1155 goto error_bdev_put;
1156
1157 devid = btrfs_stack_device_id(&disk_super->dev_item);
1158 transid = btrfs_super_generation(disk_super);
1159 total_devices = btrfs_super_num_devices(disk_super);
1160
1161 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1162 if (ret > 0) {
1163 if (disk_super->label[0]) {
1164 pr_info("BTRFS: device label %s ", disk_super->label);
1165 } else {
1166 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1167 }
1168
1169 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1170 ret = 0;
1171 }
1172 if (!ret && fs_devices_ret)
1173 (*fs_devices_ret)->total_devices = total_devices;
1174
1175 btrfs_release_disk_super(page);
1176
1177 error_bdev_put:
1178 blkdev_put(bdev, flags);
1179 error:
1180 mutex_unlock(&uuid_mutex);
1181 return ret;
1182 }
1183
1184 /* helper to account the used device space in the range */
btrfs_account_dev_extents_size(struct btrfs_device * device,u64 start,u64 end,u64 * length)1185 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1186 u64 end, u64 *length)
1187 {
1188 struct btrfs_key key;
1189 struct btrfs_root *root = device->fs_info->dev_root;
1190 struct btrfs_dev_extent *dev_extent;
1191 struct btrfs_path *path;
1192 u64 extent_end;
1193 int ret;
1194 int slot;
1195 struct extent_buffer *l;
1196
1197 *length = 0;
1198
1199 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1200 return 0;
1201
1202 path = btrfs_alloc_path();
1203 if (!path)
1204 return -ENOMEM;
1205 path->reada = READA_FORWARD;
1206
1207 key.objectid = device->devid;
1208 key.offset = start;
1209 key.type = BTRFS_DEV_EXTENT_KEY;
1210
1211 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1212 if (ret < 0)
1213 goto out;
1214 if (ret > 0) {
1215 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1216 if (ret < 0)
1217 goto out;
1218 }
1219
1220 while (1) {
1221 l = path->nodes[0];
1222 slot = path->slots[0];
1223 if (slot >= btrfs_header_nritems(l)) {
1224 ret = btrfs_next_leaf(root, path);
1225 if (ret == 0)
1226 continue;
1227 if (ret < 0)
1228 goto out;
1229
1230 break;
1231 }
1232 btrfs_item_key_to_cpu(l, &key, slot);
1233
1234 if (key.objectid < device->devid)
1235 goto next;
1236
1237 if (key.objectid > device->devid)
1238 break;
1239
1240 if (key.type != BTRFS_DEV_EXTENT_KEY)
1241 goto next;
1242
1243 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1244 extent_end = key.offset + btrfs_dev_extent_length(l,
1245 dev_extent);
1246 if (key.offset <= start && extent_end > end) {
1247 *length = end - start + 1;
1248 break;
1249 } else if (key.offset <= start && extent_end > start)
1250 *length += extent_end - start;
1251 else if (key.offset > start && extent_end <= end)
1252 *length += extent_end - key.offset;
1253 else if (key.offset > start && key.offset <= end) {
1254 *length += end - key.offset + 1;
1255 break;
1256 } else if (key.offset > end)
1257 break;
1258
1259 next:
1260 path->slots[0]++;
1261 }
1262 ret = 0;
1263 out:
1264 btrfs_free_path(path);
1265 return ret;
1266 }
1267
contains_pending_extent(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 * start,u64 len)1268 static int contains_pending_extent(struct btrfs_transaction *transaction,
1269 struct btrfs_device *device,
1270 u64 *start, u64 len)
1271 {
1272 struct btrfs_fs_info *fs_info = device->fs_info;
1273 struct extent_map *em;
1274 struct list_head *search_list = &fs_info->pinned_chunks;
1275 int ret = 0;
1276 u64 physical_start = *start;
1277
1278 if (transaction)
1279 search_list = &transaction->pending_chunks;
1280 again:
1281 list_for_each_entry(em, search_list, list) {
1282 struct map_lookup *map;
1283 int i;
1284
1285 map = em->map_lookup;
1286 for (i = 0; i < map->num_stripes; i++) {
1287 u64 end;
1288
1289 if (map->stripes[i].dev != device)
1290 continue;
1291 if (map->stripes[i].physical >= physical_start + len ||
1292 map->stripes[i].physical + em->orig_block_len <=
1293 physical_start)
1294 continue;
1295 /*
1296 * Make sure that while processing the pinned list we do
1297 * not override our *start with a lower value, because
1298 * we can have pinned chunks that fall within this
1299 * device hole and that have lower physical addresses
1300 * than the pending chunks we processed before. If we
1301 * do not take this special care we can end up getting
1302 * 2 pending chunks that start at the same physical
1303 * device offsets because the end offset of a pinned
1304 * chunk can be equal to the start offset of some
1305 * pending chunk.
1306 */
1307 end = map->stripes[i].physical + em->orig_block_len;
1308 if (end > *start) {
1309 *start = end;
1310 ret = 1;
1311 }
1312 }
1313 }
1314 if (search_list != &fs_info->pinned_chunks) {
1315 search_list = &fs_info->pinned_chunks;
1316 goto again;
1317 }
1318
1319 return ret;
1320 }
1321
1322
1323 /*
1324 * find_free_dev_extent_start - find free space in the specified device
1325 * @device: the device which we search the free space in
1326 * @num_bytes: the size of the free space that we need
1327 * @search_start: the position from which to begin the search
1328 * @start: store the start of the free space.
1329 * @len: the size of the free space. that we find, or the size
1330 * of the max free space if we don't find suitable free space
1331 *
1332 * this uses a pretty simple search, the expectation is that it is
1333 * called very infrequently and that a given device has a small number
1334 * of extents
1335 *
1336 * @start is used to store the start of the free space if we find. But if we
1337 * don't find suitable free space, it will be used to store the start position
1338 * of the max free space.
1339 *
1340 * @len is used to store the size of the free space that we find.
1341 * But if we don't find suitable free space, it is used to store the size of
1342 * the max free space.
1343 */
find_free_dev_extent_start(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1344 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1345 struct btrfs_device *device, u64 num_bytes,
1346 u64 search_start, u64 *start, u64 *len)
1347 {
1348 struct btrfs_fs_info *fs_info = device->fs_info;
1349 struct btrfs_root *root = fs_info->dev_root;
1350 struct btrfs_key key;
1351 struct btrfs_dev_extent *dev_extent;
1352 struct btrfs_path *path;
1353 u64 hole_size;
1354 u64 max_hole_start;
1355 u64 max_hole_size;
1356 u64 extent_end;
1357 u64 search_end = device->total_bytes;
1358 int ret;
1359 int slot;
1360 struct extent_buffer *l;
1361
1362 /*
1363 * We don't want to overwrite the superblock on the drive nor any area
1364 * used by the boot loader (grub for example), so we make sure to start
1365 * at an offset of at least 1MB.
1366 */
1367 search_start = max_t(u64, search_start, SZ_1M);
1368
1369 path = btrfs_alloc_path();
1370 if (!path)
1371 return -ENOMEM;
1372
1373 max_hole_start = search_start;
1374 max_hole_size = 0;
1375
1376 again:
1377 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1378 ret = -ENOSPC;
1379 goto out;
1380 }
1381
1382 path->reada = READA_FORWARD;
1383 path->search_commit_root = 1;
1384 path->skip_locking = 1;
1385
1386 key.objectid = device->devid;
1387 key.offset = search_start;
1388 key.type = BTRFS_DEV_EXTENT_KEY;
1389
1390 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1391 if (ret < 0)
1392 goto out;
1393 if (ret > 0) {
1394 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1395 if (ret < 0)
1396 goto out;
1397 }
1398
1399 while (1) {
1400 l = path->nodes[0];
1401 slot = path->slots[0];
1402 if (slot >= btrfs_header_nritems(l)) {
1403 ret = btrfs_next_leaf(root, path);
1404 if (ret == 0)
1405 continue;
1406 if (ret < 0)
1407 goto out;
1408
1409 break;
1410 }
1411 btrfs_item_key_to_cpu(l, &key, slot);
1412
1413 if (key.objectid < device->devid)
1414 goto next;
1415
1416 if (key.objectid > device->devid)
1417 break;
1418
1419 if (key.type != BTRFS_DEV_EXTENT_KEY)
1420 goto next;
1421
1422 if (key.offset > search_start) {
1423 hole_size = key.offset - search_start;
1424
1425 /*
1426 * Have to check before we set max_hole_start, otherwise
1427 * we could end up sending back this offset anyway.
1428 */
1429 if (contains_pending_extent(transaction, device,
1430 &search_start,
1431 hole_size)) {
1432 if (key.offset >= search_start) {
1433 hole_size = key.offset - search_start;
1434 } else {
1435 WARN_ON_ONCE(1);
1436 hole_size = 0;
1437 }
1438 }
1439
1440 if (hole_size > max_hole_size) {
1441 max_hole_start = search_start;
1442 max_hole_size = hole_size;
1443 }
1444
1445 /*
1446 * If this free space is greater than which we need,
1447 * it must be the max free space that we have found
1448 * until now, so max_hole_start must point to the start
1449 * of this free space and the length of this free space
1450 * is stored in max_hole_size. Thus, we return
1451 * max_hole_start and max_hole_size and go back to the
1452 * caller.
1453 */
1454 if (hole_size >= num_bytes) {
1455 ret = 0;
1456 goto out;
1457 }
1458 }
1459
1460 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1461 extent_end = key.offset + btrfs_dev_extent_length(l,
1462 dev_extent);
1463 if (extent_end > search_start)
1464 search_start = extent_end;
1465 next:
1466 path->slots[0]++;
1467 cond_resched();
1468 }
1469
1470 /*
1471 * At this point, search_start should be the end of
1472 * allocated dev extents, and when shrinking the device,
1473 * search_end may be smaller than search_start.
1474 */
1475 if (search_end > search_start) {
1476 hole_size = search_end - search_start;
1477
1478 if (contains_pending_extent(transaction, device, &search_start,
1479 hole_size)) {
1480 btrfs_release_path(path);
1481 goto again;
1482 }
1483
1484 if (hole_size > max_hole_size) {
1485 max_hole_start = search_start;
1486 max_hole_size = hole_size;
1487 }
1488 }
1489
1490 /* See above. */
1491 if (max_hole_size < num_bytes)
1492 ret = -ENOSPC;
1493 else
1494 ret = 0;
1495
1496 out:
1497 btrfs_free_path(path);
1498 *start = max_hole_start;
1499 if (len)
1500 *len = max_hole_size;
1501 return ret;
1502 }
1503
find_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1504 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1505 struct btrfs_device *device, u64 num_bytes,
1506 u64 *start, u64 *len)
1507 {
1508 /* FIXME use last free of some kind */
1509 return find_free_dev_extent_start(trans->transaction, device,
1510 num_bytes, 0, start, len);
1511 }
1512
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1513 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1514 struct btrfs_device *device,
1515 u64 start, u64 *dev_extent_len)
1516 {
1517 struct btrfs_fs_info *fs_info = device->fs_info;
1518 struct btrfs_root *root = fs_info->dev_root;
1519 int ret;
1520 struct btrfs_path *path;
1521 struct btrfs_key key;
1522 struct btrfs_key found_key;
1523 struct extent_buffer *leaf = NULL;
1524 struct btrfs_dev_extent *extent = NULL;
1525
1526 path = btrfs_alloc_path();
1527 if (!path)
1528 return -ENOMEM;
1529
1530 key.objectid = device->devid;
1531 key.offset = start;
1532 key.type = BTRFS_DEV_EXTENT_KEY;
1533 again:
1534 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1535 if (ret > 0) {
1536 ret = btrfs_previous_item(root, path, key.objectid,
1537 BTRFS_DEV_EXTENT_KEY);
1538 if (ret)
1539 goto out;
1540 leaf = path->nodes[0];
1541 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1542 extent = btrfs_item_ptr(leaf, path->slots[0],
1543 struct btrfs_dev_extent);
1544 BUG_ON(found_key.offset > start || found_key.offset +
1545 btrfs_dev_extent_length(leaf, extent) < start);
1546 key = found_key;
1547 btrfs_release_path(path);
1548 goto again;
1549 } else if (ret == 0) {
1550 leaf = path->nodes[0];
1551 extent = btrfs_item_ptr(leaf, path->slots[0],
1552 struct btrfs_dev_extent);
1553 } else {
1554 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1555 goto out;
1556 }
1557
1558 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1559
1560 ret = btrfs_del_item(trans, root, path);
1561 if (ret) {
1562 btrfs_handle_fs_error(fs_info, ret,
1563 "Failed to remove dev extent item");
1564 } else {
1565 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1566 }
1567 out:
1568 btrfs_free_path(path);
1569 return ret;
1570 }
1571
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)1572 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1573 struct btrfs_device *device,
1574 u64 chunk_offset, u64 start, u64 num_bytes)
1575 {
1576 int ret;
1577 struct btrfs_path *path;
1578 struct btrfs_fs_info *fs_info = device->fs_info;
1579 struct btrfs_root *root = fs_info->dev_root;
1580 struct btrfs_dev_extent *extent;
1581 struct extent_buffer *leaf;
1582 struct btrfs_key key;
1583
1584 WARN_ON(!device->in_fs_metadata);
1585 WARN_ON(device->is_tgtdev_for_dev_replace);
1586 path = btrfs_alloc_path();
1587 if (!path)
1588 return -ENOMEM;
1589
1590 key.objectid = device->devid;
1591 key.offset = start;
1592 key.type = BTRFS_DEV_EXTENT_KEY;
1593 ret = btrfs_insert_empty_item(trans, root, path, &key,
1594 sizeof(*extent));
1595 if (ret)
1596 goto out;
1597
1598 leaf = path->nodes[0];
1599 extent = btrfs_item_ptr(leaf, path->slots[0],
1600 struct btrfs_dev_extent);
1601 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1602 BTRFS_CHUNK_TREE_OBJECTID);
1603 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1604 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1605 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1606
1607 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1608 btrfs_mark_buffer_dirty(leaf);
1609 out:
1610 btrfs_free_path(path);
1611 return ret;
1612 }
1613
find_next_chunk(struct btrfs_fs_info * fs_info)1614 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1615 {
1616 struct extent_map_tree *em_tree;
1617 struct extent_map *em;
1618 struct rb_node *n;
1619 u64 ret = 0;
1620
1621 em_tree = &fs_info->mapping_tree.map_tree;
1622 read_lock(&em_tree->lock);
1623 n = rb_last(&em_tree->map);
1624 if (n) {
1625 em = rb_entry(n, struct extent_map, rb_node);
1626 ret = em->start + em->len;
1627 }
1628 read_unlock(&em_tree->lock);
1629
1630 return ret;
1631 }
1632
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1633 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1634 u64 *devid_ret)
1635 {
1636 int ret;
1637 struct btrfs_key key;
1638 struct btrfs_key found_key;
1639 struct btrfs_path *path;
1640
1641 path = btrfs_alloc_path();
1642 if (!path)
1643 return -ENOMEM;
1644
1645 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1646 key.type = BTRFS_DEV_ITEM_KEY;
1647 key.offset = (u64)-1;
1648
1649 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1650 if (ret < 0)
1651 goto error;
1652
1653 BUG_ON(ret == 0); /* Corruption */
1654
1655 ret = btrfs_previous_item(fs_info->chunk_root, path,
1656 BTRFS_DEV_ITEMS_OBJECTID,
1657 BTRFS_DEV_ITEM_KEY);
1658 if (ret) {
1659 *devid_ret = 1;
1660 } else {
1661 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1662 path->slots[0]);
1663 *devid_ret = found_key.offset + 1;
1664 }
1665 ret = 0;
1666 error:
1667 btrfs_free_path(path);
1668 return ret;
1669 }
1670
1671 /*
1672 * the device information is stored in the chunk root
1673 * the btrfs_device struct should be fully filled in
1674 */
btrfs_add_device(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_device * device)1675 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1676 struct btrfs_fs_info *fs_info,
1677 struct btrfs_device *device)
1678 {
1679 struct btrfs_root *root = fs_info->chunk_root;
1680 int ret;
1681 struct btrfs_path *path;
1682 struct btrfs_dev_item *dev_item;
1683 struct extent_buffer *leaf;
1684 struct btrfs_key key;
1685 unsigned long ptr;
1686
1687 path = btrfs_alloc_path();
1688 if (!path)
1689 return -ENOMEM;
1690
1691 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1692 key.type = BTRFS_DEV_ITEM_KEY;
1693 key.offset = device->devid;
1694
1695 ret = btrfs_insert_empty_item(trans, root, path, &key,
1696 sizeof(*dev_item));
1697 if (ret)
1698 goto out;
1699
1700 leaf = path->nodes[0];
1701 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1702
1703 btrfs_set_device_id(leaf, dev_item, device->devid);
1704 btrfs_set_device_generation(leaf, dev_item, 0);
1705 btrfs_set_device_type(leaf, dev_item, device->type);
1706 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1707 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1708 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1709 btrfs_set_device_total_bytes(leaf, dev_item,
1710 btrfs_device_get_disk_total_bytes(device));
1711 btrfs_set_device_bytes_used(leaf, dev_item,
1712 btrfs_device_get_bytes_used(device));
1713 btrfs_set_device_group(leaf, dev_item, 0);
1714 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1715 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1716 btrfs_set_device_start_offset(leaf, dev_item, 0);
1717
1718 ptr = btrfs_device_uuid(dev_item);
1719 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1720 ptr = btrfs_device_fsid(dev_item);
1721 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1722 btrfs_mark_buffer_dirty(leaf);
1723
1724 ret = 0;
1725 out:
1726 btrfs_free_path(path);
1727 return ret;
1728 }
1729
1730 /*
1731 * Function to update ctime/mtime for a given device path.
1732 * Mainly used for ctime/mtime based probe like libblkid.
1733 */
update_dev_time(const char * path_name)1734 static void update_dev_time(const char *path_name)
1735 {
1736 struct file *filp;
1737
1738 filp = filp_open(path_name, O_RDWR, 0);
1739 if (IS_ERR(filp))
1740 return;
1741 file_update_time(filp);
1742 filp_close(filp, NULL);
1743 }
1744
btrfs_rm_dev_item(struct btrfs_fs_info * fs_info,struct btrfs_device * device)1745 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1746 struct btrfs_device *device)
1747 {
1748 struct btrfs_root *root = fs_info->chunk_root;
1749 int ret;
1750 struct btrfs_path *path;
1751 struct btrfs_key key;
1752 struct btrfs_trans_handle *trans;
1753
1754 path = btrfs_alloc_path();
1755 if (!path)
1756 return -ENOMEM;
1757
1758 trans = btrfs_start_transaction(root, 0);
1759 if (IS_ERR(trans)) {
1760 btrfs_free_path(path);
1761 return PTR_ERR(trans);
1762 }
1763 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1764 key.type = BTRFS_DEV_ITEM_KEY;
1765 key.offset = device->devid;
1766
1767 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1768 if (ret) {
1769 if (ret > 0)
1770 ret = -ENOENT;
1771 btrfs_abort_transaction(trans, ret);
1772 btrfs_end_transaction(trans);
1773 goto out;
1774 }
1775
1776 ret = btrfs_del_item(trans, root, path);
1777 if (ret) {
1778 btrfs_abort_transaction(trans, ret);
1779 btrfs_end_transaction(trans);
1780 }
1781
1782 out:
1783 btrfs_free_path(path);
1784 if (!ret)
1785 ret = btrfs_commit_transaction(trans);
1786 return ret;
1787 }
1788
1789 /*
1790 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1791 * filesystem. It's up to the caller to adjust that number regarding eg. device
1792 * replace.
1793 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1794 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1795 u64 num_devices)
1796 {
1797 u64 all_avail;
1798 unsigned seq;
1799 int i;
1800
1801 do {
1802 seq = read_seqbegin(&fs_info->profiles_lock);
1803
1804 all_avail = fs_info->avail_data_alloc_bits |
1805 fs_info->avail_system_alloc_bits |
1806 fs_info->avail_metadata_alloc_bits;
1807 } while (read_seqretry(&fs_info->profiles_lock, seq));
1808
1809 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1810 if (!(all_avail & btrfs_raid_group[i]))
1811 continue;
1812
1813 if (num_devices < btrfs_raid_array[i].devs_min) {
1814 int ret = btrfs_raid_mindev_error[i];
1815
1816 if (ret)
1817 return ret;
1818 }
1819 }
1820
1821 return 0;
1822 }
1823
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1824 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1825 struct btrfs_device *device)
1826 {
1827 struct btrfs_device *next_device;
1828
1829 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1830 if (next_device != device &&
1831 !next_device->missing && next_device->bdev)
1832 return next_device;
1833 }
1834
1835 return NULL;
1836 }
1837
1838 /*
1839 * Helper function to check if the given device is part of s_bdev / latest_bdev
1840 * and replace it with the provided or the next active device, in the context
1841 * where this function called, there should be always be another device (or
1842 * this_dev) which is active.
1843 */
btrfs_assign_next_active_device(struct btrfs_fs_info * fs_info,struct btrfs_device * device,struct btrfs_device * this_dev)1844 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1845 struct btrfs_device *device, struct btrfs_device *this_dev)
1846 {
1847 struct btrfs_device *next_device;
1848
1849 if (this_dev)
1850 next_device = this_dev;
1851 else
1852 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1853 device);
1854 ASSERT(next_device);
1855
1856 if (fs_info->sb->s_bdev &&
1857 (fs_info->sb->s_bdev == device->bdev))
1858 fs_info->sb->s_bdev = next_device->bdev;
1859
1860 if (fs_info->fs_devices->latest_bdev == device->bdev)
1861 fs_info->fs_devices->latest_bdev = next_device->bdev;
1862 }
1863
btrfs_rm_device(struct btrfs_fs_info * fs_info,const char * device_path,u64 devid)1864 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1865 u64 devid)
1866 {
1867 struct btrfs_device *device;
1868 struct btrfs_fs_devices *cur_devices;
1869 u64 num_devices;
1870 int ret = 0;
1871
1872 mutex_lock(&uuid_mutex);
1873
1874 num_devices = fs_info->fs_devices->num_devices;
1875 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1876 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1877 WARN_ON(num_devices < 1);
1878 num_devices--;
1879 }
1880 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1881
1882 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1883 if (ret)
1884 goto out;
1885
1886 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1887 &device);
1888 if (ret)
1889 goto out;
1890
1891 if (device->is_tgtdev_for_dev_replace) {
1892 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1893 goto out;
1894 }
1895
1896 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1897 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1898 goto out;
1899 }
1900
1901 if (device->writeable) {
1902 mutex_lock(&fs_info->chunk_mutex);
1903 list_del_init(&device->dev_alloc_list);
1904 device->fs_devices->rw_devices--;
1905 mutex_unlock(&fs_info->chunk_mutex);
1906 }
1907
1908 mutex_unlock(&uuid_mutex);
1909 ret = btrfs_shrink_device(device, 0);
1910 mutex_lock(&uuid_mutex);
1911 if (ret)
1912 goto error_undo;
1913
1914 /*
1915 * TODO: the superblock still includes this device in its num_devices
1916 * counter although write_all_supers() is not locked out. This
1917 * could give a filesystem state which requires a degraded mount.
1918 */
1919 ret = btrfs_rm_dev_item(fs_info, device);
1920 if (ret)
1921 goto error_undo;
1922
1923 device->in_fs_metadata = 0;
1924 btrfs_scrub_cancel_dev(fs_info, device);
1925
1926 /*
1927 * the device list mutex makes sure that we don't change
1928 * the device list while someone else is writing out all
1929 * the device supers. Whoever is writing all supers, should
1930 * lock the device list mutex before getting the number of
1931 * devices in the super block (super_copy). Conversely,
1932 * whoever updates the number of devices in the super block
1933 * (super_copy) should hold the device list mutex.
