1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
45 #include <asm/unaligned.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 #include "dedupe.h"
64
65 struct btrfs_iget_args {
66 struct btrfs_key *location;
67 struct btrfs_root *root;
68 };
69
70 struct btrfs_dio_data {
71 u64 outstanding_extents;
72 u64 reserve;
73 u64 unsubmitted_oe_range_start;
74 u64 unsubmitted_oe_range_end;
75 int overwrite;
76 };
77
78 static const struct inode_operations btrfs_dir_inode_operations;
79 static const struct inode_operations btrfs_symlink_inode_operations;
80 static const struct inode_operations btrfs_dir_ro_inode_operations;
81 static const struct inode_operations btrfs_special_inode_operations;
82 static const struct inode_operations btrfs_file_inode_operations;
83 static const struct address_space_operations btrfs_aops;
84 static const struct address_space_operations btrfs_symlink_aops;
85 static const struct file_operations btrfs_dir_file_operations;
86 static const struct extent_io_ops btrfs_extent_io_ops;
87
88 static struct kmem_cache *btrfs_inode_cachep;
89 struct kmem_cache *btrfs_trans_handle_cachep;
90 struct kmem_cache *btrfs_path_cachep;
91 struct kmem_cache *btrfs_free_space_cachep;
92
93 #define S_SHIFT 12
94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
102 };
103
104 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
105 static int btrfs_truncate(struct inode *inode);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
107 static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
112 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
113 u64 orig_start, u64 block_start,
114 u64 block_len, u64 orig_block_len,
115 u64 ram_bytes, int compress_type,
116 int type);
117
118 static void __endio_write_update_ordered(struct inode *inode,
119 const u64 offset, const u64 bytes,
120 const bool uptodate);
121
122 /*
123 * Cleanup all submitted ordered extents in specified range to handle errors
124 * from the fill_dellaloc() callback.
125 *
126 * NOTE: caller must ensure that when an error happens, it can not call
127 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
128 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
129 * to be released, which we want to happen only when finishing the ordered
130 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
131 * fill_delalloc() callback already does proper cleanup for the first page of
132 * the range, that is, it invokes the callback writepage_end_io_hook() for the
133 * range of the first page.
134 */
btrfs_cleanup_ordered_extents(struct inode * inode,const u64 offset,const u64 bytes)135 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
136 const u64 offset,
137 const u64 bytes)
138 {
139 unsigned long index = offset >> PAGE_SHIFT;
140 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
141 struct page *page;
142
143 while (index <= end_index) {
144 page = find_get_page(inode->i_mapping, index);
145 index++;
146 if (!page)
147 continue;
148 ClearPagePrivate2(page);
149 put_page(page);
150 }
151 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
152 bytes - PAGE_SIZE, false);
153 }
154
155 static int btrfs_dirty_inode(struct inode *inode);
156
157 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_inode_set_ops(struct inode * inode)158 void btrfs_test_inode_set_ops(struct inode *inode)
159 {
160 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
161 }
162 #endif
163
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)164 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
165 struct inode *inode, struct inode *dir,
166 const struct qstr *qstr)
167 {
168 int err;
169
170 err = btrfs_init_acl(trans, inode, dir);
171 if (!err)
172 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
173 return err;
174 }
175
176 /*
177 * this does all the hard work for inserting an inline extent into
178 * the btree. The caller should have done a btrfs_drop_extents so that
179 * no overlapping inline items exist in the btree
180 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)181 static int insert_inline_extent(struct btrfs_trans_handle *trans,
182 struct btrfs_path *path, int extent_inserted,
183 struct btrfs_root *root, struct inode *inode,
184 u64 start, size_t size, size_t compressed_size,
185 int compress_type,
186 struct page **compressed_pages)
187 {
188 struct extent_buffer *leaf;
189 struct page *page = NULL;
190 char *kaddr;
191 unsigned long ptr;
192 struct btrfs_file_extent_item *ei;
193 int ret;
194 size_t cur_size = size;
195 unsigned long offset;
196
197 if (compressed_size && compressed_pages)
198 cur_size = compressed_size;
199
200 inode_add_bytes(inode, size);
201
202 if (!extent_inserted) {
203 struct btrfs_key key;
204 size_t datasize;
205
206 key.objectid = btrfs_ino(BTRFS_I(inode));
207 key.offset = start;
208 key.type = BTRFS_EXTENT_DATA_KEY;
209
210 datasize = btrfs_file_extent_calc_inline_size(cur_size);
211 path->leave_spinning = 1;
212 ret = btrfs_insert_empty_item(trans, root, path, &key,
213 datasize);
214 if (ret)
215 goto fail;
216 }
217 leaf = path->nodes[0];
218 ei = btrfs_item_ptr(leaf, path->slots[0],
219 struct btrfs_file_extent_item);
220 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
221 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
222 btrfs_set_file_extent_encryption(leaf, ei, 0);
223 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
224 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
225 ptr = btrfs_file_extent_inline_start(ei);
226
227 if (compress_type != BTRFS_COMPRESS_NONE) {
228 struct page *cpage;
229 int i = 0;
230 while (compressed_size > 0) {
231 cpage = compressed_pages[i];
232 cur_size = min_t(unsigned long, compressed_size,
233 PAGE_SIZE);
234
235 kaddr = kmap_atomic(cpage);
236 write_extent_buffer(leaf, kaddr, ptr, cur_size);
237 kunmap_atomic(kaddr);
238
239 i++;
240 ptr += cur_size;
241 compressed_size -= cur_size;
242 }
243 btrfs_set_file_extent_compression(leaf, ei,
244 compress_type);
245 } else {
246 page = find_get_page(inode->i_mapping,
247 start >> PAGE_SHIFT);
248 btrfs_set_file_extent_compression(leaf, ei, 0);
249 kaddr = kmap_atomic(page);
250 offset = start & (PAGE_SIZE - 1);
251 write_extent_buffer(leaf, kaddr + offset, ptr, size);
252 kunmap_atomic(kaddr);
253 put_page(page);
254 }
255 btrfs_mark_buffer_dirty(leaf);
256 btrfs_release_path(path);
257
258 /*
259 * we're an inline extent, so nobody can
260 * extend the file past i_size without locking
261 * a page we already have locked.
262 *
263 * We must do any isize and inode updates
264 * before we unlock the pages. Otherwise we
265 * could end up racing with unlink.
266 */
267 BTRFS_I(inode)->disk_i_size = inode->i_size;
268 ret = btrfs_update_inode(trans, root, inode);
269
270 fail:
271 return ret;
272 }
273
274
275 /*
276 * conditionally insert an inline extent into the file. This
277 * does the checks required to make sure the data is small enough
278 * to fit as an inline extent.
279 */
cow_file_range_inline(struct btrfs_root * root,struct inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)280 static noinline int cow_file_range_inline(struct btrfs_root *root,
281 struct inode *inode, u64 start,
282 u64 end, size_t compressed_size,
283 int compress_type,
284 struct page **compressed_pages)
285 {
286 struct btrfs_fs_info *fs_info = root->fs_info;
287 struct btrfs_trans_handle *trans;
288 u64 isize = i_size_read(inode);
289 u64 actual_end = min(end + 1, isize);
290 u64 inline_len = actual_end - start;
291 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
292 u64 data_len = inline_len;
293 int ret;
294 struct btrfs_path *path;
295 int extent_inserted = 0;
296 u32 extent_item_size;
297
298 if (compressed_size)
299 data_len = compressed_size;
300
301 if (start > 0 ||
302 actual_end > fs_info->sectorsize ||
303 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
304 (!compressed_size &&
305 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
306 end + 1 < isize ||
307 data_len > fs_info->max_inline) {
308 return 1;
309 }
310
311 path = btrfs_alloc_path();
312 if (!path)
313 return -ENOMEM;
314
315 trans = btrfs_join_transaction(root);
316 if (IS_ERR(trans)) {
317 btrfs_free_path(path);
318 return PTR_ERR(trans);
319 }
320 trans->block_rsv = &fs_info->delalloc_block_rsv;
321
322 if (compressed_size && compressed_pages)
323 extent_item_size = btrfs_file_extent_calc_inline_size(
324 compressed_size);
325 else
326 extent_item_size = btrfs_file_extent_calc_inline_size(
327 inline_len);
328
329 ret = __btrfs_drop_extents(trans, root, inode, path,
330 start, aligned_end, NULL,
331 1, 1, extent_item_size, &extent_inserted);
332 if (ret) {
333 btrfs_abort_transaction(trans, ret);
334 goto out;
335 }
336
337 if (isize > actual_end)
338 inline_len = min_t(u64, isize, actual_end);
339 ret = insert_inline_extent(trans, path, extent_inserted,
340 root, inode, start,
341 inline_len, compressed_size,
342 compress_type, compressed_pages);
343 if (ret && ret != -ENOSPC) {
344 btrfs_abort_transaction(trans, ret);
345 goto out;
346 } else if (ret == -ENOSPC) {
347 ret = 1;
348 goto out;
349 }
350
351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
352 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
353 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
354 out:
355 /*
356 * Don't forget to free the reserved space, as for inlined extent
357 * it won't count as data extent, free them directly here.
358 * And at reserve time, it's always aligned to page size, so
359 * just free one page here.
360 */
361 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
362 btrfs_free_path(path);
363 btrfs_end_transaction(trans);
364 return ret;
365 }
366
367 struct async_extent {
368 u64 start;
369 u64 ram_size;
370 u64 compressed_size;
371 struct page **pages;
372 unsigned long nr_pages;
373 int compress_type;
374 struct list_head list;
375 };
376
377 struct async_cow {
378 struct inode *inode;
379 struct btrfs_root *root;
380 struct page *locked_page;
381 u64 start;
382 u64 end;
383 struct list_head extents;
384 struct btrfs_work work;
385 };
386
add_async_extent(struct async_cow * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)387 static noinline int add_async_extent(struct async_cow *cow,
388 u64 start, u64 ram_size,
389 u64 compressed_size,
390 struct page **pages,
391 unsigned long nr_pages,
392 int compress_type)
393 {
394 struct async_extent *async_extent;
395
396 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
397 BUG_ON(!async_extent); /* -ENOMEM */
398 async_extent->start = start;
399 async_extent->ram_size = ram_size;
400 async_extent->compressed_size = compressed_size;
401 async_extent->pages = pages;
402 async_extent->nr_pages = nr_pages;
403 async_extent->compress_type = compress_type;
404 list_add_tail(&async_extent->list, &cow->extents);
405 return 0;
406 }
407
408 /*
409 * Check if the inode has flags compatible with compression
410 */
inode_can_compress(struct inode * inode)411 static inline bool inode_can_compress(struct inode *inode)
412 {
413 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
414 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
415 return false;
416 return true;
417 }
418
419 /*
420 * Check if the inode needs to be submitted to compression, based on mount
421 * options, defragmentation, properties or heuristics.
422 */
inode_need_compress(struct inode * inode,u64 start,u64 end)423 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
424 {
425 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
426
427 if (!inode_can_compress(inode)) {
428 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
429 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
430 btrfs_ino(BTRFS_I(inode)));
431 return 0;
432 }
433 /* force compress */
434 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
435 return 1;
436 /* defrag ioctl */
437 if (BTRFS_I(inode)->defrag_compress)
438 return 1;
439 /* bad compression ratios */
440 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
441 return 0;
442 if (btrfs_test_opt(fs_info, COMPRESS) ||
443 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
444 BTRFS_I(inode)->prop_compress)
445 return btrfs_compress_heuristic(inode, start, end);
446 return 0;
447 }
448
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u64 small_write)449 static inline void inode_should_defrag(struct btrfs_inode *inode,
450 u64 start, u64 end, u64 num_bytes, u64 small_write)
451 {
452 /* If this is a small write inside eof, kick off a defrag */
453 if (num_bytes < small_write &&
454 (start > 0 || end + 1 < inode->disk_i_size))
455 btrfs_add_inode_defrag(NULL, inode);
456 }
457
458 /*
459 * we create compressed extents in two phases. The first
460 * phase compresses a range of pages that have already been
461 * locked (both pages and state bits are locked).
462 *
463 * This is done inside an ordered work queue, and the compression
464 * is spread across many cpus. The actual IO submission is step
465 * two, and the ordered work queue takes care of making sure that
466 * happens in the same order things were put onto the queue by
467 * writepages and friends.
468 *
469 * If this code finds it can't get good compression, it puts an
470 * entry onto the work queue to write the uncompressed bytes. This
471 * makes sure that both compressed inodes and uncompressed inodes
472 * are written in the same order that the flusher thread sent them
473 * down.
474 */
compress_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,struct async_cow * async_cow,int * num_added)475 static noinline void compress_file_range(struct inode *inode,
476 struct page *locked_page,
477 u64 start, u64 end,
478 struct async_cow *async_cow,
479 int *num_added)
480 {
481 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
482 struct btrfs_root *root = BTRFS_I(inode)->root;
483 u64 num_bytes;
484 u64 blocksize = fs_info->sectorsize;
485 u64 actual_end;
486 u64 isize = i_size_read(inode);
487 int ret = 0;
488 struct page **pages = NULL;
489 unsigned long nr_pages;
490 unsigned long total_compressed = 0;
491 unsigned long total_in = 0;
492 int i;
493 int will_compress;
494 int compress_type = fs_info->compress_type;
495 int redirty = 0;
496
497 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
498 SZ_16K);
499
500 actual_end = min_t(u64, isize, end + 1);
501 again:
502 will_compress = 0;
503 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
504 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
505 nr_pages = min_t(unsigned long, nr_pages,
506 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
507
508 /*
509 * we don't want to send crud past the end of i_size through
510 * compression, that's just a waste of CPU time. So, if the
511 * end of the file is before the start of our current
512 * requested range of bytes, we bail out to the uncompressed
513 * cleanup code that can deal with all of this.
514 *
515 * It isn't really the fastest way to fix things, but this is a
516 * very uncommon corner.
517 */
518 if (actual_end <= start)
519 goto cleanup_and_bail_uncompressed;
520
521 total_compressed = actual_end - start;
522
523 /*
524 * skip compression for a small file range(<=blocksize) that
525 * isn't an inline extent, since it doesn't save disk space at all.
526 */
527 if (total_compressed <= blocksize &&
528 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
529 goto cleanup_and_bail_uncompressed;
530
531 total_compressed = min_t(unsigned long, total_compressed,
532 BTRFS_MAX_UNCOMPRESSED);
533 num_bytes = ALIGN(end - start + 1, blocksize);
534 num_bytes = max(blocksize, num_bytes);
535 total_in = 0;
536 ret = 0;
537
538 /*
539 * we do compression for mount -o compress and when the
540 * inode has not been flagged as nocompress. This flag can
541 * change at any time if we discover bad compression ratios.
542 */
543 if (inode_need_compress(inode, start, end)) {
544 WARN_ON(pages);
545 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
546 if (!pages) {
547 /* just bail out to the uncompressed code */
548 nr_pages = 0;
549 goto cont;
550 }
551
552 if (BTRFS_I(inode)->defrag_compress)
553 compress_type = BTRFS_I(inode)->defrag_compress;
554 else if (BTRFS_I(inode)->prop_compress)
555 compress_type = BTRFS_I(inode)->prop_compress;
556
557 /*
558 * we need to call clear_page_dirty_for_io on each
559 * page in the range. Otherwise applications with the file
560 * mmap'd can wander in and change the page contents while
561 * we are compressing them.
562 *
563 * If the compression fails for any reason, we set the pages
564 * dirty again later on.
565 */
566 extent_range_clear_dirty_for_io(inode, start, end);
567 redirty = 1;
568 ret = btrfs_compress_pages(compress_type,
569 inode->i_mapping, start,
570 pages,
571 &nr_pages,
572 &total_in,
573 &total_compressed);
574
575 if (!ret) {
576 unsigned long offset = total_compressed &
577 (PAGE_SIZE - 1);
578 struct page *page = pages[nr_pages - 1];
579 char *kaddr;
580
581 /* zero the tail end of the last page, we might be
582 * sending it down to disk
583 */
584 if (offset) {
585 kaddr = kmap_atomic(page);
586 memset(kaddr + offset, 0,
587 PAGE_SIZE - offset);
588 kunmap_atomic(kaddr);
589 }
590 will_compress = 1;
591 }
592 }
593 cont:
594 if (start == 0) {
595 /* lets try to make an inline extent */
596 if (ret || total_in < (actual_end - start)) {
597 /* we didn't compress the entire range, try
598 * to make an uncompressed inline extent.
599 */
600 ret = cow_file_range_inline(root, inode, start, end,
601 0, BTRFS_COMPRESS_NONE, NULL);
602 } else {
603 /* try making a compressed inline extent */
604 ret = cow_file_range_inline(root, inode, start, end,
605 total_compressed,
606 compress_type, pages);
607 }
608 if (ret <= 0) {
609 unsigned long clear_flags = EXTENT_DELALLOC |
610 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
611 unsigned long page_error_op;
612
613 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
614 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
615
616 /*
617 * inline extent creation worked or returned error,
618 * we don't need to create any more async work items.
619 * Unlock and free up our temp pages.
620 */
621 extent_clear_unlock_delalloc(inode, start, end, end,
622 NULL, clear_flags,
623 PAGE_UNLOCK |
624 PAGE_CLEAR_DIRTY |
625 PAGE_SET_WRITEBACK |
626 page_error_op |
627 PAGE_END_WRITEBACK);
628 if (ret == 0)
629 btrfs_free_reserved_data_space_noquota(inode,
630 start,
631 end - start + 1);
632 goto free_pages_out;
633 }
634 }
635
636 if (will_compress) {
637 /*
638 * we aren't doing an inline extent round the compressed size
639 * up to a block size boundary so the allocator does sane
640 * things
641 */
642 total_compressed = ALIGN(total_compressed, blocksize);
643
644 /*
645 * one last check to make sure the compression is really a
646 * win, compare the page count read with the blocks on disk,
647 * compression must free at least one sector size
648 */
649 total_in = ALIGN(total_in, PAGE_SIZE);
650 if (total_compressed + blocksize <= total_in) {
651 num_bytes = total_in;
652 *num_added += 1;
653
654 /*
655 * The async work queues will take care of doing actual
656 * allocation on disk for these compressed pages, and
657 * will submit them to the elevator.
658 */
659 add_async_extent(async_cow, start, num_bytes,
660 total_compressed, pages, nr_pages,
661 compress_type);
662
663 if (start + num_bytes < end) {
664 start += num_bytes;
665 pages = NULL;
666 cond_resched();
667 goto again;
668 }
669 return;
670 }
671 }
672 if (pages) {
673 /*
674 * the compression code ran but failed to make things smaller,
675 * free any pages it allocated and our page pointer array
676 */
677 for (i = 0; i < nr_pages; i++) {
678 WARN_ON(pages[i]->mapping);
679 put_page(pages[i]);
680 }
681 kfree(pages);
682 pages = NULL;
683 total_compressed = 0;
684 nr_pages = 0;
685
686 /* flag the file so we don't compress in the future */
687 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
688 !(BTRFS_I(inode)->prop_compress)) {
689 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
690 }
691 }
692 cleanup_and_bail_uncompressed:
693 /*
694 * No compression, but we still need to write the pages in the file
695 * we've been given so far. redirty the locked page if it corresponds
696 * to our extent and set things up for the async work queue to run
697 * cow_file_range to do the normal delalloc dance.
698 */
699 if (page_offset(locked_page) >= start &&
700 page_offset(locked_page) <= end)
701 __set_page_dirty_nobuffers(locked_page);
702 /* unlocked later on in the async handlers */
703
704 if (redirty)
705 extent_range_redirty_for_io(inode, start, end);
706 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
707 BTRFS_COMPRESS_NONE);
708 *num_added += 1;
709
710 return;
711
712 free_pages_out:
713 for (i = 0; i < nr_pages; i++) {
714 WARN_ON(pages[i]->mapping);
715 put_page(pages[i]);
716 }
717 kfree(pages);
718 }
719
free_async_extent_pages(struct async_extent * async_extent)720 static void free_async_extent_pages(struct async_extent *async_extent)
721 {
722 int i;
723
724 if (!async_extent->pages)
725 return;
726
727 for (i = 0; i < async_extent->nr_pages; i++) {
728 WARN_ON(async_extent->pages[i]->mapping);
729 put_page(async_extent->pages[i]);
730 }
731 kfree(async_extent->pages);
732 async_extent->nr_pages = 0;
733 async_extent->pages = NULL;
734 }
735
736 /*
737 * phase two of compressed writeback. This is the ordered portion
738 * of the code, which only gets called in the order the work was
739 * queued. We walk all the async extents created by compress_file_range
740 * and send them down to the disk.
741 */
submit_compressed_extents(struct inode * inode,struct async_cow * async_cow)742 static noinline void submit_compressed_extents(struct inode *inode,
743 struct async_cow *async_cow)
744 {
745 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
746 struct async_extent *async_extent;
747 u64 alloc_hint = 0;
748 struct btrfs_key ins;
749 struct extent_map *em;
750 struct btrfs_root *root = BTRFS_I(inode)->root;
751 struct extent_io_tree *io_tree;
752 int ret = 0;
753
754 again:
755 while (!list_empty(&async_cow->extents)) {
756 async_extent = list_entry(async_cow->extents.next,
757 struct async_extent, list);
758 list_del(&async_extent->list);
759
760 io_tree = &BTRFS_I(inode)->io_tree;
761
762 retry:
763 /* did the compression code fall back to uncompressed IO? */
764 if (!async_extent->pages) {
765 int page_started = 0;
766 unsigned long nr_written = 0;
767
768 lock_extent(io_tree, async_extent->start,
769 async_extent->start +
770 async_extent->ram_size - 1);
771
772 /* allocate blocks */
773 ret = cow_file_range(inode, async_cow->locked_page,
774 async_extent->start,
775 async_extent->start +
776 async_extent->ram_size - 1,
777 async_extent->start +
778 async_extent->ram_size - 1,
779 &page_started, &nr_written, 0,
780 NULL);
781
782 /* JDM XXX */
783
784 /*
785 * if page_started, cow_file_range inserted an
786 * inline extent and took care of all the unlocking
787 * and IO for us. Otherwise, we need to submit
788 * all those pages down to the drive.
789 */
790 if (!page_started && !ret)
791 extent_write_locked_range(io_tree,
792 inode, async_extent->start,
793 async_extent->start +
794 async_extent->ram_size - 1,
795 btrfs_get_extent,
796 WB_SYNC_ALL);
797 else if (ret)
798 unlock_page(async_cow->locked_page);
799 kfree(async_extent);
800 cond_resched();
801 continue;
802 }
803
804 lock_extent(io_tree, async_extent->start,
805 async_extent->start + async_extent->ram_size - 1);
806
807 ret = btrfs_reserve_extent(root, async_extent->ram_size,
808 async_extent->compressed_size,
809 async_extent->compressed_size,
810 0, alloc_hint, &ins, 1, 1);
811 if (ret) {
812 free_async_extent_pages(async_extent);
813
814 if (ret == -ENOSPC) {
815 unlock_extent(io_tree, async_extent->start,
816 async_extent->start +
817 async_extent->ram_size - 1);
818
819 /*
820 * we need to redirty the pages if we decide to
821 * fallback to uncompressed IO, otherwise we
822 * will not submit these pages down to lower
823 * layers.
824 */
825 extent_range_redirty_for_io(inode,
826 async_extent->start,
827 async_extent->start +
828 async_extent->ram_size - 1);
829
830 goto retry;
831 }
832 goto out_free;
833 }
834 /*
835 * here we're doing allocation and writeback of the
836 * compressed pages
837 */
838 em = create_io_em(inode, async_extent->start,
839 async_extent->ram_size, /* len */
840 async_extent->start, /* orig_start */
841 ins.objectid, /* block_start */
842 ins.offset, /* block_len */
843 ins.offset, /* orig_block_len */
844 async_extent->ram_size, /* ram_bytes */
845 async_extent->compress_type,
846 BTRFS_ORDERED_COMPRESSED);
847 if (IS_ERR(em))
848 /* ret value is not necessary due to void function */
849 goto out_free_reserve;
850 free_extent_map(em);
851
852 ret = btrfs_add_ordered_extent_compress(inode,
853 async_extent->start,
854 ins.objectid,
855 async_extent->ram_size,
856 ins.offset,
857 BTRFS_ORDERED_COMPRESSED,
858 async_extent->compress_type);
859 if (ret) {
860 btrfs_drop_extent_cache(BTRFS_I(inode),
861 async_extent->start,
862 async_extent->start +
863 async_extent->ram_size - 1, 0);
864 goto out_free_reserve;
865 }
866 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
867
868 /*
869 * clear dirty, set writeback and unlock the pages.
870 */
871 extent_clear_unlock_delalloc(inode, async_extent->start,
872 async_extent->start +
873 async_extent->ram_size - 1,
874 async_extent->start +
875 async_extent->ram_size - 1,
876 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
877 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
878 PAGE_SET_WRITEBACK);
879 if (btrfs_submit_compressed_write(inode,
880 async_extent->start,
881 async_extent->ram_size,
882 ins.objectid,
883 ins.offset, async_extent->pages,
884 async_extent->nr_pages)) {
885 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
886 struct page *p = async_extent->pages[0];
887 const u64 start = async_extent->start;
888 const u64 end = start + async_extent->ram_size - 1;
889
890 p->mapping = inode->i_mapping;
891 tree->ops->writepage_end_io_hook(p, start, end,
892 NULL, 0);
893 p->mapping = NULL;
894 extent_clear_unlock_delalloc(inode, start, end, end,
895 NULL, 0,
896 PAGE_END_WRITEBACK |
897 PAGE_SET_ERROR);
898 free_async_extent_pages(async_extent);
899 }
900 alloc_hint = ins.objectid + ins.offset;
901 kfree(async_extent);
902 cond_resched();
903 }
904 return;
905 out_free_reserve:
906 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
907 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
908 out_free:
909 extent_clear_unlock_delalloc(inode, async_extent->start,
910 async_extent->start +
911 async_extent->ram_size - 1,
912 async_extent->start +
913 async_extent->ram_size - 1,
914 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
915 EXTENT_DELALLOC_NEW |
916 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
917 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
918 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
919 PAGE_SET_ERROR);
920 free_async_extent_pages(async_extent);
921 kfree(async_extent);
922 goto again;
923 }
924
get_extent_allocation_hint(struct inode * inode,u64 start,u64 num_bytes)925 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
926 u64 num_bytes)
927 {
928 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
929 struct extent_map *em;
930 u64 alloc_hint = 0;
931
932 read_lock(&em_tree->lock);
933 em = search_extent_mapping(em_tree, start, num_bytes);
934 if (em) {
935 /*
936 * if block start isn't an actual block number then find the
937 * first block in this inode and use that as a hint. If that
938 * block is also bogus then just don't worry about it.
939 */
940 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
941 free_extent_map(em);
942 em = search_extent_mapping(em_tree, 0, 0);
943 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
944 alloc_hint = em->block_start;
945 if (em)
946 free_extent_map(em);
947 } else {
948 alloc_hint = em->block_start;
949 free_extent_map(em);
950 }
951 }
952 read_unlock(&em_tree->lock);
953
954 return alloc_hint;
955 }
956
957 /*
958 * when extent_io.c finds a delayed allocation range in the file,
959 * the call backs end up in this code. The basic idea is to
960 * allocate extents on disk for the range, and create ordered data structs
961 * in ram to track those extents.
962 *
963 * locked_page is the page that writepage had locked already. We use
964 * it to make sure we don't do extra locks or unlocks.
965 *
966 * *page_started is set to one if we unlock locked_page and do everything
967 * required to start IO on it. It may be clean and already done with
968 * IO when we return.
969 */
cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,u64 delalloc_end,int * page_started,unsigned long * nr_written,int unlock,struct btrfs_dedupe_hash * hash)970 static noinline int cow_file_range(struct inode *inode,
971 struct page *locked_page,
972 u64 start, u64 end, u64 delalloc_end,
973 int *page_started, unsigned long *nr_written,
974 int unlock, struct btrfs_dedupe_hash *hash)
975 {
976 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
977 struct btrfs_root *root = BTRFS_I(inode)->root;
978 u64 alloc_hint = 0;
979 u64 num_bytes;
980 unsigned long ram_size;
981 u64 disk_num_bytes;
982 u64 cur_alloc_size = 0;
983 u64 blocksize = fs_info->sectorsize;
984 struct btrfs_key ins;
985 struct extent_map *em;
986 unsigned clear_bits;
987 unsigned long page_ops;
988 bool extent_reserved = false;
989 int ret = 0;
990
991 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
992 WARN_ON_ONCE(1);
993 ret = -EINVAL;
994 goto out_unlock;
995 }
996
997 num_bytes = ALIGN(end - start + 1, blocksize);
998 num_bytes = max(blocksize, num_bytes);
999 disk_num_bytes = num_bytes;
1000
1001 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
1002
1003 if (start == 0) {
1004 /* lets try to make an inline extent */
1005 ret = cow_file_range_inline(root, inode, start, end, 0,
1006 BTRFS_COMPRESS_NONE, NULL);
1007 if (ret == 0) {
1008 extent_clear_unlock_delalloc(inode, start, end,
1009 delalloc_end, NULL,
1010 EXTENT_LOCKED | EXTENT_DELALLOC |
1011 EXTENT_DELALLOC_NEW |
1012 EXTENT_DEFRAG, PAGE_UNLOCK |
1013 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1014 PAGE_END_WRITEBACK);
1015 btrfs_free_reserved_data_space_noquota(inode, start,
1016 end - start + 1);
1017 *nr_written = *nr_written +
1018 (end - start + PAGE_SIZE) / PAGE_SIZE;
1019 *page_started = 1;
1020 goto out;
1021 } else if (ret < 0) {
1022 goto out_unlock;
1023 }
1024 }
1025
1026 BUG_ON(disk_num_bytes >
1027 btrfs_super_total_bytes(fs_info->super_copy));
1028
1029 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1030 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1031 start + num_bytes - 1, 0);
1032
1033 while (disk_num_bytes > 0) {
1034 cur_alloc_size = disk_num_bytes;
1035 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1036 fs_info->sectorsize, 0, alloc_hint,
1037 &ins, 1, 1);
1038 if (ret < 0)
1039 goto out_unlock;
1040 cur_alloc_size = ins.offset;
1041 extent_reserved = true;
1042
1043 ram_size = ins.offset;
1044 em = create_io_em(inode, start, ins.offset, /* len */
1045 start, /* orig_start */
1046 ins.objectid, /* block_start */
1047 ins.offset, /* block_len */
1048 ins.offset, /* orig_block_len */
1049 ram_size, /* ram_bytes */
1050 BTRFS_COMPRESS_NONE, /* compress_type */
1051 BTRFS_ORDERED_REGULAR /* type */);
1052 if (IS_ERR(em)) {
1053 ret = PTR_ERR(em);
1054 goto out_reserve;
1055 }
1056 free_extent_map(em);
1057
1058 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1059 ram_size, cur_alloc_size, 0);
1060 if (ret)
1061 goto out_drop_extent_cache;
1062
1063 if (root->root_key.objectid ==
1064 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1065 ret = btrfs_reloc_clone_csums(inode, start,
1066 cur_alloc_size);
1067 /*
1068 * Only drop cache here, and process as normal.
1069 *
1070 * We must not allow extent_clear_unlock_delalloc()
1071 * at out_unlock label to free meta of this ordered
1072 * extent, as its meta should be freed by
1073 * btrfs_finish_ordered_io().
1074 *
1075 * So we must continue until @start is increased to
1076 * skip current ordered extent.
1077 */
1078 if (ret)
1079 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1080 start + ram_size - 1, 0);
1081 }
1082
1083 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1084
1085 /* we're not doing compressed IO, don't unlock the first
1086 * page (which the caller expects to stay locked), don't
1087 * clear any dirty bits and don't set any writeback bits
1088 *
1089 * Do set the Private2 bit so we know this page was properly
1090 * setup for writepage
1091 */
1092 page_ops = unlock ? PAGE_UNLOCK : 0;
1093 page_ops |= PAGE_SET_PRIVATE2;
1094
1095 extent_clear_unlock_delalloc(inode, start,
1096 start + ram_size - 1,
1097 delalloc_end, locked_page,
1098 EXTENT_LOCKED | EXTENT_DELALLOC,
1099 page_ops);
1100 if (disk_num_bytes < cur_alloc_size)
1101 disk_num_bytes = 0;
1102 else
1103 disk_num_bytes -= cur_alloc_size;
1104 num_bytes -= cur_alloc_size;
1105 alloc_hint = ins.objectid + ins.offset;
1106 start += cur_alloc_size;
1107 extent_reserved = false;
1108
1109 /*
1110 * btrfs_reloc_clone_csums() error, since start is increased
1111 * extent_clear_unlock_delalloc() at out_unlock label won't
1112 * free metadata of current ordered extent, we're OK to exit.
1113 */
1114 if (ret)
1115 goto out_unlock;
1116 }
1117 out:
1118 return ret;
1119
1120 out_drop_extent_cache:
1121 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1122 out_reserve:
1123 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1124 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1125 out_unlock:
1126 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1127 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1128 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1129 PAGE_END_WRITEBACK;
1130 /*
1131 * If we reserved an extent for our delalloc range (or a subrange) and
1132 * failed to create the respective ordered extent, then it means that
1133 * when we reserved the extent we decremented the extent's size from
1134 * the data space_info's bytes_may_use counter and incremented the
1135 * space_info's bytes_reserved counter by the same amount. We must make
1136 * sure extent_clear_unlock_delalloc() does not try to decrement again
1137 * the data space_info's bytes_may_use counter, therefore we do not pass
1138 * it the flag EXTENT_CLEAR_DATA_RESV.
1139 */
1140 if (extent_reserved) {
1141 extent_clear_unlock_delalloc(inode, start,
1142 start + cur_alloc_size,
1143 start + cur_alloc_size,
1144 locked_page,
1145 clear_bits,
1146 page_ops);
1147 start += cur_alloc_size;
1148 if (start >= end)
1149 goto out;
1150 }
1151 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1152 locked_page,
1153 clear_bits | EXTENT_CLEAR_DATA_RESV,
1154 page_ops);
1155 goto out;
1156 }
1157
1158 /*
1159 * work queue call back to started compression on a file and pages
1160 */
async_cow_start(struct btrfs_work * work)1161 static noinline void async_cow_start(struct btrfs_work *work)
1162 {
1163 struct async_cow *async_cow;
1164 int num_added = 0;
1165 async_cow = container_of(work, struct async_cow, work);
1166
1167 compress_file_range(async_cow->inode, async_cow->locked_page,
1168 async_cow->start, async_cow->end, async_cow,
1169 &num_added);
1170 if (num_added == 0) {
1171 btrfs_add_delayed_iput(async_cow->inode);
1172 async_cow->inode = NULL;
1173 }
1174 }
1175
1176 /*
1177 * work queue call back to submit previously compressed pages
1178 */
async_cow_submit(struct btrfs_work * work)1179 static noinline void async_cow_submit(struct btrfs_work *work)
1180 {
1181 struct btrfs_fs_info *fs_info;
1182 struct async_cow *async_cow;
1183 struct btrfs_root *root;
1184 unsigned long nr_pages;
1185
1186 async_cow = container_of(work, struct async_cow, work);
1187
1188 root = async_cow->root;
1189 fs_info = root->fs_info;
1190 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1191 PAGE_SHIFT;
1192
1193 /*
1194 * atomic_sub_return implies a barrier for waitqueue_active
1195 */
1196 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1197 5 * SZ_1M &&
1198 waitqueue_active(&fs_info->async_submit_wait))
1199 wake_up(&fs_info->async_submit_wait);
1200
1201 if (async_cow->inode)
1202 submit_compressed_extents(async_cow->inode, async_cow);
1203 }
1204
async_cow_free(struct btrfs_work * work)1205 static noinline void async_cow_free(struct btrfs_work *work)
1206 {
1207 struct async_cow *async_cow;
1208 async_cow = container_of(work, struct async_cow, work);
1209 if (async_cow->inode)
1210 btrfs_add_delayed_iput(async_cow->inode);
1211 kfree(async_cow);
1212 }
1213
cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1214 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1215 u64 start, u64 end, int *page_started,
1216 unsigned long *nr_written)
1217 {
1218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1219 struct async_cow *async_cow;
1220 struct btrfs_root *root = BTRFS_I(inode)->root;
1221 unsigned long nr_pages;
1222 u64 cur_end;
1223
1224 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1225 1, 0, NULL, GFP_NOFS);
1226 while (start < end) {
1227 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1228 BUG_ON(!async_cow); /* -ENOMEM */
1229 async_cow->inode = igrab(inode);
1230 async_cow->root = root;
1231 async_cow->locked_page = locked_page;
1232 async_cow->start = start;
1233
1234 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1235 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1236 cur_end = end;
1237 else
1238 cur_end = min(end, start + SZ_512K - 1);
1239
1240 async_cow->end = cur_end;
1241 INIT_LIST_HEAD(&async_cow->extents);
1242
1243 btrfs_init_work(&async_cow->work,
1244 btrfs_delalloc_helper,
1245 async_cow_start, async_cow_submit,
1246 async_cow_free);
1247
1248 nr_pages = (cur_end - start + PAGE_SIZE) >>
1249 PAGE_SHIFT;
1250 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1251
1252 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1253
1254 while (atomic_read(&fs_info->async_submit_draining) &&
1255 atomic_read(&fs_info->async_delalloc_pages)) {
1256 wait_event(fs_info->async_submit_wait,
1257 (atomic_read(&fs_info->async_delalloc_pages) ==
1258 0));
1259 }
1260
1261 *nr_written += nr_pages;
1262 start = cur_end + 1;
1263 }
1264 *page_started = 1;
1265 return 0;
1266 }
1267
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1268 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1269 u64 bytenr, u64 num_bytes)
1270 {
1271 int ret;
1272 struct btrfs_ordered_sum *sums;
1273 LIST_HEAD(list);
1274
1275 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1276 bytenr + num_bytes - 1, &list, 0);
1277 if (ret == 0 && list_empty(&list))
1278 return 0;
1279
1280 while (!list_empty(&list)) {
1281 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1282 list_del(&sums->list);
1283 kfree(sums);
1284 }
1285 if (ret < 0)
1286 return ret;
1287 return 1;
1288 }
1289
1290 /*
1291 * when nowcow writeback call back. This checks for snapshots or COW copies
1292 * of the extents that exist in the file, and COWs the file as required.
1293 *
1294 * If no cow copies or snapshots exist, we write directly to the existing
1295 * blocks on disk
1296 */
run_delalloc_nocow(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,int force,unsigned long * nr_written)1297 static noinline int run_delalloc_nocow(struct inode *inode,
1298 struct page *locked_page,
1299 u64 start, u64 end, int *page_started, int force,
1300 unsigned long *nr_written)
1301 {
1302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1303 struct btrfs_root *root = BTRFS_I(inode)->root;
1304 struct extent_buffer *leaf;
1305 struct btrfs_path *path;
1306 struct btrfs_file_extent_item *fi;
1307 struct btrfs_key found_key;
1308 struct extent_map *em;
1309 u64 cow_start;
1310 u64 cur_offset;
1311 u64 extent_end;
1312 u64 extent_offset;
1313 u64 disk_bytenr;
1314 u64 num_bytes;
1315 u64 disk_num_bytes;
1316 u64 ram_bytes;
1317 int extent_type;
1318 int ret, err;
1319 int type;
1320 int nocow;
1321 int check_prev = 1;
1322 bool nolock;
1323 u64 ino = btrfs_ino(BTRFS_I(inode));
1324
1325 path = btrfs_alloc_path();
1326 if (!path) {
1327 extent_clear_unlock_delalloc(inode, start, end, end,
1328 locked_page,
1329 EXTENT_LOCKED | EXTENT_DELALLOC |
1330 EXTENT_DO_ACCOUNTING |
1331 EXTENT_DEFRAG, PAGE_UNLOCK |
1332 PAGE_CLEAR_DIRTY |
1333 PAGE_SET_WRITEBACK |
1334 PAGE_END_WRITEBACK);
1335 return -ENOMEM;
1336 }
1337
1338 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1339
1340 cow_start = (u64)-1;
1341 cur_offset = start;
1342 while (1) {
1343 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1344 cur_offset, 0);
1345 if (ret < 0)
1346 goto error;
1347 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1348 leaf = path->nodes[0];
1349 btrfs_item_key_to_cpu(leaf, &found_key,
1350 path->slots[0] - 1);
1351 if (found_key.objectid == ino &&
1352 found_key.type == BTRFS_EXTENT_DATA_KEY)
1353 path->slots[0]--;
1354 }
1355 check_prev = 0;
1356 next_slot:
1357 leaf = path->nodes[0];
1358 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1359 ret = btrfs_next_leaf(root, path);
1360 if (ret < 0) {
1361 if (cow_start != (u64)-1)
1362 cur_offset = cow_start;
1363 goto error;
1364 }
1365 if (ret > 0)
1366 break;
1367 leaf = path->nodes[0];
1368 }
1369
1370 nocow = 0;
1371 disk_bytenr = 0;
1372 num_bytes = 0;
1373 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1374
1375 if (found_key.objectid > ino)
1376 break;
1377 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1378 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1379 path->slots[0]++;
1380 goto next_slot;
1381 }
1382 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1383 found_key.offset > end)
1384 break;
1385
1386 if (found_key.offset > cur_offset) {
1387 extent_end = found_key.offset;
1388 extent_type = 0;
1389 goto out_check;
1390 }
1391
1392 fi = btrfs_item_ptr(leaf, path->slots[0],
1393 struct btrfs_file_extent_item);
1394 extent_type = btrfs_file_extent_type(leaf, fi);
1395
1396 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1397 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1398 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1399 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1400 extent_offset = btrfs_file_extent_offset(leaf, fi);
1401 extent_end = found_key.offset +
1402 btrfs_file_extent_num_bytes(leaf, fi);
1403 disk_num_bytes =
1404 btrfs_file_extent_disk_num_bytes(leaf, fi);
1405 if (extent_end <= start) {
1406 path->slots[0]++;
1407 goto next_slot;
1408 }
1409 if (disk_bytenr == 0)
1410 goto out_check;
1411 if (btrfs_file_extent_compression(leaf, fi) ||
1412 btrfs_file_extent_encryption(leaf, fi) ||
1413 btrfs_file_extent_other_encoding(leaf, fi))
1414 goto out_check;
1415 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1416 goto out_check;
1417 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1418 goto out_check;
1419 ret = btrfs_cross_ref_exist(root, ino,
1420 found_key.offset -
1421 extent_offset, disk_bytenr);
1422 if (ret) {
1423 /*
1424 * ret could be -EIO if the above fails to read
1425 * metadata.