1934 */
1935
1936 cur_devices = device->fs_devices;
1937 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1938 list_del_rcu(&device->dev_list);
1939
1940 device->fs_devices->num_devices--;
1941 device->fs_devices->total_devices--;
1942
1943 if (device->missing)
1944 device->fs_devices->missing_devices--;
1945
1946 btrfs_assign_next_active_device(fs_info, device, NULL);
1947
1948 if (device->bdev) {
1949 device->fs_devices->open_devices--;
1950 /* remove sysfs entry */
1951 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1952 }
1953
1954 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1955 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1956 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1957
1958 /*
1959 * at this point, the device is zero sized and detached from
1960 * the devices list. All that's left is to zero out the old
1961 * supers and free the device.
1962 */
1963 if (device->writeable)
1964 btrfs_scratch_superblocks(device->bdev, device->name->str);
1965
1966 btrfs_close_bdev(device);
1967 call_rcu(&device->rcu, free_device);
1968
1969 if (cur_devices->open_devices == 0) {
1970 struct btrfs_fs_devices *fs_devices;
1971 fs_devices = fs_info->fs_devices;
1972 while (fs_devices) {
1973 if (fs_devices->seed == cur_devices) {
1974 fs_devices->seed = cur_devices->seed;
1975 break;
1976 }
1977 fs_devices = fs_devices->seed;
1978 }
1979 cur_devices->seed = NULL;
1980 __btrfs_close_devices(cur_devices);
1981 free_fs_devices(cur_devices);
1982 }
1983
1984 out:
1985 mutex_unlock(&uuid_mutex);
1986 return ret;
1987
1988 error_undo:
1989 if (device->writeable) {
1990 mutex_lock(&fs_info->chunk_mutex);
1991 list_add(&device->dev_alloc_list,
1992 &fs_info->fs_devices->alloc_list);
1993 device->fs_devices->rw_devices++;
1994 mutex_unlock(&fs_info->chunk_mutex);
1995 }
1996 goto out;
1997 }
1998
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info * fs_info,struct btrfs_device * srcdev)1999 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2000 struct btrfs_device *srcdev)
2001 {
2002 struct btrfs_fs_devices *fs_devices;
2003
2004 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2005
2006 /*
2007 * in case of fs with no seed, srcdev->fs_devices will point
2008 * to fs_devices of fs_info. However when the dev being replaced is
2009 * a seed dev it will point to the seed's local fs_devices. In short
2010 * srcdev will have its correct fs_devices in both the cases.
2011 */
2012 fs_devices = srcdev->fs_devices;
2013
2014 list_del_rcu(&srcdev->dev_list);
2015 list_del_rcu(&srcdev->dev_alloc_list);
2016 fs_devices->num_devices--;
2017 if (srcdev->missing)
2018 fs_devices->missing_devices--;
2019
2020 if (srcdev->writeable)
2021 fs_devices->rw_devices--;
2022
2023 if (srcdev->bdev)
2024 fs_devices->open_devices--;
2025 }
2026
btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info * fs_info,struct btrfs_device * srcdev)2027 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2028 struct btrfs_device *srcdev)
2029 {
2030 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2031
2032 if (srcdev->writeable) {
2033 /* zero out the old super if it is writable */
2034 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2035 }
2036
2037 btrfs_close_bdev(srcdev);
2038
2039 call_rcu(&srcdev->rcu, free_device);
2040
2041 /*
2042 * unless fs_devices is seed fs, num_devices shouldn't go
2043 * zero
2044 */
2045 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2046
2047 /* if this is no devs we rather delete the fs_devices */
2048 if (!fs_devices->num_devices) {
2049 struct btrfs_fs_devices *tmp_fs_devices;
2050
2051 tmp_fs_devices = fs_info->fs_devices;
2052 while (tmp_fs_devices) {
2053 if (tmp_fs_devices->seed == fs_devices) {
2054 tmp_fs_devices->seed = fs_devices->seed;
2055 break;
2056 }
2057 tmp_fs_devices = tmp_fs_devices->seed;
2058 }
2059 fs_devices->seed = NULL;
2060 __btrfs_close_devices(fs_devices);
2061 free_fs_devices(fs_devices);
2062 }
2063 }
2064
btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info * fs_info,struct btrfs_device * tgtdev)2065 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2066 struct btrfs_device *tgtdev)
2067 {
2068 mutex_lock(&uuid_mutex);
2069 WARN_ON(!tgtdev);
2070 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2071
2072 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2073
2074 if (tgtdev->bdev)
2075 fs_info->fs_devices->open_devices--;
2076
2077 fs_info->fs_devices->num_devices--;
2078
2079 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2080
2081 list_del_rcu(&tgtdev->dev_list);
2082
2083 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2084 mutex_unlock(&uuid_mutex);
2085
2086 /*
2087 * The update_dev_time() with in btrfs_scratch_superblocks()
2088 * may lead to a call to btrfs_show_devname() which will try
2089 * to hold device_list_mutex. And here this device
2090 * is already out of device list, so we don't have to hold
2091 * the device_list_mutex lock.
2092 */
2093 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2094
2095 btrfs_close_bdev(tgtdev);
2096 call_rcu(&tgtdev->rcu, free_device);
2097 }
2098
btrfs_find_device_by_path(struct btrfs_fs_info * fs_info,const char * device_path,struct btrfs_device ** device)2099 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2100 const char *device_path,
2101 struct btrfs_device **device)
2102 {
2103 int ret = 0;
2104 struct btrfs_super_block *disk_super;
2105 u64 devid;
2106 u8 *dev_uuid;
2107 struct block_device *bdev;
2108 struct buffer_head *bh;
2109
2110 *device = NULL;
2111 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2112 fs_info->bdev_holder, 0, &bdev, &bh);
2113 if (ret)
2114 return ret;
2115 disk_super = (struct btrfs_super_block *)bh->b_data;
2116 devid = btrfs_stack_device_id(&disk_super->dev_item);
2117 dev_uuid = disk_super->dev_item.uuid;
2118 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2119 brelse(bh);
2120 if (!*device)
2121 ret = -ENOENT;
2122 blkdev_put(bdev, FMODE_READ);
2123 return ret;
2124 }
2125
btrfs_find_device_missing_or_by_path(struct btrfs_fs_info * fs_info,const char * device_path,struct btrfs_device ** device)2126 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2127 const char *device_path,
2128 struct btrfs_device **device)
2129 {
2130 *device = NULL;
2131 if (strcmp(device_path, "missing") == 0) {
2132 struct list_head *devices;
2133 struct btrfs_device *tmp;
2134
2135 devices = &fs_info->fs_devices->devices;
2136 /*
2137 * It is safe to read the devices since the volume_mutex
2138 * is held by the caller.
2139 */
2140 list_for_each_entry(tmp, devices, dev_list) {
2141 if (tmp->in_fs_metadata && !tmp->bdev) {
2142 *device = tmp;
2143 break;
2144 }
2145 }
2146
2147 if (!*device)
2148 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2149
2150 return 0;
2151 } else {
2152 return btrfs_find_device_by_path(fs_info, device_path, device);
2153 }
2154 }
2155
2156 /*
2157 * Lookup a device given by device id, or the path if the id is 0.
2158 */
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * devpath,struct btrfs_device ** device)2159 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2160 const char *devpath,
2161 struct btrfs_device **device)
2162 {
2163 int ret;
2164
2165 if (devid) {
2166 ret = 0;
2167 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2168 if (!*device)
2169 ret = -ENOENT;
2170 } else {
2171 if (!devpath || !devpath[0])
2172 return -EINVAL;
2173
2174 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2175 device);
2176 }
2177 return ret;
2178 }
2179
2180 /*
2181 * does all the dirty work required for changing file system's UUID.
2182 */
btrfs_prepare_sprout(struct btrfs_fs_info * fs_info)2183 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2184 {
2185 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2186 struct btrfs_fs_devices *old_devices;
2187 struct btrfs_fs_devices *seed_devices;
2188 struct btrfs_super_block *disk_super = fs_info->super_copy;
2189 struct btrfs_device *device;
2190 u64 super_flags;
2191
2192 BUG_ON(!mutex_is_locked(&uuid_mutex));
2193 if (!fs_devices->seeding)
2194 return -EINVAL;
2195
2196 seed_devices = alloc_fs_devices(NULL);
2197 if (IS_ERR(seed_devices))
2198 return PTR_ERR(seed_devices);
2199
2200 old_devices = clone_fs_devices(fs_devices);
2201 if (IS_ERR(old_devices)) {
2202 kfree(seed_devices);
2203 return PTR_ERR(old_devices);
2204 }
2205
2206 list_add(&old_devices->list, &fs_uuids);
2207
2208 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2209 seed_devices->opened = 1;
2210 INIT_LIST_HEAD(&seed_devices->devices);
2211 INIT_LIST_HEAD(&seed_devices->alloc_list);
2212 mutex_init(&seed_devices->device_list_mutex);
2213
2214 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2215 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2216 synchronize_rcu);
2217 list_for_each_entry(device, &seed_devices->devices, dev_list)
2218 device->fs_devices = seed_devices;
2219
2220 mutex_lock(&fs_info->chunk_mutex);
2221 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2222 mutex_unlock(&fs_info->chunk_mutex);
2223
2224 fs_devices->seeding = 0;
2225 fs_devices->num_devices = 0;
2226 fs_devices->open_devices = 0;
2227 fs_devices->missing_devices = 0;
2228 fs_devices->rotating = 0;
2229 fs_devices->seed = seed_devices;
2230
2231 generate_random_uuid(fs_devices->fsid);
2232 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2233 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2234 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2235
2236 super_flags = btrfs_super_flags(disk_super) &
2237 ~BTRFS_SUPER_FLAG_SEEDING;
2238 btrfs_set_super_flags(disk_super, super_flags);
2239
2240 return 0;
2241 }
2242
2243 /*
2244 * Store the expected generation for seed devices in device items.
2245 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2246 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2247 struct btrfs_fs_info *fs_info)
2248 {
2249 struct btrfs_root *root = fs_info->chunk_root;
2250 struct btrfs_path *path;
2251 struct extent_buffer *leaf;
2252 struct btrfs_dev_item *dev_item;
2253 struct btrfs_device *device;
2254 struct btrfs_key key;
2255 u8 fs_uuid[BTRFS_FSID_SIZE];
2256 u8 dev_uuid[BTRFS_UUID_SIZE];
2257 u64 devid;
2258 int ret;
2259
2260 path = btrfs_alloc_path();
2261 if (!path)
2262 return -ENOMEM;
2263
2264 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2265 key.offset = 0;
2266 key.type = BTRFS_DEV_ITEM_KEY;
2267
2268 while (1) {
2269 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2270 if (ret < 0)
2271 goto error;
2272
2273 leaf = path->nodes[0];
2274 next_slot:
2275 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2276 ret = btrfs_next_leaf(root, path);
2277 if (ret > 0)
2278 break;
2279 if (ret < 0)
2280 goto error;
2281 leaf = path->nodes[0];
2282 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2283 btrfs_release_path(path);
2284 continue;
2285 }
2286
2287 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2288 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2289 key.type != BTRFS_DEV_ITEM_KEY)
2290 break;
2291
2292 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2293 struct btrfs_dev_item);
2294 devid = btrfs_device_id(leaf, dev_item);
2295 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2296 BTRFS_UUID_SIZE);
2297 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2298 BTRFS_FSID_SIZE);
2299 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2300 BUG_ON(!device); /* Logic error */
2301
2302 if (device->fs_devices->seeding) {
2303 btrfs_set_device_generation(leaf, dev_item,
2304 device->generation);
2305 btrfs_mark_buffer_dirty(leaf);
2306 }
2307
2308 path->slots[0]++;
2309 goto next_slot;
2310 }
2311 ret = 0;
2312 error:
2313 btrfs_free_path(path);
2314 return ret;
2315 }
2316
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2317 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2318 {
2319 struct btrfs_root *root = fs_info->dev_root;
2320 struct request_queue *q;
2321 struct btrfs_trans_handle *trans;
2322 struct btrfs_device *device;
2323 struct block_device *bdev;
2324 struct list_head *devices;
2325 struct super_block *sb = fs_info->sb;
2326 struct rcu_string *name;
2327 u64 tmp;
2328 int seeding_dev = 0;
2329 int ret = 0;
2330
2331 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2332 return -EROFS;
2333
2334 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2335 fs_info->bdev_holder);
2336 if (IS_ERR(bdev))
2337 return PTR_ERR(bdev);
2338
2339 if (fs_info->fs_devices->seeding) {
2340 seeding_dev = 1;
2341 down_write(&sb->s_umount);
2342 mutex_lock(&uuid_mutex);
2343 }
2344
2345 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2346
2347 devices = &fs_info->fs_devices->devices;
2348
2349 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2350 list_for_each_entry(device, devices, dev_list) {
2351 if (device->bdev == bdev) {
2352 ret = -EEXIST;
2353 mutex_unlock(
2354 &fs_info->fs_devices->device_list_mutex);
2355 goto error;
2356 }
2357 }
2358 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2359
2360 device = btrfs_alloc_device(fs_info, NULL, NULL);
2361 if (IS_ERR(device)) {
2362 /* we can safely leave the fs_devices entry around */
2363 ret = PTR_ERR(device);
2364 goto error;
2365 }
2366
2367 name = rcu_string_strdup(device_path, GFP_KERNEL);
2368 if (!name) {
2369 kfree(device);
2370 ret = -ENOMEM;
2371 goto error;
2372 }
2373 rcu_assign_pointer(device->name, name);
2374
2375 trans = btrfs_start_transaction(root, 0);
2376 if (IS_ERR(trans)) {
2377 rcu_string_free(device->name);
2378 kfree(device);
2379 ret = PTR_ERR(trans);
2380 goto error;
2381 }
2382
2383 q = bdev_get_queue(bdev);
2384 if (blk_queue_discard(q))
2385 device->can_discard = 1;
2386 device->writeable = 1;
2387 device->generation = trans->transid;
2388 device->io_width = fs_info->sectorsize;
2389 device->io_align = fs_info->sectorsize;
2390 device->sector_size = fs_info->sectorsize;
2391 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2392 fs_info->sectorsize);
2393 device->disk_total_bytes = device->total_bytes;
2394 device->commit_total_bytes = device->total_bytes;
2395 device->fs_info = fs_info;
2396 device->bdev = bdev;
2397 device->in_fs_metadata = 1;
2398 device->is_tgtdev_for_dev_replace = 0;
2399 device->mode = FMODE_EXCL;
2400 device->dev_stats_valid = 1;
2401 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2402
2403 if (seeding_dev) {
2404 sb->s_flags &= ~MS_RDONLY;
2405 ret = btrfs_prepare_sprout(fs_info);
2406 BUG_ON(ret); /* -ENOMEM */
2407 }
2408
2409 device->fs_devices = fs_info->fs_devices;
2410
2411 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2412 mutex_lock(&fs_info->chunk_mutex);
2413 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2414 list_add(&device->dev_alloc_list,
2415 &fs_info->fs_devices->alloc_list);
2416 fs_info->fs_devices->num_devices++;
2417 fs_info->fs_devices->open_devices++;
2418 fs_info->fs_devices->rw_devices++;
2419 fs_info->fs_devices->total_devices++;
2420 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2421
2422 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2423
2424 if (!blk_queue_nonrot(q))
2425 fs_info->fs_devices->rotating = 1;
2426
2427 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2428 btrfs_set_super_total_bytes(fs_info->super_copy,
2429 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2430
2431 tmp = btrfs_super_num_devices(fs_info->super_copy);
2432 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2433
2434 /* add sysfs device entry */
2435 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2436
2437 /*
2438 * we've got more storage, clear any full flags on the space
2439 * infos
2440 */
2441 btrfs_clear_space_info_full(fs_info);
2442
2443 mutex_unlock(&fs_info->chunk_mutex);
2444 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2445
2446 if (seeding_dev) {
2447 mutex_lock(&fs_info->chunk_mutex);
2448 ret = init_first_rw_device(trans, fs_info);
2449 mutex_unlock(&fs_info->chunk_mutex);
2450 if (ret) {
2451 btrfs_abort_transaction(trans, ret);
2452 goto error_trans;
2453 }
2454 }
2455
2456 ret = btrfs_add_device(trans, fs_info, device);
2457 if (ret) {
2458 btrfs_abort_transaction(trans, ret);
2459 goto error_trans;
2460 }
2461
2462 if (seeding_dev) {
2463 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2464
2465 ret = btrfs_finish_sprout(trans, fs_info);
2466 if (ret) {
2467 btrfs_abort_transaction(trans, ret);
2468 goto error_trans;
2469 }
2470
2471 /* Sprouting would change fsid of the mounted root,
2472 * so rename the fsid on the sysfs
2473 */
2474 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2475 fs_info->fsid);
2476 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2477 btrfs_warn(fs_info,
2478 "sysfs: failed to create fsid for sprout");
2479 }
2480
2481 ret = btrfs_commit_transaction(trans);
2482
2483 if (seeding_dev) {
2484 mutex_unlock(&uuid_mutex);
2485 up_write(&sb->s_umount);
2486
2487 if (ret) /* transaction commit */
2488 return ret;
2489
2490 ret = btrfs_relocate_sys_chunks(fs_info);
2491 if (ret < 0)
2492 btrfs_handle_fs_error(fs_info, ret,
2493 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2494 trans = btrfs_attach_transaction(root);
2495 if (IS_ERR(trans)) {
2496 if (PTR_ERR(trans) == -ENOENT)
2497 return 0;
2498 return PTR_ERR(trans);
2499 }
2500 ret = btrfs_commit_transaction(trans);
2501 }
2502
2503 /* Update ctime/mtime for libblkid */
2504 update_dev_time(device_path);
2505 return ret;
2506
2507 error_trans:
2508 if (seeding_dev)
2509 sb->s_flags |= MS_RDONLY;
2510 btrfs_end_transaction(trans);
2511 rcu_string_free(device->name);
2512 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2513 kfree(device);
2514 error:
2515 blkdev_put(bdev, FMODE_EXCL);
2516 if (seeding_dev) {
2517 mutex_unlock(&uuid_mutex);
2518 up_write(&sb->s_umount);
2519 }
2520 return ret;
2521 }
2522
btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info * fs_info,const char * device_path,struct btrfs_device * srcdev,struct btrfs_device ** device_out)2523 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2524 const char *device_path,
2525 struct btrfs_device *srcdev,
2526 struct btrfs_device **device_out)
2527 {
2528 struct request_queue *q;
2529 struct btrfs_device *device;
2530 struct block_device *bdev;
2531 struct list_head *devices;
2532 struct rcu_string *name;
2533 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2534 int ret = 0;
2535
2536 *device_out = NULL;
2537 if (fs_info->fs_devices->seeding) {
2538 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2539 return -EINVAL;
2540 }
2541
2542 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2543 fs_info->bdev_holder);
2544 if (IS_ERR(bdev)) {
2545 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2546 return PTR_ERR(bdev);
2547 }
2548
2549 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2550
2551 devices = &fs_info->fs_devices->devices;
2552 list_for_each_entry(device, devices, dev_list) {
2553 if (device->bdev == bdev) {
2554 btrfs_err(fs_info,
2555 "target device is in the filesystem!");
2556 ret = -EEXIST;
2557 goto error;
2558 }
2559 }
2560
2561
2562 if (i_size_read(bdev->bd_inode) <
2563 btrfs_device_get_total_bytes(srcdev)) {
2564 btrfs_err(fs_info,
2565 "target device is smaller than source device!");
2566 ret = -EINVAL;
2567 goto error;
2568 }
2569
2570
2571 device = btrfs_alloc_device(NULL, &devid, NULL);
2572 if (IS_ERR(device)) {
2573 ret = PTR_ERR(device);
2574 goto error;
2575 }
2576
2577 name = rcu_string_strdup(device_path, GFP_KERNEL);
2578 if (!name) {
2579 kfree(device);
2580 ret = -ENOMEM;
2581 goto error;
2582 }
2583 rcu_assign_pointer(device->name, name);
2584
2585 q = bdev_get_queue(bdev);
2586 if (blk_queue_discard(q))
2587 device->can_discard = 1;
2588 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2589 device->writeable = 1;
2590 device->generation = 0;
2591 device->io_width = fs_info->sectorsize;
2592 device->io_align = fs_info->sectorsize;
2593 device->sector_size = fs_info->sectorsize;
2594 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2595 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2596 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2597 ASSERT(list_empty(&srcdev->resized_list));
2598 device->commit_total_bytes = srcdev->commit_total_bytes;
2599 device->commit_bytes_used = device->bytes_used;
2600 device->fs_info = fs_info;
2601 device->bdev = bdev;
2602 device->in_fs_metadata = 1;
2603 device->is_tgtdev_for_dev_replace = 1;
2604 device->mode = FMODE_EXCL;
2605 device->dev_stats_valid = 1;
2606 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2607 device->fs_devices = fs_info->fs_devices;
2608 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2609 fs_info->fs_devices->num_devices++;
2610 fs_info->fs_devices->open_devices++;
2611 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2612
2613 *device_out = device;
2614 return ret;
2615
2616 error:
2617 blkdev_put(bdev, FMODE_EXCL);
2618 return ret;
2619 }
2620
btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info * fs_info,struct btrfs_device * tgtdev)2621 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2622 struct btrfs_device *tgtdev)
2623 {
2624 u32 sectorsize = fs_info->sectorsize;
2625
2626 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2627 tgtdev->io_width = sectorsize;
2628 tgtdev->io_align = sectorsize;
2629 tgtdev->sector_size = sectorsize;
2630 tgtdev->fs_info = fs_info;
2631 tgtdev->in_fs_metadata = 1;
2632 }
2633
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2634 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2635 struct btrfs_device *device)
2636 {
2637 int ret;
2638 struct btrfs_path *path;
2639 struct btrfs_root *root = device->fs_info->chunk_root;
2640 struct btrfs_dev_item *dev_item;
2641 struct extent_buffer *leaf;
2642 struct btrfs_key key;
2643
2644 path = btrfs_alloc_path();
2645 if (!path)
2646 return -ENOMEM;
2647
2648 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2649 key.type = BTRFS_DEV_ITEM_KEY;
2650 key.offset = device->devid;
2651
2652 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2653 if (ret < 0)
2654 goto out;
2655
2656 if (ret > 0) {
2657 ret = -ENOENT;
2658 goto out;
2659 }
2660
2661 leaf = path->nodes[0];
2662 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2663
2664 btrfs_set_device_id(leaf, dev_item, device->devid);
2665 btrfs_set_device_type(leaf, dev_item, device->type);
2666 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2667 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2668 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2669 btrfs_set_device_total_bytes(leaf, dev_item,
2670 btrfs_device_get_disk_total_bytes(device));
2671 btrfs_set_device_bytes_used(leaf, dev_item,
2672 btrfs_device_get_bytes_used(device));
2673 btrfs_mark_buffer_dirty(leaf);
2674
2675 out:
2676 btrfs_free_path(path);
2677 return ret;
2678 }
2679
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2680 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2681 struct btrfs_device *device, u64 new_size)
2682 {
2683 struct btrfs_fs_info *fs_info = device->fs_info;
2684 struct btrfs_super_block *super_copy = fs_info->super_copy;
2685 struct btrfs_fs_devices *fs_devices;
2686 u64 old_total;
2687 u64 diff;
2688
2689 if (!device->writeable)
2690 return -EACCES;
2691
2692 new_size = round_down(new_size, fs_info->sectorsize);
2693
2694 mutex_lock(&fs_info->chunk_mutex);
2695 old_total = btrfs_super_total_bytes(super_copy);
2696 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2697
2698 if (new_size <= device->total_bytes ||
2699 device->is_tgtdev_for_dev_replace) {
2700 mutex_unlock(&fs_info->chunk_mutex);
2701 return -EINVAL;
2702 }
2703
2704 fs_devices = fs_info->fs_devices;
2705
2706 btrfs_set_super_total_bytes(super_copy,
2707 round_down(old_total + diff, fs_info->sectorsize));
2708 device->fs_devices->total_rw_bytes += diff;
2709
2710 btrfs_device_set_total_bytes(device, new_size);
2711 btrfs_device_set_disk_total_bytes(device, new_size);
2712 btrfs_clear_space_info_full(device->fs_info);
2713 if (list_empty(&device->resized_list))
2714 list_add_tail(&device->resized_list,
2715 &fs_devices->resized_devices);
2716 mutex_unlock(&fs_info->chunk_mutex);
2717
2718 return btrfs_update_device(trans, device);
2719 }
2720
btrfs_free_chunk(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 chunk_offset)2721 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2722 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2723 {
2724 struct btrfs_root *root = fs_info->chunk_root;
2725 int ret;
2726 struct btrfs_path *path;
2727 struct btrfs_key key;
2728
2729 path = btrfs_alloc_path();
2730 if (!path)
2731 return -ENOMEM;
2732
2733 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2734 key.offset = chunk_offset;
2735 key.type = BTRFS_CHUNK_ITEM_KEY;
2736
2737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2738 if (ret < 0)
2739 goto out;
2740 else if (ret > 0) { /* Logic error or corruption */
2741 btrfs_handle_fs_error(fs_info, -ENOENT,
2742 "Failed lookup while freeing chunk.");
2743 ret = -ENOENT;
2744 goto out;
2745 }
2746
2747 ret = btrfs_del_item(trans, root, path);
2748 if (ret < 0)
2749 btrfs_handle_fs_error(fs_info, ret,
2750 "Failed to delete chunk item.");
2751 out:
2752 btrfs_free_path(path);
2753 return ret;
2754 }
2755
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2756 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2757 {
2758 struct btrfs_super_block *super_copy = fs_info->super_copy;
2759 struct btrfs_disk_key *disk_key;
2760 struct btrfs_chunk *chunk;
2761 u8 *ptr;
2762 int ret = 0;
2763 u32 num_stripes;
2764 u32 array_size;
2765 u32 len = 0;
2766 u32 cur;
2767 struct btrfs_key key;
2768
2769 mutex_lock(&fs_info->chunk_mutex);
2770 array_size = btrfs_super_sys_array_size(super_copy);
2771
2772 ptr = super_copy->sys_chunk_array;
2773 cur = 0;
2774
2775 while (cur < array_size) {
2776 disk_key = (struct btrfs_disk_key *)ptr;
2777 btrfs_disk_key_to_cpu(&key, disk_key);
2778
2779 len = sizeof(*disk_key);
2780
2781 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2782 chunk = (struct btrfs_chunk *)(ptr + len);
2783 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2784 len += btrfs_chunk_item_size(num_stripes);
2785 } else {
2786 ret = -EIO;
2787 break;
2788 }
2789 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2790 key.offset == chunk_offset) {
2791 memmove(ptr, ptr + len, array_size - (cur + len));
2792 array_size -= len;
2793 btrfs_set_super_sys_array_size(super_copy, array_size);
2794 } else {
2795 ptr += len;
2796 cur += len;
2797 }
2798 }
2799 mutex_unlock(&fs_info->chunk_mutex);
2800 return ret;
2801 }
2802
get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2803 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2804 u64 logical, u64 length)
2805 {
2806 struct extent_map_tree *em_tree;
2807 struct extent_map *em;
2808
2809 em_tree = &fs_info->mapping_tree.map_tree;
2810 read_lock(&em_tree->lock);
2811 em = lookup_extent_mapping(em_tree, logical, length);
2812 read_unlock(&em_tree->lock);
2813
2814 if (!em) {
2815 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2816 logical, length);
2817 return ERR_PTR(-EINVAL);
2818 }
2819
2820 if (em->start > logical || em->start + em->len < logical) {
2821 btrfs_crit(fs_info,
2822 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2823 logical, length, em->start, em->start + em->len);
2824 free_extent_map(em);
2825 return ERR_PTR(-EINVAL);
2826 }
2827
2828 /* callers are responsible for dropping em's ref. */
2829 return em;
2830 }
2831
btrfs_remove_chunk(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 chunk_offset)2832 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2833 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2834 {
2835 struct extent_map *em;
2836 struct map_lookup *map;
2837 u64 dev_extent_len = 0;
2838 int i, ret = 0;
2839 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2840
2841 em = get_chunk_map(fs_info, chunk_offset, 1);
2842 if (IS_ERR(em)) {
2843 /*
2844 * This is a logic error, but we don't want to just rely on the
2845 * user having built with ASSERT enabled, so if ASSERT doesn't
2846 * do anything we still error out.