1426 */
1427 if (ret < 0) {
1428 if (cow_start != (u64)-1)
1429 cur_offset = cow_start;
1430 goto error;
1431 }
1432
1433 WARN_ON_ONCE(nolock);
1434 goto out_check;
1435 }
1436 disk_bytenr += extent_offset;
1437 disk_bytenr += cur_offset - found_key.offset;
1438 num_bytes = min(end + 1, extent_end) - cur_offset;
1439 /*
1440 * if there are pending snapshots for this root,
1441 * we fall into common COW way.
1442 */
1443 if (!nolock) {
1444 err = btrfs_start_write_no_snapshotting(root);
1445 if (!err)
1446 goto out_check;
1447 }
1448 /*
1449 * force cow if csum exists in the range.
1450 * this ensure that csum for a given extent are
1451 * either valid or do not exist.
1452 */
1453 ret = csum_exist_in_range(fs_info, disk_bytenr,
1454 num_bytes);
1455 if (ret) {
1456 if (!nolock)
1457 btrfs_end_write_no_snapshotting(root);
1458
1459 /*
1460 * ret could be -EIO if the above fails to read
1461 * metadata.
1462 */
1463 if (ret < 0) {
1464 if (cow_start != (u64)-1)
1465 cur_offset = cow_start;
1466 goto error;
1467 }
1468 WARN_ON_ONCE(nolock);
1469 goto out_check;
1470 }
1471 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1472 if (!nolock)
1473 btrfs_end_write_no_snapshotting(root);
1474 goto out_check;
1475 }
1476 nocow = 1;
1477 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1478 extent_end = found_key.offset +
1479 btrfs_file_extent_ram_bytes(leaf, fi);
1480 extent_end = ALIGN(extent_end,
1481 fs_info->sectorsize);
1482 } else {
1483 BUG_ON(1);
1484 }
1485 out_check:
1486 if (extent_end <= start) {
1487 path->slots[0]++;
1488 if (!nolock && nocow)
1489 btrfs_end_write_no_snapshotting(root);
1490 if (nocow)
1491 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1492 goto next_slot;
1493 }
1494 if (!nocow) {
1495 if (cow_start == (u64)-1)
1496 cow_start = cur_offset;
1497 cur_offset = extent_end;
1498 if (cur_offset > end)
1499 break;
1500 path->slots[0]++;
1501 goto next_slot;
1502 }
1503
1504 btrfs_release_path(path);
1505 if (cow_start != (u64)-1) {
1506 ret = cow_file_range(inode, locked_page,
1507 cow_start, found_key.offset - 1,
1508 end, page_started, nr_written, 1,
1509 NULL);
1510 if (ret) {
1511 if (!nolock && nocow)
1512 btrfs_end_write_no_snapshotting(root);
1513 if (nocow)
1514 btrfs_dec_nocow_writers(fs_info,
1515 disk_bytenr);
1516 goto error;
1517 }
1518 cow_start = (u64)-1;
1519 }
1520
1521 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1522 u64 orig_start = found_key.offset - extent_offset;
1523
1524 em = create_io_em(inode, cur_offset, num_bytes,
1525 orig_start,
1526 disk_bytenr, /* block_start */
1527 num_bytes, /* block_len */
1528 disk_num_bytes, /* orig_block_len */
1529 ram_bytes, BTRFS_COMPRESS_NONE,
1530 BTRFS_ORDERED_PREALLOC);
1531 if (IS_ERR(em)) {
1532 if (!nolock && nocow)
1533 btrfs_end_write_no_snapshotting(root);
1534 if (nocow)
1535 btrfs_dec_nocow_writers(fs_info,
1536 disk_bytenr);
1537 ret = PTR_ERR(em);
1538 goto error;
1539 }
1540 free_extent_map(em);
1541 }
1542
1543 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1544 type = BTRFS_ORDERED_PREALLOC;
1545 } else {
1546 type = BTRFS_ORDERED_NOCOW;
1547 }
1548
1549 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1550 num_bytes, num_bytes, type);
1551 if (nocow)
1552 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1553 BUG_ON(ret); /* -ENOMEM */
1554
1555 if (root->root_key.objectid ==
1556 BTRFS_DATA_RELOC_TREE_OBJECTID)
1557 /*
1558 * Error handled later, as we must prevent
1559 * extent_clear_unlock_delalloc() in error handler
1560 * from freeing metadata of created ordered extent.
1561 */
1562 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1563 num_bytes);
1564
1565 extent_clear_unlock_delalloc(inode, cur_offset,
1566 cur_offset + num_bytes - 1, end,
1567 locked_page, EXTENT_LOCKED |
1568 EXTENT_DELALLOC |
1569 EXTENT_CLEAR_DATA_RESV,
1570 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1571
1572 if (!nolock && nocow)
1573 btrfs_end_write_no_snapshotting(root);
1574 cur_offset = extent_end;
1575
1576 /*
1577 * btrfs_reloc_clone_csums() error, now we're OK to call error
1578 * handler, as metadata for created ordered extent will only
1579 * be freed by btrfs_finish_ordered_io().
1580 */
1581 if (ret)
1582 goto error;
1583 if (cur_offset > end)
1584 break;
1585 }
1586 btrfs_release_path(path);
1587
1588 if (cur_offset <= end && cow_start == (u64)-1)
1589 cow_start = cur_offset;
1590
1591 if (cow_start != (u64)-1) {
1592 cur_offset = end;
1593 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1594 page_started, nr_written, 1, NULL);
1595 if (ret)
1596 goto error;
1597 }
1598
1599 error:
1600 if (ret && cur_offset < end)
1601 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1602 locked_page, EXTENT_LOCKED |
1603 EXTENT_DELALLOC | EXTENT_DEFRAG |
1604 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1605 PAGE_CLEAR_DIRTY |
1606 PAGE_SET_WRITEBACK |
1607 PAGE_END_WRITEBACK);
1608 btrfs_free_path(path);
1609 return ret;
1610 }
1611
need_force_cow(struct inode * inode,u64 start,u64 end)1612 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1613 {
1614
1615 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1616 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1617 return 0;
1618
1619 /*
1620 * @defrag_bytes is a hint value, no spinlock held here,
1621 * if is not zero, it means the file is defragging.
1622 * Force cow if given extent needs to be defragged.
1623 */
1624 if (BTRFS_I(inode)->defrag_bytes &&
1625 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1626 EXTENT_DEFRAG, 0, NULL))
1627 return 1;
1628
1629 return 0;
1630 }
1631
1632 /*
1633 * extent_io.c call back to do delayed allocation processing
1634 */
run_delalloc_range(void * private_data,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1635 static int run_delalloc_range(void *private_data, struct page *locked_page,
1636 u64 start, u64 end, int *page_started,
1637 unsigned long *nr_written)
1638 {
1639 struct inode *inode = private_data;
1640 int ret;
1641 int force_cow = need_force_cow(inode, start, end);
1642
1643 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1644 ret = run_delalloc_nocow(inode, locked_page, start, end,
1645 page_started, 1, nr_written);
1646 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1647 ret = run_delalloc_nocow(inode, locked_page, start, end,
1648 page_started, 0, nr_written);
1649 } else if (!inode_can_compress(inode) ||
1650 !inode_need_compress(inode, start, end)) {
1651 ret = cow_file_range(inode, locked_page, start, end, end,
1652 page_started, nr_written, 1, NULL);
1653 } else {
1654 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1655 &BTRFS_I(inode)->runtime_flags);
1656 ret = cow_file_range_async(inode, locked_page, start, end,
1657 page_started, nr_written);
1658 }
1659 if (ret)
1660 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1661 return ret;
1662 }
1663
btrfs_split_extent_hook(void * private_data,struct extent_state * orig,u64 split)1664 static void btrfs_split_extent_hook(void *private_data,
1665 struct extent_state *orig, u64 split)
1666 {
1667 struct inode *inode = private_data;
1668 u64 size;
1669
1670 /* not delalloc, ignore it */
1671 if (!(orig->state & EXTENT_DELALLOC))
1672 return;
1673
1674 size = orig->end - orig->start + 1;
1675 if (size > BTRFS_MAX_EXTENT_SIZE) {
1676 u32 num_extents;
1677 u64 new_size;
1678
1679 /*
1680 * See the explanation in btrfs_merge_extent_hook, the same
1681 * applies here, just in reverse.
1682 */
1683 new_size = orig->end - split + 1;
1684 num_extents = count_max_extents(new_size);
1685 new_size = split - orig->start;
1686 num_extents += count_max_extents(new_size);
1687 if (count_max_extents(size) >= num_extents)
1688 return;
1689 }
1690
1691 spin_lock(&BTRFS_I(inode)->lock);
1692 BTRFS_I(inode)->outstanding_extents++;
1693 spin_unlock(&BTRFS_I(inode)->lock);
1694 }
1695
1696 /*
1697 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1698 * extents so we can keep track of new extents that are just merged onto old
1699 * extents, such as when we are doing sequential writes, so we can properly
1700 * account for the metadata space we'll need.
1701 */
btrfs_merge_extent_hook(void * private_data,struct extent_state * new,struct extent_state * other)1702 static void btrfs_merge_extent_hook(void *private_data,
1703 struct extent_state *new,
1704 struct extent_state *other)
1705 {
1706 struct inode *inode = private_data;
1707 u64 new_size, old_size;
1708 u32 num_extents;
1709
1710 /* not delalloc, ignore it */
1711 if (!(other->state & EXTENT_DELALLOC))
1712 return;
1713
1714 if (new->start > other->start)
1715 new_size = new->end - other->start + 1;
1716 else
1717 new_size = other->end - new->start + 1;
1718
1719 /* we're not bigger than the max, unreserve the space and go */
1720 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1721 spin_lock(&BTRFS_I(inode)->lock);
1722 BTRFS_I(inode)->outstanding_extents--;
1723 spin_unlock(&BTRFS_I(inode)->lock);
1724 return;
1725 }
1726
1727 /*
1728 * We have to add up either side to figure out how many extents were
1729 * accounted for before we merged into one big extent. If the number of
1730 * extents we accounted for is <= the amount we need for the new range
1731 * then we can return, otherwise drop. Think of it like this
1732 *
1733 * [ 4k][MAX_SIZE]
1734 *
1735 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1736 * need 2 outstanding extents, on one side we have 1 and the other side
1737 * we have 1 so they are == and we can return. But in this case
1738 *
1739 * [MAX_SIZE+4k][MAX_SIZE+4k]
1740 *
1741 * Each range on their own accounts for 2 extents, but merged together
1742 * they are only 3 extents worth of accounting, so we need to drop in
1743 * this case.
1744 */
1745 old_size = other->end - other->start + 1;
1746 num_extents = count_max_extents(old_size);
1747 old_size = new->end - new->start + 1;
1748 num_extents += count_max_extents(old_size);
1749 if (count_max_extents(new_size) >= num_extents)
1750 return;
1751
1752 spin_lock(&BTRFS_I(inode)->lock);
1753 BTRFS_I(inode)->outstanding_extents--;
1754 spin_unlock(&BTRFS_I(inode)->lock);
1755 }
1756
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1757 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1758 struct inode *inode)
1759 {
1760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1761
1762 spin_lock(&root->delalloc_lock);
1763 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1764 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1765 &root->delalloc_inodes);
1766 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1767 &BTRFS_I(inode)->runtime_flags);
1768 root->nr_delalloc_inodes++;
1769 if (root->nr_delalloc_inodes == 1) {
1770 spin_lock(&fs_info->delalloc_root_lock);
1771 BUG_ON(!list_empty(&root->delalloc_root));
1772 list_add_tail(&root->delalloc_root,
1773 &fs_info->delalloc_roots);
1774 spin_unlock(&fs_info->delalloc_root_lock);
1775 }
1776 }
1777 spin_unlock(&root->delalloc_lock);
1778 }
1779
1780
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1781 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1782 struct btrfs_inode *inode)
1783 {
1784 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1785
1786 if (!list_empty(&inode->delalloc_inodes)) {
1787 list_del_init(&inode->delalloc_inodes);
1788 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1789 &inode->runtime_flags);
1790 root->nr_delalloc_inodes--;
1791 if (!root->nr_delalloc_inodes) {
1792 spin_lock(&fs_info->delalloc_root_lock);
1793 BUG_ON(list_empty(&root->delalloc_root));
1794 list_del_init(&root->delalloc_root);
1795 spin_unlock(&fs_info->delalloc_root_lock);
1796 }
1797 }
1798 }
1799
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1800 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1801 struct btrfs_inode *inode)
1802 {
1803 spin_lock(&root->delalloc_lock);
1804 __btrfs_del_delalloc_inode(root, inode);
1805 spin_unlock(&root->delalloc_lock);
1806 }
1807
1808 /*
1809 * extent_io.c set_bit_hook, used to track delayed allocation
1810 * bytes in this file, and to maintain the list of inodes that
1811 * have pending delalloc work to be done.
1812 */
btrfs_set_bit_hook(void * private_data,struct extent_state * state,unsigned * bits)1813 static void btrfs_set_bit_hook(void *private_data,
1814 struct extent_state *state, unsigned *bits)
1815 {
1816 struct inode *inode = private_data;
1817
1818 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1819
1820 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1821 WARN_ON(1);
1822 /*
1823 * set_bit and clear bit hooks normally require _irqsave/restore
1824 * but in this case, we are only testing for the DELALLOC
1825 * bit, which is only set or cleared with irqs on
1826 */
1827 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1828 struct btrfs_root *root = BTRFS_I(inode)->root;
1829 u64 len = state->end + 1 - state->start;
1830 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1831
1832 if (*bits & EXTENT_FIRST_DELALLOC) {
1833 *bits &= ~EXTENT_FIRST_DELALLOC;
1834 } else {
1835 spin_lock(&BTRFS_I(inode)->lock);
1836 BTRFS_I(inode)->outstanding_extents++;
1837 spin_unlock(&BTRFS_I(inode)->lock);
1838 }
1839
1840 /* For sanity tests */
1841 if (btrfs_is_testing(fs_info))
1842 return;
1843
1844 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1845 fs_info->delalloc_batch);
1846 spin_lock(&BTRFS_I(inode)->lock);
1847 BTRFS_I(inode)->delalloc_bytes += len;
1848 if (*bits & EXTENT_DEFRAG)
1849 BTRFS_I(inode)->defrag_bytes += len;
1850 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1851 &BTRFS_I(inode)->runtime_flags))
1852 btrfs_add_delalloc_inodes(root, inode);
1853 spin_unlock(&BTRFS_I(inode)->lock);
1854 }
1855
1856 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1857 (*bits & EXTENT_DELALLOC_NEW)) {
1858 spin_lock(&BTRFS_I(inode)->lock);
1859 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1860 state->start;
1861 spin_unlock(&BTRFS_I(inode)->lock);
1862 }
1863 }
1864
1865 /*
1866 * extent_io.c clear_bit_hook, see set_bit_hook for why
1867 */
btrfs_clear_bit_hook(void * private_data,struct extent_state * state,unsigned * bits)1868 static void btrfs_clear_bit_hook(void *private_data,
1869 struct extent_state *state,
1870 unsigned *bits)
1871 {
1872 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1873 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1874 u64 len = state->end + 1 - state->start;
1875 u32 num_extents = count_max_extents(len);
1876
1877 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1878 spin_lock(&inode->lock);
1879 inode->defrag_bytes -= len;
1880 spin_unlock(&inode->lock);
1881 }
1882
1883 /*
1884 * set_bit and clear bit hooks normally require _irqsave/restore
1885 * but in this case, we are only testing for the DELALLOC
1886 * bit, which is only set or cleared with irqs on
1887 */
1888 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1889 struct btrfs_root *root = inode->root;
1890 bool do_list = !btrfs_is_free_space_inode(inode);
1891
1892 if (*bits & EXTENT_FIRST_DELALLOC) {
1893 *bits &= ~EXTENT_FIRST_DELALLOC;
1894 } else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
1895 spin_lock(&inode->lock);
1896 inode->outstanding_extents -= num_extents;
1897 spin_unlock(&inode->lock);
1898 }
1899
1900 /*
1901 * We don't reserve metadata space for space cache inodes so we
1902 * don't need to call dellalloc_release_metadata if there is an
1903 * error.
1904 */
1905 if (*bits & EXTENT_CLEAR_META_RESV &&
1906 root != fs_info->tree_root)
1907 btrfs_delalloc_release_metadata(inode, len);
1908
1909 /* For sanity tests. */
1910 if (btrfs_is_testing(fs_info))
1911 return;
1912
1913 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1914 do_list && !(state->state & EXTENT_NORESERVE) &&
1915 (*bits & EXTENT_CLEAR_DATA_RESV))
1916 btrfs_free_reserved_data_space_noquota(
1917 &inode->vfs_inode,
1918 state->start, len);
1919
1920 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1921 fs_info->delalloc_batch);
1922 spin_lock(&inode->lock);
1923 inode->delalloc_bytes -= len;
1924 if (do_list && inode->delalloc_bytes == 0 &&
1925 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1926 &inode->runtime_flags))
1927 btrfs_del_delalloc_inode(root, inode);
1928 spin_unlock(&inode->lock);
1929 }
1930
1931 if ((state->state & EXTENT_DELALLOC_NEW) &&
1932 (*bits & EXTENT_DELALLOC_NEW)) {
1933 spin_lock(&inode->lock);
1934 ASSERT(inode->new_delalloc_bytes >= len);
1935 inode->new_delalloc_bytes -= len;
1936 spin_unlock(&inode->lock);
1937 }
1938 }
1939
1940 /*
1941 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1942 * we don't create bios that span stripes or chunks
1943 *
1944 * return 1 if page cannot be merged to bio
1945 * return 0 if page can be merged to bio
1946 * return error otherwise
1947 */
btrfs_merge_bio_hook(struct page * page,unsigned long offset,size_t size,struct bio * bio,unsigned long bio_flags)1948 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1949 size_t size, struct bio *bio,
1950 unsigned long bio_flags)
1951 {
1952 struct inode *inode = page->mapping->host;
1953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1954 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1955 u64 length = 0;
1956 u64 map_length;
1957 int ret;
1958
1959 if (bio_flags & EXTENT_BIO_COMPRESSED)
1960 return 0;
1961
1962 length = bio->bi_iter.bi_size;
1963 map_length = length;
1964 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1965 NULL, 0);
1966 if (ret < 0)
1967 return ret;
1968 if (map_length < length + size)
1969 return 1;
1970 return 0;
1971 }
1972
1973 /*
1974 * in order to insert checksums into the metadata in large chunks,
1975 * we wait until bio submission time. All the pages in the bio are
1976 * checksummed and sums are attached onto the ordered extent record.
1977 *
1978 * At IO completion time the cums attached on the ordered extent record
1979 * are inserted into the btree
1980 */
__btrfs_submit_bio_start(void * private_data,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1981 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
1982 int mirror_num, unsigned long bio_flags,
1983 u64 bio_offset)
1984 {
1985 struct inode *inode = private_data;
1986 blk_status_t ret = 0;
1987
1988 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1989 BUG_ON(ret); /* -ENOMEM */
1990 return 0;
1991 }
1992
1993 /*
1994 * in order to insert checksums into the metadata in large chunks,
1995 * we wait until bio submission time. All the pages in the bio are
1996 * checksummed and sums are attached onto the ordered extent record.
1997 *
1998 * At IO completion time the cums attached on the ordered extent record
1999 * are inserted into the btree
2000 */
__btrfs_submit_bio_done(void * private_data,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)2001 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
2002 int mirror_num, unsigned long bio_flags,
2003 u64 bio_offset)
2004 {
2005 struct inode *inode = private_data;
2006 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2007 blk_status_t ret;
2008
2009 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
2010 if (ret) {
2011 bio->bi_status = ret;
2012 bio_endio(bio);
2013 }
2014 return ret;
2015 }
2016
2017 /*
2018 * extent_io.c submission hook. This does the right thing for csum calculation
2019 * on write, or reading the csums from the tree before a read
2020 */
btrfs_submit_bio_hook(void * private_data,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)2021 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
2022 int mirror_num, unsigned long bio_flags,
2023 u64 bio_offset)
2024 {
2025 struct inode *inode = private_data;
2026 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2027 struct btrfs_root *root = BTRFS_I(inode)->root;
2028 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2029 blk_status_t ret = 0;
2030 int skip_sum;
2031 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2032
2033 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2034
2035 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2036 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2037
2038 if (bio_op(bio) != REQ_OP_WRITE) {
2039 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2040 if (ret)
2041 goto out;
2042
2043 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2044 ret = btrfs_submit_compressed_read(inode, bio,
2045 mirror_num,
2046 bio_flags);
2047 goto out;
2048 } else if (!skip_sum) {
2049 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2050 if (ret)
2051 goto out;
2052 }
2053 goto mapit;
2054 } else if (async && !skip_sum) {
2055 /* csum items have already been cloned */
2056 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2057 goto mapit;
2058 /* we're doing a write, do the async checksumming */
2059 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2060 bio_offset, inode,
2061 __btrfs_submit_bio_start,
2062 __btrfs_submit_bio_done);
2063 goto out;
2064 } else if (!skip_sum) {
2065 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2066 if (ret)
2067 goto out;
2068 }
2069
2070 mapit:
2071 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2072
2073 out:
2074 if (ret) {
2075 bio->bi_status = ret;
2076 bio_endio(bio);
2077 }
2078 return ret;
2079 }
2080
2081 /*
2082 * given a list of ordered sums record them in the inode. This happens
2083 * at IO completion time based on sums calculated at bio submission time.
2084 */
add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,struct list_head * list)2085 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2086 struct inode *inode, struct list_head *list)
2087 {
2088 struct btrfs_ordered_sum *sum;
2089
2090 list_for_each_entry(sum, list, list) {
2091 trans->adding_csums = 1;
2092 btrfs_csum_file_blocks(trans,
2093 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2094 trans->adding_csums = 0;
2095 }
2096 return 0;
2097 }
2098
btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end,struct extent_state ** cached_state,int dedupe)2099 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2100 struct extent_state **cached_state, int dedupe)
2101 {
2102 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2103 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2104 cached_state);
2105 }
2106
2107 /* see btrfs_writepage_start_hook for details on why this is required */
2108 struct btrfs_writepage_fixup {
2109 struct page *page;
2110 struct btrfs_work work;
2111 };
2112
btrfs_writepage_fixup_worker(struct btrfs_work * work)2113 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2114 {
2115 struct btrfs_writepage_fixup *fixup;
2116 struct btrfs_ordered_extent *ordered;
2117 struct extent_state *cached_state = NULL;
2118 struct extent_changeset *data_reserved = NULL;
2119 struct page *page;
2120 struct inode *inode;
2121 u64 page_start;
2122 u64 page_end;
2123 int ret;
2124
2125 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2126 page = fixup->page;
2127 again:
2128 lock_page(page);
2129 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2130 ClearPageChecked(page);
2131 goto out_page;
2132 }
2133
2134 inode = page->mapping->host;
2135 page_start = page_offset(page);
2136 page_end = page_offset(page) + PAGE_SIZE - 1;
2137
2138 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2139 &cached_state);
2140
2141 /* already ordered? We're done */
2142 if (PagePrivate2(page))
2143 goto out;
2144
2145 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2146 PAGE_SIZE);
2147 if (ordered) {
2148 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2149 page_end, &cached_state, GFP_NOFS);
2150 unlock_page(page);
2151 btrfs_start_ordered_extent(inode, ordered, 1);
2152 btrfs_put_ordered_extent(ordered);
2153 goto again;
2154 }
2155
2156 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2157 PAGE_SIZE);
2158 if (ret) {
2159 mapping_set_error(page->mapping, ret);
2160 end_extent_writepage(page, ret, page_start, page_end);
2161 ClearPageChecked(page);
2162 goto out;
2163 }
2164
2165 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
2166 &cached_state, 0);
2167 if (ret) {
2168 mapping_set_error(page->mapping, ret);
2169 end_extent_writepage(page, ret, page_start, page_end);
2170 ClearPageChecked(page);
2171 goto out;
2172 }
2173
2174 ClearPageChecked(page);
2175 set_page_dirty(page);
2176 out:
2177 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2178 &cached_state, GFP_NOFS);
2179 out_page:
2180 unlock_page(page);
2181 put_page(page);
2182 kfree(fixup);
2183 extent_changeset_free(data_reserved);
2184 }
2185
2186 /*
2187 * There are a few paths in the higher layers of the kernel that directly
2188 * set the page dirty bit without asking the filesystem if it is a
2189 * good idea. This causes problems because we want to make sure COW
2190 * properly happens and the data=ordered rules are followed.
2191 *
2192 * In our case any range that doesn't have the ORDERED bit set
2193 * hasn't been properly setup for IO. We kick off an async process
2194 * to fix it up. The async helper will wait for ordered extents, set
2195 * the delalloc bit and make it safe to write the page.
2196 */
btrfs_writepage_start_hook(struct page * page,u64 start,u64 end)2197 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2198 {
2199 struct inode *inode = page->mapping->host;
2200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2201 struct btrfs_writepage_fixup *fixup;
2202
2203 /* this page is properly in the ordered list */
2204 if (TestClearPagePrivate2(page))
2205 return 0;
2206
2207 if (PageChecked(page))
2208 return -EAGAIN;
2209
2210 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2211 if (!fixup)
2212 return -EAGAIN;
2213
2214 SetPageChecked(page);
2215 get_page(page);
2216 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2217 btrfs_writepage_fixup_worker, NULL, NULL);
2218 fixup->page = page;
2219 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2220 return -EBUSY;
2221 }
2222
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)2223 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2224 struct inode *inode, u64 file_pos,
2225 u64 disk_bytenr, u64 disk_num_bytes,
2226 u64 num_bytes, u64 ram_bytes,
2227 u8 compression, u8 encryption,
2228 u16 other_encoding, int extent_type)
2229 {
2230 struct btrfs_root *root = BTRFS_I(inode)->root;
2231 struct btrfs_file_extent_item *fi;
2232 struct btrfs_path *path;
2233 struct extent_buffer *leaf;
2234 struct btrfs_key ins;
2235 u64 qg_released;
2236 int extent_inserted = 0;
2237 int ret;
2238
2239 path = btrfs_alloc_path();
2240 if (!path)
2241 return -ENOMEM;
2242
2243 /*
2244 * we may be replacing one extent in the tree with another.
2245 * The new extent is pinned in the extent map, and we don't want
2246 * to drop it from the cache until it is completely in the btree.
2247 *
2248 * So, tell btrfs_drop_extents to leave this extent in the cache.
2249 * the caller is expected to unpin it and allow it to be merged
2250 * with the others.
2251 */
2252 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2253 file_pos + num_bytes, NULL, 0,
2254 1, sizeof(*fi), &extent_inserted);
2255 if (ret)
2256 goto out;
2257
2258 if (!extent_inserted) {
2259 ins.objectid = btrfs_ino(BTRFS_I(inode));
2260 ins.offset = file_pos;
2261 ins.type = BTRFS_EXTENT_DATA_KEY;
2262
2263 path->leave_spinning = 1;
2264 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2265 sizeof(*fi));
2266 if (ret)
2267 goto out;
2268 }
2269 leaf = path->nodes[0];
2270 fi = btrfs_item_ptr(leaf, path->slots[0],
2271 struct btrfs_file_extent_item);
2272 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2273 btrfs_set_file_extent_type(leaf, fi, extent_type);
2274 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2275 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2276 btrfs_set_file_extent_offset(leaf, fi, 0);
2277 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2278 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2279 btrfs_set_file_extent_compression(leaf, fi, compression);
2280 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2281 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2282
2283 btrfs_mark_buffer_dirty(leaf);
2284 btrfs_release_path(path);
2285
2286 inode_add_bytes(inode, num_bytes);
2287
2288 ins.objectid = disk_bytenr;
2289 ins.offset = disk_num_bytes;
2290 ins.type = BTRFS_EXTENT_ITEM_KEY;
2291
2292 /*
2293 * Release the reserved range from inode dirty range map, as it is
2294 * already moved into delayed_ref_head
2295 */
2296 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2297 if (ret < 0)
2298 goto out;
2299 qg_released = ret;
2300 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2301 btrfs_ino(BTRFS_I(inode)), file_pos, qg_released, &ins);
2302 out:
2303 btrfs_free_path(path);
2304
2305 return ret;
2306 }
2307
2308 /* snapshot-aware defrag */
2309 struct sa_defrag_extent_backref {
2310 struct rb_node node;
2311 struct old_sa_defrag_extent *old;
2312 u64 root_id;
2313 u64 inum;
2314 u64 file_pos;
2315 u64 extent_offset;
2316 u64 num_bytes;
2317 u64 generation;
2318 };
2319
2320 struct old_sa_defrag_extent {
2321 struct list_head list;
2322 struct new_sa_defrag_extent *new;
2323
2324 u64 extent_offset;
2325 u64 bytenr;
2326 u64 offset;
2327 u64 len;
2328 int count;
2329 };
2330
2331 struct new_sa_defrag_extent {
2332 struct rb_root root;
2333 struct list_head head;
2334 struct btrfs_path *path;
2335 struct inode *inode;
2336 u64 file_pos;
2337 u64 len;
2338 u64 bytenr;
2339 u64 disk_len;
2340 u8 compress_type;
2341 };
2342
backref_comp(struct sa_defrag_extent_backref * b1,struct sa_defrag_extent_backref * b2)2343 static int backref_comp(struct sa_defrag_extent_backref *b1,
2344 struct sa_defrag_extent_backref *b2)
2345 {
2346 if (b1->root_id < b2->root_id)
2347 return -1;
2348 else if (b1->root_id > b2->root_id)
2349 return 1;
2350
2351 if (b1->inum < b2->inum)
2352 return -1;
2353 else if (b1->inum > b2->inum)
2354 return 1;
2355
2356 if (b1->file_pos < b2->file_pos)
2357 return -1;
2358 else if (b1->file_pos > b2->file_pos)
2359 return 1;
2360
2361 /*
2362 * [------------------------------] ===> (a range of space)
2363 * |<--->| |<---->| =============> (fs/file tree A)
2364 * |<---------------------------->| ===> (fs/file tree B)
2365 *
2366 * A range of space can refer to two file extents in one tree while
2367 * refer to only one file extent in another tree.
2368 *
2369 * So we may process a disk offset more than one time(two extents in A)
2370 * and locate at the same extent(one extent in B), then insert two same
2371 * backrefs(both refer to the extent in B).
2372 */
2373 return 0;
2374 }
2375
backref_insert(struct rb_root * root,struct sa_defrag_extent_backref * backref)2376 static void backref_insert(struct rb_root *root,
2377 struct sa_defrag_extent_backref *backref)
2378 {
2379 struct rb_node **p = &root->rb_node;
2380 struct rb_node *parent = NULL;
2381 struct sa_defrag_extent_backref *entry;
2382 int ret;
2383
2384 while (*p) {
2385 parent = *p;
2386 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2387
2388 ret = backref_comp(backref, entry);
2389 if (ret < 0)
2390 p = &(*p)->rb_left;
2391 else
2392 p = &(*p)->rb_right;
2393 }
2394
2395 rb_link_node(&backref->node, parent, p);
2396 rb_insert_color(&backref->node, root);
2397 }
2398
2399 /*
2400 * Note the backref might has changed, and in this case we just return 0.
2401 */
record_one_backref(u64 inum,u64 offset,u64 root_id,void * ctx)2402 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2403 void *ctx)
2404 {
2405 struct btrfs_file_extent_item *extent;
2406 struct old_sa_defrag_extent *old = ctx;
2407 struct new_sa_defrag_extent *new = old->new;
2408 struct btrfs_path *path = new->path;
2409 struct btrfs_key key;
2410 struct btrfs_root *root;
2411 struct sa_defrag_extent_backref *backref;
2412 struct extent_buffer *leaf;
2413 struct inode *inode = new->inode;
2414 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2415 int slot;
2416 int ret;
2417 u64 extent_offset;
2418 u64 num_bytes;
2419
2420 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2421 inum == btrfs_ino(BTRFS_I(inode)))
2422 return 0;
2423
2424 key.objectid = root_id;
2425 key.type = BTRFS_ROOT_ITEM_KEY;
2426 key.offset = (u64)-1;
2427
2428 root = btrfs_read_fs_root_no_name(fs_info, &key);
2429 if (IS_ERR(root)) {
2430 if (PTR_ERR(root) == -ENOENT)
2431 return 0;
2432 WARN_ON(1);
2433 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2434 inum, offset, root_id);
2435 return PTR_ERR(root);
2436 }
2437
2438 key.objectid = inum;
2439 key.type = BTRFS_EXTENT_DATA_KEY;
2440 if (offset > (u64)-1 << 32)
2441 key.offset = 0;
2442 else
2443 key.offset = offset;
2444
2445 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2446 if (WARN_ON(ret < 0))
2447 return ret;
2448 ret = 0;
2449
2450 while (1) {
2451 cond_resched();
2452
2453 leaf = path->nodes[0];
2454 slot = path->slots[0];
2455
2456 if (slot >= btrfs_header_nritems(leaf)) {
2457 ret = btrfs_next_leaf(root, path);
2458 if (ret < 0) {
2459 goto out;
2460 } else if (ret > 0) {
2461 ret = 0;
2462 goto out;
2463 }
2464 continue;
2465 }
2466
2467 path->slots[0]++;
2468
2469 btrfs_item_key_to_cpu(leaf, &key, slot);
2470
2471 if (key.objectid > inum)
2472 goto out;
2473
2474 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2475 continue;
2476
2477 extent = btrfs_item_ptr(leaf, slot,
2478 struct btrfs_file_extent_item);
2479
2480 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2481 continue;
2482
2483 /*
2484 * 'offset' refers to the exact key.offset,
2485 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2486 * (key.offset - extent_offset).
2487 */
2488 if (key.offset != offset)
2489 continue;
2490
2491 extent_offset = btrfs_file_extent_offset(leaf, extent);
2492 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2493
2494 if (extent_offset >= old->extent_offset + old->offset +
2495 old->len || extent_offset + num_bytes <=
2496 old->extent_offset + old->offset)
2497 continue;
2498 break;
2499 }
2500
2501 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2502 if (!backref) {
2503 ret = -ENOENT;
2504 goto out;
2505 }
2506
2507 backref->root_id = root_id;
2508 backref->inum = inum;
2509 backref->file_pos = offset;
2510 backref->num_bytes = num_bytes;
2511 backref->extent_offset = extent_offset;
2512 backref->generation = btrfs_file_extent_generation(leaf, extent);
2513 backref->old = old;
2514 backref_insert(&new->root, backref);
2515 old->count++;
2516 out:
2517 btrfs_release_path(path);
2518 WARN_ON(ret);
2519 return ret;
2520 }
2521
record_extent_backrefs(struct btrfs_path * path,struct new_sa_defrag_extent * new)2522 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2523 struct new_sa_defrag_extent *new)
2524 {
2525 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2526 struct old_sa_defrag_extent *old, *tmp;
2527 int ret;
2528
2529 new->path = path;
2530
2531 list_for_each_entry_safe(old, tmp, &new->head, list) {
2532 ret = iterate_inodes_from_logical(old->bytenr +
2533 old->extent_offset, fs_info,
2534 path, record_one_backref,
2535 old);
2536 if (ret < 0 && ret != -ENOENT)
2537 return false;
2538
2539 /* no backref to be processed for this extent */
2540 if (!old->count) {
2541 list_del(&old->list);
2542 kfree(old);
2543 }
2544 }
2545
2546 if (list_empty(&new->head))
2547 return false;
2548
2549 return true;
2550 }
2551
relink_is_mergable(struct extent_buffer * leaf,struct btrfs_file_extent_item * fi,struct new_sa_defrag_extent * new)2552 static int relink_is_mergable(struct extent_buffer *leaf,
2553 struct btrfs_file_extent_item *fi,
2554 struct new_sa_defrag_extent *new)
2555 {
2556 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2557 return 0;
2558
2559 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2560 return 0;
2561
2562 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2563 return 0;
2564
2565 if (btrfs_file_extent_encryption(leaf, fi) ||
2566 btrfs_file_extent_other_encoding(leaf, fi))
2567 return 0;
2568
2569 return 1;
2570 }
2571
2572 /*
2573 * Note the backref might has changed, and in this case we just return 0.
2574 */
relink_extent_backref(struct btrfs_path * path,struct sa_defrag_extent_backref * prev,struct sa_defrag_extent_backref * backref)2575 static noinline int relink_extent_backref(struct btrfs_path *path,
2576 struct sa_defrag_extent_backref *prev,
2577 struct sa_defrag_extent_backref *backref)
2578 {
2579 struct btrfs_file_extent_item *extent;
2580 struct btrfs_file_extent_item *item;
2581 struct btrfs_ordered_extent *ordered;
2582 struct btrfs_trans_handle *trans;
2583 struct btrfs_root *root;
2584 struct btrfs_key key;
2585 struct extent_buffer *leaf;
2586 struct old_sa_defrag_extent *old = backref->old;
2587 struct new_sa_defrag_extent *new = old->new;
2588 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2589 struct inode *inode;
2590 struct extent_state *cached = NULL;
2591 int ret = 0;
2592 u64 start;
2593 u64 len;
2594 u64 lock_start;
2595 u64 lock_end;
2596 bool merge = false;
2597 int index;
2598
2599 if (prev && prev->root_id == backref->root_id &&
2600 prev->inum == backref->inum &&
2601 prev->file_pos + prev->num_bytes == backref->file_pos)
2602 merge = true;
2603
2604 /* step 1: get root */
2605 key.objectid = backref->root_id;
2606 key.type = BTRFS_ROOT_ITEM_KEY;
2607 key.offset = (u64)-1;
2608
2609 index = srcu_read_lock(&fs_info->subvol_srcu);
2610
2611 root = btrfs_read_fs_root_no_name(fs_info, &key);
2612 if (IS_ERR(root)) {
2613 srcu_read_unlock(&fs_info->subvol_srcu, index);
2614 if (PTR_ERR(root) == -ENOENT)
2615 return 0;
2616 return PTR_ERR(root);
2617 }
2618
2619 if (btrfs_root_readonly(root)) {
2620 srcu_read_unlock(&fs_info->subvol_srcu, index);
2621 return 0;
2622 }
2623
2624 /* step 2: get inode */
2625 key.objectid = backref->inum;
2626 key.type = BTRFS_INODE_ITEM_KEY;
2627 key.offset = 0;
2628
2629 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2630 if (IS_ERR(inode)) {
2631 srcu_read_unlock(&fs_info->subvol_srcu, index);
2632 return 0;
2633 }
2634
2635 srcu_read_unlock(&fs_info->subvol_srcu, index);
2636
2637 /* step 3: relink backref */
2638 lock_start = backref->file_pos;
2639 lock_end = backref->file_pos + backref->num_bytes - 1;
2640 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2641 &cached);
2642
2643 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2644 if (ordered) {
2645 btrfs_put_ordered_extent(ordered);
2646 goto out_unlock;
2647 }
2648
2649 trans = btrfs_join_transaction(root);
2650 if (IS_ERR(trans)) {
2651 ret = PTR_ERR(trans);
2652 goto out_unlock;
2653 }
2654
2655 key.objectid = backref->inum;
2656 key.type = BTRFS_EXTENT_DATA_KEY;
2657 key.offset = backref->file_pos;
2658
2659 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2660 if (ret < 0) {
2661 goto out_free_path;
2662 } else if (ret > 0) {
2663 ret = 0;
2664 goto out_free_path;
2665 }
2666
2667 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2668 struct btrfs_file_extent_item);
2669
2670 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2671 backref->generation)
2672 goto out_free_path;
2673
2674 btrfs_release_path(path);
2675
2676 start = backref->file_pos;
2677 if (backref->extent_offset < old->extent_offset + old->offset)
2678 start += old->extent_offset + old->offset -
2679 backref->extent_offset;
2680
2681 len = min(backref->extent_offset + backref->num_bytes,
2682 old->extent_offset + old->offset + old->len);
2683 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2684
2685 ret = btrfs_drop_extents(trans, root, inode, start,
2686 start + len, 1);
2687 if (ret)
2688 goto out_free_path;
2689 again:
2690 key.objectid = btrfs_ino(BTRFS_I(inode));
2691 key.type = BTRFS_EXTENT_DATA_KEY;
2692 key.offset = start;
2693
2694 path->leave_spinning = 1;
2695 if (merge) {
2696 struct btrfs_file_extent_item *fi;
2697 u64 extent_len;
2698 struct btrfs_key found_key;
2699
2700 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2701 if (ret < 0)
2702 goto out_free_path;
2703
2704 path->slots[0]--;
2705 leaf = path->nodes[0];
2706 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2707
2708 fi = btrfs_item_ptr(leaf, path->slots[0],
2709 struct btrfs_file_extent_item);
2710 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2711
2712 if (extent_len + found_key.offset == start &&
2713 relink_is_mergable(leaf, fi, new)) {
2714 btrfs_set_file_extent_num_bytes(leaf, fi,
2715 extent_len + len);
2716 btrfs_mark_buffer_dirty(leaf);
2717 inode_add_bytes(inode, len);
2718
2719 ret = 1;
2720 goto out_free_path;
2721 } else {
2722 merge = false;
2723 btrfs_release_path(path);
2724 goto again;
2725 }
2726 }
2727
2728 ret = btrfs_insert_empty_item(trans, root, path, &key,
2729 sizeof(*extent));
2730 if (ret) {
2731 btrfs_abort_transaction(trans, ret);
2732 goto out_free_path;
2733 }
2734
2735 leaf = path->nodes[0];
2736 item = btrfs_item_ptr(leaf, path->slots[0],
2737 struct btrfs_file_extent_item);
2738 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2739 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2740 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2741 btrfs_set_file_extent_num_bytes(leaf, item, len);
2742 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2743 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2744 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2745 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2746 btrfs_set_file_extent_encryption(leaf, item, 0);
2747 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2748
2749 btrfs_mark_buffer_dirty(leaf);
2750 inode_add_bytes(inode, len);
2751 btrfs_release_path(path);
2752
2753 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
2754 new->disk_len, 0,
2755 backref->root_id, backref->inum,
2756 new->file_pos); /* start - extent_offset */
2757 if (ret) {
2758 btrfs_abort_transaction(trans, ret);
2759 goto out_free_path;
2760 }
2761
2762 ret = 1;
2763 out_free_path:
2764 btrfs_release_path(path);
2765 path->leave_spinning = 0;
2766 btrfs_end_transaction(trans);
2767 out_unlock:
2768 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2769 &cached, GFP_NOFS);
2770 iput(inode);
2771 return ret;
2772 }
2773
free_sa_defrag_extent(struct new_sa_defrag_extent * new)2774 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2775 {
2776 struct old_sa_defrag_extent *old, *tmp;
2777
2778 if (!new)
2779 return;
2780
2781 list_for_each_entry_safe(old, tmp, &new->head, list) {
2782 kfree(old);
2783 }
2784 kfree(new);
2785 }
2786
relink_file_extents(struct new_sa_defrag_extent * new)2787 static void relink_file_extents(struct new_sa_defrag_extent *new)
2788 {
2789 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2790 struct btrfs_path *path;
2791 struct sa_defrag_extent_backref *backref;
2792 struct sa_defrag_extent_backref *prev = NULL;
2793 struct inode *inode;
2794 struct btrfs_root *root;
2795 struct rb_node *node;
2796 int ret;
2797
2798 inode = new->inode;
2799 root = BTRFS_I(inode)->root;
2800
2801 path = btrfs_alloc_path();
2802 if (!path)
2803 return;
2804
2805 if (!record_extent_backrefs(path, new)) {
2806 btrfs_free_path(path);
2807 goto out;
2808 }
2809 btrfs_release_path(path);
2810
2811 while (1) {
2812 node = rb_first(&new->root);
2813 if (!node)
2814 break;
2815 rb_erase(node, &new->root);
2816
2817 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2818
2819 ret = relink_extent_backref(path, prev, backref);
2820 WARN_ON(ret < 0);
2821
2822 kfree(prev);
2823
2824 if (ret == 1)
2825 prev = backref;
2826 else
2827 prev = NULL;
2828 cond_resched();
2829 }
2830 kfree(prev);
2831
2832 btrfs_free_path(path);
2833 out:
2834 free_sa_defrag_extent(new);
2835
2836 atomic_dec(&fs_info->defrag_running);
2837 wake_up(&fs_info->transaction_wait);
2838 }
2839
2840 static struct new_sa_defrag_extent *
record_old_file_extents(struct inode * inode,struct btrfs_ordered_extent * ordered)2841 record_old_file_extents(struct inode *inode,
2842 struct btrfs_ordered_extent *ordered)
2843 {
2844 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2845 struct btrfs_root *root = BTRFS_I(inode)->root;
2846 struct btrfs_path *path;
2847 struct btrfs_key key;
2848 struct old_sa_defrag_extent *old;
2849 struct new_sa_defrag_extent *new;
2850 int ret;
2851
2852 new = kmalloc(sizeof(*new), GFP_NOFS);
2853 if (!new)
2854 return NULL;
2855
2856 new->inode = inode;
2857 new->file_pos = ordered->file_offset;
2858 new->len = ordered->len;
2859 new->bytenr = ordered->start;
2860 new->disk_len = ordered->disk_len;
2861 new->compress_type = ordered->compress_type;
2862 new->root = RB_ROOT;
2863 INIT_LIST_HEAD(&new->head);
2864
2865 path = btrfs_alloc_path();
2866 if (!path)
2867 goto out_kfree;
2868
2869 key.objectid = btrfs_ino(BTRFS_I(inode));
2870 key.type = BTRFS_EXTENT_DATA_KEY;
2871 key.offset = new->file_pos;
2872
2873 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2874 if (ret < 0)
2875 goto out_free_path;
2876 if (ret > 0 && path->slots[0] > 0)
2877 path->slots[0]--;
2878
2879 /* find out all the old extents for the file range */
2880 while (1) {
2881 struct btrfs_file_extent_item *extent;
2882 struct extent_buffer *l;
2883 int slot;
2884 u64 num_bytes;
2885 u64 offset;
2886 u64 end;
2887 u64 disk_bytenr;
2888 u64 extent_offset;
2889
2890 l = path->nodes[0];
2891 slot = path->slots[0];
2892
2893 if (slot >= btrfs_header_nritems(l)) {
2894 ret = btrfs_next_leaf(root, path);
2895 if (ret < 0)
2896 goto out_free_path;
2897 else if (ret > 0)
2898 break;
2899 continue;
2900 }
2901
2902 btrfs_item_key_to_cpu(l, &key, slot);
2903
2904 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2905 break;
2906 if (key.type != BTRFS_EXTENT_DATA_KEY)
2907 break;
2908 if (key.offset >= new->file_pos + new->len)
2909 break;
2910
2911 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2912
2913 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2914 if (key.offset + num_bytes < new->file_pos)
2915 goto next;
2916
2917 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2918 if (!disk_bytenr)
2919 goto next;
2920
2921 extent_offset = btrfs_file_extent_offset(l, extent);
2922
2923 old = kmalloc(sizeof(*old), GFP_NOFS);
2924 if (!old)
2925 goto out_free_path;
2926
2927 offset = max(new->file_pos, key.offset);
2928 end = min(new->file_pos + new->len, key.offset + num_bytes);
2929
2930 old->bytenr = disk_bytenr;
2931 old->extent_offset = extent_offset;
2932 old->offset = offset - key.offset;
2933 old->len = end - offset;
2934 old->new = new;
2935 old->count = 0;
2936 list_add_tail(&old->list, &new->head);
2937 next:
2938 path->slots[0]++;
2939 cond_resched();
2940 }
2941
2942 btrfs_free_path(path);
2943 atomic_inc(&fs_info->defrag_running);
2944
2945 return new;
2946
2947 out_free_path:
2948 btrfs_free_path(path);
2949 out_kfree:
2950 free_sa_defrag_extent(new);
2951 return NULL;
2952 }
2953
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)2954 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2955 u64 start, u64 len)
2956 {
2957 struct btrfs_block_group_cache *cache;
2958
2959 cache = btrfs_lookup_block_group(fs_info, start);
2960 ASSERT(cache);
2961
2962 spin_lock(&cache->lock);
2963 cache->delalloc_bytes -= len;
2964 spin_unlock(&cache->lock);
2965
2966 btrfs_put_block_group(cache);
2967 }
2968
2969 /* as ordered data IO finishes, this gets called so we can finish
2970 * an ordered extent if the range of bytes in the file it covers are
2971 * fully written.