2847 */
2848 ASSERT(0);
2849 return PTR_ERR(em);
2850 }
2851 map = em->map_lookup;
2852 mutex_lock(&fs_info->chunk_mutex);
2853 check_system_chunk(trans, fs_info, map->type);
2854 mutex_unlock(&fs_info->chunk_mutex);
2855
2856 /*
2857 * Take the device list mutex to prevent races with the final phase of
2858 * a device replace operation that replaces the device object associated
2859 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2860 */
2861 mutex_lock(&fs_devices->device_list_mutex);
2862 for (i = 0; i < map->num_stripes; i++) {
2863 struct btrfs_device *device = map->stripes[i].dev;
2864 ret = btrfs_free_dev_extent(trans, device,
2865 map->stripes[i].physical,
2866 &dev_extent_len);
2867 if (ret) {
2868 mutex_unlock(&fs_devices->device_list_mutex);
2869 btrfs_abort_transaction(trans, ret);
2870 goto out;
2871 }
2872
2873 if (device->bytes_used > 0) {
2874 mutex_lock(&fs_info->chunk_mutex);
2875 btrfs_device_set_bytes_used(device,
2876 device->bytes_used - dev_extent_len);
2877 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2878 btrfs_clear_space_info_full(fs_info);
2879 mutex_unlock(&fs_info->chunk_mutex);
2880 }
2881
2882 if (map->stripes[i].dev) {
2883 ret = btrfs_update_device(trans, map->stripes[i].dev);
2884 if (ret) {
2885 mutex_unlock(&fs_devices->device_list_mutex);
2886 btrfs_abort_transaction(trans, ret);
2887 goto out;
2888 }
2889 }
2890 }
2891 mutex_unlock(&fs_devices->device_list_mutex);
2892
2893 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2894 if (ret) {
2895 btrfs_abort_transaction(trans, ret);
2896 goto out;
2897 }
2898
2899 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2900
2901 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2902 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2903 if (ret) {
2904 btrfs_abort_transaction(trans, ret);
2905 goto out;
2906 }
2907 }
2908
2909 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2910 if (ret) {
2911 btrfs_abort_transaction(trans, ret);
2912 goto out;
2913 }
2914
2915 out:
2916 /* once for us */
2917 free_extent_map(em);
2918 return ret;
2919 }
2920
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2921 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2922 {
2923 struct btrfs_root *root = fs_info->chunk_root;
2924 struct btrfs_trans_handle *trans;
2925 int ret;
2926
2927 /*
2928 * Prevent races with automatic removal of unused block groups.
2929 * After we relocate and before we remove the chunk with offset
2930 * chunk_offset, automatic removal of the block group can kick in,
2931 * resulting in a failure when calling btrfs_remove_chunk() below.
2932 *
2933 * Make sure to acquire this mutex before doing a tree search (dev
2934 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2935 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2936 * we release the path used to search the chunk/dev tree and before
2937 * the current task acquires this mutex and calls us.
2938 */
2939 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2940
2941 ret = btrfs_can_relocate(fs_info, chunk_offset);
2942 if (ret)
2943 return -ENOSPC;
2944
2945 /* step one, relocate all the extents inside this chunk */
2946 btrfs_scrub_pause(fs_info);
2947 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2948 btrfs_scrub_continue(fs_info);
2949 if (ret)
2950 return ret;
2951
2952 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2953 chunk_offset);
2954 if (IS_ERR(trans)) {
2955 ret = PTR_ERR(trans);
2956 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2957 return ret;
2958 }
2959
2960 /*
2961 * step two, delete the device extents and the
2962 * chunk tree entries
2963 */
2964 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2965 btrfs_end_transaction(trans);
2966 return ret;
2967 }
2968
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)2969 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2970 {
2971 struct btrfs_root *chunk_root = fs_info->chunk_root;
2972 struct btrfs_path *path;
2973 struct extent_buffer *leaf;
2974 struct btrfs_chunk *chunk;
2975 struct btrfs_key key;
2976 struct btrfs_key found_key;
2977 u64 chunk_type;
2978 bool retried = false;
2979 int failed = 0;
2980 int ret;
2981
2982 path = btrfs_alloc_path();
2983 if (!path)
2984 return -ENOMEM;
2985
2986 again:
2987 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2988 key.offset = (u64)-1;
2989 key.type = BTRFS_CHUNK_ITEM_KEY;
2990
2991 while (1) {
2992 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2993 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2994 if (ret < 0) {
2995 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2996 goto error;
2997 }
2998 BUG_ON(ret == 0); /* Corruption */
2999
3000 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3001 key.type);
3002 if (ret)
3003 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3004 if (ret < 0)
3005 goto error;
3006 if (ret > 0)
3007 break;
3008
3009 leaf = path->nodes[0];
3010 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3011
3012 chunk = btrfs_item_ptr(leaf, path->slots[0],
3013 struct btrfs_chunk);
3014 chunk_type = btrfs_chunk_type(leaf, chunk);
3015 btrfs_release_path(path);
3016
3017 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3018 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3019 if (ret == -ENOSPC)
3020 failed++;
3021 else
3022 BUG_ON(ret);
3023 }
3024 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3025
3026 if (found_key.offset == 0)
3027 break;
3028 key.offset = found_key.offset - 1;
3029 }
3030 ret = 0;
3031 if (failed && !retried) {
3032 failed = 0;
3033 retried = true;
3034 goto again;
3035 } else if (WARN_ON(failed && retried)) {
3036 ret = -ENOSPC;
3037 }
3038 error:
3039 btrfs_free_path(path);
3040 return ret;
3041 }
3042
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3043 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3044 struct btrfs_balance_control *bctl)
3045 {
3046 struct btrfs_root *root = fs_info->tree_root;
3047 struct btrfs_trans_handle *trans;
3048 struct btrfs_balance_item *item;
3049 struct btrfs_disk_balance_args disk_bargs;
3050 struct btrfs_path *path;
3051 struct extent_buffer *leaf;
3052 struct btrfs_key key;
3053 int ret, err;
3054
3055 path = btrfs_alloc_path();
3056 if (!path)
3057 return -ENOMEM;
3058
3059 trans = btrfs_start_transaction(root, 0);
3060 if (IS_ERR(trans)) {
3061 btrfs_free_path(path);
3062 return PTR_ERR(trans);
3063 }
3064
3065 key.objectid = BTRFS_BALANCE_OBJECTID;
3066 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3067 key.offset = 0;
3068
3069 ret = btrfs_insert_empty_item(trans, root, path, &key,
3070 sizeof(*item));
3071 if (ret)
3072 goto out;
3073
3074 leaf = path->nodes[0];
3075 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3076
3077 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3078
3079 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3080 btrfs_set_balance_data(leaf, item, &disk_bargs);
3081 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3082 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3083 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3084 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3085
3086 btrfs_set_balance_flags(leaf, item, bctl->flags);
3087
3088 btrfs_mark_buffer_dirty(leaf);
3089 out:
3090 btrfs_free_path(path);
3091 err = btrfs_commit_transaction(trans);
3092 if (err && !ret)
3093 ret = err;
3094 return ret;
3095 }
3096
del_balance_item(struct btrfs_fs_info * fs_info)3097 static int del_balance_item(struct btrfs_fs_info *fs_info)
3098 {
3099 struct btrfs_root *root = fs_info->tree_root;
3100 struct btrfs_trans_handle *trans;
3101 struct btrfs_path *path;
3102 struct btrfs_key key;
3103 int ret, err;
3104
3105 path = btrfs_alloc_path();
3106 if (!path)
3107 return -ENOMEM;
3108
3109 trans = btrfs_start_transaction(root, 0);
3110 if (IS_ERR(trans)) {
3111 btrfs_free_path(path);
3112 return PTR_ERR(trans);
3113 }
3114
3115 key.objectid = BTRFS_BALANCE_OBJECTID;
3116 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3117 key.offset = 0;
3118
3119 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3120 if (ret < 0)
3121 goto out;
3122 if (ret > 0) {
3123 ret = -ENOENT;
3124 goto out;
3125 }
3126
3127 ret = btrfs_del_item(trans, root, path);
3128 out:
3129 btrfs_free_path(path);
3130 err = btrfs_commit_transaction(trans);
3131 if (err && !ret)
3132 ret = err;
3133 return ret;
3134 }
3135
3136 /*
3137 * This is a heuristic used to reduce the number of chunks balanced on
3138 * resume after balance was interrupted.
3139 */
update_balance_args(struct btrfs_balance_control * bctl)3140 static void update_balance_args(struct btrfs_balance_control *bctl)
3141 {
3142 /*
3143 * Turn on soft mode for chunk types that were being converted.
3144 */
3145 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3146 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3147 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3148 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3149 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3150 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3151
3152 /*
3153 * Turn on usage filter if is not already used. The idea is
3154 * that chunks that we have already balanced should be
3155 * reasonably full. Don't do it for chunks that are being
3156 * converted - that will keep us from relocating unconverted
3157 * (albeit full) chunks.
3158 */
3159 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3160 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3161 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3162 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3163 bctl->data.usage = 90;
3164 }
3165 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3166 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3167 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3168 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3169 bctl->sys.usage = 90;
3170 }
3171 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3172 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3173 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3174 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3175 bctl->meta.usage = 90;
3176 }
3177 }
3178
3179 /*
3180 * Should be called with both balance and volume mutexes held to
3181 * serialize other volume operations (add_dev/rm_dev/resize) with
3182 * restriper. Same goes for unset_balance_control.
3183 */
set_balance_control(struct btrfs_balance_control * bctl)3184 static void set_balance_control(struct btrfs_balance_control *bctl)
3185 {
3186 struct btrfs_fs_info *fs_info = bctl->fs_info;
3187
3188 BUG_ON(fs_info->balance_ctl);
3189
3190 spin_lock(&fs_info->balance_lock);
3191 fs_info->balance_ctl = bctl;
3192 spin_unlock(&fs_info->balance_lock);
3193 }
3194
unset_balance_control(struct btrfs_fs_info * fs_info)3195 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3196 {
3197 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3198
3199 BUG_ON(!fs_info->balance_ctl);
3200
3201 spin_lock(&fs_info->balance_lock);
3202 fs_info->balance_ctl = NULL;
3203 spin_unlock(&fs_info->balance_lock);
3204
3205 kfree(bctl);
3206 }
3207
3208 /*
3209 * Balance filters. Return 1 if chunk should be filtered out
3210 * (should not be balanced).
3211 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3212 static int chunk_profiles_filter(u64 chunk_type,
3213 struct btrfs_balance_args *bargs)
3214 {
3215 chunk_type = chunk_to_extended(chunk_type) &
3216 BTRFS_EXTENDED_PROFILE_MASK;
3217
3218 if (bargs->profiles & chunk_type)
3219 return 0;
3220
3221 return 1;
3222 }
3223
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3224 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3225 struct btrfs_balance_args *bargs)
3226 {
3227 struct btrfs_block_group_cache *cache;
3228 u64 chunk_used;
3229 u64 user_thresh_min;
3230 u64 user_thresh_max;
3231 int ret = 1;
3232
3233 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3234 chunk_used = btrfs_block_group_used(&cache->item);
3235
3236 if (bargs->usage_min == 0)
3237 user_thresh_min = 0;
3238 else
3239 user_thresh_min = div_factor_fine(cache->key.offset,
3240 bargs->usage_min);
3241
3242 if (bargs->usage_max == 0)
3243 user_thresh_max = 1;
3244 else if (bargs->usage_max > 100)
3245 user_thresh_max = cache->key.offset;
3246 else
3247 user_thresh_max = div_factor_fine(cache->key.offset,
3248 bargs->usage_max);
3249
3250 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3251 ret = 0;
3252
3253 btrfs_put_block_group(cache);
3254 return ret;
3255 }
3256
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3257 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3258 u64 chunk_offset, struct btrfs_balance_args *bargs)
3259 {
3260 struct btrfs_block_group_cache *cache;
3261 u64 chunk_used, user_thresh;
3262 int ret = 1;
3263
3264 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3265 chunk_used = btrfs_block_group_used(&cache->item);
3266
3267 if (bargs->usage_min == 0)
3268 user_thresh = 1;
3269 else if (bargs->usage > 100)
3270 user_thresh = cache->key.offset;
3271 else
3272 user_thresh = div_factor_fine(cache->key.offset,
3273 bargs->usage);
3274
3275 if (chunk_used < user_thresh)
3276 ret = 0;
3277
3278 btrfs_put_block_group(cache);
3279 return ret;
3280 }
3281
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3282 static int chunk_devid_filter(struct extent_buffer *leaf,
3283 struct btrfs_chunk *chunk,
3284 struct btrfs_balance_args *bargs)
3285 {
3286 struct btrfs_stripe *stripe;
3287 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3288 int i;
3289
3290 for (i = 0; i < num_stripes; i++) {
3291 stripe = btrfs_stripe_nr(chunk, i);
3292 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3293 return 0;
3294 }
3295
3296 return 1;
3297 }
3298
3299 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3300 static int chunk_drange_filter(struct extent_buffer *leaf,
3301 struct btrfs_chunk *chunk,
3302 struct btrfs_balance_args *bargs)
3303 {
3304 struct btrfs_stripe *stripe;
3305 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3306 u64 stripe_offset;
3307 u64 stripe_length;
3308 int factor;
3309 int i;
3310
3311 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3312 return 0;
3313
3314 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3315 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3316 factor = num_stripes / 2;
3317 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3318 factor = num_stripes - 1;
3319 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3320 factor = num_stripes - 2;
3321 } else {
3322 factor = num_stripes;
3323 }
3324
3325 for (i = 0; i < num_stripes; i++) {
3326 stripe = btrfs_stripe_nr(chunk, i);
3327 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3328 continue;
3329
3330 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3331 stripe_length = btrfs_chunk_length(leaf, chunk);
3332 stripe_length = div_u64(stripe_length, factor);
3333
3334 if (stripe_offset < bargs->pend &&
3335 stripe_offset + stripe_length > bargs->pstart)
3336 return 0;
3337 }
3338
3339 return 1;
3340 }
3341
3342 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3343 static int chunk_vrange_filter(struct extent_buffer *leaf,
3344 struct btrfs_chunk *chunk,
3345 u64 chunk_offset,
3346 struct btrfs_balance_args *bargs)
3347 {
3348 if (chunk_offset < bargs->vend &&
3349 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3350 /* at least part of the chunk is inside this vrange */
3351 return 0;
3352
3353 return 1;
3354 }
3355
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3356 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3357 struct btrfs_chunk *chunk,
3358 struct btrfs_balance_args *bargs)
3359 {
3360 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3361
3362 if (bargs->stripes_min <= num_stripes
3363 && num_stripes <= bargs->stripes_max)
3364 return 0;
3365
3366 return 1;
3367 }
3368
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3369 static int chunk_soft_convert_filter(u64 chunk_type,
3370 struct btrfs_balance_args *bargs)
3371 {
3372 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3373 return 0;
3374
3375 chunk_type = chunk_to_extended(chunk_type) &
3376 BTRFS_EXTENDED_PROFILE_MASK;
3377
3378 if (bargs->target == chunk_type)
3379 return 1;
3380
3381 return 0;
3382 }
3383
should_balance_chunk(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3384 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3385 struct extent_buffer *leaf,
3386 struct btrfs_chunk *chunk, u64 chunk_offset)
3387 {
3388 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3389 struct btrfs_balance_args *bargs = NULL;
3390 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3391
3392 /* type filter */
3393 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3394 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3395 return 0;
3396 }
3397
3398 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3399 bargs = &bctl->data;
3400 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3401 bargs = &bctl->sys;
3402 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3403 bargs = &bctl->meta;
3404
3405 /* profiles filter */
3406 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3407 chunk_profiles_filter(chunk_type, bargs)) {
3408 return 0;
3409 }
3410
3411 /* usage filter */
3412 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3413 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3414 return 0;
3415 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3416 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3417 return 0;
3418 }
3419
3420 /* devid filter */
3421 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3422 chunk_devid_filter(leaf, chunk, bargs)) {
3423 return 0;
3424 }
3425
3426 /* drange filter, makes sense only with devid filter */
3427 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3428 chunk_drange_filter(leaf, chunk, bargs)) {
3429 return 0;
3430 }
3431
3432 /* vrange filter */
3433 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3434 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3435 return 0;
3436 }
3437
3438 /* stripes filter */
3439 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3440 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3441 return 0;
3442 }
3443
3444 /* soft profile changing mode */
3445 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3446 chunk_soft_convert_filter(chunk_type, bargs)) {
3447 return 0;
3448 }
3449
3450 /*
3451 * limited by count, must be the last filter
3452 */
3453 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3454 if (bargs->limit == 0)
3455 return 0;
3456 else
3457 bargs->limit--;
3458 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3459 /*
3460 * Same logic as the 'limit' filter; the minimum cannot be
3461 * determined here because we do not have the global information
3462 * about the count of all chunks that satisfy the filters.
3463 */
3464 if (bargs->limit_max == 0)
3465 return 0;
3466 else
3467 bargs->limit_max--;
3468 }
3469
3470 return 1;
3471 }
3472
__btrfs_balance(struct btrfs_fs_info * fs_info)3473 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3474 {
3475 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3476 struct btrfs_root *chunk_root = fs_info->chunk_root;
3477 struct btrfs_root *dev_root = fs_info->dev_root;
3478 struct list_head *devices;
3479 struct btrfs_device *device;
3480 u64 old_size;
3481 u64 size_to_free;
3482 u64 chunk_type;
3483 struct btrfs_chunk *chunk;
3484 struct btrfs_path *path = NULL;
3485 struct btrfs_key key;
3486 struct btrfs_key found_key;
3487 struct btrfs_trans_handle *trans;
3488 struct extent_buffer *leaf;
3489 int slot;
3490 int ret;
3491 int enospc_errors = 0;
3492 bool counting = true;
3493 /* The single value limit and min/max limits use the same bytes in the */
3494 u64 limit_data = bctl->data.limit;
3495 u64 limit_meta = bctl->meta.limit;
3496 u64 limit_sys = bctl->sys.limit;
3497 u32 count_data = 0;
3498 u32 count_meta = 0;
3499 u32 count_sys = 0;
3500 int chunk_reserved = 0;
3501 u64 bytes_used = 0;
3502
3503 /* step one make some room on all the devices */
3504 devices = &fs_info->fs_devices->devices;
3505 list_for_each_entry(device, devices, dev_list) {
3506 old_size = btrfs_device_get_total_bytes(device);
3507 size_to_free = div_factor(old_size, 1);
3508 size_to_free = min_t(u64, size_to_free, SZ_1M);
3509 if (!device->writeable ||
3510 btrfs_device_get_total_bytes(device) -
3511 btrfs_device_get_bytes_used(device) > size_to_free ||
3512 device->is_tgtdev_for_dev_replace)
3513 continue;
3514
3515 ret = btrfs_shrink_device(device, old_size - size_to_free);
3516 if (ret == -ENOSPC)
3517 break;
3518 if (ret) {
3519 /* btrfs_shrink_device never returns ret > 0 */
3520 WARN_ON(ret > 0);
3521 goto error;
3522 }
3523
3524 trans = btrfs_start_transaction(dev_root, 0);
3525 if (IS_ERR(trans)) {
3526 ret = PTR_ERR(trans);
3527 btrfs_info_in_rcu(fs_info,
3528 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3529 rcu_str_deref(device->name), ret,
3530 old_size, old_size - size_to_free);
3531 goto error;
3532 }
3533
3534 ret = btrfs_grow_device(trans, device, old_size);
3535 if (ret) {
3536 btrfs_end_transaction(trans);
3537 /* btrfs_grow_device never returns ret > 0 */
3538 WARN_ON(ret > 0);
3539 btrfs_info_in_rcu(fs_info,
3540 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3541 rcu_str_deref(device->name), ret,
3542 old_size, old_size - size_to_free);
3543 goto error;
3544 }
3545
3546 btrfs_end_transaction(trans);
3547 }
3548
3549 /* step two, relocate all the chunks */
3550 path = btrfs_alloc_path();
3551 if (!path) {
3552 ret = -ENOMEM;
3553 goto error;
3554 }
3555
3556 /* zero out stat counters */
3557 spin_lock(&fs_info->balance_lock);
3558 memset(&bctl->stat, 0, sizeof(bctl->stat));
3559 spin_unlock(&fs_info->balance_lock);
3560 again:
3561 if (!counting) {
3562 /*
3563 * The single value limit and min/max limits use the same bytes
3564 * in the
3565 */
3566 bctl->data.limit = limit_data;
3567 bctl->meta.limit = limit_meta;
3568 bctl->sys.limit = limit_sys;
3569 }
3570 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3571 key.offset = (u64)-1;
3572 key.type = BTRFS_CHUNK_ITEM_KEY;
3573
3574 while (1) {
3575 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3576 atomic_read(&fs_info->balance_cancel_req)) {
3577 ret = -ECANCELED;
3578 goto error;
3579 }
3580
3581 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3582 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3583 if (ret < 0) {
3584 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3585 goto error;
3586 }
3587
3588 /*
3589 * this shouldn't happen, it means the last relocate
3590 * failed
3591 */
3592 if (ret == 0)
3593 BUG(); /* FIXME break ? */
3594
3595 ret = btrfs_previous_item(chunk_root, path, 0,
3596 BTRFS_CHUNK_ITEM_KEY);
3597 if (ret) {
3598 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3599 ret = 0;
3600 break;
3601 }
3602
3603 leaf = path->nodes[0];
3604 slot = path->slots[0];
3605 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3606
3607 if (found_key.objectid != key.objectid) {
3608 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3609 break;
3610 }
3611
3612 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3613 chunk_type = btrfs_chunk_type(leaf, chunk);
3614
3615 if (!counting) {
3616 spin_lock(&fs_info->balance_lock);
3617 bctl->stat.considered++;
3618 spin_unlock(&fs_info->balance_lock);
3619 }
3620
3621 ret = should_balance_chunk(fs_info, leaf, chunk,
3622 found_key.offset);
3623
3624 btrfs_release_path(path);
3625 if (!ret) {
3626 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3627 goto loop;
3628 }
3629
3630 if (counting) {
3631 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3632 spin_lock(&fs_info->balance_lock);
3633 bctl->stat.expected++;
3634 spin_unlock(&fs_info->balance_lock);
3635
3636 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3637 count_data++;
3638 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3639 count_sys++;
3640 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3641 count_meta++;
3642
3643 goto loop;
3644 }
3645
3646 /*
3647 * Apply limit_min filter, no need to check if the LIMITS
3648 * filter is used, limit_min is 0 by default
3649 */
3650 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3651 count_data < bctl->data.limit_min)
3652 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3653 count_meta < bctl->meta.limit_min)
3654 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3655 count_sys < bctl->sys.limit_min)) {
3656 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3657 goto loop;
3658 }
3659
3660 ASSERT(fs_info->data_sinfo);
3661 spin_lock(&fs_info->data_sinfo->lock);
3662 bytes_used = fs_info->data_sinfo->bytes_used;
3663 spin_unlock(&fs_info->data_sinfo->lock);
3664
3665 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3666 !chunk_reserved && !bytes_used) {
3667 trans = btrfs_start_transaction(chunk_root, 0);
3668 if (IS_ERR(trans)) {
3669 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3670 ret = PTR_ERR(trans);
3671 goto error;
3672 }
3673
3674 ret = btrfs_force_chunk_alloc(trans, fs_info,
3675 BTRFS_BLOCK_GROUP_DATA);
3676 btrfs_end_transaction(trans);
3677 if (ret < 0) {
3678 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3679 goto error;
3680 }
3681 chunk_reserved = 1;
3682 }
3683
3684 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3685 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3686 if (ret && ret != -ENOSPC)
3687 goto error;
3688 if (ret == -ENOSPC) {
3689 enospc_errors++;
3690 } else {
3691 spin_lock(&fs_info->balance_lock);
3692 bctl->stat.completed++;
3693 spin_unlock(&fs_info->balance_lock);
3694 }
3695 loop:
3696 if (found_key.offset == 0)
3697 break;
3698 key.offset = found_key.offset - 1;
3699 }
3700
3701 if (counting) {
3702 btrfs_release_path(path);
3703 counting = false;
3704 goto again;
3705 }
3706 error:
3707 btrfs_free_path(path);
3708 if (enospc_errors) {
3709 btrfs_info(fs_info, "%d enospc errors during balance",
3710 enospc_errors);
3711 if (!ret)
3712 ret = -ENOSPC;
3713 }
3714
3715 return ret;
3716 }
3717
3718 /**
3719 * alloc_profile_is_valid - see if a given profile is valid and reduced
3720 * @flags: profile to validate
3721 * @extended: if true @flags is treated as an extended profile
3722 */
alloc_profile_is_valid(u64 flags,int extended)3723 static int alloc_profile_is_valid(u64 flags, int extended)
3724 {
3725 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3726 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3727
3728 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3729
3730 /* 1) check that all other bits are zeroed */
3731 if (flags & ~mask)
3732 return 0;
3733
3734 /* 2) see if profile is reduced */
3735 if (flags == 0)
3736 return !extended; /* "0" is valid for usual profiles */
3737
3738 /* true if exactly one bit set */
3739 return (flags & (flags - 1)) == 0;
3740 }
3741
balance_need_close(struct btrfs_fs_info * fs_info)3742 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3743 {
3744 /* cancel requested || normal exit path */
3745 return atomic_read(&fs_info->balance_cancel_req) ||
3746 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3747 atomic_read(&fs_info->balance_cancel_req) == 0);
3748 }
3749
__cancel_balance(struct btrfs_fs_info * fs_info)3750 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3751 {
3752 int ret;
3753
3754 unset_balance_control(fs_info);
3755 ret = del_balance_item(fs_info);
3756 if (ret)
3757 btrfs_handle_fs_error(fs_info, ret, NULL);
3758
3759 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3760 }
3761
3762 /* Non-zero return value signifies invalidity */
validate_convert_profile(struct btrfs_balance_args * bctl_arg,u64 allowed)3763 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3764 u64 allowed)
3765 {
3766 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3767 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3768 (bctl_arg->target & ~allowed)));
3769 }
3770
3771 /*
3772 * Should be called with both balance and volume mutexes held
3773 */
btrfs_balance(struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)3774 int btrfs_balance(struct btrfs_balance_control *bctl,
3775 struct btrfs_ioctl_balance_args *bargs)
3776 {
3777 struct btrfs_fs_info *fs_info = bctl->fs_info;
3778 u64 meta_target, data_target;
3779 u64 allowed;
3780 int mixed = 0;
3781 int ret;
3782 u64 num_devices;
3783 unsigned seq;
3784
3785 if (btrfs_fs_closing(fs_info) ||
3786 atomic_read(&fs_info->balance_pause_req) ||
3787 atomic_read(&fs_info->balance_cancel_req)) {
3788 ret = -EINVAL;
3789 goto out;
3790 }
3791
3792 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3793 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3794 mixed = 1;
3795
3796 /*
3797 * In case of mixed groups both data and meta should be picked,
3798 * and identical options should be given for both of them.
3799 */
3800 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3801 if (mixed && (bctl->flags & allowed)) {
3802 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3803 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3804 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3805 btrfs_err(fs_info,
3806 "with mixed groups data and metadata balance options must be the same");
3807 ret = -EINVAL;
3808 goto out;
3809 }
3810 }
3811
3812 num_devices = fs_info->fs_devices->num_devices;
3813 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3814 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3815 BUG_ON(num_devices < 1);
3816 num_devices--;
3817 }
3818 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3819 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3820 if (num_devices > 1)
3821 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3822 if (num_devices > 2)
3823 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3824 if (num_devices > 3)
3825 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3826 BTRFS_BLOCK_GROUP_RAID6);
3827 if (validate_convert_profile(&bctl->data, allowed)) {
3828 btrfs_err(fs_info,
3829 "unable to start balance with target data profile %llu",
3830 bctl->data.target);
3831 ret = -EINVAL;
3832 goto out;
3833 }
3834 if (validate_convert_profile(&bctl->meta, allowed)) {
3835 btrfs_err(fs_info,
3836 "unable to start balance with target metadata profile %llu",
3837 bctl->meta.target);
3838 ret = -EINVAL;
3839 goto out;
3840 }
3841 if (validate_convert_profile(&bctl->sys, allowed)) {
3842 btrfs_err(fs_info,
3843 "unable to start balance with target system profile %llu",
3844 bctl->sys.target);
3845 ret = -EINVAL;
3846 goto out;
3847 }
3848
3849 /* allow to reduce meta or sys integrity only if force set */
3850 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3851 BTRFS_BLOCK_GROUP_RAID10 |
3852 BTRFS_BLOCK_GROUP_RAID5 |
3853 BTRFS_BLOCK_GROUP_RAID6;
3854 do {
3855 seq = read_seqbegin(&fs_info->profiles_lock);
3856
3857 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3858 (fs_info->avail_system_alloc_bits & allowed) &&
3859 !(bctl->sys.target & allowed)) ||
3860 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3861 (fs_info->avail_metadata_alloc_bits & allowed) &&
3862 !(bctl->meta.target & allowed))) {
3863 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3864 btrfs_info(fs_info,
3865 "force reducing metadata integrity");
3866 } else {
3867 btrfs_err(fs_info,
3868 "balance will reduce metadata integrity, use force if you want this");
3869 ret = -EINVAL;
3870 goto out;
3871 }
3872 }
3873 } while (read_seqretry(&fs_info->profiles_lock, seq));
3874
3875 /* if we're not converting, the target field is uninitialized */
3876 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3877 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3878 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3879 bctl->data.target : fs_info->avail_data_alloc_bits;
3880 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3881 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3882 btrfs_warn(fs_info,
3883 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3884 meta_target, data_target);
3885 }
3886
3887 ret = insert_balance_item(fs_info, bctl);
3888 if (ret && ret != -EEXIST)
3889 goto out;
3890
3891 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3892 BUG_ON(ret == -EEXIST);
3893 set_balance_control(bctl);
3894 } else {
3895 BUG_ON(ret != -EEXIST);
3896 spin_lock(&fs_info->balance_lock);
3897 update_balance_args(bctl);
3898 spin_unlock(&fs_info->balance_lock);
3899 }
3900
3901 atomic_inc(&fs_info->balance_running);
3902 mutex_unlock(&fs_info->balance_mutex);
3903
3904 ret = __btrfs_balance(fs_info);
3905
3906 mutex_lock(&fs_info->balance_mutex);
3907 atomic_dec(&fs_info->balance_running);
3908
3909 if (bargs) {
3910 memset(bargs, 0, sizeof(*bargs));
3911 update_ioctl_balance_args(fs_info, 0, bargs);
3912 }
3913
3914 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3915 balance_need_close(fs_info)) {
3916 __cancel_balance(fs_info);
3917 }
3918
3919 wake_up(&fs_info->balance_wait_q);
3920
3921 return ret;
3922 out:
3923 if (bctl->flags & BTRFS_BALANCE_RESUME)
3924 __cancel_balance(fs_info);
3925 else {
3926 kfree(bctl);
3927 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3928 }
3929 return ret;
3930 }
3931
balance_kthread(void * data)3932 static int balance_kthread(void *data)
3933 {
3934 struct btrfs_fs_info *fs_info = data;
3935 int ret = 0;
3936
3937 mutex_lock(&fs_info->volume_mutex);
3938 mutex_lock(&fs_info->balance_mutex);
3939
3940 if (fs_info->balance_ctl) {
3941 btrfs_info(fs_info, "continuing balance");
3942 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3943 }
3944
3945 mutex_unlock(&fs_info->balance_mutex);
3946 mutex_unlock(&fs_info->volume_mutex);
3947
3948 return ret;
3949 }
3950
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)3951 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3952 {
3953 struct task_struct *tsk;
3954
3955 spin_lock(&fs_info->balance_lock);
3956 if (!fs_info->balance_ctl) {
3957 spin_unlock(&fs_info->balance_lock);
3958 return 0;
3959 }
3960 spin_unlock(&fs_info->balance_lock);
3961
3962 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3963 btrfs_info(fs_info, "force skipping balance");
3964 return 0;
3965 }
3966
3967 /*
3968 * A ro->rw remount sequence should continue with the paused balance
3969 * regardless of who pauses it, system or the user as of now, so set
3970 * the resume flag.
3971 */
3972 spin_lock(&fs_info->balance_lock);
3973 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3974 spin_unlock(&fs_info->balance_lock);
3975
3976 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3977 return PTR_ERR_OR_ZERO(tsk);
3978 }
3979
btrfs_recover_balance(struct btrfs_fs_info * fs_info)3980 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3981 {
3982 struct btrfs_balance_control *bctl;
3983 struct btrfs_balance_item *item;
3984 struct btrfs_disk_balance_args disk_bargs;
3985 struct btrfs_path *path;
3986 struct extent_buffer *leaf;
3987 struct btrfs_key key;
3988 int ret;
3989
3990 path = btrfs_alloc_path();
3991 if (!path)
3992 return -ENOMEM;
3993
3994 key.objectid = BTRFS_BALANCE_OBJECTID;
3995 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3996 key.offset = 0;
3997
3998 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3999 if (ret < 0)
4000 goto out;
4001 if (ret > 0) { /* ret = -ENOENT; */
4002 ret = 0;
4003 goto out;
4004 }
4005
4006 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4007 if (!bctl) {
4008 ret = -ENOMEM;
4009 goto out;
4010 }
4011
4012 leaf = path->nodes[0];
4013 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4014
4015 bctl->fs_info = fs_info;
4016 bctl->flags = btrfs_balance_flags(leaf, item);
4017 bctl->flags |= BTRFS_BALANCE_RESUME;
4018
4019 btrfs_balance_data(leaf, item, &disk_bargs);
4020 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4021 btrfs_balance_meta(leaf, item, &disk_bargs);
4022 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4023 btrfs_balance_sys(leaf, item, &disk_bargs);
4024 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4025
4026 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4027
4028 mutex_lock(&fs_info->volume_mutex);
4029 mutex_lock(&fs_info->balance_mutex);
4030
4031 set_balance_control(bctl);
4032
4033 mutex_unlock(&fs_info->balance_mutex);
4034 mutex_unlock(&fs_info->volume_mutex);
4035 out:
4036 btrfs_free_path(path);
4037 return ret;
4038 }
4039
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4040 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4041 {
4042 int ret = 0;
4043
4044 mutex_lock(&fs_info->balance_mutex);
4045 if (!fs_info->balance_ctl) {
4046 mutex_unlock(&fs_info->balance_mutex);
4047 return -ENOTCONN;
4048 }
4049
4050 if (atomic_read(&fs_info->balance_running)) {
4051 atomic_inc(&fs_info->balance_pause_req);
4052 mutex_unlock(&fs_info->balance_mutex);
4053
4054 wait_event(fs_info->balance_wait_q,
4055 atomic_read(&fs_info->balance_running) == 0);
4056
4057 mutex_lock(&fs_info->balance_mutex);
4058 /* we are good with balance_ctl ripped off from under us */
4059 BUG_ON(atomic_read(&fs_info->balance_running));
4060 atomic_dec(&fs_info->balance_pause_req);
4061 } else {
4062 ret = -ENOTCONN;
4063 }
4064
4065 mutex_unlock(&fs_info->balance_mutex);
4066 return ret;
4067 }
4068
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4069 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4070 {
4071 if (sb_rdonly(fs_info->sb))
4072 return -EROFS;
4073
4074 mutex_lock(&fs_info->balance_mutex);
4075 if (!fs_info->balance_ctl) {
4076 mutex_unlock(&fs_info->balance_mutex);
4077 return -ENOTCONN;
4078 }
4079
4080 atomic_inc(&fs_info->balance_cancel_req);
4081 /*
4082 * if we are running just wait and return, balance item is
4083 * deleted in btrfs_balance in this case
4084 */
4085 if (atomic_read(&fs_info->balance_running)) {
4086 mutex_unlock(&fs_info->balance_mutex);
4087 wait_event(fs_info->balance_wait_q,
4088 atomic_read(&fs_info->balance_running) == 0);
4089 mutex_lock(&fs_info->balance_mutex);
4090 } else {
4091 /* __cancel_balance needs volume_mutex */
4092 mutex_unlock(&fs_info->balance_mutex);
4093 mutex_lock(&fs_info->volume_mutex);
4094 mutex_lock(&fs_info->balance_mutex);
4095
4096 if (fs_info->balance_ctl)
4097 __cancel_balance(fs_info);
4098
4099 mutex_unlock(&fs_info->volume_mutex);
4100 }
4101
4102 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4103 atomic_dec(&fs_info->balance_cancel_req);
4104 mutex_unlock(&fs_info->balance_mutex);
4105 return 0;
4106 }
4107
btrfs_uuid_scan_kthread(void * data)4108 static int btrfs_uuid_scan_kthread(void *data)
4109 {
4110 struct btrfs_fs_info *fs_info = data;
4111 struct btrfs_root *root = fs_info->tree_root;
4112 struct btrfs_key key;
4113 struct btrfs_path *path = NULL;
4114 int ret = 0;
4115 struct extent_buffer *eb;
4116 int slot;
4117 struct btrfs_root_item root_item;
4118 u32 item_size;
4119 struct btrfs_trans_handle *trans = NULL;
4120
4121 path = btrfs_alloc_path();
4122 if (!path) {
4123 ret = -ENOMEM;
4124 goto out;
4125 }
4126
4127 key.objectid = 0;
4128 key.type = BTRFS_ROOT_ITEM_KEY;
4129 key.offset = 0;
4130
4131 while (1) {
4132 ret = btrfs_search_forward(root, &key, path, 0);
4133 if (ret) {
4134 if (ret > 0)
4135 ret = 0;
4136 break;
4137 }
4138
4139 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4140 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4141 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4142 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4143 goto skip;
4144
4145 eb = path->nodes[0];
4146 slot = path->slots[0];
4147 item_size = btrfs_item_size_nr(eb, slot);
4148 if (item_size < sizeof(root_item))
4149 goto skip;
4150
4151 read_extent_buffer(eb, &root_item,
4152 btrfs_item_ptr_offset(eb, slot),
4153 (int)sizeof(root_item));
4154 if (btrfs_root_refs(&root_item) == 0)
4155 goto skip;
4156
4157 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4158 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4159 if (trans)
4160 goto update_tree;
4161
4162 btrfs_release_path(path);
4163 /*
4164 * 1 - subvol uuid item
4165 * 1 - received_subvol uuid item
4166 */
4167 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4168 if (IS_ERR(trans)) {
4169 ret = PTR_ERR(trans);
4170 break;
4171 }
4172 continue;
4173 } else {
4174 goto skip;
4175 }
4176 update_tree:
4177 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4178 ret = btrfs_uuid_tree_add(trans, fs_info,
4179 root_item.uuid,
4180 BTRFS_UUID_KEY_SUBVOL,
4181 key.objectid);
4182 if (ret < 0) {
4183 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4184 ret);
4185 break;
4186 }
4187 }
4188
4189 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4190 ret = btrfs_uuid_tree_add(trans, fs_info,
4191 root_item.received_uuid,
4192 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4193 key.objectid);
4194 if (ret < 0) {
4195 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4196 ret);
4197 break;
4198 }
4199 }
4200
4201 skip:
4202 if (trans) {
4203 ret = btrfs_end_transaction(trans);
4204 trans = NULL;
4205 if (ret)
4206 break;
4207 }
4208
4209 btrfs_release_path(path);
4210 if (key.offset < (u64)-1) {
4211 key.offset++;
4212 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4213 key.offset = 0;
4214 key.type = BTRFS_ROOT_ITEM_KEY;
4215 } else if (key.objectid < (u64)-1) {
4216 key.offset = 0;
4217 key.type = BTRFS_ROOT_ITEM_KEY;
4218 key.objectid++;
4219 } else {
4220 break;
4221 }
4222 cond_resched();
4223 }
4224
4225 out:
4226 btrfs_free_path(path);
4227 if (trans && !IS_ERR(trans))
4228 btrfs_end_transaction(trans);
4229 if (ret)
4230 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4231 else
4232 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4233 up(&fs_info->uuid_tree_rescan_sem);
4234 return 0;
4235 }
4236
4237 /*
4238 * Callback for btrfs_uuid_tree_iterate().
4239 * returns:
4240 * 0 check succeeded, the entry is not outdated.
4241 * < 0 if an error occurred.
4242 * > 0 if the check failed, which means the caller shall remove the entry.
4243 */
btrfs_check_uuid_tree_entry(struct btrfs_fs_info * fs_info,u8 * uuid,u8 type,u64 subid)4244 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4245 u8 *uuid, u8 type, u64 subid)
4246 {
4247 struct btrfs_key key;
4248 int ret = 0;
4249 struct btrfs_root *subvol_root;
4250
4251 if (type != BTRFS_UUID_KEY_SUBVOL &&
4252 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4253 goto out;
4254
4255 key.objectid = subid;
4256 key.type = BTRFS_ROOT_ITEM_KEY;
4257 key.offset = (u64)-1;
4258 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4259 if (IS_ERR(subvol_root)) {
4260 ret = PTR_ERR(subvol_root);
4261 if (ret == -ENOENT)
4262 ret = 1;
4263 goto out;
4264 }
4265
4266 switch (type) {
4267 case BTRFS_UUID_KEY_SUBVOL:
4268 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4269 ret = 1;
4270 break;
4271 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4272 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4273 BTRFS_UUID_SIZE))
4274 ret = 1;
4275 break;
4276 }
4277
4278 out:
4279 return ret;
4280 }
4281
btrfs_uuid_rescan_kthread(void * data)4282 static int btrfs_uuid_rescan_kthread(void *data)
4283 {
4284 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4285 int ret;
4286
4287 /*
4288 * 1st step is to iterate through the existing UUID tree and
4289 * to delete all entries that contain outdated data.