2972 */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)2973 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2974 {
2975 struct inode *inode = ordered_extent->inode;
2976 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2977 struct btrfs_root *root = BTRFS_I(inode)->root;
2978 struct btrfs_trans_handle *trans = NULL;
2979 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2980 struct extent_state *cached_state = NULL;
2981 struct new_sa_defrag_extent *new = NULL;
2982 int compress_type = 0;
2983 int ret = 0;
2984 u64 logical_len = ordered_extent->len;
2985 bool nolock;
2986 bool truncated = false;
2987 bool range_locked = false;
2988 bool clear_new_delalloc_bytes = false;
2989 bool clear_reserved_extent = true;
2990
2991 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2992 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2993 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2994 clear_new_delalloc_bytes = true;
2995
2996 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2997
2998 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2999 ret = -EIO;
3000 goto out;
3001 }
3002
3003 btrfs_free_io_failure_record(BTRFS_I(inode),
3004 ordered_extent->file_offset,
3005 ordered_extent->file_offset +
3006 ordered_extent->len - 1);
3007
3008 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3009 truncated = true;
3010 logical_len = ordered_extent->truncated_len;
3011 /* Truncated the entire extent, don't bother adding */
3012 if (!logical_len)
3013 goto out;
3014 }
3015
3016 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3017 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3018
3019 /*
3020 * For mwrite(mmap + memset to write) case, we still reserve
3021 * space for NOCOW range.
3022 * As NOCOW won't cause a new delayed ref, just free the space
3023 */
3024 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3025 ordered_extent->len);
3026 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3027 if (nolock)
3028 trans = btrfs_join_transaction_nolock(root);
3029 else
3030 trans = btrfs_join_transaction(root);
3031 if (IS_ERR(trans)) {
3032 ret = PTR_ERR(trans);
3033 trans = NULL;
3034 goto out;
3035 }
3036 trans->block_rsv = &fs_info->delalloc_block_rsv;
3037 ret = btrfs_update_inode_fallback(trans, root, inode);
3038 if (ret) /* -ENOMEM or corruption */
3039 btrfs_abort_transaction(trans, ret);
3040 goto out;
3041 }
3042
3043 range_locked = true;
3044 lock_extent_bits(io_tree, ordered_extent->file_offset,
3045 ordered_extent->file_offset + ordered_extent->len - 1,
3046 &cached_state);
3047
3048 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3049 ordered_extent->file_offset + ordered_extent->len - 1,
3050 EXTENT_DEFRAG, 0, cached_state);
3051 if (ret) {
3052 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3053 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3054 /* the inode is shared */
3055 new = record_old_file_extents(inode, ordered_extent);
3056
3057 clear_extent_bit(io_tree, ordered_extent->file_offset,
3058 ordered_extent->file_offset + ordered_extent->len - 1,
3059 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
3060 }
3061
3062 if (nolock)
3063 trans = btrfs_join_transaction_nolock(root);
3064 else
3065 trans = btrfs_join_transaction(root);
3066 if (IS_ERR(trans)) {
3067 ret = PTR_ERR(trans);
3068 trans = NULL;
3069 goto out;
3070 }
3071
3072 trans->block_rsv = &fs_info->delalloc_block_rsv;
3073
3074 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3075 compress_type = ordered_extent->compress_type;
3076 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3077 BUG_ON(compress_type);
3078 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3079 ordered_extent->len);
3080 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3081 ordered_extent->file_offset,
3082 ordered_extent->file_offset +
3083 logical_len);
3084 } else {
3085 BUG_ON(root == fs_info->tree_root);
3086 ret = insert_reserved_file_extent(trans, inode,
3087 ordered_extent->file_offset,
3088 ordered_extent->start,
3089 ordered_extent->disk_len,
3090 logical_len, logical_len,
3091 compress_type, 0, 0,
3092 BTRFS_FILE_EXTENT_REG);
3093 if (!ret) {
3094 clear_reserved_extent = false;
3095 btrfs_release_delalloc_bytes(fs_info,
3096 ordered_extent->start,
3097 ordered_extent->disk_len);
3098 }
3099 }
3100 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3101 ordered_extent->file_offset, ordered_extent->len,
3102 trans->transid);
3103 if (ret < 0) {
3104 btrfs_abort_transaction(trans, ret);
3105 goto out;
3106 }
3107
3108 add_pending_csums(trans, inode, &ordered_extent->list);
3109
3110 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3111 ret = btrfs_update_inode_fallback(trans, root, inode);
3112 if (ret) { /* -ENOMEM or corruption */
3113 btrfs_abort_transaction(trans, ret);
3114 goto out;
3115 }
3116 ret = 0;
3117 out:
3118 if (range_locked || clear_new_delalloc_bytes) {
3119 unsigned int clear_bits = 0;
3120
3121 if (range_locked)
3122 clear_bits |= EXTENT_LOCKED;
3123 if (clear_new_delalloc_bytes)
3124 clear_bits |= EXTENT_DELALLOC_NEW;
3125 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3126 ordered_extent->file_offset,
3127 ordered_extent->file_offset +
3128 ordered_extent->len - 1,
3129 clear_bits,
3130 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3131 0, &cached_state, GFP_NOFS);
3132 }
3133
3134 if (root != fs_info->tree_root)
3135 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3136 ordered_extent->len);
3137 if (trans)
3138 btrfs_end_transaction(trans);
3139
3140 if (ret || truncated) {
3141 u64 start, end;
3142
3143 if (truncated)
3144 start = ordered_extent->file_offset + logical_len;
3145 else
3146 start = ordered_extent->file_offset;
3147 end = ordered_extent->file_offset + ordered_extent->len - 1;
3148 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3149
3150 /* Drop the cache for the part of the extent we didn't write. */
3151 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3152
3153 /*
3154 * If the ordered extent had an IOERR or something else went
3155 * wrong we need to return the space for this ordered extent
3156 * back to the allocator. We only free the extent in the
3157 * truncated case if we didn't write out the extent at all.
3158 *
3159 * If we made it past insert_reserved_file_extent before we
3160 * errored out then we don't need to do this as the accounting
3161 * has already been done.
3162 */
3163 if ((ret || !logical_len) &&
3164 clear_reserved_extent &&
3165 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3166 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3167 btrfs_free_reserved_extent(fs_info,
3168 ordered_extent->start,
3169 ordered_extent->disk_len, 1);
3170 }
3171
3172
3173 /*
3174 * This needs to be done to make sure anybody waiting knows we are done
3175 * updating everything for this ordered extent.
3176 */
3177 btrfs_remove_ordered_extent(inode, ordered_extent);
3178
3179 /* for snapshot-aware defrag */
3180 if (new) {
3181 if (ret) {
3182 free_sa_defrag_extent(new);
3183 atomic_dec(&fs_info->defrag_running);
3184 } else {
3185 relink_file_extents(new);
3186 }
3187 }
3188
3189 /* once for us */
3190 btrfs_put_ordered_extent(ordered_extent);
3191 /* once for the tree */
3192 btrfs_put_ordered_extent(ordered_extent);
3193
3194 return ret;
3195 }
3196
finish_ordered_fn(struct btrfs_work * work)3197 static void finish_ordered_fn(struct btrfs_work *work)
3198 {
3199 struct btrfs_ordered_extent *ordered_extent;
3200 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3201 btrfs_finish_ordered_io(ordered_extent);
3202 }
3203
btrfs_writepage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state,int uptodate)3204 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3205 struct extent_state *state, int uptodate)
3206 {
3207 struct inode *inode = page->mapping->host;
3208 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3209 struct btrfs_ordered_extent *ordered_extent = NULL;
3210 struct btrfs_workqueue *wq;
3211 btrfs_work_func_t func;
3212
3213 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3214
3215 ClearPagePrivate2(page);
3216 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3217 end - start + 1, uptodate))
3218 return;
3219
3220 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3221 wq = fs_info->endio_freespace_worker;
3222 func = btrfs_freespace_write_helper;
3223 } else {
3224 wq = fs_info->endio_write_workers;
3225 func = btrfs_endio_write_helper;
3226 }
3227
3228 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3229 NULL);
3230 btrfs_queue_work(wq, &ordered_extent->work);
3231 }
3232
__readpage_endio_check(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)3233 static int __readpage_endio_check(struct inode *inode,
3234 struct btrfs_io_bio *io_bio,
3235 int icsum, struct page *page,
3236 int pgoff, u64 start, size_t len)
3237 {
3238 char *kaddr;
3239 u32 csum_expected;
3240 u32 csum = ~(u32)0;
3241
3242 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3243
3244 kaddr = kmap_atomic(page);
3245 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3246 btrfs_csum_final(csum, (u8 *)&csum);
3247 if (csum != csum_expected)
3248 goto zeroit;
3249
3250 kunmap_atomic(kaddr);
3251 return 0;
3252 zeroit:
3253 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3254 io_bio->mirror_num);
3255 memset(kaddr + pgoff, 1, len);
3256 flush_dcache_page(page);
3257 kunmap_atomic(kaddr);
3258 return -EIO;
3259 }
3260
3261 /*
3262 * when reads are done, we need to check csums to verify the data is correct
3263 * if there's a match, we allow the bio to finish. If not, the code in
3264 * extent_io.c will try to find good copies for us.
3265 */
btrfs_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)3266 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3267 u64 phy_offset, struct page *page,
3268 u64 start, u64 end, int mirror)
3269 {
3270 size_t offset = start - page_offset(page);
3271 struct inode *inode = page->mapping->host;
3272 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3273 struct btrfs_root *root = BTRFS_I(inode)->root;
3274
3275 if (PageChecked(page)) {
3276 ClearPageChecked(page);
3277 return 0;
3278 }
3279
3280 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3281 return 0;
3282
3283 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3284 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3285 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3286 return 0;
3287 }
3288
3289 phy_offset >>= inode->i_sb->s_blocksize_bits;
3290 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3291 start, (size_t)(end - start + 1));
3292 }
3293
btrfs_add_delayed_iput(struct inode * inode)3294 void btrfs_add_delayed_iput(struct inode *inode)
3295 {
3296 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3297 struct btrfs_inode *binode = BTRFS_I(inode);
3298
3299 if (atomic_add_unless(&inode->i_count, -1, 1))
3300 return;
3301
3302 spin_lock(&fs_info->delayed_iput_lock);
3303 if (binode->delayed_iput_count == 0) {
3304 ASSERT(list_empty(&binode->delayed_iput));
3305 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3306 } else {
3307 binode->delayed_iput_count++;
3308 }
3309 spin_unlock(&fs_info->delayed_iput_lock);
3310 }
3311
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3312 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3313 {
3314
3315 spin_lock(&fs_info->delayed_iput_lock);
3316 while (!list_empty(&fs_info->delayed_iputs)) {
3317 struct btrfs_inode *inode;
3318
3319 inode = list_first_entry(&fs_info->delayed_iputs,
3320 struct btrfs_inode, delayed_iput);
3321 if (inode->delayed_iput_count) {
3322 inode->delayed_iput_count--;
3323 list_move_tail(&inode->delayed_iput,
3324 &fs_info->delayed_iputs);
3325 } else {
3326 list_del_init(&inode->delayed_iput);
3327 }
3328 spin_unlock(&fs_info->delayed_iput_lock);
3329 iput(&inode->vfs_inode);
3330 spin_lock(&fs_info->delayed_iput_lock);
3331 }
3332 spin_unlock(&fs_info->delayed_iput_lock);
3333 }
3334
3335 /*
3336 * This is called in transaction commit time. If there are no orphan
3337 * files in the subvolume, it removes orphan item and frees block_rsv
3338 * structure.
3339 */
btrfs_orphan_commit_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)3340 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3341 struct btrfs_root *root)
3342 {
3343 struct btrfs_fs_info *fs_info = root->fs_info;
3344 struct btrfs_block_rsv *block_rsv;
3345 int ret;
3346
3347 if (atomic_read(&root->orphan_inodes) ||
3348 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3349 return;
3350
3351 spin_lock(&root->orphan_lock);
3352 if (atomic_read(&root->orphan_inodes)) {
3353 spin_unlock(&root->orphan_lock);
3354 return;
3355 }
3356
3357 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3358 spin_unlock(&root->orphan_lock);
3359 return;
3360 }
3361
3362 block_rsv = root->orphan_block_rsv;
3363 root->orphan_block_rsv = NULL;
3364 spin_unlock(&root->orphan_lock);
3365
3366 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3367 btrfs_root_refs(&root->root_item) > 0) {
3368 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3369 root->root_key.objectid);
3370 if (ret)
3371 btrfs_abort_transaction(trans, ret);
3372 else
3373 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3374 &root->state);
3375 }
3376
3377 if (block_rsv) {
3378 WARN_ON(block_rsv->size > 0);
3379 btrfs_free_block_rsv(fs_info, block_rsv);
3380 }
3381 }
3382
3383 /*
3384 * This creates an orphan entry for the given inode in case something goes
3385 * wrong in the middle of an unlink/truncate.
3386 *
3387 * NOTE: caller of this function should reserve 5 units of metadata for
3388 * this function.
3389 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3390 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3391 struct btrfs_inode *inode)
3392 {
3393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3394 struct btrfs_root *root = inode->root;
3395 struct btrfs_block_rsv *block_rsv = NULL;
3396 int reserve = 0;
3397 int insert = 0;
3398 int ret;
3399
3400 if (!root->orphan_block_rsv) {
3401 block_rsv = btrfs_alloc_block_rsv(fs_info,
3402 BTRFS_BLOCK_RSV_TEMP);
3403 if (!block_rsv)
3404 return -ENOMEM;
3405 }
3406
3407 spin_lock(&root->orphan_lock);
3408 if (!root->orphan_block_rsv) {
3409 root->orphan_block_rsv = block_rsv;
3410 } else if (block_rsv) {
3411 btrfs_free_block_rsv(fs_info, block_rsv);
3412 block_rsv = NULL;
3413 }
3414
3415 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3416 &inode->runtime_flags)) {
3417 #if 0
3418 /*
3419 * For proper ENOSPC handling, we should do orphan
3420 * cleanup when mounting. But this introduces backward
3421 * compatibility issue.
3422 */
3423 if (!xchg(&root->orphan_item_inserted, 1))
3424 insert = 2;
3425 else
3426 insert = 1;
3427 #endif
3428 insert = 1;
3429 atomic_inc(&root->orphan_inodes);
3430 }
3431
3432 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3433 &inode->runtime_flags))
3434 reserve = 1;
3435 spin_unlock(&root->orphan_lock);
3436
3437 /* grab metadata reservation from transaction handle */
3438 if (reserve) {
3439 ret = btrfs_orphan_reserve_metadata(trans, inode);
3440 ASSERT(!ret);
3441 if (ret) {
3442 /*
3443 * dec doesn't need spin_lock as ->orphan_block_rsv
3444 * would be released only if ->orphan_inodes is
3445 * zero.
3446 */
3447 atomic_dec(&root->orphan_inodes);
3448 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3449 &inode->runtime_flags);
3450 if (insert)
3451 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3452 &inode->runtime_flags);
3453 return ret;
3454 }
3455 }
3456
3457 /* insert an orphan item to track this unlinked/truncated file */
3458 if (insert >= 1) {
3459 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3460 if (ret) {
3461 if (reserve) {
3462 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3463 &inode->runtime_flags);
3464 btrfs_orphan_release_metadata(inode);
3465 }
3466 /*
3467 * btrfs_orphan_commit_root may race with us and set
3468 * ->orphan_block_rsv to zero, in order to avoid that,
3469 * decrease ->orphan_inodes after everything is done.
3470 */
3471 atomic_dec(&root->orphan_inodes);
3472 if (ret != -EEXIST) {
3473 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3474 &inode->runtime_flags);
3475 btrfs_abort_transaction(trans, ret);
3476 return ret;
3477 }
3478 }
3479 ret = 0;
3480 }
3481
3482 /* insert an orphan item to track subvolume contains orphan files */
3483 if (insert >= 2) {
3484 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
3485 root->root_key.objectid);
3486 if (ret && ret != -EEXIST) {
3487 btrfs_abort_transaction(trans, ret);
3488 return ret;
3489 }
3490 }
3491 return 0;
3492 }
3493
3494 /*
3495 * We have done the truncate/delete so we can go ahead and remove the orphan
3496 * item for this particular inode.
3497 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3498 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3499 struct btrfs_inode *inode)
3500 {
3501 struct btrfs_root *root = inode->root;
3502 int delete_item = 0;
3503 int ret = 0;
3504
3505 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3506 &inode->runtime_flags))
3507 delete_item = 1;
3508
3509 if (delete_item && trans)
3510 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3511
3512 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3513 &inode->runtime_flags))
3514 btrfs_orphan_release_metadata(inode);
3515
3516 /*
3517 * btrfs_orphan_commit_root may race with us and set ->orphan_block_rsv
3518 * to zero, in order to avoid that, decrease ->orphan_inodes after
3519 * everything is done.
3520 */
3521 if (delete_item)
3522 atomic_dec(&root->orphan_inodes);
3523
3524 return ret;
3525 }
3526
3527 /*
3528 * this cleans up any orphans that may be left on the list from the last use
3529 * of this root.
3530 */
btrfs_orphan_cleanup(struct btrfs_root * root)3531 int btrfs_orphan_cleanup(struct btrfs_root *root)
3532 {
3533 struct btrfs_fs_info *fs_info = root->fs_info;
3534 struct btrfs_path *path;
3535 struct extent_buffer *leaf;
3536 struct btrfs_key key, found_key;
3537 struct btrfs_trans_handle *trans;
3538 struct inode *inode;
3539 u64 last_objectid = 0;
3540 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3541
3542 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3543 return 0;
3544
3545 path = btrfs_alloc_path();
3546 if (!path) {
3547 ret = -ENOMEM;
3548 goto out;
3549 }
3550 path->reada = READA_BACK;
3551
3552 key.objectid = BTRFS_ORPHAN_OBJECTID;
3553 key.type = BTRFS_ORPHAN_ITEM_KEY;
3554 key.offset = (u64)-1;
3555
3556 while (1) {
3557 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3558 if (ret < 0)
3559 goto out;
3560
3561 /*
3562 * if ret == 0 means we found what we were searching for, which
3563 * is weird, but possible, so only screw with path if we didn't
3564 * find the key and see if we have stuff that matches
3565 */
3566 if (ret > 0) {
3567 ret = 0;
3568 if (path->slots[0] == 0)
3569 break;
3570 path->slots[0]--;
3571 }
3572
3573 /* pull out the item */
3574 leaf = path->nodes[0];
3575 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3576
3577 /* make sure the item matches what we want */
3578 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3579 break;
3580 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3581 break;
3582
3583 /* release the path since we're done with it */
3584 btrfs_release_path(path);
3585
3586 /*
3587 * this is where we are basically btrfs_lookup, without the
3588 * crossing root thing. we store the inode number in the
3589 * offset of the orphan item.
3590 */
3591
3592 if (found_key.offset == last_objectid) {
3593 btrfs_err(fs_info,
3594 "Error removing orphan entry, stopping orphan cleanup");
3595 ret = -EINVAL;
3596 goto out;
3597 }
3598
3599 last_objectid = found_key.offset;
3600
3601 found_key.objectid = found_key.offset;
3602 found_key.type = BTRFS_INODE_ITEM_KEY;
3603 found_key.offset = 0;
3604 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3605 ret = PTR_ERR_OR_ZERO(inode);
3606 if (ret && ret != -ENOENT)
3607 goto out;
3608
3609 if (ret == -ENOENT && root == fs_info->tree_root) {
3610 struct btrfs_root *dead_root;
3611 struct btrfs_fs_info *fs_info = root->fs_info;
3612 int is_dead_root = 0;
3613
3614 /*
3615 * this is an orphan in the tree root. Currently these
3616 * could come from 2 sources:
3617 * a) a snapshot deletion in progress
3618 * b) a free space cache inode
3619 * We need to distinguish those two, as the snapshot
3620 * orphan must not get deleted.
3621 * find_dead_roots already ran before us, so if this
3622 * is a snapshot deletion, we should find the root
3623 * in the dead_roots list
3624 */
3625 spin_lock(&fs_info->trans_lock);
3626 list_for_each_entry(dead_root, &fs_info->dead_roots,
3627 root_list) {
3628 if (dead_root->root_key.objectid ==
3629 found_key.objectid) {
3630 is_dead_root = 1;
3631 break;
3632 }
3633 }
3634 spin_unlock(&fs_info->trans_lock);
3635 if (is_dead_root) {
3636 /* prevent this orphan from being found again */
3637 key.offset = found_key.objectid - 1;
3638 continue;
3639 }
3640 }
3641 /*
3642 * Inode is already gone but the orphan item is still there,
3643 * kill the orphan item.
3644 */
3645 if (ret == -ENOENT) {
3646 trans = btrfs_start_transaction(root, 1);
3647 if (IS_ERR(trans)) {
3648 ret = PTR_ERR(trans);
3649 goto out;
3650 }
3651 btrfs_debug(fs_info, "auto deleting %Lu",
3652 found_key.objectid);
3653 ret = btrfs_del_orphan_item(trans, root,
3654 found_key.objectid);
3655 btrfs_end_transaction(trans);
3656 if (ret)
3657 goto out;
3658 continue;
3659 }
3660
3661 /*
3662 * add this inode to the orphan list so btrfs_orphan_del does
3663 * the proper thing when we hit it
3664 */
3665 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3666 &BTRFS_I(inode)->runtime_flags);
3667 atomic_inc(&root->orphan_inodes);
3668
3669 /* if we have links, this was a truncate, lets do that */
3670 if (inode->i_nlink) {
3671 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3672 iput(inode);
3673 continue;
3674 }
3675 nr_truncate++;
3676
3677 /* 1 for the orphan item deletion. */
3678 trans = btrfs_start_transaction(root, 1);
3679 if (IS_ERR(trans)) {
3680 iput(inode);
3681 ret = PTR_ERR(trans);
3682 goto out;
3683 }
3684 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3685 btrfs_end_transaction(trans);
3686 if (ret) {
3687 iput(inode);
3688 goto out;
3689 }
3690
3691 ret = btrfs_truncate(inode);
3692 if (ret)
3693 btrfs_orphan_del(NULL, BTRFS_I(inode));
3694 } else {
3695 nr_unlink++;
3696 }
3697
3698 /* this will do delete_inode and everything for us */
3699 iput(inode);
3700 if (ret)
3701 goto out;
3702 }
3703 /* release the path since we're done with it */
3704 btrfs_release_path(path);
3705
3706 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3707
3708 if (root->orphan_block_rsv)
3709 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3710 (u64)-1);
3711
3712 if (root->orphan_block_rsv ||
3713 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3714 trans = btrfs_join_transaction(root);
3715 if (!IS_ERR(trans))
3716 btrfs_end_transaction(trans);
3717 }
3718
3719 if (nr_unlink)
3720 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3721 if (nr_truncate)
3722 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3723
3724 out:
3725 if (ret)
3726 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3727 btrfs_free_path(path);
3728 return ret;
3729 }
3730
3731 /*
3732 * very simple check to peek ahead in the leaf looking for xattrs. If we
3733 * don't find any xattrs, we know there can't be any acls.
3734 *
3735 * slot is the slot the inode is in, objectid is the objectid of the inode
3736 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3737 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3738 int slot, u64 objectid,
3739 int *first_xattr_slot)
3740 {
3741 u32 nritems = btrfs_header_nritems(leaf);
3742 struct btrfs_key found_key;
3743 static u64 xattr_access = 0;
3744 static u64 xattr_default = 0;
3745 int scanned = 0;
3746
3747 if (!xattr_access) {
3748 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3749 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3750 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3751 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3752 }
3753
3754 slot++;
3755 *first_xattr_slot = -1;
3756 while (slot < nritems) {
3757 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3758
3759 /* we found a different objectid, there must not be acls */
3760 if (found_key.objectid != objectid)
3761 return 0;
3762
3763 /* we found an xattr, assume we've got an acl */
3764 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3765 if (*first_xattr_slot == -1)
3766 *first_xattr_slot = slot;
3767 if (found_key.offset == xattr_access ||
3768 found_key.offset == xattr_default)
3769 return 1;
3770 }
3771
3772 /*
3773 * we found a key greater than an xattr key, there can't
3774 * be any acls later on
3775 */
3776 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3777 return 0;
3778
3779 slot++;
3780 scanned++;
3781
3782 /*
3783 * it goes inode, inode backrefs, xattrs, extents,
3784 * so if there are a ton of hard links to an inode there can
3785 * be a lot of backrefs. Don't waste time searching too hard,
3786 * this is just an optimization
3787 */
3788 if (scanned >= 8)
3789 break;
3790 }
3791 /* we hit the end of the leaf before we found an xattr or
3792 * something larger than an xattr. We have to assume the inode
3793 * has acls
3794 */
3795 if (*first_xattr_slot == -1)
3796 *first_xattr_slot = slot;
3797 return 1;
3798 }
3799
3800 /*
3801 * read an inode from the btree into the in-memory inode
3802 */
btrfs_read_locked_inode(struct inode * inode)3803 static int btrfs_read_locked_inode(struct inode *inode)
3804 {
3805 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3806 struct btrfs_path *path;
3807 struct extent_buffer *leaf;
3808 struct btrfs_inode_item *inode_item;
3809 struct btrfs_root *root = BTRFS_I(inode)->root;
3810 struct btrfs_key location;
3811 unsigned long ptr;
3812 int maybe_acls;
3813 u32 rdev;
3814 int ret;
3815 bool filled = false;
3816 int first_xattr_slot;
3817
3818 ret = btrfs_fill_inode(inode, &rdev);
3819 if (!ret)
3820 filled = true;
3821
3822 path = btrfs_alloc_path();
3823 if (!path) {
3824 ret = -ENOMEM;
3825 goto make_bad;
3826 }
3827
3828 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3829
3830 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3831 if (ret) {
3832 if (ret > 0)
3833 ret = -ENOENT;
3834 goto make_bad;
3835 }
3836
3837 leaf = path->nodes[0];
3838
3839 if (filled)
3840 goto cache_index;
3841
3842 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3843 struct btrfs_inode_item);
3844 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3845 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3846 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3847 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3848 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3849
3850 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3851 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3852
3853 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3854 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3855
3856 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3857 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3858
3859 BTRFS_I(inode)->i_otime.tv_sec =
3860 btrfs_timespec_sec(leaf, &inode_item->otime);
3861 BTRFS_I(inode)->i_otime.tv_nsec =
3862 btrfs_timespec_nsec(leaf, &inode_item->otime);
3863
3864 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3865 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3866 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3867
3868 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3869 inode->i_generation = BTRFS_I(inode)->generation;
3870 inode->i_rdev = 0;
3871 rdev = btrfs_inode_rdev(leaf, inode_item);
3872
3873 BTRFS_I(inode)->index_cnt = (u64)-1;
3874 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3875
3876 cache_index:
3877 /*
3878 * If we were modified in the current generation and evicted from memory
3879 * and then re-read we need to do a full sync since we don't have any
3880 * idea about which extents were modified before we were evicted from
3881 * cache.
3882 *
3883 * This is required for both inode re-read from disk and delayed inode
3884 * in delayed_nodes_tree.
3885 */
3886 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3887 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3888 &BTRFS_I(inode)->runtime_flags);
3889
3890 /*
3891 * We don't persist the id of the transaction where an unlink operation
3892 * against the inode was last made. So here we assume the inode might
3893 * have been evicted, and therefore the exact value of last_unlink_trans
3894 * lost, and set it to last_trans to avoid metadata inconsistencies
3895 * between the inode and its parent if the inode is fsync'ed and the log
3896 * replayed. For example, in the scenario:
3897 *
3898 * touch mydir/foo
3899 * ln mydir/foo mydir/bar
3900 * sync
3901 * unlink mydir/bar
3902 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3903 * xfs_io -c fsync mydir/foo
3904 * <power failure>
3905 * mount fs, triggers fsync log replay
3906 *
3907 * We must make sure that when we fsync our inode foo we also log its
3908 * parent inode, otherwise after log replay the parent still has the
3909 * dentry with the "bar" name but our inode foo has a link count of 1
3910 * and doesn't have an inode ref with the name "bar" anymore.
3911 *
3912 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3913 * but it guarantees correctness at the expense of occasional full
3914 * transaction commits on fsync if our inode is a directory, or if our
3915 * inode is not a directory, logging its parent unnecessarily.
3916 */
3917 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3918 /*
3919 * Similar reasoning for last_link_trans, needs to be set otherwise
3920 * for a case like the following:
3921 *
3922 * mkdir A
3923 * touch foo
3924 * ln foo A/bar
3925 * echo 2 > /proc/sys/vm/drop_caches
3926 * fsync foo
3927 * <power failure>
3928 *
3929 * Would result in link bar and directory A not existing after the power
3930 * failure.
3931 */
3932 BTRFS_I(inode)->last_link_trans = BTRFS_I(inode)->last_trans;
3933
3934 path->slots[0]++;
3935 if (inode->i_nlink != 1 ||
3936 path->slots[0] >= btrfs_header_nritems(leaf))
3937 goto cache_acl;
3938
3939 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3940 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3941 goto cache_acl;
3942
3943 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3944 if (location.type == BTRFS_INODE_REF_KEY) {
3945 struct btrfs_inode_ref *ref;
3946
3947 ref = (struct btrfs_inode_ref *)ptr;
3948 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3949 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3950 struct btrfs_inode_extref *extref;
3951
3952 extref = (struct btrfs_inode_extref *)ptr;
3953 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3954 extref);
3955 }
3956 cache_acl:
3957 /*
3958 * try to precache a NULL acl entry for files that don't have
3959 * any xattrs or acls
3960 */
3961 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3962 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3963 if (first_xattr_slot != -1) {
3964 path->slots[0] = first_xattr_slot;
3965 ret = btrfs_load_inode_props(inode, path);
3966 if (ret)
3967 btrfs_err(fs_info,
3968 "error loading props for ino %llu (root %llu): %d",
3969 btrfs_ino(BTRFS_I(inode)),
3970 root->root_key.objectid, ret);
3971 }
3972 btrfs_free_path(path);
3973
3974 if (!maybe_acls)
3975 cache_no_acl(inode);
3976
3977 switch (inode->i_mode & S_IFMT) {
3978 case S_IFREG:
3979 inode->i_mapping->a_ops = &btrfs_aops;
3980 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3981 inode->i_fop = &btrfs_file_operations;
3982 inode->i_op = &btrfs_file_inode_operations;
3983 break;
3984 case S_IFDIR:
3985 inode->i_fop = &btrfs_dir_file_operations;
3986 inode->i_op = &btrfs_dir_inode_operations;
3987 break;
3988 case S_IFLNK:
3989 inode->i_op = &btrfs_symlink_inode_operations;
3990 inode_nohighmem(inode);
3991 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3992 break;
3993 default:
3994 inode->i_op = &btrfs_special_inode_operations;
3995 init_special_inode(inode, inode->i_mode, rdev);
3996 break;
3997 }
3998
3999 btrfs_update_iflags(inode);
4000 return 0;
4001
4002 make_bad:
4003 btrfs_free_path(path);
4004 make_bad_inode(inode);
4005 return ret;
4006 }
4007
4008 /*
4009 * given a leaf and an inode, copy the inode fields into the leaf
4010 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)4011 static void fill_inode_item(struct btrfs_trans_handle *trans,
4012 struct extent_buffer *leaf,
4013 struct btrfs_inode_item *item,
4014 struct inode *inode)
4015 {
4016 struct btrfs_map_token token;
4017
4018 btrfs_init_map_token(&token);
4019
4020 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
4021 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
4022 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
4023 &token);
4024 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
4025 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
4026
4027 btrfs_set_token_timespec_sec(leaf, &item->atime,
4028 inode->i_atime.tv_sec, &token);
4029 btrfs_set_token_timespec_nsec(leaf, &item->atime,
4030 inode->i_atime.tv_nsec, &token);
4031
4032 btrfs_set_token_timespec_sec(leaf, &item->mtime,
4033 inode->i_mtime.tv_sec, &token);
4034 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
4035 inode->i_mtime.tv_nsec, &token);
4036
4037 btrfs_set_token_timespec_sec(leaf, &item->ctime,
4038 inode->i_ctime.tv_sec, &token);
4039 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
4040 inode->i_ctime.tv_nsec, &token);
4041
4042 btrfs_set_token_timespec_sec(leaf, &item->otime,
4043 BTRFS_I(inode)->i_otime.tv_sec, &token);
4044 btrfs_set_token_timespec_nsec(leaf, &item->otime,
4045 BTRFS_I(inode)->i_otime.tv_nsec, &token);
4046
4047 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
4048 &token);
4049 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
4050 &token);
4051 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
4052 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
4053 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
4054 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
4055 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
4056 }
4057
4058 /*
4059 * copy everything in the in-memory inode into the btree.
4060 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)4061 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4062 struct btrfs_root *root, struct inode *inode)
4063 {
4064 struct btrfs_inode_item *inode_item;
4065 struct btrfs_path *path;
4066 struct extent_buffer *leaf;
4067 int ret;
4068
4069 path = btrfs_alloc_path();
4070 if (!path)
4071 return -ENOMEM;
4072
4073 path->leave_spinning = 1;
4074 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
4075 1);
4076 if (ret) {
4077 if (ret > 0)
4078 ret = -ENOENT;
4079 goto failed;
4080 }
4081
4082 leaf = path->nodes[0];
4083 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4084 struct btrfs_inode_item);
4085
4086 fill_inode_item(trans, leaf, inode_item, inode);
4087 btrfs_mark_buffer_dirty(leaf);
4088 btrfs_set_inode_last_trans(trans, inode);
4089 ret = 0;
4090 failed:
4091 btrfs_free_path(path);
4092 return ret;
4093 }
4094
4095 /*
4096 * copy everything in the in-memory inode into the btree.
4097 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)4098 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4099 struct btrfs_root *root, struct inode *inode)
4100 {
4101 struct btrfs_fs_info *fs_info = root->fs_info;
4102 int ret;
4103
4104 /*
4105 * If the inode is a free space inode, we can deadlock during commit
4106 * if we put it into the delayed code.
4107 *
4108 * The data relocation inode should also be directly updated
4109 * without delay
4110 */
4111 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
4112 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4113 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4114 btrfs_update_root_times(trans, root);
4115
4116 ret = btrfs_delayed_update_inode(trans, root, inode);
4117 if (!ret)
4118 btrfs_set_inode_last_trans(trans, inode);
4119 return ret;
4120 }
4121
4122 return btrfs_update_inode_item(trans, root, inode);
4123 }
4124
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)4125 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4126 struct btrfs_root *root,
4127 struct inode *inode)
4128 {
4129 int ret;
4130
4131 ret = btrfs_update_inode(trans, root, inode);
4132 if (ret == -ENOSPC)
4133 return btrfs_update_inode_item(trans, root, inode);
4134 return ret;
4135 }
4136
4137 /*
4138 * unlink helper that gets used here in inode.c and in the tree logging
4139 * recovery code. It remove a link in a directory with a given name, and
4140 * also drops the back refs in the inode to the directory
4141 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4142 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4143 struct btrfs_root *root,
4144 struct btrfs_inode *dir,
4145 struct btrfs_inode *inode,
4146 const char *name, int name_len)
4147 {
4148 struct btrfs_fs_info *fs_info = root->fs_info;
4149 struct btrfs_path *path;
4150 int ret = 0;
4151 struct extent_buffer *leaf;
4152 struct btrfs_dir_item *di;
4153 struct btrfs_key key;
4154 u64 index;
4155 u64 ino = btrfs_ino(inode);
4156 u64 dir_ino = btrfs_ino(dir);
4157
4158 path = btrfs_alloc_path();
4159 if (!path) {
4160 ret = -ENOMEM;
4161 goto out;
4162 }
4163
4164 path->leave_spinning = 1;
4165 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4166 name, name_len, -1);
4167 if (IS_ERR(di)) {
4168 ret = PTR_ERR(di);
4169 goto err;
4170 }
4171 if (!di) {
4172 ret = -ENOENT;
4173 goto err;
4174 }
4175 leaf = path->nodes[0];
4176 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4177 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4178 if (ret)
4179 goto err;
4180 btrfs_release_path(path);
4181
4182 /*
4183 * If we don't have dir index, we have to get it by looking up
4184 * the inode ref, since we get the inode ref, remove it directly,
4185 * it is unnecessary to do delayed deletion.
4186 *
4187 * But if we have dir index, needn't search inode ref to get it.
4188 * Since the inode ref is close to the inode item, it is better
4189 * that we delay to delete it, and just do this deletion when
4190 * we update the inode item.