4290 * 2nd step is to add all missing entries to the UUID tree.
4291 */
4292 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4293 if (ret < 0) {
4294 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4295 up(&fs_info->uuid_tree_rescan_sem);
4296 return ret;
4297 }
4298 return btrfs_uuid_scan_kthread(data);
4299 }
4300
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4301 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4302 {
4303 struct btrfs_trans_handle *trans;
4304 struct btrfs_root *tree_root = fs_info->tree_root;
4305 struct btrfs_root *uuid_root;
4306 struct task_struct *task;
4307 int ret;
4308
4309 /*
4310 * 1 - root node
4311 * 1 - root item
4312 */
4313 trans = btrfs_start_transaction(tree_root, 2);
4314 if (IS_ERR(trans))
4315 return PTR_ERR(trans);
4316
4317 uuid_root = btrfs_create_tree(trans, fs_info,
4318 BTRFS_UUID_TREE_OBJECTID);
4319 if (IS_ERR(uuid_root)) {
4320 ret = PTR_ERR(uuid_root);
4321 btrfs_abort_transaction(trans, ret);
4322 btrfs_end_transaction(trans);
4323 return ret;
4324 }
4325
4326 fs_info->uuid_root = uuid_root;
4327
4328 ret = btrfs_commit_transaction(trans);
4329 if (ret)
4330 return ret;
4331
4332 down(&fs_info->uuid_tree_rescan_sem);
4333 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4334 if (IS_ERR(task)) {
4335 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4336 btrfs_warn(fs_info, "failed to start uuid_scan task");
4337 up(&fs_info->uuid_tree_rescan_sem);
4338 return PTR_ERR(task);
4339 }
4340
4341 return 0;
4342 }
4343
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)4344 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4345 {
4346 struct task_struct *task;
4347
4348 down(&fs_info->uuid_tree_rescan_sem);
4349 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4350 if (IS_ERR(task)) {
4351 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4352 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4353 up(&fs_info->uuid_tree_rescan_sem);
4354 return PTR_ERR(task);
4355 }
4356
4357 return 0;
4358 }
4359
4360 /*
4361 * shrinking a device means finding all of the device extents past
4362 * the new size, and then following the back refs to the chunks.
4363 * The chunk relocation code actually frees the device extent
4364 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4365 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4366 {
4367 struct btrfs_fs_info *fs_info = device->fs_info;
4368 struct btrfs_root *root = fs_info->dev_root;
4369 struct btrfs_trans_handle *trans;
4370 struct btrfs_dev_extent *dev_extent = NULL;
4371 struct btrfs_path *path;
4372 u64 length;
4373 u64 chunk_offset;
4374 int ret;
4375 int slot;
4376 int failed = 0;
4377 bool retried = false;
4378 bool checked_pending_chunks = false;
4379 struct extent_buffer *l;
4380 struct btrfs_key key;
4381 struct btrfs_super_block *super_copy = fs_info->super_copy;
4382 u64 old_total = btrfs_super_total_bytes(super_copy);
4383 u64 old_size = btrfs_device_get_total_bytes(device);
4384 u64 diff;
4385
4386 new_size = round_down(new_size, fs_info->sectorsize);
4387 diff = round_down(old_size - new_size, fs_info->sectorsize);
4388
4389 if (device->is_tgtdev_for_dev_replace)
4390 return -EINVAL;
4391
4392 path = btrfs_alloc_path();
4393 if (!path)
4394 return -ENOMEM;
4395
4396 path->reada = READA_FORWARD;
4397
4398 mutex_lock(&fs_info->chunk_mutex);
4399
4400 btrfs_device_set_total_bytes(device, new_size);
4401 if (device->writeable) {
4402 device->fs_devices->total_rw_bytes -= diff;
4403 atomic64_sub(diff, &fs_info->free_chunk_space);
4404 }
4405 mutex_unlock(&fs_info->chunk_mutex);
4406
4407 again:
4408 key.objectid = device->devid;
4409 key.offset = (u64)-1;
4410 key.type = BTRFS_DEV_EXTENT_KEY;
4411
4412 do {
4413 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4414 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4415 if (ret < 0) {
4416 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4417 goto done;
4418 }
4419
4420 ret = btrfs_previous_item(root, path, 0, key.type);
4421 if (ret)
4422 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4423 if (ret < 0)
4424 goto done;
4425 if (ret) {
4426 ret = 0;
4427 btrfs_release_path(path);
4428 break;
4429 }
4430
4431 l = path->nodes[0];
4432 slot = path->slots[0];
4433 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4434
4435 if (key.objectid != device->devid) {
4436 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4437 btrfs_release_path(path);
4438 break;
4439 }
4440
4441 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4442 length = btrfs_dev_extent_length(l, dev_extent);
4443
4444 if (key.offset + length <= new_size) {
4445 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4446 btrfs_release_path(path);
4447 break;
4448 }
4449
4450 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4451 btrfs_release_path(path);
4452
4453 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4454 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4455 if (ret && ret != -ENOSPC)
4456 goto done;
4457 if (ret == -ENOSPC)
4458 failed++;
4459 } while (key.offset-- > 0);
4460
4461 if (failed && !retried) {
4462 failed = 0;
4463 retried = true;
4464 goto again;
4465 } else if (failed && retried) {
4466 ret = -ENOSPC;
4467 goto done;
4468 }
4469
4470 /* Shrinking succeeded, else we would be at "done". */
4471 trans = btrfs_start_transaction(root, 0);
4472 if (IS_ERR(trans)) {
4473 ret = PTR_ERR(trans);
4474 goto done;
4475 }
4476
4477 mutex_lock(&fs_info->chunk_mutex);
4478
4479 /*
4480 * We checked in the above loop all device extents that were already in
4481 * the device tree. However before we have updated the device's
4482 * total_bytes to the new size, we might have had chunk allocations that
4483 * have not complete yet (new block groups attached to transaction
4484 * handles), and therefore their device extents were not yet in the
4485 * device tree and we missed them in the loop above. So if we have any
4486 * pending chunk using a device extent that overlaps the device range
4487 * that we can not use anymore, commit the current transaction and
4488 * repeat the search on the device tree - this way we guarantee we will
4489 * not have chunks using device extents that end beyond 'new_size'.
4490 */
4491 if (!checked_pending_chunks) {
4492 u64 start = new_size;
4493 u64 len = old_size - new_size;
4494
4495 if (contains_pending_extent(trans->transaction, device,
4496 &start, len)) {
4497 mutex_unlock(&fs_info->chunk_mutex);
4498 checked_pending_chunks = true;
4499 failed = 0;
4500 retried = false;
4501 ret = btrfs_commit_transaction(trans);
4502 if (ret)
4503 goto done;
4504 goto again;
4505 }
4506 }
4507
4508 btrfs_device_set_disk_total_bytes(device, new_size);
4509 if (list_empty(&device->resized_list))
4510 list_add_tail(&device->resized_list,
4511 &fs_info->fs_devices->resized_devices);
4512
4513 WARN_ON(diff > old_total);
4514 btrfs_set_super_total_bytes(super_copy,
4515 round_down(old_total - diff, fs_info->sectorsize));
4516 mutex_unlock(&fs_info->chunk_mutex);
4517
4518 /* Now btrfs_update_device() will change the on-disk size. */
4519 ret = btrfs_update_device(trans, device);
4520 if (ret < 0) {
4521 btrfs_abort_transaction(trans, ret);
4522 btrfs_end_transaction(trans);
4523 } else {
4524 ret = btrfs_commit_transaction(trans);
4525 }
4526 done:
4527 btrfs_free_path(path);
4528 if (ret) {
4529 mutex_lock(&fs_info->chunk_mutex);
4530 btrfs_device_set_total_bytes(device, old_size);
4531 if (device->writeable)
4532 device->fs_devices->total_rw_bytes += diff;
4533 atomic64_add(diff, &fs_info->free_chunk_space);
4534 mutex_unlock(&fs_info->chunk_mutex);
4535 }
4536 return ret;
4537 }
4538
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4539 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4540 struct btrfs_key *key,
4541 struct btrfs_chunk *chunk, int item_size)
4542 {
4543 struct btrfs_super_block *super_copy = fs_info->super_copy;
4544 struct btrfs_disk_key disk_key;
4545 u32 array_size;
4546 u8 *ptr;
4547
4548 mutex_lock(&fs_info->chunk_mutex);
4549 array_size = btrfs_super_sys_array_size(super_copy);
4550 if (array_size + item_size + sizeof(disk_key)
4551 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4552 mutex_unlock(&fs_info->chunk_mutex);
4553 return -EFBIG;
4554 }
4555
4556 ptr = super_copy->sys_chunk_array + array_size;
4557 btrfs_cpu_key_to_disk(&disk_key, key);
4558 memcpy(ptr, &disk_key, sizeof(disk_key));
4559 ptr += sizeof(disk_key);
4560 memcpy(ptr, chunk, item_size);
4561 item_size += sizeof(disk_key);
4562 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4563 mutex_unlock(&fs_info->chunk_mutex);
4564
4565 return 0;
4566 }
4567
4568 /*
4569 * sort the devices in descending order by max_avail, total_avail
4570 */
btrfs_cmp_device_info(const void * a,const void * b)4571 static int btrfs_cmp_device_info(const void *a, const void *b)
4572 {
4573 const struct btrfs_device_info *di_a = a;
4574 const struct btrfs_device_info *di_b = b;
4575
4576 if (di_a->max_avail > di_b->max_avail)
4577 return -1;
4578 if (di_a->max_avail < di_b->max_avail)
4579 return 1;
4580 if (di_a->total_avail > di_b->total_avail)
4581 return -1;
4582 if (di_a->total_avail < di_b->total_avail)
4583 return 1;
4584 return 0;
4585 }
4586
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4587 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4588 {
4589 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4590 return;
4591
4592 btrfs_set_fs_incompat(info, RAID56);
4593 }
4594
4595 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4596 - sizeof(struct btrfs_chunk)) \
4597 / sizeof(struct btrfs_stripe) + 1)
4598
4599 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4600 - 2 * sizeof(struct btrfs_disk_key) \
4601 - 2 * sizeof(struct btrfs_chunk)) \
4602 / sizeof(struct btrfs_stripe) + 1)
4603
__btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 start,u64 type)4604 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4605 u64 start, u64 type)
4606 {
4607 struct btrfs_fs_info *info = trans->fs_info;
4608 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4609 struct btrfs_device *device;
4610 struct map_lookup *map = NULL;
4611 struct extent_map_tree *em_tree;
4612 struct extent_map *em;
4613 struct btrfs_device_info *devices_info = NULL;
4614 u64 total_avail;
4615 int num_stripes; /* total number of stripes to allocate */
4616 int data_stripes; /* number of stripes that count for
4617 block group size */
4618 int sub_stripes; /* sub_stripes info for map */
4619 int dev_stripes; /* stripes per dev */
4620 int devs_max; /* max devs to use */
4621 int devs_min; /* min devs needed */
4622 int devs_increment; /* ndevs has to be a multiple of this */
4623 int ncopies; /* how many copies to data has */
4624 int ret;
4625 u64 max_stripe_size;
4626 u64 max_chunk_size;
4627 u64 stripe_size;
4628 u64 num_bytes;
4629 int ndevs;
4630 int i;
4631 int j;
4632 int index;
4633
4634 BUG_ON(!alloc_profile_is_valid(type, 0));
4635
4636 if (list_empty(&fs_devices->alloc_list))
4637 return -ENOSPC;
4638
4639 index = __get_raid_index(type);
4640
4641 sub_stripes = btrfs_raid_array[index].sub_stripes;
4642 dev_stripes = btrfs_raid_array[index].dev_stripes;
4643 devs_max = btrfs_raid_array[index].devs_max;
4644 devs_min = btrfs_raid_array[index].devs_min;
4645 devs_increment = btrfs_raid_array[index].devs_increment;
4646 ncopies = btrfs_raid_array[index].ncopies;
4647
4648 if (type & BTRFS_BLOCK_GROUP_DATA) {
4649 max_stripe_size = SZ_1G;
4650 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4651 if (!devs_max)
4652 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4653 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4654 /* for larger filesystems, use larger metadata chunks */
4655 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4656 max_stripe_size = SZ_1G;
4657 else
4658 max_stripe_size = SZ_256M;
4659 max_chunk_size = max_stripe_size;
4660 if (!devs_max)
4661 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4662 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4663 max_stripe_size = SZ_32M;
4664 max_chunk_size = 2 * max_stripe_size;
4665 if (!devs_max)
4666 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4667 } else {
4668 btrfs_err(info, "invalid chunk type 0x%llx requested",
4669 type);
4670 BUG_ON(1);
4671 }
4672
4673 /* we don't want a chunk larger than 10% of writeable space */
4674 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4675 max_chunk_size);
4676
4677 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4678 GFP_NOFS);
4679 if (!devices_info)
4680 return -ENOMEM;
4681
4682 /*
4683 * in the first pass through the devices list, we gather information
4684 * about the available holes on each device.
4685 */
4686 ndevs = 0;
4687 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4688 u64 max_avail;
4689 u64 dev_offset;
4690
4691 if (!device->writeable) {
4692 WARN(1, KERN_ERR
4693 "BTRFS: read-only device in alloc_list\n");
4694 continue;
4695 }
4696
4697 if (!device->in_fs_metadata ||
4698 device->is_tgtdev_for_dev_replace)
4699 continue;
4700
4701 if (device->total_bytes > device->bytes_used)
4702 total_avail = device->total_bytes - device->bytes_used;
4703 else
4704 total_avail = 0;
4705
4706 /* If there is no space on this device, skip it. */
4707 if (total_avail == 0)
4708 continue;
4709
4710 ret = find_free_dev_extent(trans, device,
4711 max_stripe_size * dev_stripes,
4712 &dev_offset, &max_avail);
4713 if (ret && ret != -ENOSPC)
4714 goto error;
4715
4716 if (ret == 0)
4717 max_avail = max_stripe_size * dev_stripes;
4718
4719 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4720 continue;
4721
4722 if (ndevs == fs_devices->rw_devices) {
4723 WARN(1, "%s: found more than %llu devices\n",
4724 __func__, fs_devices->rw_devices);
4725 break;
4726 }
4727 devices_info[ndevs].dev_offset = dev_offset;
4728 devices_info[ndevs].max_avail = max_avail;
4729 devices_info[ndevs].total_avail = total_avail;
4730 devices_info[ndevs].dev = device;
4731 ++ndevs;
4732 }
4733
4734 /*
4735 * now sort the devices by hole size / available space
4736 */
4737 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4738 btrfs_cmp_device_info, NULL);
4739
4740 /* round down to number of usable stripes */
4741 ndevs = round_down(ndevs, devs_increment);
4742
4743 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4744 ret = -ENOSPC;
4745 goto error;
4746 }
4747
4748 ndevs = min(ndevs, devs_max);
4749
4750 /*
4751 * The primary goal is to maximize the number of stripes, so use as
4752 * many devices as possible, even if the stripes are not maximum sized.
4753 *
4754 * The DUP profile stores more than one stripe per device, the
4755 * max_avail is the total size so we have to adjust.
4756 */
4757 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4758 num_stripes = ndevs * dev_stripes;
4759
4760 /*
4761 * this will have to be fixed for RAID1 and RAID10 over
4762 * more drives
4763 */
4764 data_stripes = num_stripes / ncopies;
4765
4766 if (type & BTRFS_BLOCK_GROUP_RAID5)
4767 data_stripes = num_stripes - 1;
4768
4769 if (type & BTRFS_BLOCK_GROUP_RAID6)
4770 data_stripes = num_stripes - 2;
4771
4772 /*
4773 * Use the number of data stripes to figure out how big this chunk
4774 * is really going to be in terms of logical address space,
4775 * and compare that answer with the max chunk size
4776 */
4777 if (stripe_size * data_stripes > max_chunk_size) {
4778 u64 mask = (1ULL << 24) - 1;
4779
4780 stripe_size = div_u64(max_chunk_size, data_stripes);
4781
4782 /* bump the answer up to a 16MB boundary */
4783 stripe_size = (stripe_size + mask) & ~mask;
4784
4785 /* but don't go higher than the limits we found
4786 * while searching for free extents
4787 */
4788 if (stripe_size > devices_info[ndevs-1].max_avail)
4789 stripe_size = devices_info[ndevs-1].max_avail;
4790 }
4791
4792 /* align to BTRFS_STRIPE_LEN */
4793 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4794
4795 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4796 if (!map) {
4797 ret = -ENOMEM;
4798 goto error;
4799 }
4800 map->num_stripes = num_stripes;
4801
4802 for (i = 0; i < ndevs; ++i) {
4803 for (j = 0; j < dev_stripes; ++j) {
4804 int s = i * dev_stripes + j;
4805 map->stripes[s].dev = devices_info[i].dev;
4806 map->stripes[s].physical = devices_info[i].dev_offset +
4807 j * stripe_size;
4808 }
4809 }
4810 map->stripe_len = BTRFS_STRIPE_LEN;
4811 map->io_align = BTRFS_STRIPE_LEN;
4812 map->io_width = BTRFS_STRIPE_LEN;
4813 map->type = type;
4814 map->sub_stripes = sub_stripes;
4815
4816 num_bytes = stripe_size * data_stripes;
4817
4818 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4819
4820 em = alloc_extent_map();
4821 if (!em) {
4822 kfree(map);
4823 ret = -ENOMEM;
4824 goto error;
4825 }
4826 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4827 em->map_lookup = map;
4828 em->start = start;
4829 em->len = num_bytes;
4830 em->block_start = 0;
4831 em->block_len = em->len;
4832 em->orig_block_len = stripe_size;
4833
4834 em_tree = &info->mapping_tree.map_tree;
4835 write_lock(&em_tree->lock);
4836 ret = add_extent_mapping(em_tree, em, 0);
4837 if (!ret) {
4838 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4839 refcount_inc(&em->refs);
4840 }
4841 write_unlock(&em_tree->lock);
4842 if (ret) {
4843 free_extent_map(em);
4844 goto error;
4845 }
4846
4847 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4848 if (ret)
4849 goto error_del_extent;
4850
4851 for (i = 0; i < map->num_stripes; i++) {
4852 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4853 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4854 map->stripes[i].dev->has_pending_chunks = true;
4855 }
4856
4857 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4858
4859 free_extent_map(em);
4860 check_raid56_incompat_flag(info, type);
4861
4862 kfree(devices_info);
4863 return 0;
4864
4865 error_del_extent:
4866 write_lock(&em_tree->lock);
4867 remove_extent_mapping(em_tree, em);
4868 write_unlock(&em_tree->lock);
4869
4870 /* One for our allocation */
4871 free_extent_map(em);
4872 /* One for the tree reference */
4873 free_extent_map(em);
4874 /* One for the pending_chunks list reference */
4875 free_extent_map(em);
4876 error:
4877 kfree(devices_info);
4878 return ret;
4879 }
4880
btrfs_finish_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 chunk_size)4881 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4882 struct btrfs_fs_info *fs_info,
4883 u64 chunk_offset, u64 chunk_size)
4884 {
4885 struct btrfs_root *extent_root = fs_info->extent_root;
4886 struct btrfs_root *chunk_root = fs_info->chunk_root;
4887 struct btrfs_key key;
4888 struct btrfs_device *device;
4889 struct btrfs_chunk *chunk;
4890 struct btrfs_stripe *stripe;
4891 struct extent_map *em;
4892 struct map_lookup *map;
4893 size_t item_size;
4894 u64 dev_offset;
4895 u64 stripe_size;
4896 int i = 0;
4897 int ret = 0;
4898
4899 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4900 if (IS_ERR(em))
4901 return PTR_ERR(em);
4902
4903 map = em->map_lookup;
4904 item_size = btrfs_chunk_item_size(map->num_stripes);
4905 stripe_size = em->orig_block_len;
4906
4907 chunk = kzalloc(item_size, GFP_NOFS);
4908 if (!chunk) {
4909 ret = -ENOMEM;
4910 goto out;
4911 }
4912
4913 /*
4914 * Take the device list mutex to prevent races with the final phase of
4915 * a device replace operation that replaces the device object associated
4916 * with the map's stripes, because the device object's id can change
4917 * at any time during that final phase of the device replace operation
4918 * (dev-replace.c:btrfs_dev_replace_finishing()).
4919 */
4920 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4921 for (i = 0; i < map->num_stripes; i++) {
4922 device = map->stripes[i].dev;
4923 dev_offset = map->stripes[i].physical;
4924
4925 ret = btrfs_update_device(trans, device);
4926 if (ret)
4927 break;
4928 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4929 dev_offset, stripe_size);
4930 if (ret)
4931 break;
4932 }
4933 if (ret) {
4934 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4935 goto out;
4936 }
4937
4938 stripe = &chunk->stripe;
4939 for (i = 0; i < map->num_stripes; i++) {
4940 device = map->stripes[i].dev;
4941 dev_offset = map->stripes[i].physical;
4942
4943 btrfs_set_stack_stripe_devid(stripe, device->devid);
4944 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4945 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4946 stripe++;
4947 }
4948 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4949
4950 btrfs_set_stack_chunk_length(chunk, chunk_size);
4951 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4952 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4953 btrfs_set_stack_chunk_type(chunk, map->type);
4954 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4955 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4956 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4957 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4958 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4959
4960 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4961 key.type = BTRFS_CHUNK_ITEM_KEY;
4962 key.offset = chunk_offset;
4963
4964 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4965 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4966 /*
4967 * TODO: Cleanup of inserted chunk root in case of
4968 * failure.
4969 */
4970 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4971 }
4972
4973 out:
4974 kfree(chunk);
4975 free_extent_map(em);
4976 return ret;
4977 }
4978
4979 /*
4980 * Chunk allocation falls into two parts. The first part does works
4981 * that make the new allocated chunk useable, but not do any operation
4982 * that modifies the chunk tree. The second part does the works that
4983 * require modifying the chunk tree. This division is important for the
4984 * bootstrap process of adding storage to a seed btrfs.
4985 */
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 type)4986 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4987 struct btrfs_fs_info *fs_info, u64 type)
4988 {
4989 u64 chunk_offset;
4990
4991 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4992 chunk_offset = find_next_chunk(fs_info);
4993 return __btrfs_alloc_chunk(trans, chunk_offset, type);
4994 }
4995
init_first_rw_device(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)4996 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4997 struct btrfs_fs_info *fs_info)
4998 {
4999 u64 chunk_offset;
5000 u64 sys_chunk_offset;
5001 u64 alloc_profile;
5002 int ret;
5003
5004 chunk_offset = find_next_chunk(fs_info);
5005 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5006 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5007 if (ret)
5008 return ret;
5009
5010 sys_chunk_offset = find_next_chunk(fs_info);
5011 alloc_profile = btrfs_system_alloc_profile(fs_info);
5012 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5013 return ret;
5014 }
5015
btrfs_chunk_max_errors(struct map_lookup * map)5016 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5017 {
5018 int max_errors;
5019
5020 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5021 BTRFS_BLOCK_GROUP_RAID10 |
5022 BTRFS_BLOCK_GROUP_RAID5)) {
5023 max_errors = 1;
5024 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5025 max_errors = 2;
5026 } else {
5027 max_errors = 0;
5028 }
5029
5030 return max_errors;
5031 }
5032
btrfs_chunk_readonly(struct btrfs_fs_info * fs_info,u64 chunk_offset)5033 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5034 {
5035 struct extent_map *em;
5036 struct map_lookup *map;
5037 int readonly = 0;
5038 int miss_ndevs = 0;
5039 int i;
5040
5041 em = get_chunk_map(fs_info, chunk_offset, 1);
5042 if (IS_ERR(em))
5043 return 1;
5044
5045 map = em->map_lookup;
5046 for (i = 0; i < map->num_stripes; i++) {
5047 if (map->stripes[i].dev->missing) {
5048 miss_ndevs++;
5049 continue;
5050 }
5051
5052 if (!map->stripes[i].dev->writeable) {
5053 readonly = 1;
5054 goto end;
5055 }
5056 }
5057
5058 /*
5059 * If the number of missing devices is larger than max errors,
5060 * we can not write the data into that chunk successfully, so
5061 * set it readonly.