4191 */
4192 if (inode->dir_index) {
4193 ret = btrfs_delayed_delete_inode_ref(inode);
4194 if (!ret) {
4195 index = inode->dir_index;
4196 goto skip_backref;
4197 }
4198 }
4199
4200 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4201 dir_ino, &index);
4202 if (ret) {
4203 btrfs_info(fs_info,
4204 "failed to delete reference to %.*s, inode %llu parent %llu",
4205 name_len, name, ino, dir_ino);
4206 btrfs_abort_transaction(trans, ret);
4207 goto err;
4208 }
4209 skip_backref:
4210 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4211 if (ret) {
4212 btrfs_abort_transaction(trans, ret);
4213 goto err;
4214 }
4215
4216 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4217 dir_ino);
4218 if (ret != 0 && ret != -ENOENT) {
4219 btrfs_abort_transaction(trans, ret);
4220 goto err;
4221 }
4222
4223 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4224 index);
4225 if (ret == -ENOENT)
4226 ret = 0;
4227 else if (ret)
4228 btrfs_abort_transaction(trans, ret);
4229 err:
4230 btrfs_free_path(path);
4231 if (ret)
4232 goto out;
4233
4234 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4235 inode_inc_iversion(&inode->vfs_inode);
4236 inode_inc_iversion(&dir->vfs_inode);
4237 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4238 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4239 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4240 out:
4241 return ret;
4242 }
4243
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4244 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4245 struct btrfs_root *root,
4246 struct btrfs_inode *dir, struct btrfs_inode *inode,
4247 const char *name, int name_len)
4248 {
4249 int ret;
4250 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4251 if (!ret) {
4252 drop_nlink(&inode->vfs_inode);
4253 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4254 }
4255 return ret;
4256 }
4257
4258 /*
4259 * helper to start transaction for unlink and rmdir.
4260 *
4261 * unlink and rmdir are special in btrfs, they do not always free space, so
4262 * if we cannot make our reservations the normal way try and see if there is
4263 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4264 * allow the unlink to occur.
4265 */
__unlink_start_trans(struct inode * dir)4266 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4267 {
4268 struct btrfs_root *root = BTRFS_I(dir)->root;
4269
4270 /*
4271 * 1 for the possible orphan item
4272 * 1 for the dir item
4273 * 1 for the dir index
4274 * 1 for the inode ref
4275 * 1 for the inode
4276 */
4277 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4278 }
4279
btrfs_unlink(struct inode * dir,struct dentry * dentry)4280 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4281 {
4282 struct btrfs_root *root = BTRFS_I(dir)->root;
4283 struct btrfs_trans_handle *trans;
4284 struct inode *inode = d_inode(dentry);
4285 int ret;
4286
4287 trans = __unlink_start_trans(dir);
4288 if (IS_ERR(trans))
4289 return PTR_ERR(trans);
4290
4291 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4292 0);
4293
4294 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4295 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4296 dentry->d_name.len);
4297 if (ret)
4298 goto out;
4299
4300 if (inode->i_nlink == 0) {
4301 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4302 if (ret)
4303 goto out;
4304 }
4305
4306 out:
4307 btrfs_end_transaction(trans);
4308 btrfs_btree_balance_dirty(root->fs_info);
4309 return ret;
4310 }
4311
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,u64 objectid,const char * name,int name_len)4312 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4313 struct btrfs_root *root,
4314 struct inode *dir, u64 objectid,
4315 const char *name, int name_len)
4316 {
4317 struct btrfs_fs_info *fs_info = root->fs_info;
4318 struct btrfs_path *path;
4319 struct extent_buffer *leaf;
4320 struct btrfs_dir_item *di;
4321 struct btrfs_key key;
4322 u64 index;
4323 int ret;
4324 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4325
4326 path = btrfs_alloc_path();
4327 if (!path)
4328 return -ENOMEM;
4329
4330 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4331 name, name_len, -1);
4332 if (IS_ERR_OR_NULL(di)) {
4333 if (!di)
4334 ret = -ENOENT;
4335 else
4336 ret = PTR_ERR(di);
4337 goto out;
4338 }
4339
4340 leaf = path->nodes[0];
4341 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4342 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4343 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4344 if (ret) {
4345 btrfs_abort_transaction(trans, ret);
4346 goto out;
4347 }
4348 btrfs_release_path(path);
4349
4350 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4351 root->root_key.objectid, dir_ino,
4352 &index, name, name_len);
4353 if (ret < 0) {
4354 if (ret != -ENOENT) {
4355 btrfs_abort_transaction(trans, ret);
4356 goto out;
4357 }
4358 di = btrfs_search_dir_index_item(root, path, dir_ino,
4359 name, name_len);
4360 if (IS_ERR_OR_NULL(di)) {
4361 if (!di)
4362 ret = -ENOENT;
4363 else
4364 ret = PTR_ERR(di);
4365 btrfs_abort_transaction(trans, ret);
4366 goto out;
4367 }
4368
4369 leaf = path->nodes[0];
4370 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4371 btrfs_release_path(path);
4372 index = key.offset;
4373 }
4374 btrfs_release_path(path);
4375
4376 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4377 if (ret) {
4378 btrfs_abort_transaction(trans, ret);
4379 goto out;
4380 }
4381
4382 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4383 inode_inc_iversion(dir);
4384 dir->i_mtime = dir->i_ctime = current_time(dir);
4385 ret = btrfs_update_inode_fallback(trans, root, dir);
4386 if (ret)
4387 btrfs_abort_transaction(trans, ret);
4388 out:
4389 btrfs_free_path(path);
4390 return ret;
4391 }
4392
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4393 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4394 {
4395 struct inode *inode = d_inode(dentry);
4396 int err = 0;
4397 struct btrfs_root *root = BTRFS_I(dir)->root;
4398 struct btrfs_trans_handle *trans;
4399 u64 last_unlink_trans;
4400
4401 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4402 return -ENOTEMPTY;
4403 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4404 return -EPERM;
4405
4406 trans = __unlink_start_trans(dir);
4407 if (IS_ERR(trans))
4408 return PTR_ERR(trans);
4409
4410 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4411 err = btrfs_unlink_subvol(trans, root, dir,
4412 BTRFS_I(inode)->location.objectid,
4413 dentry->d_name.name,
4414 dentry->d_name.len);
4415 goto out;
4416 }
4417
4418 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4419 if (err)
4420 goto out;
4421
4422 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4423
4424 /* now the directory is empty */
4425 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4426 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4427 dentry->d_name.len);
4428 if (!err) {
4429 btrfs_i_size_write(BTRFS_I(inode), 0);
4430 /*
4431 * Propagate the last_unlink_trans value of the deleted dir to
4432 * its parent directory. This is to prevent an unrecoverable
4433 * log tree in the case we do something like this:
4434 * 1) create dir foo
4435 * 2) create snapshot under dir foo
4436 * 3) delete the snapshot
4437 * 4) rmdir foo
4438 * 5) mkdir foo
4439 * 6) fsync foo or some file inside foo
4440 */
4441 if (last_unlink_trans >= trans->transid)
4442 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4443 }
4444 out:
4445 btrfs_end_transaction(trans);
4446 btrfs_btree_balance_dirty(root->fs_info);
4447
4448 return err;
4449 }
4450
truncate_space_check(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytes_deleted)4451 static int truncate_space_check(struct btrfs_trans_handle *trans,
4452 struct btrfs_root *root,
4453 u64 bytes_deleted)
4454 {
4455 struct btrfs_fs_info *fs_info = root->fs_info;
4456 int ret;
4457
4458 /*
4459 * This is only used to apply pressure to the enospc system, we don't
4460 * intend to use this reservation at all.
4461 */
4462 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4463 bytes_deleted *= fs_info->nodesize;
4464 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4465 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4466 if (!ret) {
4467 trace_btrfs_space_reservation(fs_info, "transaction",
4468 trans->transid,
4469 bytes_deleted, 1);
4470 trans->bytes_reserved += bytes_deleted;
4471 }
4472 return ret;
4473
4474 }
4475
truncate_inline_extent(struct inode * inode,struct btrfs_path * path,struct btrfs_key * found_key,const u64 item_end,const u64 new_size)4476 static int truncate_inline_extent(struct inode *inode,
4477 struct btrfs_path *path,
4478 struct btrfs_key *found_key,
4479 const u64 item_end,
4480 const u64 new_size)
4481 {
4482 struct extent_buffer *leaf = path->nodes[0];
4483 int slot = path->slots[0];
4484 struct btrfs_file_extent_item *fi;
4485 u32 size = (u32)(new_size - found_key->offset);
4486 struct btrfs_root *root = BTRFS_I(inode)->root;
4487
4488 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4489
4490 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4491 loff_t offset = new_size;
4492 loff_t page_end = ALIGN(offset, PAGE_SIZE);
4493
4494 /*
4495 * Zero out the remaining of the last page of our inline extent,
4496 * instead of directly truncating our inline extent here - that
4497 * would be much more complex (decompressing all the data, then
4498 * compressing the truncated data, which might be bigger than
4499 * the size of the inline extent, resize the extent, etc).
4500 * We release the path because to get the page we might need to
4501 * read the extent item from disk (data not in the page cache).
4502 */
4503 btrfs_release_path(path);
4504 return btrfs_truncate_block(inode, offset, page_end - offset,
4505 0);
4506 }
4507
4508 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4509 size = btrfs_file_extent_calc_inline_size(size);
4510 btrfs_truncate_item(root->fs_info, path, size, 1);
4511
4512 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4513 inode_sub_bytes(inode, item_end + 1 - new_size);
4514
4515 return 0;
4516 }
4517
4518 /*
4519 * this can truncate away extent items, csum items and directory items.
4520 * It starts at a high offset and removes keys until it can't find
4521 * any higher than new_size
4522 *
4523 * csum items that cross the new i_size are truncated to the new size
4524 * as well.
4525 *
4526 * min_type is the minimum key type to truncate down to. If set to 0, this
4527 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4528 */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4529 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4530 struct btrfs_root *root,
4531 struct inode *inode,
4532 u64 new_size, u32 min_type)
4533 {
4534 struct btrfs_fs_info *fs_info = root->fs_info;
4535 struct btrfs_path *path;
4536 struct extent_buffer *leaf;
4537 struct btrfs_file_extent_item *fi;
4538 struct btrfs_key key;
4539 struct btrfs_key found_key;
4540 u64 extent_start = 0;
4541 u64 extent_num_bytes = 0;
4542 u64 extent_offset = 0;
4543 u64 item_end = 0;
4544 u64 last_size = new_size;
4545 u32 found_type = (u8)-1;
4546 int found_extent;
4547 int del_item;
4548 int pending_del_nr = 0;
4549 int pending_del_slot = 0;
4550 int extent_type = -1;
4551 int ret;
4552 int err = 0;
4553 u64 ino = btrfs_ino(BTRFS_I(inode));
4554 u64 bytes_deleted = 0;
4555 bool be_nice = 0;
4556 bool should_throttle = 0;
4557 bool should_end = 0;
4558
4559 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4560
4561 /*
4562 * for non-free space inodes and ref cows, we want to back off from
4563 * time to time
4564 */
4565 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4566 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4567 be_nice = 1;
4568
4569 path = btrfs_alloc_path();
4570 if (!path)
4571 return -ENOMEM;
4572 path->reada = READA_BACK;
4573
4574 /*
4575 * We want to drop from the next block forward in case this new size is
4576 * not block aligned since we will be keeping the last block of the
4577 * extent just the way it is.
4578 */
4579 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4580 root == fs_info->tree_root)
4581 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4582 fs_info->sectorsize),
4583 (u64)-1, 0);
4584
4585 /*
4586 * This function is also used to drop the items in the log tree before
4587 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4588 * it is used to drop the loged items. So we shouldn't kill the delayed
4589 * items.
4590 */
4591 if (min_type == 0 && root == BTRFS_I(inode)->root)
4592 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4593
4594 key.objectid = ino;
4595 key.offset = (u64)-1;
4596 key.type = (u8)-1;
4597
4598 search_again:
4599 /*
4600 * with a 16K leaf size and 128MB extents, you can actually queue
4601 * up a huge file in a single leaf. Most of the time that
4602 * bytes_deleted is > 0, it will be huge by the time we get here
4603 */
4604 if (be_nice && bytes_deleted > SZ_32M) {
4605 if (btrfs_should_end_transaction(trans)) {
4606 err = -EAGAIN;
4607 goto error;
4608 }
4609 }
4610
4611
4612 path->leave_spinning = 1;
4613 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4614 if (ret < 0) {
4615 err = ret;
4616 goto out;
4617 }
4618
4619 if (ret > 0) {
4620 /* there are no items in the tree for us to truncate, we're
4621 * done
4622 */
4623 if (path->slots[0] == 0)
4624 goto out;
4625 path->slots[0]--;
4626 }
4627
4628 while (1) {
4629 fi = NULL;
4630 leaf = path->nodes[0];
4631 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4632 found_type = found_key.type;
4633
4634 if (found_key.objectid != ino)
4635 break;
4636
4637 if (found_type < min_type)
4638 break;
4639
4640 item_end = found_key.offset;
4641 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4642 fi = btrfs_item_ptr(leaf, path->slots[0],
4643 struct btrfs_file_extent_item);
4644 extent_type = btrfs_file_extent_type(leaf, fi);
4645 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4646 item_end +=
4647 btrfs_file_extent_num_bytes(leaf, fi);
4648
4649 trace_btrfs_truncate_show_fi_regular(
4650 BTRFS_I(inode), leaf, fi,
4651 found_key.offset);
4652 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4653 item_end += btrfs_file_extent_ram_bytes(leaf,
4654 fi);
4655
4656 trace_btrfs_truncate_show_fi_inline(
4657 BTRFS_I(inode), leaf, fi, path->slots[0],
4658 found_key.offset);
4659 }
4660 item_end--;
4661 }
4662 if (found_type > min_type) {
4663 del_item = 1;
4664 } else {
4665 if (item_end < new_size)
4666 break;
4667 if (found_key.offset >= new_size)
4668 del_item = 1;
4669 else
4670 del_item = 0;
4671 }
4672 found_extent = 0;
4673 /* FIXME, shrink the extent if the ref count is only 1 */
4674 if (found_type != BTRFS_EXTENT_DATA_KEY)
4675 goto delete;
4676
4677 if (del_item)
4678 last_size = found_key.offset;
4679 else
4680 last_size = new_size;
4681
4682 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4683 u64 num_dec;
4684 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4685 if (!del_item) {
4686 u64 orig_num_bytes =
4687 btrfs_file_extent_num_bytes(leaf, fi);
4688 extent_num_bytes = ALIGN(new_size -
4689 found_key.offset,
4690 fs_info->sectorsize);
4691 btrfs_set_file_extent_num_bytes(leaf, fi,
4692 extent_num_bytes);
4693 num_dec = (orig_num_bytes -
4694 extent_num_bytes);
4695 if (test_bit(BTRFS_ROOT_REF_COWS,
4696 &root->state) &&
4697 extent_start != 0)
4698 inode_sub_bytes(inode, num_dec);
4699 btrfs_mark_buffer_dirty(leaf);
4700 } else {
4701 extent_num_bytes =
4702 btrfs_file_extent_disk_num_bytes(leaf,
4703 fi);
4704 extent_offset = found_key.offset -
4705 btrfs_file_extent_offset(leaf, fi);
4706
4707 /* FIXME blocksize != 4096 */
4708 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4709 if (extent_start != 0) {
4710 found_extent = 1;
4711 if (test_bit(BTRFS_ROOT_REF_COWS,
4712 &root->state))
4713 inode_sub_bytes(inode, num_dec);
4714 }
4715 }
4716 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4717 /*
4718 * we can't truncate inline items that have had
4719 * special encodings
4720 */
4721 if (!del_item &&
4722 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4723 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4724
4725 /*
4726 * Need to release path in order to truncate a
4727 * compressed extent. So delete any accumulated
4728 * extent items so far.
4729 */
4730 if (btrfs_file_extent_compression(leaf, fi) !=
4731 BTRFS_COMPRESS_NONE && pending_del_nr) {
4732 err = btrfs_del_items(trans, root, path,
4733 pending_del_slot,
4734 pending_del_nr);
4735 if (err) {
4736 btrfs_abort_transaction(trans,
4737 err);
4738 goto error;
4739 }
4740 pending_del_nr = 0;
4741 }
4742
4743 err = truncate_inline_extent(inode, path,
4744 &found_key,
4745 item_end,
4746 new_size);
4747 if (err) {
4748 btrfs_abort_transaction(trans, err);
4749 goto error;
4750 }
4751 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4752 &root->state)) {
4753 inode_sub_bytes(inode, item_end + 1 - new_size);
4754 }
4755 }
4756 delete:
4757 if (del_item) {
4758 if (!pending_del_nr) {
4759 /* no pending yet, add ourselves */
4760 pending_del_slot = path->slots[0];
4761 pending_del_nr = 1;
4762 } else if (pending_del_nr &&
4763 path->slots[0] + 1 == pending_del_slot) {
4764 /* hop on the pending chunk */
4765 pending_del_nr++;
4766 pending_del_slot = path->slots[0];
4767 } else {
4768 BUG();
4769 }
4770 } else {
4771 break;
4772 }
4773 should_throttle = 0;
4774
4775 if (found_extent &&
4776 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4777 root == fs_info->tree_root)) {
4778 btrfs_set_path_blocking(path);
4779 bytes_deleted += extent_num_bytes;
4780 ret = btrfs_free_extent(trans, fs_info, extent_start,
4781 extent_num_bytes, 0,
4782 btrfs_header_owner(leaf),
4783 ino, extent_offset);
4784 if (ret) {
4785 btrfs_abort_transaction(trans, ret);
4786 break;
4787 }
4788 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4789 btrfs_async_run_delayed_refs(fs_info,
4790 trans->delayed_ref_updates * 2,
4791 trans->transid, 0);
4792 if (be_nice) {
4793 if (truncate_space_check(trans, root,
4794 extent_num_bytes)) {
4795 should_end = 1;
4796 }
4797 if (btrfs_should_throttle_delayed_refs(trans,
4798 fs_info))
4799 should_throttle = 1;
4800 }
4801 }
4802
4803 if (found_type == BTRFS_INODE_ITEM_KEY)
4804 break;
4805
4806 if (path->slots[0] == 0 ||
4807 path->slots[0] != pending_del_slot ||
4808 should_throttle || should_end) {
4809 if (pending_del_nr) {
4810 ret = btrfs_del_items(trans, root, path,
4811 pending_del_slot,
4812 pending_del_nr);
4813 if (ret) {
4814 btrfs_abort_transaction(trans, ret);
4815 goto error;
4816 }
4817 pending_del_nr = 0;
4818 }
4819 btrfs_release_path(path);
4820 if (should_throttle) {
4821 unsigned long updates = trans->delayed_ref_updates;
4822 if (updates) {
4823 trans->delayed_ref_updates = 0;
4824 ret = btrfs_run_delayed_refs(trans,
4825 fs_info,
4826 updates * 2);
4827 if (ret && !err)
4828 err = ret;
4829 }
4830 }
4831 /*
4832 * if we failed to refill our space rsv, bail out
4833 * and let the transaction restart
4834 */
4835 if (should_end) {
4836 err = -EAGAIN;
4837 goto error;
4838 }
4839 goto search_again;
4840 } else {
4841 path->slots[0]--;
4842 }
4843 }
4844 out:
4845 if (pending_del_nr) {
4846 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4847 pending_del_nr);
4848 if (ret)
4849 btrfs_abort_transaction(trans, ret);
4850 }
4851 error:
4852 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4853 ASSERT(last_size >= new_size);
4854 if (!err && last_size > new_size)
4855 last_size = new_size;
4856 btrfs_ordered_update_i_size(inode, last_size, NULL);
4857 }
4858
4859 btrfs_free_path(path);
4860
4861 if (be_nice && bytes_deleted > SZ_32M) {
4862 unsigned long updates = trans->delayed_ref_updates;
4863 if (updates) {
4864 trans->delayed_ref_updates = 0;
4865 ret = btrfs_run_delayed_refs(trans, fs_info,
4866 updates * 2);
4867 if (ret && !err)
4868 err = ret;
4869 }
4870 }
4871 return err;
4872 }
4873
4874 /*
4875 * btrfs_truncate_block - read, zero a chunk and write a block
4876 * @inode - inode that we're zeroing
4877 * @from - the offset to start zeroing
4878 * @len - the length to zero, 0 to zero the entire range respective to the
4879 * offset
4880 * @front - zero up to the offset instead of from the offset on
4881 *
4882 * This will find the block for the "from" offset and cow the block and zero the
4883 * part we want to zero. This is used with truncate and hole punching.
4884 */
btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)4885 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4886 int front)
4887 {
4888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4889 struct address_space *mapping = inode->i_mapping;
4890 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4891 struct btrfs_ordered_extent *ordered;
4892 struct extent_state *cached_state = NULL;
4893 struct extent_changeset *data_reserved = NULL;
4894 char *kaddr;
4895 u32 blocksize = fs_info->sectorsize;
4896 pgoff_t index = from >> PAGE_SHIFT;
4897 unsigned offset = from & (blocksize - 1);
4898 struct page *page;
4899 gfp_t mask = btrfs_alloc_write_mask(mapping);
4900 int ret = 0;
4901 u64 block_start;
4902 u64 block_end;
4903
4904 if ((offset & (blocksize - 1)) == 0 &&
4905 (!len || ((len & (blocksize - 1)) == 0)))
4906 goto out;
4907
4908 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4909 round_down(from, blocksize), blocksize);
4910 if (ret)
4911 goto out;
4912
4913 again:
4914 page = find_or_create_page(mapping, index, mask);
4915 if (!page) {
4916 btrfs_delalloc_release_space(inode, data_reserved,
4917 round_down(from, blocksize),
4918 blocksize);
4919 ret = -ENOMEM;
4920 goto out;
4921 }
4922
4923 block_start = round_down(from, blocksize);
4924 block_end = block_start + blocksize - 1;
4925
4926 if (!PageUptodate(page)) {
4927 ret = btrfs_readpage(NULL, page);
4928 lock_page(page);
4929 if (page->mapping != mapping) {
4930 unlock_page(page);
4931 put_page(page);
4932 goto again;
4933 }
4934 if (!PageUptodate(page)) {
4935 ret = -EIO;
4936 goto out_unlock;
4937 }
4938 }
4939 wait_on_page_writeback(page);
4940
4941 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4942 set_page_extent_mapped(page);
4943
4944 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4945 if (ordered) {
4946 unlock_extent_cached(io_tree, block_start, block_end,
4947 &cached_state, GFP_NOFS);
4948 unlock_page(page);
4949 put_page(page);
4950 btrfs_start_ordered_extent(inode, ordered, 1);
4951 btrfs_put_ordered_extent(ordered);
4952 goto again;
4953 }
4954
4955 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4956 EXTENT_DIRTY | EXTENT_DELALLOC |
4957 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4958 0, 0, &cached_state, GFP_NOFS);
4959
4960 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4961 &cached_state, 0);
4962 if (ret) {
4963 unlock_extent_cached(io_tree, block_start, block_end,
4964 &cached_state, GFP_NOFS);
4965 goto out_unlock;
4966 }
4967
4968 if (offset != blocksize) {
4969 if (!len)
4970 len = blocksize - offset;
4971 kaddr = kmap(page);
4972 if (front)
4973 memset(kaddr + (block_start - page_offset(page)),
4974 0, offset);
4975 else
4976 memset(kaddr + (block_start - page_offset(page)) + offset,
4977 0, len);
4978 flush_dcache_page(page);
4979 kunmap(page);
4980 }
4981 ClearPageChecked(page);
4982 set_page_dirty(page);
4983 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4984 GFP_NOFS);
4985
4986 out_unlock:
4987 if (ret)
4988 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4989 blocksize);
4990 unlock_page(page);
4991 put_page(page);
4992 out:
4993 extent_changeset_free(data_reserved);
4994 return ret;
4995 }
4996
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)4997 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4998 u64 offset, u64 len)
4999 {
5000 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5001 struct btrfs_trans_handle *trans;
5002 int ret;
5003
5004 /*
5005 * Still need to make sure the inode looks like it's been updated so
5006 * that any holes get logged if we fsync.
5007 */
5008 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5009 BTRFS_I(inode)->last_trans = fs_info->generation;
5010 BTRFS_I(inode)->last_sub_trans = root->log_transid;
5011 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5012 return 0;
5013 }
5014
5015 /*
5016 * 1 - for the one we're dropping
5017 * 1 - for the one we're adding
5018 * 1 - for updating the inode.
5019 */
5020 trans = btrfs_start_transaction(root, 3);
5021 if (IS_ERR(trans))
5022 return PTR_ERR(trans);
5023
5024 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5025 if (ret) {
5026 btrfs_abort_transaction(trans, ret);
5027 btrfs_end_transaction(trans);
5028 return ret;
5029 }
5030
5031 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5032 offset, 0, 0, len, 0, len, 0, 0, 0);
5033 if (ret)
5034 btrfs_abort_transaction(trans, ret);
5035 else
5036 btrfs_update_inode(trans, root, inode);
5037 btrfs_end_transaction(trans);
5038 return ret;
5039 }
5040
5041 /*
5042 * This function puts in dummy file extents for the area we're creating a hole
5043 * for. So if we are truncating this file to a larger size we need to insert
5044 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5045 * the range between oldsize and size
5046 */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)5047 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5048 {
5049 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5050 struct btrfs_root *root = BTRFS_I(inode)->root;
5051 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5052 struct extent_map *em = NULL;
5053 struct extent_state *cached_state = NULL;
5054 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5055 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5056 u64 block_end = ALIGN(size, fs_info->sectorsize);
5057 u64 last_byte;
5058 u64 cur_offset;
5059 u64 hole_size;
5060 int err = 0;
5061
5062 /*
5063 * If our size started in the middle of a block we need to zero out the
5064 * rest of the block before we expand the i_size, otherwise we could
5065 * expose stale data.
5066 */
5067 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5068 if (err)
5069 return err;
5070
5071 if (size <= hole_start)
5072 return 0;
5073
5074 while (1) {
5075 struct btrfs_ordered_extent *ordered;
5076
5077 lock_extent_bits(io_tree, hole_start, block_end - 1,
5078 &cached_state);
5079 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5080 block_end - hole_start);
5081 if (!ordered)
5082 break;
5083 unlock_extent_cached(io_tree, hole_start, block_end - 1,
5084 &cached_state, GFP_NOFS);
5085 btrfs_start_ordered_extent(inode, ordered, 1);
5086 btrfs_put_ordered_extent(ordered);
5087 }
5088
5089 cur_offset = hole_start;
5090 while (1) {
5091 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5092 block_end - cur_offset, 0);
5093 if (IS_ERR(em)) {
5094 err = PTR_ERR(em);
5095 em = NULL;
5096 break;
5097 }
5098 last_byte = min(extent_map_end(em), block_end);
5099 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5100 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5101 struct extent_map *hole_em;
5102 hole_size = last_byte - cur_offset;
5103
5104 err = maybe_insert_hole(root, inode, cur_offset,
5105 hole_size);
5106 if (err)
5107 break;
5108 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5109 cur_offset + hole_size - 1, 0);
5110 hole_em = alloc_extent_map();
5111 if (!hole_em) {
5112 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5113 &BTRFS_I(inode)->runtime_flags);
5114 goto next;
5115 }
5116 hole_em->start = cur_offset;
5117 hole_em->len = hole_size;
5118 hole_em->orig_start = cur_offset;
5119
5120 hole_em->block_start = EXTENT_MAP_HOLE;
5121 hole_em->block_len = 0;
5122 hole_em->orig_block_len = 0;
5123 hole_em->ram_bytes = hole_size;
5124 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5125 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5126 hole_em->generation = fs_info->generation;
5127
5128 while (1) {
5129 write_lock(&em_tree->lock);
5130 err = add_extent_mapping(em_tree, hole_em, 1);
5131 write_unlock(&em_tree->lock);
5132 if (err != -EEXIST)
5133 break;
5134 btrfs_drop_extent_cache(BTRFS_I(inode),
5135 cur_offset,
5136 cur_offset +
5137 hole_size - 1, 0);
5138 }
5139 free_extent_map(hole_em);
5140 }
5141 next:
5142 free_extent_map(em);
5143 em = NULL;
5144 cur_offset = last_byte;
5145 if (cur_offset >= block_end)
5146 break;
5147 }
5148 free_extent_map(em);
5149 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
5150 GFP_NOFS);
5151 return err;
5152 }
5153
btrfs_setsize(struct inode * inode,struct iattr * attr)5154 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5155 {
5156 struct btrfs_root *root = BTRFS_I(inode)->root;
5157 struct btrfs_trans_handle *trans;
5158 loff_t oldsize = i_size_read(inode);
5159 loff_t newsize = attr->ia_size;
5160 int mask = attr->ia_valid;
5161 int ret;
5162
5163 /*
5164 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5165 * special case where we need to update the times despite not having
5166 * these flags set. For all other operations the VFS set these flags
5167 * explicitly if it wants a timestamp update.
5168 */
5169 if (newsize != oldsize) {
5170 inode_inc_iversion(inode);
5171 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5172 inode->i_ctime = inode->i_mtime =
5173 current_time(inode);
5174 }
5175
5176 if (newsize > oldsize) {
5177 /*
5178 * Don't do an expanding truncate while snapshotting is ongoing.
5179 * This is to ensure the snapshot captures a fully consistent
5180 * state of this file - if the snapshot captures this expanding
5181 * truncation, it must capture all writes that happened before
5182 * this truncation.
5183 */
5184 btrfs_wait_for_snapshot_creation(root);
5185 ret = btrfs_cont_expand(inode, oldsize, newsize);
5186 if (ret) {
5187 btrfs_end_write_no_snapshotting(root);
5188 return ret;
5189 }
5190
5191 trans = btrfs_start_transaction(root, 1);
5192 if (IS_ERR(trans)) {
5193 btrfs_end_write_no_snapshotting(root);
5194 return PTR_ERR(trans);
5195 }
5196
5197 i_size_write(inode, newsize);
5198 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5199 pagecache_isize_extended(inode, oldsize, newsize);
5200 ret = btrfs_update_inode(trans, root, inode);
5201 btrfs_end_write_no_snapshotting(root);
5202 btrfs_end_transaction(trans);
5203 } else {
5204
5205 /*
5206 * We're truncating a file that used to have good data down to
5207 * zero. Make sure it gets into the ordered flush list so that
5208 * any new writes get down to disk quickly.
5209 */
5210 if (newsize == 0)
5211 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5212 &BTRFS_I(inode)->runtime_flags);
5213
5214 /*
5215 * 1 for the orphan item we're going to add
5216 * 1 for the orphan item deletion.
5217 */
5218 trans = btrfs_start_transaction(root, 2);
5219 if (IS_ERR(trans))
5220 return PTR_ERR(trans);
5221
5222 /*
5223 * We need to do this in case we fail at _any_ point during the
5224 * actual truncate. Once we do the truncate_setsize we could
5225 * invalidate pages which forces any outstanding ordered io to
5226 * be instantly completed which will give us extents that need
5227 * to be truncated. If we fail to get an orphan inode down we
5228 * could have left over extents that were never meant to live,
5229 * so we need to guarantee from this point on that everything
5230 * will be consistent.
5231 */
5232 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
5233 btrfs_end_transaction(trans);
5234 if (ret)
5235 return ret;
5236
5237 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5238 truncate_setsize(inode, newsize);
5239
5240 /* Disable nonlocked read DIO to avoid the end less truncate */
5241 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5242 inode_dio_wait(inode);
5243 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5244
5245 ret = btrfs_truncate(inode);
5246 if (ret && inode->i_nlink) {
5247 int err;
5248
5249 /* To get a stable disk_i_size */
5250 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5251 if (err) {
5252 btrfs_orphan_del(NULL, BTRFS_I(inode));
5253 return err;
5254 }
5255
5256 /*
5257 * failed to truncate, disk_i_size is only adjusted down
5258 * as we remove extents, so it should represent the true
5259 * size of the inode, so reset the in memory size and
5260 * delete our orphan entry.
5261 */
5262 trans = btrfs_join_transaction(root);
5263 if (IS_ERR(trans)) {
5264 btrfs_orphan_del(NULL, BTRFS_I(inode));
5265 return ret;
5266 }
5267 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5268 err = btrfs_orphan_del(trans, BTRFS_I(inode));
5269 if (err)
5270 btrfs_abort_transaction(trans, err);
5271 btrfs_end_transaction(trans);
5272 }
5273 }
5274
5275 return ret;
5276 }
5277
btrfs_setattr(struct dentry * dentry,struct iattr * attr)5278 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5279 {
5280 struct inode *inode = d_inode(dentry);
5281 struct btrfs_root *root = BTRFS_I(inode)->root;
5282 int err;
5283
5284 if (btrfs_root_readonly(root))
5285 return -EROFS;
5286
5287 err = setattr_prepare(dentry, attr);
5288 if (err)
5289 return err;
5290
5291 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5292 err = btrfs_setsize(inode, attr);
5293 if (err)
5294 return err;
5295 }
5296
5297 if (attr->ia_valid) {
5298 setattr_copy(inode, attr);
5299 inode_inc_iversion(inode);
5300 err = btrfs_dirty_inode(inode);
5301
5302 if (!err && attr->ia_valid & ATTR_MODE)
5303 err = posix_acl_chmod(inode, inode->i_mode);
5304 }
5305
5306 return err;
5307 }
5308
5309 /*
5310 * While truncating the inode pages during eviction, we get the VFS calling
5311 * btrfs_invalidatepage() against each page of the inode. This is slow because
5312 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5313 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5314 * extent_state structures over and over, wasting lots of time.
5315 *
5316 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5317 * those expensive operations on a per page basis and do only the ordered io
5318 * finishing, while we release here the extent_map and extent_state structures,
5319 * without the excessive merging and splitting.
5320 */
evict_inode_truncate_pages(struct inode * inode)5321 static void evict_inode_truncate_pages(struct inode *inode)
5322 {
5323 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5324 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5325 struct rb_node *node;
5326
5327 ASSERT(inode->i_state & I_FREEING);
5328 truncate_inode_pages_final(&inode->i_data);
5329
5330 write_lock(&map_tree->lock);
5331 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5332 struct extent_map *em;
5333
5334 node = rb_first(&map_tree->map);
5335 em = rb_entry(node, struct extent_map, rb_node);
5336 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5337 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5338 remove_extent_mapping(map_tree, em);
5339 free_extent_map(em);
5340 if (need_resched()) {
5341 write_unlock(&map_tree->lock);
5342 cond_resched();
5343 write_lock(&map_tree->lock);
5344 }
5345 }
5346 write_unlock(&map_tree->lock);
5347
5348 /*
5349 * Keep looping until we have no more ranges in the io tree.
5350 * We can have ongoing bios started by readpages (called from readahead)
5351 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5352 * still in progress (unlocked the pages in the bio but did not yet
5353 * unlocked the ranges in the io tree). Therefore this means some
5354 * ranges can still be locked and eviction started because before
5355 * submitting those bios, which are executed by a separate task (work
5356 * queue kthread), inode references (inode->i_count) were not taken
5357 * (which would be dropped in the end io callback of each bio).
5358 * Therefore here we effectively end up waiting for those bios and
5359 * anyone else holding locked ranges without having bumped the inode's
5360 * reference count - if we don't do it, when they access the inode's
5361 * io_tree to unlock a range it may be too late, leading to an
5362 * use-after-free issue.
5363 */
5364 spin_lock(&io_tree->lock);
5365 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5366 struct extent_state *state;
5367 struct extent_state *cached_state = NULL;
5368 u64 start;
5369 u64 end;
5370 unsigned state_flags;
5371
5372 node = rb_first(&io_tree->state);
5373 state = rb_entry(node, struct extent_state, rb_node);
5374 start = state->start;
5375 end = state->end;
5376 state_flags = state->state;
5377 spin_unlock(&io_tree->lock);
5378
5379 lock_extent_bits(io_tree, start, end, &cached_state);
5380
5381 /*
5382 * If still has DELALLOC flag, the extent didn't reach disk,
5383 * and its reserved space won't be freed by delayed_ref.
5384 * So we need to free its reserved space here.
5385 * (Refer to comment in btrfs_invalidatepage, case 2)
5386 *
5387 * Note, end is the bytenr of last byte, so we need + 1 here.
5388 */
5389 if (state_flags & EXTENT_DELALLOC)
5390 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5391
5392 clear_extent_bit(io_tree, start, end,
5393 EXTENT_LOCKED | EXTENT_DIRTY |
5394 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5395 EXTENT_DEFRAG, 1, 1,
5396 &cached_state, GFP_NOFS);
5397
5398 cond_resched();
5399 spin_lock(&io_tree->lock);
5400 }
5401 spin_unlock(&io_tree->lock);
5402 }
5403
btrfs_evict_inode(struct inode * inode)5404 void btrfs_evict_inode(struct inode *inode)
5405 {
5406 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5407 struct btrfs_trans_handle *trans;
5408 struct btrfs_root *root = BTRFS_I(inode)->root;
5409 struct btrfs_block_rsv *rsv, *global_rsv;
5410 int steal_from_global = 0;
5411 u64 min_size;
5412 int ret;
5413
5414 trace_btrfs_inode_evict(inode);
5415
5416 if (!root) {
5417 clear_inode(inode);
5418 return;
5419 }
5420
5421 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5422
5423 evict_inode_truncate_pages(inode);
5424
5425 if (inode->i_nlink &&
5426 ((btrfs_root_refs(&root->root_item) != 0 &&
5427 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5428 btrfs_is_free_space_inode(BTRFS_I(inode))))
5429 goto no_delete;
5430
5431 if (is_bad_inode(inode)) {
5432 btrfs_orphan_del(NULL, BTRFS_I(inode));
5433 goto no_delete;
5434 }
5435 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5436 if (!special_file(inode->i_mode))
5437 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5438
5439 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5440
5441 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5442 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5443 &BTRFS_I(inode)->runtime_flags));
5444 goto no_delete;
5445 }
5446
5447 if (inode->i_nlink > 0) {
5448 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5449 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5450 goto no_delete;
5451 }
5452
5453 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5454 if (ret) {
5455 btrfs_orphan_del(NULL, BTRFS_I(inode));
5456 goto no_delete;
5457 }
5458
5459 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5460 if (!rsv) {
5461 btrfs_orphan_del(NULL, BTRFS_I(inode));
5462 goto no_delete;
5463 }
5464 rsv->size = min_size;
5465 rsv->failfast = 1;
5466 global_rsv = &fs_info->global_block_rsv;
5467
5468 btrfs_i_size_write(BTRFS_I(inode), 0);
5469
5470 /*
5471 * This is a bit simpler than btrfs_truncate since we've already
5472 * reserved our space for our orphan item in the unlink, so we just
5473 * need to reserve some slack space in case we add bytes and update
5474 * inode item when doing the truncate.
5475 */
5476 while (1) {
5477 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5478 BTRFS_RESERVE_FLUSH_LIMIT);
5479
5480 /*
5481 * Try and steal from the global reserve since we will
5482 * likely not use this space anyway, we want to try as
5483 * hard as possible to get this to work.
5484 */
5485 if (ret)
5486 steal_from_global++;
5487 else
5488 steal_from_global = 0;
5489 ret = 0;
5490
5491 /*
5492 * steal_from_global == 0: we reserved stuff, hooray!
5493 * steal_from_global == 1: we didn't reserve stuff, boo!
5494 * steal_from_global == 2: we've committed, still not a lot of
5495 * room but maybe we'll have room in the global reserve this
5496 * time.
5497 * steal_from_global == 3: abandon all hope!
5498 */
5499 if (steal_from_global > 2) {
5500 btrfs_warn(fs_info,
5501 "Could not get space for a delete, will truncate on mount %d",
5502 ret);
5503 btrfs_orphan_del(NULL, BTRFS_I(inode));
5504 btrfs_free_block_rsv(fs_info, rsv);
5505 goto no_delete;
5506 }
5507
5508 trans = btrfs_join_transaction(root);
5509 if (IS_ERR(trans)) {
5510 btrfs_orphan_del(NULL, BTRFS_I(inode));
5511 btrfs_free_block_rsv(fs_info, rsv);
5512 goto no_delete;
5513 }
5514
5515 /*
5516 * We can't just steal from the global reserve, we need to make
5517 * sure there is room to do it, if not we need to commit and try
5518 * again.
5519 */
5520 if (steal_from_global) {
5521 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5522 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5523 min_size, 0);
5524 else
5525 ret = -ENOSPC;
5526 }
5527
5528 /*
5529 * Couldn't steal from the global reserve, we have too much
5530 * pending stuff built up, commit the transaction and try it
5531 * again.
5532 */
5533 if (ret) {
5534 ret = btrfs_commit_transaction(trans);
5535 if (ret) {
5536 btrfs_orphan_del(NULL, BTRFS_I(inode));
5537 btrfs_free_block_rsv(fs_info, rsv);
5538 goto no_delete;
5539 }
5540 continue;
5541 } else {
5542 steal_from_global = 0;
5543 }
5544
5545 trans->block_rsv = rsv;
5546
5547 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5548 if (ret) {
5549 trans->block_rsv = &fs_info->trans_block_rsv;
5550 btrfs_end_transaction(trans);
5551 btrfs_btree_balance_dirty(fs_info);
5552 if (ret != -ENOSPC && ret != -EAGAIN) {
5553 btrfs_orphan_del(NULL, BTRFS_I(inode));
5554 btrfs_free_block_rsv(fs_info, rsv);
5555 goto no_delete;
5556 }
5557 } else {
5558 break;
5559 }
5560 }
5561
5562 btrfs_free_block_rsv(fs_info, rsv);
5563
5564 /*
5565 * Errors here aren't a big deal, it just means we leave orphan items
5566 * in the tree. They will be cleaned up on the next mount.
5567 */
5568 trans->block_rsv = root->orphan_block_rsv;
5569 btrfs_orphan_del(trans, BTRFS_I(inode));
5570
5571 trans->block_rsv = &fs_info->trans_block_rsv;
5572 if (!(root == fs_info->tree_root ||
5573 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5574 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5575
5576 btrfs_end_transaction(trans);
5577 btrfs_btree_balance_dirty(fs_info);
5578 no_delete:
5579 btrfs_remove_delayed_node(BTRFS_I(inode));
5580 clear_inode(inode);
5581 }
5582
5583 /*
5584 * this returns the key found in the dir entry in the location pointer.
5585 * If no dir entries were found, location->objectid is 0.