5062 */
5063 if (miss_ndevs > btrfs_chunk_max_errors(map))
5064 readonly = 1;
5065 end:
5066 free_extent_map(em);
5067 return readonly;
5068 }
5069
btrfs_mapping_init(struct btrfs_mapping_tree * tree)5070 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5071 {
5072 extent_map_tree_init(&tree->map_tree);
5073 }
5074
btrfs_mapping_tree_free(struct btrfs_mapping_tree * tree)5075 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5076 {
5077 struct extent_map *em;
5078
5079 while (1) {
5080 write_lock(&tree->map_tree.lock);
5081 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5082 if (em)
5083 remove_extent_mapping(&tree->map_tree, em);
5084 write_unlock(&tree->map_tree.lock);
5085 if (!em)
5086 break;
5087 /* once for us */
5088 free_extent_map(em);
5089 /* once for the tree */
5090 free_extent_map(em);
5091 }
5092 }
5093
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5094 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5095 {
5096 struct extent_map *em;
5097 struct map_lookup *map;
5098 int ret;
5099
5100 em = get_chunk_map(fs_info, logical, len);
5101 if (IS_ERR(em))
5102 /*
5103 * We could return errors for these cases, but that could get
5104 * ugly and we'd probably do the same thing which is just not do
5105 * anything else and exit, so return 1 so the callers don't try
5106 * to use other copies.
5107 */
5108 return 1;
5109
5110 map = em->map_lookup;
5111 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5112 ret = map->num_stripes;
5113 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5114 ret = map->sub_stripes;
5115 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5116 ret = 2;
5117 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5118 /*
5119 * There could be two corrupted data stripes, we need
5120 * to loop retry in order to rebuild the correct data.
5121 *
5122 * Fail a stripe at a time on every retry except the
5123 * stripe under reconstruction.
5124 */
5125 ret = map->num_stripes;
5126 else
5127 ret = 1;
5128 free_extent_map(em);
5129
5130 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5131 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5132 fs_info->dev_replace.tgtdev)
5133 ret++;
5134 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5135
5136 return ret;
5137 }
5138
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5139 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5140 u64 logical)
5141 {
5142 struct extent_map *em;
5143 struct map_lookup *map;
5144 unsigned long len = fs_info->sectorsize;
5145
5146 em = get_chunk_map(fs_info, logical, len);
5147
5148 if (!WARN_ON(IS_ERR(em))) {
5149 map = em->map_lookup;
5150 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5151 len = map->stripe_len * nr_data_stripes(map);
5152 free_extent_map(em);
5153 }
5154 return len;
5155 }
5156
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5157 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5158 {
5159 struct extent_map *em;
5160 struct map_lookup *map;
5161 int ret = 0;
5162
5163 em = get_chunk_map(fs_info, logical, len);
5164
5165 if(!WARN_ON(IS_ERR(em))) {
5166 map = em->map_lookup;
5167 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5168 ret = 1;
5169 free_extent_map(em);
5170 }
5171 return ret;
5172 }
5173
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int num,int optimal,int dev_replace_is_ongoing)5174 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5175 struct map_lookup *map, int first, int num,
5176 int optimal, int dev_replace_is_ongoing)
5177 {
5178 int i;
5179 int tolerance;
5180 struct btrfs_device *srcdev;
5181
5182 if (dev_replace_is_ongoing &&
5183 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5184 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5185 srcdev = fs_info->dev_replace.srcdev;
5186 else
5187 srcdev = NULL;
5188
5189 /*
5190 * try to avoid the drive that is the source drive for a
5191 * dev-replace procedure, only choose it if no other non-missing
5192 * mirror is available
5193 */
5194 for (tolerance = 0; tolerance < 2; tolerance++) {
5195 if (map->stripes[optimal].dev->bdev &&
5196 (tolerance || map->stripes[optimal].dev != srcdev))
5197 return optimal;
5198 for (i = first; i < first + num; i++) {
5199 if (map->stripes[i].dev->bdev &&
5200 (tolerance || map->stripes[i].dev != srcdev))
5201 return i;
5202 }
5203 }
5204
5205 /* we couldn't find one that doesn't fail. Just return something
5206 * and the io error handling code will clean up eventually
5207 */
5208 return optimal;
5209 }
5210
parity_smaller(u64 a,u64 b)5211 static inline int parity_smaller(u64 a, u64 b)
5212 {
5213 return a > b;
5214 }
5215
5216 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5217 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5218 {
5219 struct btrfs_bio_stripe s;
5220 int i;
5221 u64 l;
5222 int again = 1;
5223
5224 while (again) {
5225 again = 0;
5226 for (i = 0; i < num_stripes - 1; i++) {
5227 if (parity_smaller(bbio->raid_map[i],
5228 bbio->raid_map[i+1])) {
5229 s = bbio->stripes[i];
5230 l = bbio->raid_map[i];
5231 bbio->stripes[i] = bbio->stripes[i+1];
5232 bbio->raid_map[i] = bbio->raid_map[i+1];
5233 bbio->stripes[i+1] = s;
5234 bbio->raid_map[i+1] = l;
5235
5236 again = 1;
5237 }
5238 }
5239 }
5240 }
5241
alloc_btrfs_bio(int total_stripes,int real_stripes)5242 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5243 {
5244 struct btrfs_bio *bbio = kzalloc(
5245 /* the size of the btrfs_bio */
5246 sizeof(struct btrfs_bio) +
5247 /* plus the variable array for the stripes */
5248 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5249 /* plus the variable array for the tgt dev */
5250 sizeof(int) * (real_stripes) +
5251 /*
5252 * plus the raid_map, which includes both the tgt dev
5253 * and the stripes
5254 */
5255 sizeof(u64) * (total_stripes),
5256 GFP_NOFS|__GFP_NOFAIL);
5257
5258 atomic_set(&bbio->error, 0);
5259 refcount_set(&bbio->refs, 1);
5260
5261 return bbio;
5262 }
5263
btrfs_get_bbio(struct btrfs_bio * bbio)5264 void btrfs_get_bbio(struct btrfs_bio *bbio)
5265 {
5266 WARN_ON(!refcount_read(&bbio->refs));
5267 refcount_inc(&bbio->refs);
5268 }
5269
btrfs_put_bbio(struct btrfs_bio * bbio)5270 void btrfs_put_bbio(struct btrfs_bio *bbio)
5271 {
5272 if (!bbio)
5273 return;
5274 if (refcount_dec_and_test(&bbio->refs))
5275 kfree(bbio);
5276 }
5277
5278 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5279 /*
5280 * Please note that, discard won't be sent to target device of device
5281 * replace.
5282 */
__btrfs_map_block_for_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 length,struct btrfs_bio ** bbio_ret)5283 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5284 u64 logical, u64 length,
5285 struct btrfs_bio **bbio_ret)
5286 {
5287 struct extent_map *em;
5288 struct map_lookup *map;
5289 struct btrfs_bio *bbio;
5290 u64 offset;
5291 u64 stripe_nr;
5292 u64 stripe_nr_end;
5293 u64 stripe_end_offset;
5294 u64 stripe_cnt;
5295 u64 stripe_len;
5296 u64 stripe_offset;
5297 u64 num_stripes;
5298 u32 stripe_index;
5299 u32 factor = 0;
5300 u32 sub_stripes = 0;
5301 u64 stripes_per_dev = 0;
5302 u32 remaining_stripes = 0;
5303 u32 last_stripe = 0;
5304 int ret = 0;
5305 int i;
5306
5307 /* discard always return a bbio */
5308 ASSERT(bbio_ret);
5309
5310 em = get_chunk_map(fs_info, logical, length);
5311 if (IS_ERR(em))
5312 return PTR_ERR(em);
5313
5314 map = em->map_lookup;
5315 /* we don't discard raid56 yet */
5316 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5317 ret = -EOPNOTSUPP;
5318 goto out;
5319 }
5320
5321 offset = logical - em->start;
5322 length = min_t(u64, em->len - offset, length);
5323
5324 stripe_len = map->stripe_len;
5325 /*
5326 * stripe_nr counts the total number of stripes we have to stride
5327 * to get to this block
5328 */
5329 stripe_nr = div64_u64(offset, stripe_len);
5330
5331 /* stripe_offset is the offset of this block in its stripe */
5332 stripe_offset = offset - stripe_nr * stripe_len;
5333
5334 stripe_nr_end = round_up(offset + length, map->stripe_len);
5335 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5336 stripe_cnt = stripe_nr_end - stripe_nr;
5337 stripe_end_offset = stripe_nr_end * map->stripe_len -
5338 (offset + length);
5339 /*
5340 * after this, stripe_nr is the number of stripes on this
5341 * device we have to walk to find the data, and stripe_index is
5342 * the number of our device in the stripe array
5343 */
5344 num_stripes = 1;
5345 stripe_index = 0;
5346 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5347 BTRFS_BLOCK_GROUP_RAID10)) {
5348 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5349 sub_stripes = 1;
5350 else
5351 sub_stripes = map->sub_stripes;
5352
5353 factor = map->num_stripes / sub_stripes;
5354 num_stripes = min_t(u64, map->num_stripes,
5355 sub_stripes * stripe_cnt);
5356 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5357 stripe_index *= sub_stripes;
5358 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5359 &remaining_stripes);
5360 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5361 last_stripe *= sub_stripes;
5362 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5363 BTRFS_BLOCK_GROUP_DUP)) {
5364 num_stripes = map->num_stripes;
5365 } else {
5366 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5367 &stripe_index);
5368 }
5369
5370 bbio = alloc_btrfs_bio(num_stripes, 0);
5371 if (!bbio) {
5372 ret = -ENOMEM;
5373 goto out;
5374 }
5375
5376 for (i = 0; i < num_stripes; i++) {
5377 bbio->stripes[i].physical =
5378 map->stripes[stripe_index].physical +
5379 stripe_offset + stripe_nr * map->stripe_len;
5380 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5381
5382 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5383 BTRFS_BLOCK_GROUP_RAID10)) {
5384 bbio->stripes[i].length = stripes_per_dev *
5385 map->stripe_len;
5386
5387 if (i / sub_stripes < remaining_stripes)
5388 bbio->stripes[i].length +=
5389 map->stripe_len;
5390
5391 /*
5392 * Special for the first stripe and
5393 * the last stripe:
5394 *
5395 * |-------|...|-------|
5396 * |----------|
5397 * off end_off
5398 */
5399 if (i < sub_stripes)
5400 bbio->stripes[i].length -=
5401 stripe_offset;
5402
5403 if (stripe_index >= last_stripe &&
5404 stripe_index <= (last_stripe +
5405 sub_stripes - 1))
5406 bbio->stripes[i].length -=
5407 stripe_end_offset;
5408
5409 if (i == sub_stripes - 1)
5410 stripe_offset = 0;
5411 } else {
5412 bbio->stripes[i].length = length;
5413 }
5414
5415 stripe_index++;
5416 if (stripe_index == map->num_stripes) {
5417 stripe_index = 0;
5418 stripe_nr++;
5419 }
5420 }
5421
5422 *bbio_ret = bbio;
5423 bbio->map_type = map->type;
5424 bbio->num_stripes = num_stripes;
5425 out:
5426 free_extent_map(em);
5427 return ret;
5428 }
5429
5430 /*
5431 * In dev-replace case, for repair case (that's the only case where the mirror
5432 * is selected explicitly when calling btrfs_map_block), blocks left of the
5433 * left cursor can also be read from the target drive.
5434 *
5435 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5436 * array of stripes.
5437 * For READ, it also needs to be supported using the same mirror number.
5438 *
5439 * If the requested block is not left of the left cursor, EIO is returned. This
5440 * can happen because btrfs_num_copies() returns one more in the dev-replace
5441 * case.
5442 */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)5443 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5444 u64 logical, u64 length,
5445 u64 srcdev_devid, int *mirror_num,
5446 u64 *physical)
5447 {
5448 struct btrfs_bio *bbio = NULL;
5449 int num_stripes;
5450 int index_srcdev = 0;
5451 int found = 0;
5452 u64 physical_of_found = 0;
5453 int i;
5454 int ret = 0;
5455
5456 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5457 logical, &length, &bbio, 0, 0);
5458 if (ret) {
5459 ASSERT(bbio == NULL);
5460 return ret;
5461 }
5462
5463 num_stripes = bbio->num_stripes;
5464 if (*mirror_num > num_stripes) {
5465 /*
5466 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5467 * that means that the requested area is not left of the left
5468 * cursor
5469 */
5470 btrfs_put_bbio(bbio);
5471 return -EIO;
5472 }
5473
5474 /*
5475 * process the rest of the function using the mirror_num of the source
5476 * drive. Therefore look it up first. At the end, patch the device
5477 * pointer to the one of the target drive.
5478 */
5479 for (i = 0; i < num_stripes; i++) {
5480 if (bbio->stripes[i].dev->devid != srcdev_devid)
5481 continue;
5482
5483 /*
5484 * In case of DUP, in order to keep it simple, only add the
5485 * mirror with the lowest physical address
5486 */
5487 if (found &&
5488 physical_of_found <= bbio->stripes[i].physical)
5489 continue;
5490
5491 index_srcdev = i;
5492 found = 1;
5493 physical_of_found = bbio->stripes[i].physical;
5494 }
5495
5496 btrfs_put_bbio(bbio);
5497
5498 ASSERT(found);
5499 if (!found)
5500 return -EIO;
5501
5502 *mirror_num = index_srcdev + 1;
5503 *physical = physical_of_found;
5504 return ret;
5505 }
5506
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_bio ** bbio_ret,struct btrfs_dev_replace * dev_replace,int * num_stripes_ret,int * max_errors_ret)5507 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5508 struct btrfs_bio **bbio_ret,
5509 struct btrfs_dev_replace *dev_replace,
5510 int *num_stripes_ret, int *max_errors_ret)
5511 {
5512 struct btrfs_bio *bbio = *bbio_ret;
5513 u64 srcdev_devid = dev_replace->srcdev->devid;
5514 int tgtdev_indexes = 0;
5515 int num_stripes = *num_stripes_ret;
5516 int max_errors = *max_errors_ret;
5517 int i;
5518
5519 if (op == BTRFS_MAP_WRITE) {
5520 int index_where_to_add;
5521
5522 /*
5523 * duplicate the write operations while the dev replace
5524 * procedure is running. Since the copying of the old disk to
5525 * the new disk takes place at run time while the filesystem is
5526 * mounted writable, the regular write operations to the old
5527 * disk have to be duplicated to go to the new disk as well.
5528 *
5529 * Note that device->missing is handled by the caller, and that
5530 * the write to the old disk is already set up in the stripes
5531 * array.
5532 */
5533 index_where_to_add = num_stripes;
5534 for (i = 0; i < num_stripes; i++) {
5535 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5536 /* write to new disk, too */
5537 struct btrfs_bio_stripe *new =
5538 bbio->stripes + index_where_to_add;
5539 struct btrfs_bio_stripe *old =
5540 bbio->stripes + i;
5541
5542 new->physical = old->physical;
5543 new->length = old->length;
5544 new->dev = dev_replace->tgtdev;
5545 bbio->tgtdev_map[i] = index_where_to_add;
5546 index_where_to_add++;
5547 max_errors++;
5548 tgtdev_indexes++;
5549 }
5550 }
5551 num_stripes = index_where_to_add;
5552 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5553 int index_srcdev = 0;
5554 int found = 0;
5555 u64 physical_of_found = 0;
5556
5557 /*
5558 * During the dev-replace procedure, the target drive can also
5559 * be used to read data in case it is needed to repair a corrupt
5560 * block elsewhere. This is possible if the requested area is
5561 * left of the left cursor. In this area, the target drive is a
5562 * full copy of the source drive.
5563 */
5564 for (i = 0; i < num_stripes; i++) {
5565 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5566 /*
5567 * In case of DUP, in order to keep it simple,
5568 * only add the mirror with the lowest physical
5569 * address
5570 */
5571 if (found &&
5572 physical_of_found <=
5573 bbio->stripes[i].physical)
5574 continue;
5575 index_srcdev = i;
5576 found = 1;
5577 physical_of_found = bbio->stripes[i].physical;
5578 }
5579 }
5580 if (found) {
5581 struct btrfs_bio_stripe *tgtdev_stripe =
5582 bbio->stripes + num_stripes;
5583
5584 tgtdev_stripe->physical = physical_of_found;
5585 tgtdev_stripe->length =
5586 bbio->stripes[index_srcdev].length;
5587 tgtdev_stripe->dev = dev_replace->tgtdev;
5588 bbio->tgtdev_map[index_srcdev] = num_stripes;
5589
5590 tgtdev_indexes++;
5591 num_stripes++;
5592 }
5593 }
5594
5595 *num_stripes_ret = num_stripes;
5596 *max_errors_ret = max_errors;
5597 bbio->num_tgtdevs = tgtdev_indexes;
5598 *bbio_ret = bbio;
5599 }
5600
need_full_stripe(enum btrfs_map_op op)5601 static bool need_full_stripe(enum btrfs_map_op op)
5602 {
5603 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5604 }
5605
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)5606 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5607 enum btrfs_map_op op,
5608 u64 logical, u64 *length,
5609 struct btrfs_bio **bbio_ret,
5610 int mirror_num, int need_raid_map)
5611 {
5612 struct extent_map *em;
5613 struct map_lookup *map;
5614 u64 offset;
5615 u64 stripe_offset;
5616 u64 stripe_nr;
5617 u64 stripe_len;
5618 u32 stripe_index;
5619 int i;
5620 int ret = 0;
5621 int num_stripes;
5622 int max_errors = 0;
5623 int tgtdev_indexes = 0;
5624 struct btrfs_bio *bbio = NULL;
5625 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5626 int dev_replace_is_ongoing = 0;
5627 int num_alloc_stripes;
5628 int patch_the_first_stripe_for_dev_replace = 0;
5629 u64 physical_to_patch_in_first_stripe = 0;
5630 u64 raid56_full_stripe_start = (u64)-1;
5631
5632 if (op == BTRFS_MAP_DISCARD)
5633 return __btrfs_map_block_for_discard(fs_info, logical,
5634 *length, bbio_ret);
5635
5636 em = get_chunk_map(fs_info, logical, *length);
5637 if (IS_ERR(em))
5638 return PTR_ERR(em);
5639
5640 map = em->map_lookup;
5641 offset = logical - em->start;
5642
5643 stripe_len = map->stripe_len;
5644 stripe_nr = offset;
5645 /*
5646 * stripe_nr counts the total number of stripes we have to stride
5647 * to get to this block
5648 */
5649 stripe_nr = div64_u64(stripe_nr, stripe_len);
5650
5651 stripe_offset = stripe_nr * stripe_len;
5652 if (offset < stripe_offset) {
5653 btrfs_crit(fs_info,
5654 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5655 stripe_offset, offset, em->start, logical,
5656 stripe_len);
5657 free_extent_map(em);
5658 return -EINVAL;
5659 }
5660
5661 /* stripe_offset is the offset of this block in its stripe*/
5662 stripe_offset = offset - stripe_offset;
5663
5664 /* if we're here for raid56, we need to know the stripe aligned start */
5665 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5666 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5667 raid56_full_stripe_start = offset;
5668
5669 /* allow a write of a full stripe, but make sure we don't
5670 * allow straddling of stripes
5671 */
5672 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5673 full_stripe_len);
5674 raid56_full_stripe_start *= full_stripe_len;
5675 }
5676
5677 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5678 u64 max_len;
5679 /* For writes to RAID[56], allow a full stripeset across all disks.
5680 For other RAID types and for RAID[56] reads, just allow a single
5681 stripe (on a single disk). */
5682 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5683 (op == BTRFS_MAP_WRITE)) {
5684 max_len = stripe_len * nr_data_stripes(map) -
5685 (offset - raid56_full_stripe_start);
5686 } else {
5687 /* we limit the length of each bio to what fits in a stripe */
5688 max_len = stripe_len - stripe_offset;
5689 }
5690 *length = min_t(u64, em->len - offset, max_len);
5691 } else {
5692 *length = em->len - offset;
5693 }
5694
5695 /* This is for when we're called from btrfs_merge_bio_hook() and all
5696 it cares about is the length */
5697 if (!bbio_ret)
5698 goto out;
5699
5700 btrfs_dev_replace_lock(dev_replace, 0);
5701 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5702 if (!dev_replace_is_ongoing)
5703 btrfs_dev_replace_unlock(dev_replace, 0);
5704 else
5705 btrfs_dev_replace_set_lock_blocking(dev_replace);
5706
5707 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5708 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5709 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5710 dev_replace->srcdev->devid,
5711 &mirror_num,
5712 &physical_to_patch_in_first_stripe);
5713 if (ret)
5714 goto out;
5715 else
5716 patch_the_first_stripe_for_dev_replace = 1;
5717 } else if (mirror_num > map->num_stripes) {
5718 mirror_num = 0;
5719 }
5720
5721 num_stripes = 1;
5722 stripe_index = 0;
5723 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5724 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5725 &stripe_index);
5726 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS)
5727 mirror_num = 1;
5728 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5729 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5730 num_stripes = map->num_stripes;
5731 else if (mirror_num)
5732 stripe_index = mirror_num - 1;
5733 else {
5734 stripe_index = find_live_mirror(fs_info, map, 0,
5735 map->num_stripes,
5736 current->pid % map->num_stripes,
5737 dev_replace_is_ongoing);
5738 mirror_num = stripe_index + 1;
5739 }
5740
5741 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5742 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) {
5743 num_stripes = map->num_stripes;
5744 } else if (mirror_num) {
5745 stripe_index = mirror_num - 1;
5746 } else {
5747 mirror_num = 1;
5748 }
5749
5750 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5751 u32 factor = map->num_stripes / map->sub_stripes;
5752
5753 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5754 stripe_index *= map->sub_stripes;
5755
5756 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5757 num_stripes = map->sub_stripes;
5758 else if (mirror_num)
5759 stripe_index += mirror_num - 1;
5760 else {
5761 int old_stripe_index = stripe_index;
5762 stripe_index = find_live_mirror(fs_info, map,
5763 stripe_index,
5764 map->sub_stripes, stripe_index +
5765 current->pid % map->sub_stripes,
5766 dev_replace_is_ongoing);
5767 mirror_num = stripe_index - old_stripe_index + 1;
5768 }
5769
5770 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5771 if (need_raid_map &&
5772 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5773 mirror_num > 1)) {
5774 /* push stripe_nr back to the start of the full stripe */
5775 stripe_nr = div64_u64(raid56_full_stripe_start,
5776 stripe_len * nr_data_stripes(map));
5777
5778 /* RAID[56] write or recovery. Return all stripes */
5779 num_stripes = map->num_stripes;
5780 max_errors = nr_parity_stripes(map);
5781
5782 *length = map->stripe_len;
5783 stripe_index = 0;
5784 stripe_offset = 0;
5785 } else {
5786 /*
5787 * Mirror #0 or #1 means the original data block.