5586 */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location)5587 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5588 struct btrfs_key *location)
5589 {
5590 const char *name = dentry->d_name.name;
5591 int namelen = dentry->d_name.len;
5592 struct btrfs_dir_item *di;
5593 struct btrfs_path *path;
5594 struct btrfs_root *root = BTRFS_I(dir)->root;
5595 int ret = 0;
5596
5597 path = btrfs_alloc_path();
5598 if (!path)
5599 return -ENOMEM;
5600
5601 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5602 name, namelen, 0);
5603 if (IS_ERR(di))
5604 ret = PTR_ERR(di);
5605
5606 if (IS_ERR_OR_NULL(di))
5607 goto out_err;
5608
5609 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5610 if (location->type != BTRFS_INODE_ITEM_KEY &&
5611 location->type != BTRFS_ROOT_ITEM_KEY) {
5612 btrfs_warn(root->fs_info,
5613 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5614 __func__, name, btrfs_ino(BTRFS_I(dir)),
5615 location->objectid, location->type, location->offset);
5616 goto out_err;
5617 }
5618 out:
5619 btrfs_free_path(path);
5620 return ret;
5621 out_err:
5622 location->objectid = 0;
5623 goto out;
5624 }
5625
5626 /*
5627 * when we hit a tree root in a directory, the btrfs part of the inode
5628 * needs to be changed to reflect the root directory of the tree root. This
5629 * is kind of like crossing a mount point.
5630 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5631 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5632 struct inode *dir,
5633 struct dentry *dentry,
5634 struct btrfs_key *location,
5635 struct btrfs_root **sub_root)
5636 {
5637 struct btrfs_path *path;
5638 struct btrfs_root *new_root;
5639 struct btrfs_root_ref *ref;
5640 struct extent_buffer *leaf;
5641 struct btrfs_key key;
5642 int ret;
5643 int err = 0;
5644
5645 path = btrfs_alloc_path();
5646 if (!path) {
5647 err = -ENOMEM;
5648 goto out;
5649 }
5650
5651 err = -ENOENT;
5652 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5653 key.type = BTRFS_ROOT_REF_KEY;
5654 key.offset = location->objectid;
5655
5656 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5657 if (ret) {
5658 if (ret < 0)
5659 err = ret;
5660 goto out;
5661 }
5662
5663 leaf = path->nodes[0];
5664 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5665 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5666 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5667 goto out;
5668
5669 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5670 (unsigned long)(ref + 1),
5671 dentry->d_name.len);
5672 if (ret)
5673 goto out;
5674
5675 btrfs_release_path(path);
5676
5677 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5678 if (IS_ERR(new_root)) {
5679 err = PTR_ERR(new_root);
5680 goto out;
5681 }
5682
5683 *sub_root = new_root;
5684 location->objectid = btrfs_root_dirid(&new_root->root_item);
5685 location->type = BTRFS_INODE_ITEM_KEY;
5686 location->offset = 0;
5687 err = 0;
5688 out:
5689 btrfs_free_path(path);
5690 return err;
5691 }
5692
inode_tree_add(struct inode * inode)5693 static void inode_tree_add(struct inode *inode)
5694 {
5695 struct btrfs_root *root = BTRFS_I(inode)->root;
5696 struct btrfs_inode *entry;
5697 struct rb_node **p;
5698 struct rb_node *parent;
5699 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5700 u64 ino = btrfs_ino(BTRFS_I(inode));
5701
5702 if (inode_unhashed(inode))
5703 return;
5704 parent = NULL;
5705 spin_lock(&root->inode_lock);
5706 p = &root->inode_tree.rb_node;
5707 while (*p) {
5708 parent = *p;
5709 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5710
5711 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5712 p = &parent->rb_left;
5713 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5714 p = &parent->rb_right;
5715 else {
5716 WARN_ON(!(entry->vfs_inode.i_state &
5717 (I_WILL_FREE | I_FREEING)));
5718 rb_replace_node(parent, new, &root->inode_tree);
5719 RB_CLEAR_NODE(parent);
5720 spin_unlock(&root->inode_lock);
5721 return;
5722 }
5723 }
5724 rb_link_node(new, parent, p);
5725 rb_insert_color(new, &root->inode_tree);
5726 spin_unlock(&root->inode_lock);
5727 }
5728
inode_tree_del(struct inode * inode)5729 static void inode_tree_del(struct inode *inode)
5730 {
5731 struct btrfs_root *root = BTRFS_I(inode)->root;
5732 int empty = 0;
5733
5734 spin_lock(&root->inode_lock);
5735 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5736 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5737 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5738 empty = RB_EMPTY_ROOT(&root->inode_tree);
5739 }
5740 spin_unlock(&root->inode_lock);
5741
5742 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5743 spin_lock(&root->inode_lock);
5744 empty = RB_EMPTY_ROOT(&root->inode_tree);
5745 spin_unlock(&root->inode_lock);
5746 if (empty)
5747 btrfs_add_dead_root(root);
5748 }
5749 }
5750
btrfs_invalidate_inodes(struct btrfs_root * root)5751 void btrfs_invalidate_inodes(struct btrfs_root *root)
5752 {
5753 struct btrfs_fs_info *fs_info = root->fs_info;
5754 struct rb_node *node;
5755 struct rb_node *prev;
5756 struct btrfs_inode *entry;
5757 struct inode *inode;
5758 u64 objectid = 0;
5759
5760 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5761 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5762
5763 spin_lock(&root->inode_lock);
5764 again:
5765 node = root->inode_tree.rb_node;
5766 prev = NULL;
5767 while (node) {
5768 prev = node;
5769 entry = rb_entry(node, struct btrfs_inode, rb_node);
5770
5771 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5772 node = node->rb_left;
5773 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5774 node = node->rb_right;
5775 else
5776 break;
5777 }
5778 if (!node) {
5779 while (prev) {
5780 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5781 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
5782 node = prev;
5783 break;
5784 }
5785 prev = rb_next(prev);
5786 }
5787 }
5788 while (node) {
5789 entry = rb_entry(node, struct btrfs_inode, rb_node);
5790 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
5791 inode = igrab(&entry->vfs_inode);
5792 if (inode) {
5793 spin_unlock(&root->inode_lock);
5794 if (atomic_read(&inode->i_count) > 1)
5795 d_prune_aliases(inode);
5796 /*
5797 * btrfs_drop_inode will have it removed from
5798 * the inode cache when its usage count
5799 * hits zero.
5800 */
5801 iput(inode);
5802 cond_resched();
5803 spin_lock(&root->inode_lock);
5804 goto again;
5805 }
5806
5807 if (cond_resched_lock(&root->inode_lock))
5808 goto again;
5809
5810 node = rb_next(node);
5811 }
5812 spin_unlock(&root->inode_lock);
5813 }
5814
btrfs_init_locked_inode(struct inode * inode,void * p)5815 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5816 {
5817 struct btrfs_iget_args *args = p;
5818 inode->i_ino = args->location->objectid;
5819 memcpy(&BTRFS_I(inode)->location, args->location,
5820 sizeof(*args->location));
5821 BTRFS_I(inode)->root = args->root;
5822 return 0;
5823 }
5824
btrfs_find_actor(struct inode * inode,void * opaque)5825 static int btrfs_find_actor(struct inode *inode, void *opaque)
5826 {
5827 struct btrfs_iget_args *args = opaque;
5828 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5829 args->root == BTRFS_I(inode)->root;
5830 }
5831
btrfs_iget_locked(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root)5832 static struct inode *btrfs_iget_locked(struct super_block *s,
5833 struct btrfs_key *location,
5834 struct btrfs_root *root)
5835 {
5836 struct inode *inode;
5837 struct btrfs_iget_args args;
5838 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5839
5840 args.location = location;
5841 args.root = root;
5842
5843 inode = iget5_locked(s, hashval, btrfs_find_actor,
5844 btrfs_init_locked_inode,
5845 (void *)&args);
5846 return inode;
5847 }
5848
5849 /* Get an inode object given its location and corresponding root.
5850 * Returns in *is_new if the inode was read from disk
5851 */
btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new)5852 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5853 struct btrfs_root *root, int *new)
5854 {
5855 struct inode *inode;
5856
5857 inode = btrfs_iget_locked(s, location, root);
5858 if (!inode)
5859 return ERR_PTR(-ENOMEM);
5860
5861 if (inode->i_state & I_NEW) {
5862 int ret;
5863
5864 ret = btrfs_read_locked_inode(inode);
5865 if (!is_bad_inode(inode)) {
5866 inode_tree_add(inode);
5867 unlock_new_inode(inode);
5868 if (new)
5869 *new = 1;
5870 } else {
5871 unlock_new_inode(inode);
5872 iput(inode);
5873 ASSERT(ret < 0);
5874 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5875 }
5876 }
5877
5878 return inode;
5879 }
5880
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5881 static struct inode *new_simple_dir(struct super_block *s,
5882 struct btrfs_key *key,
5883 struct btrfs_root *root)
5884 {
5885 struct inode *inode = new_inode(s);
5886
5887 if (!inode)
5888 return ERR_PTR(-ENOMEM);
5889
5890 BTRFS_I(inode)->root = root;
5891 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5892 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5893
5894 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5895 inode->i_op = &btrfs_dir_ro_inode_operations;
5896 inode->i_opflags &= ~IOP_XATTR;
5897 inode->i_fop = &simple_dir_operations;
5898 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5899 inode->i_mtime = current_time(inode);
5900 inode->i_atime = inode->i_mtime;
5901 inode->i_ctime = inode->i_mtime;
5902 BTRFS_I(inode)->i_otime = inode->i_mtime;
5903
5904 return inode;
5905 }
5906
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5907 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5908 {
5909 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5910 struct inode *inode;
5911 struct btrfs_root *root = BTRFS_I(dir)->root;
5912 struct btrfs_root *sub_root = root;
5913 struct btrfs_key location;
5914 int index;
5915 int ret = 0;
5916
5917 if (dentry->d_name.len > BTRFS_NAME_LEN)
5918 return ERR_PTR(-ENAMETOOLONG);
5919
5920 ret = btrfs_inode_by_name(dir, dentry, &location);
5921 if (ret < 0)
5922 return ERR_PTR(ret);
5923
5924 if (location.objectid == 0)
5925 return ERR_PTR(-ENOENT);
5926
5927 if (location.type == BTRFS_INODE_ITEM_KEY) {
5928 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5929 return inode;
5930 }
5931
5932 index = srcu_read_lock(&fs_info->subvol_srcu);
5933 ret = fixup_tree_root_location(fs_info, dir, dentry,
5934 &location, &sub_root);
5935 if (ret < 0) {
5936 if (ret != -ENOENT)
5937 inode = ERR_PTR(ret);
5938 else
5939 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5940 } else {
5941 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5942 }
5943 srcu_read_unlock(&fs_info->subvol_srcu, index);
5944
5945 if (!IS_ERR(inode) && root != sub_root) {
5946 down_read(&fs_info->cleanup_work_sem);
5947 if (!sb_rdonly(inode->i_sb))
5948 ret = btrfs_orphan_cleanup(sub_root);
5949 up_read(&fs_info->cleanup_work_sem);
5950 if (ret) {
5951 iput(inode);
5952 inode = ERR_PTR(ret);
5953 }
5954 }
5955
5956 return inode;
5957 }
5958
btrfs_dentry_delete(const struct dentry * dentry)5959 static int btrfs_dentry_delete(const struct dentry *dentry)
5960 {
5961 struct btrfs_root *root;
5962 struct inode *inode = d_inode(dentry);
5963
5964 if (!inode && !IS_ROOT(dentry))
5965 inode = d_inode(dentry->d_parent);
5966
5967 if (inode) {
5968 root = BTRFS_I(inode)->root;
5969 if (btrfs_root_refs(&root->root_item) == 0)
5970 return 1;
5971
5972 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5973 return 1;
5974 }
5975 return 0;
5976 }
5977
btrfs_dentry_release(struct dentry * dentry)5978 static void btrfs_dentry_release(struct dentry *dentry)
5979 {
5980 kfree(dentry->d_fsdata);
5981 }
5982
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5983 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5984 unsigned int flags)
5985 {
5986 struct inode *inode;
5987
5988 inode = btrfs_lookup_dentry(dir, dentry);
5989 if (IS_ERR(inode)) {
5990 if (PTR_ERR(inode) == -ENOENT)
5991 inode = NULL;
5992 else
5993 return ERR_CAST(inode);
5994 }
5995
5996 return d_splice_alias(inode, dentry);
5997 }
5998
5999 unsigned char btrfs_filetype_table[] = {
6000 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
6001 };
6002
6003 /*
6004 * All this infrastructure exists because dir_emit can fault, and we are holding
6005 * the tree lock when doing readdir. For now just allocate a buffer and copy
6006 * our information into that, and then dir_emit from the buffer. This is
6007 * similar to what NFS does, only we don't keep the buffer around in pagecache
6008 * because I'm afraid I'll mess that up. Long term we need to make filldir do
6009 * copy_to_user_inatomic so we don't have to worry about page faulting under the
6010 * tree lock.
6011 */
btrfs_opendir(struct inode * inode,struct file * file)6012 static int btrfs_opendir(struct inode *inode, struct file *file)
6013 {
6014 struct btrfs_file_private *private;
6015
6016 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6017 if (!private)
6018 return -ENOMEM;
6019 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6020 if (!private->filldir_buf) {
6021 kfree(private);
6022 return -ENOMEM;
6023 }
6024 file->private_data = private;
6025 return 0;
6026 }
6027
6028 struct dir_entry {
6029 u64 ino;
6030 u64 offset;
6031 unsigned type;
6032 int name_len;
6033 };
6034
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)6035 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6036 {
6037 while (entries--) {
6038 struct dir_entry *entry = addr;
6039 char *name = (char *)(entry + 1);
6040
6041 ctx->pos = get_unaligned(&entry->offset);
6042 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6043 get_unaligned(&entry->ino),
6044 get_unaligned(&entry->type)))
6045 return 1;
6046 addr += sizeof(struct dir_entry) +
6047 get_unaligned(&entry->name_len);
6048 ctx->pos++;
6049 }
6050 return 0;
6051 }
6052
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6053 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6054 {
6055 struct inode *inode = file_inode(file);
6056 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6057 struct btrfs_root *root = BTRFS_I(inode)->root;
6058 struct btrfs_file_private *private = file->private_data;
6059 struct btrfs_dir_item *di;
6060 struct btrfs_key key;
6061 struct btrfs_key found_key;
6062 struct btrfs_path *path;
6063 void *addr;
6064 struct list_head ins_list;
6065 struct list_head del_list;
6066 int ret;
6067 struct extent_buffer *leaf;
6068 int slot;
6069 char *name_ptr;
6070 int name_len;
6071 int entries = 0;
6072 int total_len = 0;
6073 bool put = false;
6074 struct btrfs_key location;
6075
6076 if (!dir_emit_dots(file, ctx))
6077 return 0;
6078
6079 path = btrfs_alloc_path();
6080 if (!path)
6081 return -ENOMEM;
6082
6083 addr = private->filldir_buf;
6084 path->reada = READA_FORWARD;
6085
6086 INIT_LIST_HEAD(&ins_list);
6087 INIT_LIST_HEAD(&del_list);
6088 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6089
6090 again:
6091 key.type = BTRFS_DIR_INDEX_KEY;
6092 key.offset = ctx->pos;
6093 key.objectid = btrfs_ino(BTRFS_I(inode));
6094
6095 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6096 if (ret < 0)
6097 goto err;
6098
6099 while (1) {
6100 struct dir_entry *entry;
6101
6102 leaf = path->nodes[0];
6103 slot = path->slots[0];
6104 if (slot >= btrfs_header_nritems(leaf)) {
6105 ret = btrfs_next_leaf(root, path);
6106 if (ret < 0)
6107 goto err;
6108 else if (ret > 0)
6109 break;
6110 continue;
6111 }
6112
6113 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6114
6115 if (found_key.objectid != key.objectid)
6116 break;
6117 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6118 break;
6119 if (found_key.offset < ctx->pos)
6120 goto next;
6121 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6122 goto next;
6123 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6124 if (verify_dir_item(fs_info, leaf, slot, di))
6125 goto next;
6126
6127 name_len = btrfs_dir_name_len(leaf, di);
6128 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6129 PAGE_SIZE) {
6130 btrfs_release_path(path);
6131 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6132 if (ret)
6133 goto nopos;
6134 addr = private->filldir_buf;
6135 entries = 0;
6136 total_len = 0;
6137 goto again;
6138 }
6139
6140 entry = addr;
6141 put_unaligned(name_len, &entry->name_len);
6142 name_ptr = (char *)(entry + 1);
6143 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6144 name_len);
6145 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
6146 &entry->type);
6147 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6148 put_unaligned(location.objectid, &entry->ino);
6149 put_unaligned(found_key.offset, &entry->offset);
6150 entries++;
6151 addr += sizeof(struct dir_entry) + name_len;
6152 total_len += sizeof(struct dir_entry) + name_len;
6153 next:
6154 path->slots[0]++;
6155 }
6156 btrfs_release_path(path);
6157
6158 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6159 if (ret)
6160 goto nopos;
6161
6162 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6163 if (ret)
6164 goto nopos;
6165
6166 /*
6167 * Stop new entries from being returned after we return the last
6168 * entry.
6169 *
6170 * New directory entries are assigned a strictly increasing
6171 * offset. This means that new entries created during readdir
6172 * are *guaranteed* to be seen in the future by that readdir.
6173 * This has broken buggy programs which operate on names as
6174 * they're returned by readdir. Until we re-use freed offsets
6175 * we have this hack to stop new entries from being returned
6176 * under the assumption that they'll never reach this huge
6177 * offset.
6178 *
6179 * This is being careful not to overflow 32bit loff_t unless the
6180 * last entry requires it because doing so has broken 32bit apps
6181 * in the past.
6182 */
6183 if (ctx->pos >= INT_MAX)
6184 ctx->pos = LLONG_MAX;
6185 else
6186 ctx->pos = INT_MAX;
6187 nopos:
6188 ret = 0;
6189 err:
6190 if (put)
6191 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6192 btrfs_free_path(path);
6193 return ret;
6194 }
6195
6196 /*
6197 * This is somewhat expensive, updating the tree every time the
6198 * inode changes. But, it is most likely to find the inode in cache.
6199 * FIXME, needs more benchmarking...there are no reasons other than performance
6200 * to keep or drop this code.
6201 */
btrfs_dirty_inode(struct inode * inode)6202 static int btrfs_dirty_inode(struct inode *inode)
6203 {
6204 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6205 struct btrfs_root *root = BTRFS_I(inode)->root;
6206 struct btrfs_trans_handle *trans;
6207 int ret;
6208
6209 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6210 return 0;
6211
6212 trans = btrfs_join_transaction(root);
6213 if (IS_ERR(trans))
6214 return PTR_ERR(trans);
6215
6216 ret = btrfs_update_inode(trans, root, inode);
6217 if (ret && ret == -ENOSPC) {
6218 /* whoops, lets try again with the full transaction */
6219 btrfs_end_transaction(trans);
6220 trans = btrfs_start_transaction(root, 1);
6221 if (IS_ERR(trans))
6222 return PTR_ERR(trans);
6223
6224 ret = btrfs_update_inode(trans, root, inode);
6225 }
6226 btrfs_end_transaction(trans);
6227 if (BTRFS_I(inode)->delayed_node)
6228 btrfs_balance_delayed_items(fs_info);
6229
6230 return ret;
6231 }
6232
6233 /*
6234 * This is a copy of file_update_time. We need this so we can return error on
6235 * ENOSPC for updating the inode in the case of file write and mmap writes.
6236 */
btrfs_update_time(struct inode * inode,struct timespec * now,int flags)6237 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6238 int flags)
6239 {
6240 struct btrfs_root *root = BTRFS_I(inode)->root;
6241
6242 if (btrfs_root_readonly(root))
6243 return -EROFS;
6244
6245 if (flags & S_VERSION)
6246 inode_inc_iversion(inode);
6247 if (flags & S_CTIME)
6248 inode->i_ctime = *now;
6249 if (flags & S_MTIME)
6250 inode->i_mtime = *now;
6251 if (flags & S_ATIME)
6252 inode->i_atime = *now;
6253 return btrfs_dirty_inode(inode);
6254 }
6255
6256 /*
6257 * find the highest existing sequence number in a directory
6258 * and then set the in-memory index_cnt variable to reflect
6259 * free sequence numbers
6260 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6261 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6262 {
6263 struct btrfs_root *root = inode->root;
6264 struct btrfs_key key, found_key;
6265 struct btrfs_path *path;
6266 struct extent_buffer *leaf;
6267 int ret;
6268
6269 key.objectid = btrfs_ino(inode);
6270 key.type = BTRFS_DIR_INDEX_KEY;
6271 key.offset = (u64)-1;
6272
6273 path = btrfs_alloc_path();
6274 if (!path)
6275 return -ENOMEM;
6276
6277 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6278 if (ret < 0)
6279 goto out;
6280 /* FIXME: we should be able to handle this */
6281 if (ret == 0)
6282 goto out;
6283 ret = 0;
6284
6285 /*
6286 * MAGIC NUMBER EXPLANATION:
6287 * since we search a directory based on f_pos we have to start at 2
6288 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6289 * else has to start at 2
6290 */
6291 if (path->slots[0] == 0) {
6292 inode->index_cnt = 2;
6293 goto out;
6294 }
6295
6296 path->slots[0]--;
6297
6298 leaf = path->nodes[0];
6299 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6300
6301 if (found_key.objectid != btrfs_ino(inode) ||
6302 found_key.type != BTRFS_DIR_INDEX_KEY) {
6303 inode->index_cnt = 2;
6304 goto out;
6305 }
6306
6307 inode->index_cnt = found_key.offset + 1;
6308 out:
6309 btrfs_free_path(path);
6310 return ret;
6311 }
6312
6313 /*
6314 * helper to find a free sequence number in a given directory. This current
6315 * code is very simple, later versions will do smarter things in the btree
6316 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6317 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6318 {
6319 int ret = 0;
6320
6321 if (dir->index_cnt == (u64)-1) {
6322 ret = btrfs_inode_delayed_dir_index_count(dir);
6323 if (ret) {
6324 ret = btrfs_set_inode_index_count(dir);
6325 if (ret)
6326 return ret;
6327 }
6328 }
6329
6330 *index = dir->index_cnt;
6331 dir->index_cnt++;
6332
6333 return ret;
6334 }
6335
btrfs_insert_inode_locked(struct inode * inode)6336 static int btrfs_insert_inode_locked(struct inode *inode)
6337 {
6338 struct btrfs_iget_args args;
6339 args.location = &BTRFS_I(inode)->location;
6340 args.root = BTRFS_I(inode)->root;
6341
6342 return insert_inode_locked4(inode,
6343 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6344 btrfs_find_actor, &args);
6345 }
6346
6347 /*
6348 * Inherit flags from the parent inode.
6349 *
6350 * Currently only the compression flags and the cow flags are inherited.
6351 */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)6352 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6353 {
6354 unsigned int flags;
6355
6356 if (!dir)
6357 return;
6358
6359 flags = BTRFS_I(dir)->flags;
6360
6361 if (flags & BTRFS_INODE_NOCOMPRESS) {
6362 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6363 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6364 } else if (flags & BTRFS_INODE_COMPRESS) {
6365 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6366 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6367 }
6368
6369 if (flags & BTRFS_INODE_NODATACOW) {
6370 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6371 if (S_ISREG(inode->i_mode))
6372 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6373 }
6374
6375 btrfs_update_iflags(inode);
6376 }
6377
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6378 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6379 struct btrfs_root *root,
6380 struct inode *dir,
6381 const char *name, int name_len,
6382 u64 ref_objectid, u64 objectid,
6383 umode_t mode, u64 *index)
6384 {
6385 struct btrfs_fs_info *fs_info = root->fs_info;
6386 struct inode *inode;
6387 struct btrfs_inode_item *inode_item;
6388 struct btrfs_key *location;
6389 struct btrfs_path *path;
6390 struct btrfs_inode_ref *ref;
6391 struct btrfs_key key[2];
6392 u32 sizes[2];
6393 int nitems = name ? 2 : 1;
6394 unsigned long ptr;
6395 int ret;
6396
6397 path = btrfs_alloc_path();
6398 if (!path)
6399 return ERR_PTR(-ENOMEM);
6400
6401 inode = new_inode(fs_info->sb);
6402 if (!inode) {
6403 btrfs_free_path(path);
6404 return ERR_PTR(-ENOMEM);
6405 }
6406
6407 /*
6408 * O_TMPFILE, set link count to 0, so that after this point,
6409 * we fill in an inode item with the correct link count.
6410 */
6411 if (!name)
6412 set_nlink(inode, 0);
6413
6414 /*
6415 * we have to initialize this early, so we can reclaim the inode
6416 * number if we fail afterwards in this function.
6417 */
6418 inode->i_ino = objectid;
6419
6420 if (dir && name) {
6421 trace_btrfs_inode_request(dir);
6422
6423 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6424 if (ret) {
6425 btrfs_free_path(path);
6426 iput(inode);
6427 return ERR_PTR(ret);
6428 }
6429 } else if (dir) {
6430 *index = 0;
6431 }
6432 /*
6433 * index_cnt is ignored for everything but a dir,
6434 * btrfs_get_inode_index_count has an explanation for the magic
6435 * number
6436 */
6437 BTRFS_I(inode)->index_cnt = 2;
6438 BTRFS_I(inode)->dir_index = *index;
6439 BTRFS_I(inode)->root = root;
6440 BTRFS_I(inode)->generation = trans->transid;
6441 inode->i_generation = BTRFS_I(inode)->generation;
6442
6443 /*
6444 * We could have gotten an inode number from somebody who was fsynced
6445 * and then removed in this same transaction, so let's just set full
6446 * sync since it will be a full sync anyway and this will blow away the
6447 * old info in the log.
6448 */
6449 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6450
6451 key[0].objectid = objectid;
6452 key[0].type = BTRFS_INODE_ITEM_KEY;
6453 key[0].offset = 0;
6454
6455 sizes[0] = sizeof(struct btrfs_inode_item);
6456
6457 if (name) {
6458 /*
6459 * Start new inodes with an inode_ref. This is slightly more
6460 * efficient for small numbers of hard links since they will
6461 * be packed into one item. Extended refs will kick in if we
6462 * add more hard links than can fit in the ref item.
6463 */
6464 key[1].objectid = objectid;
6465 key[1].type = BTRFS_INODE_REF_KEY;
6466 key[1].offset = ref_objectid;
6467
6468 sizes[1] = name_len + sizeof(*ref);
6469 }
6470
6471 location = &BTRFS_I(inode)->location;
6472 location->objectid = objectid;
6473 location->offset = 0;
6474 location->type = BTRFS_INODE_ITEM_KEY;
6475
6476 ret = btrfs_insert_inode_locked(inode);
6477 if (ret < 0)
6478 goto fail;
6479
6480 path->leave_spinning = 1;
6481 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6482 if (ret != 0)
6483 goto fail_unlock;
6484
6485 inode_init_owner(inode, dir, mode);
6486 inode_set_bytes(inode, 0);
6487
6488 inode->i_mtime = current_time(inode);
6489 inode->i_atime = inode->i_mtime;
6490 inode->i_ctime = inode->i_mtime;
6491 BTRFS_I(inode)->i_otime = inode->i_mtime;
6492
6493 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6494 struct btrfs_inode_item);
6495 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6496 sizeof(*inode_item));
6497 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6498
6499 if (name) {
6500 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6501 struct btrfs_inode_ref);
6502 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6503 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6504 ptr = (unsigned long)(ref + 1);
6505 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6506 }
6507
6508 btrfs_mark_buffer_dirty(path->nodes[0]);
6509 btrfs_free_path(path);
6510
6511 btrfs_inherit_iflags(inode, dir);
6512
6513 if (S_ISREG(mode)) {
6514 if (btrfs_test_opt(fs_info, NODATASUM))
6515 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6516 if (btrfs_test_opt(fs_info, NODATACOW))
6517 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6518 BTRFS_INODE_NODATASUM;
6519 }
6520
6521 inode_tree_add(inode);
6522
6523 trace_btrfs_inode_new(inode);
6524 btrfs_set_inode_last_trans(trans, inode);
6525
6526 btrfs_update_root_times(trans, root);
6527
6528 ret = btrfs_inode_inherit_props(trans, inode, dir);
6529 if (ret)
6530 btrfs_err(fs_info,
6531 "error inheriting props for ino %llu (root %llu): %d",
6532 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6533
6534 return inode;
6535
6536 fail_unlock:
6537 unlock_new_inode(inode);
6538 fail:
6539 if (dir && name)
6540 BTRFS_I(dir)->index_cnt--;
6541 btrfs_free_path(path);
6542 iput(inode);
6543 return ERR_PTR(ret);
6544 }
6545
btrfs_inode_type(struct inode * inode)6546 static inline u8 btrfs_inode_type(struct inode *inode)
6547 {
6548 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6549 }
6550
6551 /*
6552 * utility function to add 'inode' into 'parent_inode' with
6553 * a give name and a given sequence number.
6554 * if 'add_backref' is true, also insert a backref from the
6555 * inode to the parent directory.
6556 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6557 int btrfs_add_link(struct btrfs_trans_handle *trans,
6558 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6559 const char *name, int name_len, int add_backref, u64 index)
6560 {
6561 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6562 int ret = 0;
6563 struct btrfs_key key;
6564 struct btrfs_root *root = parent_inode->root;
6565 u64 ino = btrfs_ino(inode);
6566 u64 parent_ino = btrfs_ino(parent_inode);
6567
6568 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6569 memcpy(&key, &inode->root->root_key, sizeof(key));
6570 } else {
6571 key.objectid = ino;
6572 key.type = BTRFS_INODE_ITEM_KEY;
6573 key.offset = 0;
6574 }
6575
6576 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6577 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6578 root->root_key.objectid, parent_ino,
6579 index, name, name_len);
6580 } else if (add_backref) {
6581 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6582 parent_ino, index);
6583 }
6584
6585 /* Nothing to clean up yet */
6586 if (ret)
6587 return ret;
6588
6589 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6590 parent_inode, &key,
6591 btrfs_inode_type(&inode->vfs_inode), index);
6592 if (ret == -EEXIST || ret == -EOVERFLOW)
6593 goto fail_dir_item;
6594 else if (ret) {
6595 btrfs_abort_transaction(trans, ret);
6596 return ret;
6597 }
6598
6599 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6600 name_len * 2);
6601 inode_inc_iversion(&parent_inode->vfs_inode);
6602 /*
6603 * If we are replaying a log tree, we do not want to update the mtime
6604 * and ctime of the parent directory with the current time, since the
6605 * log replay procedure is responsible for setting them to their correct
6606 * values (the ones it had when the fsync was done).
6607 */
6608 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6609 struct timespec now = current_time(&parent_inode->vfs_inode);
6610
6611 parent_inode->vfs_inode.i_mtime = now;
6612 parent_inode->vfs_inode.i_ctime = now;
6613 }
6614 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6615 if (ret)
6616 btrfs_abort_transaction(trans, ret);
6617 return ret;
6618
6619 fail_dir_item:
6620 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6621 u64 local_index;
6622 int err;
6623 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6624 root->root_key.objectid, parent_ino,
6625 &local_index, name, name_len);
6626 if (err)
6627 btrfs_abort_transaction(trans, err);
6628 } else if (add_backref) {
6629 u64 local_index;
6630 int err;
6631
6632 err = btrfs_del_inode_ref(trans, root, name, name_len,
6633 ino, parent_ino, &local_index);
6634 if (err)
6635 btrfs_abort_transaction(trans, err);
6636 }
6637
6638 /* Return the original error code */
6639 return ret;
6640 }
6641
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_inode * inode,int backref,u64 index)6642 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6643 struct btrfs_inode *dir, struct dentry *dentry,
6644 struct btrfs_inode *inode, int backref, u64 index)
6645 {
6646 int err = btrfs_add_link(trans, dir, inode,
6647 dentry->d_name.name, dentry->d_name.len,
6648 backref, index);
6649 if (err > 0)
6650 err = -EEXIST;
6651 return err;
6652 }
6653
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6654 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6655 umode_t mode, dev_t rdev)
6656 {
6657 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6658 struct btrfs_trans_handle *trans;
6659 struct btrfs_root *root = BTRFS_I(dir)->root;
6660 struct inode *inode = NULL;
6661 int err;
6662 int drop_inode = 0;
6663 u64 objectid;
6664 u64 index = 0;
6665
6666 /*
6667 * 2 for inode item and ref
6668 * 2 for dir items
6669 * 1 for xattr if selinux is on
6670 */
6671 trans = btrfs_start_transaction(root, 5);
6672 if (IS_ERR(trans))
6673 return PTR_ERR(trans);
6674
6675 err = btrfs_find_free_ino(root, &objectid);
6676 if (err)
6677 goto out_unlock;
6678
6679 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6680 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6681 mode, &index);
6682 if (IS_ERR(inode)) {
6683 err = PTR_ERR(inode);
6684 goto out_unlock;
6685 }
6686
6687 /*
6688 * If the active LSM wants to access the inode during
6689 * d_instantiate it needs these. Smack checks to see
6690 * if the filesystem supports xattrs by looking at the
6691 * ops vector.
6692 */
6693 inode->i_op = &btrfs_special_inode_operations;
6694 init_special_inode(inode, inode->i_mode, rdev);
6695
6696 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6697 if (err)
6698 goto out_unlock_inode;
6699
6700 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6701 0, index);
6702 if (err) {
6703 goto out_unlock_inode;
6704 } else {
6705 btrfs_update_inode(trans, root, inode);
6706 d_instantiate_new(dentry, inode);
6707 }
6708
6709 out_unlock:
6710 btrfs_end_transaction(trans);
6711 btrfs_balance_delayed_items(fs_info);
6712 btrfs_btree_balance_dirty(fs_info);
6713 if (drop_inode) {
6714 inode_dec_link_count(inode);
6715 iput(inode);
6716 }
6717 return err;
6718
6719 out_unlock_inode:
6720 drop_inode = 1;
6721 unlock_new_inode(inode);
6722 goto out_unlock;
6723
6724 }
6725
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6726 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6727 umode_t mode, bool excl)
6728 {
6729 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6730 struct btrfs_trans_handle *trans;
6731 struct btrfs_root *root = BTRFS_I(dir)->root;
6732 struct inode *inode = NULL;
6733 int drop_inode_on_err = 0;
6734 int err;
6735 u64 objectid;
6736 u64 index = 0;
6737
6738 /*
6739 * 2 for inode item and ref
6740 * 2 for dir items
6741 * 1 for xattr if selinux is on
6742 */
6743 trans = btrfs_start_transaction(root, 5);
6744 if (IS_ERR(trans))
6745 return PTR_ERR(trans);
6746
6747 err = btrfs_find_free_ino(root, &objectid);
6748 if (err)
6749 goto out_unlock;
6750
6751 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6752 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6753 mode, &index);
6754 if (IS_ERR(inode)) {
6755 err = PTR_ERR(inode);
6756 goto out_unlock;
6757 }
6758 drop_inode_on_err = 1;
6759 /*
6760 * If the active LSM wants to access the inode during
6761 * d_instantiate it needs these. Smack checks to see
6762 * if the filesystem supports xattrs by looking at the
6763 * ops vector.
6764 */
6765 inode->i_fop = &btrfs_file_operations;
6766 inode->i_op = &btrfs_file_inode_operations;
6767 inode->i_mapping->a_ops = &btrfs_aops;
6768
6769 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6770 if (err)
6771 goto out_unlock_inode;
6772
6773 err = btrfs_update_inode(trans, root, inode);
6774 if (err)
6775 goto out_unlock_inode;
6776
6777 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6778 0, index);
6779 if (err)
6780 goto out_unlock_inode;
6781
6782 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6783 d_instantiate_new(dentry, inode);
6784
6785 out_unlock:
6786 btrfs_end_transaction(trans);
6787 if (err && drop_inode_on_err) {
6788 inode_dec_link_count(inode);
6789 iput(inode);
6790 }
6791 btrfs_balance_delayed_items(fs_info);
6792 btrfs_btree_balance_dirty(fs_info);
6793 return err;
6794
6795 out_unlock_inode:
6796 unlock_new_inode(inode);
6797 goto out_unlock;
6798
6799 }
6800
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6801 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6802 struct dentry *dentry)
6803 {
6804 struct btrfs_trans_handle *trans = NULL;
6805 struct btrfs_root *root = BTRFS_I(dir)->root;
6806 struct inode *inode = d_inode(old_dentry);
6807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6808 u64 index;
6809 int err;
6810 int drop_inode = 0;
6811
6812 /* do not allow sys_link's with other subvols of the same device */
6813 if (root->objectid != BTRFS_I(inode)->root->objectid)
6814 return -EXDEV;
6815
6816 if (inode->i_nlink >= BTRFS_LINK_MAX)
6817 return -EMLINK;
6818
6819 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6820 if (err)
6821 goto fail;
6822
6823 /*
6824 * 2 items for inode and inode ref
6825 * 2 items for dir items
6826 * 1 item for parent inode
6827 */
6828 trans = btrfs_start_transaction(root, 5);
6829 if (IS_ERR(trans)) {
6830 err = PTR_ERR(trans);
6831 trans = NULL;
6832 goto fail;
6833 }
6834
6835 /* There are several dir indexes for this inode, clear the cache. */
6836 BTRFS_I(inode)->dir_index = 0ULL;
6837 inc_nlink(inode);
6838 inode_inc_iversion(inode);
6839 inode->i_ctime = current_time(inode);
6840 ihold(inode);
6841 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6842
6843 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6844 1, index);
6845
6846 if (err) {
6847 drop_inode = 1;
6848 } else {
6849 struct dentry *parent = dentry->d_parent;
6850 err = btrfs_update_inode(trans, root, inode);
6851 if (err)
6852 goto fail;
6853 if (inode->i_nlink == 1) {
6854 /*
6855 * If new hard link count is 1, it's a file created
6856 * with open(2) O_TMPFILE flag.
6857 */
6858 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6859 if (err)
6860 goto fail;
6861 }
6862 BTRFS_I(inode)->last_link_trans = trans->transid;
6863 d_instantiate(dentry, inode);
6864 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6865 }
6866
6867 btrfs_balance_delayed_items(fs_info);
6868 fail:
6869 if (trans)
6870 btrfs_end_transaction(trans);
6871 if (drop_inode) {
6872 inode_dec_link_count(inode);
6873 iput(inode);
6874 }
6875 btrfs_btree_balance_dirty(fs_info);
6876 return err;
6877 }
6878
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6879 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6880 {
6881 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6882 struct inode *inode = NULL;
6883 struct btrfs_trans_handle *trans;
6884 struct btrfs_root *root = BTRFS_I(dir)->root;
6885 int err = 0;
6886 int drop_on_err = 0;
6887 u64 objectid = 0;
6888 u64 index = 0;
6889
6890 /*
6891 * 2 items for inode and ref
6892 * 2 items for dir items
6893 * 1 for xattr if selinux is on
6894 */
6895 trans = btrfs_start_transaction(root, 5);
6896 if (IS_ERR(trans))
6897 return PTR_ERR(trans);
6898
6899 err = btrfs_find_free_ino(root, &objectid);
6900 if (err)
6901 goto out_fail;
6902
6903 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6904 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6905 S_IFDIR | mode, &index);
6906 if (IS_ERR(inode)) {
6907 err = PTR_ERR(inode);
6908 goto out_fail;
6909 }
6910
6911 drop_on_err = 1;
6912 /* these must be set before we unlock the inode */
6913 inode->i_op = &btrfs_dir_inode_operations;
6914 inode->i_fop = &btrfs_dir_file_operations;
6915
6916 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6917 if (err)
6918 goto out_fail_inode;
6919
6920 btrfs_i_size_write(BTRFS_I(inode), 0);
6921 err = btrfs_update_inode(trans, root, inode);
6922 if (err)
6923 goto out_fail_inode;
6924
6925 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6926 dentry->d_name.name,
6927 dentry->d_name.len, 0, index);
6928 if (err)
6929 goto out_fail_inode;
6930
6931 d_instantiate_new(dentry, inode);
6932 drop_on_err = 0;
6933
6934 out_fail:
6935 btrfs_end_transaction(trans);
6936 if (drop_on_err) {
6937 inode_dec_link_count(inode);
6938 iput(inode);
6939 }
6940 btrfs_balance_delayed_items(fs_info);
6941 btrfs_btree_balance_dirty(fs_info);
6942 return err;
6943
6944 out_fail_inode:
6945 unlock_new_inode(inode);
6946 goto out_fail;
6947 }
6948
6949 /* Find next extent map of a given extent map, caller needs to ensure locks */
next_extent_map(struct extent_map * em)6950 static struct extent_map *next_extent_map(struct extent_map *em)
6951 {
6952 struct rb_node *next;
6953
6954 next = rb_next(&em->rb_node);
6955 if (!next)
6956 return NULL;
6957 return container_of(next, struct extent_map, rb_node);
6958 }
6959
prev_extent_map(struct extent_map * em)6960 static struct extent_map *prev_extent_map(struct extent_map *em)
6961 {
6962 struct rb_node *prev;
6963
6964 prev = rb_prev(&em->rb_node);
6965 if (!prev)
6966 return NULL;
6967 return container_of(prev, struct extent_map, rb_node);
6968 }
6969
6970 /* helper for btfs_get_extent. Given an existing extent in the tree,
6971 * the existing extent is the nearest extent to map_start,
6972 * and an extent that you want to insert, deal with overlap and insert
6973 * the best fitted new extent into the tree.
6974 */
merge_extent_mapping(struct extent_map_tree * em_tree,struct extent_map * existing,struct extent_map * em,u64 map_start)6975 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6976 struct extent_map *existing,
6977 struct extent_map *em,
6978 u64 map_start)
6979 {
6980 struct extent_map *prev;
6981 struct extent_map *next;
6982 u64 start;
6983 u64 end;
6984 u64 start_diff;
6985
6986 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6987
6988 if (existing->start > map_start) {
6989 next = existing;
6990 prev = prev_extent_map(next);
6991 } else {
6992 prev = existing;
6993 next = next_extent_map(prev);
6994 }
6995
6996 start = prev ? extent_map_end(prev) : em->start;
6997 start = max_t(u64, start, em->start);
6998 end = next ? next->start : extent_map_end(em);
6999 end = min_t(u64, end, extent_map_end(em));
7000 start_diff = start - em->start;
7001 em->start = start;
7002 em->len = end - start;
7003 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
7004 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
7005 em->block_start += start_diff;
7006 em->block_len -= start_diff;
7007 }
7008 return add_extent_mapping(em_tree, em, 0);
7009 }
7010
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)7011 static noinline int uncompress_inline(struct btrfs_path *path,
7012 struct page *page,
7013 size_t pg_offset, u64 extent_offset,
7014 struct btrfs_file_extent_item *item)
7015 {
7016 int ret;
7017 struct extent_buffer *leaf = path->nodes[0];
7018 char *tmp;
7019 size_t max_size;
7020 unsigned long inline_size;
7021 unsigned long ptr;
7022 int compress_type;
7023
7024 WARN_ON(pg_offset != 0);
7025 compress_type = btrfs_file_extent_compression(leaf, item);
7026 max_size = btrfs_file_extent_ram_bytes(leaf, item);
7027 inline_size = btrfs_file_extent_inline_item_len(leaf,
7028 btrfs_item_nr(path->slots[0]));
7029 tmp = kmalloc(inline_size, GFP_NOFS);
7030 if (!tmp)
7031 return -ENOMEM;
7032 ptr = btrfs_file_extent_inline_start(item);
7033
7034 read_extent_buffer(leaf, tmp, ptr, inline_size);
7035
7036 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
7037 ret = btrfs_decompress(compress_type, tmp, page,
7038 extent_offset, inline_size, max_size);
7039
7040 /*
7041 * decompression code contains a memset to fill in any space between the end
7042 * of the uncompressed data and the end of max_size in case the decompressed
7043 * data ends up shorter than ram_bytes. That doesn't cover the hole between
7044 * the end of an inline extent and the beginning of the next block, so we
7045 * cover that region here.
7046 */
7047
7048 if (max_size + pg_offset < PAGE_SIZE) {
7049 char *map = kmap(page);
7050 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
7051 kunmap(page);
7052 }
7053 kfree(tmp);
7054 return ret;
7055 }
7056
7057 /*
7058 * a bit scary, this does extent mapping from logical file offset to the disk.
7059 * the ugly parts come from merging extents from the disk with the in-ram
7060 * representation. This gets more complex because of the data=ordered code,
7061 * where the in-ram extents might be locked pending data=ordered completion.
7062 *
7063 * This also copies inline extents directly into the page.
7064 */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)7065 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
7066 struct page *page,
7067 size_t pg_offset, u64 start, u64 len,
7068 int create)
7069 {
7070 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
7071 int ret;
7072 int err = 0;
7073 u64 extent_start = 0;
7074 u64 extent_end = 0;
7075 u64 objectid = btrfs_ino(inode);
7076 u32 found_type;
7077 struct btrfs_path *path = NULL;
7078 struct btrfs_root *root = inode->root;
7079 struct btrfs_file_extent_item *item;
7080 struct extent_buffer *leaf;
7081 struct btrfs_key found_key;
7082 struct extent_map *em = NULL;
7083 struct extent_map_tree *em_tree = &inode->extent_tree;
7084 struct extent_io_tree *io_tree = &inode->io_tree;
7085 struct btrfs_trans_handle *trans = NULL;
7086 const bool new_inline = !page || create;
7087
7088 again:
7089 read_lock(&em_tree->lock);
7090 em = lookup_extent_mapping(em_tree, start, len);
7091 if (em)
7092 em->bdev = fs_info->fs_devices->latest_bdev;
7093 read_unlock(&em_tree->lock);
7094
7095 if (em) {
7096 if (em->start > start || em->start + em->len <= start)
7097 free_extent_map(em);
7098 else if (em->block_start == EXTENT_MAP_INLINE && page)
7099 free_extent_map(em);
7100 else
7101 goto out;
7102 }
7103 em = alloc_extent_map();
7104 if (!em) {
7105 err = -ENOMEM;
7106 goto out;
7107 }
7108 em->bdev = fs_info->fs_devices->latest_bdev;
7109 em->start = EXTENT_MAP_HOLE;
7110 em->orig_start = EXTENT_MAP_HOLE;
7111 em->len = (u64)-1;
7112 em->block_len = (u64)-1;
7113
7114 if (!path) {
7115 path = btrfs_alloc_path();
7116 if (!path) {
7117 err = -ENOMEM;
7118 goto out;
7119 }
7120 /*
7121 * Chances are we'll be called again, so go ahead and do
7122 * readahead
7123 */
7124 path->reada = READA_FORWARD;
7125 }
7126
7127 ret = btrfs_lookup_file_extent(trans, root, path,
7128 objectid, start, trans != NULL);
7129 if (ret < 0) {
7130 err = ret;
7131 goto out;
7132 }
7133
7134 if (ret != 0) {
7135 if (path->slots[0] == 0)
7136 goto not_found;
7137 path->slots[0]--;
7138 }
7139
7140 leaf = path->nodes[0];
7141 item = btrfs_item_ptr(leaf, path->slots[0],
7142 struct btrfs_file_extent_item);
7143 /* are we inside the extent that was found? */
7144 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7145 found_type = found_key.type;
7146 if (found_key.objectid != objectid ||
7147 found_type != BTRFS_EXTENT_DATA_KEY) {
7148 /*
7149 * If we backup past the first extent we want to move forward
7150 * and see if there is an extent in front of us, otherwise we'll
7151 * say there is a hole for our whole search range which can
7152 * cause problems.
7153 */
7154 extent_end = start;
7155 goto next;
7156 }
7157
7158 found_type = btrfs_file_extent_type(leaf, item);
7159 extent_start = found_key.offset;
7160 if (found_type == BTRFS_FILE_EXTENT_REG ||
7161 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7162 extent_end = extent_start +
7163 btrfs_file_extent_num_bytes(leaf, item);
7164
7165 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7166 extent_start);
7167 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7168 size_t size;
7169
7170 size = btrfs_file_extent_ram_bytes(leaf, item);
7171 extent_end = ALIGN(extent_start + size,
7172 fs_info->sectorsize);
7173
7174 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7175 path->slots[0],
7176 extent_start);
7177 }
7178 next:
7179 if (start >= extent_end) {
7180 path->slots[0]++;
7181 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7182 ret = btrfs_next_leaf(root, path);
7183 if (ret < 0) {
7184 err = ret;
7185 goto out;
7186 }
7187 if (ret > 0)
7188 goto not_found;
7189 leaf = path->nodes[0];
7190 }
7191 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7192 if (found_key.objectid != objectid ||
7193 found_key.type != BTRFS_EXTENT_DATA_KEY)
7194 goto not_found;
7195 if (start + len <= found_key.offset)
7196 goto not_found;
7197 if (start > found_key.offset)
7198 goto next;
7199 em->start = start;
7200 em->orig_start = start;
7201 em->len = found_key.offset - start;
7202 goto not_found_em;
7203 }
7204
7205 btrfs_extent_item_to_extent_map(inode, path, item,
7206 new_inline, em);
7207
7208 if (found_type == BTRFS_FILE_EXTENT_REG ||
7209 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7210 goto insert;
7211 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7212 unsigned long ptr;
7213 char *map;
7214 size_t size;
7215 size_t extent_offset;
7216 size_t copy_size;
7217
7218 if (new_inline)
7219 goto out;
7220
7221 size = btrfs_file_extent_ram_bytes(leaf, item);
7222 extent_offset = page_offset(page) + pg_offset - extent_start;
7223 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7224 size - extent_offset);
7225 em->start = extent_start + extent_offset;
7226 em->len = ALIGN(copy_size, fs_info->sectorsize);
7227 em->orig_block_len = em->len;
7228 em->orig_start = em->start;
7229 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7230 if (create == 0 && !PageUptodate(page)) {
7231 if (btrfs_file_extent_compression(leaf, item) !=
7232 BTRFS_COMPRESS_NONE) {
7233 ret = uncompress_inline(path, page, pg_offset,
7234 extent_offset, item);
7235 if (ret) {
7236 err = ret;
7237 goto out;
7238 }
7239 } else {
7240 map = kmap(page);
7241 read_extent_buffer(leaf, map + pg_offset, ptr,
7242 copy_size);
7243 if (pg_offset + copy_size < PAGE_SIZE) {
7244 memset(map + pg_offset + copy_size, 0,
7245 PAGE_SIZE - pg_offset -
7246 copy_size);
7247 }
7248 kunmap(page);
7249 }
7250 flush_dcache_page(page);
7251 } else if (create && PageUptodate(page)) {
7252 BUG();
7253 if (!trans) {
7254 kunmap(page);
7255 free_extent_map(em);
7256 em = NULL;
7257
7258 btrfs_release_path(path);
7259 trans = btrfs_join_transaction(root);
7260
7261 if (IS_ERR(trans))
7262 return ERR_CAST(trans);
7263 goto again;
7264 }
7265 map = kmap(page);
7266 write_extent_buffer(leaf, map + pg_offset, ptr,
7267 copy_size);
7268 kunmap(page);
7269 btrfs_mark_buffer_dirty(leaf);
7270 }
7271 set_extent_uptodate(io_tree, em->start,
7272 extent_map_end(em) - 1, NULL, GFP_NOFS);
7273 goto insert;
7274 }
7275 not_found:
7276 em->start = start;
7277 em->orig_start = start;
7278 em->len = len;
7279 not_found_em:
7280 em->block_start = EXTENT_MAP_HOLE;
7281 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7282 insert:
7283 btrfs_release_path(path);
7284 if (em->start > start || extent_map_end(em) <= start) {
7285 btrfs_err(fs_info,
7286 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7287 em->start, em->len, start, len);
7288 err = -EIO;
7289 goto out;
7290 }
7291
7292 err = 0;
7293 write_lock(&em_tree->lock);
7294 ret = add_extent_mapping(em_tree, em, 0);
7295 /* it is possible that someone inserted the extent into the tree
7296 * while we had the lock dropped. It is also possible that
7297 * an overlapping map exists in the tree
7298 */
7299 if (ret == -EEXIST) {
7300 struct extent_map *existing;
7301
7302 ret = 0;
7303
7304 existing = search_extent_mapping(em_tree, start, len);
7305 /*
7306 * existing will always be non-NULL, since there must be
7307 * extent causing the -EEXIST.
7308 */
7309 if (start >= existing->start &&
7310 start < extent_map_end(existing)) {
7311 free_extent_map(em);
7312 em = existing;
7313 err = 0;
7314 } else {
7315 /*
7316 * The existing extent map is the one nearest to
7317 * the [start, start + len) range which overlaps
7318 */
7319 err = merge_extent_mapping(em_tree, existing,
7320 em, start);
7321 free_extent_map(existing);
7322 if (err) {
7323 free_extent_map(em);
7324 em = NULL;
7325 }
7326 }
7327 }
7328 write_unlock(&em_tree->lock);
7329 out:
7330
7331 trace_btrfs_get_extent(root, inode, em);
7332
7333 btrfs_free_path(path);
7334 if (trans) {
7335 ret = btrfs_end_transaction(trans);
7336 if (!err)
7337 err = ret;
7338 }
7339 if (err) {
7340 free_extent_map(em);
7341 return ERR_PTR(err);
7342 }
7343 BUG_ON(!em); /* Error is always set */
7344 return em;
7345 }
7346
btrfs_get_extent_fiemap(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)7347 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7348 struct page *page,
7349 size_t pg_offset, u64 start, u64 len,
7350 int create)
7351 {
7352 struct extent_map *em;
7353 struct extent_map *hole_em = NULL;
7354 u64 range_start = start;
7355 u64 end;
7356 u64 found;
7357 u64 found_end;
7358 int err = 0;
7359
7360 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7361 if (IS_ERR(em))
7362 return em;
7363 /*
7364 * If our em maps to:
7365 * - a hole or
7366 * - a pre-alloc extent,
7367 * there might actually be delalloc bytes behind it.
7368 */
7369 if (em->block_start != EXTENT_MAP_HOLE &&
7370 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7371 return em;
7372 else
7373 hole_em = em;
7374
7375 /* check to see if we've wrapped (len == -1 or similar) */
7376 end = start + len;
7377 if (end < start)
7378 end = (u64)-1;
7379 else
7380 end -= 1;
7381
7382 em = NULL;
7383
7384 /* ok, we didn't find anything, lets look for delalloc */
7385 found = count_range_bits(&inode->io_tree, &range_start,
7386 end, len, EXTENT_DELALLOC, 1);
7387 found_end = range_start + found;
7388 if (found_end < range_start)
7389 found_end = (u64)-1;
7390
7391 /*
7392 * we didn't find anything useful, return
7393 * the original results from get_extent()
7394 */
7395 if (range_start > end || found_end <= start) {
7396 em = hole_em;
7397 hole_em = NULL;
7398 goto out;
7399 }
7400
7401 /* adjust the range_start to make sure it doesn't
7402 * go backwards from the start they passed in
7403 */
7404 range_start = max(start, range_start);
7405 found = found_end - range_start;
7406
7407 if (found > 0) {
7408 u64 hole_start = start;
7409 u64 hole_len = len;
7410
7411 em = alloc_extent_map();
7412 if (!em) {
7413 err = -ENOMEM;
7414 goto out;
7415 }
7416 /*
7417 * when btrfs_get_extent can't find anything it
7418 * returns one huge hole
7419 *
7420 * make sure what it found really fits our range, and
7421 * adjust to make sure it is based on the start from
7422 * the caller
7423 */
7424 if (hole_em) {
7425 u64 calc_end = extent_map_end(hole_em);
7426
7427 if (calc_end <= start || (hole_em->start > end)) {
7428 free_extent_map(hole_em);
7429 hole_em = NULL;
7430 } else {
7431 hole_start = max(hole_em->start, start);
7432 hole_len = calc_end - hole_start;
7433 }
7434 }
7435 em->bdev = NULL;
7436 if (hole_em && range_start > hole_start) {
7437 /* our hole starts before our delalloc, so we
7438 * have to return just the parts of the hole
7439 * that go until the delalloc starts
7440 */
7441 em->len = min(hole_len,
7442 range_start - hole_start);
7443 em->start = hole_start;
7444 em->orig_start = hole_start;
7445 /*
7446 * don't adjust block start at all,
7447 * it is fixed at EXTENT_MAP_HOLE
7448 */
7449 em->block_start = hole_em->block_start;
7450 em->block_len = hole_len;
7451 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7452 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7453 } else {
7454 em->start = range_start;
7455 em->len = found;
7456 em->orig_start = range_start;
7457 em->block_start = EXTENT_MAP_DELALLOC;
7458 em->block_len = found;
7459 }
7460 } else if (hole_em) {
7461 return hole_em;
7462 }
7463 out:
7464
7465 free_extent_map(hole_em);
7466 if (err) {
7467 free_extent_map(em);
7468 return ERR_PTR(err);
7469 }
7470 return em;
7471 }
7472
btrfs_create_dio_extent(struct inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7473 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7474 const u64 start,
7475 const u64 len,
7476 const u64 orig_start,
7477 const u64 block_start,
7478 const u64 block_len,
7479 const u64 orig_block_len,
7480 const u64 ram_bytes,
7481 const int type)
7482 {
7483 struct extent_map *em = NULL;
7484 int ret;
7485
7486 if (type != BTRFS_ORDERED_NOCOW) {
7487 em = create_io_em(inode, start, len, orig_start,
7488 block_start, block_len, orig_block_len,
7489 ram_bytes,
7490 BTRFS_COMPRESS_NONE, /* compress_type */
7491 type);
7492 if (IS_ERR(em))
7493 goto out;
7494 }
7495 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7496 len, block_len, type);
7497 if (ret) {
7498 if (em) {
7499 free_extent_map(em);
7500 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7501 start + len - 1, 0);
7502 }
7503 em = ERR_PTR(ret);
7504 }
7505 out:
7506
7507 return em;
7508 }
7509
btrfs_new_extent_direct(struct inode * inode,u64 start,u64 len)7510 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7511 u64 start, u64 len)
7512 {
7513 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7514 struct btrfs_root *root = BTRFS_I(inode)->root;
7515 struct extent_map *em;
7516 struct btrfs_key ins;
7517 u64 alloc_hint;
7518 int ret;
7519
7520 alloc_hint = get_extent_allocation_hint(inode, start, len);
7521 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7522 0, alloc_hint, &ins, 1, 1);
7523 if (ret)
7524 return ERR_PTR(ret);
7525
7526 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7527 ins.objectid, ins.offset, ins.offset,
7528 ins.offset, BTRFS_ORDERED_REGULAR);
7529 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7530 if (IS_ERR(em))
7531 btrfs_free_reserved_extent(fs_info, ins.objectid,
7532 ins.offset, 1);
7533
7534 return em;
7535 }
7536
7537 /*
7538 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7539 * block must be cow'd
7540 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes)7541 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7542 u64 *orig_start, u64 *orig_block_len,
7543 u64 *ram_bytes)
7544 {
7545 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7546 struct btrfs_path *path;
7547 int ret;
7548 struct extent_buffer *leaf;
7549 struct btrfs_root *root = BTRFS_I(inode)->root;
7550 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7551 struct btrfs_file_extent_item *fi;
7552 struct btrfs_key key;
7553 u64 disk_bytenr;
7554 u64 backref_offset;
7555 u64 extent_end;
7556 u64 num_bytes;
7557 int slot;
7558 int found_type;
7559 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7560
7561 path = btrfs_alloc_path();
7562 if (!path)
7563 return -ENOMEM;
7564
7565 ret = btrfs_lookup_file_extent(NULL, root, path,
7566 btrfs_ino(BTRFS_I(inode)), offset, 0);
7567 if (ret < 0)
7568 goto out;
7569
7570 slot = path->slots[0];
7571 if (ret == 1) {
7572 if (slot == 0) {
7573 /* can't find the item, must cow */
7574 ret = 0;
7575 goto out;
7576 }
7577 slot--;
7578 }
7579 ret = 0;
7580 leaf = path->nodes[0];
7581 btrfs_item_key_to_cpu(leaf, &key, slot);
7582 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7583 key.type != BTRFS_EXTENT_DATA_KEY) {
7584 /* not our file or wrong item type, must cow */
7585 goto out;
7586 }
7587
7588 if (key.offset > offset) {
7589 /* Wrong offset, must cow */
7590 goto out;
7591 }
7592
7593 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7594 found_type = btrfs_file_extent_type(leaf, fi);
7595 if (found_type != BTRFS_FILE_EXTENT_REG &&
7596 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7597 /* not a regular extent, must cow */
7598 goto out;
7599 }
7600
7601 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7602 goto out;
7603
7604 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7605 if (extent_end <= offset)
7606 goto out;
7607
7608 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7609 if (disk_bytenr == 0)
7610 goto out;
7611
7612 if (btrfs_file_extent_compression(leaf, fi) ||
7613 btrfs_file_extent_encryption(leaf, fi) ||
7614 btrfs_file_extent_other_encoding(leaf, fi))
7615 goto out;
7616
7617 backref_offset = btrfs_file_extent_offset(leaf, fi);
7618
7619 if (orig_start) {
7620 *orig_start = key.offset - backref_offset;
7621 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7622 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7623 }
7624
7625 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7626 goto out;
7627
7628 num_bytes = min(offset + *len, extent_end) - offset;
7629 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7630 u64 range_end;
7631
7632 range_end = round_up(offset + num_bytes,
7633 root->fs_info->sectorsize) - 1;
7634 ret = test_range_bit(io_tree, offset, range_end,
7635 EXTENT_DELALLOC, 0, NULL);
7636 if (ret) {
7637 ret = -EAGAIN;
7638 goto out;
7639 }
7640 }
7641
7642 btrfs_release_path(path);
7643
7644 /*
7645 * look for other files referencing this extent, if we
7646 * find any we must cow
7647 */
7648
7649 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7650 key.offset - backref_offset, disk_bytenr);
7651 if (ret) {
7652 ret = 0;
7653 goto out;
7654 }
7655
7656 /*
7657 * adjust disk_bytenr and num_bytes to cover just the bytes
7658 * in this extent we are about to write. If there
7659 * are any csums in that range we have to cow in order
7660 * to keep the csums correct
7661 */
7662 disk_bytenr += backref_offset;
7663 disk_bytenr += offset - key.offset;
7664 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7665 goto out;
7666 /*
7667 * all of the above have passed, it is safe to overwrite this extent
7668 * without cow
7669 */
7670 *len = num_bytes;
7671 ret = 1;
7672 out:
7673 btrfs_free_path(path);
7674 return ret;
7675 }
7676
btrfs_page_exists_in_range(struct inode * inode,loff_t start,loff_t end)7677 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7678 {
7679 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7680 bool found = false;
7681 void **pagep = NULL;
7682 struct page *page = NULL;
7683 unsigned long start_idx;
7684 unsigned long end_idx;
7685
7686 start_idx = start >> PAGE_SHIFT;
7687
7688 /*
7689 * end is the last byte in the last page. end == start is legal
7690 */
7691 end_idx = end >> PAGE_SHIFT;
7692
7693 rcu_read_lock();
7694
7695 /* Most of the code in this while loop is lifted from
7696 * find_get_page. It's been modified to begin searching from a
7697 * page and return just the first page found in that range. If the
7698 * found idx is less than or equal to the end idx then we know that
7699 * a page exists. If no pages are found or if those pages are
7700 * outside of the range then we're fine (yay!) */
7701 while (page == NULL &&
7702 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7703 page = radix_tree_deref_slot(pagep);
7704 if (unlikely(!page))
7705 break;
7706
7707 if (radix_tree_exception(page)) {
7708 if (radix_tree_deref_retry(page)) {
7709 page = NULL;
7710 continue;
7711 }
7712 /*
7713 * Otherwise, shmem/tmpfs must be storing a swap entry
7714 * here as an exceptional entry: so return it without
7715 * attempting to raise page count.
7716 */
7717 page = NULL;
7718 break; /* TODO: Is this relevant for this use case? */
7719 }
7720
7721 if (!page_cache_get_speculative(page)) {
7722 page = NULL;
7723 continue;
7724 }
7725
7726 /*
7727 * Has the page moved?
7728 * This is part of the lockless pagecache protocol. See
7729 * include/linux/pagemap.h for details.
7730 */
7731 if (unlikely(page != *pagep)) {
7732 put_page(page);
7733 page = NULL;
7734 }
7735 }
7736
7737 if (page) {
7738 if (page->index <= end_idx)
7739 found = true;
7740 put_page(page);
7741 }
7742
7743 rcu_read_unlock();
7744 return found;
7745 }
7746
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,int writing)7747 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7748 struct extent_state **cached_state, int writing)
7749 {
7750 struct btrfs_ordered_extent *ordered;
7751 int ret = 0;
7752
7753 while (1) {
7754 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7755 cached_state);
7756 /*
7757 * We're concerned with the entire range that we're going to be
7758 * doing DIO to, so we need to make sure there's no ordered
7759 * extents in this range.
7760 */
7761 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7762 lockend - lockstart + 1);
7763
7764 /*
7765 * We need to make sure there are no buffered pages in this
7766 * range either, we could have raced between the invalidate in
7767 * generic_file_direct_write and locking the extent. The
7768 * invalidate needs to happen so that reads after a write do not
7769 * get stale data.
7770 */
7771 if (!ordered &&
7772 (!writing ||
7773 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7774 break;
7775
7776 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7777 cached_state, GFP_NOFS);
7778
7779 if (ordered) {
7780 /*
7781 * If we are doing a DIO read and the ordered extent we
7782 * found is for a buffered write, we can not wait for it
7783 * to complete and retry, because if we do so we can
7784 * deadlock with concurrent buffered writes on page
7785 * locks. This happens only if our DIO read covers more
7786 * than one extent map, if at this point has already
7787 * created an ordered extent for a previous extent map
7788 * and locked its range in the inode's io tree, and a
7789 * concurrent write against that previous extent map's
7790 * range and this range started (we unlock the ranges
7791 * in the io tree only when the bios complete and
7792 * buffered writes always lock pages before attempting
7793 * to lock range in the io tree).
7794 */
7795 if (writing ||
7796 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7797 btrfs_start_ordered_extent(inode, ordered, 1);
7798 else
7799 ret = -ENOTBLK;
7800 btrfs_put_ordered_extent(ordered);
7801 } else {
7802 /*
7803 * We could trigger writeback for this range (and wait
7804 * for it to complete) and then invalidate the pages for
7805 * this range (through invalidate_inode_pages2_range()),
7806 * but that can lead us to a deadlock with a concurrent
7807 * call to readpages() (a buffered read or a defrag call
7808 * triggered a readahead) on a page lock due to an
7809 * ordered dio extent we created before but did not have
7810 * yet a corresponding bio submitted (whence it can not
7811 * complete), which makes readpages() wait for that
7812 * ordered extent to complete while holding a lock on
7813 * that page.
7814 */
7815 ret = -ENOTBLK;
7816 }
7817
7818 if (ret)
7819 break;
7820
7821 cond_resched();
7822 }
7823
7824 return ret;
7825 }
7826
7827 /* The callers of this must take lock_extent() */
create_io_em(struct inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7828 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7829 u64 orig_start, u64 block_start,
7830 u64 block_len, u64 orig_block_len,
7831 u64 ram_bytes, int compress_type,
7832 int type)
7833 {
7834 struct extent_map_tree *em_tree;
7835 struct extent_map *em;
7836 struct btrfs_root *root = BTRFS_I(inode)->root;
7837 int ret;
7838
7839 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7840 type == BTRFS_ORDERED_COMPRESSED ||
7841 type == BTRFS_ORDERED_NOCOW ||
7842 type == BTRFS_ORDERED_REGULAR);
7843
7844 em_tree = &BTRFS_I(inode)->extent_tree;
7845 em = alloc_extent_map();
7846 if (!em)
7847 return ERR_PTR(-ENOMEM);
7848
7849 em->start = start;
7850 em->orig_start = orig_start;
7851 em->len = len;
7852 em->block_len = block_len;
7853 em->block_start = block_start;
7854 em->bdev = root->fs_info->fs_devices->latest_bdev;
7855 em->orig_block_len = orig_block_len;
7856 em->ram_bytes = ram_bytes;
7857 em->generation = -1;
7858 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7859 if (type == BTRFS_ORDERED_PREALLOC) {
7860 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7861 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7862 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7863 em->compress_type = compress_type;
7864 }
7865
7866 do {
7867 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7868 em->start + em->len - 1, 0);
7869 write_lock(&em_tree->lock);
7870 ret = add_extent_mapping(em_tree, em, 1);
7871 write_unlock(&em_tree->lock);
7872 /*
7873 * The caller has taken lock_extent(), who could race with us
7874 * to add em?
7875 */
7876 } while (ret == -EEXIST);
7877
7878 if (ret) {
7879 free_extent_map(em);
7880 return ERR_PTR(ret);
7881 }
7882
7883 /* em got 2 refs now, callers needs to do free_extent_map once. */
7884 return em;
7885 }
7886
adjust_dio_outstanding_extents(struct inode * inode,struct btrfs_dio_data * dio_data,const u64 len)7887 static void adjust_dio_outstanding_extents(struct inode *inode,
7888 struct btrfs_dio_data *dio_data,
7889 const u64 len)
7890 {
7891 unsigned num_extents = count_max_extents(len);
7892
7893 /*
7894 * If we have an outstanding_extents count still set then we're
7895 * within our reservation, otherwise we need to adjust our inode
7896 * counter appropriately.
7897 */
7898 if (dio_data->outstanding_extents >= num_extents) {
7899 dio_data->outstanding_extents -= num_extents;
7900 } else {
7901 /*
7902 * If dio write length has been split due to no large enough
7903 * contiguous space, we need to compensate our inode counter
7904 * appropriately.
7905 */
7906 u64 num_needed = num_extents - dio_data->outstanding_extents;
7907
7908 spin_lock(&BTRFS_I(inode)->lock);
7909 BTRFS_I(inode)->outstanding_extents += num_needed;
7910 spin_unlock(&BTRFS_I(inode)->lock);
7911 }
7912 }
7913
btrfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)7914 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7915 struct buffer_head *bh_result, int create)
7916 {
7917 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7918 struct extent_map *em;
7919 struct extent_state *cached_state = NULL;
7920 struct btrfs_dio_data *dio_data = NULL;
7921 u64 start = iblock << inode->i_blkbits;
7922 u64 lockstart, lockend;
7923 u64 len = bh_result->b_size;
7924 int unlock_bits = EXTENT_LOCKED;
7925 int ret = 0;
7926
7927 if (create)
7928 unlock_bits |= EXTENT_DIRTY;
7929 else
7930 len = min_t(u64, len, fs_info->sectorsize);
7931
7932 lockstart = start;
7933 lockend = start + len - 1;
7934
7935 if (current->journal_info) {
7936 /*
7937 * Need to pull our outstanding extents and set journal_info to NULL so
7938 * that anything that needs to check if there's a transaction doesn't get
7939 * confused.
7940 */
7941 dio_data = current->journal_info;
7942 current->journal_info = NULL;
7943 }
7944
7945 /*
7946 * If this errors out it's because we couldn't invalidate pagecache for
7947 * this range and we need to fallback to buffered.
7948 */
7949 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7950 create)) {
7951 ret = -ENOTBLK;
7952 goto err;
7953 }
7954
7955 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7956 if (IS_ERR(em)) {
7957 ret = PTR_ERR(em);
7958 goto unlock_err;
7959 }
7960
7961 /*
7962 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7963 * io. INLINE is special, and we could probably kludge it in here, but
7964 * it's still buffered so for safety lets just fall back to the generic
7965 * buffered path.
7966 *
7967 * For COMPRESSED we _have_ to read the entire extent in so we can
7968 * decompress it, so there will be buffering required no matter what we
7969 * do, so go ahead and fallback to buffered.
7970 *
7971 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7972 * to buffered IO. Don't blame me, this is the price we pay for using
7973 * the generic code.
7974 */
7975 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7976 em->block_start == EXTENT_MAP_INLINE) {
7977 free_extent_map(em);
7978 ret = -ENOTBLK;
7979 goto unlock_err;
7980 }
7981
7982 /* Just a good old fashioned hole, return */
7983 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7984 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7985 free_extent_map(em);
7986 goto unlock_err;
7987 }
7988
7989 /*
7990 * We don't allocate a new extent in the following cases
7991 *
7992 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7993 * existing extent.
7994 * 2) The extent is marked as PREALLOC. We're good to go here and can
7995 * just use the extent.
7996 *
7997 */
7998 if (!create) {
7999 len = min(len, em->len - (start - em->start));
8000 lockstart = start + len;
8001 goto unlock;
8002 }
8003
8004 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8005 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
8006 em->block_start != EXTENT_MAP_HOLE)) {
8007 int type;
8008 u64 block_start, orig_start, orig_block_len, ram_bytes;
8009
8010 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
8011 type = BTRFS_ORDERED_PREALLOC;
8012 else
8013 type = BTRFS_ORDERED_NOCOW;
8014 len = min(len, em->len - (start - em->start));
8015 block_start = em->block_start + (start - em->start);
8016
8017 if (can_nocow_extent(inode, start, &len, &orig_start,
8018 &orig_block_len, &ram_bytes) == 1 &&
8019 btrfs_inc_nocow_writers(fs_info, block_start)) {
8020 struct extent_map *em2;
8021
8022 em2 = btrfs_create_dio_extent(inode, start, len,
8023 orig_start, block_start,
8024 len, orig_block_len,
8025 ram_bytes, type);
8026 btrfs_dec_nocow_writers(fs_info, block_start);
8027 if (type == BTRFS_ORDERED_PREALLOC) {
8028 free_extent_map(em);
8029 em = em2;
8030 }
8031 if (em2 && IS_ERR(em2)) {
8032 ret = PTR_ERR(em2);
8033 goto unlock_err;
8034 }
8035 /*
8036 * For inode marked NODATACOW or extent marked PREALLOC,
8037 * use the existing or preallocated extent, so does not
8038 * need to adjust btrfs_space_info's bytes_may_use.
8039 */
8040 btrfs_free_reserved_data_space_noquota(inode,
8041 start, len);
8042 goto unlock;
8043 }
8044 }
8045
8046 /*
8047 * this will cow the extent, reset the len in case we changed
8048 * it above
8049 */
8050 len = bh_result->b_size;
8051 free_extent_map(em);
8052 em = btrfs_new_extent_direct(inode, start, len);
8053 if (IS_ERR(em)) {
8054 ret = PTR_ERR(em);
8055 goto unlock_err;
8056 }
8057 len = min(len, em->len - (start - em->start));
8058 unlock:
8059 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
8060 inode->i_blkbits;
8061 bh_result->b_size = len;
8062 bh_result->b_bdev = em->bdev;
8063 set_buffer_mapped(bh_result);
8064 if (create) {
8065 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
8066 set_buffer_new(bh_result);
8067
8068 /*
8069 * Need to update the i_size under the extent lock so buffered
8070 * readers will get the updated i_size when we unlock.
8071 */
8072 if (!dio_data->overwrite && start + len > i_size_read(inode))
8073 i_size_write(inode, start + len);
8074
8075 adjust_dio_outstanding_extents(inode, dio_data, len);
8076 WARN_ON(dio_data->reserve < len);
8077 dio_data->reserve -= len;
8078 dio_data->unsubmitted_oe_range_end = start + len;
8079 current->journal_info = dio_data;
8080 }
8081
8082 /*
8083 * In the case of write we need to clear and unlock the entire range,
8084 * in the case of read we need to unlock only the end area that we
8085 * aren't using if there is any left over space.
8086 */
8087 if (lockstart < lockend) {
8088 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
8089 lockend, unlock_bits, 1, 0,
8090 &cached_state, GFP_NOFS);
8091 } else {
8092 free_extent_state(cached_state);
8093 }
8094
8095 free_extent_map(em);
8096
8097 return 0;
8098
8099 unlock_err:
8100 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
8101 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
8102 err:
8103 if (dio_data)
8104 current->journal_info = dio_data;
8105 /*
8106 * Compensate the delalloc release we do in btrfs_direct_IO() when we
8107 * write less data then expected, so that we don't underflow our inode's
8108 * outstanding extents counter.
8109 */
8110 if (create && dio_data)
8111 adjust_dio_outstanding_extents(inode, dio_data, len);
8112
8113 return ret;
8114 }
8115
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num)8116 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
8117 struct bio *bio,
8118 int mirror_num)
8119 {
8120 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8121 blk_status_t ret;
8122
8123 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8124
8125 bio_get(bio);
8126
8127 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8128 if (ret)
8129 goto err;
8130
8131 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8132 err:
8133 bio_put(bio);
8134 return ret;
8135 }
8136
btrfs_check_dio_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)8137 static int btrfs_check_dio_repairable(struct inode *inode,
8138 struct bio *failed_bio,
8139 struct io_failure_record *failrec,
8140 int failed_mirror)
8141 {
8142 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8143 int num_copies;
8144
8145 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8146 if (num_copies == 1) {
8147 /*
8148 * we only have a single copy of the data, so don't bother with
8149 * all the retry and error correction code that follows. no
8150 * matter what the error is, it is very likely to persist.
8151 */
8152 btrfs_debug(fs_info,
8153 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
8154 num_copies, failrec->this_mirror, failed_mirror);
8155 return 0;
8156 }
8157
8158 failrec->failed_mirror = failed_mirror;
8159 failrec->this_mirror++;
8160 if (failrec->this_mirror == failed_mirror)
8161 failrec->this_mirror++;
8162
8163 if (failrec->this_mirror > num_copies) {
8164 btrfs_debug(fs_info,
8165 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
8166 num_copies, failrec->this_mirror, failed_mirror);
8167 return 0;
8168 }
8169
8170 return 1;
8171 }
8172
dio_read_error(struct inode * inode,struct bio * failed_bio,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,bio_end_io_t * repair_endio,void * repair_arg)8173 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
8174 struct page *page, unsigned int pgoff,
8175 u64 start, u64 end, int failed_mirror,
8176 bio_end_io_t *repair_endio, void *repair_arg)
8177 {
8178 struct io_failure_record *failrec;
8179 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8180 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8181 struct bio *bio;
8182 int isector;
8183 unsigned int read_mode = 0;
8184 int segs;
8185 int ret;
8186 blk_status_t status;
8187
8188 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8189
8190 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
8191 if (ret)
8192 return errno_to_blk_status(ret);
8193
8194 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8195 failed_mirror);
8196 if (!ret) {
8197 free_io_failure(failure_tree, io_tree, failrec);
8198 return BLK_STS_IOERR;
8199 }
8200
8201 segs = bio_segments(failed_bio);
8202 if (segs > 1 ||
8203 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
8204 read_mode |= REQ_FAILFAST_DEV;
8205
8206 isector = start - btrfs_io_bio(failed_bio)->logical;
8207 isector >>= inode->i_sb->s_blocksize_bits;
8208 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
8209 pgoff, isector, repair_endio, repair_arg);
8210 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8211
8212 btrfs_debug(BTRFS_I(inode)->root->fs_info,
8213 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8214 read_mode, failrec->this_mirror, failrec->in_validation);
8215
8216 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8217 if (status) {
8218 free_io_failure(failure_tree, io_tree, failrec);
8219 bio_put(bio);
8220 }
8221
8222 return status;
8223 }
8224
8225 struct btrfs_retry_complete {
8226 struct completion done;
8227 struct inode *inode;
8228 u64 start;
8229 int uptodate;
8230 };
8231
btrfs_retry_endio_nocsum(struct bio * bio)8232 static void btrfs_retry_endio_nocsum(struct bio *bio)
8233 {
8234 struct btrfs_retry_complete *done = bio->bi_private;
8235 struct inode *inode = done->inode;
8236 struct bio_vec *bvec;
8237 struct extent_io_tree *io_tree, *failure_tree;
8238 int i;
8239
8240 if (bio->bi_status)
8241 goto end;
8242
8243 ASSERT(bio->bi_vcnt == 1);
8244 io_tree = &BTRFS_I(inode)->io_tree;
8245 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8246 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
8247
8248 done->uptodate = 1;
8249 ASSERT(!bio_flagged(bio, BIO_CLONED));
8250 bio_for_each_segment_all(bvec, bio, i)
8251 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8252 io_tree, done->start, bvec->bv_page,
8253 btrfs_ino(BTRFS_I(inode)), 0);
8254 end:
8255 complete(&done->done);
8256 bio_put(bio);
8257 }
8258
__btrfs_correct_data_nocsum(struct inode * inode,struct btrfs_io_bio * io_bio)8259 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8260 struct btrfs_io_bio *io_bio)
8261 {
8262 struct btrfs_fs_info *fs_info;
8263 struct bio_vec bvec;
8264 struct bvec_iter iter;
8265 struct btrfs_retry_complete done;
8266 u64 start;
8267 unsigned int pgoff;
8268 u32 sectorsize;
8269 int nr_sectors;
8270 blk_status_t ret;
8271 blk_status_t err = BLK_STS_OK;
8272
8273 fs_info = BTRFS_I(inode)->root->fs_info;
8274 sectorsize = fs_info->sectorsize;
8275
8276 start = io_bio->logical;
8277 done.inode = inode;
8278 io_bio->bio.bi_iter = io_bio->iter;
8279
8280 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8281 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8282 pgoff = bvec.bv_offset;
8283
8284 next_block_or_try_again:
8285 done.uptodate = 0;
8286 done.start = start;
8287 init_completion(&done.done);
8288
8289 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8290 pgoff, start, start + sectorsize - 1,
8291 io_bio->mirror_num,
8292 btrfs_retry_endio_nocsum, &done);
8293 if (ret) {
8294 err = ret;
8295 goto next;
8296 }
8297
8298 wait_for_completion_io(&done.done);
8299
8300 if (!done.uptodate) {
8301 /* We might have another mirror, so try again */
8302 goto next_block_or_try_again;
8303 }
8304
8305 next:
8306 start += sectorsize;
8307
8308 nr_sectors--;
8309 if (nr_sectors) {
8310 pgoff += sectorsize;
8311 ASSERT(pgoff < PAGE_SIZE);
8312 goto next_block_or_try_again;
8313 }
8314 }
8315
8316 return err;
8317 }
8318
btrfs_retry_endio(struct bio * bio)8319 static void btrfs_retry_endio(struct bio *bio)
8320 {
8321 struct btrfs_retry_complete *done = bio->bi_private;
8322 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8323 struct extent_io_tree *io_tree, *failure_tree;
8324 struct inode *inode = done->inode;
8325 struct bio_vec *bvec;
8326 int uptodate;
8327 int ret;
8328 int i;
8329
8330 if (bio->bi_status)
8331 goto end;
8332
8333 uptodate = 1;
8334
8335 ASSERT(bio->bi_vcnt == 1);
8336 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
8337
8338 io_tree = &BTRFS_I(inode)->io_tree;
8339 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8340
8341 ASSERT(!bio_flagged(bio, BIO_CLONED));
8342 bio_for_each_segment_all(bvec, bio, i) {
8343 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8344 bvec->bv_offset, done->start,
8345 bvec->bv_len);
8346 if (!ret)
8347 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8348 failure_tree, io_tree, done->start,
8349 bvec->bv_page,
8350 btrfs_ino(BTRFS_I(inode)),
8351 bvec->bv_offset);
8352 else
8353 uptodate = 0;
8354 }
8355
8356 done->uptodate = uptodate;
8357 end:
8358 complete(&done->done);
8359 bio_put(bio);
8360 }
8361
__btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8362 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8363 struct btrfs_io_bio *io_bio, blk_status_t err)
8364 {
8365 struct btrfs_fs_info *fs_info;
8366 struct bio_vec bvec;
8367 struct bvec_iter iter;
8368 struct btrfs_retry_complete done;
8369 u64 start;
8370 u64 offset = 0;
8371 u32 sectorsize;
8372 int nr_sectors;
8373 unsigned int pgoff;
8374 int csum_pos;
8375 bool uptodate = (err == 0);
8376 int ret;
8377 blk_status_t status;
8378
8379 fs_info = BTRFS_I(inode)->root->fs_info;
8380 sectorsize = fs_info->sectorsize;
8381
8382 err = BLK_STS_OK;
8383 start = io_bio->logical;
8384 done.inode = inode;
8385 io_bio->bio.bi_iter = io_bio->iter;
8386
8387 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8388 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8389
8390 pgoff = bvec.bv_offset;
8391 next_block:
8392 if (uptodate) {
8393 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8394 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8395 bvec.bv_page, pgoff, start, sectorsize);
8396 if (likely(!ret))
8397 goto next;
8398 }
8399 try_again:
8400 done.uptodate = 0;
8401 done.start = start;
8402 init_completion(&done.done);
8403
8404 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8405 pgoff, start, start + sectorsize - 1,
8406 io_bio->mirror_num, btrfs_retry_endio,
8407 &done);
8408 if (status) {
8409 err = status;
8410 goto next;
8411 }
8412
8413 wait_for_completion_io(&done.done);
8414
8415 if (!done.uptodate) {
8416 /* We might have another mirror, so try again */
8417 goto try_again;
8418 }
8419 next:
8420 offset += sectorsize;
8421 start += sectorsize;
8422
8423 ASSERT(nr_sectors);
8424
8425 nr_sectors--;
8426 if (nr_sectors) {
8427 pgoff += sectorsize;
8428 ASSERT(pgoff < PAGE_SIZE);
8429 goto next_block;
8430 }
8431 }
8432
8433 return err;
8434 }
8435
btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8436 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8437 struct btrfs_io_bio *io_bio, blk_status_t err)
8438 {
8439 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8440
8441 if (skip_csum) {
8442 if (unlikely(err))
8443 return __btrfs_correct_data_nocsum(inode, io_bio);
8444 else
8445 return BLK_STS_OK;
8446 } else {
8447 return __btrfs_subio_endio_read(inode, io_bio, err);
8448 }
8449 }
8450
btrfs_endio_direct_read(struct bio * bio)8451 static void btrfs_endio_direct_read(struct bio *bio)
8452 {
8453 struct btrfs_dio_private *dip = bio->bi_private;
8454 struct inode *inode = dip->inode;
8455 struct bio *dio_bio;
8456 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8457 blk_status_t err = bio->bi_status;
8458
8459 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8460 err = btrfs_subio_endio_read(inode, io_bio, err);
8461
8462 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8463 dip->logical_offset + dip->bytes - 1);
8464 dio_bio = dip->dio_bio;
8465
8466 kfree(dip);
8467
8468 dio_bio->bi_status = err;
8469 dio_end_io(dio_bio);
8470
8471 if (io_bio->end_io)
8472 io_bio->end_io(io_bio, blk_status_to_errno(err));
8473 bio_put(bio);
8474 }
8475
__endio_write_update_ordered(struct inode * inode,const u64 offset,const u64 bytes,const bool uptodate)8476 static void __endio_write_update_ordered(struct inode *inode,
8477 const u64 offset, const u64 bytes,
8478 const bool uptodate)
8479 {
8480 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8481 struct btrfs_ordered_extent *ordered = NULL;
8482 struct btrfs_workqueue *wq;
8483 btrfs_work_func_t func;
8484 u64 ordered_offset = offset;
8485 u64 ordered_bytes = bytes;
8486 u64 last_offset;
8487 int ret;
8488
8489 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8490 wq = fs_info->endio_freespace_worker;
8491 func = btrfs_freespace_write_helper;
8492 } else {
8493 wq = fs_info->endio_write_workers;
8494 func = btrfs_endio_write_helper;
8495 }
8496
8497 again:
8498 last_offset = ordered_offset;
8499 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8500 &ordered_offset,
8501 ordered_bytes,
8502 uptodate);
8503 if (!ret)
8504 goto out_test;
8505
8506 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8507 btrfs_queue_work(wq, &ordered->work);
8508 out_test:
8509 /*
8510 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8511 * in the range, we can exit.