5788 * Mirror #2 is RAID5 parity block.
5789 * Mirror #3 is RAID6 Q block.
5790 */
5791 stripe_nr = div_u64_rem(stripe_nr,
5792 nr_data_stripes(map), &stripe_index);
5793 if (mirror_num > 1)
5794 stripe_index = nr_data_stripes(map) +
5795 mirror_num - 2;
5796
5797 /* We distribute the parity blocks across stripes */
5798 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5799 &stripe_index);
5800 if ((op != BTRFS_MAP_WRITE &&
5801 op != BTRFS_MAP_GET_READ_MIRRORS) &&
5802 mirror_num <= 1)
5803 mirror_num = 1;
5804 }
5805 } else {
5806 /*
5807 * after this, stripe_nr is the number of stripes on this
5808 * device we have to walk to find the data, and stripe_index is
5809 * the number of our device in the stripe array
5810 */
5811 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5812 &stripe_index);
5813 mirror_num = stripe_index + 1;
5814 }
5815 if (stripe_index >= map->num_stripes) {
5816 btrfs_crit(fs_info,
5817 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5818 stripe_index, map->num_stripes);
5819 ret = -EINVAL;
5820 goto out;
5821 }
5822
5823 num_alloc_stripes = num_stripes;
5824 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5825 if (op == BTRFS_MAP_WRITE)
5826 num_alloc_stripes <<= 1;
5827 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5828 num_alloc_stripes++;
5829 tgtdev_indexes = num_stripes;
5830 }
5831
5832 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5833 if (!bbio) {
5834 ret = -ENOMEM;
5835 goto out;
5836 }
5837 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5838 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5839
5840 /* build raid_map */
5841 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5842 (need_full_stripe(op) || mirror_num > 1)) {
5843 u64 tmp;
5844 unsigned rot;
5845
5846 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5847 sizeof(struct btrfs_bio_stripe) *
5848 num_alloc_stripes +
5849 sizeof(int) * tgtdev_indexes);
5850
5851 /* Work out the disk rotation on this stripe-set */
5852 div_u64_rem(stripe_nr, num_stripes, &rot);
5853
5854 /* Fill in the logical address of each stripe */
5855 tmp = stripe_nr * nr_data_stripes(map);
5856 for (i = 0; i < nr_data_stripes(map); i++)
5857 bbio->raid_map[(i+rot) % num_stripes] =
5858 em->start + (tmp + i) * map->stripe_len;
5859
5860 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5861 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5862 bbio->raid_map[(i+rot+1) % num_stripes] =
5863 RAID6_Q_STRIPE;
5864 }
5865
5866
5867 for (i = 0; i < num_stripes; i++) {
5868 bbio->stripes[i].physical =
5869 map->stripes[stripe_index].physical +
5870 stripe_offset +
5871 stripe_nr * map->stripe_len;
5872 bbio->stripes[i].dev =
5873 map->stripes[stripe_index].dev;
5874 stripe_index++;
5875 }
5876
5877 if (need_full_stripe(op))
5878 max_errors = btrfs_chunk_max_errors(map);
5879
5880 if (bbio->raid_map)
5881 sort_parity_stripes(bbio, num_stripes);
5882
5883 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5884 need_full_stripe(op)) {
5885 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5886 &max_errors);
5887 }
5888
5889 *bbio_ret = bbio;
5890 bbio->map_type = map->type;
5891 bbio->num_stripes = num_stripes;
5892 bbio->max_errors = max_errors;
5893 bbio->mirror_num = mirror_num;
5894
5895 /*
5896 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5897 * mirror_num == num_stripes + 1 && dev_replace target drive is
5898 * available as a mirror
5899 */
5900 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5901 WARN_ON(num_stripes > 1);
5902 bbio->stripes[0].dev = dev_replace->tgtdev;
5903 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5904 bbio->mirror_num = map->num_stripes + 1;
5905 }
5906 out:
5907 if (dev_replace_is_ongoing) {
5908 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5909 btrfs_dev_replace_unlock(dev_replace, 0);
5910 }
5911 free_extent_map(em);
5912 return ret;
5913 }
5914
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)5915 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5916 u64 logical, u64 *length,
5917 struct btrfs_bio **bbio_ret, int mirror_num)
5918 {
5919 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5920 mirror_num, 0);
5921 }
5922
5923 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret)5924 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5925 u64 logical, u64 *length,
5926 struct btrfs_bio **bbio_ret)
5927 {
5928 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5929 }
5930
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 devid,u64 ** logical,int * naddrs,int * stripe_len)5931 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5932 u64 chunk_start, u64 physical, u64 devid,
5933 u64 **logical, int *naddrs, int *stripe_len)
5934 {
5935 struct extent_map *em;
5936 struct map_lookup *map;
5937 u64 *buf;
5938 u64 bytenr;
5939 u64 length;
5940 u64 stripe_nr;
5941 u64 rmap_len;
5942 int i, j, nr = 0;
5943
5944 em = get_chunk_map(fs_info, chunk_start, 1);
5945 if (IS_ERR(em))
5946 return -EIO;
5947
5948 map = em->map_lookup;
5949 length = em->len;
5950 rmap_len = map->stripe_len;
5951
5952 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5953 length = div_u64(length, map->num_stripes / map->sub_stripes);
5954 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5955 length = div_u64(length, map->num_stripes);
5956 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5957 length = div_u64(length, nr_data_stripes(map));
5958 rmap_len = map->stripe_len * nr_data_stripes(map);
5959 }
5960
5961 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5962 BUG_ON(!buf); /* -ENOMEM */
5963
5964 for (i = 0; i < map->num_stripes; i++) {
5965 if (devid && map->stripes[i].dev->devid != devid)
5966 continue;
5967 if (map->stripes[i].physical > physical ||
5968 map->stripes[i].physical + length <= physical)
5969 continue;
5970
5971 stripe_nr = physical - map->stripes[i].physical;
5972 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5973
5974 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5975 stripe_nr = stripe_nr * map->num_stripes + i;
5976 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5977 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5978 stripe_nr = stripe_nr * map->num_stripes + i;
5979 } /* else if RAID[56], multiply by nr_data_stripes().
5980 * Alternatively, just use rmap_len below instead of
5981 * map->stripe_len */
5982
5983 bytenr = chunk_start + stripe_nr * rmap_len;
5984 WARN_ON(nr >= map->num_stripes);
5985 for (j = 0; j < nr; j++) {
5986 if (buf[j] == bytenr)
5987 break;
5988 }
5989 if (j == nr) {
5990 WARN_ON(nr >= map->num_stripes);
5991 buf[nr++] = bytenr;
5992 }
5993 }
5994
5995 *logical = buf;
5996 *naddrs = nr;
5997 *stripe_len = rmap_len;
5998
5999 free_extent_map(em);
6000 return 0;
6001 }
6002
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)6003 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6004 {
6005 bio->bi_private = bbio->private;
6006 bio->bi_end_io = bbio->end_io;
6007 bio_endio(bio);
6008
6009 btrfs_put_bbio(bbio);
6010 }
6011
btrfs_end_bio(struct bio * bio)6012 static void btrfs_end_bio(struct bio *bio)
6013 {
6014 struct btrfs_bio *bbio = bio->bi_private;
6015 int is_orig_bio = 0;
6016
6017 if (bio->bi_status) {
6018 atomic_inc(&bbio->error);
6019 if (bio->bi_status == BLK_STS_IOERR ||
6020 bio->bi_status == BLK_STS_TARGET) {
6021 unsigned int stripe_index =
6022 btrfs_io_bio(bio)->stripe_index;
6023 struct btrfs_device *dev;
6024
6025 BUG_ON(stripe_index >= bbio->num_stripes);
6026 dev = bbio->stripes[stripe_index].dev;
6027 if (dev->bdev) {
6028 if (bio_op(bio) == REQ_OP_WRITE)
6029 btrfs_dev_stat_inc(dev,
6030 BTRFS_DEV_STAT_WRITE_ERRS);
6031 else
6032 btrfs_dev_stat_inc(dev,
6033 BTRFS_DEV_STAT_READ_ERRS);
6034 if (bio->bi_opf & REQ_PREFLUSH)
6035 btrfs_dev_stat_inc(dev,
6036 BTRFS_DEV_STAT_FLUSH_ERRS);
6037 btrfs_dev_stat_print_on_error(dev);
6038 }
6039 }
6040 }
6041
6042 if (bio == bbio->orig_bio)
6043 is_orig_bio = 1;
6044
6045 btrfs_bio_counter_dec(bbio->fs_info);
6046
6047 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6048 if (!is_orig_bio) {
6049 bio_put(bio);
6050 bio = bbio->orig_bio;
6051 }
6052
6053 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6054 /* only send an error to the higher layers if it is
6055 * beyond the tolerance of the btrfs bio
6056 */
6057 if (atomic_read(&bbio->error) > bbio->max_errors) {
6058 bio->bi_status = BLK_STS_IOERR;
6059 } else {
6060 /*
6061 * this bio is actually up to date, we didn't
6062 * go over the max number of errors
6063 */
6064 bio->bi_status = 0;
6065 }
6066
6067 btrfs_end_bbio(bbio, bio);
6068 } else if (!is_orig_bio) {
6069 bio_put(bio);
6070 }
6071 }
6072
6073 /*
6074 * see run_scheduled_bios for a description of why bios are collected for
6075 * async submit.
6076 *
6077 * This will add one bio to the pending list for a device and make sure
6078 * the work struct is scheduled.
6079 */
btrfs_schedule_bio(struct btrfs_device * device,struct bio * bio)6080 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6081 struct bio *bio)
6082 {
6083 struct btrfs_fs_info *fs_info = device->fs_info;
6084 int should_queue = 1;
6085 struct btrfs_pending_bios *pending_bios;
6086
6087 if (device->missing || !device->bdev) {
6088 bio_io_error(bio);
6089 return;
6090 }
6091
6092 /* don't bother with additional async steps for reads, right now */
6093 if (bio_op(bio) == REQ_OP_READ) {
6094 bio_get(bio);
6095 btrfsic_submit_bio(bio);
6096 bio_put(bio);
6097 return;
6098 }
6099
6100 /*
6101 * nr_async_bios allows us to reliably return congestion to the
6102 * higher layers. Otherwise, the async bio makes it appear we have
6103 * made progress against dirty pages when we've really just put it
6104 * on a queue for later
6105 */
6106 atomic_inc(&fs_info->nr_async_bios);
6107 WARN_ON(bio->bi_next);
6108 bio->bi_next = NULL;
6109
6110 spin_lock(&device->io_lock);
6111 if (op_is_sync(bio->bi_opf))
6112 pending_bios = &device->pending_sync_bios;
6113 else
6114 pending_bios = &device->pending_bios;
6115
6116 if (pending_bios->tail)
6117 pending_bios->tail->bi_next = bio;
6118
6119 pending_bios->tail = bio;
6120 if (!pending_bios->head)
6121 pending_bios->head = bio;
6122 if (device->running_pending)
6123 should_queue = 0;
6124
6125 spin_unlock(&device->io_lock);
6126
6127 if (should_queue)
6128 btrfs_queue_work(fs_info->submit_workers, &device->work);
6129 }
6130
submit_stripe_bio(struct btrfs_bio * bbio,struct bio * bio,u64 physical,int dev_nr,int async)6131 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6132 u64 physical, int dev_nr, int async)
6133 {
6134 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6135 struct btrfs_fs_info *fs_info = bbio->fs_info;
6136
6137 bio->bi_private = bbio;
6138 btrfs_io_bio(bio)->stripe_index = dev_nr;
6139 bio->bi_end_io = btrfs_end_bio;
6140 bio->bi_iter.bi_sector = physical >> 9;
6141 #ifdef DEBUG
6142 {
6143 struct rcu_string *name;
6144
6145 rcu_read_lock();
6146 name = rcu_dereference(dev->name);
6147 btrfs_debug(fs_info,
6148 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6149 bio_op(bio), bio->bi_opf,
6150 (u64)bio->bi_iter.bi_sector,
6151 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6152 bio->bi_iter.bi_size);
6153 rcu_read_unlock();
6154 }
6155 #endif
6156 bio_set_dev(bio, dev->bdev);
6157
6158 btrfs_bio_counter_inc_noblocked(fs_info);
6159
6160 if (async)
6161 btrfs_schedule_bio(dev, bio);
6162 else
6163 btrfsic_submit_bio(bio);
6164 }
6165
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6166 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6167 {
6168 atomic_inc(&bbio->error);
6169 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6170 /* Should be the original bio. */
6171 WARN_ON(bio != bbio->orig_bio);
6172
6173 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6174 bio->bi_iter.bi_sector = logical >> 9;
6175 if (atomic_read(&bbio->error) > bbio->max_errors)
6176 bio->bi_status = BLK_STS_IOERR;
6177 else
6178 bio->bi_status = BLK_STS_OK;
6179 btrfs_end_bbio(bbio, bio);
6180 }
6181 }
6182
btrfs_map_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,int async_submit)6183 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6184 int mirror_num, int async_submit)
6185 {
6186 struct btrfs_device *dev;
6187 struct bio *first_bio = bio;
6188 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6189 u64 length = 0;
6190 u64 map_length;
6191 int ret;
6192 int dev_nr;
6193 int total_devs;
6194 struct btrfs_bio *bbio = NULL;
6195
6196 length = bio->bi_iter.bi_size;
6197 map_length = length;
6198
6199 btrfs_bio_counter_inc_blocked(fs_info);
6200 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6201 &map_length, &bbio, mirror_num, 1);
6202 if (ret) {
6203 btrfs_bio_counter_dec(fs_info);
6204 return errno_to_blk_status(ret);
6205 }
6206
6207 total_devs = bbio->num_stripes;
6208 bbio->orig_bio = first_bio;
6209 bbio->private = first_bio->bi_private;
6210 bbio->end_io = first_bio->bi_end_io;
6211 bbio->fs_info = fs_info;
6212 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6213
6214 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6215 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6216 /* In this case, map_length has been set to the length of
6217 a single stripe; not the whole write */
6218 if (bio_op(bio) == REQ_OP_WRITE) {
6219 ret = raid56_parity_write(fs_info, bio, bbio,
6220 map_length);
6221 } else {
6222 ret = raid56_parity_recover(fs_info, bio, bbio,
6223 map_length, mirror_num, 1);
6224 }
6225
6226 btrfs_bio_counter_dec(fs_info);
6227 return errno_to_blk_status(ret);
6228 }
6229
6230 if (map_length < length) {
6231 btrfs_crit(fs_info,
6232 "mapping failed logical %llu bio len %llu len %llu",
6233 logical, length, map_length);
6234 BUG();
6235 }
6236
6237 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6238 dev = bbio->stripes[dev_nr].dev;
6239 if (!dev || !dev->bdev ||
6240 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6241 bbio_error(bbio, first_bio, logical);
6242 continue;
6243 }
6244
6245 if (dev_nr < total_devs - 1)
6246 bio = btrfs_bio_clone(first_bio);
6247 else
6248 bio = first_bio;
6249
6250 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6251 dev_nr, async_submit);
6252 }
6253 btrfs_bio_counter_dec(fs_info);
6254 return BLK_STS_OK;
6255 }
6256
btrfs_find_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,u8 * fsid)6257 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6258 u8 *uuid, u8 *fsid)
6259 {
6260 struct btrfs_device *device;
6261 struct btrfs_fs_devices *cur_devices;
6262
6263 cur_devices = fs_info->fs_devices;
6264 while (cur_devices) {
6265 if (!fsid ||
6266 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6267 device = find_device(cur_devices, devid, uuid);
6268 if (device)
6269 return device;
6270 }
6271 cur_devices = cur_devices->seed;
6272 }
6273 return NULL;
6274 }
6275
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6276 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6277 u64 devid, u8 *dev_uuid)
6278 {
6279 struct btrfs_device *device;
6280
6281 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6282 if (IS_ERR(device))
6283 return NULL;
6284
6285 list_add(&device->dev_list, &fs_devices->devices);
6286 device->fs_devices = fs_devices;
6287 fs_devices->num_devices++;
6288
6289 device->missing = 1;
6290 fs_devices->missing_devices++;
6291
6292 return device;
6293 }
6294
6295 /**
6296 * btrfs_alloc_device - allocate struct btrfs_device
6297 * @fs_info: used only for generating a new devid, can be NULL if
6298 * devid is provided (i.e. @devid != NULL).
6299 * @devid: a pointer to devid for this device. If NULL a new devid
6300 * is generated.
6301 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6302 * is generated.
6303 *
6304 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6305 * on error. Returned struct is not linked onto any lists and can be
6306 * destroyed with kfree() right away.
6307 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6308 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6309 const u64 *devid,
6310 const u8 *uuid)
6311 {
6312 struct btrfs_device *dev;
6313 u64 tmp;
6314
6315 if (WARN_ON(!devid && !fs_info))
6316 return ERR_PTR(-EINVAL);
6317
6318 dev = __alloc_device();
6319 if (IS_ERR(dev))
6320 return dev;
6321
6322 if (devid)
6323 tmp = *devid;
6324 else {
6325 int ret;
6326
6327 ret = find_next_devid(fs_info, &tmp);
6328 if (ret) {
6329 kfree(dev);
6330 return ERR_PTR(ret);
6331 }
6332 }
6333 dev->devid = tmp;
6334
6335 if (uuid)
6336 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6337 else
6338 generate_random_uuid(dev->uuid);
6339
6340 btrfs_init_work(&dev->work, btrfs_submit_helper,
6341 pending_bios_fn, NULL, NULL);
6342
6343 return dev;
6344 }
6345
6346 /* Return -EIO if any error, otherwise return 0. */
btrfs_check_chunk_valid(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 logical)6347 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6348 struct extent_buffer *leaf,
6349 struct btrfs_chunk *chunk, u64 logical)
6350 {
6351 u64 length;
6352 u64 stripe_len;
6353 u16 num_stripes;
6354 u16 sub_stripes;
6355 u64 type;
6356 u64 features;
6357 bool mixed = false;
6358
6359 length = btrfs_chunk_length(leaf, chunk);
6360 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6361 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6362 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6363 type = btrfs_chunk_type(leaf, chunk);
6364
6365 if (!num_stripes) {
6366 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6367 num_stripes);
6368 return -EIO;
6369 }
6370 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6371 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6372 return -EIO;
6373 }
6374 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6375 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6376 btrfs_chunk_sector_size(leaf, chunk));
6377 return -EIO;
6378 }
6379 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6380 btrfs_err(fs_info, "invalid chunk length %llu", length);
6381 return -EIO;
6382 }
6383 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6384 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6385 stripe_len);
6386 return -EIO;
6387 }
6388 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6389 type) {
6390 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6391 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6392 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6393 btrfs_chunk_type(leaf, chunk));
6394 return -EIO;
6395 }
6396
6397 if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6398 btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6399 return -EIO;
6400 }
6401
6402 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6403 (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6404 btrfs_err(fs_info,
6405 "system chunk with data or metadata type: 0x%llx", type);
6406 return -EIO;
6407 }
6408
6409 features = btrfs_super_incompat_flags(fs_info->super_copy);
6410 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6411 mixed = true;
6412
6413 if (!mixed) {
6414 if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6415 (type & BTRFS_BLOCK_GROUP_DATA)) {
6416 btrfs_err(fs_info,
6417 "mixed chunk type in non-mixed mode: 0x%llx", type);
6418 return -EIO;
6419 }
6420 }
6421
6422 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6423 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes != 2) ||
6424 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6425 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6426 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes != 2) ||
6427 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6428 num_stripes != 1)) {
6429 btrfs_err(fs_info,
6430 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6431 num_stripes, sub_stripes,
6432 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6433 return -EIO;
6434 }
6435
6436 return 0;
6437 }
6438
read_one_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6439 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6440 struct extent_buffer *leaf,
6441 struct btrfs_chunk *chunk)
6442 {
6443 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6444 struct map_lookup *map;
6445 struct extent_map *em;
6446 u64 logical;
6447 u64 length;
6448 u64 devid;
6449 u8 uuid[BTRFS_UUID_SIZE];
6450 int num_stripes;
6451 int ret;
6452 int i;
6453
6454 logical = key->offset;
6455 length = btrfs_chunk_length(leaf, chunk);
6456 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6457
6458 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6459 if (ret)
6460 return ret;
6461
6462 read_lock(&map_tree->map_tree.lock);
6463 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6464 read_unlock(&map_tree->map_tree.lock);
6465
6466 /* already mapped? */
6467 if (em && em->start <= logical && em->start + em->len > logical) {
6468 free_extent_map(em);
6469 return 0;
6470 } else if (em) {
6471 free_extent_map(em);
6472 }
6473
6474 em = alloc_extent_map();
6475 if (!em)
6476 return -ENOMEM;
6477 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6478 if (!map) {
6479 free_extent_map(em);
6480 return -ENOMEM;
6481 }
6482
6483 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6484 em->map_lookup = map;
6485 em->start = logical;
6486 em->len = length;
6487 em->orig_start = 0;
6488 em->block_start = 0;
6489 em->block_len = em->len;
6490
6491 map->num_stripes = num_stripes;
6492 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6493 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6494 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6495 map->type = btrfs_chunk_type(leaf, chunk);
6496 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6497 for (i = 0; i < num_stripes; i++) {
6498 map->stripes[i].physical =
6499 btrfs_stripe_offset_nr(leaf, chunk, i);
6500 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6501 read_extent_buffer(leaf, uuid, (unsigned long)
6502 btrfs_stripe_dev_uuid_nr(chunk, i),
6503 BTRFS_UUID_SIZE);
6504 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6505 uuid, NULL);
6506 if (!map->stripes[i].dev &&
6507 !btrfs_test_opt(fs_info, DEGRADED)) {
6508 free_extent_map(em);
6509 btrfs_report_missing_device(fs_info, devid, uuid);
6510 return -EIO;
6511 }
6512 if (!map->stripes[i].dev) {
6513 map->stripes[i].dev =
6514 add_missing_dev(fs_info->fs_devices, devid,
6515 uuid);
6516 if (!map->stripes[i].dev) {
6517 free_extent_map(em);
6518 return -EIO;
6519 }
6520 btrfs_report_missing_device(fs_info, devid, uuid);
6521 }
6522 map->stripes[i].dev->in_fs_metadata = 1;
6523 }
6524
6525 write_lock(&map_tree->map_tree.lock);
6526 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6527 write_unlock(&map_tree->map_tree.lock);
6528 if (ret < 0) {
6529 btrfs_err(fs_info,
6530 "failed to add chunk map, start=%llu len=%llu: %d",
6531 em->start, em->len, ret);
6532 }
6533 free_extent_map(em);
6534
6535 return ret;
6536 }
6537
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6538 static void fill_device_from_item(struct extent_buffer *leaf,
6539 struct btrfs_dev_item *dev_item,
6540 struct btrfs_device *device)
6541 {
6542 unsigned long ptr;
6543
6544 device->devid = btrfs_device_id(leaf, dev_item);
6545 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6546 device->total_bytes = device->disk_total_bytes;
6547 device->commit_total_bytes = device->disk_total_bytes;
6548 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6549 device->commit_bytes_used = device->bytes_used;
6550 device->type = btrfs_device_type(leaf, dev_item);
6551 device->io_align = btrfs_device_io_align(leaf, dev_item);
6552 device->io_width = btrfs_device_io_width(leaf, dev_item);
6553 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6554 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6555 device->is_tgtdev_for_dev_replace = 0;
6556
6557 ptr = btrfs_device_uuid(dev_item);
6558 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6559 }
6560
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)6561 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6562 u8 *fsid)
6563 {
6564 struct btrfs_fs_devices *fs_devices;
6565 int ret;
6566
6567 BUG_ON(!mutex_is_locked(&uuid_mutex));
6568 ASSERT(fsid);
6569
6570 fs_devices = fs_info->fs_devices->seed;
6571 while (fs_devices) {
6572 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6573 return fs_devices;
6574
6575 fs_devices = fs_devices->seed;
6576 }
6577
6578 fs_devices = find_fsid(fsid);
6579 if (!fs_devices) {
6580 if (!btrfs_test_opt(fs_info, DEGRADED))
6581 return ERR_PTR(-ENOENT);
6582
6583 fs_devices = alloc_fs_devices(fsid);
6584 if (IS_ERR(fs_devices))
6585 return fs_devices;
6586
6587 fs_devices->seeding = 1;
6588 fs_devices->opened = 1;
6589 return fs_devices;
6590 }
6591
6592 fs_devices = clone_fs_devices(fs_devices);
6593 if (IS_ERR(fs_devices))
6594 return fs_devices;
6595
6596 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6597 fs_info->bdev_holder);
6598 if (ret) {
6599 free_fs_devices(fs_devices);
6600 fs_devices = ERR_PTR(ret);
6601 goto out;
6602 }
6603
6604 if (!fs_devices->seeding) {
6605 __btrfs_close_devices(fs_devices);
6606 free_fs_devices(fs_devices);
6607 fs_devices = ERR_PTR(-EINVAL);
6608 goto out;
6609 }
6610
6611 fs_devices->seed = fs_info->fs_devices->seed;
6612 fs_info->fs_devices->seed = fs_devices;
6613 out:
6614 return fs_devices;
6615 }
6616
read_one_dev(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6617 static int read_one_dev(struct btrfs_fs_info *fs_info,
6618 struct extent_buffer *leaf,
6619 struct btrfs_dev_item *dev_item)
6620 {
6621 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6622 struct btrfs_device *device;
6623 u64 devid;
6624 int ret;
6625 u8 fs_uuid[BTRFS_FSID_SIZE];
6626 u8 dev_uuid[BTRFS_UUID_SIZE];
6627
6628 devid = btrfs_device_id(leaf, dev_item);
6629 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6630 BTRFS_UUID_SIZE);
6631 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6632 BTRFS_FSID_SIZE);
6633
6634 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6635 fs_devices = open_seed_devices(fs_info, fs_uuid);
6636 if (IS_ERR(fs_devices))
6637 return PTR_ERR(fs_devices);
6638 }
6639
6640 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6641 if (!device) {
6642 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6643 btrfs_report_missing_device(fs_info, devid, dev_uuid);
6644 return -EIO;
6645 }
6646
6647 device = add_missing_dev(fs_devices, devid, dev_uuid);
6648 if (!device)
6649 return -ENOMEM;
6650 btrfs_report_missing_device(fs_info, devid, dev_uuid);
6651 } else {
6652 if (!device->bdev) {
6653 btrfs_report_missing_device(fs_info, devid, dev_uuid);
6654 if (!btrfs_test_opt(fs_info, DEGRADED))
6655 return -EIO;
6656 }
6657
6658 if(!device->bdev && !device->missing) {
6659 /*
6660 * this happens when a device that was properly setup
6661 * in the device info lists suddenly goes bad.