8512 */
8513 if (ordered_offset == last_offset)
8514 return;
8515 /*
8516 * our bio might span multiple ordered extents. If we haven't
8517 * completed the accounting for the whole dio, go back and try again
8518 */
8519 if (ordered_offset < offset + bytes) {
8520 ordered_bytes = offset + bytes - ordered_offset;
8521 ordered = NULL;
8522 goto again;
8523 }
8524 }
8525
btrfs_endio_direct_write(struct bio * bio)8526 static void btrfs_endio_direct_write(struct bio *bio)
8527 {
8528 struct btrfs_dio_private *dip = bio->bi_private;
8529 struct bio *dio_bio = dip->dio_bio;
8530
8531 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8532 dip->bytes, !bio->bi_status);
8533
8534 kfree(dip);
8535
8536 dio_bio->bi_status = bio->bi_status;
8537 dio_end_io(dio_bio);
8538 bio_put(bio);
8539 }
8540
__btrfs_submit_bio_start_direct_io(void * private_data,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 offset)8541 static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
8542 struct bio *bio, int mirror_num,
8543 unsigned long bio_flags, u64 offset)
8544 {
8545 struct inode *inode = private_data;
8546 blk_status_t ret;
8547 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8548 BUG_ON(ret); /* -ENOMEM */
8549 return 0;
8550 }
8551
btrfs_end_dio_bio(struct bio * bio)8552 static void btrfs_end_dio_bio(struct bio *bio)
8553 {
8554 struct btrfs_dio_private *dip = bio->bi_private;
8555 blk_status_t err = bio->bi_status;
8556
8557 if (err)
8558 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8559 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8560 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8561 bio->bi_opf,
8562 (unsigned long long)bio->bi_iter.bi_sector,
8563 bio->bi_iter.bi_size, err);
8564
8565 if (dip->subio_endio)
8566 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8567
8568 if (err) {
8569 dip->errors = 1;
8570
8571 /*
8572 * before atomic variable goto zero, we must make sure
8573 * dip->errors is perceived to be set.
8574 */
8575 smp_mb__before_atomic();
8576 }
8577
8578 /* if there are more bios still pending for this dio, just exit */
8579 if (!atomic_dec_and_test(&dip->pending_bios))
8580 goto out;
8581
8582 if (dip->errors) {
8583 bio_io_error(dip->orig_bio);
8584 } else {
8585 dip->dio_bio->bi_status = 0;
8586 bio_endio(dip->orig_bio);
8587 }
8588 out:
8589 bio_put(bio);
8590 }
8591
btrfs_lookup_and_bind_dio_csum(struct inode * inode,struct btrfs_dio_private * dip,struct bio * bio,u64 file_offset)8592 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8593 struct btrfs_dio_private *dip,
8594 struct bio *bio,
8595 u64 file_offset)
8596 {
8597 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8598 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8599 blk_status_t ret;
8600
8601 /*
8602 * We load all the csum data we need when we submit
8603 * the first bio to reduce the csum tree search and
8604 * contention.
8605 */
8606 if (dip->logical_offset == file_offset) {
8607 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8608 file_offset);
8609 if (ret)
8610 return ret;
8611 }
8612
8613 if (bio == dip->orig_bio)
8614 return 0;
8615
8616 file_offset -= dip->logical_offset;
8617 file_offset >>= inode->i_sb->s_blocksize_bits;
8618 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8619
8620 return 0;
8621 }
8622
8623 static inline blk_status_t
__btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)8624 __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset,
8625 int async_submit)
8626 {
8627 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8628 struct btrfs_dio_private *dip = bio->bi_private;
8629 bool write = bio_op(bio) == REQ_OP_WRITE;
8630 blk_status_t ret;
8631
8632 if (async_submit)
8633 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8634
8635 bio_get(bio);
8636
8637 if (!write) {
8638 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8639 if (ret)
8640 goto err;
8641 }
8642
8643 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8644 goto map;
8645
8646 if (write && async_submit) {
8647 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8648 file_offset, inode,
8649 __btrfs_submit_bio_start_direct_io,
8650 __btrfs_submit_bio_done);
8651 goto err;
8652 } else if (write) {
8653 /*
8654 * If we aren't doing async submit, calculate the csum of the
8655 * bio now.
8656 */
8657 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8658 if (ret)
8659 goto err;
8660 } else {
8661 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8662 file_offset);
8663 if (ret)
8664 goto err;
8665 }
8666 map:
8667 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
8668 err:
8669 bio_put(bio);
8670 return ret;
8671 }
8672
btrfs_submit_direct_hook(struct btrfs_dio_private * dip)8673 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8674 {
8675 struct inode *inode = dip->inode;
8676 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8677 struct bio *bio;
8678 struct bio *orig_bio = dip->orig_bio;
8679 u64 start_sector = orig_bio->bi_iter.bi_sector;
8680 u64 file_offset = dip->logical_offset;
8681 u64 map_length;
8682 int async_submit = 0;
8683 u64 submit_len;
8684 int clone_offset = 0;
8685 int clone_len;
8686 int ret;
8687 blk_status_t status;
8688
8689 map_length = orig_bio->bi_iter.bi_size;
8690 submit_len = map_length;
8691 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8692 &map_length, NULL, 0);
8693 if (ret)
8694 return -EIO;
8695
8696 if (map_length >= submit_len) {
8697 bio = orig_bio;
8698 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8699 goto submit;
8700 }
8701
8702 /* async crcs make it difficult to collect full stripe writes. */
8703 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8704 async_submit = 0;
8705 else
8706 async_submit = 1;
8707
8708 /* bio split */
8709 ASSERT(map_length <= INT_MAX);
8710 atomic_inc(&dip->pending_bios);
8711 do {
8712 clone_len = min_t(int, submit_len, map_length);
8713
8714 /*
8715 * This will never fail as it's passing GPF_NOFS and
8716 * the allocation is backed by btrfs_bioset.
8717 */
8718 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8719 clone_len);
8720 bio->bi_private = dip;
8721 bio->bi_end_io = btrfs_end_dio_bio;
8722 btrfs_io_bio(bio)->logical = file_offset;
8723
8724 ASSERT(submit_len >= clone_len);
8725 submit_len -= clone_len;
8726 if (submit_len == 0)
8727 break;
8728
8729 /*
8730 * Increase the count before we submit the bio so we know
8731 * the end IO handler won't happen before we increase the
8732 * count. Otherwise, the dip might get freed before we're
8733 * done setting it up.
8734 */
8735 atomic_inc(&dip->pending_bios);
8736
8737 status = __btrfs_submit_dio_bio(bio, inode, file_offset,
8738 async_submit);
8739 if (status) {
8740 bio_put(bio);
8741 atomic_dec(&dip->pending_bios);
8742 goto out_err;
8743 }
8744
8745 clone_offset += clone_len;
8746 start_sector += clone_len >> 9;
8747 file_offset += clone_len;
8748
8749 map_length = submit_len;
8750 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8751 start_sector << 9, &map_length, NULL, 0);
8752 if (ret)
8753 goto out_err;
8754 } while (submit_len > 0);
8755
8756 submit:
8757 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8758 if (!status)
8759 return 0;
8760
8761 bio_put(bio);
8762 out_err:
8763 dip->errors = 1;
8764 /*
8765 * before atomic variable goto zero, we must
8766 * make sure dip->errors is perceived to be set.
8767 */
8768 smp_mb__before_atomic();
8769 if (atomic_dec_and_test(&dip->pending_bios))
8770 bio_io_error(dip->orig_bio);
8771
8772 /* bio_end_io() will handle error, so we needn't return it */
8773 return 0;
8774 }
8775
btrfs_submit_direct(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8776 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8777 loff_t file_offset)
8778 {
8779 struct btrfs_dio_private *dip = NULL;
8780 struct bio *bio = NULL;
8781 struct btrfs_io_bio *io_bio;
8782 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8783 int ret = 0;
8784
8785 bio = btrfs_bio_clone(dio_bio);
8786
8787 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8788 if (!dip) {
8789 ret = -ENOMEM;
8790 goto free_ordered;
8791 }
8792
8793 dip->private = dio_bio->bi_private;
8794 dip->inode = inode;
8795 dip->logical_offset = file_offset;
8796 dip->bytes = dio_bio->bi_iter.bi_size;
8797 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8798 bio->bi_private = dip;
8799 dip->orig_bio = bio;
8800 dip->dio_bio = dio_bio;
8801 atomic_set(&dip->pending_bios, 0);
8802 io_bio = btrfs_io_bio(bio);
8803 io_bio->logical = file_offset;
8804
8805 if (write) {
8806 bio->bi_end_io = btrfs_endio_direct_write;
8807 } else {
8808 bio->bi_end_io = btrfs_endio_direct_read;
8809 dip->subio_endio = btrfs_subio_endio_read;
8810 }
8811
8812 /*
8813 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8814 * even if we fail to submit a bio, because in such case we do the
8815 * corresponding error handling below and it must not be done a second
8816 * time by btrfs_direct_IO().
8817 */
8818 if (write) {
8819 struct btrfs_dio_data *dio_data = current->journal_info;
8820
8821 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8822 dip->bytes;
8823 dio_data->unsubmitted_oe_range_start =
8824 dio_data->unsubmitted_oe_range_end;
8825 }
8826
8827 ret = btrfs_submit_direct_hook(dip);
8828 if (!ret)
8829 return;
8830
8831 if (io_bio->end_io)
8832 io_bio->end_io(io_bio, ret);
8833
8834 free_ordered:
8835 /*
8836 * If we arrived here it means either we failed to submit the dip
8837 * or we either failed to clone the dio_bio or failed to allocate the
8838 * dip. If we cloned the dio_bio and allocated the dip, we can just
8839 * call bio_endio against our io_bio so that we get proper resource
8840 * cleanup if we fail to submit the dip, otherwise, we must do the
8841 * same as btrfs_endio_direct_[write|read] because we can't call these
8842 * callbacks - they require an allocated dip and a clone of dio_bio.
8843 */
8844 if (bio && dip) {
8845 bio_io_error(bio);
8846 /*
8847 * The end io callbacks free our dip, do the final put on bio
8848 * and all the cleanup and final put for dio_bio (through
8849 * dio_end_io()).
8850 */
8851 dip = NULL;
8852 bio = NULL;
8853 } else {
8854 if (write)
8855 __endio_write_update_ordered(inode,
8856 file_offset,
8857 dio_bio->bi_iter.bi_size,
8858 false);
8859 else
8860 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8861 file_offset + dio_bio->bi_iter.bi_size - 1);
8862
8863 dio_bio->bi_status = BLK_STS_IOERR;
8864 /*
8865 * Releases and cleans up our dio_bio, no need to bio_put()
8866 * nor bio_endio()/bio_io_error() against dio_bio.
8867 */
8868 dio_end_io(dio_bio);
8869 }
8870 if (bio)
8871 bio_put(bio);
8872 kfree(dip);
8873 }
8874
check_direct_IO(struct btrfs_fs_info * fs_info,struct kiocb * iocb,const struct iov_iter * iter,loff_t offset)8875 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8876 struct kiocb *iocb,
8877 const struct iov_iter *iter, loff_t offset)
8878 {
8879 int seg;
8880 int i;
8881 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8882 ssize_t retval = -EINVAL;
8883
8884 if (offset & blocksize_mask)
8885 goto out;
8886
8887 if (iov_iter_alignment(iter) & blocksize_mask)
8888 goto out;
8889
8890 /* If this is a write we don't need to check anymore */
8891 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8892 return 0;
8893 /*
8894 * Check to make sure we don't have duplicate iov_base's in this
8895 * iovec, if so return EINVAL, otherwise we'll get csum errors
8896 * when reading back.
8897 */
8898 for (seg = 0; seg < iter->nr_segs; seg++) {
8899 for (i = seg + 1; i < iter->nr_segs; i++) {
8900 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8901 goto out;
8902 }
8903 }
8904 retval = 0;
8905 out:
8906 return retval;
8907 }
8908
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8909 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8910 {
8911 struct file *file = iocb->ki_filp;
8912 struct inode *inode = file->f_mapping->host;
8913 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8914 struct btrfs_dio_data dio_data = { 0 };
8915 struct extent_changeset *data_reserved = NULL;
8916 loff_t offset = iocb->ki_pos;
8917 size_t count = 0;
8918 int flags = 0;
8919 bool wakeup = true;
8920 bool relock = false;
8921 ssize_t ret;
8922
8923 if (check_direct_IO(fs_info, iocb, iter, offset))
8924 return 0;
8925
8926 inode_dio_begin(inode);
8927
8928 /*
8929 * The generic stuff only does filemap_write_and_wait_range, which
8930 * isn't enough if we've written compressed pages to this area, so
8931 * we need to flush the dirty pages again to make absolutely sure
8932 * that any outstanding dirty pages are on disk.
8933 */
8934 count = iov_iter_count(iter);
8935 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8936 &BTRFS_I(inode)->runtime_flags))
8937 filemap_fdatawrite_range(inode->i_mapping, offset,
8938 offset + count - 1);
8939
8940 if (iov_iter_rw(iter) == WRITE) {
8941 /*
8942 * If the write DIO is beyond the EOF, we need update
8943 * the isize, but it is protected by i_mutex. So we can
8944 * not unlock the i_mutex at this case.
8945 */
8946 if (offset + count <= inode->i_size) {
8947 dio_data.overwrite = 1;
8948 inode_unlock(inode);
8949 relock = true;
8950 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8951 ret = -EAGAIN;
8952 goto out;
8953 }
8954 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8955 offset, count);
8956 if (ret)
8957 goto out;
8958 dio_data.outstanding_extents = count_max_extents(count);
8959
8960 /*
8961 * We need to know how many extents we reserved so that we can
8962 * do the accounting properly if we go over the number we
8963 * originally calculated. Abuse current->journal_info for this.
8964 */
8965 dio_data.reserve = round_up(count,
8966 fs_info->sectorsize);
8967 dio_data.unsubmitted_oe_range_start = (u64)offset;
8968 dio_data.unsubmitted_oe_range_end = (u64)offset;
8969 current->journal_info = &dio_data;
8970 down_read(&BTRFS_I(inode)->dio_sem);
8971 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8972 &BTRFS_I(inode)->runtime_flags)) {
8973 inode_dio_end(inode);
8974 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8975 wakeup = false;
8976 }
8977
8978 ret = __blockdev_direct_IO(iocb, inode,
8979 fs_info->fs_devices->latest_bdev,
8980 iter, btrfs_get_blocks_direct, NULL,
8981 btrfs_submit_direct, flags);
8982 if (iov_iter_rw(iter) == WRITE) {
8983 up_read(&BTRFS_I(inode)->dio_sem);
8984 current->journal_info = NULL;
8985 if (ret < 0 && ret != -EIOCBQUEUED) {
8986 if (dio_data.reserve)
8987 btrfs_delalloc_release_space(inode, data_reserved,
8988 offset, dio_data.reserve);
8989 /*
8990 * On error we might have left some ordered extents
8991 * without submitting corresponding bios for them, so
8992 * cleanup them up to avoid other tasks getting them
8993 * and waiting for them to complete forever.
8994 */
8995 if (dio_data.unsubmitted_oe_range_start <
8996 dio_data.unsubmitted_oe_range_end)
8997 __endio_write_update_ordered(inode,
8998 dio_data.unsubmitted_oe_range_start,
8999 dio_data.unsubmitted_oe_range_end -
9000 dio_data.unsubmitted_oe_range_start,
9001 false);
9002 } else if (ret >= 0 && (size_t)ret < count)
9003 btrfs_delalloc_release_space(inode, data_reserved,
9004 offset, count - (size_t)ret);
9005 }
9006 out:
9007 if (wakeup)
9008 inode_dio_end(inode);
9009 if (relock)
9010 inode_lock(inode);
9011
9012 extent_changeset_free(data_reserved);
9013 return ret;
9014 }
9015
9016 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
9017
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)9018 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
9019 __u64 start, __u64 len)
9020 {
9021 int ret;
9022
9023 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
9024 if (ret)
9025 return ret;
9026
9027 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
9028 }
9029
btrfs_readpage(struct file * file,struct page * page)9030 int btrfs_readpage(struct file *file, struct page *page)
9031 {
9032 struct extent_io_tree *tree;
9033 tree = &BTRFS_I(page->mapping->host)->io_tree;
9034 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9035 }
9036
btrfs_writepage(struct page * page,struct writeback_control * wbc)9037 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
9038 {
9039 struct extent_io_tree *tree;
9040 struct inode *inode = page->mapping->host;
9041 int ret;
9042
9043 if (current->flags & PF_MEMALLOC) {
9044 redirty_page_for_writepage(wbc, page);
9045 unlock_page(page);
9046 return 0;
9047 }
9048
9049 /*
9050 * If we are under memory pressure we will call this directly from the
9051 * VM, we need to make sure we have the inode referenced for the ordered
9052 * extent. If not just return like we didn't do anything.
9053 */
9054 if (!igrab(inode)) {
9055 redirty_page_for_writepage(wbc, page);
9056 return AOP_WRITEPAGE_ACTIVATE;
9057 }
9058 tree = &BTRFS_I(page->mapping->host)->io_tree;
9059 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9060 btrfs_add_delayed_iput(inode);
9061 return ret;
9062 }
9063
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)9064 static int btrfs_writepages(struct address_space *mapping,
9065 struct writeback_control *wbc)
9066 {
9067 struct extent_io_tree *tree;
9068
9069 tree = &BTRFS_I(mapping->host)->io_tree;
9070 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
9071 }
9072
9073 static int
btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)9074 btrfs_readpages(struct file *file, struct address_space *mapping,
9075 struct list_head *pages, unsigned nr_pages)
9076 {
9077 struct extent_io_tree *tree;
9078 tree = &BTRFS_I(mapping->host)->io_tree;
9079 return extent_readpages(tree, mapping, pages, nr_pages,
9080 btrfs_get_extent);
9081 }
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)9082 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9083 {
9084 struct extent_io_tree *tree;
9085 struct extent_map_tree *map;
9086 int ret;
9087
9088 tree = &BTRFS_I(page->mapping->host)->io_tree;
9089 map = &BTRFS_I(page->mapping->host)->extent_tree;
9090 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
9091 if (ret == 1) {
9092 ClearPagePrivate(page);
9093 set_page_private(page, 0);
9094 put_page(page);
9095 }
9096 return ret;
9097 }
9098
btrfs_releasepage(struct page * page,gfp_t gfp_flags)9099 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9100 {
9101 if (PageWriteback(page) || PageDirty(page))
9102 return 0;
9103 return __btrfs_releasepage(page, gfp_flags);
9104 }
9105
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)9106 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
9107 unsigned int length)
9108 {
9109 struct inode *inode = page->mapping->host;
9110 struct extent_io_tree *tree;
9111 struct btrfs_ordered_extent *ordered;
9112 struct extent_state *cached_state = NULL;
9113 u64 page_start = page_offset(page);
9114 u64 page_end = page_start + PAGE_SIZE - 1;
9115 u64 start;
9116 u64 end;
9117 int inode_evicting = inode->i_state & I_FREEING;
9118
9119 /*
9120 * we have the page locked, so new writeback can't start,
9121 * and the dirty bit won't be cleared while we are here.
9122 *
9123 * Wait for IO on this page so that we can safely clear
9124 * the PagePrivate2 bit and do ordered accounting
9125 */
9126 wait_on_page_writeback(page);
9127
9128 tree = &BTRFS_I(inode)->io_tree;
9129 if (offset) {
9130 btrfs_releasepage(page, GFP_NOFS);
9131 return;
9132 }
9133
9134 if (!inode_evicting)
9135 lock_extent_bits(tree, page_start, page_end, &cached_state);
9136 again:
9137 start = page_start;
9138 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9139 page_end - start + 1);
9140 if (ordered) {
9141 end = min(page_end, ordered->file_offset + ordered->len - 1);
9142 /*
9143 * IO on this page will never be started, so we need
9144 * to account for any ordered extents now
9145 */
9146 if (!inode_evicting)
9147 clear_extent_bit(tree, start, end,
9148 EXTENT_DIRTY | EXTENT_DELALLOC |
9149 EXTENT_DELALLOC_NEW |
9150 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
9151 EXTENT_DEFRAG, 1, 0, &cached_state,
9152 GFP_NOFS);
9153 /*
9154 * whoever cleared the private bit is responsible
9155 * for the finish_ordered_io
9156 */
9157 if (TestClearPagePrivate2(page)) {
9158 struct btrfs_ordered_inode_tree *tree;
9159 u64 new_len;
9160
9161 tree = &BTRFS_I(inode)->ordered_tree;
9162
9163 spin_lock_irq(&tree->lock);
9164 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
9165 new_len = start - ordered->file_offset;
9166 if (new_len < ordered->truncated_len)
9167 ordered->truncated_len = new_len;
9168 spin_unlock_irq(&tree->lock);
9169
9170 if (btrfs_dec_test_ordered_pending(inode, &ordered,
9171 start,
9172 end - start + 1, 1))
9173 btrfs_finish_ordered_io(ordered);
9174 }
9175 btrfs_put_ordered_extent(ordered);
9176 if (!inode_evicting) {
9177 cached_state = NULL;
9178 lock_extent_bits(tree, start, end,
9179 &cached_state);
9180 }
9181
9182 start = end + 1;
9183 if (start < page_end)
9184 goto again;
9185 }
9186
9187 /*
9188 * Qgroup reserved space handler
9189 * Page here will be either
9190 * 1) Already written to disk
9191 * In this case, its reserved space is released from data rsv map
9192 * and will be freed by delayed_ref handler finally.
9193 * So even we call qgroup_free_data(), it won't decrease reserved
9194 * space.
9195 * 2) Not written to disk
9196 * This means the reserved space should be freed here. However,
9197 * if a truncate invalidates the page (by clearing PageDirty)
9198 * and the page is accounted for while allocating extent
9199 * in btrfs_check_data_free_space() we let delayed_ref to
9200 * free the entire extent.
9201 */
9202 if (PageDirty(page))
9203 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
9204 if (!inode_evicting) {
9205 clear_extent_bit(tree, page_start, page_end,
9206 EXTENT_LOCKED | EXTENT_DIRTY |
9207 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9208 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
9209 &cached_state, GFP_NOFS);
9210
9211 __btrfs_releasepage(page, GFP_NOFS);
9212 }
9213
9214 ClearPageChecked(page);
9215 if (PagePrivate(page)) {
9216 ClearPagePrivate(page);
9217 set_page_private(page, 0);
9218 put_page(page);
9219 }
9220 }
9221
9222 /*
9223 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9224 * called from a page fault handler when a page is first dirtied. Hence we must
9225 * be careful to check for EOF conditions here. We set the page up correctly
9226 * for a written page which means we get ENOSPC checking when writing into
9227 * holes and correct delalloc and unwritten extent mapping on filesystems that
9228 * support these features.
9229 *
9230 * We are not allowed to take the i_mutex here so we have to play games to
9231 * protect against truncate races as the page could now be beyond EOF. Because
9232 * vmtruncate() writes the inode size before removing pages, once we have the
9233 * page lock we can determine safely if the page is beyond EOF. If it is not
9234 * beyond EOF, then the page is guaranteed safe against truncation until we
9235 * unlock the page.
9236 */
btrfs_page_mkwrite(struct vm_fault * vmf)9237 int btrfs_page_mkwrite(struct vm_fault *vmf)
9238 {
9239 struct page *page = vmf->page;
9240 struct inode *inode = file_inode(vmf->vma->vm_file);
9241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9242 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9243 struct btrfs_ordered_extent *ordered;
9244 struct extent_state *cached_state = NULL;
9245 struct extent_changeset *data_reserved = NULL;
9246 char *kaddr;
9247 unsigned long zero_start;
9248 loff_t size;
9249 int ret;
9250 int reserved = 0;
9251 u64 reserved_space;
9252 u64 page_start;
9253 u64 page_end;
9254 u64 end;
9255
9256 reserved_space = PAGE_SIZE;
9257
9258 sb_start_pagefault(inode->i_sb);
9259 page_start = page_offset(page);
9260 page_end = page_start + PAGE_SIZE - 1;
9261 end = page_end;
9262
9263 /*
9264 * Reserving delalloc space after obtaining the page lock can lead to
9265 * deadlock. For example, if a dirty page is locked by this function
9266 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9267 * dirty page write out, then the btrfs_writepage() function could
9268 * end up waiting indefinitely to get a lock on the page currently
9269 * being processed by btrfs_page_mkwrite() function.
9270 */
9271 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
9272 reserved_space);
9273 if (!ret) {
9274 ret = file_update_time(vmf->vma->vm_file);
9275 reserved = 1;
9276 }
9277 if (ret) {
9278 if (ret == -ENOMEM)
9279 ret = VM_FAULT_OOM;
9280 else /* -ENOSPC, -EIO, etc */
9281 ret = VM_FAULT_SIGBUS;
9282 if (reserved)
9283 goto out;
9284 goto out_noreserve;
9285 }
9286
9287 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9288 again:
9289 lock_page(page);
9290 size = i_size_read(inode);
9291
9292 if ((page->mapping != inode->i_mapping) ||
9293 (page_start >= size)) {
9294 /* page got truncated out from underneath us */
9295 goto out_unlock;
9296 }
9297 wait_on_page_writeback(page);
9298
9299 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9300 set_page_extent_mapped(page);
9301
9302 /*
9303 * we can't set the delalloc bits if there are pending ordered
9304 * extents. Drop our locks and wait for them to finish
9305 */
9306 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9307 PAGE_SIZE);
9308 if (ordered) {
9309 unlock_extent_cached(io_tree, page_start, page_end,
9310 &cached_state, GFP_NOFS);
9311 unlock_page(page);
9312 btrfs_start_ordered_extent(inode, ordered, 1);
9313 btrfs_put_ordered_extent(ordered);
9314 goto again;
9315 }
9316
9317 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9318 reserved_space = round_up(size - page_start,
9319 fs_info->sectorsize);
9320 if (reserved_space < PAGE_SIZE) {
9321 end = page_start + reserved_space - 1;
9322 spin_lock(&BTRFS_I(inode)->lock);
9323 BTRFS_I(inode)->outstanding_extents++;
9324 spin_unlock(&BTRFS_I(inode)->lock);
9325 btrfs_delalloc_release_space(inode, data_reserved,
9326 page_start, PAGE_SIZE - reserved_space);
9327 }
9328 }
9329
9330 /*
9331 * page_mkwrite gets called when the page is firstly dirtied after it's
9332 * faulted in, but write(2) could also dirty a page and set delalloc
9333 * bits, thus in this case for space account reason, we still need to
9334 * clear any delalloc bits within this page range since we have to
9335 * reserve data&meta space before lock_page() (see above comments).
9336 */
9337 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9338 EXTENT_DIRTY | EXTENT_DELALLOC |
9339 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9340 0, 0, &cached_state, GFP_NOFS);
9341
9342 ret = btrfs_set_extent_delalloc(inode, page_start, end,
9343 &cached_state, 0);
9344 if (ret) {
9345 unlock_extent_cached(io_tree, page_start, page_end,
9346 &cached_state, GFP_NOFS);
9347 ret = VM_FAULT_SIGBUS;
9348 goto out_unlock;
9349 }
9350 ret = 0;
9351
9352 /* page is wholly or partially inside EOF */
9353 if (page_start + PAGE_SIZE > size)
9354 zero_start = size & ~PAGE_MASK;
9355 else
9356 zero_start = PAGE_SIZE;
9357
9358 if (zero_start != PAGE_SIZE) {
9359 kaddr = kmap(page);
9360 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9361 flush_dcache_page(page);
9362 kunmap(page);
9363 }
9364 ClearPageChecked(page);
9365 set_page_dirty(page);
9366 SetPageUptodate(page);
9367
9368 BTRFS_I(inode)->last_trans = fs_info->generation;
9369 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9370 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9371
9372 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9373
9374 out_unlock:
9375 if (!ret) {
9376 sb_end_pagefault(inode->i_sb);
9377 extent_changeset_free(data_reserved);
9378 return VM_FAULT_LOCKED;
9379 }
9380 unlock_page(page);
9381 out:
9382 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9383 reserved_space);
9384 out_noreserve:
9385 sb_end_pagefault(inode->i_sb);
9386 extent_changeset_free(data_reserved);
9387 return ret;
9388 }
9389
btrfs_truncate(struct inode * inode)9390 static int btrfs_truncate(struct inode *inode)
9391 {
9392 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9393 struct btrfs_root *root = BTRFS_I(inode)->root;
9394 struct btrfs_block_rsv *rsv;
9395 int ret = 0;
9396 int err = 0;
9397 struct btrfs_trans_handle *trans;
9398 u64 mask = fs_info->sectorsize - 1;
9399 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9400
9401 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9402 (u64)-1);
9403 if (ret)
9404 return ret;
9405
9406 /*
9407 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9408 * 3 things going on here
9409 *
9410 * 1) We need to reserve space for our orphan item and the space to
9411 * delete our orphan item. Lord knows we don't want to have a dangling
9412 * orphan item because we didn't reserve space to remove it.
9413 *
9414 * 2) We need to reserve space to update our inode.
9415 *
9416 * 3) We need to have something to cache all the space that is going to
9417 * be free'd up by the truncate operation, but also have some slack
9418 * space reserved in case it uses space during the truncate (thank you
9419 * very much snapshotting).
9420 *
9421 * And we need these to all be separate. The fact is we can use a lot of
9422 * space doing the truncate, and we have no earthly idea how much space
9423 * we will use, so we need the truncate reservation to be separate so it
9424 * doesn't end up using space reserved for updating the inode or
9425 * removing the orphan item. We also need to be able to stop the
9426 * transaction and start a new one, which means we need to be able to
9427 * update the inode several times, and we have no idea of knowing how
9428 * many times that will be, so we can't just reserve 1 item for the
9429 * entirety of the operation, so that has to be done separately as well.
9430 * Then there is the orphan item, which does indeed need to be held on
9431 * to for the whole operation, and we need nobody to touch this reserved
9432 * space except the orphan code.
9433 *
9434 * So that leaves us with
9435 *
9436 * 1) root->orphan_block_rsv - for the orphan deletion.
9437 * 2) rsv - for the truncate reservation, which we will steal from the
9438 * transaction reservation.
9439 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9440 * updating the inode.
9441 */
9442 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9443 if (!rsv)
9444 return -ENOMEM;
9445 rsv->size = min_size;
9446 rsv->failfast = 1;
9447
9448 /*
9449 * 1 for the truncate slack space
9450 * 1 for updating the inode.
9451 */
9452 trans = btrfs_start_transaction(root, 2);
9453 if (IS_ERR(trans)) {
9454 err = PTR_ERR(trans);
9455 goto out;
9456 }
9457
9458 /* Migrate the slack space for the truncate to our reserve */
9459 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9460 min_size, 0);
9461 BUG_ON(ret);
9462
9463 /*
9464 * So if we truncate and then write and fsync we normally would just
9465 * write the extents that changed, which is a problem if we need to
9466 * first truncate that entire inode. So set this flag so we write out
9467 * all of the extents in the inode to the sync log so we're completely
9468 * safe.
9469 */
9470 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9471 trans->block_rsv = rsv;
9472
9473 while (1) {
9474 ret = btrfs_truncate_inode_items(trans, root, inode,
9475 inode->i_size,
9476 BTRFS_EXTENT_DATA_KEY);
9477 if (ret != -ENOSPC && ret != -EAGAIN) {
9478 err = ret;
9479 break;
9480 }
9481
9482 trans->block_rsv = &fs_info->trans_block_rsv;
9483 ret = btrfs_update_inode(trans, root, inode);
9484 if (ret) {
9485 err = ret;
9486 break;
9487 }
9488
9489 btrfs_end_transaction(trans);
9490 btrfs_btree_balance_dirty(fs_info);
9491
9492 trans = btrfs_start_transaction(root, 2);
9493 if (IS_ERR(trans)) {
9494 ret = err = PTR_ERR(trans);
9495 trans = NULL;
9496 break;
9497 }
9498
9499 btrfs_block_rsv_release(fs_info, rsv, -1);
9500 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9501 rsv, min_size, 0);
9502 BUG_ON(ret); /* shouldn't happen */
9503 trans->block_rsv = rsv;
9504 }
9505
9506 if (ret == 0 && inode->i_nlink > 0) {
9507 trans->block_rsv = root->orphan_block_rsv;
9508 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
9509 if (ret)
9510 err = ret;
9511 }
9512
9513 if (trans) {
9514 trans->block_rsv = &fs_info->trans_block_rsv;
9515 ret = btrfs_update_inode(trans, root, inode);
9516 if (ret && !err)
9517 err = ret;
9518
9519 ret = btrfs_end_transaction(trans);
9520 btrfs_btree_balance_dirty(fs_info);
9521 }
9522 out:
9523 btrfs_free_block_rsv(fs_info, rsv);
9524
9525 if (ret && !err)
9526 err = ret;
9527
9528 return err;
9529 }
9530
9531 /*
9532 * create a new subvolume directory/inode (helper for the ioctl).
9533 */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)9534 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9535 struct btrfs_root *new_root,
9536 struct btrfs_root *parent_root,
9537 u64 new_dirid)
9538 {
9539 struct inode *inode;
9540 int err;
9541 u64 index = 0;
9542
9543 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9544 new_dirid, new_dirid,
9545 S_IFDIR | (~current_umask() & S_IRWXUGO),
9546 &index);
9547 if (IS_ERR(inode))
9548 return PTR_ERR(inode);
9549 inode->i_op = &btrfs_dir_inode_operations;
9550 inode->i_fop = &btrfs_dir_file_operations;
9551
9552 set_nlink(inode, 1);
9553 btrfs_i_size_write(BTRFS_I(inode), 0);
9554 unlock_new_inode(inode);
9555
9556 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9557 if (err)
9558 btrfs_err(new_root->fs_info,
9559 "error inheriting subvolume %llu properties: %d",
9560 new_root->root_key.objectid, err);
9561
9562 err = btrfs_update_inode(trans, new_root, inode);
9563
9564 iput(inode);
9565 return err;
9566 }
9567
btrfs_alloc_inode(struct super_block * sb)9568 struct inode *btrfs_alloc_inode(struct super_block *sb)
9569 {
9570 struct btrfs_inode *ei;
9571 struct inode *inode;
9572
9573 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9574 if (!ei)
9575 return NULL;
9576
9577 ei->root = NULL;
9578 ei->generation = 0;
9579 ei->last_trans = 0;
9580 ei->last_sub_trans = 0;
9581 ei->logged_trans = 0;
9582 ei->delalloc_bytes = 0;
9583 ei->new_delalloc_bytes = 0;
9584 ei->defrag_bytes = 0;
9585 ei->disk_i_size = 0;
9586 ei->flags = 0;
9587 ei->csum_bytes = 0;
9588 ei->index_cnt = (u64)-1;
9589 ei->dir_index = 0;
9590 ei->last_unlink_trans = 0;
9591 ei->last_link_trans = 0;
9592 ei->last_log_commit = 0;
9593 ei->delayed_iput_count = 0;
9594
9595 spin_lock_init(&ei->lock);
9596 ei->outstanding_extents = 0;
9597 ei->reserved_extents = 0;
9598
9599 ei->runtime_flags = 0;
9600 ei->prop_compress = BTRFS_COMPRESS_NONE;
9601 ei->defrag_compress = BTRFS_COMPRESS_NONE;
9602
9603 ei->delayed_node = NULL;
9604
9605 ei->i_otime.tv_sec = 0;
9606 ei->i_otime.tv_nsec = 0;
9607
9608 inode = &ei->vfs_inode;
9609 extent_map_tree_init(&ei->extent_tree);
9610 extent_io_tree_init(&ei->io_tree, inode);
9611 extent_io_tree_init(&ei->io_failure_tree, inode);
9612 ei->io_tree.track_uptodate = 1;
9613 ei->io_failure_tree.track_uptodate = 1;
9614 atomic_set(&ei->sync_writers, 0);
9615 mutex_init(&ei->log_mutex);
9616 mutex_init(&ei->delalloc_mutex);
9617 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9618 INIT_LIST_HEAD(&ei->delalloc_inodes);
9619 INIT_LIST_HEAD(&ei->delayed_iput);
9620 RB_CLEAR_NODE(&ei->rb_node);
9621 init_rwsem(&ei->dio_sem);
9622
9623 return inode;
9624 }
9625
9626 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9627 void btrfs_test_destroy_inode(struct inode *inode)
9628 {
9629 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9630 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9631 }
9632 #endif
9633
btrfs_i_callback(struct rcu_head * head)9634 static void btrfs_i_callback(struct rcu_head *head)
9635 {
9636 struct inode *inode = container_of(head, struct inode, i_rcu);
9637 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9638 }
9639
btrfs_destroy_inode(struct inode * inode)9640 void btrfs_destroy_inode(struct inode *inode)
9641 {
9642 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9643 struct btrfs_ordered_extent *ordered;
9644 struct btrfs_root *root = BTRFS_I(inode)->root;
9645
9646 WARN_ON(!hlist_empty(&inode->i_dentry));
9647 WARN_ON(inode->i_data.nrpages);
9648 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9649 WARN_ON(BTRFS_I(inode)->reserved_extents);
9650 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9651 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9652 WARN_ON(BTRFS_I(inode)->csum_bytes);
9653 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9654
9655 /*
9656 * This can happen where we create an inode, but somebody else also
9657 * created the same inode and we need to destroy the one we already
9658 * created.
9659 */
9660 if (!root)
9661 goto free;
9662
9663 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9664 &BTRFS_I(inode)->runtime_flags)) {
9665 btrfs_info(fs_info, "inode %llu still on the orphan list",
9666 btrfs_ino(BTRFS_I(inode)));
9667 atomic_dec(&root->orphan_inodes);
9668 }
9669
9670 while (1) {
9671 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9672 if (!ordered)
9673 break;
9674 else {
9675 btrfs_err(fs_info,
9676 "found ordered extent %llu %llu on inode cleanup",
9677 ordered->file_offset, ordered->len);
9678 btrfs_remove_ordered_extent(inode, ordered);
9679 btrfs_put_ordered_extent(ordered);
9680 btrfs_put_ordered_extent(ordered);
9681 }
9682 }
9683 btrfs_qgroup_check_reserved_leak(inode);
9684 inode_tree_del(inode);
9685 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9686 free:
9687 call_rcu(&inode->i_rcu, btrfs_i_callback);
9688 }
9689
btrfs_drop_inode(struct inode * inode)9690 int btrfs_drop_inode(struct inode *inode)
9691 {
9692 struct btrfs_root *root = BTRFS_I(inode)->root;
9693
9694 if (root == NULL)
9695 return 1;
9696
9697 /* the snap/subvol tree is on deleting */
9698 if (btrfs_root_refs(&root->root_item) == 0)
9699 return 1;
9700 else
9701 return generic_drop_inode(inode);
9702 }
9703
init_once(void * foo)9704 static void init_once(void *foo)
9705 {
9706 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9707
9708 inode_init_once(&ei->vfs_inode);
9709 }
9710
btrfs_destroy_cachep(void)9711 void btrfs_destroy_cachep(void)
9712 {
9713 /*
9714 * Make sure all delayed rcu free inodes are flushed before we
9715 * destroy cache.
9716 */
9717 rcu_barrier();
9718 kmem_cache_destroy(btrfs_inode_cachep);
9719 kmem_cache_destroy(btrfs_trans_handle_cachep);
9720 kmem_cache_destroy(btrfs_path_cachep);
9721 kmem_cache_destroy(btrfs_free_space_cachep);
9722 }
9723
btrfs_init_cachep(void)9724 int btrfs_init_cachep(void)
9725 {
9726 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9727 sizeof(struct btrfs_inode), 0,
9728 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9729 init_once);
9730 if (!btrfs_inode_cachep)
9731 goto fail;
9732
9733 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9734 sizeof(struct btrfs_trans_handle), 0,
9735 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9736 if (!btrfs_trans_handle_cachep)
9737 goto fail;
9738
9739 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9740 sizeof(struct btrfs_path), 0,
9741 SLAB_MEM_SPREAD, NULL);
9742 if (!btrfs_path_cachep)
9743 goto fail;
9744
9745 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9746 sizeof(struct btrfs_free_space), 0,
9747 SLAB_MEM_SPREAD, NULL);
9748 if (!btrfs_free_space_cachep)
9749 goto fail;
9750
9751 return 0;
9752 fail:
9753 btrfs_destroy_cachep();
9754 return -ENOMEM;
9755 }
9756
btrfs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)9757 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9758 u32 request_mask, unsigned int flags)
9759 {
9760 u64 delalloc_bytes;
9761 struct inode *inode = d_inode(path->dentry);
9762 u32 blocksize = inode->i_sb->s_blocksize;
9763 u32 bi_flags = BTRFS_I(inode)->flags;
9764
9765 stat->result_mask |= STATX_BTIME;
9766 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9767 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9768 if (bi_flags & BTRFS_INODE_APPEND)
9769 stat->attributes |= STATX_ATTR_APPEND;
9770 if (bi_flags & BTRFS_INODE_COMPRESS)
9771 stat->attributes |= STATX_ATTR_COMPRESSED;
9772 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9773 stat->attributes |= STATX_ATTR_IMMUTABLE;
9774 if (bi_flags & BTRFS_INODE_NODUMP)
9775 stat->attributes |= STATX_ATTR_NODUMP;
9776
9777 stat->attributes_mask |= (STATX_ATTR_APPEND |
9778 STATX_ATTR_COMPRESSED |
9779 STATX_ATTR_IMMUTABLE |
9780 STATX_ATTR_NODUMP);
9781
9782 generic_fillattr(inode, stat);
9783 stat->dev = BTRFS_I(inode)->root->anon_dev;
9784
9785 spin_lock(&BTRFS_I(inode)->lock);
9786 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9787 spin_unlock(&BTRFS_I(inode)->lock);
9788 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9789 ALIGN(delalloc_bytes, blocksize)) >> 9;
9790 return 0;
9791 }
9792
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9793 static int btrfs_rename_exchange(struct inode *old_dir,
9794 struct dentry *old_dentry,
9795 struct inode *new_dir,
9796 struct dentry *new_dentry)
9797 {
9798 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9799 struct btrfs_trans_handle *trans;
9800 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9801 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9802 struct inode *new_inode = new_dentry->d_inode;
9803 struct inode *old_inode = old_dentry->d_inode;
9804 struct timespec ctime = current_time(old_inode);
9805 struct dentry *parent;
9806 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9807 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9808 u64 old_idx = 0;
9809 u64 new_idx = 0;
9810 u64 root_objectid;
9811 int ret;
9812 int ret2;
9813 bool root_log_pinned = false;
9814 bool dest_log_pinned = false;
9815
9816 /* we only allow rename subvolume link between subvolumes */
9817 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9818 return -EXDEV;
9819
9820 /* close the race window with snapshot create/destroy ioctl */
9821 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9822 new_ino == BTRFS_FIRST_FREE_OBJECTID)
9823 down_read(&fs_info->subvol_sem);
9824
9825 /*
9826 * We want to reserve the absolute worst case amount of items. So if
9827 * both inodes are subvols and we need to unlink them then that would
9828 * require 4 item modifications, but if they are both normal inodes it
9829 * would require 5 item modifications, so we'll assume their normal
9830 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9831 * should cover the worst case number of items we'll modify.
9832 */
9833 trans = btrfs_start_transaction(root, 12);
9834 if (IS_ERR(trans)) {
9835 ret = PTR_ERR(trans);
9836 goto out_notrans;
9837 }
9838
9839 if (dest != root)
9840 btrfs_record_root_in_trans(trans, dest);
9841
9842 /*
9843 * We need to find a free sequence number both in the source and
9844 * in the destination directory for the exchange.
9845 */
9846 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9847 if (ret)
9848 goto out_fail;
9849 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9850 if (ret)
9851 goto out_fail;
9852
9853 BTRFS_I(old_inode)->dir_index = 0ULL;
9854 BTRFS_I(new_inode)->dir_index = 0ULL;
9855
9856 /* Reference for the source. */
9857 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9858 /* force full log commit if subvolume involved. */
9859 btrfs_set_log_full_commit(fs_info, trans);
9860 } else {
9861 btrfs_pin_log_trans(root);
9862 root_log_pinned = true;
9863 ret = btrfs_insert_inode_ref(trans, dest,
9864 new_dentry->d_name.name,
9865 new_dentry->d_name.len,
9866 old_ino,
9867 btrfs_ino(BTRFS_I(new_dir)),
9868 old_idx);
9869 if (ret)
9870 goto out_fail;
9871 }
9872
9873 /* And now for the dest. */
9874 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9875 /* force full log commit if subvolume involved. */
9876 btrfs_set_log_full_commit(fs_info, trans);
9877 } else {
9878 btrfs_pin_log_trans(dest);
9879 dest_log_pinned = true;
9880 ret = btrfs_insert_inode_ref(trans, root,
9881 old_dentry->d_name.name,
9882 old_dentry->d_name.len,
9883 new_ino,
9884 btrfs_ino(BTRFS_I(old_dir)),
9885 new_idx);
9886 if (ret)
9887 goto out_fail;
9888 }
9889
9890 /* Update inode version and ctime/mtime. */
9891 inode_inc_iversion(old_dir);
9892 inode_inc_iversion(new_dir);
9893 inode_inc_iversion(old_inode);
9894 inode_inc_iversion(new_inode);
9895 old_dir->i_ctime = old_dir->i_mtime = ctime;
9896 new_dir->i_ctime = new_dir->i_mtime = ctime;
9897 old_inode->i_ctime = ctime;
9898 new_inode->i_ctime = ctime;
9899
9900 if (old_dentry->d_parent != new_dentry->d_parent) {
9901 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9902 BTRFS_I(old_inode), 1);
9903 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9904 BTRFS_I(new_inode), 1);
9905 }
9906
9907 /* src is a subvolume */
9908 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9909 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9910 ret = btrfs_unlink_subvol(trans, root, old_dir,
9911 root_objectid,
9912 old_dentry->d_name.name,
9913 old_dentry->d_name.len);
9914 } else { /* src is an inode */
9915 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9916 BTRFS_I(old_dentry->d_inode),
9917 old_dentry->d_name.name,
9918 old_dentry->d_name.len);
9919 if (!ret)
9920 ret = btrfs_update_inode(trans, root, old_inode);
9921 }
9922 if (ret) {
9923 btrfs_abort_transaction(trans, ret);
9924 goto out_fail;
9925 }
9926
9927 /* dest is a subvolume */
9928 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9929 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9930 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9931 root_objectid,
9932 new_dentry->d_name.name,
9933 new_dentry->d_name.len);
9934 } else { /* dest is an inode */
9935 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9936 BTRFS_I(new_dentry->d_inode),
9937 new_dentry->d_name.name,
9938 new_dentry->d_name.len);
9939 if (!ret)
9940 ret = btrfs_update_inode(trans, dest, new_inode);
9941 }
9942 if (ret) {
9943 btrfs_abort_transaction(trans, ret);
9944 goto out_fail;
9945 }
9946
9947 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9948 new_dentry->d_name.name,
9949 new_dentry->d_name.len, 0, old_idx);
9950 if (ret) {
9951 btrfs_abort_transaction(trans, ret);
9952 goto out_fail;
9953 }
9954
9955 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9956 old_dentry->d_name.name,
9957 old_dentry->d_name.len, 0, new_idx);
9958 if (ret) {
9959 btrfs_abort_transaction(trans, ret);
9960 goto out_fail;
9961 }
9962
9963 if (old_inode->i_nlink == 1)
9964 BTRFS_I(old_inode)->dir_index = old_idx;
9965 if (new_inode->i_nlink == 1)
9966 BTRFS_I(new_inode)->dir_index = new_idx;
9967
9968 if (root_log_pinned) {
9969 parent = new_dentry->d_parent;
9970 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9971 parent);
9972 btrfs_end_log_trans(root);
9973 root_log_pinned = false;
9974 }
9975 if (dest_log_pinned) {
9976 parent = old_dentry->d_parent;
9977 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9978 parent);
9979 btrfs_end_log_trans(dest);
9980 dest_log_pinned = false;
9981 }
9982 out_fail:
9983 /*
9984 * If we have pinned a log and an error happened, we unpin tasks
9985 * trying to sync the log and force them to fallback to a transaction
9986 * commit if the log currently contains any of the inodes involved in
9987 * this rename operation (to ensure we do not persist a log with an
9988 * inconsistent state for any of these inodes or leading to any
9989 * inconsistencies when replayed). If the transaction was aborted, the
9990 * abortion reason is propagated to userspace when attempting to commit
9991 * the transaction. If the log does not contain any of these inodes, we
9992 * allow the tasks to sync it.
9993 */
9994 if (ret && (root_log_pinned || dest_log_pinned)) {
9995 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9996 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9997 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9998 (new_inode &&
9999 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10000 btrfs_set_log_full_commit(fs_info, trans);
10001
10002 if (root_log_pinned) {
10003 btrfs_end_log_trans(root);
10004 root_log_pinned = false;
10005 }
10006 if (dest_log_pinned) {
10007 btrfs_end_log_trans(dest);
10008 dest_log_pinned = false;
10009 }
10010 }
10011 ret2 = btrfs_end_transaction(trans);
10012 ret = ret ? ret : ret2;
10013 out_notrans:
10014 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
10015 old_ino == BTRFS_FIRST_FREE_OBJECTID)
10016 up_read(&fs_info->subvol_sem);
10017
10018 return ret;
10019 }
10020
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)10021 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
10022 struct btrfs_root *root,
10023 struct inode *dir,
10024 struct dentry *dentry)
10025 {
10026 int ret;
10027 struct inode *inode;
10028 u64 objectid;
10029 u64 index;
10030
10031 ret = btrfs_find_free_ino(root, &objectid);
10032 if (ret)
10033 return ret;
10034
10035 inode = btrfs_new_inode(trans, root, dir,
10036 dentry->d_name.name,
10037 dentry->d_name.len,
10038 btrfs_ino(BTRFS_I(dir)),
10039 objectid,
10040 S_IFCHR | WHITEOUT_MODE,
10041 &index);
10042
10043 if (IS_ERR(inode)) {
10044 ret = PTR_ERR(inode);
10045 return ret;
10046 }
10047
10048 inode->i_op = &btrfs_special_inode_operations;
10049 init_special_inode(inode, inode->i_mode,
10050 WHITEOUT_DEV);
10051
10052 ret = btrfs_init_inode_security(trans, inode, dir,
10053 &dentry->d_name);
10054 if (ret)
10055 goto out;
10056
10057 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10058 BTRFS_I(inode), 0, index);
10059 if (ret)
10060 goto out;
10061
10062 ret = btrfs_update_inode(trans, root, inode);
10063 out:
10064 unlock_new_inode(inode);
10065 if (ret)
10066 inode_dec_link_count(inode);
10067 iput(inode);
10068
10069 return ret;
10070 }
10071
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)10072 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
10073 struct inode *new_dir, struct dentry *new_dentry,
10074 unsigned int flags)
10075 {
10076 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
10077 struct btrfs_trans_handle *trans;
10078 unsigned int trans_num_items;
10079 struct btrfs_root *root = BTRFS_I(old_dir)->root;
10080 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
10081 struct inode *new_inode = d_inode(new_dentry);
10082 struct inode *old_inode = d_inode(old_dentry);
10083 u64 index = 0;
10084 u64 root_objectid;
10085 int ret;
10086 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
10087 bool log_pinned = false;
10088
10089 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
10090 return -EPERM;
10091
10092 /* we only allow rename subvolume link between subvolumes */
10093 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
10094 return -EXDEV;
10095
10096 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
10097 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
10098 return -ENOTEMPTY;
10099
10100 if (S_ISDIR(old_inode->i_mode) && new_inode &&
10101 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
10102 return -ENOTEMPTY;
10103
10104
10105 /* check for collisions, even if the name isn't there */
10106 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
10107 new_dentry->d_name.name,
10108 new_dentry->d_name.len);
10109
10110 if (ret) {
10111 if (ret == -EEXIST) {
10112 /* we shouldn't get
10113 * eexist without a new_inode */
10114 if (WARN_ON(!new_inode)) {
10115 return ret;
10116 }
10117 } else {
10118 /* maybe -EOVERFLOW */
10119 return ret;
10120 }
10121 }
10122 ret = 0;
10123
10124 /*
10125 * we're using rename to replace one file with another. Start IO on it
10126 * now so we don't add too much work to the end of the transaction
10127 */
10128 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
10129 filemap_flush(old_inode->i_mapping);
10130
10131 /* close the racy window with snapshot create/destroy ioctl */
10132 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10133 down_read(&fs_info->subvol_sem);
10134 /*
10135 * We want to reserve the absolute worst case amount of items. So if
10136 * both inodes are subvols and we need to unlink them then that would
10137 * require 4 item modifications, but if they are both normal inodes it
10138 * would require 5 item modifications, so we'll assume they are normal
10139 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
10140 * should cover the worst case number of items we'll modify.
10141 * If our rename has the whiteout flag, we need more 5 units for the
10142 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
10143 * when selinux is enabled).
10144 */
10145 trans_num_items = 11;
10146 if (flags & RENAME_WHITEOUT)
10147 trans_num_items += 5;
10148 trans = btrfs_start_transaction(root, trans_num_items);
10149 if (IS_ERR(trans)) {
10150 ret = PTR_ERR(trans);
10151 goto out_notrans;
10152 }
10153
10154 if (dest != root)
10155 btrfs_record_root_in_trans(trans, dest);
10156
10157 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
10158 if (ret)
10159 goto out_fail;
10160
10161 BTRFS_I(old_inode)->dir_index = 0ULL;
10162 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
10163 /* force full log commit if subvolume involved. */
10164 btrfs_set_log_full_commit(fs_info, trans);
10165 } else {
10166 btrfs_pin_log_trans(root);
10167 log_pinned = true;
10168 ret = btrfs_insert_inode_ref(trans, dest,
10169 new_dentry->d_name.name,
10170 new_dentry->d_name.len,
10171 old_ino,
10172 btrfs_ino(BTRFS_I(new_dir)), index);
10173 if (ret)
10174 goto out_fail;
10175 }
10176
10177 inode_inc_iversion(old_dir);
10178 inode_inc_iversion(new_dir);
10179 inode_inc_iversion(old_inode);
10180 old_dir->i_ctime = old_dir->i_mtime =
10181 new_dir->i_ctime = new_dir->i_mtime =
10182 old_inode->i_ctime = current_time(old_dir);
10183
10184 if (old_dentry->d_parent != new_dentry->d_parent)
10185 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
10186 BTRFS_I(old_inode), 1);
10187
10188 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
10189 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
10190 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
10191 old_dentry->d_name.name,
10192 old_dentry->d_name.len);
10193 } else {
10194 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
10195 BTRFS_I(d_inode(old_dentry)),
10196 old_dentry->d_name.name,
10197 old_dentry->d_name.len);
10198 if (!ret)
10199 ret = btrfs_update_inode(trans, root, old_inode);
10200 }
10201 if (ret) {
10202 btrfs_abort_transaction(trans, ret);
10203 goto out_fail;
10204 }
10205
10206 if (new_inode) {
10207 inode_inc_iversion(new_inode);
10208 new_inode->i_ctime = current_time(new_inode);
10209 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
10210 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10211 root_objectid = BTRFS_I(new_inode)->location.objectid;
10212 ret = btrfs_unlink_subvol(trans, dest, new_dir,
10213 root_objectid,
10214 new_dentry->d_name.name,
10215 new_dentry->d_name.len);
10216 BUG_ON(new_inode->i_nlink == 0);
10217 } else {
10218 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10219 BTRFS_I(d_inode(new_dentry)),
10220 new_dentry->d_name.name,
10221 new_dentry->d_name.len);
10222 }
10223 if (!ret && new_inode->i_nlink == 0)
10224 ret = btrfs_orphan_add(trans,
10225 BTRFS_I(d_inode(new_dentry)));
10226 if (ret) {
10227 btrfs_abort_transaction(trans, ret);
10228 goto out_fail;
10229 }
10230 }
10231
10232 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10233 new_dentry->d_name.name,
10234 new_dentry->d_name.len, 0, index);
10235 if (ret) {
10236 btrfs_abort_transaction(trans, ret);
10237 goto out_fail;
10238 }
10239
10240 if (old_inode->i_nlink == 1)
10241 BTRFS_I(old_inode)->dir_index = index;
10242
10243 if (log_pinned) {
10244 struct dentry *parent = new_dentry->d_parent;
10245
10246 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10247 parent);
10248 btrfs_end_log_trans(root);
10249 log_pinned = false;
10250 }
10251
10252 if (flags & RENAME_WHITEOUT) {
10253 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10254 old_dentry);
10255
10256 if (ret) {
10257 btrfs_abort_transaction(trans, ret);
10258 goto out_fail;
10259 }
10260 }
10261 out_fail:
10262 /*
10263 * If we have pinned the log and an error happened, we unpin tasks
10264 * trying to sync the log and force them to fallback to a transaction
10265 * commit if the log currently contains any of the inodes involved in
10266 * this rename operation (to ensure we do not persist a log with an
10267 * inconsistent state for any of these inodes or leading to any
10268 * inconsistencies when replayed). If the transaction was aborted, the
10269 * abortion reason is propagated to userspace when attempting to commit
10270 * the transaction. If the log does not contain any of these inodes, we
10271 * allow the tasks to sync it.
10272 */
10273 if (ret && log_pinned) {
10274 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10275 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10276 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10277 (new_inode &&
10278 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10279 btrfs_set_log_full_commit(fs_info, trans);
10280
10281 btrfs_end_log_trans(root);
10282 log_pinned = false;
10283 }
10284 btrfs_end_transaction(trans);
10285 out_notrans:
10286 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10287 up_read(&fs_info->subvol_sem);
10288
10289 return ret;
10290 }
10291
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)10292 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10293 struct inode *new_dir, struct dentry *new_dentry,
10294 unsigned int flags)
10295 {
10296 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10297 return -EINVAL;
10298
10299 if (flags & RENAME_EXCHANGE)
10300 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10301 new_dentry);
10302
10303 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10304 }
10305
btrfs_run_delalloc_work(struct btrfs_work * work)10306 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10307 {
10308 struct btrfs_delalloc_work *delalloc_work;
10309 struct inode *inode;
10310
10311 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10312 work);
10313 inode = delalloc_work->inode;
10314 filemap_flush(inode->i_mapping);
10315 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10316 &BTRFS_I(inode)->runtime_flags))
10317 filemap_flush(inode->i_mapping);
10318
10319 if (delalloc_work->delay_iput)
10320 btrfs_add_delayed_iput(inode);
10321 else
10322 iput(inode);
10323 complete(&delalloc_work->completion);
10324 }
10325
btrfs_alloc_delalloc_work(struct inode * inode,int delay_iput)10326 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10327 int delay_iput)
10328 {
10329 struct btrfs_delalloc_work *work;
10330
10331 work = kmalloc(sizeof(*work), GFP_NOFS);
10332 if (!work)
10333 return NULL;
10334
10335 init_completion(&work->completion);
10336 INIT_LIST_HEAD(&work->list);
10337 work->inode = inode;
10338 work->delay_iput = delay_iput;
10339 WARN_ON_ONCE(!inode);
10340 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10341 btrfs_run_delalloc_work, NULL, NULL);
10342
10343 return work;
10344 }
10345
btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work * work)10346 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10347 {
10348 wait_for_completion(&work->completion);
10349 kfree(work);
10350 }
10351
10352 /*
10353 * some fairly slow code that needs optimization. This walks the list
10354 * of all the inodes with pending delalloc and forces them to disk.
10355 */
__start_delalloc_inodes(struct btrfs_root * root,int delay_iput,int nr)10356 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10357 int nr)
10358 {
10359 struct btrfs_inode *binode;
10360 struct inode *inode;
10361 struct btrfs_delalloc_work *work, *next;
10362 struct list_head works;
10363 struct list_head splice;
10364 int ret = 0;
10365
10366 INIT_LIST_HEAD(&works);
10367 INIT_LIST_HEAD(&splice);
10368
10369 mutex_lock(&root->delalloc_mutex);
10370 spin_lock(&root->delalloc_lock);
10371 list_splice_init(&root->delalloc_inodes, &splice);
10372 while (!list_empty(&splice)) {
10373 binode = list_entry(splice.next, struct btrfs_inode,
10374 delalloc_inodes);
10375
10376 list_move_tail(&binode->delalloc_inodes,
10377 &root->delalloc_inodes);
10378 inode = igrab(&binode->vfs_inode);
10379 if (!inode) {
10380 cond_resched_lock(&root->delalloc_lock);
10381 continue;
10382 }
10383 spin_unlock(&root->delalloc_lock);
10384
10385 work = btrfs_alloc_delalloc_work(inode, delay_iput);
10386 if (!work) {
10387 if (delay_iput)
10388 btrfs_add_delayed_iput(inode);
10389 else
10390 iput(inode);
10391 ret = -ENOMEM;
10392 goto out;
10393 }
10394 list_add_tail(&work->list, &works);
10395 btrfs_queue_work(root->fs_info->flush_workers,
10396 &work->work);
10397 ret++;
10398 if (nr != -1 && ret >= nr)
10399 goto out;
10400 cond_resched();
10401 spin_lock(&root->delalloc_lock);
10402 }
10403 spin_unlock(&root->delalloc_lock);
10404
10405 out:
10406 list_for_each_entry_safe(work, next, &works, list) {
10407 list_del_init(&work->list);
10408 btrfs_wait_and_free_delalloc_work(work);
10409 }
10410
10411 if (!list_empty_careful(&splice)) {
10412 spin_lock(&root->delalloc_lock);
10413 list_splice_tail(&splice, &root->delalloc_inodes);
10414 spin_unlock(&root->delalloc_lock);
10415 }
10416 mutex_unlock(&root->delalloc_mutex);
10417 return ret;
10418 }
10419
btrfs_start_delalloc_inodes(struct btrfs_root * root,int delay_iput)10420 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10421 {
10422 struct btrfs_fs_info *fs_info = root->fs_info;
10423 int ret;
10424
10425 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10426 return -EROFS;
10427
10428 ret = __start_delalloc_inodes(root, delay_iput, -1);
10429 if (ret > 0)
10430 ret = 0;
10431 /*
10432 * the filemap_flush will queue IO into the worker threads, but
10433 * we have to make sure the IO is actually started and that
10434 * ordered extents get created before we return
10435 */
10436 atomic_inc(&fs_info->async_submit_draining);
10437 while (atomic_read(&fs_info->nr_async_submits) ||
10438 atomic_read(&fs_info->async_delalloc_pages)) {
10439 wait_event(fs_info->async_submit_wait,
10440 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10441 atomic_read(&fs_info->async_delalloc_pages) == 0));
10442 }
10443 atomic_dec(&fs_info->async_submit_draining);
10444 return ret;
10445 }
10446
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,int delay_iput,int nr)10447 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10448 int nr)
10449 {
10450 struct btrfs_root *root;
10451 struct list_head splice;
10452 int ret;
10453
10454 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10455 return -EROFS;
10456
10457 INIT_LIST_HEAD(&splice);
10458
10459 mutex_lock(&fs_info->delalloc_root_mutex);
10460 spin_lock(&fs_info->delalloc_root_lock);
10461 list_splice_init(&fs_info->delalloc_roots, &splice);
10462 while (!list_empty(&splice) && nr) {
10463 root = list_first_entry(&splice, struct btrfs_root,
10464 delalloc_root);
10465 root = btrfs_grab_fs_root(root);
10466 BUG_ON(!root);
10467 list_move_tail(&root->delalloc_root,
10468 &fs_info->delalloc_roots);
10469 spin_unlock(&fs_info->delalloc_root_lock);
10470
10471 ret = __start_delalloc_inodes(root, delay_iput, nr);
10472 btrfs_put_fs_root(root);
10473 if (ret < 0)
10474 goto out;
10475
10476 if (nr != -1) {
10477 nr -= ret;
10478 WARN_ON(nr < 0);
10479 }
10480 spin_lock(&fs_info->delalloc_root_lock);
10481 }
10482 spin_unlock(&fs_info->delalloc_root_lock);
10483
10484 ret = 0;
10485 atomic_inc(&fs_info->async_submit_draining);
10486 while (atomic_read(&fs_info->nr_async_submits) ||
10487 atomic_read(&fs_info->async_delalloc_pages)) {
10488 wait_event(fs_info->async_submit_wait,
10489 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10490 atomic_read(&fs_info->async_delalloc_pages) == 0));
10491 }
10492 atomic_dec(&fs_info->async_submit_draining);
10493 out:
10494 if (!list_empty_careful(&splice)) {
10495 spin_lock(&fs_info->delalloc_root_lock);
10496 list_splice_tail(&splice, &fs_info->delalloc_roots);
10497 spin_unlock(&fs_info->delalloc_root_lock);
10498 }
10499 mutex_unlock(&fs_info->delalloc_root_mutex);
10500 return ret;
10501 }
10502
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)10503 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10504 const char *symname)
10505 {
10506 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10507 struct btrfs_trans_handle *trans;
10508 struct btrfs_root *root = BTRFS_I(dir)->root;
10509 struct btrfs_path *path;
10510 struct btrfs_key key;
10511 struct inode *inode = NULL;
10512 int err;
10513 int drop_inode = 0;
10514 u64 objectid;
10515 u64 index = 0;
10516 int name_len;
10517 int datasize;
10518 unsigned long ptr;
10519 struct btrfs_file_extent_item *ei;
10520 struct extent_buffer *leaf;
10521
10522 name_len = strlen(symname);
10523 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10524 return -ENAMETOOLONG;
10525
10526 /*
10527 * 2 items for inode item and ref
10528 * 2 items for dir items
10529 * 1 item for updating parent inode item
10530 * 1 item for the inline extent item
10531 * 1 item for xattr if selinux is on
10532 */
10533 trans = btrfs_start_transaction(root, 7);
10534 if (IS_ERR(trans))
10535 return PTR_ERR(trans);
10536
10537 err = btrfs_find_free_ino(root, &objectid);
10538 if (err)
10539 goto out_unlock;
10540
10541 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10542 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10543 objectid, S_IFLNK|S_IRWXUGO, &index);
10544 if (IS_ERR(inode)) {
10545 err = PTR_ERR(inode);
10546 goto out_unlock;
10547 }
10548
10549 /*
10550 * If the active LSM wants to access the inode during
10551 * d_instantiate it needs these. Smack checks to see
10552 * if the filesystem supports xattrs by looking at the
10553 * ops vector.
10554 */
10555 inode->i_fop = &btrfs_file_operations;
10556 inode->i_op = &btrfs_file_inode_operations;
10557 inode->i_mapping->a_ops = &btrfs_aops;
10558 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10559
10560 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10561 if (err)
10562 goto out_unlock_inode;
10563
10564 path = btrfs_alloc_path();
10565 if (!path) {
10566 err = -ENOMEM;
10567 goto out_unlock_inode;
10568 }
10569 key.objectid = btrfs_ino(BTRFS_I(inode));
10570 key.offset = 0;
10571 key.type = BTRFS_EXTENT_DATA_KEY;
10572 datasize = btrfs_file_extent_calc_inline_size(name_len);
10573 err = btrfs_insert_empty_item(trans, root, path, &key,
10574 datasize);
10575 if (err) {
10576 btrfs_free_path(path);
10577 goto out_unlock_inode;
10578 }
10579 leaf = path->nodes[0];
10580 ei = btrfs_item_ptr(leaf, path->slots[0],
10581 struct btrfs_file_extent_item);
10582 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10583 btrfs_set_file_extent_type(leaf, ei,
10584 BTRFS_FILE_EXTENT_INLINE);
10585 btrfs_set_file_extent_encryption(leaf, ei, 0);
10586 btrfs_set_file_extent_compression(leaf, ei, 0);
10587 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10588 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10589
10590 ptr = btrfs_file_extent_inline_start(ei);
10591 write_extent_buffer(leaf, symname, ptr, name_len);
10592 btrfs_mark_buffer_dirty(leaf);
10593 btrfs_free_path(path);
10594
10595 inode->i_op = &btrfs_symlink_inode_operations;
10596 inode_nohighmem(inode);
10597 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10598 inode_set_bytes(inode, name_len);
10599 btrfs_i_size_write(BTRFS_I(inode), name_len);
10600 err = btrfs_update_inode(trans, root, inode);
10601 /*
10602 * Last step, add directory indexes for our symlink inode. This is the
10603 * last step to avoid extra cleanup of these indexes if an error happens
10604 * elsewhere above.
10605 */
10606 if (!err)
10607 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10608 BTRFS_I(inode), 0, index);
10609 if (err) {
10610 drop_inode = 1;
10611 goto out_unlock_inode;
10612 }
10613
10614 d_instantiate_new(dentry, inode);
10615
10616 out_unlock:
10617 btrfs_end_transaction(trans);
10618 if (drop_inode) {
10619 inode_dec_link_count(inode);
10620 iput(inode);
10621 }
10622 btrfs_btree_balance_dirty(fs_info);
10623 return err;
10624
10625 out_unlock_inode:
10626 drop_inode = 1;
10627 unlock_new_inode(inode);
10628 goto out_unlock;
10629 }
10630
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)10631 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10632 u64 start, u64 num_bytes, u64 min_size,
10633 loff_t actual_len, u64 *alloc_hint,
10634 struct btrfs_trans_handle *trans)
10635 {
10636 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10637 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10638 struct extent_map *em;
10639 struct btrfs_root *root = BTRFS_I(inode)->root;
10640 struct btrfs_key ins;
10641 u64 cur_offset = start;
10642 u64 clear_offset = start;
10643 u64 i_size;
10644 u64 cur_bytes;
10645 u64 last_alloc = (u64)-1;
10646 int ret = 0;
10647 bool own_trans = true;
10648 u64 end = start + num_bytes - 1;
10649
10650 if (trans)
10651 own_trans = false;
10652 while (num_bytes > 0) {
10653 if (own_trans) {
10654 trans = btrfs_start_transaction(root, 3);
10655 if (IS_ERR(trans)) {
10656 ret = PTR_ERR(trans);
10657 break;
10658 }
10659 }
10660
10661 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10662 cur_bytes = max(cur_bytes, min_size);
10663 /*
10664 * If we are severely fragmented we could end up with really
10665 * small allocations, so if the allocator is returning small
10666 * chunks lets make its job easier by only searching for those
10667 * sized chunks.
10668 */
10669 cur_bytes = min(cur_bytes, last_alloc);
10670 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10671 min_size, 0, *alloc_hint, &ins, 1, 0);
10672 if (ret) {
10673 if (own_trans)
10674 btrfs_end_transaction(trans);
10675 break;
10676 }
10677
10678 /*
10679 * We've reserved this space, and thus converted it from
10680 * ->bytes_may_use to ->bytes_reserved. Any error that happens
10681 * from here on out we will only need to clear our reservation
10682 * for the remaining unreserved area, so advance our
10683 * clear_offset by our extent size.
10684 */
10685 clear_offset += ins.offset;
10686 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10687
10688 last_alloc = ins.offset;
10689 ret = insert_reserved_file_extent(trans, inode,
10690 cur_offset, ins.objectid,
10691 ins.offset, ins.offset,
10692 ins.offset, 0, 0, 0,
10693 BTRFS_FILE_EXTENT_PREALLOC);
10694 if (ret) {
10695 btrfs_free_reserved_extent(fs_info, ins.objectid,
10696 ins.offset, 0);
10697 btrfs_abort_transaction(trans, ret);
10698 if (own_trans)
10699 btrfs_end_transaction(trans);
10700 break;
10701 }
10702
10703 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10704 cur_offset + ins.offset -1, 0);
10705
10706 em = alloc_extent_map();
10707 if (!em) {
10708 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10709 &BTRFS_I(inode)->runtime_flags);
10710 goto next;
10711 }
10712
10713 em->start = cur_offset;
10714 em->orig_start = cur_offset;
10715 em->len = ins.offset;
10716 em->block_start = ins.objectid;
10717 em->block_len = ins.offset;
10718 em->orig_block_len = ins.offset;
10719 em->ram_bytes = ins.offset;
10720 em->bdev = fs_info->fs_devices->latest_bdev;
10721 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10722 em->generation = trans->transid;
10723
10724 while (1) {
10725 write_lock(&em_tree->lock);
10726 ret = add_extent_mapping(em_tree, em, 1);
10727 write_unlock(&em_tree->lock);
10728 if (ret != -EEXIST)
10729 break;
10730 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10731 cur_offset + ins.offset - 1,
10732 0);
10733 }
10734 free_extent_map(em);
10735 next:
10736 num_bytes -= ins.offset;
10737 cur_offset += ins.offset;
10738 *alloc_hint = ins.objectid + ins.offset;
10739
10740 inode_inc_iversion(inode);
10741 inode->i_ctime = current_time(inode);
10742 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10743 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10744 (actual_len > inode->i_size) &&
10745 (cur_offset > inode->i_size)) {
10746 if (cur_offset > actual_len)
10747 i_size = actual_len;
10748 else
10749 i_size = cur_offset;
10750 i_size_write(inode, i_size);
10751 btrfs_ordered_update_i_size(inode, i_size, NULL);
10752 }
10753
10754 ret = btrfs_update_inode(trans, root, inode);
10755
10756 if (ret) {
10757 btrfs_abort_transaction(trans, ret);
10758 if (own_trans)
10759 btrfs_end_transaction(trans);
10760 break;
10761 }
10762
10763 if (own_trans)
10764 btrfs_end_transaction(trans);
10765 }
10766 if (clear_offset < end)
10767 btrfs_free_reserved_data_space(inode, NULL, clear_offset,
10768 end - clear_offset + 1);
10769 return ret;
10770 }
10771
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10772 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10773 u64 start, u64 num_bytes, u64 min_size,
10774 loff_t actual_len, u64 *alloc_hint)
10775 {
10776 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10777 min_size, actual_len, alloc_hint,
10778 NULL);
10779 }
10780
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10781 int btrfs_prealloc_file_range_trans(struct inode *inode,
10782 struct btrfs_trans_handle *trans, int mode,
10783 u64 start, u64 num_bytes, u64 min_size,
10784 loff_t actual_len, u64 *alloc_hint)
10785 {
10786 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10787 min_size, actual_len, alloc_hint, trans);
10788 }
10789
btrfs_set_page_dirty(struct page * page)10790 static int btrfs_set_page_dirty(struct page *page)
10791 {
10792 return __set_page_dirty_nobuffers(page);
10793 }
10794
btrfs_permission(struct inode * inode,int mask)10795 static int btrfs_permission(struct inode *inode, int mask)
10796 {
10797 struct btrfs_root *root = BTRFS_I(inode)->root;
10798 umode_t mode = inode->i_mode;
10799
10800 if (mask & MAY_WRITE &&
10801 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10802 if (btrfs_root_readonly(root))
10803 return -EROFS;
10804 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10805 return -EACCES;
10806 }
10807 return generic_permission(inode, mask);
10808 }
10809
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)10810 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10811 {
10812 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10813 struct btrfs_trans_handle *trans;
10814 struct btrfs_root *root = BTRFS_I(dir)->root;
10815 struct inode *inode = NULL;
10816 u64 objectid;
10817 u64 index;
10818 int ret = 0;
10819
10820 /*
10821 * 5 units required for adding orphan entry
10822 */
10823 trans = btrfs_start_transaction(root, 5);
10824 if (IS_ERR(trans))
10825 return PTR_ERR(trans);
10826
10827 ret = btrfs_find_free_ino(root, &objectid);
10828 if (ret)
10829 goto out;
10830
10831 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10832 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10833 if (IS_ERR(inode)) {
10834 ret = PTR_ERR(inode);
10835 inode = NULL;
10836 goto out;
10837 }
10838
10839 inode->i_fop = &btrfs_file_operations;
10840 inode->i_op = &btrfs_file_inode_operations;
10841
10842 inode->i_mapping->a_ops = &btrfs_aops;
10843 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10844
10845 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10846 if (ret)
10847 goto out_inode;
10848
10849 ret = btrfs_update_inode(trans, root, inode);
10850 if (ret)
10851 goto out_inode;
10852 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10853 if (ret)
10854 goto out_inode;
10855
10856 /*
10857 * We set number of links to 0 in btrfs_new_inode(), and here we set
10858 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10859 * through:
10860 *
10861 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10862 */
10863 set_nlink(inode, 1);
10864 unlock_new_inode(inode);
10865 d_tmpfile(dentry, inode);
10866 mark_inode_dirty(inode);
10867
10868 out:
10869 btrfs_end_transaction(trans);
10870 if (ret)
10871 iput(inode);
10872 btrfs_balance_delayed_items(fs_info);
10873 btrfs_btree_balance_dirty(fs_info);
10874 return ret;
10875
10876 out_inode:
10877 unlock_new_inode(inode);
10878 goto out;
10879
10880 }
10881
10882 __attribute__((const))
btrfs_readpage_io_failed_hook(struct page * page,int failed_mirror)10883 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10884 {
10885 return -EAGAIN;
10886 }
10887
iotree_fs_info(void * private_data)10888 static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10889 {
10890 struct inode *inode = private_data;
10891 return btrfs_sb(inode->i_sb);
10892 }
10893
btrfs_check_extent_io_range(void * private_data,const char * caller,u64 start,u64 end)10894 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10895 u64 start, u64 end)
10896 {
10897 struct inode *inode = private_data;
10898 u64 isize;
10899
10900 isize = i_size_read(inode);
10901 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10902 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10903 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10904 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10905 }
10906 }
10907
btrfs_set_range_writeback(void * private_data,u64 start,u64 end)10908 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10909 {
10910 struct inode *inode = private_data;
10911 unsigned long index = start >> PAGE_SHIFT;
10912 unsigned long end_index = end >> PAGE_SHIFT;
10913 struct page *page;
10914
10915 while (index <= end_index) {
10916 page = find_get_page(inode->i_mapping, index);
10917 ASSERT(page); /* Pages should be in the extent_io_tree */
10918 set_page_writeback(page);
10919 put_page(page);
10920 index++;
10921 }
10922 }
10923
10924 static const struct inode_operations btrfs_dir_inode_operations = {
10925 .getattr = btrfs_getattr,
10926 .lookup = btrfs_lookup,
10927 .create = btrfs_create,
10928 .unlink = btrfs_unlink,
10929 .link = btrfs_link,
10930 .mkdir = btrfs_mkdir,
10931 .rmdir = btrfs_rmdir,
10932 .rename = btrfs_rename2,
10933 .symlink = btrfs_symlink,
10934 .setattr = btrfs_setattr,
10935 .mknod = btrfs_mknod,
10936 .listxattr = btrfs_listxattr,
10937 .permission = btrfs_permission,
10938 .get_acl = btrfs_get_acl,
10939 .set_acl = btrfs_set_acl,
10940 .update_time = btrfs_update_time,
10941 .tmpfile = btrfs_tmpfile,
10942 };
10943 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10944 .lookup = btrfs_lookup,
10945 .permission = btrfs_permission,
10946 .update_time = btrfs_update_time,
10947 };
10948
10949 static const struct file_operations btrfs_dir_file_operations = {
10950 .llseek = generic_file_llseek,
10951 .read = generic_read_dir,
10952 .iterate_shared = btrfs_real_readdir,
10953 .open = btrfs_opendir,
10954 .unlocked_ioctl = btrfs_ioctl,
10955 #ifdef CONFIG_COMPAT
10956 .compat_ioctl = btrfs_compat_ioctl,
10957 #endif
10958 .release = btrfs_release_file,
10959 .fsync = btrfs_sync_file,
10960 };
10961
10962 static const struct extent_io_ops btrfs_extent_io_ops = {
10963 /* mandatory callbacks */
10964 .submit_bio_hook = btrfs_submit_bio_hook,
10965 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10966 .merge_bio_hook = btrfs_merge_bio_hook,
10967 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10968 .tree_fs_info = iotree_fs_info,
10969 .set_range_writeback = btrfs_set_range_writeback,
10970
10971 /* optional callbacks */
10972 .fill_delalloc = run_delalloc_range,
10973 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10974 .writepage_start_hook = btrfs_writepage_start_hook,
10975 .set_bit_hook = btrfs_set_bit_hook,
10976 .clear_bit_hook = btrfs_clear_bit_hook,
10977 .merge_extent_hook = btrfs_merge_extent_hook,
10978 .split_extent_hook = btrfs_split_extent_hook,
10979 .check_extent_io_range = btrfs_check_extent_io_range,
10980 };
10981
10982 /*
10983 * btrfs doesn't support the bmap operation because swapfiles
10984 * use bmap to make a mapping of extents in the file. They assume
10985 * these extents won't change over the life of the file and they
10986 * use the bmap result to do IO directly to the drive.
10987 *
10988 * the btrfs bmap call would return logical addresses that aren't
10989 * suitable for IO and they also will change frequently as COW
10990 * operations happen. So, swapfile + btrfs == corruption.
10991 *
10992 * For now we're avoiding this by dropping bmap.
10993 */
10994 static const struct address_space_operations btrfs_aops = {
10995 .readpage = btrfs_readpage,
10996 .writepage = btrfs_writepage,
10997 .writepages = btrfs_writepages,
10998 .readpages = btrfs_readpages,
10999 .direct_IO = btrfs_direct_IO,
11000 .invalidatepage = btrfs_invalidatepage,
11001 .releasepage = btrfs_releasepage,
11002 .set_page_dirty = btrfs_set_page_dirty,
11003 .error_remove_page = generic_error_remove_page,
11004 };
11005
11006 static const struct address_space_operations btrfs_symlink_aops = {
11007 .readpage = btrfs_readpage,
11008 .writepage = btrfs_writepage,
11009 .invalidatepage = btrfs_invalidatepage,
11010 .releasepage = btrfs_releasepage,
11011 };
11012
11013 static const struct inode_operations btrfs_file_inode_operations = {
11014 .getattr = btrfs_getattr,
11015 .setattr = btrfs_setattr,
11016 .listxattr = btrfs_listxattr,
11017 .permission = btrfs_permission,
11018 .fiemap = btrfs_fiemap,
11019 .get_acl = btrfs_get_acl,
11020 .set_acl = btrfs_set_acl,
11021 .update_time = btrfs_update_time,
11022 };
11023 static const struct inode_operations btrfs_special_inode_operations = {
11024 .getattr = btrfs_getattr,
11025 .setattr = btrfs_setattr,
11026 .permission = btrfs_permission,
11027 .listxattr = btrfs_listxattr,
11028 .get_acl = btrfs_get_acl,
11029 .set_acl = btrfs_set_acl,
11030 .update_time = btrfs_update_time,
11031 };
11032 static const struct inode_operations btrfs_symlink_inode_operations = {
11033 .get_link = page_get_link,
11034 .getattr = btrfs_getattr,
11035 .setattr = btrfs_setattr,
11036 .permission = btrfs_permission,
11037 .listxattr = btrfs_listxattr,
11038 .update_time = btrfs_update_time,
11039 };
11040
11041 const struct dentry_operations btrfs_dentry_operations = {
11042 .d_delete = btrfs_dentry_delete,
11043 .d_release = btrfs_dentry_release,
11044 };
11045