6662 * device->bdev is NULL, and so we have to set
6663 * device->missing to one here
6664 */
6665 device->fs_devices->missing_devices++;
6666 device->missing = 1;
6667 }
6668
6669 /* Move the device to its own fs_devices */
6670 if (device->fs_devices != fs_devices) {
6671 ASSERT(device->missing);
6672
6673 list_move(&device->dev_list, &fs_devices->devices);
6674 device->fs_devices->num_devices--;
6675 fs_devices->num_devices++;
6676
6677 device->fs_devices->missing_devices--;
6678 fs_devices->missing_devices++;
6679
6680 device->fs_devices = fs_devices;
6681 }
6682 }
6683
6684 if (device->fs_devices != fs_info->fs_devices) {
6685 BUG_ON(device->writeable);
6686 if (device->generation !=
6687 btrfs_device_generation(leaf, dev_item))
6688 return -EINVAL;
6689 }
6690
6691 fill_device_from_item(leaf, dev_item, device);
6692 device->in_fs_metadata = 1;
6693 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6694 device->fs_devices->total_rw_bytes += device->total_bytes;
6695 atomic64_add(device->total_bytes - device->bytes_used,
6696 &fs_info->free_chunk_space);
6697 }
6698 ret = 0;
6699 return ret;
6700 }
6701
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)6702 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6703 {
6704 struct btrfs_root *root = fs_info->tree_root;
6705 struct btrfs_super_block *super_copy = fs_info->super_copy;
6706 struct extent_buffer *sb;
6707 struct btrfs_disk_key *disk_key;
6708 struct btrfs_chunk *chunk;
6709 u8 *array_ptr;
6710 unsigned long sb_array_offset;
6711 int ret = 0;
6712 u32 num_stripes;
6713 u32 array_size;
6714 u32 len = 0;
6715 u32 cur_offset;
6716 u64 type;
6717 struct btrfs_key key;
6718
6719 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6720 /*
6721 * This will create extent buffer of nodesize, superblock size is
6722 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6723 * overallocate but we can keep it as-is, only the first page is used.
6724 */
6725 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6726 if (IS_ERR(sb))
6727 return PTR_ERR(sb);
6728 set_extent_buffer_uptodate(sb);
6729 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6730 /*
6731 * The sb extent buffer is artificial and just used to read the system array.
6732 * set_extent_buffer_uptodate() call does not properly mark all it's
6733 * pages up-to-date when the page is larger: extent does not cover the
6734 * whole page and consequently check_page_uptodate does not find all
6735 * the page's extents up-to-date (the hole beyond sb),
6736 * write_extent_buffer then triggers a WARN_ON.
6737 *
6738 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6739 * but sb spans only this function. Add an explicit SetPageUptodate call
6740 * to silence the warning eg. on PowerPC 64.
6741 */
6742 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6743 SetPageUptodate(sb->pages[0]);
6744
6745 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6746 array_size = btrfs_super_sys_array_size(super_copy);
6747
6748 array_ptr = super_copy->sys_chunk_array;
6749 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6750 cur_offset = 0;
6751
6752 while (cur_offset < array_size) {
6753 disk_key = (struct btrfs_disk_key *)array_ptr;
6754 len = sizeof(*disk_key);
6755 if (cur_offset + len > array_size)
6756 goto out_short_read;
6757
6758 btrfs_disk_key_to_cpu(&key, disk_key);
6759
6760 array_ptr += len;
6761 sb_array_offset += len;
6762 cur_offset += len;
6763
6764 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6765 chunk = (struct btrfs_chunk *)sb_array_offset;
6766 /*
6767 * At least one btrfs_chunk with one stripe must be
6768 * present, exact stripe count check comes afterwards
6769 */
6770 len = btrfs_chunk_item_size(1);
6771 if (cur_offset + len > array_size)
6772 goto out_short_read;
6773
6774 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6775 if (!num_stripes) {
6776 btrfs_err(fs_info,
6777 "invalid number of stripes %u in sys_array at offset %u",
6778 num_stripes, cur_offset);
6779 ret = -EIO;
6780 break;
6781 }
6782
6783 type = btrfs_chunk_type(sb, chunk);
6784 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6785 btrfs_err(fs_info,
6786 "invalid chunk type %llu in sys_array at offset %u",
6787 type, cur_offset);
6788 ret = -EIO;
6789 break;
6790 }
6791
6792 len = btrfs_chunk_item_size(num_stripes);
6793 if (cur_offset + len > array_size)
6794 goto out_short_read;
6795
6796 ret = read_one_chunk(fs_info, &key, sb, chunk);
6797 if (ret)
6798 break;
6799 } else {
6800 btrfs_err(fs_info,
6801 "unexpected item type %u in sys_array at offset %u",
6802 (u32)key.type, cur_offset);
6803 ret = -EIO;
6804 break;
6805 }
6806 array_ptr += len;
6807 sb_array_offset += len;
6808 cur_offset += len;
6809 }
6810 clear_extent_buffer_uptodate(sb);
6811 free_extent_buffer_stale(sb);
6812 return ret;
6813
6814 out_short_read:
6815 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6816 len, cur_offset);
6817 clear_extent_buffer_uptodate(sb);
6818 free_extent_buffer_stale(sb);
6819 return -EIO;
6820 }
6821
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)6822 void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, u64 devid,
6823 u8 *uuid)
6824 {
6825 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", devid, uuid);
6826 }
6827
6828 /*
6829 * Check if all chunks in the fs are OK for read-write degraded mount
6830 *
6831 * Return true if all chunks meet the minimal RW mount requirements.
6832 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6833 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info)6834 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6835 {
6836 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6837 struct extent_map *em;
6838 u64 next_start = 0;
6839 bool ret = true;
6840
6841 read_lock(&map_tree->map_tree.lock);
6842 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6843 read_unlock(&map_tree->map_tree.lock);
6844 /* No chunk at all? Return false anyway */
6845 if (!em) {
6846 ret = false;
6847 goto out;
6848 }
6849 while (em) {
6850 struct map_lookup *map;
6851 int missing = 0;
6852 int max_tolerated;
6853 int i;
6854
6855 map = em->map_lookup;
6856 max_tolerated =
6857 btrfs_get_num_tolerated_disk_barrier_failures(
6858 map->type);
6859 for (i = 0; i < map->num_stripes; i++) {
6860 struct btrfs_device *dev = map->stripes[i].dev;
6861
6862 if (!dev || !dev->bdev || dev->missing ||
6863 dev->last_flush_error)
6864 missing++;
6865 }
6866 if (missing > max_tolerated) {
6867 btrfs_warn(fs_info,
6868 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6869 em->start, missing, max_tolerated);
6870 free_extent_map(em);
6871 ret = false;
6872 goto out;
6873 }
6874 next_start = extent_map_end(em);
6875 free_extent_map(em);
6876
6877 read_lock(&map_tree->map_tree.lock);
6878 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6879 (u64)(-1) - next_start);
6880 read_unlock(&map_tree->map_tree.lock);
6881 }
6882 out:
6883 return ret;
6884 }
6885
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)6886 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6887 {
6888 struct btrfs_root *root = fs_info->chunk_root;
6889 struct btrfs_path *path;
6890 struct extent_buffer *leaf;
6891 struct btrfs_key key;
6892 struct btrfs_key found_key;
6893 int ret;
6894 int slot;
6895 u64 total_dev = 0;
6896
6897 path = btrfs_alloc_path();
6898 if (!path)
6899 return -ENOMEM;
6900
6901 mutex_lock(&uuid_mutex);
6902 mutex_lock(&fs_info->chunk_mutex);
6903
6904 /*
6905 * Read all device items, and then all the chunk items. All
6906 * device items are found before any chunk item (their object id
6907 * is smaller than the lowest possible object id for a chunk
6908 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6909 */
6910 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6911 key.offset = 0;
6912 key.type = 0;
6913 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6914 if (ret < 0)
6915 goto error;
6916 while (1) {
6917 leaf = path->nodes[0];
6918 slot = path->slots[0];
6919 if (slot >= btrfs_header_nritems(leaf)) {
6920 ret = btrfs_next_leaf(root, path);
6921 if (ret == 0)
6922 continue;
6923 if (ret < 0)
6924 goto error;
6925 break;
6926 }
6927 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6928 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6929 struct btrfs_dev_item *dev_item;
6930 dev_item = btrfs_item_ptr(leaf, slot,
6931 struct btrfs_dev_item);
6932 ret = read_one_dev(fs_info, leaf, dev_item);
6933 if (ret)
6934 goto error;
6935 total_dev++;
6936 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6937 struct btrfs_chunk *chunk;
6938 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6939 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6940 if (ret)
6941 goto error;
6942 }
6943 path->slots[0]++;
6944 }
6945
6946 /*
6947 * After loading chunk tree, we've got all device information,
6948 * do another round of validation checks.
6949 */
6950 if (total_dev != fs_info->fs_devices->total_devices) {
6951 btrfs_err(fs_info,
6952 "super_num_devices %llu mismatch with num_devices %llu found here",
6953 btrfs_super_num_devices(fs_info->super_copy),
6954 total_dev);
6955 ret = -EINVAL;
6956 goto error;
6957 }
6958 if (btrfs_super_total_bytes(fs_info->super_copy) <
6959 fs_info->fs_devices->total_rw_bytes) {
6960 btrfs_err(fs_info,
6961 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6962 btrfs_super_total_bytes(fs_info->super_copy),
6963 fs_info->fs_devices->total_rw_bytes);
6964 ret = -EINVAL;
6965 goto error;
6966 }
6967 ret = 0;
6968 error:
6969 mutex_unlock(&fs_info->chunk_mutex);
6970 mutex_unlock(&uuid_mutex);
6971
6972 btrfs_free_path(path);
6973 return ret;
6974 }
6975
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)6976 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6977 {
6978 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6979 struct btrfs_device *device;
6980
6981 while (fs_devices) {
6982 mutex_lock(&fs_devices->device_list_mutex);
6983 list_for_each_entry(device, &fs_devices->devices, dev_list)
6984 device->fs_info = fs_info;
6985 mutex_unlock(&fs_devices->device_list_mutex);
6986
6987 fs_devices = fs_devices->seed;
6988 }
6989 }
6990
__btrfs_reset_dev_stats(struct btrfs_device * dev)6991 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6992 {
6993 int i;
6994
6995 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6996 btrfs_dev_stat_reset(dev, i);
6997 }
6998
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)6999 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7000 {
7001 struct btrfs_key key;
7002 struct btrfs_key found_key;
7003 struct btrfs_root *dev_root = fs_info->dev_root;
7004 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7005 struct extent_buffer *eb;
7006 int slot;
7007 int ret = 0;
7008 struct btrfs_device *device;
7009 struct btrfs_path *path = NULL;
7010 int i;
7011
7012 path = btrfs_alloc_path();
7013 if (!path) {
7014 ret = -ENOMEM;
7015 goto out;
7016 }
7017
7018 mutex_lock(&fs_devices->device_list_mutex);
7019 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7020 int item_size;
7021 struct btrfs_dev_stats_item *ptr;
7022
7023 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7024 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7025 key.offset = device->devid;
7026 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7027 if (ret) {
7028 __btrfs_reset_dev_stats(device);
7029 device->dev_stats_valid = 1;
7030 btrfs_release_path(path);
7031 continue;
7032 }
7033 slot = path->slots[0];
7034 eb = path->nodes[0];
7035 btrfs_item_key_to_cpu(eb, &found_key, slot);
7036 item_size = btrfs_item_size_nr(eb, slot);
7037
7038 ptr = btrfs_item_ptr(eb, slot,
7039 struct btrfs_dev_stats_item);
7040
7041 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7042 if (item_size >= (1 + i) * sizeof(__le64))
7043 btrfs_dev_stat_set(device, i,
7044 btrfs_dev_stats_value(eb, ptr, i));
7045 else
7046 btrfs_dev_stat_reset(device, i);
7047 }
7048
7049 device->dev_stats_valid = 1;
7050 btrfs_dev_stat_print_on_load(device);
7051 btrfs_release_path(path);
7052 }
7053 mutex_unlock(&fs_devices->device_list_mutex);
7054
7055 out:
7056 btrfs_free_path(path);
7057 return ret < 0 ? ret : 0;
7058 }
7059
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_device * device)7060 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7061 struct btrfs_fs_info *fs_info,
7062 struct btrfs_device *device)
7063 {
7064 struct btrfs_root *dev_root = fs_info->dev_root;
7065 struct btrfs_path *path;
7066 struct btrfs_key key;
7067 struct extent_buffer *eb;
7068 struct btrfs_dev_stats_item *ptr;
7069 int ret;
7070 int i;
7071
7072 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7073 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7074 key.offset = device->devid;
7075
7076 path = btrfs_alloc_path();
7077 if (!path)
7078 return -ENOMEM;
7079 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7080 if (ret < 0) {
7081 btrfs_warn_in_rcu(fs_info,
7082 "error %d while searching for dev_stats item for device %s",
7083 ret, rcu_str_deref(device->name));
7084 goto out;
7085 }
7086
7087 if (ret == 0 &&
7088 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7089 /* need to delete old one and insert a new one */
7090 ret = btrfs_del_item(trans, dev_root, path);
7091 if (ret != 0) {
7092 btrfs_warn_in_rcu(fs_info,
7093 "delete too small dev_stats item for device %s failed %d",
7094 rcu_str_deref(device->name), ret);
7095 goto out;
7096 }
7097 ret = 1;
7098 }
7099
7100 if (ret == 1) {
7101 /* need to insert a new item */
7102 btrfs_release_path(path);
7103 ret = btrfs_insert_empty_item(trans, dev_root, path,
7104 &key, sizeof(*ptr));
7105 if (ret < 0) {
7106 btrfs_warn_in_rcu(fs_info,
7107 "insert dev_stats item for device %s failed %d",
7108 rcu_str_deref(device->name), ret);
7109 goto out;
7110 }
7111 }
7112
7113 eb = path->nodes[0];
7114 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7115 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7116 btrfs_set_dev_stats_value(eb, ptr, i,
7117 btrfs_dev_stat_read(device, i));
7118 btrfs_mark_buffer_dirty(eb);
7119
7120 out:
7121 btrfs_free_path(path);
7122 return ret;
7123 }
7124
7125 /*
7126 * called from commit_transaction. Writes all changed device stats to disk.
7127 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)7128 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7129 struct btrfs_fs_info *fs_info)
7130 {
7131 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7132 struct btrfs_device *device;
7133 int stats_cnt;
7134 int ret = 0;
7135
7136 mutex_lock(&fs_devices->device_list_mutex);
7137 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7138 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7139 if (!device->dev_stats_valid || stats_cnt == 0)
7140 continue;
7141
7142
7143 /*
7144 * There is a LOAD-LOAD control dependency between the value of
7145 * dev_stats_ccnt and updating the on-disk values which requires
7146 * reading the in-memory counters. Such control dependencies
7147 * require explicit read memory barriers.
7148 *
7149 * This memory barriers pairs with smp_mb__before_atomic in
7150 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7151 * barrier implied by atomic_xchg in
7152 * btrfs_dev_stats_read_and_reset
7153 */
7154 smp_rmb();
7155
7156 ret = update_dev_stat_item(trans, fs_info, device);
7157 if (!ret)
7158 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7159 }
7160 mutex_unlock(&fs_devices->device_list_mutex);
7161
7162 return ret;
7163 }
7164
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7165 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7166 {
7167 btrfs_dev_stat_inc(dev, index);
7168 btrfs_dev_stat_print_on_error(dev);
7169 }
7170
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)7171 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7172 {
7173 if (!dev->dev_stats_valid)
7174 return;
7175 btrfs_err_rl_in_rcu(dev->fs_info,
7176 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7177 rcu_str_deref(dev->name),
7178 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7179 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7180 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7181 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7182 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7183 }
7184
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7185 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7186 {
7187 int i;
7188
7189 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7190 if (btrfs_dev_stat_read(dev, i) != 0)
7191 break;
7192 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7193 return; /* all values == 0, suppress message */
7194
7195 btrfs_info_in_rcu(dev->fs_info,
7196 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7197 rcu_str_deref(dev->name),
7198 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7199 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7200 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7201 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7202 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7203 }
7204
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7205 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7206 struct btrfs_ioctl_get_dev_stats *stats)
7207 {
7208 struct btrfs_device *dev;
7209 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7210 int i;
7211
7212 mutex_lock(&fs_devices->device_list_mutex);
7213 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7214 mutex_unlock(&fs_devices->device_list_mutex);
7215
7216 if (!dev) {
7217 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7218 return -ENODEV;
7219 } else if (!dev->dev_stats_valid) {
7220 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7221 return -ENODEV;
7222 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7223 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7224 if (stats->nr_items > i)
7225 stats->values[i] =
7226 btrfs_dev_stat_read_and_reset(dev, i);
7227 else
7228 btrfs_dev_stat_reset(dev, i);
7229 }
7230 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7231 current->comm, task_pid_nr(current));
7232 } else {
7233 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7234 if (stats->nr_items > i)
7235 stats->values[i] = btrfs_dev_stat_read(dev, i);
7236 }
7237 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7238 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7239 return 0;
7240 }
7241
btrfs_scratch_superblocks(struct block_device * bdev,const char * device_path)7242 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7243 {
7244 struct buffer_head *bh;
7245 struct btrfs_super_block *disk_super;
7246 int copy_num;
7247
7248 if (!bdev)
7249 return;
7250
7251 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7252 copy_num++) {
7253
7254 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7255 continue;
7256
7257 disk_super = (struct btrfs_super_block *)bh->b_data;
7258
7259 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7260 set_buffer_dirty(bh);
7261 sync_dirty_buffer(bh);
7262 brelse(bh);
7263 }
7264
7265 /* Notify udev that device has changed */
7266 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7267
7268 /* Update ctime/mtime for device path for libblkid */
7269 update_dev_time(device_path);
7270 }
7271
7272 /*
7273 * Update the size of all devices, which is used for writing out the
7274 * super blocks.
7275 */
btrfs_update_commit_device_size(struct btrfs_fs_info * fs_info)7276 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7277 {
7278 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7279 struct btrfs_device *curr, *next;
7280
7281 if (list_empty(&fs_devices->resized_devices))
7282 return;
7283
7284 mutex_lock(&fs_devices->device_list_mutex);
7285 mutex_lock(&fs_info->chunk_mutex);
7286 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7287 resized_list) {
7288 list_del_init(&curr->resized_list);
7289 curr->commit_total_bytes = curr->disk_total_bytes;
7290 }
7291 mutex_unlock(&fs_info->chunk_mutex);
7292 mutex_unlock(&fs_devices->device_list_mutex);
7293 }
7294
7295 /* Must be invoked during the transaction commit */
btrfs_update_commit_device_bytes_used(struct btrfs_fs_info * fs_info,struct btrfs_transaction * transaction)7296 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7297 struct btrfs_transaction *transaction)
7298 {
7299 struct extent_map *em;
7300 struct map_lookup *map;
7301 struct btrfs_device *dev;
7302 int i;
7303
7304 if (list_empty(&transaction->pending_chunks))
7305 return;
7306
7307 /* In order to kick the device replace finish process */
7308 mutex_lock(&fs_info->chunk_mutex);
7309 list_for_each_entry(em, &transaction->pending_chunks, list) {
7310 map = em->map_lookup;
7311
7312 for (i = 0; i < map->num_stripes; i++) {
7313 dev = map->stripes[i].dev;
7314 dev->commit_bytes_used = dev->bytes_used;
7315 dev->has_pending_chunks = false;
7316 }
7317 }
7318 mutex_unlock(&fs_info->chunk_mutex);
7319 }
7320
btrfs_set_fs_info_ptr(struct btrfs_fs_info * fs_info)7321 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7322 {
7323 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7324 while (fs_devices) {
7325 fs_devices->fs_info = fs_info;
7326 fs_devices = fs_devices->seed;
7327 }
7328 }
7329
btrfs_reset_fs_info_ptr(struct btrfs_fs_info * fs_info)7330 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7331 {
7332 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7333 while (fs_devices) {
7334 fs_devices->fs_info = NULL;
7335 fs_devices = fs_devices->seed;
7336 }
7337 }
7338